src/share/vm/interpreter/bytecodeInterpreter.cpp

Tue, 15 May 2012 10:10:23 +0200

author
roland
date
Tue, 15 May 2012 10:10:23 +0200
changeset 3787
6759698e3140
parent 3156
f08d439fab8c
child 3969
1d7922586cf6
permissions
-rw-r--r--

7133857: exp() and pow() should use the x87 ISA on x86
Summary: use x87 instructions to implement exp() and pow() in interpreter/c1/c2.
Reviewed-by: kvn, never, twisti

     1 /*
     2  * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/vmSymbols.hpp"
    27 #include "gc_interface/collectedHeap.hpp"
    28 #include "interpreter/bytecodeHistogram.hpp"
    29 #include "interpreter/bytecodeInterpreter.hpp"
    30 #include "interpreter/bytecodeInterpreter.inline.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "interpreter/interpreterRuntime.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "oops/objArrayKlass.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "prims/jvmtiExport.hpp"
    38 #include "runtime/frame.inline.hpp"
    39 #include "runtime/handles.inline.hpp"
    40 #include "runtime/interfaceSupport.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/threadCritical.hpp"
    43 #include "utilities/exceptions.hpp"
    44 #ifdef TARGET_OS_ARCH_linux_x86
    45 # include "orderAccess_linux_x86.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_linux_sparc
    48 # include "orderAccess_linux_sparc.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_linux_zero
    51 # include "orderAccess_linux_zero.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_solaris_x86
    54 # include "orderAccess_solaris_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_ARCH_solaris_sparc
    57 # include "orderAccess_solaris_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_ARCH_windows_x86
    60 # include "orderAccess_windows_x86.inline.hpp"
    61 #endif
    62 #ifdef TARGET_OS_ARCH_linux_arm
    63 # include "orderAccess_linux_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_OS_ARCH_linux_ppc
    66 # include "orderAccess_linux_ppc.inline.hpp"
    67 #endif
    68 #ifdef TARGET_OS_ARCH_bsd_x86
    69 # include "orderAccess_bsd_x86.inline.hpp"
    70 #endif
    71 #ifdef TARGET_OS_ARCH_bsd_zero
    72 # include "orderAccess_bsd_zero.inline.hpp"
    73 #endif
    76 // no precompiled headers
    77 #ifdef CC_INTERP
    79 /*
    80  * USELABELS - If using GCC, then use labels for the opcode dispatching
    81  * rather -then a switch statement. This improves performance because it
    82  * gives us the oportunity to have the instructions that calculate the
    83  * next opcode to jump to be intermixed with the rest of the instructions
    84  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
    85  */
    86 #undef USELABELS
    87 #ifdef __GNUC__
    88 /*
    89    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
    90    don't use the computed goto approach.
    91 */
    92 #ifndef ASSERT
    93 #define USELABELS
    94 #endif
    95 #endif
    97 #undef CASE
    98 #ifdef USELABELS
    99 #define CASE(opcode) opc ## opcode
   100 #define DEFAULT opc_default
   101 #else
   102 #define CASE(opcode) case Bytecodes:: opcode
   103 #define DEFAULT default
   104 #endif
   106 /*
   107  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
   108  * opcode before going back to the top of the while loop, rather then having
   109  * the top of the while loop handle it. This provides a better opportunity
   110  * for instruction scheduling. Some compilers just do this prefetch
   111  * automatically. Some actually end up with worse performance if you
   112  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
   113  */
   114 #undef PREFETCH_OPCCODE
   115 #define PREFETCH_OPCCODE
   117 /*
   118   Interpreter safepoint: it is expected that the interpreter will have no live
   119   handles of its own creation live at an interpreter safepoint. Therefore we
   120   run a HandleMarkCleaner and trash all handles allocated in the call chain
   121   since the JavaCalls::call_helper invocation that initiated the chain.
   122   There really shouldn't be any handles remaining to trash but this is cheap
   123   in relation to a safepoint.
   124 */
   125 #define SAFEPOINT                                                                 \
   126     if ( SafepointSynchronize::is_synchronizing()) {                              \
   127         {                                                                         \
   128           /* zap freed handles rather than GC'ing them */                         \
   129           HandleMarkCleaner __hmc(THREAD);                                        \
   130         }                                                                         \
   131         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
   132     }
   134 /*
   135  * VM_JAVA_ERROR - Macro for throwing a java exception from
   136  * the interpreter loop. Should really be a CALL_VM but there
   137  * is no entry point to do the transition to vm so we just
   138  * do it by hand here.
   139  */
   140 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
   141     DECACHE_STATE();                                                              \
   142     SET_LAST_JAVA_FRAME();                                                        \
   143     {                                                                             \
   144        ThreadInVMfromJava trans(THREAD);                                          \
   145        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
   146     }                                                                             \
   147     RESET_LAST_JAVA_FRAME();                                                      \
   148     CACHE_STATE();
   150 // Normal throw of a java error
   151 #define VM_JAVA_ERROR(name, msg)                                                  \
   152     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
   153     goto handle_exception;
   155 #ifdef PRODUCT
   156 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
   157 #else
   158 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
   159 {                                                                                                    \
   160     BytecodeCounter::_counter_value++;                                                               \
   161     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
   162     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
   163     if (TraceBytecodes) {                                                                            \
   164       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
   165                                    topOfStack[Interpreter::expr_index_at(1)],   \
   166                                    topOfStack[Interpreter::expr_index_at(2)]),  \
   167                                    handle_exception);                      \
   168     }                                                                      \
   169 }
   170 #endif
   172 #undef DEBUGGER_SINGLE_STEP_NOTIFY
   173 #ifdef VM_JVMTI
   174 /* NOTE: (kbr) This macro must be called AFTER the PC has been
   175    incremented. JvmtiExport::at_single_stepping_point() may cause a
   176    breakpoint opcode to get inserted at the current PC to allow the
   177    debugger to coalesce single-step events.
   179    As a result if we call at_single_stepping_point() we refetch opcode
   180    to get the current opcode. This will override any other prefetching
   181    that might have occurred.
   182 */
   183 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
   184 {                                                                                \
   185       if (_jvmti_interp_events) {                                                \
   186         if (JvmtiExport::should_post_single_step()) {                            \
   187           DECACHE_STATE();                                                       \
   188           SET_LAST_JAVA_FRAME();                                                 \
   189           ThreadInVMfromJava trans(THREAD);                                      \
   190           JvmtiExport::at_single_stepping_point(THREAD,                          \
   191                                           istate->method(),                      \
   192                                           pc);                                   \
   193           RESET_LAST_JAVA_FRAME();                                               \
   194           CACHE_STATE();                                                         \
   195           if (THREAD->pop_frame_pending() &&                                     \
   196               !THREAD->pop_frame_in_process()) {                                 \
   197             goto handle_Pop_Frame;                                               \
   198           }                                                                      \
   199           opcode = *pc;                                                          \
   200         }                                                                        \
   201       }                                                                          \
   202 }
   203 #else
   204 #define DEBUGGER_SINGLE_STEP_NOTIFY()
   205 #endif
   207 /*
   208  * CONTINUE - Macro for executing the next opcode.
   209  */
   210 #undef CONTINUE
   211 #ifdef USELABELS
   212 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
   213 // initialization (which is is the initialization of the table pointer...)
   214 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
   215 #define CONTINUE {                              \
   216         opcode = *pc;                           \
   217         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   218         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   219         DISPATCH(opcode);                       \
   220     }
   221 #else
   222 #ifdef PREFETCH_OPCCODE
   223 #define CONTINUE {                              \
   224         opcode = *pc;                           \
   225         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   226         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   227         continue;                               \
   228     }
   229 #else
   230 #define CONTINUE {                              \
   231         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   232         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   233         continue;                               \
   234     }
   235 #endif
   236 #endif
   238 // JavaStack Implementation
   239 #define MORE_STACK(count)  \
   240     (topOfStack -= ((count) * Interpreter::stackElementWords))
   243 #define UPDATE_PC(opsize) {pc += opsize; }
   244 /*
   245  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
   246  */
   247 #undef UPDATE_PC_AND_TOS
   248 #define UPDATE_PC_AND_TOS(opsize, stack) \
   249     {pc += opsize; MORE_STACK(stack); }
   251 /*
   252  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
   253  * and executing the next opcode. It's somewhat similar to the combination
   254  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
   255  */
   256 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
   257 #ifdef USELABELS
   258 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   259         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   260         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   261         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   262         DISPATCH(opcode);                                       \
   263     }
   265 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   266         pc += opsize; opcode = *pc;                             \
   267         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   268         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   269         DISPATCH(opcode);                                       \
   270     }
   271 #else
   272 #ifdef PREFETCH_OPCCODE
   273 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   274         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   275         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   276         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   277         goto do_continue;                                       \
   278     }
   280 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   281         pc += opsize; opcode = *pc;                             \
   282         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   283         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   284         goto do_continue;                                       \
   285     }
   286 #else
   287 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
   288         pc += opsize; MORE_STACK(stack);                \
   289         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   290         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   291         goto do_continue;                               \
   292     }
   294 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
   295         pc += opsize;                                   \
   296         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   297         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   298         goto do_continue;                               \
   299     }
   300 #endif /* PREFETCH_OPCCODE */
   301 #endif /* USELABELS */
   303 // About to call a new method, update the save the adjusted pc and return to frame manager
   304 #define UPDATE_PC_AND_RETURN(opsize)  \
   305    DECACHE_TOS();                     \
   306    istate->set_bcp(pc+opsize);        \
   307    return;
   310 #define METHOD istate->method()
   311 #define INVOCATION_COUNT METHOD->invocation_counter()
   312 #define BACKEDGE_COUNT METHOD->backedge_counter()
   315 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
   316 #define OSR_REQUEST(res, branch_pc) \
   317             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
   318 /*
   319  * For those opcodes that need to have a GC point on a backwards branch
   320  */
   322 // Backedge counting is kind of strange. The asm interpreter will increment
   323 // the backedge counter as a separate counter but it does it's comparisons
   324 // to the sum (scaled) of invocation counter and backedge count to make
   325 // a decision. Seems kind of odd to sum them together like that
   327 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
   330 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
   331     if ((skip) <= 0) {                                                                              \
   332       if (UseLoopCounter) {                                                                         \
   333         bool do_OSR = UseOnStackReplacement;                                                        \
   334         BACKEDGE_COUNT->increment();                                                                \
   335         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
   336         if (do_OSR) {                                                                               \
   337           nmethod*  osr_nmethod;                                                                    \
   338           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
   339           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
   340             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
   341             istate->set_msg(do_osr);                                                                \
   342             istate->set_osr_buf((address)buf);                                                      \
   343             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
   344             return;                                                                                 \
   345           }                                                                                         \
   346         }                                                                                           \
   347       }  /* UseCompiler ... */                                                                      \
   348       INCR_INVOCATION_COUNT;                                                                        \
   349       SAFEPOINT;                                                                                    \
   350     }
   352 /*
   353  * For those opcodes that need to have a GC point on a backwards branch
   354  */
   356 /*
   357  * Macros for caching and flushing the interpreter state. Some local
   358  * variables need to be flushed out to the frame before we do certain
   359  * things (like pushing frames or becomming gc safe) and some need to
   360  * be recached later (like after popping a frame). We could use one
   361  * macro to cache or decache everything, but this would be less then
   362  * optimal because we don't always need to cache or decache everything
   363  * because some things we know are already cached or decached.
   364  */
   365 #undef DECACHE_TOS
   366 #undef CACHE_TOS
   367 #undef CACHE_PREV_TOS
   368 #define DECACHE_TOS()    istate->set_stack(topOfStack);
   370 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
   372 #undef DECACHE_PC
   373 #undef CACHE_PC
   374 #define DECACHE_PC()    istate->set_bcp(pc);
   375 #define CACHE_PC()      pc = istate->bcp();
   376 #define CACHE_CP()      cp = istate->constants();
   377 #define CACHE_LOCALS()  locals = istate->locals();
   378 #undef CACHE_FRAME
   379 #define CACHE_FRAME()
   381 /*
   382  * CHECK_NULL - Macro for throwing a NullPointerException if the object
   383  * passed is a null ref.
   384  * On some architectures/platforms it should be possible to do this implicitly
   385  */
   386 #undef CHECK_NULL
   387 #define CHECK_NULL(obj_)                                                 \
   388     if ((obj_) == NULL) {                                                \
   389         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
   390     }                                                                    \
   391     VERIFY_OOP(obj_)
   393 #define VMdoubleConstZero() 0.0
   394 #define VMdoubleConstOne() 1.0
   395 #define VMlongConstZero() (max_jlong-max_jlong)
   396 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
   398 /*
   399  * Alignment
   400  */
   401 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
   403 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
   404 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
   406 // Reload interpreter state after calling the VM or a possible GC
   407 #define CACHE_STATE()   \
   408         CACHE_TOS();    \
   409         CACHE_PC();     \
   410         CACHE_CP();     \
   411         CACHE_LOCALS();
   413 // Call the VM don't check for pending exceptions
   414 #define CALL_VM_NOCHECK(func)                                     \
   415           DECACHE_STATE();                                        \
   416           SET_LAST_JAVA_FRAME();                                  \
   417           func;                                                   \
   418           RESET_LAST_JAVA_FRAME();                                \
   419           CACHE_STATE();                                          \
   420           if (THREAD->pop_frame_pending() &&                      \
   421               !THREAD->pop_frame_in_process()) {                  \
   422             goto handle_Pop_Frame;                                \
   423           }
   425 // Call the VM and check for pending exceptions
   426 #define CALL_VM(func, label) {                                    \
   427           CALL_VM_NOCHECK(func);                                  \
   428           if (THREAD->has_pending_exception()) goto label;        \
   429         }
   431 /*
   432  * BytecodeInterpreter::run(interpreterState istate)
   433  * BytecodeInterpreter::runWithChecks(interpreterState istate)
   434  *
   435  * The real deal. This is where byte codes actually get interpreted.
   436  * Basically it's a big while loop that iterates until we return from
   437  * the method passed in.
   438  *
   439  * The runWithChecks is used if JVMTI is enabled.
   440  *
   441  */
   442 #if defined(VM_JVMTI)
   443 void
   444 BytecodeInterpreter::runWithChecks(interpreterState istate) {
   445 #else
   446 void
   447 BytecodeInterpreter::run(interpreterState istate) {
   448 #endif
   450   // In order to simplify some tests based on switches set at runtime
   451   // we invoke the interpreter a single time after switches are enabled
   452   // and set simpler to to test variables rather than method calls or complex
   453   // boolean expressions.
   455   static int initialized = 0;
   456   static int checkit = 0;
   457   static intptr_t* c_addr = NULL;
   458   static intptr_t  c_value;
   460   if (checkit && *c_addr != c_value) {
   461     os::breakpoint();
   462   }
   463 #ifdef VM_JVMTI
   464   static bool _jvmti_interp_events = 0;
   465 #endif
   467   static int _compiling;  // (UseCompiler || CountCompiledCalls)
   469 #ifdef ASSERT
   470   if (istate->_msg != initialize) {
   471     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
   472 #ifndef SHARK
   473     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
   474 #endif // !SHARK
   475   }
   476   // Verify linkages.
   477   interpreterState l = istate;
   478   do {
   479     assert(l == l->_self_link, "bad link");
   480     l = l->_prev_link;
   481   } while (l != NULL);
   482   // Screwups with stack management usually cause us to overwrite istate
   483   // save a copy so we can verify it.
   484   interpreterState orig = istate;
   485 #endif
   487   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
   489   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
   490   register address          pc = istate->bcp();
   491   register jubyte opcode;
   492   register intptr_t*        locals = istate->locals();
   493   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
   494 #ifdef LOTS_OF_REGS
   495   register JavaThread*      THREAD = istate->thread();
   496   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
   497 #else
   498 #undef THREAD
   499 #define THREAD istate->thread()
   500 #undef BYTE_MAP_BASE
   501 #define BYTE_MAP_BASE _byte_map_base
   502 #endif
   504 #ifdef USELABELS
   505   const static void* const opclabels_data[256] = {
   506 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
   507 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
   508 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
   509 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
   511 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
   512 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
   513 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
   514 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
   516 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
   517 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
   518 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
   519 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
   521 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
   522 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
   523 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
   524 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
   526 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
   527 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
   528 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
   529 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
   531 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
   532 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
   533 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
   534 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
   536 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
   537 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
   538 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
   539 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
   541 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
   542 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
   543 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
   544 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
   546 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
   547 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
   548 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
   549 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
   551 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
   552 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
   553 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
   554 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
   556 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
   557 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
   558 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
   559 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
   561 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
   562 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
   563 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
   564 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
   566 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
   567 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
   568 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
   569 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   571 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   572 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   573 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   574 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   576 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   577 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
   578 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   579 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   581 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   582 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   583 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   584 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
   585   };
   586   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
   587 #endif /* USELABELS */
   589 #ifdef ASSERT
   590   // this will trigger a VERIFY_OOP on entry
   591   if (istate->msg() != initialize && ! METHOD->is_static()) {
   592     oop rcvr = LOCALS_OBJECT(0);
   593     VERIFY_OOP(rcvr);
   594   }
   595 #endif
   596 // #define HACK
   597 #ifdef HACK
   598   bool interesting = false;
   599 #endif // HACK
   601   /* QQQ this should be a stack method so we don't know actual direction */
   602   guarantee(istate->msg() == initialize ||
   603          topOfStack >= istate->stack_limit() &&
   604          topOfStack < istate->stack_base(),
   605          "Stack top out of range");
   607   switch (istate->msg()) {
   608     case initialize: {
   609       if (initialized++) ShouldNotReachHere(); // Only one initialize call
   610       _compiling = (UseCompiler || CountCompiledCalls);
   611 #ifdef VM_JVMTI
   612       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
   613 #endif
   614       BarrierSet* bs = Universe::heap()->barrier_set();
   615       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   616       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
   617       return;
   618     }
   619     break;
   620     case method_entry: {
   621       THREAD->set_do_not_unlock();
   622       // count invocations
   623       assert(initialized, "Interpreter not initialized");
   624       if (_compiling) {
   625         if (ProfileInterpreter) {
   626           METHOD->increment_interpreter_invocation_count();
   627         }
   628         INCR_INVOCATION_COUNT;
   629         if (INVOCATION_COUNT->reached_InvocationLimit()) {
   630             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
   632             // We no longer retry on a counter overflow
   634             // istate->set_msg(retry_method);
   635             // THREAD->clr_do_not_unlock();
   636             // return;
   637         }
   638         SAFEPOINT;
   639       }
   641       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   642         // initialize
   643         os::breakpoint();
   644       }
   646 #ifdef HACK
   647       {
   648         ResourceMark rm;
   649         char *method_name = istate->method()->name_and_sig_as_C_string();
   650         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   651           tty->print_cr("entering: depth %d bci: %d",
   652                          (istate->_stack_base - istate->_stack),
   653                          istate->_bcp - istate->_method->code_base());
   654           interesting = true;
   655         }
   656       }
   657 #endif // HACK
   660       // lock method if synchronized
   661       if (METHOD->is_synchronized()) {
   662           // oop rcvr = locals[0].j.r;
   663           oop rcvr;
   664           if (METHOD->is_static()) {
   665             rcvr = METHOD->constants()->pool_holder()->java_mirror();
   666           } else {
   667             rcvr = LOCALS_OBJECT(0);
   668             VERIFY_OOP(rcvr);
   669           }
   670           // The initial monitor is ours for the taking
   671           BasicObjectLock* mon = &istate->monitor_base()[-1];
   672           oop monobj = mon->obj();
   673           assert(mon->obj() == rcvr, "method monitor mis-initialized");
   675           bool success = UseBiasedLocking;
   676           if (UseBiasedLocking) {
   677             markOop mark = rcvr->mark();
   678             if (mark->has_bias_pattern()) {
   679               // The bias pattern is present in the object's header. Need to check
   680               // whether the bias owner and the epoch are both still current.
   681               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
   682               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
   683               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
   684               if (yy != 0 ) {
   685                 // At this point we know that the header has the bias pattern and
   686                 // that we are not the bias owner in the current epoch. We need to
   687                 // figure out more details about the state of the header in order to
   688                 // know what operations can be legally performed on the object's
   689                 // header.
   691                 // If the low three bits in the xor result aren't clear, that means
   692                 // the prototype header is no longer biased and we have to revoke
   693                 // the bias on this object.
   695                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
   696                   // Biasing is still enabled for this data type. See whether the
   697                   // epoch of the current bias is still valid, meaning that the epoch
   698                   // bits of the mark word are equal to the epoch bits of the
   699                   // prototype header. (Note that the prototype header's epoch bits
   700                   // only change at a safepoint.) If not, attempt to rebias the object
   701                   // toward the current thread. Note that we must be absolutely sure
   702                   // that the current epoch is invalid in order to do this because
   703                   // otherwise the manipulations it performs on the mark word are
   704                   // illegal.
   705                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
   706                     // The epoch of the current bias is still valid but we know nothing
   707                     // about the owner; it might be set or it might be clear. Try to
   708                     // acquire the bias of the object using an atomic operation. If this
   709                     // fails we will go in to the runtime to revoke the object's bias.
   710                     // Note that we first construct the presumed unbiased header so we
   711                     // don't accidentally blow away another thread's valid bias.
   712                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
   713                                                            markOopDesc::age_mask_in_place |
   714                                                            markOopDesc::epoch_mask_in_place);
   715                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
   716                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   717                     }
   718                   } else {
   719                     try_rebias:
   720                     // At this point we know the epoch has expired, meaning that the
   721                     // current "bias owner", if any, is actually invalid. Under these
   722                     // circumstances _only_, we are allowed to use the current header's
   723                     // value as the comparison value when doing the cas to acquire the
   724                     // bias in the current epoch. In other words, we allow transfer of
   725                     // the bias from one thread to another directly in this situation.
   726                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   727                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
   728                                             (intptr_t*) rcvr->mark_addr(),
   729                                             (intptr_t) mark) != (intptr_t) mark) {
   730                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   731                     }
   732                   }
   733                 } else {
   734                   try_revoke_bias:
   735                   // The prototype mark in the klass doesn't have the bias bit set any
   736                   // more, indicating that objects of this data type are not supposed
   737                   // to be biased any more. We are going to try to reset the mark of
   738                   // this object to the prototype value and fall through to the
   739                   // CAS-based locking scheme. Note that if our CAS fails, it means
   740                   // that another thread raced us for the privilege of revoking the
   741                   // bias of this particular object, so it's okay to continue in the
   742                   // normal locking code.
   743                   //
   744                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   745                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
   746                                           (intptr_t*) rcvr->mark_addr(),
   747                                           mark) == mark) {
   748                     // (*counters->revoked_lock_entry_count_addr())++;
   749                   success = false;
   750                   }
   751                 }
   752               }
   753             } else {
   754               cas_label:
   755               success = false;
   756             }
   757           }
   758           if (!success) {
   759             markOop displaced = rcvr->mark()->set_unlocked();
   760             mon->lock()->set_displaced_header(displaced);
   761             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
   762               // Is it simple recursive case?
   763               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   764                 mon->lock()->set_displaced_header(NULL);
   765               } else {
   766                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   767               }
   768             }
   769           }
   770       }
   771       THREAD->clr_do_not_unlock();
   773       // Notify jvmti
   774 #ifdef VM_JVMTI
   775       if (_jvmti_interp_events) {
   776         // Whenever JVMTI puts a thread in interp_only_mode, method
   777         // entry/exit events are sent for that thread to track stack depth.
   778         if (THREAD->is_interp_only_mode()) {
   779           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
   780                   handle_exception);
   781         }
   782       }
   783 #endif /* VM_JVMTI */
   785       goto run;
   786     }
   788     case popping_frame: {
   789       // returned from a java call to pop the frame, restart the call
   790       // clear the message so we don't confuse ourselves later
   791       ShouldNotReachHere();  // we don't return this.
   792       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
   793       istate->set_msg(no_request);
   794       THREAD->clr_pop_frame_in_process();
   795       goto run;
   796     }
   798     case method_resume: {
   799       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   800         // resume
   801         os::breakpoint();
   802       }
   803 #ifdef HACK
   804       {
   805         ResourceMark rm;
   806         char *method_name = istate->method()->name_and_sig_as_C_string();
   807         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   808           tty->print_cr("resume: depth %d bci: %d",
   809                          (istate->_stack_base - istate->_stack) ,
   810                          istate->_bcp - istate->_method->code_base());
   811           interesting = true;
   812         }
   813       }
   814 #endif // HACK
   815       // returned from a java call, continue executing.
   816       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
   817         goto handle_Pop_Frame;
   818       }
   820       if (THREAD->has_pending_exception()) goto handle_exception;
   821       // Update the pc by the saved amount of the invoke bytecode size
   822       UPDATE_PC(istate->bcp_advance());
   823       goto run;
   824     }
   826     case deopt_resume2: {
   827       // Returned from an opcode that will reexecute. Deopt was
   828       // a result of a PopFrame request.
   829       //
   830       goto run;
   831     }
   833     case deopt_resume: {
   834       // Returned from an opcode that has completed. The stack has
   835       // the result all we need to do is skip across the bytecode
   836       // and continue (assuming there is no exception pending)
   837       //
   838       // compute continuation length
   839       //
   840       // Note: it is possible to deopt at a return_register_finalizer opcode
   841       // because this requires entering the vm to do the registering. While the
   842       // opcode is complete we can't advance because there are no more opcodes
   843       // much like trying to deopt at a poll return. In that has we simply
   844       // get out of here
   845       //
   846       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
   847         // this will do the right thing even if an exception is pending.
   848         goto handle_return;
   849       }
   850       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
   851       if (THREAD->has_pending_exception()) goto handle_exception;
   852       goto run;
   853     }
   854     case got_monitors: {
   855       // continue locking now that we have a monitor to use
   856       // we expect to find newly allocated monitor at the "top" of the monitor stack.
   857       oop lockee = STACK_OBJECT(-1);
   858       VERIFY_OOP(lockee);
   859       // derefing's lockee ought to provoke implicit null check
   860       // find a free monitor
   861       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
   862       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
   863       entry->set_obj(lockee);
   865       markOop displaced = lockee->mark()->set_unlocked();
   866       entry->lock()->set_displaced_header(displaced);
   867       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
   868         // Is it simple recursive case?
   869         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   870           entry->lock()->set_displaced_header(NULL);
   871         } else {
   872           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   873         }
   874       }
   875       UPDATE_PC_AND_TOS(1, -1);
   876       goto run;
   877     }
   878     default: {
   879       fatal("Unexpected message from frame manager");
   880     }
   881   }
   883 run:
   885   DO_UPDATE_INSTRUCTION_COUNT(*pc)
   886   DEBUGGER_SINGLE_STEP_NOTIFY();
   887 #ifdef PREFETCH_OPCCODE
   888   opcode = *pc;  /* prefetch first opcode */
   889 #endif
   891 #ifndef USELABELS
   892   while (1)
   893 #endif
   894   {
   895 #ifndef PREFETCH_OPCCODE
   896       opcode = *pc;
   897 #endif
   898       // Seems like this happens twice per opcode. At worst this is only
   899       // need at entry to the loop.
   900       // DEBUGGER_SINGLE_STEP_NOTIFY();
   901       /* Using this labels avoids double breakpoints when quickening and
   902        * when returing from transition frames.
   903        */
   904   opcode_switch:
   905       assert(istate == orig, "Corrupted istate");
   906       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
   907       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
   908       assert(topOfStack < istate->stack_base(), "Stack underrun");
   910 #ifdef USELABELS
   911       DISPATCH(opcode);
   912 #else
   913       switch (opcode)
   914 #endif
   915       {
   916       CASE(_nop):
   917           UPDATE_PC_AND_CONTINUE(1);
   919           /* Push miscellaneous constants onto the stack. */
   921       CASE(_aconst_null):
   922           SET_STACK_OBJECT(NULL, 0);
   923           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   925 #undef  OPC_CONST_n
   926 #define OPC_CONST_n(opcode, const_type, value)                          \
   927       CASE(opcode):                                                     \
   928           SET_STACK_ ## const_type(value, 0);                           \
   929           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   931           OPC_CONST_n(_iconst_m1,   INT,       -1);
   932           OPC_CONST_n(_iconst_0,    INT,        0);
   933           OPC_CONST_n(_iconst_1,    INT,        1);
   934           OPC_CONST_n(_iconst_2,    INT,        2);
   935           OPC_CONST_n(_iconst_3,    INT,        3);
   936           OPC_CONST_n(_iconst_4,    INT,        4);
   937           OPC_CONST_n(_iconst_5,    INT,        5);
   938           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
   939           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
   940           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
   942 #undef  OPC_CONST2_n
   943 #define OPC_CONST2_n(opcname, value, key, kind)                         \
   944       CASE(_##opcname):                                                 \
   945       {                                                                 \
   946           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
   947           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   948       }
   949          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
   950          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
   951          OPC_CONST2_n(lconst_0, Zero, long, LONG);
   952          OPC_CONST2_n(lconst_1, One,  long, LONG);
   954          /* Load constant from constant pool: */
   956           /* Push a 1-byte signed integer value onto the stack. */
   957       CASE(_bipush):
   958           SET_STACK_INT((jbyte)(pc[1]), 0);
   959           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   961           /* Push a 2-byte signed integer constant onto the stack. */
   962       CASE(_sipush):
   963           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
   964           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
   966           /* load from local variable */
   968       CASE(_aload):
   969           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
   970           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
   971           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   973       CASE(_iload):
   974       CASE(_fload):
   975           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
   976           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   978       CASE(_lload):
   979           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
   980           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   982       CASE(_dload):
   983           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
   984           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   986 #undef  OPC_LOAD_n
   987 #define OPC_LOAD_n(num)                                                 \
   988       CASE(_aload_##num):                                               \
   989           VERIFY_OOP(LOCALS_OBJECT(num));                               \
   990           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
   991           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   992                                                                         \
   993       CASE(_iload_##num):                                               \
   994       CASE(_fload_##num):                                               \
   995           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
   996           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   997                                                                         \
   998       CASE(_lload_##num):                                               \
   999           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
  1000           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
  1001       CASE(_dload_##num):                                               \
  1002           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
  1003           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1005           OPC_LOAD_n(0);
  1006           OPC_LOAD_n(1);
  1007           OPC_LOAD_n(2);
  1008           OPC_LOAD_n(3);
  1010           /* store to a local variable */
  1012       CASE(_astore):
  1013           astore(topOfStack, -1, locals, pc[1]);
  1014           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1016       CASE(_istore):
  1017       CASE(_fstore):
  1018           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
  1019           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
  1021       CASE(_lstore):
  1022           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
  1023           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1025       CASE(_dstore):
  1026           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
  1027           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
  1029       CASE(_wide): {
  1030           uint16_t reg = Bytes::get_Java_u2(pc + 2);
  1032           opcode = pc[1];
  1033           switch(opcode) {
  1034               case Bytecodes::_aload:
  1035                   VERIFY_OOP(LOCALS_OBJECT(reg));
  1036                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
  1037                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1039               case Bytecodes::_iload:
  1040               case Bytecodes::_fload:
  1041                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
  1042                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
  1044               case Bytecodes::_lload:
  1045                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1046                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1048               case Bytecodes::_dload:
  1049                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
  1050                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
  1052               case Bytecodes::_astore:
  1053                   astore(topOfStack, -1, locals, reg);
  1054                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1056               case Bytecodes::_istore:
  1057               case Bytecodes::_fstore:
  1058                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
  1059                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1061               case Bytecodes::_lstore:
  1062                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
  1063                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1065               case Bytecodes::_dstore:
  1066                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
  1067                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1069               case Bytecodes::_iinc: {
  1070                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
  1071                   // Be nice to see what this generates.... QQQ
  1072                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
  1073                   UPDATE_PC_AND_CONTINUE(6);
  1075               case Bytecodes::_ret:
  1076                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
  1077                   UPDATE_PC_AND_CONTINUE(0);
  1078               default:
  1079                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
  1084 #undef  OPC_STORE_n
  1085 #define OPC_STORE_n(num)                                                \
  1086       CASE(_astore_##num):                                              \
  1087           astore(topOfStack, -1, locals, num);                          \
  1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1089       CASE(_istore_##num):                                              \
  1090       CASE(_fstore_##num):                                              \
  1091           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
  1092           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1094           OPC_STORE_n(0);
  1095           OPC_STORE_n(1);
  1096           OPC_STORE_n(2);
  1097           OPC_STORE_n(3);
  1099 #undef  OPC_DSTORE_n
  1100 #define OPC_DSTORE_n(num)                                               \
  1101       CASE(_dstore_##num):                                              \
  1102           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
  1103           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1104       CASE(_lstore_##num):                                              \
  1105           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
  1106           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1108           OPC_DSTORE_n(0);
  1109           OPC_DSTORE_n(1);
  1110           OPC_DSTORE_n(2);
  1111           OPC_DSTORE_n(3);
  1113           /* stack pop, dup, and insert opcodes */
  1116       CASE(_pop):                /* Discard the top item on the stack */
  1117           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1120       CASE(_pop2):               /* Discard the top 2 items on the stack */
  1121           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1124       CASE(_dup):               /* Duplicate the top item on the stack */
  1125           dup(topOfStack);
  1126           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1128       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
  1129           dup2(topOfStack);
  1130           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1132       CASE(_dup_x1):    /* insert top word two down */
  1133           dup_x1(topOfStack);
  1134           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1136       CASE(_dup_x2):    /* insert top word three down  */
  1137           dup_x2(topOfStack);
  1138           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1140       CASE(_dup2_x1):   /* insert top 2 slots three down */
  1141           dup2_x1(topOfStack);
  1142           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1144       CASE(_dup2_x2):   /* insert top 2 slots four down */
  1145           dup2_x2(topOfStack);
  1146           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1148       CASE(_swap): {        /* swap top two elements on the stack */
  1149           swap(topOfStack);
  1150           UPDATE_PC_AND_CONTINUE(1);
  1153           /* Perform various binary integer operations */
  1155 #undef  OPC_INT_BINARY
  1156 #define OPC_INT_BINARY(opcname, opname, test)                           \
  1157       CASE(_i##opcname):                                                \
  1158           if (test && (STACK_INT(-1) == 0)) {                           \
  1159               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1160                             "/ by zero");                               \
  1161           }                                                             \
  1162           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
  1163                                       STACK_INT(-1)),                   \
  1164                                       -2);                              \
  1165           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1166       CASE(_l##opcname):                                                \
  1167       {                                                                 \
  1168           if (test) {                                                   \
  1169             jlong l1 = STACK_LONG(-1);                                  \
  1170             if (VMlongEqz(l1)) {                                        \
  1171               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1172                             "/ by long zero");                          \
  1173             }                                                           \
  1174           }                                                             \
  1175           /* First long at (-1,-2) next long at (-3,-4) */              \
  1176           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
  1177                                         STACK_LONG(-1)),                \
  1178                                         -3);                            \
  1179           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1182       OPC_INT_BINARY(add, Add, 0);
  1183       OPC_INT_BINARY(sub, Sub, 0);
  1184       OPC_INT_BINARY(mul, Mul, 0);
  1185       OPC_INT_BINARY(and, And, 0);
  1186       OPC_INT_BINARY(or,  Or,  0);
  1187       OPC_INT_BINARY(xor, Xor, 0);
  1188       OPC_INT_BINARY(div, Div, 1);
  1189       OPC_INT_BINARY(rem, Rem, 1);
  1192       /* Perform various binary floating number operations */
  1193       /* On some machine/platforms/compilers div zero check can be implicit */
  1195 #undef  OPC_FLOAT_BINARY
  1196 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
  1197       CASE(_d##opcname): {                                                 \
  1198           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
  1199                                             STACK_DOUBLE(-1)),             \
  1200                                             -3);                           \
  1201           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
  1202       }                                                                    \
  1203       CASE(_f##opcname):                                                   \
  1204           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
  1205                                           STACK_FLOAT(-1)),                \
  1206                                           -2);                             \
  1207           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1210      OPC_FLOAT_BINARY(add, Add);
  1211      OPC_FLOAT_BINARY(sub, Sub);
  1212      OPC_FLOAT_BINARY(mul, Mul);
  1213      OPC_FLOAT_BINARY(div, Div);
  1214      OPC_FLOAT_BINARY(rem, Rem);
  1216       /* Shift operations
  1217        * Shift left int and long: ishl, lshl
  1218        * Logical shift right int and long w/zero extension: iushr, lushr
  1219        * Arithmetic shift right int and long w/sign extension: ishr, lshr
  1220        */
  1222 #undef  OPC_SHIFT_BINARY
  1223 #define OPC_SHIFT_BINARY(opcname, opname)                               \
  1224       CASE(_i##opcname):                                                \
  1225          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
  1226                                      STACK_INT(-1)),                    \
  1227                                      -2);                               \
  1228          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1229       CASE(_l##opcname):                                                \
  1230       {                                                                 \
  1231          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
  1232                                        STACK_INT(-1)),                  \
  1233                                        -2);                             \
  1234          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1237       OPC_SHIFT_BINARY(shl, Shl);
  1238       OPC_SHIFT_BINARY(shr, Shr);
  1239       OPC_SHIFT_BINARY(ushr, Ushr);
  1241      /* Increment local variable by constant */
  1242       CASE(_iinc):
  1244           // locals[pc[1]].j.i += (jbyte)(pc[2]);
  1245           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
  1246           UPDATE_PC_AND_CONTINUE(3);
  1249      /* negate the value on the top of the stack */
  1251       CASE(_ineg):
  1252          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
  1253          UPDATE_PC_AND_CONTINUE(1);
  1255       CASE(_fneg):
  1256          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
  1257          UPDATE_PC_AND_CONTINUE(1);
  1259       CASE(_lneg):
  1261          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
  1262          UPDATE_PC_AND_CONTINUE(1);
  1265       CASE(_dneg):
  1267          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
  1268          UPDATE_PC_AND_CONTINUE(1);
  1271       /* Conversion operations */
  1273       CASE(_i2f):       /* convert top of stack int to float */
  1274          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
  1275          UPDATE_PC_AND_CONTINUE(1);
  1277       CASE(_i2l):       /* convert top of stack int to long */
  1279           // this is ugly QQQ
  1280           jlong r = VMint2Long(STACK_INT(-1));
  1281           MORE_STACK(-1); // Pop
  1282           SET_STACK_LONG(r, 1);
  1284           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1287       CASE(_i2d):       /* convert top of stack int to double */
  1289           // this is ugly QQQ (why cast to jlong?? )
  1290           jdouble r = (jlong)STACK_INT(-1);
  1291           MORE_STACK(-1); // Pop
  1292           SET_STACK_DOUBLE(r, 1);
  1294           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1297       CASE(_l2i):       /* convert top of stack long to int */
  1299           jint r = VMlong2Int(STACK_LONG(-1));
  1300           MORE_STACK(-2); // Pop
  1301           SET_STACK_INT(r, 0);
  1302           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1305       CASE(_l2f):   /* convert top of stack long to float */
  1307           jlong r = STACK_LONG(-1);
  1308           MORE_STACK(-2); // Pop
  1309           SET_STACK_FLOAT(VMlong2Float(r), 0);
  1310           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1313       CASE(_l2d):       /* convert top of stack long to double */
  1315           jlong r = STACK_LONG(-1);
  1316           MORE_STACK(-2); // Pop
  1317           SET_STACK_DOUBLE(VMlong2Double(r), 1);
  1318           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1321       CASE(_f2i):  /* Convert top of stack float to int */
  1322           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
  1323           UPDATE_PC_AND_CONTINUE(1);
  1325       CASE(_f2l):  /* convert top of stack float to long */
  1327           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
  1328           MORE_STACK(-1); // POP
  1329           SET_STACK_LONG(r, 1);
  1330           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1333       CASE(_f2d):  /* convert top of stack float to double */
  1335           jfloat f;
  1336           jdouble r;
  1337           f = STACK_FLOAT(-1);
  1338           r = (jdouble) f;
  1339           MORE_STACK(-1); // POP
  1340           SET_STACK_DOUBLE(r, 1);
  1341           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1344       CASE(_d2i): /* convert top of stack double to int */
  1346           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
  1347           MORE_STACK(-2);
  1348           SET_STACK_INT(r1, 0);
  1349           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1352       CASE(_d2f): /* convert top of stack double to float */
  1354           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
  1355           MORE_STACK(-2);
  1356           SET_STACK_FLOAT(r1, 0);
  1357           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1360       CASE(_d2l): /* convert top of stack double to long */
  1362           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
  1363           MORE_STACK(-2);
  1364           SET_STACK_LONG(r1, 1);
  1365           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1368       CASE(_i2b):
  1369           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
  1370           UPDATE_PC_AND_CONTINUE(1);
  1372       CASE(_i2c):
  1373           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
  1374           UPDATE_PC_AND_CONTINUE(1);
  1376       CASE(_i2s):
  1377           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
  1378           UPDATE_PC_AND_CONTINUE(1);
  1380       /* comparison operators */
  1383 #define COMPARISON_OP(name, comparison)                                      \
  1384       CASE(_if_icmp##name): {                                                \
  1385           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
  1386                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1387           address branch_pc = pc;                                            \
  1388           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1389           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1390           CONTINUE;                                                          \
  1391       }                                                                      \
  1392       CASE(_if##name): {                                                     \
  1393           int skip = (STACK_INT(-1) comparison 0)                            \
  1394                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1395           address branch_pc = pc;                                            \
  1396           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1397           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1398           CONTINUE;                                                          \
  1401 #define COMPARISON_OP2(name, comparison)                                     \
  1402       COMPARISON_OP(name, comparison)                                        \
  1403       CASE(_if_acmp##name): {                                                \
  1404           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
  1405                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
  1406           address branch_pc = pc;                                            \
  1407           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1408           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1409           CONTINUE;                                                          \
  1412 #define NULL_COMPARISON_NOT_OP(name)                                         \
  1413       CASE(_if##name): {                                                     \
  1414           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
  1415                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1416           address branch_pc = pc;                                            \
  1417           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1418           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1419           CONTINUE;                                                          \
  1422 #define NULL_COMPARISON_OP(name)                                             \
  1423       CASE(_if##name): {                                                     \
  1424           int skip = ((STACK_OBJECT(-1) == NULL))                            \
  1425                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1426           address branch_pc = pc;                                            \
  1427           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1428           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1429           CONTINUE;                                                          \
  1431       COMPARISON_OP(lt, <);
  1432       COMPARISON_OP(gt, >);
  1433       COMPARISON_OP(le, <=);
  1434       COMPARISON_OP(ge, >=);
  1435       COMPARISON_OP2(eq, ==);  /* include ref comparison */
  1436       COMPARISON_OP2(ne, !=);  /* include ref comparison */
  1437       NULL_COMPARISON_OP(null);
  1438       NULL_COMPARISON_NOT_OP(nonnull);
  1440       /* Goto pc at specified offset in switch table. */
  1442       CASE(_tableswitch): {
  1443           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1444           int32_t  key  = STACK_INT(-1);
  1445           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
  1446           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
  1447           int32_t  skip;
  1448           key -= low;
  1449           skip = ((uint32_t) key > (uint32_t)(high - low))
  1450                       ? Bytes::get_Java_u4((address)&lpc[0])
  1451                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
  1452           // Does this really need a full backedge check (osr?)
  1453           address branch_pc = pc;
  1454           UPDATE_PC_AND_TOS(skip, -1);
  1455           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1456           CONTINUE;
  1459       /* Goto pc whose table entry matches specified key */
  1461       CASE(_lookupswitch): {
  1462           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1463           int32_t  key  = STACK_INT(-1);
  1464           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
  1465           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
  1466           while (--npairs >= 0) {
  1467               lpc += 2;
  1468               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
  1469                   skip = Bytes::get_Java_u4((address)&lpc[1]);
  1470                   break;
  1473           address branch_pc = pc;
  1474           UPDATE_PC_AND_TOS(skip, -1);
  1475           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1476           CONTINUE;
  1479       CASE(_fcmpl):
  1480       CASE(_fcmpg):
  1482           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
  1483                                         STACK_FLOAT(-1),
  1484                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
  1485                         -2);
  1486           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1489       CASE(_dcmpl):
  1490       CASE(_dcmpg):
  1492           int r = VMdoubleCompare(STACK_DOUBLE(-3),
  1493                                   STACK_DOUBLE(-1),
  1494                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
  1495           MORE_STACK(-4); // Pop
  1496           SET_STACK_INT(r, 0);
  1497           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1500       CASE(_lcmp):
  1502           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
  1503           MORE_STACK(-4);
  1504           SET_STACK_INT(r, 0);
  1505           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1509       /* Return from a method */
  1511       CASE(_areturn):
  1512       CASE(_ireturn):
  1513       CASE(_freturn):
  1515           // Allow a safepoint before returning to frame manager.
  1516           SAFEPOINT;
  1518           goto handle_return;
  1521       CASE(_lreturn):
  1522       CASE(_dreturn):
  1524           // Allow a safepoint before returning to frame manager.
  1525           SAFEPOINT;
  1526           goto handle_return;
  1529       CASE(_return_register_finalizer): {
  1531           oop rcvr = LOCALS_OBJECT(0);
  1532           VERIFY_OOP(rcvr);
  1533           if (rcvr->klass()->klass_part()->has_finalizer()) {
  1534             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
  1536           goto handle_return;
  1538       CASE(_return): {
  1540           // Allow a safepoint before returning to frame manager.
  1541           SAFEPOINT;
  1542           goto handle_return;
  1545       /* Array access byte-codes */
  1547       /* Every array access byte-code starts out like this */
  1548 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
  1549 #define ARRAY_INTRO(arrayOff)                                                  \
  1550       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
  1551       jint     index  = STACK_INT(arrayOff + 1);                               \
  1552       char message[jintAsStringSize];                                          \
  1553       CHECK_NULL(arrObj);                                                      \
  1554       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
  1555           sprintf(message, "%d", index);                                       \
  1556           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
  1557                         message);                                              \
  1560       /* 32-bit loads. These handle conversion from < 32-bit types */
  1561 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
  1562       {                                                                               \
  1563           ARRAY_INTRO(-2);                                                            \
  1564           extra;                                                                      \
  1565           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
  1566                            -2);                                                       \
  1567           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
  1570       /* 64-bit loads */
  1571 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
  1572       {                                                                                    \
  1573           ARRAY_INTRO(-2);                                                                 \
  1574           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
  1575           extra;                                                                           \
  1576           UPDATE_PC_AND_CONTINUE(1);                                            \
  1579       CASE(_iaload):
  1580           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
  1581       CASE(_faload):
  1582           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1583       CASE(_aaload):
  1584           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
  1585       CASE(_baload):
  1586           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1587       CASE(_caload):
  1588           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
  1589       CASE(_saload):
  1590           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1591       CASE(_laload):
  1592           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
  1593       CASE(_daload):
  1594           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1596       /* 32-bit stores. These handle conversion to < 32-bit types */
  1597 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
  1598       {                                                                              \
  1599           ARRAY_INTRO(-3);                                                           \
  1600           extra;                                                                     \
  1601           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1602           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
  1605       /* 64-bit stores */
  1606 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
  1607       {                                                                              \
  1608           ARRAY_INTRO(-4);                                                           \
  1609           extra;                                                                     \
  1610           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1611           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
  1614       CASE(_iastore):
  1615           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
  1616       CASE(_fastore):
  1617           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1618       /*
  1619        * This one looks different because of the assignability check
  1620        */
  1621       CASE(_aastore): {
  1622           oop rhsObject = STACK_OBJECT(-1);
  1623           VERIFY_OOP(rhsObject);
  1624           ARRAY_INTRO( -3);
  1625           // arrObj, index are set
  1626           if (rhsObject != NULL) {
  1627             /* Check assignability of rhsObject into arrObj */
  1628             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
  1629             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
  1630             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
  1631             //
  1632             // Check for compatibilty. This check must not GC!!
  1633             // Seems way more expensive now that we must dispatch
  1634             //
  1635             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
  1636               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
  1639           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
  1640           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
  1641           *elem_loc = rhsObject;
  1642           // Mark the card
  1643           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
  1644           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
  1646       CASE(_bastore):
  1647           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1648       CASE(_castore):
  1649           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
  1650       CASE(_sastore):
  1651           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1652       CASE(_lastore):
  1653           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
  1654       CASE(_dastore):
  1655           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1657       CASE(_arraylength):
  1659           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
  1660           CHECK_NULL(ary);
  1661           SET_STACK_INT(ary->length(), -1);
  1662           UPDATE_PC_AND_CONTINUE(1);
  1665       /* monitorenter and monitorexit for locking/unlocking an object */
  1667       CASE(_monitorenter): {
  1668         oop lockee = STACK_OBJECT(-1);
  1669         // derefing's lockee ought to provoke implicit null check
  1670         CHECK_NULL(lockee);
  1671         // find a free monitor or one already allocated for this object
  1672         // if we find a matching object then we need a new monitor
  1673         // since this is recursive enter
  1674         BasicObjectLock* limit = istate->monitor_base();
  1675         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1676         BasicObjectLock* entry = NULL;
  1677         while (most_recent != limit ) {
  1678           if (most_recent->obj() == NULL) entry = most_recent;
  1679           else if (most_recent->obj() == lockee) break;
  1680           most_recent++;
  1682         if (entry != NULL) {
  1683           entry->set_obj(lockee);
  1684           markOop displaced = lockee->mark()->set_unlocked();
  1685           entry->lock()->set_displaced_header(displaced);
  1686           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
  1687             // Is it simple recursive case?
  1688             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
  1689               entry->lock()->set_displaced_header(NULL);
  1690             } else {
  1691               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1694           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1695         } else {
  1696           istate->set_msg(more_monitors);
  1697           UPDATE_PC_AND_RETURN(0); // Re-execute
  1701       CASE(_monitorexit): {
  1702         oop lockee = STACK_OBJECT(-1);
  1703         CHECK_NULL(lockee);
  1704         // derefing's lockee ought to provoke implicit null check
  1705         // find our monitor slot
  1706         BasicObjectLock* limit = istate->monitor_base();
  1707         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1708         while (most_recent != limit ) {
  1709           if ((most_recent)->obj() == lockee) {
  1710             BasicLock* lock = most_recent->lock();
  1711             markOop header = lock->displaced_header();
  1712             most_recent->set_obj(NULL);
  1713             // If it isn't recursive we either must swap old header or call the runtime
  1714             if (header != NULL) {
  1715               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  1716                 // restore object for the slow case
  1717                 most_recent->set_obj(lockee);
  1718                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
  1721             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1723           most_recent++;
  1725         // Need to throw illegal monitor state exception
  1726         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
  1727         ShouldNotReachHere();
  1730       /* All of the non-quick opcodes. */
  1732       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
  1733        *  constant pool index in the instruction.
  1734        */
  1735       CASE(_getfield):
  1736       CASE(_getstatic):
  1738           u2 index;
  1739           ConstantPoolCacheEntry* cache;
  1740           index = Bytes::get_native_u2(pc+1);
  1742           // QQQ Need to make this as inlined as possible. Probably need to
  1743           // split all the bytecode cases out so c++ compiler has a chance
  1744           // for constant prop to fold everything possible away.
  1746           cache = cp->entry_at(index);
  1747           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1748             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1749                     handle_exception);
  1750             cache = cp->entry_at(index);
  1753 #ifdef VM_JVMTI
  1754           if (_jvmti_interp_events) {
  1755             int *count_addr;
  1756             oop obj;
  1757             // Check to see if a field modification watch has been set
  1758             // before we take the time to call into the VM.
  1759             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
  1760             if ( *count_addr > 0 ) {
  1761               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1762                 obj = (oop)NULL;
  1763               } else {
  1764                 obj = (oop) STACK_OBJECT(-1);
  1765                 VERIFY_OOP(obj);
  1767               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
  1768                                           obj,
  1769                                           cache),
  1770                                           handle_exception);
  1773 #endif /* VM_JVMTI */
  1775           oop obj;
  1776           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1777             obj = (oop) cache->f1();
  1778             MORE_STACK(1);  // Assume single slot push
  1779           } else {
  1780             obj = (oop) STACK_OBJECT(-1);
  1781             CHECK_NULL(obj);
  1784           //
  1785           // Now store the result on the stack
  1786           //
  1787           TosState tos_type = cache->flag_state();
  1788           int field_offset = cache->f2();
  1789           if (cache->is_volatile()) {
  1790             if (tos_type == atos) {
  1791               VERIFY_OOP(obj->obj_field_acquire(field_offset));
  1792               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
  1793             } else if (tos_type == itos) {
  1794               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
  1795             } else if (tos_type == ltos) {
  1796               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
  1797               MORE_STACK(1);
  1798             } else if (tos_type == btos) {
  1799               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
  1800             } else if (tos_type == ctos) {
  1801               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
  1802             } else if (tos_type == stos) {
  1803               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
  1804             } else if (tos_type == ftos) {
  1805               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
  1806             } else {
  1807               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
  1808               MORE_STACK(1);
  1810           } else {
  1811             if (tos_type == atos) {
  1812               VERIFY_OOP(obj->obj_field(field_offset));
  1813               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
  1814             } else if (tos_type == itos) {
  1815               SET_STACK_INT(obj->int_field(field_offset), -1);
  1816             } else if (tos_type == ltos) {
  1817               SET_STACK_LONG(obj->long_field(field_offset), 0);
  1818               MORE_STACK(1);
  1819             } else if (tos_type == btos) {
  1820               SET_STACK_INT(obj->byte_field(field_offset), -1);
  1821             } else if (tos_type == ctos) {
  1822               SET_STACK_INT(obj->char_field(field_offset), -1);
  1823             } else if (tos_type == stos) {
  1824               SET_STACK_INT(obj->short_field(field_offset), -1);
  1825             } else if (tos_type == ftos) {
  1826               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
  1827             } else {
  1828               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
  1829               MORE_STACK(1);
  1833           UPDATE_PC_AND_CONTINUE(3);
  1836       CASE(_putfield):
  1837       CASE(_putstatic):
  1839           u2 index = Bytes::get_native_u2(pc+1);
  1840           ConstantPoolCacheEntry* cache = cp->entry_at(index);
  1841           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1842             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1843                     handle_exception);
  1844             cache = cp->entry_at(index);
  1847 #ifdef VM_JVMTI
  1848           if (_jvmti_interp_events) {
  1849             int *count_addr;
  1850             oop obj;
  1851             // Check to see if a field modification watch has been set
  1852             // before we take the time to call into the VM.
  1853             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
  1854             if ( *count_addr > 0 ) {
  1855               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1856                 obj = (oop)NULL;
  1858               else {
  1859                 if (cache->is_long() || cache->is_double()) {
  1860                   obj = (oop) STACK_OBJECT(-3);
  1861                 } else {
  1862                   obj = (oop) STACK_OBJECT(-2);
  1864                 VERIFY_OOP(obj);
  1867               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
  1868                                           obj,
  1869                                           cache,
  1870                                           (jvalue *)STACK_SLOT(-1)),
  1871                                           handle_exception);
  1874 #endif /* VM_JVMTI */
  1876           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  1877           // out so c++ compiler has a chance for constant prop to fold everything possible away.
  1879           oop obj;
  1880           int count;
  1881           TosState tos_type = cache->flag_state();
  1883           count = -1;
  1884           if (tos_type == ltos || tos_type == dtos) {
  1885             --count;
  1887           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1888             obj = (oop) cache->f1();
  1889           } else {
  1890             --count;
  1891             obj = (oop) STACK_OBJECT(count);
  1892             CHECK_NULL(obj);
  1895           //
  1896           // Now store the result
  1897           //
  1898           int field_offset = cache->f2();
  1899           if (cache->is_volatile()) {
  1900             if (tos_type == itos) {
  1901               obj->release_int_field_put(field_offset, STACK_INT(-1));
  1902             } else if (tos_type == atos) {
  1903               VERIFY_OOP(STACK_OBJECT(-1));
  1904               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
  1905               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1906             } else if (tos_type == btos) {
  1907               obj->release_byte_field_put(field_offset, STACK_INT(-1));
  1908             } else if (tos_type == ltos) {
  1909               obj->release_long_field_put(field_offset, STACK_LONG(-1));
  1910             } else if (tos_type == ctos) {
  1911               obj->release_char_field_put(field_offset, STACK_INT(-1));
  1912             } else if (tos_type == stos) {
  1913               obj->release_short_field_put(field_offset, STACK_INT(-1));
  1914             } else if (tos_type == ftos) {
  1915               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
  1916             } else {
  1917               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
  1919             OrderAccess::storeload();
  1920           } else {
  1921             if (tos_type == itos) {
  1922               obj->int_field_put(field_offset, STACK_INT(-1));
  1923             } else if (tos_type == atos) {
  1924               VERIFY_OOP(STACK_OBJECT(-1));
  1925               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
  1926               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1927             } else if (tos_type == btos) {
  1928               obj->byte_field_put(field_offset, STACK_INT(-1));
  1929             } else if (tos_type == ltos) {
  1930               obj->long_field_put(field_offset, STACK_LONG(-1));
  1931             } else if (tos_type == ctos) {
  1932               obj->char_field_put(field_offset, STACK_INT(-1));
  1933             } else if (tos_type == stos) {
  1934               obj->short_field_put(field_offset, STACK_INT(-1));
  1935             } else if (tos_type == ftos) {
  1936               obj->float_field_put(field_offset, STACK_FLOAT(-1));
  1937             } else {
  1938               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
  1942           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
  1945       CASE(_new): {
  1946         u2 index = Bytes::get_Java_u2(pc+1);
  1947         constantPoolOop constants = istate->method()->constants();
  1948         if (!constants->tag_at(index).is_unresolved_klass()) {
  1949           // Make sure klass is initialized and doesn't have a finalizer
  1950           oop entry = constants->slot_at(index).get_oop();
  1951           assert(entry->is_klass(), "Should be resolved klass");
  1952           klassOop k_entry = (klassOop) entry;
  1953           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
  1954           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
  1955           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
  1956             size_t obj_size = ik->size_helper();
  1957             oop result = NULL;
  1958             // If the TLAB isn't pre-zeroed then we'll have to do it
  1959             bool need_zero = !ZeroTLAB;
  1960             if (UseTLAB) {
  1961               result = (oop) THREAD->tlab().allocate(obj_size);
  1963             if (result == NULL) {
  1964               need_zero = true;
  1965               // Try allocate in shared eden
  1966         retry:
  1967               HeapWord* compare_to = *Universe::heap()->top_addr();
  1968               HeapWord* new_top = compare_to + obj_size;
  1969               if (new_top <= *Universe::heap()->end_addr()) {
  1970                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
  1971                   goto retry;
  1973                 result = (oop) compare_to;
  1976             if (result != NULL) {
  1977               // Initialize object (if nonzero size and need) and then the header
  1978               if (need_zero ) {
  1979                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
  1980                 obj_size -= sizeof(oopDesc) / oopSize;
  1981                 if (obj_size > 0 ) {
  1982                   memset(to_zero, 0, obj_size * HeapWordSize);
  1985               if (UseBiasedLocking) {
  1986                 result->set_mark(ik->prototype_header());
  1987               } else {
  1988                 result->set_mark(markOopDesc::prototype());
  1990               result->set_klass_gap(0);
  1991               result->set_klass(k_entry);
  1992               SET_STACK_OBJECT(result, 0);
  1993               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1997         // Slow case allocation
  1998         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
  1999                 handle_exception);
  2000         SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2001         THREAD->set_vm_result(NULL);
  2002         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  2004       CASE(_anewarray): {
  2005         u2 index = Bytes::get_Java_u2(pc+1);
  2006         jint size = STACK_INT(-1);
  2007         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
  2008                 handle_exception);
  2009         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2010         THREAD->set_vm_result(NULL);
  2011         UPDATE_PC_AND_CONTINUE(3);
  2013       CASE(_multianewarray): {
  2014         jint dims = *(pc+3);
  2015         jint size = STACK_INT(-1);
  2016         // stack grows down, dimensions are up!
  2017         jint *dimarray =
  2018                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
  2019                                       Interpreter::stackElementWords-1];
  2020         //adjust pointer to start of stack element
  2021         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
  2022                 handle_exception);
  2023         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
  2024         THREAD->set_vm_result(NULL);
  2025         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
  2027       CASE(_checkcast):
  2028           if (STACK_OBJECT(-1) != NULL) {
  2029             VERIFY_OOP(STACK_OBJECT(-1));
  2030             u2 index = Bytes::get_Java_u2(pc+1);
  2031             if (ProfileInterpreter) {
  2032               // needs Profile_checkcast QQQ
  2033               ShouldNotReachHere();
  2035             // Constant pool may have actual klass or unresolved klass. If it is
  2036             // unresolved we must resolve it
  2037             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2038               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2040             klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
  2041             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
  2042             //
  2043             // Check for compatibilty. This check must not GC!!
  2044             // Seems way more expensive now that we must dispatch
  2045             //
  2046             if (objKlassOop != klassOf &&
  2047                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  2048               ResourceMark rm(THREAD);
  2049               const char* objName = Klass::cast(objKlassOop)->external_name();
  2050               const char* klassName = Klass::cast(klassOf)->external_name();
  2051               char* message = SharedRuntime::generate_class_cast_message(
  2052                 objName, klassName);
  2053               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
  2055           } else {
  2056             if (UncommonNullCast) {
  2057 //              istate->method()->set_null_cast_seen();
  2058 // [RGV] Not sure what to do here!
  2062           UPDATE_PC_AND_CONTINUE(3);
  2064       CASE(_instanceof):
  2065           if (STACK_OBJECT(-1) == NULL) {
  2066             SET_STACK_INT(0, -1);
  2067           } else {
  2068             VERIFY_OOP(STACK_OBJECT(-1));
  2069             u2 index = Bytes::get_Java_u2(pc+1);
  2070             // Constant pool may have actual klass or unresolved klass. If it is
  2071             // unresolved we must resolve it
  2072             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2073               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2075             klassOop klassOf = (klassOop) METHOD->constants()->slot_at(index).get_oop();
  2076             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
  2077             //
  2078             // Check for compatibilty. This check must not GC!!
  2079             // Seems way more expensive now that we must dispatch
  2080             //
  2081             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  2082               SET_STACK_INT(1, -1);
  2083             } else {
  2084               SET_STACK_INT(0, -1);
  2087           UPDATE_PC_AND_CONTINUE(3);
  2089       CASE(_ldc_w):
  2090       CASE(_ldc):
  2092           u2 index;
  2093           bool wide = false;
  2094           int incr = 2; // frequent case
  2095           if (opcode == Bytecodes::_ldc) {
  2096             index = pc[1];
  2097           } else {
  2098             index = Bytes::get_Java_u2(pc+1);
  2099             incr = 3;
  2100             wide = true;
  2103           constantPoolOop constants = METHOD->constants();
  2104           switch (constants->tag_at(index).value()) {
  2105           case JVM_CONSTANT_Integer:
  2106             SET_STACK_INT(constants->int_at(index), 0);
  2107             break;
  2109           case JVM_CONSTANT_Float:
  2110             SET_STACK_FLOAT(constants->float_at(index), 0);
  2111             break;
  2113           case JVM_CONSTANT_String:
  2114             VERIFY_OOP(constants->resolved_string_at(index));
  2115             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
  2116             break;
  2118           case JVM_CONSTANT_Class:
  2119             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
  2120             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
  2121             break;
  2123           case JVM_CONSTANT_UnresolvedString:
  2124           case JVM_CONSTANT_UnresolvedClass:
  2125           case JVM_CONSTANT_UnresolvedClassInError:
  2126             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
  2127             SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2128             THREAD->set_vm_result(NULL);
  2129             break;
  2131           default:  ShouldNotReachHere();
  2133           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2136       CASE(_ldc2_w):
  2138           u2 index = Bytes::get_Java_u2(pc+1);
  2140           constantPoolOop constants = METHOD->constants();
  2141           switch (constants->tag_at(index).value()) {
  2143           case JVM_CONSTANT_Long:
  2144              SET_STACK_LONG(constants->long_at(index), 1);
  2145             break;
  2147           case JVM_CONSTANT_Double:
  2148              SET_STACK_DOUBLE(constants->double_at(index), 1);
  2149             break;
  2150           default:  ShouldNotReachHere();
  2152           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
  2155       CASE(_fast_aldc_w):
  2156       CASE(_fast_aldc): {
  2157         if (!EnableInvokeDynamic) {
  2158           // We should not encounter this bytecode if !EnableInvokeDynamic.
  2159           // The verifier will stop it.  However, if we get past the verifier,
  2160           // this will stop the thread in a reasonable way, without crashing the JVM.
  2161           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
  2162                   handle_exception);
  2163           ShouldNotReachHere();
  2166         u2 index;
  2167         int incr;
  2168         if (opcode == Bytecodes::_fast_aldc) {
  2169           index = pc[1];
  2170           incr = 2;
  2171         } else {
  2172           index = Bytes::get_native_u2(pc+1);
  2173           incr = 3;
  2176         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2177         // This kind of CP cache entry does not need to match the flags byte, because
  2178         // there is a 1-1 relation between bytecode type and CP entry type.
  2179         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2180         if (cache->is_f1_null()) {
  2181           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
  2182                   handle_exception);
  2185         VERIFY_OOP(cache->f1());
  2186         SET_STACK_OBJECT(cache->f1(), 0);
  2187         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2190       CASE(_invokedynamic): {
  2191         if (!EnableInvokeDynamic) {
  2192           // We should not encounter this bytecode if !EnableInvokeDynamic.
  2193           // The verifier will stop it.  However, if we get past the verifier,
  2194           // this will stop the thread in a reasonable way, without crashing the JVM.
  2195           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
  2196                   handle_exception);
  2197           ShouldNotReachHere();
  2200         int index = Bytes::get_native_u4(pc+1);
  2202         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2203         // This kind of CP cache entry does not need to match the flags byte, because
  2204         // there is a 1-1 relation between bytecode type and CP entry type.
  2205         assert(constantPoolCacheOopDesc::is_secondary_index(index), "incorrect format");
  2206         ConstantPoolCacheEntry* cache = cp->secondary_entry_at(index);
  2207         if (cache->is_f1_null()) {
  2208           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
  2209                   handle_exception);
  2212         VERIFY_OOP(cache->f1());
  2213         oop method_handle = java_lang_invoke_CallSite::target(cache->f1());
  2214         CHECK_NULL(method_handle);
  2216         istate->set_msg(call_method_handle);
  2217         istate->set_callee((methodOop) method_handle);
  2218         istate->set_bcp_advance(5);
  2220         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2223       CASE(_invokeinterface): {
  2224         u2 index = Bytes::get_native_u2(pc+1);
  2226         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2227         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2229         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2230         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2231           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2232                   handle_exception);
  2233           cache = cp->entry_at(index);
  2236         istate->set_msg(call_method);
  2238         // Special case of invokeinterface called for virtual method of
  2239         // java.lang.Object.  See cpCacheOop.cpp for details.
  2240         // This code isn't produced by javac, but could be produced by
  2241         // another compliant java compiler.
  2242         if (cache->is_methodInterface()) {
  2243           methodOop callee;
  2244           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2245           if (cache->is_vfinal()) {
  2246             callee = (methodOop) cache->f2();
  2247           } else {
  2248             // get receiver
  2249             int parms = cache->parameter_size();
  2250             // Same comments as invokevirtual apply here
  2251             VERIFY_OOP(STACK_OBJECT(-parms));
  2252             instanceKlass* rcvrKlass = (instanceKlass*)
  2253                                  STACK_OBJECT(-parms)->klass()->klass_part();
  2254             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2256           istate->set_callee(callee);
  2257           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2258 #ifdef VM_JVMTI
  2259           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2260             istate->set_callee_entry_point(callee->interpreter_entry());
  2262 #endif /* VM_JVMTI */
  2263           istate->set_bcp_advance(5);
  2264           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2267         // this could definitely be cleaned up QQQ
  2268         methodOop callee;
  2269         klassOop iclass = (klassOop)cache->f1();
  2270         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
  2271         // get receiver
  2272         int parms = cache->parameter_size();
  2273         oop rcvr = STACK_OBJECT(-parms);
  2274         CHECK_NULL(rcvr);
  2275         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
  2276         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
  2277         int i;
  2278         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
  2279           if (ki->interface_klass() == iclass) break;
  2281         // If the interface isn't found, this class doesn't implement this
  2282         // interface.  The link resolver checks this but only for the first
  2283         // time this interface is called.
  2284         if (i == int2->itable_length()) {
  2285           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
  2287         int mindex = cache->f2();
  2288         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
  2289         callee = im[mindex].method();
  2290         if (callee == NULL) {
  2291           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
  2294         istate->set_callee(callee);
  2295         istate->set_callee_entry_point(callee->from_interpreted_entry());
  2296 #ifdef VM_JVMTI
  2297         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2298           istate->set_callee_entry_point(callee->interpreter_entry());
  2300 #endif /* VM_JVMTI */
  2301         istate->set_bcp_advance(5);
  2302         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2305       CASE(_invokevirtual):
  2306       CASE(_invokespecial):
  2307       CASE(_invokestatic): {
  2308         u2 index = Bytes::get_native_u2(pc+1);
  2310         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2311         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2312         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2314         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2315           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2316                   handle_exception);
  2317           cache = cp->entry_at(index);
  2320         istate->set_msg(call_method);
  2322           methodOop callee;
  2323           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
  2324             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2325             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
  2326             else {
  2327               // get receiver
  2328               int parms = cache->parameter_size();
  2329               // this works but needs a resourcemark and seems to create a vtable on every call:
  2330               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
  2331               //
  2332               // this fails with an assert
  2333               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
  2334               // but this works
  2335               VERIFY_OOP(STACK_OBJECT(-parms));
  2336               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
  2337               /*
  2338                 Executing this code in java.lang.String:
  2339                     public String(char value[]) {
  2340                           this.count = value.length;
  2341                           this.value = (char[])value.clone();
  2344                  a find on rcvr->klass()->klass_part() reports:
  2345                  {type array char}{type array class}
  2346                   - klass: {other class}
  2348                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
  2349                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
  2350                   However it seems to have a vtable in the right location. Huh?
  2352               */
  2353               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2355           } else {
  2356             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
  2357               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2359             callee = (methodOop) cache->f1();
  2362           istate->set_callee(callee);
  2363           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2364 #ifdef VM_JVMTI
  2365           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2366             istate->set_callee_entry_point(callee->interpreter_entry());
  2368 #endif /* VM_JVMTI */
  2369           istate->set_bcp_advance(3);
  2370           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2374       /* Allocate memory for a new java object. */
  2376       CASE(_newarray): {
  2377         BasicType atype = (BasicType) *(pc+1);
  2378         jint size = STACK_INT(-1);
  2379         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
  2380                 handle_exception);
  2381         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2382         THREAD->set_vm_result(NULL);
  2384         UPDATE_PC_AND_CONTINUE(2);
  2387       /* Throw an exception. */
  2389       CASE(_athrow): {
  2390           oop except_oop = STACK_OBJECT(-1);
  2391           CHECK_NULL(except_oop);
  2392           // set pending_exception so we use common code
  2393           THREAD->set_pending_exception(except_oop, NULL, 0);
  2394           goto handle_exception;
  2397       /* goto and jsr. They are exactly the same except jsr pushes
  2398        * the address of the next instruction first.
  2399        */
  2401       CASE(_jsr): {
  2402           /* push bytecode index on stack */
  2403           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
  2404           MORE_STACK(1);
  2405           /* FALL THROUGH */
  2408       CASE(_goto):
  2410           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
  2411           address branch_pc = pc;
  2412           UPDATE_PC(offset);
  2413           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2414           CONTINUE;
  2417       CASE(_jsr_w): {
  2418           /* push return address on the stack */
  2419           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
  2420           MORE_STACK(1);
  2421           /* FALL THROUGH */
  2424       CASE(_goto_w):
  2426           int32_t offset = Bytes::get_Java_u4(pc + 1);
  2427           address branch_pc = pc;
  2428           UPDATE_PC(offset);
  2429           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2430           CONTINUE;
  2433       /* return from a jsr or jsr_w */
  2435       CASE(_ret): {
  2436           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
  2437           UPDATE_PC_AND_CONTINUE(0);
  2440       /* debugger breakpoint */
  2442       CASE(_breakpoint): {
  2443           Bytecodes::Code original_bytecode;
  2444           DECACHE_STATE();
  2445           SET_LAST_JAVA_FRAME();
  2446           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
  2447                               METHOD, pc);
  2448           RESET_LAST_JAVA_FRAME();
  2449           CACHE_STATE();
  2450           if (THREAD->has_pending_exception()) goto handle_exception;
  2451             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
  2452                                                     handle_exception);
  2454           opcode = (jubyte)original_bytecode;
  2455           goto opcode_switch;
  2458       DEFAULT:
  2459           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
  2460                         Bytecodes::name((Bytecodes::Code)opcode)));
  2461           goto finish;
  2463       } /* switch(opc) */
  2466 #ifdef USELABELS
  2467     check_for_exception:
  2468 #endif
  2470       if (!THREAD->has_pending_exception()) {
  2471         CONTINUE;
  2473       /* We will be gcsafe soon, so flush our state. */
  2474       DECACHE_PC();
  2475       goto handle_exception;
  2477   do_continue: ;
  2479   } /* while (1) interpreter loop */
  2482   // An exception exists in the thread state see whether this activation can handle it
  2483   handle_exception: {
  2485     HandleMarkCleaner __hmc(THREAD);
  2486     Handle except_oop(THREAD, THREAD->pending_exception());
  2487     // Prevent any subsequent HandleMarkCleaner in the VM
  2488     // from freeing the except_oop handle.
  2489     HandleMark __hm(THREAD);
  2491     THREAD->clear_pending_exception();
  2492     assert(except_oop(), "No exception to process");
  2493     intptr_t continuation_bci;
  2494     // expression stack is emptied
  2495     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
  2496     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
  2497             handle_exception);
  2499     except_oop = (oop) THREAD->vm_result();
  2500     THREAD->set_vm_result(NULL);
  2501     if (continuation_bci >= 0) {
  2502       // Place exception on top of stack
  2503       SET_STACK_OBJECT(except_oop(), 0);
  2504       MORE_STACK(1);
  2505       pc = METHOD->code_base() + continuation_bci;
  2506       if (TraceExceptions) {
  2507         ttyLocker ttyl;
  2508         ResourceMark rm;
  2509         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2510         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2511         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
  2512                       pc - (intptr_t)METHOD->code_base(),
  2513                       continuation_bci, THREAD);
  2515       // for AbortVMOnException flag
  2516       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2517       goto run;
  2519     if (TraceExceptions) {
  2520       ttyLocker ttyl;
  2521       ResourceMark rm;
  2522       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2523       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2524       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
  2525                     pc  - (intptr_t) METHOD->code_base(),
  2526                     THREAD);
  2528     // for AbortVMOnException flag
  2529     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2530     // No handler in this activation, unwind and try again
  2531     THREAD->set_pending_exception(except_oop(), NULL, 0);
  2532     goto handle_return;
  2533   }  /* handle_exception: */
  2537   // Return from an interpreter invocation with the result of the interpretation
  2538   // on the top of the Java Stack (or a pending exception)
  2540 handle_Pop_Frame:
  2542   // We don't really do anything special here except we must be aware
  2543   // that we can get here without ever locking the method (if sync).
  2544   // Also we skip the notification of the exit.
  2546   istate->set_msg(popping_frame);
  2547   // Clear pending so while the pop is in process
  2548   // we don't start another one if a call_vm is done.
  2549   THREAD->clr_pop_frame_pending();
  2550   // Let interpreter (only) see the we're in the process of popping a frame
  2551   THREAD->set_pop_frame_in_process();
  2553 handle_return:
  2555     DECACHE_STATE();
  2557     bool suppress_error = istate->msg() == popping_frame;
  2558     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
  2559     Handle original_exception(THREAD, THREAD->pending_exception());
  2560     Handle illegal_state_oop(THREAD, NULL);
  2562     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
  2563     // in any following VM entries from freeing our live handles, but illegal_state_oop
  2564     // isn't really allocated yet and so doesn't become live until later and
  2565     // in unpredicatable places. Instead we must protect the places where we enter the
  2566     // VM. It would be much simpler (and safer) if we could allocate a real handle with
  2567     // a NULL oop in it and then overwrite the oop later as needed. This isn't
  2568     // unfortunately isn't possible.
  2570     THREAD->clear_pending_exception();
  2572     //
  2573     // As far as we are concerned we have returned. If we have a pending exception
  2574     // that will be returned as this invocation's result. However if we get any
  2575     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
  2576     // will be our final result (i.e. monitor exception trumps a pending exception).
  2577     //
  2579     // If we never locked the method (or really passed the point where we would have),
  2580     // there is no need to unlock it (or look for other monitors), since that
  2581     // could not have happened.
  2583     if (THREAD->do_not_unlock()) {
  2585       // Never locked, reset the flag now because obviously any caller must
  2586       // have passed their point of locking for us to have gotten here.
  2588       THREAD->clr_do_not_unlock();
  2589     } else {
  2590       // At this point we consider that we have returned. We now check that the
  2591       // locks were properly block structured. If we find that they were not
  2592       // used properly we will return with an illegal monitor exception.
  2593       // The exception is checked by the caller not the callee since this
  2594       // checking is considered to be part of the invocation and therefore
  2595       // in the callers scope (JVM spec 8.13).
  2596       //
  2597       // Another weird thing to watch for is if the method was locked
  2598       // recursively and then not exited properly. This means we must
  2599       // examine all the entries in reverse time(and stack) order and
  2600       // unlock as we find them. If we find the method monitor before
  2601       // we are at the initial entry then we should throw an exception.
  2602       // It is not clear the template based interpreter does this
  2603       // correctly
  2605       BasicObjectLock* base = istate->monitor_base();
  2606       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
  2607       bool method_unlock_needed = METHOD->is_synchronized();
  2608       // We know the initial monitor was used for the method don't check that
  2609       // slot in the loop
  2610       if (method_unlock_needed) base--;
  2612       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
  2613       while (end < base) {
  2614         oop lockee = end->obj();
  2615         if (lockee != NULL) {
  2616           BasicLock* lock = end->lock();
  2617           markOop header = lock->displaced_header();
  2618           end->set_obj(NULL);
  2619           // If it isn't recursive we either must swap old header or call the runtime
  2620           if (header != NULL) {
  2621             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  2622               // restore object for the slow case
  2623               end->set_obj(lockee);
  2625                 // Prevent any HandleMarkCleaner from freeing our live handles
  2626                 HandleMark __hm(THREAD);
  2627                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
  2631           // One error is plenty
  2632           if (illegal_state_oop() == NULL && !suppress_error) {
  2634               // Prevent any HandleMarkCleaner from freeing our live handles
  2635               HandleMark __hm(THREAD);
  2636               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2638             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2639             illegal_state_oop = THREAD->pending_exception();
  2640             THREAD->clear_pending_exception();
  2643         end++;
  2645       // Unlock the method if needed
  2646       if (method_unlock_needed) {
  2647         if (base->obj() == NULL) {
  2648           // The method is already unlocked this is not good.
  2649           if (illegal_state_oop() == NULL && !suppress_error) {
  2651               // Prevent any HandleMarkCleaner from freeing our live handles
  2652               HandleMark __hm(THREAD);
  2653               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2655             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2656             illegal_state_oop = THREAD->pending_exception();
  2657             THREAD->clear_pending_exception();
  2659         } else {
  2660           //
  2661           // The initial monitor is always used for the method
  2662           // However if that slot is no longer the oop for the method it was unlocked
  2663           // and reused by something that wasn't unlocked!
  2664           //
  2665           // deopt can come in with rcvr dead because c2 knows
  2666           // its value is preserved in the monitor. So we can't use locals[0] at all
  2667           // and must use first monitor slot.
  2668           //
  2669           oop rcvr = base->obj();
  2670           if (rcvr == NULL) {
  2671             if (!suppress_error) {
  2672               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
  2673               illegal_state_oop = THREAD->pending_exception();
  2674               THREAD->clear_pending_exception();
  2676           } else {
  2677             BasicLock* lock = base->lock();
  2678             markOop header = lock->displaced_header();
  2679             base->set_obj(NULL);
  2680             // If it isn't recursive we either must swap old header or call the runtime
  2681             if (header != NULL) {
  2682               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
  2683                 // restore object for the slow case
  2684                 base->set_obj(rcvr);
  2686                   // Prevent any HandleMarkCleaner from freeing our live handles
  2687                   HandleMark __hm(THREAD);
  2688                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
  2690                 if (THREAD->has_pending_exception()) {
  2691                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
  2692                   THREAD->clear_pending_exception();
  2701     //
  2702     // Notify jvmti/jvmdi
  2703     //
  2704     // NOTE: we do not notify a method_exit if we have a pending exception,
  2705     // including an exception we generate for unlocking checks.  In the former
  2706     // case, JVMDI has already been notified by our call for the exception handler
  2707     // and in both cases as far as JVMDI is concerned we have already returned.
  2708     // If we notify it again JVMDI will be all confused about how many frames
  2709     // are still on the stack (4340444).
  2710     //
  2711     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
  2712     // method_exit events whenever we leave an activation unless it was done
  2713     // for popframe. This is nothing like jvmdi. However we are passing the
  2714     // tests at the moment (apparently because they are jvmdi based) so rather
  2715     // than change this code and possibly fail tests we will leave it alone
  2716     // (with this note) in anticipation of changing the vm and the tests
  2717     // simultaneously.
  2720     //
  2721     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
  2725 #ifdef VM_JVMTI
  2726       if (_jvmti_interp_events) {
  2727         // Whenever JVMTI puts a thread in interp_only_mode, method
  2728         // entry/exit events are sent for that thread to track stack depth.
  2729         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
  2731             // Prevent any HandleMarkCleaner from freeing our live handles
  2732             HandleMark __hm(THREAD);
  2733             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
  2737 #endif /* VM_JVMTI */
  2739     //
  2740     // See if we are returning any exception
  2741     // A pending exception that was pending prior to a possible popping frame
  2742     // overrides the popping frame.
  2743     //
  2744     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
  2745     if (illegal_state_oop() != NULL || original_exception() != NULL) {
  2746       // inform the frame manager we have no result
  2747       istate->set_msg(throwing_exception);
  2748       if (illegal_state_oop() != NULL)
  2749         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
  2750       else
  2751         THREAD->set_pending_exception(original_exception(), NULL, 0);
  2752       istate->set_return_kind((Bytecodes::Code)opcode);
  2753       UPDATE_PC_AND_RETURN(0);
  2756     if (istate->msg() == popping_frame) {
  2757       // Make it simpler on the assembly code and set the message for the frame pop.
  2758       // returns
  2759       if (istate->prev() == NULL) {
  2760         // We must be returning to a deoptimized frame (because popframe only happens between
  2761         // two interpreted frames). We need to save the current arguments in C heap so that
  2762         // the deoptimized frame when it restarts can copy the arguments to its expression
  2763         // stack and re-execute the call. We also have to notify deoptimization that this
  2764         // has occurred and to pick the preserved args copy them to the deoptimized frame's
  2765         // java expression stack. Yuck.
  2766         //
  2767         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
  2768                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
  2769         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
  2771       THREAD->clr_pop_frame_in_process();
  2774     // Normal return
  2775     // Advance the pc and return to frame manager
  2776     istate->set_msg(return_from_method);
  2777     istate->set_return_kind((Bytecodes::Code)opcode);
  2778     UPDATE_PC_AND_RETURN(1);
  2779   } /* handle_return: */
  2781 // This is really a fatal error return
  2783 finish:
  2784   DECACHE_TOS();
  2785   DECACHE_PC();
  2787   return;
  2790 /*
  2791  * All the code following this point is only produced once and is not present
  2792  * in the JVMTI version of the interpreter
  2793 */
  2795 #ifndef VM_JVMTI
  2797 // This constructor should only be used to contruct the object to signal
  2798 // interpreter initialization. All other instances should be created by
  2799 // the frame manager.
  2800 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
  2801   if (msg != initialize) ShouldNotReachHere();
  2802   _msg = msg;
  2803   _self_link = this;
  2804   _prev_link = NULL;
  2807 // Inline static functions for Java Stack and Local manipulation
  2809 // The implementations are platform dependent. We have to worry about alignment
  2810 // issues on some machines which can change on the same platform depending on
  2811 // whether it is an LP64 machine also.
  2812 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
  2813   return (address) tos[Interpreter::expr_index_at(-offset)];
  2816 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
  2817   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
  2820 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
  2821   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
  2824 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
  2825   return (oop)tos [Interpreter::expr_index_at(-offset)];
  2828 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
  2829   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
  2832 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
  2833   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
  2836 // only used for value types
  2837 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
  2838                                                         int offset) {
  2839   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2842 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
  2843                                                        int offset) {
  2844   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2847 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
  2848                                                          int offset) {
  2849   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2852 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
  2853                                                           int offset) {
  2854   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2857 // needs to be platform dep for the 32 bit platforms.
  2858 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
  2859                                                           int offset) {
  2860   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
  2863 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
  2864                                               address addr, int offset) {
  2865   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
  2866                         ((VMJavaVal64*)addr)->d);
  2869 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
  2870                                                         int offset) {
  2871   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2872   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
  2875 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
  2876                                             address addr, int offset) {
  2877   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2878   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
  2879                         ((VMJavaVal64*)addr)->l;
  2882 // Locals
  2884 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
  2885   return (address)locals[Interpreter::local_index_at(-offset)];
  2887 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
  2888   return (jint)locals[Interpreter::local_index_at(-offset)];
  2890 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
  2891   return (jfloat)locals[Interpreter::local_index_at(-offset)];
  2893 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
  2894   return (oop)locals[Interpreter::local_index_at(-offset)];
  2896 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
  2897   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
  2899 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
  2900   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
  2903 // Returns the address of locals value.
  2904 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
  2905   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2907 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
  2908   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2911 // Used for local value or returnAddress
  2912 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
  2913                                    address value, int offset) {
  2914   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
  2916 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
  2917                                    jint value, int offset) {
  2918   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2920 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
  2921                                    jfloat value, int offset) {
  2922   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2924 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
  2925                                    oop value, int offset) {
  2926   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2928 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
  2929                                    jdouble value, int offset) {
  2930   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
  2932 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
  2933                                    jlong value, int offset) {
  2934   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
  2936 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
  2937                                    address addr, int offset) {
  2938   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
  2940 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
  2941                                    address addr, int offset) {
  2942   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
  2945 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
  2946                           intptr_t* locals, int locals_offset) {
  2947   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
  2948   locals[Interpreter::local_index_at(-locals_offset)] = value;
  2952 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
  2953                                    int to_offset) {
  2954   tos[Interpreter::expr_index_at(-to_offset)] =
  2955                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
  2958 void BytecodeInterpreter::dup(intptr_t *tos) {
  2959   copy_stack_slot(tos, -1, 0);
  2961 void BytecodeInterpreter::dup2(intptr_t *tos) {
  2962   copy_stack_slot(tos, -2, 0);
  2963   copy_stack_slot(tos, -1, 1);
  2966 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
  2967   /* insert top word two down */
  2968   copy_stack_slot(tos, -1, 0);
  2969   copy_stack_slot(tos, -2, -1);
  2970   copy_stack_slot(tos, 0, -2);
  2973 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
  2974   /* insert top word three down  */
  2975   copy_stack_slot(tos, -1, 0);
  2976   copy_stack_slot(tos, -2, -1);
  2977   copy_stack_slot(tos, -3, -2);
  2978   copy_stack_slot(tos, 0, -3);
  2980 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
  2981   /* insert top 2 slots three down */
  2982   copy_stack_slot(tos, -1, 1);
  2983   copy_stack_slot(tos, -2, 0);
  2984   copy_stack_slot(tos, -3, -1);
  2985   copy_stack_slot(tos, 1, -2);
  2986   copy_stack_slot(tos, 0, -3);
  2988 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
  2989   /* insert top 2 slots four down */
  2990   copy_stack_slot(tos, -1, 1);
  2991   copy_stack_slot(tos, -2, 0);
  2992   copy_stack_slot(tos, -3, -1);
  2993   copy_stack_slot(tos, -4, -2);
  2994   copy_stack_slot(tos, 1, -3);
  2995   copy_stack_slot(tos, 0, -4);
  2999 void BytecodeInterpreter::swap(intptr_t *tos) {
  3000   // swap top two elements
  3001   intptr_t val = tos[Interpreter::expr_index_at(1)];
  3002   // Copy -2 entry to -1
  3003   copy_stack_slot(tos, -2, -1);
  3004   // Store saved -1 entry into -2
  3005   tos[Interpreter::expr_index_at(2)] = val;
  3007 // --------------------------------------------------------------------------------
  3008 // Non-product code
  3009 #ifndef PRODUCT
  3011 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
  3012   switch (msg) {
  3013      case BytecodeInterpreter::no_request:  return("no_request");
  3014      case BytecodeInterpreter::initialize:  return("initialize");
  3015      // status message to C++ interpreter
  3016      case BytecodeInterpreter::method_entry:  return("method_entry");
  3017      case BytecodeInterpreter::method_resume:  return("method_resume");
  3018      case BytecodeInterpreter::got_monitors:  return("got_monitors");
  3019      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
  3020      // requests to frame manager from C++ interpreter
  3021      case BytecodeInterpreter::call_method:  return("call_method");
  3022      case BytecodeInterpreter::return_from_method:  return("return_from_method");
  3023      case BytecodeInterpreter::more_monitors:  return("more_monitors");
  3024      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
  3025      case BytecodeInterpreter::popping_frame:  return("popping_frame");
  3026      case BytecodeInterpreter::do_osr:  return("do_osr");
  3027      // deopt
  3028      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
  3029      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
  3030      default: return("BAD MSG");
  3033 void
  3034 BytecodeInterpreter::print() {
  3035   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
  3036   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
  3037   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
  3038   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
  3040     ResourceMark rm;
  3041     char *method_name = _method->name_and_sig_as_C_string();
  3042     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
  3044   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
  3045   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
  3046   tty->print_cr("msg: %s", C_msg(this->_msg));
  3047   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
  3048   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
  3049   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
  3050   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
  3051   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
  3052   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
  3053   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
  3054   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
  3055   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
  3056   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
  3057   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
  3058 #ifdef SPARC
  3059   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
  3060   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
  3061   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
  3062   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
  3063 #endif
  3064 #if defined(IA64) && !defined(ZERO)
  3065   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
  3066 #endif // IA64 && !ZERO
  3067   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
  3070 extern "C" {
  3071     void PI(uintptr_t arg) {
  3072         ((BytecodeInterpreter*)arg)->print();
  3075 #endif // PRODUCT
  3077 #endif // JVMTI
  3078 #endif // CC_INTERP

mercurial