src/cpu/mips/vm/macroAssembler_mips.cpp

Fri, 13 Oct 2017 11:29:53 +0800

author
wangxue
date
Fri, 13 Oct 2017 11:29:53 +0800
changeset 7995
67882e9d8b35
parent 6886
2fa8027581f6
child 7997
6cbff0651f1a
permissions
-rw-r--r--

#6126 Fixed ForceEarlyReturn error
call_VM_leaf() handles the stack alignment when the assemble code calls c code.
Modified part of debugging code of call_VM_base() in macroAssembler_mips.cpp.

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2017, Loongson Technology. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/assembler.hpp"
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/macroAssembler.inline.hpp"
    30 #include "compiler/disassembler.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "memory/universe.hpp"
    36 #include "prims/methodHandles.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/interfaceSupport.hpp"
    39 #include "runtime/objectMonitor.hpp"
    40 #include "runtime/os.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "utilities/macros.hpp"
    44 #if INCLUDE_ALL_GCS
    45 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    46 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    47 #include "gc_implementation/g1/heapRegion.hpp"
    48 #endif // INCLUDE_ALL_GCS
    50 // Implementation of MacroAssembler
    52 intptr_t MacroAssembler::i[32] = {0};
    53 float MacroAssembler::f[32] = {0.0};
    55 void MacroAssembler::print(outputStream *s) {
    56   unsigned int k;
    57   for(k=0; k<sizeof(i)/sizeof(i[0]); k++) {
    58     s->print_cr("i%d = 0x%.16lx", k, i[k]);
    59   }
    60   s->cr();
    62   for(k=0; k<sizeof(f)/sizeof(f[0]); k++) {
    63     s->print_cr("f%d = %f", k, f[k]);
    64   }
    65   s->cr();
    66 }
    68 int MacroAssembler::i_offset(unsigned int k) { return (intptr_t)&((MacroAssembler*)0)->i[k]; }
    69 int MacroAssembler::f_offset(unsigned int k) { return (intptr_t)&((MacroAssembler*)0)->f[k]; }
    71 void MacroAssembler::save_registers(MacroAssembler *masm) {
    72 #define __ masm->
    73   for(int k=0; k<32; k++) {
    74     __ sw (as_Register(k), A0, i_offset(k));
    75   }
    77   for(int k=0; k<32; k++) {
    78     __ swc1 (as_FloatRegister(k), A0, f_offset(k));
    79   }
    80 #undef __
    81 }
    83 void MacroAssembler::restore_registers(MacroAssembler *masm) {
    84 #define __ masm->
    85   for(int k=0; k<32; k++) {
    86     __ lw (as_Register(k), A0, i_offset(k));
    87   }
    89   for(int k=0; k<32; k++) {
    90     __ lwc1 (as_FloatRegister(k), A0, f_offset(k));
    91   }
    92 #undef __
    93 }
    96 void MacroAssembler::pd_patch_instruction(address branch, address target) {
    97   jint& stub_inst = *(jint*) branch;
    99 /* *
   100   move(AT, RA); // dadd
   101   emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   102   nop();
   103         lui(T9, 0); // to be patched
   104         ori(T9, 0);
   105   daddu(T9, T9, RA);
   106   move(RA, AT);
   107   jr(T9);
   108  */
   109   if(special(stub_inst) == dadd_op) {
   110     jint *pc = (jint *)branch;
   112     assert(opcode(pc[3]) == lui_op
   113           && opcode(pc[4]) == ori_op
   114           && special(pc[5]) == daddu_op, "Not a branch label patch");
   115     if(!(opcode(pc[3]) == lui_op
   116           && opcode(pc[4]) == ori_op
   117           && special(pc[5]) == daddu_op)) { tty->print_cr("Not a branch label patch"); }
   119     int offset = target - branch;
   120     if (!is_simm16(offset))
   121     {
   122       pc[3] = (pc[3] & 0xffff0000) | high16(offset - 12);
   123       pc[4] = (pc[4] & 0xffff0000) | low16(offset - 12);
   124     }
   125     else
   126     {
   127       /* revert to "beq + nop" */
   128       CodeBuffer cb(branch, 4 * 10);
   129       MacroAssembler masm(&cb);
   130 #define __ masm.
   131       __ b(target);
   132       __ nop();
   133       __ nop();
   134       __ nop();
   135       __ nop();
   136       __ nop();
   137       __ nop();
   138       __ nop();
   139     }
   140     return;
   141   }
   143 #ifndef PRODUCT
   144   if (!is_simm16((target - branch - 4) >> 2))
   145   {
   146     tty->print_cr("Illegal patching: target=0x%lx", target);
   147     int *p = (int *)branch;
   148     for (int i = -10; i < 10; i++)
   149     {
   150        tty->print("0x%lx, ", p[i]);
   151     }
   152     tty->print_cr("");
   153   }
   154 #endif
   156   stub_inst = patched_branch(target - branch, stub_inst, 0);
   157 }
   159 static inline address first_cache_address() {
   160   return CodeCache::low_bound() + sizeof(HeapBlock::Header);
   161 }
   163 static inline address last_cache_address() {
   164   return CodeCache::high_bound() - Assembler::InstructionSize;
   165 }
   167 int MacroAssembler::call_size(address target, bool far, bool patchable) {
   168   if (patchable) return 6 << Assembler::LogInstructionSize;
   169   if (!far) return 2 << Assembler::LogInstructionSize; // jal + nop
   170   return (insts_for_set64((jlong)target) + 2) << Assembler::LogInstructionSize;
   171 }
   173 // Can we reach target using jal/j from anywhere
   174 // in the code cache (because code can be relocated)?
   175 bool MacroAssembler::reachable_from_cache(address target) {
   176   address cl = first_cache_address();
   177   address ch = last_cache_address();
   179   return fit_in_jal(target, cl) && fit_in_jal(target, ch);
   180 }
   182 void MacroAssembler::general_jump(address target) {
   183   if (reachable_from_cache(target)) {
   184     j(target);
   185     nop();
   186   } else {
   187     set64(T9, (long)target);
   188     jr(T9);
   189     nop();
   190   }
   191 }
   193 int MacroAssembler::insts_for_general_jump(address target) {
   194   if (reachable_from_cache(target)) {
   195     //j(target);
   196     //nop();
   197     return 2;
   198   } else {
   199     //set64(T9, (long)target);
   200     //jr(T9);
   201     //nop();
   202     return insts_for_set64((jlong)target) + 2;
   203   }
   204 }
   206 void MacroAssembler::patchable_jump(address target) {
   207   if (reachable_from_cache(target)) {
   208     nop();
   209     nop();
   210     nop();
   211     nop();
   212     j(target);
   213     nop();
   214   } else {
   215     patchable_set48(T9, (long)target);
   216     jr(T9);
   217     nop();
   218   }
   219 }
   221 int MacroAssembler::insts_for_patchable_jump(address target) {
   222   return 6;
   223 }
   225 void MacroAssembler::general_call(address target) {
   226   if (reachable_from_cache(target)) {
   227     jal(target);
   228     nop();
   229   } else {
   230     set64(T9, (long)target);
   231     jalr(T9);
   232     nop();
   233   }
   234 }
   236 int MacroAssembler::insts_for_general_call(address target) {
   237   if (reachable_from_cache(target)) {
   238     //jal(target);
   239     //nop();
   240     return 2;
   241   } else {
   242     //set64(T9, (long)target);
   243     //jalr(T9);
   244     //nop();
   245     return insts_for_set64((jlong)target) + 2;
   246   }
   247 }
   249 void MacroAssembler::patchable_call(address target) {
   250   if (reachable_from_cache(target)) {
   251     nop();
   252     nop();
   253     nop();
   254     nop();
   255     jal(target);
   256     nop();
   257   } else {
   258     patchable_set48(T9, (long)target);
   259     jalr(T9);
   260     nop();
   261   }
   262 }
   264 int MacroAssembler::insts_for_patchable_call(address target) {
   265   return 6;
   266 }
   268 void MacroAssembler::beq_far(Register rs, Register rt, address entry)
   269 {
   270   u_char * cur_pc = pc();
   272   /* Jin: Near/Far jump */
   273   if(is_simm16((entry - pc() - 4) / 4))
   274   {
   275     Assembler::beq(rs, rt, offset(entry));
   276   }
   277   else
   278   {
   279     Label not_jump;
   280     bne(rs, rt, not_jump);
   281     delayed()->nop();
   283     b_far(entry);
   284     delayed()->nop();
   286     bind(not_jump);
   287     has_delay_slot();
   288   }
   289 }
   291 void MacroAssembler::beq_far(Register rs, Register rt, Label& L)
   292 {
   293   if (L.is_bound()) {
   294     beq_far(rs, rt, target(L));
   295   } else {
   296     u_char * cur_pc = pc();
   297     Label not_jump;
   298     bne(rs, rt, not_jump);
   299     delayed()->nop();
   301     b_far(L);
   302     delayed()->nop();
   304     bind(not_jump);
   305     has_delay_slot();
   306   }
   307 }
   309 void MacroAssembler::bne_far(Register rs, Register rt, address entry)
   310 {
   311   u_char * cur_pc = pc();
   313   /* Jin: Near/Far jump */
   314   if(is_simm16((entry - pc() - 4) / 4))
   315   {
   316     Assembler::bne(rs, rt, offset(entry));
   317   }
   318   else
   319   {
   320     Label not_jump;
   321     beq(rs, rt, not_jump);
   322     delayed()->nop();
   324     b_far(entry);
   325     delayed()->nop();
   327     bind(not_jump);
   328     has_delay_slot();
   329   }
   330 }
   332 void MacroAssembler::bne_far(Register rs, Register rt, Label& L)
   333 {
   334   if (L.is_bound()) {
   335     bne_far(rs, rt, target(L));
   336   } else {
   337     u_char * cur_pc = pc();
   338     Label not_jump;
   339     beq(rs, rt, not_jump);
   340     delayed()->nop();
   342     b_far(L);
   343     delayed()->nop();
   345     bind(not_jump);
   346     has_delay_slot();
   347   }
   348 }
   350 void MacroAssembler::b_far(Label& L)
   351 {
   352   if (L.is_bound()) {
   353     b_far(target(L));
   354   } else {
   355   volatile address dest = target(L);
   356 /*
   357 MacroAssembler::pd_patch_instruction branch=55651ed514, target=55651ef6d8
   358    0x00000055651ed514: dadd at, ra, zero
   359    0x00000055651ed518: [4110001]bgezal zero, 0x00000055651ed520
   361    0x00000055651ed51c: sll zero, zero, 0
   362    0x00000055651ed520: lui t9, 0x0
   363    0x00000055651ed524: ori t9, t9, 0x21b8
   364    0x00000055651ed528: daddu t9, t9, ra
   365    0x00000055651ed52c: dadd ra, at, zero
   366    0x00000055651ed530: jr t9
   367    0x00000055651ed534: sll zero, zero, 0
   368 */
   369   move(AT, RA);
   370   emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   371   nop();
   372         lui(T9, 0); // to be patched
   373         ori(T9, T9, 0);
   374   daddu(T9, T9, RA);
   375   move(RA, AT);
   376   jr(T9);
   377   }
   378 }
   380 void MacroAssembler::b_far(address entry)
   381 {
   382   u_char * cur_pc = pc();
   384   /* Jin: Near/Far jump */
   385   if(is_simm16((entry - pc() - 4) / 4))
   386   {
   387     b(offset(entry));
   388   }
   389   else
   390   {
   391     /* address must be bounded */
   392     move(AT, RA);
   393      emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   394     nop();
   395     li32(T9, entry - pc());
   396     daddu(T9, T9, RA);
   397     move(RA, AT);
   398     jr(T9);
   399   }
   400 }
   402 void MacroAssembler::ld_ptr(Register rt, Register offset, Register base) {
   403   addu_long(AT, base, offset);
   404   ld_ptr(rt, 0, AT);
   405 }
   407 void MacroAssembler::st_ptr(Register rt, Register offset, Register base) {
   408   addu_long(AT, base, offset);
   409   st_ptr(rt, 0, AT);
   410 }
   412 void MacroAssembler::ld_long(Register rt, Register offset, Register base) {
   413   addu_long(AT, base, offset);
   414   ld_long(rt, 0, AT);
   415 }
   417 void MacroAssembler::st_long(Register rt, Register offset, Register base) {
   418   addu_long(AT, base, offset);
   419   st_long(rt, 0, AT);
   420 }
   422 Address MacroAssembler::as_Address(AddressLiteral adr) {
   423   return Address(adr.target(), adr.rspec());
   424 }
   426 Address MacroAssembler::as_Address(ArrayAddress adr) {
   427   return Address::make_array(adr);
   428 }
   430 // tmp_reg1 and tmp_reg2 should be saved outside of atomic_inc32 (caller saved).
   431 void MacroAssembler::atomic_inc32(address counter_addr, int inc, Register tmp_reg1, Register tmp_reg2) {
   432   Label again;
   434   li(tmp_reg1, counter_addr);
   435   bind(again);
   436   if(!Use3A2000) sync();
   437   ll(tmp_reg2, tmp_reg1, 0);
   438   addi(tmp_reg2, tmp_reg2, inc);
   439   sc(tmp_reg2, tmp_reg1, 0);
   440   beq(tmp_reg2, R0, again);
   441   delayed()->nop();
   442 }
   444 int MacroAssembler::biased_locking_enter(Register lock_reg,
   445                                          Register obj_reg,
   446                                          Register swap_reg,
   447                                          Register tmp_reg,
   448                                          bool swap_reg_contains_mark,
   449                                          Label& done,
   450                                          Label* slow_case,
   451                                          BiasedLockingCounters* counters) {
   452   assert(UseBiasedLocking, "why call this otherwise?");
   453   bool need_tmp_reg = false;
   454   if (tmp_reg == noreg) {
   455     need_tmp_reg = true;
   456     tmp_reg = T9;
   457   }
   458   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, AT);
   459   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   460   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   461   Address saved_mark_addr(lock_reg, 0);
   463   // Biased locking
   464   // See whether the lock is currently biased toward our thread and
   465   // whether the epoch is still valid
   466   // Note that the runtime guarantees sufficient alignment of JavaThread
   467   // pointers to allow age to be placed into low bits
   468   // First check to see whether biasing is even enabled for this object
   469   Label cas_label;
   470   int null_check_offset = -1;
   471   if (!swap_reg_contains_mark) {
   472     null_check_offset = offset();
   473     ld_ptr(swap_reg, mark_addr);
   474   }
   476   if (need_tmp_reg) {
   477     push(tmp_reg);
   478   }
   479   move(tmp_reg, swap_reg);
   480   andi(tmp_reg, tmp_reg, markOopDesc::biased_lock_mask_in_place);
   481 #ifdef _LP64
   482   daddi(AT, R0, markOopDesc::biased_lock_pattern);
   483   dsub(AT, AT, tmp_reg);
   484 #else
   485   addi(AT, R0, markOopDesc::biased_lock_pattern);
   486   sub(AT, AT, tmp_reg);
   487 #endif
   488   if (need_tmp_reg) {
   489     pop(tmp_reg);
   490   }
   492   bne(AT, R0, cas_label);
   493   delayed()->nop();
   496   // The bias pattern is present in the object's header. Need to check
   497   // whether the bias owner and the epoch are both still current.
   498   // Note that because there is no current thread register on MIPS we
   499   // need to store off the mark word we read out of the object to
   500   // avoid reloading it and needing to recheck invariants below. This
   501   // store is unfortunate but it makes the overall code shorter and
   502   // simpler.
   503   st_ptr(swap_reg, saved_mark_addr);
   504   if (need_tmp_reg) {
   505     push(tmp_reg);
   506   }
   507   if (swap_reg_contains_mark) {
   508     null_check_offset = offset();
   509   }
   510   load_prototype_header(tmp_reg, obj_reg);
   511   xorr(tmp_reg, tmp_reg, swap_reg);
   512   get_thread(swap_reg);
   513   xorr(swap_reg, swap_reg, tmp_reg);
   515   move(AT, ~((int) markOopDesc::age_mask_in_place));
   516   andr(swap_reg, swap_reg, AT);
   518   if (PrintBiasedLockingStatistics) {
   519     Label L;
   520     bne(swap_reg, R0, L);
   521     delayed()->nop();
   522     push(tmp_reg);
   523     push(A0);
   524     atomic_inc32((address)BiasedLocking::biased_lock_entry_count_addr(), 1, A0, tmp_reg);
   525     pop(A0);
   526     pop(tmp_reg);
   527     bind(L);
   528   }
   529   if (need_tmp_reg) {
   530     pop(tmp_reg);
   531   }
   532   beq(swap_reg, R0, done);
   533   delayed()->nop();
   534   Label try_revoke_bias;
   535   Label try_rebias;
   537   // At this point we know that the header has the bias pattern and
   538   // that we are not the bias owner in the current epoch. We need to
   539   // figure out more details about the state of the header in order to
   540   // know what operations can be legally performed on the object's
   541   // header.
   543   // If the low three bits in the xor result aren't clear, that means
   544   // the prototype header is no longer biased and we have to revoke
   545   // the bias on this object.
   547   move(AT, markOopDesc::biased_lock_mask_in_place);
   548   andr(AT, swap_reg, AT);
   549   bne(AT, R0, try_revoke_bias);
   550   delayed()->nop();
   551   // Biasing is still enabled for this data type. See whether the
   552   // epoch of the current bias is still valid, meaning that the epoch
   553   // bits of the mark word are equal to the epoch bits of the
   554   // prototype header. (Note that the prototype header's epoch bits
   555   // only change at a safepoint.) If not, attempt to rebias the object
   556   // toward the current thread. Note that we must be absolutely sure
   557   // that the current epoch is invalid in order to do this because
   558   // otherwise the manipulations it performs on the mark word are
   559   // illegal.
   561   move(AT, markOopDesc::epoch_mask_in_place);
   562   andr(AT,swap_reg, AT);
   563   bne(AT, R0, try_rebias);
   564   delayed()->nop();
   565   // The epoch of the current bias is still valid but we know nothing
   566   // about the owner; it might be set or it might be clear. Try to
   567   // acquire the bias of the object using an atomic operation. If this
   568   // fails we will go in to the runtime to revoke the object's bias.
   569   // Note that we first construct the presumed unbiased header so we
   570   // don't accidentally blow away another thread's valid bias.
   572   ld_ptr(swap_reg, saved_mark_addr);
   574   move(AT, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   575   andr(swap_reg, swap_reg, AT);
   577   if (need_tmp_reg) {
   578     push(tmp_reg);
   579   }
   580   get_thread(tmp_reg);
   581   orr(tmp_reg, tmp_reg, swap_reg);
   582   //if (os::is_MP()) {
   583   //  sync();
   584   //}
   585   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   586   if (need_tmp_reg) {
   587     pop(tmp_reg);
   588   }
   589   // If the biasing toward our thread failed, this means that
   590   // another thread succeeded in biasing it toward itself and we
   591   // need to revoke that bias. The revocation will occur in the
   592   // interpreter runtime in the slow case.
   593   if (PrintBiasedLockingStatistics) {
   594     Label L;
   595     bne(AT, R0, L);
   596     delayed()->nop();
   597     push(tmp_reg);
   598     push(A0);
   599     atomic_inc32((address)BiasedLocking::anonymously_biased_lock_entry_count_addr(), 1, A0, tmp_reg);
   600     pop(A0);
   601     pop(tmp_reg);
   602     bind(L);
   603   }
   604   if (slow_case != NULL) {
   605     beq_far(AT, R0, *slow_case);
   606     delayed()->nop();
   607   }
   608   b(done);
   609   delayed()->nop();
   611   bind(try_rebias);
   612   // At this point we know the epoch has expired, meaning that the
   613   // current "bias owner", if any, is actually invalid. Under these
   614   // circumstances _only_, we are allowed to use the current header's
   615   // value as the comparison value when doing the cas to acquire the
   616   // bias in the current epoch. In other words, we allow transfer of
   617   // the bias from one thread to another directly in this situation.
   618   //
   619   // FIXME: due to a lack of registers we currently blow away the age
   620   // bits in this situation. Should attempt to preserve them.
   621   if (need_tmp_reg) {
   622     push(tmp_reg);
   623   }
   624   load_prototype_header(tmp_reg, obj_reg);
   625   get_thread(swap_reg);
   626   orr(tmp_reg, tmp_reg, swap_reg);
   627   ld_ptr(swap_reg, saved_mark_addr);
   629   //if (os::is_MP()) {
   630   //  sync();
   631   //}
   632   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   633   if (need_tmp_reg) {
   634     pop(tmp_reg);
   635   }
   636   // If the biasing toward our thread failed, then another thread
   637   // succeeded in biasing it toward itself and we need to revoke that
   638   // bias. The revocation will occur in the runtime in the slow case.
   639   if (PrintBiasedLockingStatistics) {
   640     Label L;
   641     bne(AT, R0, L);
   642     delayed()->nop();
   643     push(AT);
   644     push(tmp_reg);
   645     atomic_inc32((address)BiasedLocking::rebiased_lock_entry_count_addr(), 1, AT, tmp_reg);
   646     pop(tmp_reg);
   647     pop(AT);
   648     bind(L);
   649   }
   650   if (slow_case != NULL) {
   651     beq_far(AT, R0, *slow_case);
   652     delayed()->nop();
   653   }
   655   b(done);
   656   delayed()->nop();
   657   bind(try_revoke_bias);
   658   // The prototype mark in the klass doesn't have the bias bit set any
   659   // more, indicating that objects of this data type are not supposed
   660   // to be biased any more. We are going to try to reset the mark of
   661   // this object to the prototype value and fall through to the
   662   // CAS-based locking scheme. Note that if our CAS fails, it means
   663   // that another thread raced us for the privilege of revoking the
   664   // bias of this particular object, so it's okay to continue in the
   665   // normal locking code.
   666   //
   667   // FIXME: due to a lack of registers we currently blow away the age
   668   // bits in this situation. Should attempt to preserve them.
   669   ld_ptr(swap_reg, saved_mark_addr);
   671   if (need_tmp_reg) {
   672     push(tmp_reg);
   673   }
   674   load_prototype_header(tmp_reg, obj_reg);
   675   //if (os::is_MP()) {
   676   // lock();
   677   //}
   678   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   679   if (need_tmp_reg) {
   680     pop(tmp_reg);
   681   }
   682   // Fall through to the normal CAS-based lock, because no matter what
   683   // the result of the above CAS, some thread must have succeeded in
   684   // removing the bias bit from the object's header.
   685   if (PrintBiasedLockingStatistics) {
   686     Label L;
   687     bne(AT, R0, L);
   688     delayed()->nop();
   689     push(AT);
   690     push(tmp_reg);
   691     atomic_inc32((address)BiasedLocking::revoked_lock_entry_count_addr(), 1, AT, tmp_reg);
   692     pop(tmp_reg);
   693     pop(AT);
   694     bind(L);
   695   }
   697   bind(cas_label);
   698   return null_check_offset;
   699 }
   701 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
   702   assert(UseBiasedLocking, "why call this otherwise?");
   704   // Check for biased locking unlock case, which is a no-op
   705   // Note: we do not have to check the thread ID for two reasons.
   706   // First, the interpreter checks for IllegalMonitorStateException at
   707   // a higher level. Second, if the bias was revoked while we held the
   708   // lock, the object could not be rebiased toward another thread, so
   709   // the bias bit would be clear.
   710 #ifdef _LP64
   711   ld(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
   712   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
   713   daddi(AT, R0, markOopDesc::biased_lock_pattern);
   714 #else
   715   lw(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
   716   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
   717   addi(AT, R0, markOopDesc::biased_lock_pattern);
   718 #endif
   720   beq(AT, temp_reg, done);
   721   delayed()->nop();
   722 }
   724 // NOTE: we dont increment the SP after call like the x86 version, maybe this is a problem, FIXME.
   725 // the stack pointer adjustment is needed. see InterpreterMacroAssembler::super_call_VM_leaf
   726 // this method will handle the stack problem, you need not to preserve the stack space for the argument now
   727 void MacroAssembler::call_VM_leaf_base(address entry_point,
   728     int number_of_arguments) {
   729   //call(RuntimeAddress(entry_point));
   730   //increment(rsp, number_of_arguments * wordSize);
   731   Label L, E;
   733   assert(number_of_arguments <= 4, "just check");
   735   andi(AT, SP, 0xf);
   736   beq(AT, R0, L);
   737   delayed()->nop();
   738   daddi(SP, SP, -8);
   739   call(entry_point, relocInfo::runtime_call_type);
   740   delayed()->nop();
   741   daddi(SP, SP, 8);
   742   b(E);
   743   delayed()->nop();
   745   bind(L);
   746   call(entry_point, relocInfo::runtime_call_type);
   747   delayed()->nop();
   748   bind(E);
   749 }
   752 void MacroAssembler::jmp(address entry) {
   753   patchable_set48(T9, (long)entry);
   754   jr(T9);
   755 }
   757 void MacroAssembler::jmp(address entry, relocInfo::relocType rtype) {
   758   switch (rtype) {
   759     case relocInfo::runtime_call_type:
   760     case relocInfo::none:
   761       jmp(entry);
   762       break;
   763     default:
   764       {
   765       InstructionMark im(this);
   766       relocate(rtype);
   767       patchable_set48(T9, (long)entry);
   768       jr(T9);
   769       }
   770       break;
   771   }
   772 }
   774 void MacroAssembler::call(address entry) {
   775 // c/c++ code assume T9 is entry point, so we just always move entry to t9
   776 // maybe there is some more graceful method to handle this. FIXME
   777 // For more info, see class NativeCall.
   778 #ifndef _LP64
   779   move(T9, (int)entry);
   780 #else
   781   patchable_set48(T9, (long)entry);
   782 #endif
   783   jalr(T9);
   784 }
   786 void MacroAssembler::call(address entry, relocInfo::relocType rtype) {
   787   switch (rtype) {
   788     case relocInfo::runtime_call_type:
   789     case relocInfo::none:
   790       call(entry);
   791       break;
   792     default:
   793       {
   794   InstructionMark im(this);
   795   relocate(rtype);
   796   call(entry);
   797       }
   798       break;
   799   }
   800 }
   802 void MacroAssembler::call(address entry, RelocationHolder& rh)
   803 {
   804   switch (rh.type()) {
   805     case relocInfo::runtime_call_type:
   806     case relocInfo::none:
   807       call(entry);
   808       break;
   809     default:
   810       {
   811   InstructionMark im(this);
   812   relocate(rh);
   813   call(entry);
   814       }
   815       break;
   816   }
   817 }
   819 void MacroAssembler::ic_call(address entry) {
   820   RelocationHolder rh = virtual_call_Relocation::spec(pc());
   821   patchable_set48(IC_Klass, (long)Universe::non_oop_word());
   822   assert(entry != NULL, "call most probably wrong");
   823   InstructionMark im(this);
   824   relocate(rh);
   825         patchable_call(entry);
   826 }
   828 void MacroAssembler::c2bool(Register r) {
   829   Label L;
   830   Assembler::beq(r, R0, L);
   831   delayed()->nop();
   832   move(r, 1);
   833   bind(L);
   834 }
   836 #ifndef PRODUCT
   837 extern "C" void findpc(intptr_t x);
   838 #endif
   840 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   841   // In order to get locks to work, we need to fake a in_VM state
   842   JavaThread* thread = JavaThread::current();
   843   JavaThreadState saved_state = thread->thread_state();
   844   thread->set_thread_state(_thread_in_vm);
   845   if (ShowMessageBoxOnError) {
   846     JavaThread* thread = JavaThread::current();
   847     JavaThreadState saved_state = thread->thread_state();
   848     thread->set_thread_state(_thread_in_vm);
   849     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   850       ttyLocker ttyl;
   851       BytecodeCounter::print();
   852     }
   853     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   854     // This is the value of eip which points to where verify_oop will return.
   855     if (os::message_box(msg, "Execution stopped, print registers?")) {
   856       ttyLocker ttyl;
   857       tty->print_cr("eip = 0x%08x", eip);
   858 #ifndef PRODUCT
   859       tty->cr();
   860       findpc(eip);
   861       tty->cr();
   862 #endif
   863       tty->print_cr("rax, = 0x%08x", rax);
   864       tty->print_cr("rbx, = 0x%08x", rbx);
   865       tty->print_cr("rcx = 0x%08x", rcx);
   866       tty->print_cr("rdx = 0x%08x", rdx);
   867       tty->print_cr("rdi = 0x%08x", rdi);
   868       tty->print_cr("rsi = 0x%08x", rsi);
   869       tty->print_cr("rbp, = 0x%08x", rbp);
   870       tty->print_cr("rsp = 0x%08x", rsp);
   871       BREAKPOINT;
   872     }
   873   } else {
   874     ttyLocker ttyl;
   875     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   876     assert(false, "DEBUG MESSAGE");
   877   }
   878   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   879 }
   881 void MacroAssembler::debug(char* msg/*, RegistersForDebugging* regs*/) {
   882   if ( ShowMessageBoxOnError ) {
   883     JavaThreadState saved_state = JavaThread::current()->thread_state();
   884     JavaThread::current()->set_thread_state(_thread_in_vm);
   885     {
   886       // In order to get locks work, we need to fake a in_VM state
   887       ttyLocker ttyl;
   888       ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
   889       if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   890   BytecodeCounter::print();
   891       }
   893       //      if (os::message_box(msg, "Execution stopped, print registers?"))
   894       //        regs->print(::tty);
   895     }
   896     ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
   897   }
   898   else
   899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   900 }
   903 void MacroAssembler::stop(const char* msg) {
   904   li(A0, (long)msg);
   905 #ifndef _LP64
   906   //reserver space for argument. added by yjl 7/10/2005
   907   addiu(SP, SP, - 1 * wordSize);
   908 #endif
   909   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   910   delayed()->nop();
   911 #ifndef _LP64
   912   //restore space for argument
   913   addiu(SP, SP, 1 * wordSize);
   914 #endif
   915   brk(17);
   916 }
   918 void MacroAssembler::warn(const char* msg) {
   919 #ifdef _LP64
   920   pushad();
   921   li(A0, (long)msg);
   922   push(S2);
   923   move(AT, -(StackAlignmentInBytes));
   924   move(S2, SP);     // use S2 as a sender SP holder
   925   andr(SP, SP, AT); // align stack as required by ABI
   926   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   927   delayed()->nop();
   928   move(SP, S2);     // use S2 as a sender SP holder
   929   pop(S2);
   930   popad();
   931 #else
   932   pushad();
   933   addi(SP, SP, -4);
   934   sw(A0, SP, -1 * wordSize);
   935   li(A0, (long)msg);
   936   addi(SP, SP, -1 * wordSize);
   937   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   938   delayed()->nop();
   939   addi(SP, SP, 1 * wordSize);
   940   lw(A0, SP, -1 * wordSize);
   941   addi(SP, SP, 4);
   942   popad();
   943 #endif
   944 }
   946 void MacroAssembler::print_reg(Register reg) {
   947 /*
   948 char *s = getenv("PRINT_REG");
   949 if (s == NULL)
   950   return;
   951 if (strcmp(s, "1") != 0)
   952   return;
   953 */
   954   void * cur_pc = pc();
   955   pushad();
   956   NOT_LP64(push(FP);)
   958   li(A0, (long)reg->name());
   959   if (reg == SP)
   960     addiu(A1, SP, wordSize * 23); //23 registers saved in pushad()
   961   else if (reg == A0)
   962     ld(A1, SP, wordSize * 19); //A0 has been modified by li(A0, (long)reg->name()). Ugly Code!
   963   else
   964     move(A1, reg);
   965   li(A2, (long)cur_pc);
   966   push(S2);
   967   move(AT, -(StackAlignmentInBytes));
   968   move(S2, SP);     // use S2 as a sender SP holder
   969   andr(SP, SP, AT); // align stack as required by ABI
   970   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_reg_with_pc),relocInfo::runtime_call_type);
   971   delayed()->nop();
   972   move(SP, S2);     // use S2 as a sender SP holder
   973   pop(S2);
   974   NOT_LP64(pop(FP);)
   975   popad();
   977 /*
   978   pushad();
   979 #ifdef _LP64
   980   if (reg == SP)
   981     addiu(A0, SP, wordSize * 23); //23 registers saved in pushad()
   982   else
   983     move(A0, reg);
   984   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_long),relocInfo::runtime_call_type);
   985   delayed()->nop();
   986 #else
   987   push(FP);
   988   move(A0, reg);
   989   dsrl32(A1, reg, 0);
   990   //call(CAST_FROM_FN_PTR(address, SharedRuntime::print_int),relocInfo::runtime_call_type);
   991   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_long),relocInfo::runtime_call_type);
   992   delayed()->nop();
   993   pop(FP);
   994 #endif
   995   popad();
   996   pushad();
   997   NOT_LP64(push(FP);)
   998   char b[50];
   999   sprintf((char *)b, " pc: %p\n",cur_pc);
  1000   li(A0, (long)(char *)b);
  1001   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1002   delayed()->nop();
  1003   NOT_LP64(pop(FP);)
  1004   popad();
  1005 */
  1008 void MacroAssembler::print_reg(FloatRegister reg) {
  1009   void * cur_pc = pc();
  1010   pushad();
  1011   NOT_LP64(push(FP);)
  1012   li(A0, (long)reg->name());
  1013   push(S2);
  1014   move(AT, -(StackAlignmentInBytes));
  1015   move(S2, SP);     // use S2 as a sender SP holder
  1016   andr(SP, SP, AT); // align stack as required by ABI
  1017   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1018   delayed()->nop();
  1019   move(SP, S2);     // use S2 as a sender SP holder
  1020   pop(S2);
  1021   NOT_LP64(pop(FP);)
  1022   popad();
  1024   pushad();
  1025   NOT_LP64(push(FP);)
  1026 #if 1
  1027   move(FP, SP);
  1028   move(AT, -(StackAlignmentInBytes));
  1029   andr(SP , SP , AT);
  1030   mov_d(F12, reg);
  1031   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_double),relocInfo::runtime_call_type);
  1032   delayed()->nop();
  1033   move(SP, FP);
  1034 #else
  1035   mov_s(F12, reg);
  1036   //call(CAST_FROM_FN_PTR(address, SharedRuntime::print_float),relocInfo::runtime_call_type);
  1037   //delayed()->nop();
  1038 #endif
  1039   NOT_LP64(pop(FP);)
  1040   popad();
  1042 #if 0
  1043   pushad();
  1044   NOT_LP64(push(FP);)
  1045   char* b = new char[50];
  1046   sprintf(b, " pc: %p\n", cur_pc);
  1047   li(A0, (long)b);
  1048   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1049   delayed()->nop();
  1050   NOT_LP64(pop(FP);)
  1051   popad();
  1052 #endif
  1055 void MacroAssembler::increment(Register reg, int imm) {
  1056   if (!imm) return;
  1057   if (is_simm16(imm)) {
  1058 #ifdef _LP64
  1059     daddiu(reg, reg, imm);
  1060 #else
  1061     addiu(reg, reg, imm);
  1062 #endif
  1063   } else {
  1064     move(AT, imm);
  1065 #ifdef _LP64
  1066     daddu(reg, reg, AT);
  1067 #else
  1068     addu(reg, reg, AT);
  1069 #endif
  1073 void MacroAssembler::decrement(Register reg, int imm) {
  1074   increment(reg, -imm);
  1078 void MacroAssembler::call_VM(Register oop_result,
  1079                              address entry_point,
  1080                              bool check_exceptions) {
  1081   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  1084 void MacroAssembler::call_VM(Register oop_result,
  1085                              address entry_point,
  1086                              Register arg_1,
  1087                              bool check_exceptions) {
  1088   if (arg_1!=A1) move(A1, arg_1);
  1089   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  1092 void MacroAssembler::call_VM(Register oop_result,
  1093                              address entry_point,
  1094                              Register arg_1,
  1095                              Register arg_2,
  1096                              bool check_exceptions) {
  1097   if (arg_1!=A1) move(A1, arg_1);
  1098   if (arg_2!=A2) move(A2, arg_2);
  1099   assert(arg_2 != A1, "smashed argument");
  1100   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  1103 void MacroAssembler::call_VM(Register oop_result,
  1104                              address entry_point,
  1105                              Register arg_1,
  1106                              Register arg_2,
  1107                              Register arg_3,
  1108                              bool check_exceptions) {
  1109   if (arg_1!=A1) move(A1, arg_1);
  1110   if (arg_2!=A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1111   if (arg_3!=A3) move(A3, arg_3); assert(arg_3 != A1 && arg_3 != A2, "smashed argument");
  1112   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  1115 void MacroAssembler::call_VM(Register oop_result,
  1116                              Register last_java_sp,
  1117                              address entry_point,
  1118                              int number_of_arguments,
  1119                              bool check_exceptions) {
  1120   call_VM_base(oop_result, NOREG, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1123 void MacroAssembler::call_VM(Register oop_result,
  1124                              Register last_java_sp,
  1125                              address entry_point,
  1126                              Register arg_1,
  1127                              bool check_exceptions) {
  1128   if (arg_1 != A1) move(A1, arg_1);
  1129   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1132 void MacroAssembler::call_VM(Register oop_result,
  1133                              Register last_java_sp,
  1134                              address entry_point,
  1135                              Register arg_1,
  1136                              Register arg_2,
  1137                              bool check_exceptions) {
  1138   if (arg_1 != A1) move(A1, arg_1);
  1139   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1140   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1143 void MacroAssembler::call_VM(Register oop_result,
  1144                              Register last_java_sp,
  1145                              address entry_point,
  1146                              Register arg_1,
  1147                              Register arg_2,
  1148                              Register arg_3,
  1149                              bool check_exceptions) {
  1150   if (arg_1 != A1) move(A1, arg_1);
  1151   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1152   if (arg_3 != A3) move(A3, arg_3); assert(arg_3 != A1 && arg_3 != A2, "smashed argument");
  1153   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1156 void MacroAssembler::call_VM_base(Register oop_result,
  1157                                   Register java_thread,
  1158                                   Register last_java_sp,
  1159                                   address  entry_point,
  1160                                   int      number_of_arguments,
  1161           bool     check_exceptions) {
  1163   address before_call_pc;
  1164   // determine java_thread register
  1165   if (!java_thread->is_valid()) {
  1166 #ifndef OPT_THREAD
  1167     java_thread = T2;
  1168     get_thread(java_thread);
  1169 #else
  1170     java_thread = TREG;
  1171 #endif
  1173   // determine last_java_sp register
  1174   if (!last_java_sp->is_valid()) {
  1175     last_java_sp = SP;
  1177   // debugging support
  1178   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1179   assert(number_of_arguments <= 4   , "cannot have negative number of arguments");
  1180   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  1181   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  1183   assert(last_java_sp != FP, "this code doesn't work for last_java_sp == fp, which currently can't portably work anyway since C2 doesn't save ebp");
  1185   // set last Java frame before call
  1186   before_call_pc = (address)pc();
  1187   set_last_Java_frame(java_thread, last_java_sp, FP, before_call_pc);
  1189   // do the call
  1190   move(A0, java_thread);
  1191   call(entry_point, relocInfo::runtime_call_type);
  1192   delayed()->nop();
  1194   // restore the thread (cannot use the pushed argument since arguments
  1195   // may be overwritten by C code generated by an optimizing compiler);
  1196   // however can use the register value directly if it is callee saved.
  1197 #ifndef OPT_THREAD
  1198   get_thread(java_thread);
  1199 #else
  1200 #ifdef ASSERT
  1202     Label L;
  1203     get_thread(AT);
  1204     beq(java_thread, AT, L);
  1205     delayed()->nop();
  1206     stop("MacroAssembler::call_VM_base: edi not callee saved?");
  1207     bind(L);
  1209 #endif
  1210 #endif
  1212   // discard thread and arguments
  1213   ld_ptr(SP, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1214   // reset last Java frame
  1215   reset_last_Java_frame(java_thread, false, true);
  1217   check_and_handle_popframe(java_thread);
  1218   check_and_handle_earlyret(java_thread);
  1219   if (check_exceptions) {
  1220     // check for pending exceptions (java_thread is set upon return)
  1221     Label L;
  1222 #ifdef _LP64
  1223     ld(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
  1224 #else
  1225     lw(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
  1226 #endif
  1227     beq(AT, R0, L);
  1228     delayed()->nop();
  1229     li(AT, before_call_pc);
  1230     push(AT);
  1231     jmp(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1232     delayed()->nop();
  1233     bind(L);
  1236   // get oop result if there is one and reset the value in the thread
  1237   if (oop_result->is_valid()) {
  1238 #ifdef _LP64
  1239     ld(oop_result, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1240     sd(R0, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1241 #else
  1242     lw(oop_result, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1243     sw(R0, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1244 #endif
  1245     verify_oop(oop_result);
  1249 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1251   move(V0, SP);
  1252   //we also reserve space for java_thread here
  1253 #ifndef _LP64
  1254   daddi(SP, SP, (1 + number_of_arguments) * (- wordSize));
  1255 #endif
  1256   move(AT, -(StackAlignmentInBytes));
  1257   andr(SP, SP, AT);
  1258   call_VM_base(oop_result, NOREG, V0, entry_point, number_of_arguments, check_exceptions);
  1262 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  1263   call_VM_leaf_base(entry_point, number_of_arguments);
  1266 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  1267   if (arg_0 != A0) move(A0, arg_0);
  1268   call_VM_leaf(entry_point, 1);
  1271 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1272   if (arg_0 != A0) move(A0, arg_0);
  1273   if (arg_1 != A1) move(A1, arg_1); assert(arg_1 != A0, "smashed argument");
  1274   call_VM_leaf(entry_point, 2);
  1277 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1278   if (arg_0 != A0) move(A0, arg_0);
  1279   if (arg_1 != A1) move(A1, arg_1); assert(arg_1 != A0, "smashed argument");
  1280   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A0 && arg_2 != A1, "smashed argument");
  1281   call_VM_leaf(entry_point, 3);
  1283 void MacroAssembler::super_call_VM_leaf(address entry_point) {
  1284   MacroAssembler::call_VM_leaf_base(entry_point, 0);
  1288 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1289                                                    Register arg_1) {
  1290   if (arg_1 != A0) move(A0, arg_1);
  1291   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  1295 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1296                                                    Register arg_1,
  1297                                                    Register arg_2) {
  1298   if (arg_1 != A0) move(A0, arg_1);
  1299   if (arg_2 != A1) move(A1, arg_2); assert(arg_2 != A0, "smashed argument");
  1300   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  1302 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1303                                                    Register arg_1,
  1304                                                    Register arg_2,
  1305                                                    Register arg_3) {
  1306   if (arg_1 != A0) move(A0, arg_1);
  1307   if (arg_2 != A1) move(A1, arg_2); assert(arg_2 != A0, "smashed argument");
  1308   if (arg_3 != A2) move(A2, arg_3); assert(arg_3 != A0 && arg_3 != A1, "smashed argument");
  1309   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  1312 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  1315 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  1318 void MacroAssembler::null_check(Register reg, int offset) {
  1319   if (needs_explicit_null_check(offset)) {
  1320     // provoke OS NULL exception if reg = NULL by
  1321     // accessing M[reg] w/o changing any (non-CC) registers
  1322     // NOTE: cmpl is plenty here to provoke a segv
  1323     lw(AT, reg, 0);
  1324     // Note: should probably use testl(rax, Address(reg, 0));
  1325     //       may be shorter code (however, this version of
  1326     //       testl needs to be implemented first)
  1327   } else {
  1328     // nothing to do, (later) access of M[reg + offset]
  1329     // will provoke OS NULL exception if reg = NULL
  1333 void MacroAssembler::enter() {
  1334   push2(RA, FP);
  1335   move(FP, SP);
  1338 void MacroAssembler::leave() {
  1339 #ifndef _LP64
  1340   //move(SP, FP);
  1341   //pop2(FP, RA);
  1342   addi(SP, FP, 2 * wordSize);
  1343   lw(RA, SP, - 1 * wordSize);
  1344   lw(FP, SP, - 2 * wordSize);
  1345 #else
  1346   daddi(SP, FP, 2 * wordSize);
  1347   ld(RA, SP, - 1 * wordSize);
  1348   ld(FP, SP, - 2 * wordSize);
  1349 #endif
  1351 /*
  1352 void MacroAssembler::os_breakpoint() {
  1353   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  1354   // (e.g., MSVC can't call ps() otherwise)
  1355   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  1357 */
  1358 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  1359   // determine java_thread register
  1360   if (!java_thread->is_valid()) {
  1361 #ifndef OPT_THREAD
  1362     java_thread = T1;
  1363     get_thread(java_thread);
  1364 #else
  1365     java_thread = TREG;
  1366 #endif
  1368   // we must set sp to zero to clear frame
  1369   st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1370   // must clear fp, so that compiled frames are not confused; it is possible
  1371   // that we need it only for debugging
  1372   if(clear_fp)
  1373     st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1375   if (clear_pc)
  1376     st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1379 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  1380                                            bool clear_pc) {
  1381   Register thread = TREG;
  1382 #ifndef OPT_THREAD
  1383   get_thread(thread);
  1384 #endif
  1385   // we must set sp to zero to clear frame
  1386   sd(R0, Address(thread, JavaThread::last_Java_sp_offset()));
  1387   // must clear fp, so that compiled frames are not confused; it is
  1388   // possible that we need it only for debugging
  1389   if (clear_fp) {
  1390     sd(R0, Address(thread, JavaThread::last_Java_fp_offset()));
  1393   if (clear_pc) {
  1394     sd(R0, Address(thread, JavaThread::last_Java_pc_offset()));
  1398 // Write serialization page so VM thread can do a pseudo remote membar.
  1399 // We use the current thread pointer to calculate a thread specific
  1400 // offset to write to within the page. This minimizes bus traffic
  1401 // due to cache line collision.
  1402 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  1403   move(tmp, thread);
  1404   srl(tmp, tmp,os::get_serialize_page_shift_count());
  1405   move(AT, (os::vm_page_size() - sizeof(int)));
  1406   andr(tmp, tmp,AT);
  1407   sw(tmp,Address(tmp, (intptr_t)os::get_memory_serialize_page()));
  1410 // Calls to C land
  1411 //
  1412 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  1413 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  1414 // has to be reset to 0. This is required to allow proper stack traversal.
  1415 void MacroAssembler::set_last_Java_frame(Register java_thread,
  1416                                          Register last_java_sp,
  1417                                          Register last_java_fp,
  1418                                          address  last_java_pc) {
  1419   // determine java_thread register
  1420   if (!java_thread->is_valid()) {
  1421 #ifndef OPT_THREAD
  1422     java_thread = T2;
  1423     get_thread(java_thread);
  1424 #else
  1425     java_thread = TREG;
  1426 #endif
  1428   // determine last_java_sp register
  1429   if (!last_java_sp->is_valid()) {
  1430     last_java_sp = SP;
  1433   // last_java_fp is optional
  1435   if (last_java_fp->is_valid()) {
  1436     st_ptr(last_java_fp, java_thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1439   // last_java_pc is optional
  1441   if (last_java_pc != NULL) {
  1442     relocate(relocInfo::internal_pc_type);
  1443     patchable_set48(AT, (long)last_java_pc);
  1444     st_ptr(AT, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1446   st_ptr(last_java_sp, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1449 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  1450                                          Register last_java_fp,
  1451                                          address  last_java_pc) {
  1452   // determine last_java_sp register
  1453   if (!last_java_sp->is_valid()) {
  1454     last_java_sp = SP;
  1457   Register thread = TREG;
  1458 #ifndef OPT_THREAD
  1459   get_thread(thread);
  1460 #endif
  1461   // last_java_fp is optional
  1462   if (last_java_fp->is_valid()) {
  1463     sd(last_java_fp, Address(thread, JavaThread::last_Java_fp_offset()));
  1466   // last_java_pc is optional
  1467   if (last_java_pc != NULL) {
  1468     Address java_pc(thread,
  1469                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1470     li(AT, (intptr_t)(last_java_pc));
  1471     sd(AT, java_pc);
  1474   sd(last_java_sp, Address(thread, JavaThread::last_Java_sp_offset()));
  1477 //////////////////////////////////////////////////////////////////////////////////
  1478 #if INCLUDE_ALL_GCS
  1480 void MacroAssembler::g1_write_barrier_pre(Register obj,
  1481 #ifndef _LP64
  1482                                           Register thread,
  1483 #endif
  1484                                           Register tmp,
  1485                                           Register tmp2,
  1486                                           bool tosca_live) {
  1487   Unimplemented();
  1490 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  1491                                            Register new_val,
  1492 #ifndef _LP64
  1493                                            Register thread,
  1494 #endif
  1495                                            Register tmp,
  1496                                            Register tmp2) {
  1498   Unimplemented();
  1501 #endif // INCLUDE_ALL_GCS
  1502 //////////////////////////////////////////////////////////////////////////////////
  1505 void MacroAssembler::store_check(Register obj) {
  1506   // Does a store check for the oop in register obj. The content of
  1507   // register obj is destroyed afterwards.
  1508   store_check_part_1(obj);
  1509   store_check_part_2(obj);
  1512 void MacroAssembler::store_check(Register obj, Address dst) {
  1513   store_check(obj);
  1517 // split the store check operation so that other instructions can be scheduled inbetween
  1518 void MacroAssembler::store_check_part_1(Register obj) {
  1519   BarrierSet* bs = Universe::heap()->barrier_set();
  1520   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1521 #ifdef _LP64
  1522   dsrl(obj, obj, CardTableModRefBS::card_shift);
  1523 #else
  1524   shr(obj, CardTableModRefBS::card_shift);
  1525 #endif
  1528 void MacroAssembler::store_check_part_2(Register obj) {
  1529   BarrierSet* bs = Universe::heap()->barrier_set();
  1530   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1531   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1532   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1534   li(AT, (long)ct->byte_map_base);
  1535 #ifdef _LP64
  1536   dadd(AT, AT, obj);
  1537 #else
  1538   add(AT, AT, obj);
  1539 #endif
  1540   sb(R0, AT, 0);
  1541   sync();
  1544 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  1545 void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
  1546                                    Register t1, Register t2, Label& slow_case) {
  1547   assert_different_registers(obj, var_size_in_bytes, t1, t2, AT);
  1549   Register end = t2;
  1550 #ifndef OPT_THREAD
  1551   Register thread = t1;
  1552   get_thread(thread);
  1553 #else
  1554   Register thread = TREG;
  1555 #endif
  1556   verify_tlab(t1, t2);//blows t1&t2
  1558   ld_ptr(obj, thread, in_bytes(JavaThread::tlab_top_offset()));
  1560   if (var_size_in_bytes == NOREG) {
  1561     // i dont think we need move con_size_in_bytes to a register first.
  1562     // by yjl 8/17/2005
  1563     assert(is_simm16(con_size_in_bytes), "fixme by moving imm to a register first");
  1564     addi(end, obj, con_size_in_bytes);
  1565   } else {
  1566     add(end, obj, var_size_in_bytes);
  1569   ld_ptr(AT, thread, in_bytes(JavaThread::tlab_end_offset()));
  1570   sltu(AT, AT, end);
  1571   bne_far(AT, R0, slow_case);
  1572   delayed()->nop();
  1575   // update the tlab top pointer
  1576   st_ptr(end, thread, in_bytes(JavaThread::tlab_top_offset()));
  1578   // recover var_size_in_bytes if necessary
  1579   /*if (var_size_in_bytes == end) {
  1580     sub(var_size_in_bytes, end, obj);
  1581     }*/
  1583   verify_tlab(t1, t2);
  1586 // Defines obj, preserves var_size_in_bytes
  1587 void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
  1588                                    Register t1, Register t2, Label& slow_case) {
  1589   assert_different_registers(obj, var_size_in_bytes, t1, AT);
  1590   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { //by yyq
  1591     // No allocation in the shared eden.
  1592     b_far(slow_case);
  1593     delayed()->nop();
  1594   } else {
  1596 #ifndef _LP64
  1597     Address heap_top(t1, Assembler::split_low((intptr_t)Universe::heap()->top_addr()));
  1598     lui(t1, split_high((intptr_t)Universe::heap()->top_addr()));
  1599 #else
  1600     Address heap_top(t1);
  1601     li(t1, (long)Universe::heap()->top_addr());
  1602 #endif
  1603     ld_ptr(obj, heap_top);
  1605     Register end = t2;
  1606     Label retry;
  1608     bind(retry);
  1609     if (var_size_in_bytes == NOREG) {
  1610     // i dont think we need move con_size_in_bytes to a register first.
  1611       assert(is_simm16(con_size_in_bytes), "fixme by moving imm to a register first");
  1612       addi(end, obj, con_size_in_bytes);
  1613     } else {
  1614       add(end, obj, var_size_in_bytes);
  1616     // if end < obj then we wrapped around => object too long => slow case
  1617     sltu(AT, end, obj);
  1618     bne_far(AT, R0, slow_case);
  1619     delayed()->nop();
  1621     li(AT, (long)Universe::heap()->end_addr());
  1622     sltu(AT, AT, end);
  1623     bne_far(AT, R0, slow_case);
  1624     delayed()->nop();
  1625     // Compare obj with the top addr, and if still equal, store the new top addr in
  1626     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  1627     // it otherwise. Use lock prefix for atomicity on MPs.
  1628     //if (os::is_MP()) {
  1629     //  sync();
  1630     //}
  1632     // if someone beat us on the allocation, try again, otherwise continue
  1633     cmpxchg(end, heap_top, obj);
  1634     beq_far(AT, R0, retry);    //by yyq
  1635     delayed()->nop();
  1640 // C2 doesn't invoke this one.
  1641 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  1642   Register top = T0;
  1643   Register t1  = T1;
  1644 /* Jin: tlab_refill() is called in
  1646      [c1_Runtime1_mips.cpp] Runtime1::generate_code_for(new_type_array_id);
  1648   In generate_code_for(), T2 has been assigned as a register(length), which is used
  1649  after calling tlab_refill();
  1650   Therefore, tlab_refill() should not use T2.
  1652  Source:
  1654 Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException
  1655         at java.lang.System.arraycopy(Native Method)
  1656         at java.util.Arrays.copyOf(Arrays.java:2799)  <-- alloc_array
  1657         at sun.misc.Resource.getBytes(Resource.java:117)
  1658         at java.net.URLClassLoader.defineClass(URLClassLoader.java:273)
  1659         at java.net.URLClassLoader.findClass(URLClassLoader.java:205)
  1660         at java.lang.ClassLoader.loadClass(ClassLoader.java:321)
  1661  */
  1662   Register t2  = T9;
  1663   Register t3  = T3;
  1664   Register thread_reg = T8;
  1665   Label do_refill, discard_tlab;
  1666   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { //by yyq
  1667     // No allocation in the shared eden.
  1668     b(slow_case);
  1669     delayed()->nop();
  1672   get_thread(thread_reg);
  1674   ld_ptr(top, thread_reg, in_bytes(JavaThread::tlab_top_offset()));
  1675   ld_ptr(t1, thread_reg, in_bytes(JavaThread::tlab_end_offset()));
  1677   // calculate amount of free space
  1678   sub(t1, t1, top);
  1679   shr(t1, LogHeapWordSize);
  1681   // Retain tlab and allocate object in shared space if
  1682   // the amount free in the tlab is too large to discard.
  1683   ld_ptr(t2, thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  1684   slt(AT, t2, t1);
  1685   beq(AT, R0, discard_tlab);
  1686   delayed()->nop();
  1688   // Retain
  1690 #ifndef _LP64
  1691   move(AT, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  1692 #else
  1693   li(AT, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  1694 #endif
  1695   add(t2, t2, AT);
  1696   st_ptr(t2, thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  1698   if (TLABStats) {
  1699     // increment number of slow_allocations
  1700     lw(AT, thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  1701     addiu(AT, AT, 1);
  1702     sw(AT, thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  1704   b(try_eden);
  1705   delayed()->nop();
  1707   bind(discard_tlab);
  1708   if (TLABStats) {
  1709     // increment number of refills
  1710     lw(AT, thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  1711     addi(AT, AT, 1);
  1712     sw(AT, thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  1713     // accumulate wastage -- t1 is amount free in tlab
  1714     lw(AT, thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  1715     add(AT, AT, t1);
  1716     sw(AT, thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  1719   // if tlab is currently allocated (top or end != null) then
  1720   // fill [top, end + alignment_reserve) with array object
  1721   beq(top, R0, do_refill);
  1722   delayed()->nop();
  1724   // set up the mark word
  1725   li(AT, (long)markOopDesc::prototype()->copy_set_hash(0x2));
  1726   st_ptr(AT, top, oopDesc::mark_offset_in_bytes());
  1728   // set the length to the remaining space
  1729   addi(t1, t1, - typeArrayOopDesc::header_size(T_INT));
  1730   addi(t1, t1, ThreadLocalAllocBuffer::alignment_reserve());
  1731   shl(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  1732   sw(t1, top, arrayOopDesc::length_offset_in_bytes());
  1734   // set klass to intArrayKlass
  1735 #ifndef _LP64
  1736   lui(AT, split_high((intptr_t)Universe::intArrayKlassObj_addr()));
  1737   lw(t1, AT, split_low((intptr_t)Universe::intArrayKlassObj_addr()));
  1738 #else
  1739   li(AT, (intptr_t)Universe::intArrayKlassObj_addr());
  1740   ld_ptr(t1, AT, 0);
  1741 #endif
  1742   //st_ptr(t1, top, oopDesc::klass_offset_in_bytes());
  1743   store_klass(top, t1);
  1745   // refill the tlab with an eden allocation
  1746   bind(do_refill);
  1747   ld_ptr(t1, thread_reg, in_bytes(JavaThread::tlab_size_offset()));
  1748   shl(t1, LogHeapWordSize);
  1749   // add object_size ??
  1750   eden_allocate(top, t1, 0, t2, t3, slow_case);
  1752   // Check that t1 was preserved in eden_allocate.
  1753 #ifdef ASSERT
  1754   if (UseTLAB) {
  1755     Label ok;
  1756     assert_different_registers(thread_reg, t1);
  1757     ld_ptr(AT, thread_reg, in_bytes(JavaThread::tlab_size_offset()));
  1758     shl(AT, LogHeapWordSize);
  1759     beq(AT, t1, ok);
  1760     delayed()->nop();
  1761     stop("assert(t1 != tlab size)");
  1762     should_not_reach_here();
  1764     bind(ok);
  1766 #endif
  1767   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_start_offset()));
  1768   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_top_offset()));
  1769   add(top, top, t1);
  1770   addi(top, top, - ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  1771   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_end_offset()));
  1772   verify_tlab(t1, t2);
  1773   b(retry);
  1774   delayed()->nop();
  1777 static const double     pi_4 =  0.7853981633974483;
  1779 // the x86 version is to clumsy, i dont think we need that fuss. maybe i'm wrong, FIXME
  1780 // must get argument(a double) in F12/F13
  1781 //void MacroAssembler::trigfunc(char trig, bool preserve_cpu_regs, int num_fpu_regs_in_use) {
  1782 //We need to preseve the register which maybe modified during the Call @Jerome
  1783 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  1784 //save all modified register here
  1785 //  if (preserve_cpu_regs) {
  1786 //  }
  1787 //FIXME, in the disassembly of tirgfunc, only used V0,V1,T9, SP,RA,so we ony save V0,V1,T9
  1788   pushad();
  1789 //we should preserve the stack space before we call
  1790   addi(SP, SP, -wordSize * 2);
  1791         switch (trig){
  1792     case 's' :
  1793                   call( CAST_FROM_FN_PTR(address, SharedRuntime::dsin), relocInfo::runtime_call_type );
  1794       delayed()->nop();
  1795       break;
  1796     case 'c':
  1797       call( CAST_FROM_FN_PTR(address, SharedRuntime::dcos), relocInfo::runtime_call_type );
  1798       delayed()->nop();
  1799       break;
  1800     case 't':
  1801       call( CAST_FROM_FN_PTR(address, SharedRuntime::dtan), relocInfo::runtime_call_type );
  1802       delayed()->nop();
  1803       break;
  1804     default:assert (false, "bad intrinsic");
  1805     break;
  1809   addi(SP, SP, wordSize * 2);
  1810   popad();
  1811 //  if (preserve_cpu_regs) {
  1812 //  }
  1815 #ifdef _LP64
  1816 void MacroAssembler::li(Register rd, long imm) {
  1817   if (imm <= max_jint && imm >= min_jint) {
  1818     li32(rd, (int)imm);
  1819   } else if (julong(imm) <= 0xFFFFFFFF) {
  1820     assert_not_delayed();
  1821     // lui sign-extends, so we can't use that.
  1822     ori(rd, R0, julong(imm) >> 16);
  1823     dsll(rd, rd, 16);
  1824     ori(rd, rd, split_low(imm));
  1825   //aoqi_test
  1826   //} else if ((imm > 0) && ((imm >> 48) == 0)) {
  1827   } else if ((imm > 0) && is_simm16(imm >> 32)) {
  1828     /* A 48-bit address */
  1829     li48(rd, imm);
  1830   } else {
  1831     li64(rd, imm);
  1834 #else
  1835 void MacroAssembler::li(Register rd, long imm) {
  1836   li32(rd, (int)imm);
  1838 #endif
  1840 void MacroAssembler::li32(Register reg, int imm) {
  1841   if (is_simm16(imm)) {
  1842     /* Jin: for imm < 0, we should use addi instead of addiu.
  1844      *  java.lang.StringCoding$StringDecoder.decode(jobject, jint, jint)
  1846      *  78 move [int:-1|I] [a0|I]
  1847      *    : daddi a0, zero, 0xffffffff  (correct)
  1848      *    : daddiu a0, zero, 0xffffffff (incorrect)
  1849      */
  1850     if (imm >= 0)
  1851       addiu(reg, R0, imm);
  1852     else
  1853       addi(reg, R0, imm);
  1854   } else {
  1855     lui(reg, split_low(imm >> 16));
  1856     if (split_low(imm))
  1857       ori(reg, reg, split_low(imm));
  1861 #ifdef _LP64
  1862 void MacroAssembler::set64(Register d, jlong value) {
  1863   assert_not_delayed();
  1865   int hi = (int)(value >> 32);
  1866   int lo = (int)(value & ~0);
  1868   if (value == lo) {  // 32-bit integer
  1869     if (is_simm16(value)) {
  1870       daddiu(d, R0, value);
  1871     } else {
  1872       lui(d, split_low(value >> 16));
  1873       if (split_low(value)) {
  1874         ori(d, d, split_low(value));
  1877   } else if (hi == 0) {  // hardware zero-extends to upper 32
  1878       ori(d, R0, julong(value) >> 16);
  1879       dsll(d, d, 16);
  1880       if (split_low(value)) {
  1881         ori(d, d, split_low(value));
  1883   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  1884     // 4 insts
  1885     li48(d, value);
  1886   } else {  // li64
  1887     // 6 insts
  1888     li64(d, value);
  1893 int MacroAssembler::insts_for_set64(jlong value) {
  1894   int hi = (int)(value >> 32);
  1895   int lo = (int)(value & ~0);
  1897   int count = 0;
  1899   if (value == lo) {  // 32-bit integer
  1900     if (is_simm16(value)) {
  1901       //daddiu(d, R0, value);
  1902       count++;
  1903     } else {
  1904       //lui(d, split_low(value >> 16));
  1905       count++;
  1906       if (split_low(value)) {
  1907         //ori(d, d, split_low(value));
  1908         count++;
  1911   } else if (hi == 0) {  // hardware zero-extends to upper 32
  1912       //ori(d, R0, julong(value) >> 16);
  1913       //dsll(d, d, 16);
  1914       count += 2;
  1915       if (split_low(value)) {
  1916         //ori(d, d, split_low(value));
  1917         count++;
  1919   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  1920     // 4 insts
  1921     //li48(d, value);
  1922     count += 4;
  1923   } else {  // li64
  1924     // 6 insts
  1925     //li64(d, value);
  1926     count += 6;
  1929   return count;
  1932 void MacroAssembler::patchable_set48(Register d, jlong value) {
  1933   assert_not_delayed();
  1935   int hi = (int)(value >> 32);
  1936   int lo = (int)(value & ~0);
  1938   int count = 0;
  1940   if (value == lo) {  // 32-bit integer
  1941     if (is_simm16(value)) {
  1942       daddiu(d, R0, value);
  1943       count += 1;
  1944     } else {
  1945       lui(d, split_low(value >> 16));
  1946       count += 1;
  1947       if (split_low(value)) {
  1948         ori(d, d, split_low(value));
  1949         count += 1;
  1952   } else if (hi == 0) {  // hardware zero-extends to upper 32
  1953       ori(d, R0, julong(value) >> 16);
  1954       dsll(d, d, 16);
  1955       count += 2;
  1956       if (split_low(value)) {
  1957         ori(d, d, split_low(value));
  1958         count += 1;
  1960   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  1961     // 4 insts
  1962     li48(d, value);
  1963     count += 4;
  1964   } else {  // li64
  1965     tty->print_cr("value = 0x%x", value);
  1966     guarantee(false, "Not supported yet !");
  1969   for (count; count < 4; count++) {
  1970     nop();
  1974 void MacroAssembler::patchable_set32(Register d, jlong value) {
  1975   assert_not_delayed();
  1977   int hi = (int)(value >> 32);
  1978   int lo = (int)(value & ~0);
  1980   int count = 0;
  1982   if (value == lo) {  // 32-bit integer
  1983     if (is_simm16(value)) {
  1984       daddiu(d, R0, value);
  1985       count += 1;
  1986     } else {
  1987       lui(d, split_low(value >> 16));
  1988       count += 1;
  1989       if (split_low(value)) {
  1990         ori(d, d, split_low(value));
  1991         count += 1;
  1994   } else if (hi == 0) {  // hardware zero-extends to upper 32
  1995       ori(d, R0, julong(value) >> 16);
  1996       dsll(d, d, 16);
  1997       count += 2;
  1998       if (split_low(value)) {
  1999         ori(d, d, split_low(value));
  2000         count += 1;
  2002   } else {
  2003     tty->print_cr("value = 0x%x", value);
  2004     guarantee(false, "Not supported yet !");
  2007   for (count; count < 3; count++) {
  2008     nop();
  2012 void MacroAssembler::patchable_call32(Register d, jlong value) {
  2013   assert_not_delayed();
  2015   int hi = (int)(value >> 32);
  2016   int lo = (int)(value & ~0);
  2018   int count = 0;
  2020   if (value == lo) {  // 32-bit integer
  2021     if (is_simm16(value)) {
  2022       daddiu(d, R0, value);
  2023       count += 1;
  2024     } else {
  2025       lui(d, split_low(value >> 16));
  2026       count += 1;
  2027       if (split_low(value)) {
  2028         ori(d, d, split_low(value));
  2029         count += 1;
  2032   } else {
  2033     tty->print_cr("value = 0x%x", value);
  2034     guarantee(false, "Not supported yet !");
  2037   for (count; count < 2; count++) {
  2038     nop();
  2042 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  2043   assert(UseCompressedClassPointers, "should only be used for compressed header");
  2044   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2046   int klass_index = oop_recorder()->find_index(k);
  2047   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  2048   long narrowKlass = (long)Klass::encode_klass(k);
  2050   relocate(rspec, Assembler::narrow_oop_operand);
  2051   patchable_set48(dst, narrowKlass);
  2055 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  2056   assert(UseCompressedOops, "should only be used for compressed header");
  2057   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2059   int oop_index = oop_recorder()->find_index(obj);
  2060   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  2062   relocate(rspec, Assembler::narrow_oop_operand);
  2063   patchable_set48(dst, oop_index);
  2066 void MacroAssembler::li64(Register rd, long imm) {
  2067   assert_not_delayed();
  2068   lui(rd, imm >> 48);
  2069   ori(rd, rd, split_low(imm >> 32));
  2070   dsll(rd, rd, 16);
  2071   ori(rd, rd, split_low(imm >> 16));
  2072   dsll(rd, rd, 16);
  2073   ori(rd, rd, split_low(imm));
  2076 void MacroAssembler::li48(Register rd, long imm) {
  2077   assert_not_delayed();
  2078   assert(is_simm16(imm >> 32), "Not a 48-bit address");
  2079   lui(rd, imm >> 32);
  2080   ori(rd, rd, split_low(imm >> 16));
  2081   dsll(rd, rd, 16);
  2082   ori(rd, rd, split_low(imm));
  2084 #endif
  2085 // NOTE: i dont push eax as i486.
  2086 // the x86 save eax for it use eax as the jump register
  2087 void MacroAssembler::verify_oop(Register reg, const char* s) {
  2088   /*
  2089      if (!VerifyOops) return;
  2091   // Pass register number to verify_oop_subroutine
  2092   char* b = new char[strlen(s) + 50];
  2093   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  2094   push(rax);                          // save rax,
  2095   push(reg);                          // pass register argument
  2096   ExternalAddress buffer((address) b);
  2097   // avoid using pushptr, as it modifies scratch registers
  2098   // and our contract is not to modify anything
  2099   movptr(rax, buffer.addr());
  2100   push(rax);
  2101   // call indirectly to solve generation ordering problem
  2102   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  2103   call(rax);
  2104    */
  2105   if (!VerifyOops) return;
  2106   const char * b = NULL;
  2107   stringStream ss;
  2108   ss.print("verify_oop: %s: %s", reg->name(), s);
  2109   b = code_string(ss.as_string());
  2110 #ifdef _LP64
  2111   pushad();
  2112   move(A1, reg);
  2113   li(A0, (long)b);
  2114   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2115   ld(T9, AT, 0);
  2116   jalr(T9);
  2117   delayed()->nop();
  2118   popad();
  2119 #else
  2120   // Pass register number to verify_oop_subroutine
  2121   sw(T0, SP, - wordSize);
  2122   sw(T1, SP, - 2*wordSize);
  2123   sw(RA, SP, - 3*wordSize);
  2124   sw(A0, SP ,- 4*wordSize);
  2125   sw(A1, SP ,- 5*wordSize);
  2126   sw(AT, SP ,- 6*wordSize);
  2127   sw(T9, SP ,- 7*wordSize);
  2128   addiu(SP, SP, - 7 * wordSize);
  2129   move(A1, reg);
  2130   li(A0, (long)b);
  2131   // call indirectly to solve generation ordering problem
  2132   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2133   lw(T9, AT, 0);
  2134   jalr(T9);
  2135   delayed()->nop();
  2136   lw(T0, SP, 6* wordSize);
  2137   lw(T1, SP, 5* wordSize);
  2138   lw(RA, SP, 4* wordSize);
  2139   lw(A0, SP, 3* wordSize);
  2140   lw(A1, SP, 2* wordSize);
  2141   lw(AT, SP, 1* wordSize);
  2142   lw(T9, SP, 0* wordSize);
  2143   addiu(SP, SP, 7 * wordSize);
  2144 #endif
  2148 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  2149   if (!VerifyOops) {
  2150     nop();
  2151     return;
  2153   // Pass register number to verify_oop_subroutine
  2154   const char * b = NULL;
  2155   stringStream ss;
  2156   ss.print("verify_oop_addr: %s",  s);
  2157   b = code_string(ss.as_string());
  2159   st_ptr(T0, SP, - wordSize);
  2160   st_ptr(T1, SP, - 2*wordSize);
  2161   st_ptr(RA, SP, - 3*wordSize);
  2162   st_ptr(A0, SP, - 4*wordSize);
  2163   st_ptr(A1, SP, - 5*wordSize);
  2164   st_ptr(AT, SP, - 6*wordSize);
  2165   st_ptr(T9, SP, - 7*wordSize);
  2166   ld_ptr(A1, addr);   // addr may use SP, so load from it before change SP
  2167   addiu(SP, SP, - 7 * wordSize);
  2169   li(A0, (long)b);
  2170   // call indirectly to solve generation ordering problem
  2171   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2172   ld_ptr(T9, AT, 0);
  2173   jalr(T9);
  2174   delayed()->nop();
  2175   ld_ptr(T0, SP, 6* wordSize);
  2176   ld_ptr(T1, SP, 5* wordSize);
  2177   ld_ptr(RA, SP, 4* wordSize);
  2178   ld_ptr(A0, SP, 3* wordSize);
  2179   ld_ptr(A1, SP, 2* wordSize);
  2180   ld_ptr(AT, SP, 1* wordSize);
  2181   ld_ptr(T9, SP, 0* wordSize);
  2182   addiu(SP, SP, 7 * wordSize);
  2185 // used registers :  T0, T1
  2186 void MacroAssembler::verify_oop_subroutine() {
  2187   // RA: ra
  2188   // A0: char* error message
  2189   // A1: oop   object to verify
  2191   Label exit, error;
  2192   // increment counter
  2193   li(T0, (long)StubRoutines::verify_oop_count_addr());
  2194   lw(AT, T0, 0);
  2195 #ifdef _LP64
  2196   daddi(AT, AT, 1);
  2197 #else
  2198   addi(AT, AT, 1);
  2199 #endif
  2200   sw(AT, T0, 0);
  2202   // make sure object is 'reasonable'
  2203   beq(A1, R0, exit);         // if obj is NULL it is ok
  2204   delayed()->nop();
  2206   // Check if the oop is in the right area of memory
  2207   //const int oop_mask = Universe::verify_oop_mask();
  2208   //const int oop_bits = Universe::verify_oop_bits();
  2209   const uintptr_t oop_mask = Universe::verify_oop_mask();
  2210   const uintptr_t oop_bits = Universe::verify_oop_bits();
  2211   li(AT, oop_mask);
  2212   andr(T0, A1, AT);
  2213   li(AT, oop_bits);
  2214   bne(T0, AT, error);
  2215   delayed()->nop();
  2217   // make sure klass is 'reasonable'
  2218   //add for compressedoops
  2219   reinit_heapbase();
  2220   //add for compressedoops
  2221   load_klass(T0, A1);
  2222   beq(T0, R0, error);                        // if klass is NULL it is broken
  2223   delayed()->nop();
  2224   #if 0
  2225   //FIXME:wuhui.
  2226   // Check if the klass is in the right area of memory
  2227   //const int klass_mask = Universe::verify_klass_mask();
  2228   //const int klass_bits = Universe::verify_klass_bits();
  2229   const uintptr_t klass_mask = Universe::verify_klass_mask();
  2230   const uintptr_t klass_bits = Universe::verify_klass_bits();
  2232   li(AT, klass_mask);
  2233   andr(T1, T0, AT);
  2234   li(AT, klass_bits);
  2235   bne(T1, AT, error);
  2236   delayed()->nop();
  2237   // make sure klass' klass is 'reasonable'
  2238   //add for compressedoops
  2239   load_klass(T0, T0);
  2240   beq(T0, R0, error);  // if klass' klass is NULL it is broken
  2241   delayed()->nop();
  2243   li(AT, klass_mask);
  2244   andr(T1, T0, AT);
  2245   li(AT, klass_bits);
  2246   bne(T1, AT, error);
  2247   delayed()->nop();     // if klass not in right area of memory it is broken too.
  2248 #endif
  2249   // return if everything seems ok
  2250   bind(exit);
  2252   jr(RA);
  2253   delayed()->nop();
  2255   // handle errors
  2256   bind(error);
  2257   pushad();
  2258 #ifndef _LP64
  2259   addi(SP, SP, (-1) * wordSize);
  2260 #endif
  2261   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2262   delayed()->nop();
  2263 #ifndef _LP64
  2264   addiu(SP, SP, 1 * wordSize);
  2265 #endif
  2266   popad();
  2267   jr(RA);
  2268   delayed()->nop();
  2271 void MacroAssembler::verify_tlab(Register t1, Register t2) {
  2272 #ifdef ASSERT
  2273   assert_different_registers(t1, t2, AT);
  2274   if (UseTLAB && VerifyOops) {
  2275     Label next, ok;
  2277     get_thread(t1);
  2279     ld_ptr(t2, t1, in_bytes(JavaThread::tlab_top_offset()));
  2280     ld_ptr(AT, t1, in_bytes(JavaThread::tlab_start_offset()));
  2281     sltu(AT, t2, AT);
  2282     beq(AT, R0, next);
  2283     delayed()->nop();
  2285     stop("assert(top >= start)");
  2287     bind(next);
  2288     ld_ptr(AT, t1, in_bytes(JavaThread::tlab_end_offset()));
  2289     sltu(AT, AT, t2);
  2290     beq(AT, R0, ok);
  2291     delayed()->nop();
  2293     stop("assert(top <= end)");
  2295     bind(ok);
  2298 #endif
  2300  RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2301                                                        Register tmp,
  2302                                                        int offset) {
  2303    intptr_t value = *delayed_value_addr;
  2304    if (value != 0)
  2305    return RegisterOrConstant(value + offset);
  2306    AddressLiteral a(delayed_value_addr);
  2307    // load indirectly to solve generation ordering problem
  2308    //movptr(tmp, ExternalAddress((address) delayed_value_addr));
  2309    //ld(tmp, a);
  2310    if (offset != 0)
  2311      daddi(tmp,tmp, offset);
  2313    return RegisterOrConstant(tmp);
  2316 void MacroAssembler::hswap(Register reg) {
  2317   //short
  2318   //andi(reg, reg, 0xffff);
  2319   srl(AT, reg, 8);
  2320   sll(reg, reg, 24);
  2321   sra(reg, reg, 16);
  2322   orr(reg, reg, AT);
  2325 void MacroAssembler::huswap(Register reg) {
  2326 #ifdef _LP64
  2327   dsrl(AT, reg, 8);
  2328   dsll(reg, reg, 24);
  2329   dsrl(reg, reg, 16);
  2330   orr(reg, reg, AT);
  2331   andi(reg, reg, 0xffff);
  2332 #else
  2333   //andi(reg, reg, 0xffff);
  2334   srl(AT, reg, 8);
  2335   sll(reg, reg, 24);
  2336   srl(reg, reg, 16);
  2337   orr(reg, reg, AT);
  2338 #endif
  2341 // something funny to do this will only one more register AT
  2342 // 32 bits
  2343 void MacroAssembler::swap(Register reg) {
  2344   srl(AT, reg, 8);
  2345   sll(reg, reg, 24);
  2346   orr(reg, reg, AT);
  2347   //reg : 4 1 2 3
  2348   srl(AT, AT, 16);
  2349   xorr(AT, AT, reg);
  2350   andi(AT, AT, 0xff);
  2351   //AT : 0 0 0 1^3);
  2352   xorr(reg, reg, AT);
  2353   //reg : 4 1 2 1
  2354   sll(AT, AT, 16);
  2355   xorr(reg, reg, AT);
  2356   //reg : 4 3 2 1
  2359 #ifdef _LP64
  2361 /* do 32-bit CAS using MIPS64 lld/scd
  2363   Jin: cas_int should only compare 32-bits of the memory value.
  2364        However, lld/scd will do 64-bit operation, which violates the intention of cas_int.
  2365        To simulate a 32-bit atomic operation, the value loaded with LLD should be split into
  2366        tow halves, and only the low-32 bits is compared. If equals, the low-32 bits of newval,
  2367        plus the high-32 bits or memory value, are stored togethor with SCD.
  2369 Example:
  2371       double d = 3.1415926;
  2372       System.err.println("hello" + d);
  2374   sun.misc.FloatingDecimal$1.<init>()
  2376    `- java.util.concurrent.atomic.AtomicInteger::compareAndSet()
  2378   38 cas_int [a7a7|J] [a0|I] [a6|I]
  2379 // a0: 0xffffffffe8ea9f63 pc: 0x55647f3354
  2380 // a6: 0x4ab325aa
  2382 again:
  2383    0x00000055647f3c5c: lld at, 0x0(a7)                          ; 64-bit load, "0xe8ea9f63"
  2385    0x00000055647f3c60: sll t9, at, 0                            ; t9: low-32 bits (sign extended)
  2386    0x00000055647f3c64: dsrl32 t8, at, 0                         ; t8: high-32 bits
  2387    0x00000055647f3c68: dsll32 t8, t8, 0
  2388    0x00000055647f3c6c: bne t9, a0, 0x00000055647f3c9c           ; goto nequal
  2389    0x00000055647f3c70: sll zero, zero, 0
  2391    0x00000055647f3c74: ori v1, zero, 0xffffffff                 ; v1: low-32 bits of newval (sign unextended)
  2392    0x00000055647f3c78: dsll v1, v1, 16                          ; v1 = a6 & 0xFFFFFFFF;
  2393    0x00000055647f3c7c: ori v1, v1, 0xffffffff
  2394    0x00000055647f3c80: and v1, a6, v1
  2395    0x00000055647f3c84: or at, t8, v1
  2396    0x00000055647f3c88: scd at, 0x0(a7)
  2397    0x00000055647f3c8c: beq at, zero, 0x00000055647f3c5c         ; goto again
  2398    0x00000055647f3c90: sll zero, zero, 0
  2399    0x00000055647f3c94: beq zero, zero, 0x00000055647f45ac       ; goto done
  2400    0x00000055647f3c98: sll zero, zero, 0
  2401 nequal:
  2402    0x00000055647f45a4: dadd a0, t9, zero
  2403    0x00000055647f45a8: dadd at, zero, zero
  2404 done:
  2405 */
  2407 void MacroAssembler::cmpxchg32(Register x_reg, Address dest, Register c_reg) {
  2408   /* 2012/11/11 Jin: MIPS64 can use ll/sc for 32-bit atomic memory access */
  2409   Label done, again, nequal;
  2411   bind(again);
  2413   if(!Use3A2000) sync();
  2414   ll(AT, dest);
  2415   bne(AT, c_reg, nequal);
  2416   delayed()->nop();
  2418   move(AT, x_reg);
  2419   sc(AT, dest);
  2420   beq(AT, R0, again);
  2421   delayed()->nop();
  2422   b(done);
  2423   delayed()->nop();
  2425   // not xchged
  2426   bind(nequal);
  2427   sync();
  2428   move(c_reg, AT);
  2429   move(AT, R0);
  2431   bind(done);
  2433 #endif  // cmpxchg32
  2435 void MacroAssembler::cmpxchg(Register x_reg, Address dest, Register c_reg) {
  2436   Label done, again, nequal;
  2438   bind(again);
  2439 #ifdef _LP64
  2440   if(!Use3A2000) sync();
  2441   lld(AT, dest);
  2442 #else
  2443   if(!Use3A2000) sync();
  2444   ll(AT, dest);
  2445 #endif
  2446   bne(AT, c_reg, nequal);
  2447   delayed()->nop();
  2449   move(AT, x_reg);
  2450 #ifdef _LP64
  2451   scd(AT, dest);
  2452 #else
  2453   sc(AT, dest);
  2454 #endif
  2455   beq(AT, R0, again);
  2456   delayed()->nop();
  2457   b(done);
  2458   delayed()->nop();
  2460   // not xchged
  2461   bind(nequal);
  2462   sync();
  2463   move(c_reg, AT);
  2464   move(AT, R0);
  2466   bind(done);
  2469 void MacroAssembler::cmpxchg8(Register x_regLo, Register x_regHi, Address dest, Register c_regLo, Register c_regHi) {
  2470   Label done, again, nequal;
  2472   Register x_reg = x_regLo;
  2473   dsll32(x_regHi, x_regHi, 0);
  2474   dsll32(x_regLo, x_regLo, 0);
  2475   dsrl32(x_regLo, x_regLo, 0);
  2476   orr(x_reg, x_regLo, x_regHi);
  2478   Register c_reg = c_regLo;
  2479   dsll32(c_regHi, c_regHi, 0);
  2480   dsll32(c_regLo, c_regLo, 0);
  2481   dsrl32(c_regLo, c_regLo, 0);
  2482   orr(c_reg, c_regLo, c_regHi);
  2484   bind(again);
  2486         if(!Use3A2000) sync();
  2487   lld(AT, dest);
  2488   bne(AT, c_reg, nequal);
  2489   delayed()->nop();
  2491   //move(AT, x_reg);
  2492   dadd(AT, x_reg, R0);
  2493   scd(AT, dest);
  2494   beq(AT, R0, again);
  2495   delayed()->nop();
  2496   b(done);
  2497   delayed()->nop();
  2499   // not xchged
  2500   bind(nequal);
  2501   sync();
  2502   //move(c_reg, AT);
  2503   //move(AT, R0);
  2504   dadd(c_reg, AT, R0);
  2505   dadd(AT, R0, R0);
  2506   bind(done);
  2509 // be sure the three register is different
  2510 void MacroAssembler::rem_s(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp) {
  2511   assert_different_registers(tmp, fs, ft);
  2512   div_s(tmp, fs, ft);
  2513   trunc_l_s(tmp, tmp);
  2514   cvt_s_l(tmp, tmp);
  2515   mul_s(tmp, tmp, ft);
  2516   sub_s(fd, fs, tmp);
  2519 // be sure the three register is different
  2520 void MacroAssembler::rem_d(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp) {
  2521   assert_different_registers(tmp, fs, ft);
  2522   div_d(tmp, fs, ft);
  2523   trunc_l_d(tmp, tmp);
  2524   cvt_d_l(tmp, tmp);
  2525   mul_d(tmp, tmp, ft);
  2526   sub_d(fd, fs, tmp);
  2529 // Fast_Lock and Fast_Unlock used by C2
  2531 // Because the transitions from emitted code to the runtime
  2532 // monitorenter/exit helper stubs are so slow it's critical that
  2533 // we inline both the stack-locking fast-path and the inflated fast path.
  2534 //
  2535 // See also: cmpFastLock and cmpFastUnlock.
  2536 //
  2537 // What follows is a specialized inline transliteration of the code
  2538 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2539 // another option would be to emit TrySlowEnter and TrySlowExit methods
  2540 // at startup-time.  These methods would accept arguments as
  2541 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2542 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2543 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2544 // In practice, however, the # of lock sites is bounded and is usually small.
  2545 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2546 // if the processor uses simple bimodal branch predictors keyed by EIP
  2547 // Since the helper routines would be called from multiple synchronization
  2548 // sites.
  2549 //
  2550 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2551 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2552 // to those specialized methods.  That'd give us a mostly platform-independent
  2553 // implementation that the JITs could optimize and inline at their pleasure.
  2554 // Done correctly, the only time we'd need to cross to native could would be
  2555 // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2556 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2557 // (b) explicit barriers or fence operations.
  2558 //
  2559 // TODO:
  2560 //
  2561 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2562 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2563 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2564 //    the lock operators would typically be faster than reifying Self.
  2565 //
  2566 // *  Ideally I'd define the primitives as:
  2567 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2568 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2569 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2570 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2571 //    Furthermore the register assignments are overconstrained, possibly resulting in
  2572 //    sub-optimal code near the synchronization site.
  2573 //
  2574 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2575 //    Alternately, use a better sp-proximity test.
  2576 //
  2577 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2578 //    Either one is sufficient to uniquely identify a thread.
  2579 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2580 //
  2581 // *  Intrinsify notify() and notifyAll() for the common cases where the
  2582 //    object is locked by the calling thread but the waitlist is empty.
  2583 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2584 //
  2585 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2586 //    But beware of excessive branch density on AMD Opterons.
  2587 //
  2588 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2589 //    or failure of the fast-path.  If the fast-path fails then we pass
  2590 //    control to the slow-path, typically in C.  In Fast_Lock and
  2591 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  2592 //    will emit a conditional branch immediately after the node.
  2593 //    So we have branches to branches and lots of ICC.ZF games.
  2594 //    Instead, it might be better to have C2 pass a "FailureLabel"
  2595 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  2596 //    will drop through the node.  ICC.ZF is undefined at exit.
  2597 //    In the case of failure, the node will branch directly to the
  2598 //    FailureLabel
  2601 // obj: object to lock
  2602 // box: on-stack box address (displaced header location) - KILLED
  2603 // rax,: tmp -- KILLED
  2604 // scr: tmp -- KILLED
  2605 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg, Register scrReg) {
  2607   // Ensure the register assignents are disjoint
  2608   guarantee (objReg != boxReg, "") ;
  2609   guarantee (objReg != tmpReg, "") ;
  2610   guarantee (objReg != scrReg, "") ;
  2611   guarantee (boxReg != tmpReg, "") ;
  2612   guarantee (boxReg != scrReg, "") ;
  2615   block_comment("FastLock");
  2616   /*
  2617      move(AT, 0x0);
  2618      return;
  2619      */
  2620   if (PrintBiasedLockingStatistics) {
  2621     push(tmpReg);
  2622     atomic_inc32((address)BiasedLocking::total_entry_count_addr(), 1, AT, tmpReg);
  2623     pop(tmpReg);
  2626   if (EmitSync & 1) {
  2627     move(AT, 0x0);
  2628     return;
  2629   } else
  2630     if (EmitSync & 2) {
  2631       Label DONE_LABEL ;
  2632       if (UseBiasedLocking) {
  2633         // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  2634         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL);
  2637       ld(tmpReg, Address(objReg, 0)) ;          // fetch markword
  2638       ori(tmpReg, tmpReg, 0x1);
  2639       sd(tmpReg, Address(boxReg, 0));           // Anticipate successful CAS
  2641       cmpxchg(boxReg, Address(objReg, 0), tmpReg);          // Updates tmpReg
  2642       bne(AT, R0, DONE_LABEL);
  2643       delayed()->nop();
  2645       // Recursive locking
  2646       dsubu(tmpReg, tmpReg, SP);
  2647       li(AT, (7 - os::vm_page_size() ));
  2648       andr(tmpReg, tmpReg, AT);
  2649       sd(tmpReg, Address(boxReg, 0));
  2650       bind(DONE_LABEL) ;
  2651     } else {
  2652       // Possible cases that we'll encounter in fast_lock
  2653       // ------------------------------------------------
  2654       // * Inflated
  2655       //    -- unlocked
  2656       //    -- Locked
  2657       //       = by self
  2658       //       = by other
  2659       // * biased
  2660       //    -- by Self
  2661       //    -- by other
  2662       // * neutral
  2663       // * stack-locked
  2664       //    -- by self
  2665       //       = sp-proximity test hits
  2666       //       = sp-proximity test generates false-negative
  2667       //    -- by other
  2668       //
  2670       Label IsInflated, DONE_LABEL, PopDone ;
  2672       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  2673       // order to reduce the number of conditional branches in the most common cases.
  2674       // Beware -- there's a subtle invariant that fetch of the markword
  2675       // at [FETCH], below, will never observe a biased encoding (*101b).
  2676       // If this invariant is not held we risk exclusion (safety) failure.
  2677       if (UseBiasedLocking && !UseOptoBiasInlining) {
  2678         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL);
  2681       ld(tmpReg, Address(objReg, 0)) ;         //Fetch the markword of the object.
  2682       andi(AT, tmpReg, markOopDesc::monitor_value);
  2683       bne(AT, R0, IsInflated);                      // inflated vs stack-locked|neutral|bias
  2684       delayed()->nop();
  2686       // Attempt stack-locking ...
  2687       ori (tmpReg, tmpReg, markOopDesc::unlocked_value);
  2688       sd(tmpReg, Address(boxReg, 0));          // Anticipate successful CAS
  2689       //if (os::is_MP()) {
  2690       //  sync();
  2691       //}
  2693       cmpxchg(boxReg, Address(objReg, 0), tmpReg);           // Updates tmpReg
  2694       //AT == 1: unlocked
  2696       if (PrintBiasedLockingStatistics) {
  2697         Label L;
  2698         beq(AT, R0, L);
  2699         delayed()->nop();
  2700         push(T0);
  2701         push(T1);
  2702         atomic_inc32((address)BiasedLocking::fast_path_entry_count_addr(), 1, T0, T1);
  2703         pop(T1);
  2704         pop(T0);
  2705         bind(L);
  2707       bne(AT, R0, DONE_LABEL);
  2708       delayed()->nop();
  2710       // Recursive locking
  2711       // The object is stack-locked: markword contains stack pointer to BasicLock.
  2712       // Locked by current thread if difference with current SP is less than one page.
  2713       dsubu(tmpReg, tmpReg, SP);
  2714       li(AT, 7 - os::vm_page_size() );
  2715       andr(tmpReg, tmpReg, AT);
  2716       sd(tmpReg, Address(boxReg, 0));
  2717       if (PrintBiasedLockingStatistics) {
  2718         Label L;
  2719         // tmpReg == 0 => BiasedLocking::_fast_path_entry_count++
  2720         bne(tmpReg, R0, L);
  2721         delayed()->nop();
  2722         push(T0);
  2723         push(T1);
  2724         atomic_inc32((address)BiasedLocking::fast_path_entry_count_addr(), 1, T0, T1);
  2725         pop(T1);
  2726         pop(T0);
  2727         bind(L);
  2729       sltiu(AT, tmpReg, 1); /* AT = (tmpReg == 0) ? 1 : 0 */
  2731       b(DONE_LABEL) ;
  2732       delayed()->nop();
  2734       bind(IsInflated) ;
  2735       // The object's monitor m is unlocked iff m->owner == NULL,
  2736       // otherwise m->owner may contain a thread or a stack address.
  2738       // TODO: someday avoid the ST-before-CAS penalty by
  2739       // relocating (deferring) the following ST.
  2740       // We should also think about trying a CAS without having
  2741       // fetched _owner.  If the CAS is successful we may
  2742       // avoid an RTO->RTS upgrade on the $line.
  2743       // Without cast to int32_t a movptr will destroy r10 which is typically obj
  2744       li(AT, (int32_t)intptr_t(markOopDesc::unused_mark()));
  2745       sd(AT, Address(boxReg, 0));
  2747       move(boxReg, tmpReg) ;
  2748       ld(tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  2749       // if (m->owner != 0) => AT = 0, goto slow path.
  2750       move(AT, R0);
  2751       bne(tmpReg, R0, DONE_LABEL);
  2752       delayed()->nop();
  2754 #ifndef OPT_THREAD
  2755       get_thread (TREG) ;
  2756 #endif
  2757       // It's inflated and appears unlocked
  2758       //if (os::is_MP()) {
  2759       //  sync();
  2760       //}
  2761       cmpxchg(TREG, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), tmpReg) ;
  2762       // Intentional fall-through into DONE_LABEL ...
  2765       // DONE_LABEL is a hot target - we'd really like to place it at the
  2766       // start of cache line by padding with NOPs.
  2767       // See the AMD and Intel software optimization manuals for the
  2768       // most efficient "long" NOP encodings.
  2769       // Unfortunately none of our alignment mechanisms suffice.
  2770       bind(DONE_LABEL);
  2772       // At DONE_LABEL the AT is set as follows ...
  2773       // Fast_Unlock uses the same protocol.
  2774       // AT == 1 -> Success
  2775       // AT == 0 -> Failure - force control through the slow-path
  2777       // Avoid branch-to-branch on AMD processors
  2778       // This appears to be superstition.
  2779       if (EmitSync & 32) nop() ;
  2784 // obj: object to unlock
  2785 // box: box address (displaced header location), killed.  Must be EAX.
  2786 // rbx,: killed tmp; cannot be obj nor box.
  2787 //
  2788 // Some commentary on balanced locking:
  2789 //
  2790 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  2791 // Methods that don't have provably balanced locking are forced to run in the
  2792 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  2793 // The interpreter provides two properties:
  2794 // I1:  At return-time the interpreter automatically and quietly unlocks any
  2795 //      objects acquired the current activation (frame).  Recall that the
  2796 //      interpreter maintains an on-stack list of locks currently held by
  2797 //      a frame.
  2798 // I2:  If a method attempts to unlock an object that is not held by the
  2799 //      the frame the interpreter throws IMSX.
  2800 //
  2801 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  2802 // B() doesn't have provably balanced locking so it runs in the interpreter.
  2803 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  2804 // is still locked by A().
  2805 //
  2806 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  2807 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  2808 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  2809 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  2811 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg) {
  2813   guarantee (objReg != boxReg, "") ;
  2814   guarantee (objReg != tmpReg, "") ;
  2815   guarantee (boxReg != tmpReg, "") ;
  2819   block_comment("FastUnlock");
  2822   if (EmitSync & 4) {
  2823     // Disable - inhibit all inlining.  Force control through the slow-path
  2824     move(AT, 0x0);
  2825     return;
  2826   } else
  2827     if (EmitSync & 8) {
  2828       Label DONE_LABEL ;
  2829       if (UseBiasedLocking) {
  2830         biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2832       // classic stack-locking code ...
  2833       ld(tmpReg, Address(boxReg, 0)) ;
  2834       beq(tmpReg, R0, DONE_LABEL) ;
  2835       move(AT, 0x1);  // delay slot
  2837       cmpxchg(tmpReg, Address(objReg, 0), boxReg);          // Uses EAX which is box
  2838       bind(DONE_LABEL);
  2839     } else {
  2840       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  2842       // Critically, the biased locking test must have precedence over
  2843       // and appear before the (box->dhw == 0) recursive stack-lock test.
  2844       if (UseBiasedLocking && !UseOptoBiasInlining) {
  2845         biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2848       ld(AT, Address(boxReg, 0)) ;            // Examine the displaced header
  2849       beq(AT, R0, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  2850       delayed()->daddiu(AT, R0, 0x1);
  2852       ld(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  2853       andi(AT, tmpReg, markOopDesc::monitor_value) ;                     // Inflated?
  2854       beq(AT, R0, Stacked) ;                     // Inflated?
  2855       delayed()->nop();
  2857       bind(Inflated) ;
  2858       // It's inflated.
  2859       // Despite our balanced locking property we still check that m->_owner == Self
  2860       // as java routines or native JNI code called by this thread might
  2861       // have released the lock.
  2862       // Refer to the comments in synchronizer.cpp for how we might encode extra
  2863       // state in _succ so we can avoid fetching EntryList|cxq.
  2864       //
  2865       // I'd like to add more cases in fast_lock() and fast_unlock() --
  2866       // such as recursive enter and exit -- but we have to be wary of
  2867       // I$ bloat, T$ effects and BP$ effects.
  2868       //
  2869       // If there's no contention try a 1-0 exit.  That is, exit without
  2870       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  2871       // we detect and recover from the race that the 1-0 exit admits.
  2872       //
  2873       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  2874       // before it STs null into _owner, releasing the lock.  Updates
  2875       // to data protected by the critical section must be visible before
  2876       // we drop the lock (and thus before any other thread could acquire
  2877       // the lock and observe the fields protected by the lock).
  2878       // IA32's memory-model is SPO, so STs are ordered with respect to
  2879       // each other and there's no need for an explicit barrier (fence).
  2880       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  2881 #ifndef OPT_THREAD
  2882       get_thread (TREG) ;
  2883 #endif
  2885       // It's inflated
  2886       ld(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  2887       xorr(boxReg, boxReg, TREG);
  2889       ld(AT, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  2890       orr(boxReg, boxReg, AT);
  2892       move(AT, R0);
  2893       bne(boxReg, R0, DONE_LABEL);
  2894       delayed()->nop();
  2896       ld(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
  2897       ld(AT, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
  2898       orr(boxReg, boxReg, AT);
  2900       move(AT, R0);
  2901       bne(boxReg, R0, DONE_LABEL);
  2902       delayed()->nop();
  2904       sync();
  2905       sd(R0, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  2906       move(AT, 0x1);
  2907       b(DONE_LABEL);
  2908       delayed()->nop();
  2910       bind  (Stacked);
  2911       ld(tmpReg, Address(boxReg, 0)) ;
  2912       //if (os::is_MP()) { sync(); }
  2913       cmpxchg(tmpReg, Address(objReg, 0), boxReg);
  2915       if (EmitSync & 65536) {
  2916         bind (CheckSucc);
  2919       bind(DONE_LABEL);
  2921       // Avoid branch to branch on AMD processors
  2922       if (EmitSync & 32768) { nop() ; }
  2926 void MacroAssembler::align(int modulus) {
  2927   while (offset() % modulus != 0) nop();
  2931 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  2932   //Unimplemented();
  2935 #ifdef _LP64
  2936 Register caller_saved_registers[] = {AT, V0, V1, A0, A1, A2, A3, A4, A5, A6, A7, T0, T1, T2, T3, T8, T9, GP, RA, FP};
  2938 /* FIXME: Jin: In MIPS64, F0~23 are all caller-saved registers */
  2939 FloatRegister caller_saved_fpu_registers[] = {F0, F12, F13};
  2940 #else
  2941 Register caller_saved_registers[] = {AT, V0, V1, A0, A1, A2, A3, T4, T5, T6, T7, T0, T1, T2, T3, T8, T9, GP, RA, FP};
  2943 Register caller_saved_fpu_registers[] = {};
  2944 #endif
  2946 //We preserve all caller-saved register
  2947 void  MacroAssembler::pushad(){
  2948   int i;
  2950   /* Fixed-point registers */
  2951   int len = sizeof(caller_saved_registers) / sizeof(caller_saved_registers[0]);
  2952   daddi(SP, SP, -1 * len * wordSize);
  2953   for (i = 0; i < len; i++)
  2955 #ifdef _LP64
  2956     sd(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  2957 #else
  2958     sw(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  2959 #endif
  2962   /* Floating-point registers */
  2963   len = sizeof(caller_saved_fpu_registers) / sizeof(caller_saved_fpu_registers[0]);
  2964   daddi(SP, SP, -1 * len * wordSize);
  2965   for (i = 0; i < len; i++)
  2967 #ifdef _LP64
  2968     sdc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  2969 #else
  2970     swc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  2971 #endif
  2973 };
  2975 void  MacroAssembler::popad(){
  2976   int i;
  2978   /* Floating-point registers */
  2979   int len = sizeof(caller_saved_fpu_registers) / sizeof(caller_saved_fpu_registers[0]);
  2980   for (i = 0; i < len; i++)
  2982 #ifdef _LP64
  2983     ldc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  2984 #else
  2985     lwc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  2986 #endif
  2988   daddi(SP, SP, len * wordSize);
  2990   /* Fixed-point registers */
  2991   len = sizeof(caller_saved_registers) / sizeof(caller_saved_registers[0]);
  2992   for (i = 0; i < len; i++)
  2994 #ifdef _LP64
  2995     ld(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  2996 #else
  2997     lw(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  2998 #endif
  3000   daddi(SP, SP, len * wordSize);
  3001 };
  3003 void MacroAssembler::push2(Register reg1, Register reg2) {
  3004 #ifdef _LP64
  3005   daddi(SP, SP, -16);
  3006   sd(reg2, SP, 0);
  3007   sd(reg1, SP, 8);
  3008 #else
  3009   addi(SP, SP, -8);
  3010   sw(reg2, SP, 0);
  3011   sw(reg1, SP, 4);
  3012 #endif
  3015 void MacroAssembler::pop2(Register reg1, Register reg2) {
  3016 #ifdef _LP64
  3017   ld(reg1, SP, 0);
  3018   ld(reg2, SP, 8);
  3019   daddi(SP, SP, 16);
  3020 #else
  3021   lw(reg1, SP, 0);
  3022   lw(reg2, SP, 4);
  3023   addi(SP, SP, 8);
  3024 #endif
  3027 //for UseCompressedOops Option
  3028 void MacroAssembler::load_klass(Register dst, Register src) {
  3029 #ifdef _LP64
  3030     if(UseCompressedClassPointers){
  3031         lwu(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  3032   decode_klass_not_null(dst);
  3033     } else
  3034 #endif
  3035         ld(dst, src, oopDesc::klass_offset_in_bytes());
  3038 void MacroAssembler::store_klass(Register dst, Register src) {
  3039 #ifdef _LP64
  3040     if(UseCompressedClassPointers){
  3041     encode_klass_not_null(src);
  3042     sw(src, dst, oopDesc::klass_offset_in_bytes());
  3043     } else {
  3044 #endif
  3045     sd(src, dst, oopDesc::klass_offset_in_bytes());
  3049 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  3050   load_klass(dst, src);
  3051   ld(dst, Address(dst, Klass::prototype_header_offset()));
  3054 #ifdef _LP64
  3055 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  3056   if (UseCompressedClassPointers) {
  3057     sw(src, dst, oopDesc::klass_gap_offset_in_bytes());
  3061 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  3062     if(UseCompressedOops){
  3063   lwu(dst, src);
  3064   decode_heap_oop(dst);
  3065     } else{
  3066   ld(dst, src);
  3070 void MacroAssembler::store_heap_oop(Address dst, Register src){
  3071     if(UseCompressedOops){
  3072        assert(!dst.uses(src), "not enough registers");
  3073        encode_heap_oop(src);
  3074        sw(src, dst);
  3075     } else{
  3076        sd(src, dst);
  3080 #ifdef ASSERT
  3081 void MacroAssembler::verify_heapbase(const char* msg) {
  3082   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
  3083   assert (Universe::heap() != NULL, "java heap should be initialized");
  3085 #endif
  3088 // Algorithm must match oop.inline.hpp encode_heap_oop.
  3089 void MacroAssembler::encode_heap_oop(Register r) {
  3090 #ifdef ASSERT
  3091   verify_heapbase("MacroAssembler::encode_heap_oop:heap base corrupted?");
  3092 #endif
  3093   verify_oop(r, "broken oop in encode_heap_oop");
  3094   if (Universe::narrow_oop_base() == NULL) {
  3095     if (Universe::narrow_oop_shift() != 0) {
  3096       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3097       shr(r, LogMinObjAlignmentInBytes);
  3099     return;
  3102     movz(r, S5_heapbase, r);
  3103     dsub(r, r, S5_heapbase);
  3104     if (Universe::narrow_oop_shift() != 0) {
  3105       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3106       shr(r, LogMinObjAlignmentInBytes);
  3110 void MacroAssembler::encode_heap_oop(Register dst, Register src) {
  3111 #ifdef ASSERT
  3112   verify_heapbase("MacroAssembler::encode_heap_oop:heap base corrupted?");
  3113 #endif
  3114   verify_oop(src, "broken oop in encode_heap_oop");
  3115   if (Universe::narrow_oop_base() == NULL) {
  3116     if (Universe::narrow_oop_shift() != 0) {
  3117       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3118       dsrl(dst, src, LogMinObjAlignmentInBytes);
  3119     } else {
  3120       if (dst != src) move(dst, src);
  3122   } else {
  3123     if (dst == src) {
  3124       movz(dst, S5_heapbase, dst);
  3125       dsub(dst, dst, S5_heapbase);
  3126       if (Universe::narrow_oop_shift() != 0) {
  3127         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3128         shr(dst, LogMinObjAlignmentInBytes);
  3130     } else {
  3131       dsub(dst, src, S5_heapbase);
  3132       if (Universe::narrow_oop_shift() != 0) {
  3133         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3134         shr(dst, LogMinObjAlignmentInBytes);
  3136       movz(dst, R0, src);
  3141 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  3142     assert (UseCompressedOops, "should be compressed");
  3143 #ifdef ASSERT
  3144     if (CheckCompressedOops) {
  3145   Label ok;
  3146   bne(r, R0, ok);
  3147   delayed()->nop();
  3148   stop("null oop passed to encode_heap_oop_not_null");
  3149   bind(ok);
  3151 #endif
  3152   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  3153   if (Universe::narrow_oop_base() != NULL) {
  3154     dsub(r, r, S5_heapbase);
  3156   if (Universe::narrow_oop_shift() != 0) {
  3157     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3158     shr(r, LogMinObjAlignmentInBytes);
  3163 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  3164     assert (UseCompressedOops, "should be compressed");
  3165 #ifdef ASSERT
  3166     if (CheckCompressedOops) {
  3167   Label ok;
  3168   bne(src, R0, ok);
  3169   delayed()->nop();
  3170   stop("null oop passed to encode_heap_oop_not_null2");
  3171   bind(ok);
  3173 #endif
  3174     verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  3176     if (Universe::narrow_oop_base() != NULL) {
  3177       dsub(dst, src, S5_heapbase);
  3178         if (Universe::narrow_oop_shift() != 0) {
  3179         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3180         shr(dst, LogMinObjAlignmentInBytes);
  3182     } else {
  3183         if (Universe::narrow_oop_shift() != 0) {
  3184         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3185           dsrl(dst, src, LogMinObjAlignmentInBytes);
  3186         } else {
  3187           if (dst != src) move(dst, src);
  3192 void  MacroAssembler::decode_heap_oop(Register r) {
  3193 #ifdef ASSERT
  3194   verify_heapbase("MacroAssembler::decode_heap_oop corrupted?");
  3195 #endif
  3196   if (Universe::narrow_oop_base() == NULL) {
  3197     if (Universe::narrow_oop_shift() != 0) {
  3198       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3199       shl(r, LogMinObjAlignmentInBytes);
  3201   } else {
  3202     move(AT, r);
  3203     if (Universe::narrow_oop_shift() != 0) {
  3204       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3205       shl(r, LogMinObjAlignmentInBytes);
  3207     dadd(r, r, S5_heapbase);
  3208     movz(r, R0, AT);
  3210   verify_oop(r, "broken oop in decode_heap_oop");
  3213 void  MacroAssembler::decode_heap_oop(Register dst, Register src) {
  3214 #ifdef ASSERT
  3215   verify_heapbase("MacroAssembler::decode_heap_oop corrupted?");
  3216 #endif
  3217   if (Universe::narrow_oop_base() == NULL) {
  3218     if (Universe::narrow_oop_shift() != 0) {
  3219       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3220       if (dst != src) nop(); // DON'T DELETE THIS GUY.
  3221       dsll(dst, src, LogMinObjAlignmentInBytes);
  3222     } else {
  3223       if (dst != src) move(dst, src);
  3225   } else {
  3226     if (dst == src) {
  3227       move(AT, dst);
  3228       if (Universe::narrow_oop_shift() != 0) {
  3229         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3230         shl(dst, LogMinObjAlignmentInBytes);
  3232       dadd(dst, dst, S5_heapbase);
  3233       movz(dst, R0, AT);
  3234     } else {
  3235       if (Universe::narrow_oop_shift() != 0) {
  3236         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3237         dsll(dst, src, LogMinObjAlignmentInBytes);
  3238         daddu(dst, dst, S5_heapbase);
  3239       } else {
  3240         daddu(dst, src, S5_heapbase);
  3242       movz(dst, R0, src);
  3245   verify_oop(dst, "broken oop in decode_heap_oop");
  3248 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  3249   // Note: it will change flags
  3250   assert (UseCompressedOops, "should only be used for compressed headers");
  3251   assert (Universe::heap() != NULL, "java heap should be initialized");
  3252   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3253   // vtableStubs also counts instructions in pd_code_size_limit.
  3254   // Also do not verify_oop as this is called by verify_oop.
  3255   if (Universe::narrow_oop_shift() != 0) {
  3256     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3257     shl(r, LogMinObjAlignmentInBytes);
  3258     if (Universe::narrow_oop_base() != NULL) {
  3259       daddu(r, r, S5_heapbase);
  3261   } else {
  3262     assert (Universe::narrow_oop_base() == NULL, "sanity");
  3266 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  3267   assert (UseCompressedOops, "should only be used for compressed headers");
  3268   assert (Universe::heap() != NULL, "java heap should be initialized");
  3270   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3271   // vtableStubs also counts instructions in pd_code_size_limit.
  3272   // Also do not verify_oop as this is called by verify_oop.
  3273   //lea(dst, Address(S5_heapbase, src, Address::times_8, 0));
  3274   if (Universe::narrow_oop_shift() != 0) {
  3275     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3276     if (LogMinObjAlignmentInBytes == Address::times_8) {
  3277       dsll(dst, src, LogMinObjAlignmentInBytes);
  3278       daddu(dst, dst, S5_heapbase);
  3279     } else {
  3280       dsll(dst, src, LogMinObjAlignmentInBytes);
  3281       if (Universe::narrow_oop_base() != NULL) {
  3282         daddu(dst, dst, S5_heapbase);
  3285   } else {
  3286     assert (Universe::narrow_oop_base() == NULL, "sanity");
  3287     if (dst != src) {
  3288       move(dst, src);
  3293 void MacroAssembler::encode_klass_not_null(Register r) {
  3294   if (Universe::narrow_klass_base() != NULL) {
  3295     assert(r != AT, "Encoding a klass in AT");
  3296     set64(AT, (int64_t)Universe::narrow_klass_base());
  3297     dsub(r, r, AT);
  3299   if (Universe::narrow_klass_shift() != 0) {
  3300     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3301     shr(r, LogKlassAlignmentInBytes);
  3303   // Not neccessary for MIPS at all.
  3304   //if (Universe::narrow_klass_base() != NULL) {
  3305   //  reinit_heapbase();
  3306   //}
  3309 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  3310   if (dst == src) {
  3311     encode_klass_not_null(src);
  3312   } else {
  3313     if (Universe::narrow_klass_base() != NULL) {
  3314       set64(dst, (int64_t)Universe::narrow_klass_base());
  3315       dsub(dst, src, dst);
  3316       if (Universe::narrow_klass_shift() != 0) {
  3317         assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3318         shr(dst, LogKlassAlignmentInBytes);
  3320     } else {
  3321       if (Universe::narrow_klass_shift() != 0) {
  3322         assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3323         dsrl(dst, src, LogKlassAlignmentInBytes);
  3324       } else {
  3325         move(dst, src);
  3331 // Function instr_size_for_decode_klass_not_null() counts the instructions
  3332 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  3333 // when (Universe::heap() != NULL).  Hence, if the instructions they
  3334 // generate change, then this method needs to be updated.
  3335 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  3336   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  3337   if (Universe::narrow_klass_base() != NULL) {
  3338     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  3339     return (Universe::narrow_klass_shift() == 0 ? 4 * 9 : 4 * 10);
  3340   } else {
  3341     // longest load decode klass function, mov64, leaq
  3342     return (Universe::narrow_klass_shift() == 0 ? 4 * 0 : 4 * 1);
  3346 void  MacroAssembler::decode_klass_not_null(Register r) {
  3347   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  3348   assert(r != AT, "Decoding a klass in AT");
  3349   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3350   // vtableStubs also counts instructions in pd_code_size_limit.
  3351   // Also do not verify_oop as this is called by verify_oop.
  3352   if (Universe::narrow_klass_shift() != 0) {
  3353     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3354     shl(r, LogKlassAlignmentInBytes);
  3356   if (Universe::narrow_klass_base() != NULL) {
  3357     set64(AT, (int64_t)Universe::narrow_klass_base());
  3358     daddu(r, r, AT);
  3359     //Not neccessary for MIPS at all.
  3360     //reinit_heapbase();
  3364 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  3365   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  3367   if (dst == src) {
  3368     decode_klass_not_null(dst);
  3369   } else {
  3370     // Cannot assert, unverified entry point counts instructions (see .ad file)
  3371     // vtableStubs also counts instructions in pd_code_size_limit.
  3372     // Also do not verify_oop as this is called by verify_oop.
  3373     set64(dst, (int64_t)Universe::narrow_klass_base());
  3374     if (Universe::narrow_klass_shift() != 0) {
  3375       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3376       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  3377       dsll(AT, src, Address::times_8);
  3378       daddu(dst, dst, AT);
  3379     } else {
  3380       daddu(dst, src, dst);
  3385 void MacroAssembler::incrementl(Register reg, int value) {
  3386   if (value == min_jint) {
  3387      move(AT, value);
  3388      LP64_ONLY(addu32(reg, reg, AT)) NOT_LP64(addu(reg, reg, AT));
  3389      return;
  3391   if (value <  0) { decrementl(reg, -value); return; }
  3392   if (value == 0) {                        ; return; }
  3394   if(Assembler::is_simm16(value)) {
  3395      NOT_LP64(addiu(reg, reg, value));
  3396      LP64_ONLY(move(AT, value); addu32(reg, reg, AT));
  3397   } else {
  3398      move(AT, value);
  3399      LP64_ONLY(addu32(reg, reg, AT)) NOT_LP64(addu(reg, reg, AT));
  3403 void MacroAssembler::decrementl(Register reg, int value) {
  3404   if (value == min_jint) {
  3405      move(AT, value);
  3406      LP64_ONLY(subu32(reg, reg, AT)) NOT_LP64(subu(reg, reg, AT));
  3407      return;
  3409   if (value <  0) { incrementl(reg, -value); return; }
  3410   if (value == 0) {                        ; return; }
  3412   if(Assembler::is_simm16(value)) {
  3413      NOT_LP64(addiu(reg, reg, -value));
  3414      LP64_ONLY(move(AT, value); subu32(reg, reg, AT));
  3415   } else {
  3416      move(AT, value);
  3417      LP64_ONLY(subu32(reg, reg, AT)) NOT_LP64(subu(reg, reg, AT));
  3421 void MacroAssembler::reinit_heapbase() {
  3422   if (UseCompressedOops || UseCompressedClassPointers) {
  3423     if (Universe::heap() != NULL) {
  3424       if (Universe::narrow_oop_base() == NULL) {
  3425         move(S5_heapbase, R0);
  3426       } else {
  3427         set64(S5_heapbase, (int64_t)Universe::narrow_ptrs_base());
  3429     } else {
  3430       set64(S5_heapbase, (intptr_t)Universe::narrow_ptrs_base_addr());
  3431       ld(S5_heapbase, S5_heapbase, 0);
  3435 #endif // _LP64
  3437 void MacroAssembler::check_klass_subtype(Register sub_klass,
  3438                            Register super_klass,
  3439                            Register temp_reg,
  3440                            Label& L_success) {
  3441 //implement ind   gen_subtype_check
  3442   Label L_failure;
  3443   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  3444   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  3445   bind(L_failure);
  3448 SkipIfEqual::SkipIfEqual(
  3449     MacroAssembler* masm, const bool* flag_addr, bool value) {
  3450   _masm = masm;
  3451   _masm->li(AT, (address)flag_addr);
  3452   _masm->lb(AT,AT,0);
  3453   _masm->addi(AT,AT,-value);
  3454   _masm->beq(AT,R0,_label);
  3455   _masm->delayed()->nop();
  3457 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  3458                                                    Register super_klass,
  3459                                                    Register temp_reg,
  3460                                                    Label* L_success,
  3461                                                    Label* L_failure,
  3462                                                    Label* L_slow_path,
  3463                                         RegisterOrConstant super_check_offset) {
  3464   assert_different_registers(sub_klass, super_klass, temp_reg);
  3465   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  3466   if (super_check_offset.is_register()) {
  3467     assert_different_registers(sub_klass, super_klass,
  3468                                super_check_offset.as_register());
  3469   } else if (must_load_sco) {
  3470     assert(temp_reg != noreg, "supply either a temp or a register offset");
  3473   Label L_fallthrough;
  3474   int label_nulls = 0;
  3475   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3476   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3477   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  3478   assert(label_nulls <= 1, "at most one NULL in the batch");
  3480   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3481   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  3482   // If the pointers are equal, we are done (e.g., String[] elements).
  3483   // This self-check enables sharing of secondary supertype arrays among
  3484   // non-primary types such as array-of-interface.  Otherwise, each such
  3485   // type would need its own customized SSA.
  3486   // We move this check to the front of the fast path because many
  3487   // type checks are in fact trivially successful in this manner,
  3488   // so we get a nicely predicted branch right at the start of the check.
  3489   //cmpptr(sub_klass, super_klass);
  3490   //local_jcc(Assembler::equal, *L_success);
  3491   beq(sub_klass, super_klass, *L_success);
  3492   delayed()->nop();
  3493   // Check the supertype display:
  3494   if (must_load_sco) {
  3495     // Positive movl does right thing on LP64.
  3496   lwu(temp_reg, super_klass, sco_offset);
  3497     super_check_offset = RegisterOrConstant(temp_reg);
  3499   dsll(AT, super_check_offset.register_or_noreg(), Address::times_1);
  3500   daddu(AT, sub_klass, AT);
  3501   ld(AT, AT, super_check_offset.constant_or_zero()*Address::times_1);
  3503   // This check has worked decisively for primary supers.
  3504   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3505   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3506   // This works in the same check above because of a tricky aliasing
  3507   // between the super_cache and the primary super display elements.
  3508   // (The 'super_check_addr' can address either, as the case requires.)
  3509   // Note that the cache is updated below if it does not help us find
  3510   // what we need immediately.
  3511   // So if it was a primary super, we can just fail immediately.
  3512   // Otherwise, it's the slow path for us (no success at this point).
  3514   if (super_check_offset.is_register()) {
  3515   beq(super_klass, AT, *L_success);
  3516   delayed()->nop();
  3517   addi(AT, super_check_offset.as_register(), -sc_offset);
  3518     if (L_failure == &L_fallthrough) {
  3519     beq(AT, R0, *L_slow_path);
  3520     delayed()->nop();
  3521     } else {
  3522     bne(AT, R0, *L_failure);
  3523     delayed()->nop();
  3524     b(*L_slow_path);
  3525     delayed()->nop();
  3527   } else if (super_check_offset.as_constant() == sc_offset) {
  3528     // Need a slow path; fast failure is impossible.
  3529     if (L_slow_path == &L_fallthrough) {
  3530     beq(super_klass, AT, *L_success);
  3531     delayed()->nop();
  3532     } else {
  3533     bne(super_klass, AT, *L_slow_path);
  3534     delayed()->nop();
  3535     b(*L_success);
  3536     delayed()->nop();
  3538   } else {
  3539     // No slow path; it's a fast decision.
  3540     if (L_failure == &L_fallthrough) {
  3541     beq(super_klass, AT, *L_success);
  3542     delayed()->nop();
  3543     } else {
  3544     bne(super_klass, AT, *L_failure);
  3545     delayed()->nop();
  3546     b(*L_success);
  3547     delayed()->nop();
  3551   bind(L_fallthrough);
  3556 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3557                                                    Register super_klass,
  3558                                                    Register temp_reg,
  3559                                                    Register temp2_reg,
  3560                                                    Label* L_success,
  3561                                                    Label* L_failure,
  3562                                                    bool set_cond_codes) {
  3563   assert_different_registers(sub_klass, super_klass, temp_reg);
  3564   if (temp2_reg != noreg)
  3565     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  3566   else
  3567     temp2_reg = T9;
  3568 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  3570   Label L_fallthrough;
  3571   int label_nulls = 0;
  3572   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3573   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3574   assert(label_nulls <= 1, "at most one NULL in the batch");
  3576   // a couple of useful fields in sub_klass:
  3577   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  3578   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3579   Address secondary_supers_addr(sub_klass, ss_offset);
  3580   Address super_cache_addr(     sub_klass, sc_offset);
  3582   // Do a linear scan of the secondary super-klass chain.
  3583   // This code is rarely used, so simplicity is a virtue here.
  3584   // The repne_scan instruction uses fixed registers, which we must spill.
  3585   // Don't worry too much about pre-existing connections with the input regs.
  3587 #if 0
  3588   assert(sub_klass != T9, "killed reg"); // killed by mov(rax, super)
  3589   assert(sub_klass != T1, "killed reg"); // killed by lea(rcx, &pst_counter)
  3590 #endif
  3592   // Get super_klass value into rax (even if it was in rdi or rcx).
  3593 #ifndef PRODUCT
  3594   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3595   ExternalAddress pst_counter_addr((address) pst_counter);
  3596   NOT_LP64(  incrementl(pst_counter_addr) );
  3597   //LP64_ONLY( lea(rcx, pst_counter_addr) );
  3598   //LP64_ONLY( incrementl(Address(rcx, 0)) );
  3599 #endif //PRODUCT
  3601   // We will consult the secondary-super array.
  3602   ld(temp_reg, secondary_supers_addr);
  3603   // Load the array length.  (Positive movl does right thing on LP64.)
  3604   lw(temp2_reg, Address(temp_reg, Array<Klass*>::length_offset_in_bytes()));
  3605   // Skip to start of data.
  3606   daddiu(temp_reg, temp_reg, Array<Klass*>::base_offset_in_bytes());
  3608   // Scan RCX words at [RDI] for an occurrence of RAX.
  3609   // Set NZ/Z based on last compare.
  3610   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  3611   // not change flags (only scas instruction which is repeated sets flags).
  3612   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  3614   /* 2013/4/3 Jin: OpenJDK8 never compresses klass pointers in secondary-super array. */
  3615   Label Loop, subtype;
  3616   bind(Loop);
  3617   beq(temp2_reg, R0, *L_failure);
  3618   delayed()->nop();
  3619   ld(AT, temp_reg, 0);
  3620   beq(AT, super_klass, subtype);
  3621   delayed()->daddi(temp_reg, temp_reg, 1 * wordSize);
  3622   b(Loop);
  3623   delayed()->daddi(temp2_reg, temp2_reg, -1);
  3625   bind(subtype);
  3626   sd(super_klass, super_cache_addr);
  3627   if (L_success != &L_fallthrough) {
  3628     b(*L_success);
  3629     delayed()->nop();
  3632   // Success.  Cache the super we found and proceed in triumph.
  3633 #undef IS_A_TEMP
  3635   bind(L_fallthrough);
  3637 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  3638   ld(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  3639   sd(R0, Address(java_thread, JavaThread::vm_result_offset()));
  3640   verify_oop(oop_result, "broken oop in call_VM_base");
  3643 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  3644   ld(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  3645   sd(R0, Address(java_thread, JavaThread::vm_result_2_offset()));
  3648 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3649                                          int extra_slot_offset) {
  3650   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3651   int stackElementSize = Interpreter::stackElementSize;
  3652   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  3653 #ifdef ASSERT
  3654   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  3655   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  3656 #endif
  3657   Register             scale_reg    = NOREG;
  3658   Address::ScaleFactor scale_factor = Address::no_scale;
  3659   if (arg_slot.is_constant()) {
  3660     offset += arg_slot.as_constant() * stackElementSize;
  3661   } else {
  3662     scale_reg    = arg_slot.as_register();
  3663     scale_factor = Address::times_8;
  3665   // 2014/07/31 Fu: We don't push RA on stack in prepare_invoke.
  3666   //  offset += wordSize;           // return PC is on stack
  3667   if(scale_reg==NOREG) return Address(SP, offset);
  3668   else {
  3669   dsll(scale_reg, scale_reg, scale_factor);
  3670   daddu(scale_reg, SP, scale_reg);
  3671   return Address(scale_reg, offset);
  3675 SkipIfEqual::~SkipIfEqual() {
  3676   _masm->bind(_label);
  3679 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  3680   switch (size_in_bytes) {
  3681 #ifndef _LP64
  3682   case  8:
  3683     assert(dst2 != noreg, "second dest register required");
  3684     lw(dst,  src);
  3685     lw(dst2, src.plus_disp(BytesPerInt));
  3686     break;
  3687 #else
  3688   case  8:  ld(dst, src); break;
  3689 #endif
  3690   case  4:  lw(dst, src); break;
  3691   case  2:  is_signed ? lh(dst, src) : lhu(dst, src); break;
  3692   case  1:  is_signed ? lb( dst, src) : lbu( dst, src); break;
  3693   default:  ShouldNotReachHere();
  3697 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  3698   switch (size_in_bytes) {
  3699 #ifndef _LP64
  3700   case  8:
  3701     assert(src2 != noreg, "second source register required");
  3702     sw(src, dst);
  3703     sw(src2, dst.plus_disp(BytesPerInt));
  3704     break;
  3705 #else
  3706   case  8:  sd(src, dst); break;
  3707 #endif
  3708   case  4:  sw(src, dst); break;
  3709   case  2:  sh(src, dst); break;
  3710   case  1:  sb(src, dst); break;
  3711   default:  ShouldNotReachHere();
  3715 // Look up the method for a megamorphic invokeinterface call.
  3716 // The target method is determined by <intf_klass, itable_index>.
  3717 // The receiver klass is in recv_klass.
  3718 // On success, the result will be in method_result, and execution falls through.
  3719 // On failure, execution transfers to the given label.
  3720 void MacroAssembler::lookup_interface_method(Register recv_klass,
  3721                                              Register intf_klass,
  3722                                              RegisterOrConstant itable_index,
  3723                                              Register method_result,
  3724                                              Register scan_temp,
  3725                                              Label& L_no_such_interface) {
  3726   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  3727   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  3728          "caller must use same register for non-constant itable index as for method");
  3730   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3731   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  3732   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  3733   int scan_step   = itableOffsetEntry::size() * wordSize;
  3734   int vte_size    = vtableEntry::size() * wordSize;
  3735   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  3736   assert(vte_size == wordSize, "else adjust times_vte_scale");
  3738   lw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  3740   // %%% Could store the aligned, prescaled offset in the klassoop.
  3741   dsll(scan_temp, scan_temp, times_vte_scale);
  3742   daddu(scan_temp, recv_klass, scan_temp);
  3743   daddiu(scan_temp, scan_temp, vtable_base);
  3744   if (HeapWordsPerLong > 1) {
  3745     // Round up to align_object_offset boundary
  3746     // see code for InstanceKlass::start_of_itable!
  3747     round_to(scan_temp, BytesPerLong);
  3750   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  3751   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  3752 //  lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  3753   if (itable_index.is_constant()) {
  3754     set64(AT, (int)itable_index.is_constant());
  3755     dsll(AT, AT, (int)Address::times_ptr);
  3756   } else {
  3757     dsll(AT, itable_index.as_register(), (int)Address::times_ptr);
  3759   daddu(AT, AT, recv_klass);
  3760   daddiu(recv_klass, AT, itentry_off);
  3762   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  3763   //   if (scan->interface() == intf) {
  3764   //     result = (klass + scan->offset() + itable_index);
  3765   //   }
  3766   // }
  3767   Label search, found_method;
  3769   for (int peel = 1; peel >= 0; peel--) {
  3770     ld(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  3772     if (peel) {
  3773       beq(intf_klass, method_result, found_method);
  3774       nop();
  3775     } else {
  3776       bne(intf_klass, method_result, search);
  3777       nop();
  3778       // (invert the test to fall through to found_method...)
  3781     if (!peel)  break;
  3783     bind(search);
  3785     // Check that the previous entry is non-null.  A null entry means that
  3786     // the receiver class doesn't implement the interface, and wasn't the
  3787     // same as when the caller was compiled.
  3788     beq(method_result, R0, L_no_such_interface);
  3789     nop();
  3790     daddiu(scan_temp, scan_temp, scan_step);
  3793   bind(found_method);
  3795   // Got a hit.
  3796   lw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  3797   //ld(method_result, Address(recv_klass, scan_temp, Address::times_1));
  3798   if(UseLoongsonISA) {
  3799     gsldx(method_result, recv_klass, scan_temp, 0);
  3800   } else {
  3801     daddu(AT, recv_klass, scan_temp);
  3802     ld(method_result, AT);
  3807 // virtual method calling
  3808 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  3809                                            RegisterOrConstant vtable_index,
  3810                                            Register method_result) {
  3811   Register tmp = GP;
  3812   push(tmp);
  3814   if (vtable_index.is_constant()) {
  3815     assert_different_registers(recv_klass, method_result, tmp);
  3816   } else {
  3817     assert_different_registers(recv_klass, method_result, vtable_index.as_register(), tmp);
  3819   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  3820   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  3821 /*
  3822   Address vtable_entry_addr(recv_klass,
  3823                             vtable_index, Address::times_ptr,
  3824                             base + vtableEntry::method_offset_in_bytes());
  3825 */
  3826   if (vtable_index.is_constant()) {
  3827     set64(AT, vtable_index.as_constant());
  3828     dsll(AT, AT, (int)Address::times_ptr);
  3829   } else {
  3830     dsll(AT, vtable_index.as_register(), (int)Address::times_ptr);
  3832   set64(tmp, base + vtableEntry::method_offset_in_bytes());
  3833   daddu(tmp, tmp, AT);
  3834   daddu(tmp, tmp, recv_klass);
  3835   ld(method_result, tmp, 0);
  3837   pop(tmp);

mercurial