src/share/vm/opto/callnode.hpp

Fri, 22 Feb 2008 17:55:13 -0800

author
kvn
date
Fri, 22 Feb 2008 17:55:13 -0800
changeset 463
67914967a4b5
parent 435
a61af66fc99e
child 468
3288958bf319
permissions
-rw-r--r--

6650373: Assert in methodOopDesc::make_adapters()
Summary: AdapterHandlerLibrary::get_create_adapter_index() returns incorrect value (-2) when CodeCache is full.
Reviewed-by: sgoldman

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 class Chaitin;
    30 class NamedCounter;
    31 class MultiNode;
    32 class  SafePointNode;
    33 class   CallNode;
    34 class     CallJavaNode;
    35 class       CallStaticJavaNode;
    36 class       CallDynamicJavaNode;
    37 class     CallRuntimeNode;
    38 class       CallLeafNode;
    39 class         CallLeafNoFPNode;
    40 class     AllocateNode;
    41 class     AllocateArrayNode;
    42 class     LockNode;
    43 class     UnlockNode;
    44 class JVMState;
    45 class OopMap;
    46 class State;
    47 class StartNode;
    48 class MachCallNode;
    49 class FastLockNode;
    51 //------------------------------StartNode--------------------------------------
    52 // The method start node
    53 class StartNode : public MultiNode {
    54   virtual uint cmp( const Node &n ) const;
    55   virtual uint size_of() const; // Size is bigger
    56 public:
    57   const TypeTuple *_domain;
    58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    59     init_class_id(Class_Start);
    60     init_flags(Flag_is_block_start);
    61     init_req(0,this);
    62     init_req(1,root);
    63   }
    64   virtual int Opcode() const;
    65   virtual bool pinned() const { return true; };
    66   virtual const Type *bottom_type() const;
    67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    68   virtual const Type *Value( PhaseTransform *phase ) const;
    69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    71   virtual const RegMask &in_RegMask(uint) const;
    72   virtual Node *match( const ProjNode *proj, const Matcher *m );
    73   virtual uint ideal_reg() const { return 0; }
    74 #ifndef PRODUCT
    75   virtual void  dump_spec(outputStream *st) const;
    76 #endif
    77 };
    79 //------------------------------StartOSRNode-----------------------------------
    80 // The method start node for on stack replacement code
    81 class StartOSRNode : public StartNode {
    82 public:
    83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    84   virtual int   Opcode() const;
    85   static  const TypeTuple *osr_domain();
    86 };
    89 //------------------------------ParmNode---------------------------------------
    90 // Incoming parameters
    91 class ParmNode : public ProjNode {
    92   static const char * const names[TypeFunc::Parms+1];
    93 public:
    94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {}
    95   virtual int Opcode() const;
    96   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
    97   virtual uint ideal_reg() const;
    98 #ifndef PRODUCT
    99   virtual void dump_spec(outputStream *st) const;
   100 #endif
   101 };
   104 //------------------------------ReturnNode-------------------------------------
   105 // Return from subroutine node
   106 class ReturnNode : public Node {
   107 public:
   108   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   109   virtual int Opcode() const;
   110   virtual bool  is_CFG() const { return true; }
   111   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   112   virtual bool depends_only_on_test() const { return false; }
   113   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   114   virtual const Type *Value( PhaseTransform *phase ) const;
   115   virtual uint ideal_reg() const { return NotAMachineReg; }
   116   virtual uint match_edge(uint idx) const;
   117 #ifndef PRODUCT
   118   virtual void dump_req() const;
   119 #endif
   120 };
   123 //------------------------------RethrowNode------------------------------------
   124 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   125 // ends the current basic block like a ReturnNode.  Restores registers and
   126 // unwinds stack.  Rethrow happens in the caller's method.
   127 class RethrowNode : public Node {
   128  public:
   129   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   130   virtual int Opcode() const;
   131   virtual bool  is_CFG() const { return true; }
   132   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   133   virtual bool depends_only_on_test() const { return false; }
   134   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   135   virtual const Type *Value( PhaseTransform *phase ) const;
   136   virtual uint match_edge(uint idx) const;
   137   virtual uint ideal_reg() const { return NotAMachineReg; }
   138 #ifndef PRODUCT
   139   virtual void dump_req() const;
   140 #endif
   141 };
   144 //------------------------------TailCallNode-----------------------------------
   145 // Pop stack frame and jump indirect
   146 class TailCallNode : public ReturnNode {
   147 public:
   148   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   149     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   150     init_req(TypeFunc::Parms, target);
   151     init_req(TypeFunc::Parms+1, moop);
   152   }
   154   virtual int Opcode() const;
   155   virtual uint match_edge(uint idx) const;
   156 };
   158 //------------------------------TailJumpNode-----------------------------------
   159 // Pop stack frame and jump indirect
   160 class TailJumpNode : public ReturnNode {
   161 public:
   162   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   163     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   164     init_req(TypeFunc::Parms, target);
   165     init_req(TypeFunc::Parms+1, ex_oop);
   166   }
   168   virtual int Opcode() const;
   169   virtual uint match_edge(uint idx) const;
   170 };
   172 //-------------------------------JVMState-------------------------------------
   173 // A linked list of JVMState nodes captures the whole interpreter state,
   174 // plus GC roots, for all active calls at some call site in this compilation
   175 // unit.  (If there is no inlining, then the list has exactly one link.)
   176 // This provides a way to map the optimized program back into the interpreter,
   177 // or to let the GC mark the stack.
   178 class JVMState : public ResourceObj {
   179 private:
   180   JVMState*         _caller;    // List pointer for forming scope chains
   181   uint              _depth;     // One mroe than caller depth, or one.
   182   uint              _locoff;    // Offset to locals in input edge mapping
   183   uint              _stkoff;    // Offset to stack in input edge mapping
   184   uint              _monoff;    // Offset to monitors in input edge mapping
   185   uint              _endoff;    // Offset to end of input edge mapping
   186   uint              _sp;        // Jave Expression Stack Pointer for this state
   187   int               _bci;       // Byte Code Index of this JVM point
   188   ciMethod*         _method;    // Method Pointer
   189   SafePointNode*    _map;       // Map node associated with this scope
   190 public:
   191   friend class Compile;
   193   // Because JVMState objects live over the entire lifetime of the
   194   // Compile object, they are allocated into the comp_arena, which
   195   // does not get resource marked or reset during the compile process
   196   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   197   void operator delete( void * ) { } // fast deallocation
   199   // Create a new JVMState, ready for abstract interpretation.
   200   JVMState(ciMethod* method, JVMState* caller);
   201   JVMState(int stack_size);  // root state; has a null method
   203   // Access functions for the JVM
   204   uint              locoff() const { return _locoff; }
   205   uint              stkoff() const { return _stkoff; }
   206   uint              argoff() const { return _stkoff + _sp; }
   207   uint              monoff() const { return _monoff; }
   208   uint              endoff() const { return _endoff; }
   209   uint              oopoff() const { return debug_end(); }
   211   int            loc_size() const { return _stkoff - _locoff; }
   212   int            stk_size() const { return _monoff - _stkoff; }
   213   int            mon_size() const { return _endoff - _monoff; }
   215   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   216   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   217   bool        is_mon(uint i) const { return i >= _monoff && i < _endoff; }
   219   uint              sp()     const { return _sp; }
   220   int               bci()    const { return _bci; }
   221   bool          has_method() const { return _method != NULL; }
   222   ciMethod*         method() const { assert(has_method(), ""); return _method; }
   223   JVMState*         caller() const { return _caller; }
   224   SafePointNode*    map()    const { return _map; }
   225   uint              depth()  const { return _depth; }
   226   uint        debug_start()  const; // returns locoff of root caller
   227   uint        debug_end()    const; // returns endoff of self
   228   uint        debug_size()   const { return loc_size() + sp() + mon_size(); }
   229   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   231   // Returns the JVM state at the desired depth (1 == root).
   232   JVMState* of_depth(int d) const;
   234   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   235   bool same_calls_as(const JVMState* that) const;
   237   // Monitors (monitors are stored as (boxNode, objNode) pairs
   238   enum { logMonitorEdges = 1 };
   239   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   240   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   241   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   242   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   243   bool is_monitor_box(uint off)    const {
   244     assert(is_mon(off), "should be called only for monitor edge");
   245     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   246   }
   247   bool is_monitor_use(uint off)    const { return (is_mon(off)
   248                                                    && is_monitor_box(off))
   249                                              || (caller() && caller()->is_monitor_use(off)); }
   251   // Initialization functions for the JVM
   252   void              set_locoff(uint off) { _locoff = off; }
   253   void              set_stkoff(uint off) { _stkoff = off; }
   254   void              set_monoff(uint off) { _monoff = off; }
   255   void              set_endoff(uint off) { _endoff = off; }
   256   void              set_offsets(uint off) { _locoff = _stkoff = _monoff = _endoff = off; }
   257   void              set_map(SafePointNode *map) { _map = map; }
   258   void              set_sp(uint sp) { _sp = sp; }
   259   void              set_bci(int bci) { _bci = bci; }
   261   // Miscellaneous utility functions
   262   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   263   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   265 #ifndef PRODUCT
   266   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   267   void      dump_spec(outputStream *st) const;
   268   void      dump_on(outputStream* st) const;
   269   void      dump() const {
   270     dump_on(tty);
   271   }
   272 #endif
   273 };
   275 //------------------------------SafePointNode----------------------------------
   276 // A SafePointNode is a subclass of a MultiNode for convenience (and
   277 // potential code sharing) only - conceptually it is independent of
   278 // the Node semantics.
   279 class SafePointNode : public MultiNode {
   280   virtual uint           cmp( const Node &n ) const;
   281   virtual uint           size_of() const;       // Size is bigger
   283 public:
   284   SafePointNode(uint edges, JVMState* jvms,
   285                 // A plain safepoint advertises no memory effects (NULL):
   286                 const TypePtr* adr_type = NULL)
   287     : MultiNode( edges ),
   288       _jvms(jvms),
   289       _oop_map(NULL),
   290       _adr_type(adr_type)
   291   {
   292     init_class_id(Class_SafePoint);
   293   }
   295   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   296   JVMState* const _jvms;      // Pointer to list of JVM State objects
   297   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   299   // Many calls take *all* of memory as input,
   300   // but some produce a limited subset of that memory as output.
   301   // The adr_type reports the call's behavior as a store, not a load.
   303   virtual JVMState* jvms() const { return _jvms; }
   304   void set_jvms(JVMState* s) {
   305     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   306   }
   307   OopMap *oop_map() const { return _oop_map; }
   308   void set_oop_map(OopMap *om) { _oop_map = om; }
   310   // Functionality from old debug nodes which has changed
   311   Node *local(JVMState* jvms, uint idx) const {
   312     assert(verify_jvms(jvms), "jvms must match");
   313     return in(jvms->locoff() + idx);
   314   }
   315   Node *stack(JVMState* jvms, uint idx) const {
   316     assert(verify_jvms(jvms), "jvms must match");
   317     return in(jvms->stkoff() + idx);
   318   }
   319   Node *argument(JVMState* jvms, uint idx) const {
   320     assert(verify_jvms(jvms), "jvms must match");
   321     return in(jvms->argoff() + idx);
   322   }
   323   Node *monitor_box(JVMState* jvms, uint idx) const {
   324     assert(verify_jvms(jvms), "jvms must match");
   325     return in(jvms->monitor_box_offset(idx));
   326   }
   327   Node *monitor_obj(JVMState* jvms, uint idx) const {
   328     assert(verify_jvms(jvms), "jvms must match");
   329     return in(jvms->monitor_obj_offset(idx));
   330   }
   332   void  set_local(JVMState* jvms, uint idx, Node *c);
   334   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   335     assert(verify_jvms(jvms), "jvms must match");
   336     set_req(jvms->stkoff() + idx, c);
   337   }
   338   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   339     assert(verify_jvms(jvms), "jvms must match");
   340     set_req(jvms->argoff() + idx, c);
   341   }
   342   void ensure_stack(JVMState* jvms, uint stk_size) {
   343     assert(verify_jvms(jvms), "jvms must match");
   344     int grow_by = (int)stk_size - (int)jvms->stk_size();
   345     if (grow_by > 0)  grow_stack(jvms, grow_by);
   346   }
   347   void grow_stack(JVMState* jvms, uint grow_by);
   348   // Handle monitor stack
   349   void push_monitor( const FastLockNode *lock );
   350   void pop_monitor ();
   351   Node *peek_monitor_box() const;
   352   Node *peek_monitor_obj() const;
   354   // Access functions for the JVM
   355   Node *control  () const { return in(TypeFunc::Control  ); }
   356   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   357   Node *memory   () const { return in(TypeFunc::Memory   ); }
   358   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   359   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   361   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   362   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   363   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   365   MergeMemNode* merged_memory() const {
   366     return in(TypeFunc::Memory)->as_MergeMem();
   367   }
   369   // The parser marks useless maps as dead when it's done with them:
   370   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   372   // Exception states bubbling out of subgraphs such as inlined calls
   373   // are recorded here.  (There might be more than one, hence the "next".)
   374   // This feature is used only for safepoints which serve as "maps"
   375   // for JVM states during parsing, intrinsic expansion, etc.
   376   SafePointNode*         next_exception() const;
   377   void               set_next_exception(SafePointNode* n);
   378   bool                   has_exceptions() const { return next_exception() != NULL; }
   380   // Standard Node stuff
   381   virtual int            Opcode() const;
   382   virtual bool           pinned() const { return true; }
   383   virtual const Type    *Value( PhaseTransform *phase ) const;
   384   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   385   virtual const TypePtr *adr_type() const { return _adr_type; }
   386   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   387   virtual Node          *Identity( PhaseTransform *phase );
   388   virtual uint           ideal_reg() const { return 0; }
   389   virtual const RegMask &in_RegMask(uint) const;
   390   virtual const RegMask &out_RegMask() const;
   391   virtual uint           match_edge(uint idx) const;
   393   static  bool           needs_polling_address_input();
   395 #ifndef PRODUCT
   396   virtual void              dump_spec(outputStream *st) const;
   397 #endif
   398 };
   400 //------------------------------CallNode---------------------------------------
   401 // Call nodes now subsume the function of debug nodes at callsites, so they
   402 // contain the functionality of a full scope chain of debug nodes.
   403 class CallNode : public SafePointNode {
   404 public:
   405   const TypeFunc *_tf;        // Function type
   406   address      _entry_point;  // Address of method being called
   407   float        _cnt;          // Estimate of number of times called
   408   PointsToNode::EscapeState _escape_state;
   410   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   411     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   412       _tf(tf),
   413       _entry_point(addr),
   414       _cnt(COUNT_UNKNOWN)
   415   {
   416     init_class_id(Class_Call);
   417     init_flags(Flag_is_Call);
   418     _escape_state = PointsToNode::UnknownEscape;
   419   }
   421   const TypeFunc* tf()        const { return _tf; }
   422   const address entry_point() const { return _entry_point; }
   423   const float   cnt()         const { return _cnt; }
   425   void set_tf(const TypeFunc* tf) { _tf = tf; }
   426   void set_entry_point(address p) { _entry_point = p; }
   427   void set_cnt(float c)           { _cnt = c; }
   429   virtual const Type *bottom_type() const;
   430   virtual const Type *Value( PhaseTransform *phase ) const;
   431   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   432   virtual uint        cmp( const Node &n ) const;
   433   virtual uint        size_of() const = 0;
   434   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   435   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   436   virtual uint        ideal_reg() const { return NotAMachineReg; }
   437   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   438   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   439   virtual bool        guaranteed_safepoint()  { return true; }
   440   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   441   // the node the JVMState must be cloned.
   442   virtual void        clone_jvms() { }   // default is not to clone
   444   virtual uint match_edge(uint idx) const;
   446 #ifndef PRODUCT
   447   virtual void        dump_req()  const;
   448   virtual void        dump_spec(outputStream *st) const;
   449 #endif
   450 };
   452 //------------------------------CallJavaNode-----------------------------------
   453 // Make a static or dynamic subroutine call node using Java calling
   454 // convention.  (The "Java" calling convention is the compiler's calling
   455 // convention, as opposed to the interpreter's or that of native C.)
   456 class CallJavaNode : public CallNode {
   457 protected:
   458   virtual uint cmp( const Node &n ) const;
   459   virtual uint size_of() const; // Size is bigger
   461   bool    _optimized_virtual;
   462   ciMethod* _method;            // Method being direct called
   463 public:
   464   const int       _bci;         // Byte Code Index of call byte code
   465   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   466     : CallNode(tf, addr, TypePtr::BOTTOM),
   467       _method(method), _bci(bci), _optimized_virtual(false)
   468   {
   469     init_class_id(Class_CallJava);
   470   }
   472   virtual int   Opcode() const;
   473   ciMethod* method() const                { return _method; }
   474   void  set_method(ciMethod *m)           { _method = m; }
   475   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   476   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   478 #ifndef PRODUCT
   479   virtual void  dump_spec(outputStream *st) const;
   480 #endif
   481 };
   483 //------------------------------CallStaticJavaNode-----------------------------
   484 // Make a direct subroutine call using Java calling convention (for static
   485 // calls and optimized virtual calls, plus calls to wrappers for run-time
   486 // routines); generates static stub.
   487 class CallStaticJavaNode : public CallJavaNode {
   488   virtual uint cmp( const Node &n ) const;
   489   virtual uint size_of() const; // Size is bigger
   490 public:
   491   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   492     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   493     init_class_id(Class_CallStaticJava);
   494   }
   495   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   496                      const TypePtr* adr_type)
   497     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   498     init_class_id(Class_CallStaticJava);
   499     // This node calls a runtime stub, which often has narrow memory effects.
   500     _adr_type = adr_type;
   501   }
   502   const char *_name;            // Runtime wrapper name
   504   // If this is an uncommon trap, return the request code, else zero.
   505   int uncommon_trap_request() const;
   506   static int extract_uncommon_trap_request(const Node* call);
   508   virtual int         Opcode() const;
   509 #ifndef PRODUCT
   510   virtual void        dump_spec(outputStream *st) const;
   511 #endif
   512 };
   514 //------------------------------CallDynamicJavaNode----------------------------
   515 // Make a dispatched call using Java calling convention.
   516 class CallDynamicJavaNode : public CallJavaNode {
   517   virtual uint cmp( const Node &n ) const;
   518   virtual uint size_of() const; // Size is bigger
   519 public:
   520   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   521     init_class_id(Class_CallDynamicJava);
   522   }
   524   int _vtable_index;
   525   virtual int   Opcode() const;
   526 #ifndef PRODUCT
   527   virtual void  dump_spec(outputStream *st) const;
   528 #endif
   529 };
   531 //------------------------------CallRuntimeNode--------------------------------
   532 // Make a direct subroutine call node into compiled C++ code.
   533 class CallRuntimeNode : public CallNode {
   534   virtual uint cmp( const Node &n ) const;
   535   virtual uint size_of() const; // Size is bigger
   536 public:
   537   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   538                   const TypePtr* adr_type)
   539     : CallNode(tf, addr, adr_type),
   540       _name(name)
   541   {
   542     init_class_id(Class_CallRuntime);
   543   }
   545   const char *_name;            // Printable name, if _method is NULL
   546   virtual int   Opcode() const;
   547   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   549 #ifndef PRODUCT
   550   virtual void  dump_spec(outputStream *st) const;
   551 #endif
   552 };
   554 //------------------------------CallLeafNode-----------------------------------
   555 // Make a direct subroutine call node into compiled C++ code, without
   556 // safepoints
   557 class CallLeafNode : public CallRuntimeNode {
   558 public:
   559   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   560                const TypePtr* adr_type)
   561     : CallRuntimeNode(tf, addr, name, adr_type)
   562   {
   563     init_class_id(Class_CallLeaf);
   564   }
   565   virtual int   Opcode() const;
   566   virtual bool        guaranteed_safepoint()  { return false; }
   567 #ifndef PRODUCT
   568   virtual void  dump_spec(outputStream *st) const;
   569 #endif
   570 };
   572 //------------------------------CallLeafNoFPNode-------------------------------
   573 // CallLeafNode, not using floating point or using it in the same manner as
   574 // the generated code
   575 class CallLeafNoFPNode : public CallLeafNode {
   576 public:
   577   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   578                    const TypePtr* adr_type)
   579     : CallLeafNode(tf, addr, name, adr_type)
   580   {
   581   }
   582   virtual int   Opcode() const;
   583 };
   586 //------------------------------Allocate---------------------------------------
   587 // High-level memory allocation
   588 //
   589 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   590 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   591 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   592 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   593 //  order to differentiate the uses of the projection on the normal control path from
   594 //  those on the exception return path.
   595 //
   596 class AllocateNode : public CallNode {
   597 public:
   598   enum {
   599     // Output:
   600     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   601     // Inputs:
   602     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   603     KlassNode,                        // type (maybe dynamic) of the obj.
   604     InitialTest,                      // slow-path test (may be constant)
   605     ALength,                          // array length (or TOP if none)
   606     ParmLimit
   607   };
   609   static const TypeFunc* alloc_type() {
   610     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   611     fields[AllocSize]   = TypeInt::POS;
   612     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   613     fields[InitialTest] = TypeInt::BOOL;
   614     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   616     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   618     // create result type (range)
   619     fields = TypeTuple::fields(1);
   620     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   622     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   624     return TypeFunc::make(domain, range);
   625   }
   627   virtual uint size_of() const; // Size is bigger
   628   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   629                Node *size, Node *klass_node, Node *initial_test);
   630   // Expansion modifies the JVMState, so we need to clone it
   631   virtual void  clone_jvms() {
   632     set_jvms(jvms()->clone_deep(Compile::current()));
   633   }
   634   virtual int Opcode() const;
   635   virtual uint ideal_reg() const { return Op_RegP; }
   636   virtual bool        guaranteed_safepoint()  { return false; }
   638   // Pattern-match a possible usage of AllocateNode.
   639   // Return null if no allocation is recognized.
   640   // The operand is the pointer produced by the (possible) allocation.
   641   // It must be a projection of the Allocate or its subsequent CastPP.
   642   // (Note:  This function is defined in file graphKit.cpp, near
   643   // GraphKit::new_instance/new_array, whose output it recognizes.)
   644   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   645   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   647   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   648   // an offset, which is reported back to the caller.
   649   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   650   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   651                                         intptr_t& offset);
   653   // Dig the klass operand out of a (possible) allocation site.
   654   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   655     AllocateNode* allo = Ideal_allocation(ptr, phase);
   656     return (allo == NULL) ? NULL : allo->in(KlassNode);
   657   }
   659   // Conservatively small estimate of offset of first non-header byte.
   660   int minimum_header_size() {
   661     return is_AllocateArray() ? sizeof(arrayOopDesc) : sizeof(oopDesc);
   662   }
   664   // Return the corresponding initialization barrier (or null if none).
   665   // Walks out edges to find it...
   666   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   667   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   668   InitializeNode* initialization();
   670   // Convenience for initialization->maybe_set_complete(phase)
   671   bool maybe_set_complete(PhaseGVN* phase);
   672 };
   674 //------------------------------AllocateArray---------------------------------
   675 //
   676 // High-level array allocation
   677 //
   678 class AllocateArrayNode : public AllocateNode {
   679 public:
   680   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   681                     Node* size, Node* klass_node, Node* initial_test,
   682                     Node* count_val
   683                     )
   684     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   685                    initial_test)
   686   {
   687     init_class_id(Class_AllocateArray);
   688     set_req(AllocateNode::ALength,        count_val);
   689   }
   690   virtual int Opcode() const;
   691   virtual uint size_of() const; // Size is bigger
   693   // Pattern-match a possible usage of AllocateArrayNode.
   694   // Return null if no allocation is recognized.
   695   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   696     AllocateNode* allo = Ideal_allocation(ptr, phase);
   697     return (allo == NULL || !allo->is_AllocateArray())
   698            ? NULL : allo->as_AllocateArray();
   699   }
   701   // Dig the length operand out of a (possible) array allocation site.
   702   static Node* Ideal_length(Node* ptr, PhaseTransform* phase) {
   703     AllocateArrayNode* allo = Ideal_array_allocation(ptr, phase);
   704     return (allo == NULL) ? NULL : allo->in(AllocateNode::ALength);
   705   }
   706 };
   708 //------------------------------AbstractLockNode-----------------------------------
   709 class AbstractLockNode: public CallNode {
   710 private:
   711  bool _eliminate;    // indicates this lock can be safely eliminated
   712 #ifndef PRODUCT
   713   NamedCounter* _counter;
   714 #endif
   716 protected:
   717   // helper functions for lock elimination
   718   //
   720   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   721                             GrowableArray<AbstractLockNode*> &lock_ops);
   722   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   723                                        GrowableArray<AbstractLockNode*> &lock_ops);
   724   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   725                                GrowableArray<AbstractLockNode*> &lock_ops);
   726   LockNode *find_matching_lock(UnlockNode* unlock);
   729 public:
   730   AbstractLockNode(const TypeFunc *tf)
   731     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   732       _eliminate(false)
   733   {
   734 #ifndef PRODUCT
   735     _counter = NULL;
   736 #endif
   737   }
   738   virtual int Opcode() const = 0;
   739   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   740   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   741   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   742   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   744   virtual uint size_of() const { return sizeof(*this); }
   746   bool is_eliminated()         {return _eliminate; }
   747   // mark node as eliminated and update the counter if there is one
   748   void set_eliminated();
   750 #ifndef PRODUCT
   751   void create_lock_counter(JVMState* s);
   752   NamedCounter* counter() const { return _counter; }
   753 #endif
   754 };
   756 //------------------------------Lock---------------------------------------
   757 // High-level lock operation
   758 //
   759 // This is a subclass of CallNode because it is a macro node which gets expanded
   760 // into a code sequence containing a call.  This node takes 3 "parameters":
   761 //    0  -  object to lock
   762 //    1 -   a BoxLockNode
   763 //    2 -   a FastLockNode
   764 //
   765 class LockNode : public AbstractLockNode {
   766 public:
   768   static const TypeFunc *lock_type() {
   769     // create input type (domain)
   770     const Type **fields = TypeTuple::fields(3);
   771     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   772     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   773     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   774     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   776     // create result type (range)
   777     fields = TypeTuple::fields(0);
   779     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   781     return TypeFunc::make(domain,range);
   782   }
   784   virtual int Opcode() const;
   785   virtual uint size_of() const; // Size is bigger
   786   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   787     init_class_id(Class_Lock);
   788     init_flags(Flag_is_macro);
   789     C->add_macro_node(this);
   790   }
   791   virtual bool        guaranteed_safepoint()  { return false; }
   793   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   794   // Expansion modifies the JVMState, so we need to clone it
   795   virtual void  clone_jvms() {
   796     set_jvms(jvms()->clone_deep(Compile::current()));
   797   }
   798 };
   800 //------------------------------Unlock---------------------------------------
   801 // High-level unlock operation
   802 class UnlockNode : public AbstractLockNode {
   803 public:
   804   virtual int Opcode() const;
   805   virtual uint size_of() const; // Size is bigger
   806   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   807     init_class_id(Class_Unlock);
   808     init_flags(Flag_is_macro);
   809     C->add_macro_node(this);
   810   }
   811   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   812   // unlock is never a safepoint
   813   virtual bool        guaranteed_safepoint()  { return false; }
   814 };

mercurial