src/os_cpu/linux_mips/vm/os_linux_mips.cpp

Sun, 12 Jun 2016 09:32:41 +0800

author
aoqi
date
Sun, 12 Jun 2016 09:32:41 +0800
changeset 19
675330130fb8
parent 1
2d8a650513c2
child 179
e67dc9f1ba90
permissions
-rw-r--r--

Fixed a potential bug related to MIPS RIXI.
The Loongson new kernel supported MIPS RIXI. The code before this fix may
cause fault in the new kernel.

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 // do not include  precompiled  header file
    27 #include "asm/macroAssembler.hpp"
    28 #include "classfile/classLoader.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "classfile/vmSymbols.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "code/vtableStubs.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "mutex_linux.inline.hpp"
    37 #include "os_share_linux.hpp"
    38 #include "prims/jniFastGetField.hpp"
    39 #include "prims/jvm.h"
    40 #include "prims/jvm_misc.hpp"
    41 #include "runtime/arguments.hpp"
    42 #include "runtime/extendedPC.hpp"
    43 #include "runtime/frame.inline.hpp"
    44 #include "runtime/interfaceSupport.hpp"
    45 #include "runtime/java.hpp"
    46 #include "runtime/javaCalls.hpp"
    47 #include "runtime/mutexLocker.hpp"
    48 #include "runtime/osThread.hpp"
    49 #include "runtime/sharedRuntime.hpp"
    50 #include "runtime/stubRoutines.hpp"
    51 #include "runtime/thread.inline.hpp"
    52 #include "runtime/timer.hpp"
    53 #include "utilities/events.hpp"
    54 #include "utilities/vmError.hpp"
    55 #include "utilities/debug.hpp"
    56 #include "compiler/disassembler.hpp"
    57 // put OS-includes here
    58 # include <sys/types.h>
    59 # include <sys/mman.h>
    60 # include <pthread.h>
    61 # include <signal.h>
    62 # include <errno.h>
    63 # include <dlfcn.h>
    64 # include <stdlib.h>
    65 # include <stdio.h>
    66 # include <unistd.h>
    67 # include <sys/resource.h>
    68 # include <pthread.h>
    69 # include <sys/stat.h>
    70 # include <sys/time.h>
    71 # include <sys/utsname.h>
    72 # include <sys/socket.h>
    73 # include <sys/wait.h>
    74 # include <pwd.h>
    75 # include <poll.h>
    76 # include <ucontext.h>
    77 # include <fpu_control.h>
    79 #define REG_SP 29
    80 #define REG_FP 30
    82 address os::current_stack_pointer() {
    83 	register void *sp __asm__ ("$29");
    84         return (address) sp;
    85 }
    87 char* os::non_memory_address_word() {
    88   // Must never look like an address returned by reserve_memory,
    89   // even in its subfields (as defined by the CPU immediate fields,
    90   // if the CPU splits constants across multiple instructions).
    92   return (char*) -1;
    93 }
    95 void os::initialize_thread(Thread* thr) {
    96 // Nothing to do.
    97 }
    99 //the next three method just exists in os::Linux, none in other os, by yjl 6/21/2005
   100 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
   101   //return (address)uc->uc_mcontext.gregs[REG_PC];
   102   return (address)uc->uc_mcontext.pc;//aoqi:what is gregs?
   103 }
   105 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
   106   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   107 }
   109 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
   110   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   111 }
   113 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   114 // is currently interrupted by SIGPROF.
   115 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
   116 // frames. Currently we don't do that on Linux, so it's the same as
   117 // os::fetch_frame_from_context().
   118 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
   119   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   121   assert(thread != NULL, "just checking");
   122   assert(ret_sp != NULL, "just checking");
   123   assert(ret_fp != NULL, "just checking");
   125   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
   126 }
   128 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   129                     intptr_t** ret_sp, intptr_t** ret_fp) {
   131   ExtendedPC  epc;
   132   ucontext_t* uc = (ucontext_t*)ucVoid;
   134   address pc = (address)os::Linux::ucontext_get_pc(uc);
   136   /* Jin: to capture invalid 32-bit PC, for debbuging */ 
   137   if (((long)pc & 0xFFFFFFFF00000000UL) == 0)
   138   {
   139     pc = (address)((long)pc | 0x5500000000UL);
   140     tty->print_cr("<Error> 32-bit pc: %lx", pc);
   141   }
   143   if (uc != NULL) {
   144     epc = ExtendedPC(pc);
   145     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
   146     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
   147   } else {
   148     // construct empty ExtendedPC for return value checking
   149     epc = ExtendedPC(NULL);
   150     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   151     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   152   }
   154   return epc;
   155 }
   157 frame os::fetch_frame_from_context(void* ucVoid) {
   158   intptr_t* sp;
   159   intptr_t* fp;
   160   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   161   return frame(sp, fp, epc.pc());
   162 }
   164 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
   165 // turned off by -fomit-frame-pointer,
   166 frame os::get_sender_for_C_frame(frame* fr) {
   167   //return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   168   //tty->print("c frame sp = 0x%lx, fp=0x%lx, pc=0x%lx \n", (int)fr->sp(),(int)fr->fp(),(int)fr->pc()); 
   169 	//tty->print("c frame send_sp =0x%lx, fp = 0x%lx, pc = 0x%lx \n", 
   170 	//		(int) fr->sender_sp(), (int) fr->link(), (int)fr->sender_pc()); 
   171 	return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   172 }
   174 //intptr_t* _get_previous_fp() {
   175 //see StubGenerator::generate_get_previous_fp in stubGenerator_gs2.cpp
   176 jint* os::get_previous_fp() {
   177 	int *pc;
   178 	int sp;
   179 	int *pc_limit = (int*)(void*)&os::get_previous_fp;
   180 	int insn;
   182 	{
   183 l_pc:;
   184 		 pc = (int*)&&l_pc;
   185 		 __asm__ __volatile__ ("move %0,  $sp" : "=r" (sp));
   186 	}
   188 	do {
   189 		--pc;
   190 		insn = *pc;
   191 		switch(bitfield(insn, 16, 16)) {
   192 		case 0x27bd:	/* addiu $sp,$sp,-i */
   193 		case 0x23bd:	/* addi $sp,$sp,-i */
   194 		case 0x67bd:	/* daddiu $sp,$sp,-i */
   195 		case 0x63bd:	/* daddi $sp,$sp,-i */
   196 			assert ((short)bitfield(insn, 0, 16)<0, "bad frame");
   197 			sp -=	(short)bitfield(insn, 0, 16);
   198 			return (jint*)sp;
   199 		}
   200 	} while (pc>pc_limit);
   202 	ShouldNotReachHere();
   203 }
   205 frame os::current_frame() {
   206  tty->print("@@@@@@@@@@@@@@@@@@@get_previous_fp = 0x%lx \n", (intptr_t)(get_previous_fp())); 
   207   frame myframe((intptr_t*)os::current_stack_pointer(), 
   208                 (intptr_t*)get_previous_fp(),
   209                 CAST_FROM_FN_PTR(address, os::current_frame));
   210   if (os::is_first_C_frame(&myframe)) {
   211     // stack is not walkable
   212     return frame(NULL, NULL, NULL);
   213   } else {
   214     return os::get_sender_for_C_frame(&myframe);
   215   }
   216 }
   218 //x86 add 2 new assemble function here!
   219 extern "C" int 
   220 JVM_handle_linux_signal(int sig,
   221                         siginfo_t* info,
   222                         void* ucVoid,
   223                         int abort_if_unrecognized) {
   224 #ifndef PRODUCT
   225 	tty->print_cr("Signal: signo=%d, sicode=%d, sierrno=%d, siaddr=%lx",
   226 			info->si_signo, 
   227 			info->si_code, 
   228 			info->si_errno,
   229 			info->si_addr);
   230 #endif		  
   232   ucontext_t* uc = (ucontext_t*) ucVoid;
   234   Thread* t = ThreadLocalStorage::get_thread_slow();
   236   SignalHandlerMark shm(t);
   238   // Note: it's not uncommon that JNI code uses signal/sigset to install
   239   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
   240   // or have a SIGILL handler when detecting CPU type). When that happens,
   241   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
   242   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
   243   // that do not require siginfo/ucontext first.
   245   //if (sig == SIGPIPE || sig == SIGXFSZ) {
   246   if (sig == SIGPIPE) {
   247     // allow chained handler to go first
   248     if (os::Linux::chained_handler(sig, info, ucVoid)) {
   249       return true;
   250     } else {
   251       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   252         warning("Ignoring SIGPIPE - see bug 4229104");
   253       }
   254       return true;
   255     }
   256   }
   258   JavaThread* thread = NULL;
   259   VMThread* vmthread = NULL;
   260   if (os::Linux::signal_handlers_are_installed) {
   261     if (t != NULL ){
   262       if(t->is_Java_thread()) {
   263 #ifndef PRODUCT
   264 	//tty->print_cr("this thread is a java thread");
   265 #endif	
   266         thread = (JavaThread*)t;
   267       }
   268       else if(t->is_VM_thread()){
   269 #ifndef PRODUCT
   270 	//tty->print_cr("this thread is a VM thread\n");
   271 #endif	
   272         vmthread = (VMThread *)t;
   273       }
   274     }
   275   }
   277   // decide if this trap can be handled by a stub
   278   address stub = NULL;
   279   address pc   = NULL;
   281   pc = (address) os::Linux::ucontext_get_pc(uc);
   282 #ifndef PRODUCT
   283   tty->print_cr("pc=%lx", pc);
   284   os::print_context(tty, uc);
   285 #endif
   286   //%note os_trap_1
   287   if (info != NULL && uc != NULL && thread != NULL) {
   288     pc = (address) os::Linux::ucontext_get_pc(uc);
   289     // Handle ALL stack overflow variations here
   290     if (sig == SIGSEGV) {
   291       address addr = (address) info->si_addr;
   292       // check if fault address is within thread stack
   293 #ifndef PRODUCT
   294       //tty->print("handle all stack overflow variations: ");
   295       /*tty->print("addr = %lx, stack base = %lx, stack top = %lx\n", 
   296 	      addr, 
   297 	      thread->stack_base(), 
   298 	      thread->stack_base() - thread->stack_size());
   299 	*/
   300 #endif	      
   302       if (addr < thread->stack_base() &&
   303           addr >= thread->stack_base() - thread->stack_size()) {
   304         // stack overflow
   305 #ifndef PRODUCT
   306         tty->print("stack exception check \n");
   307 #endif	
   308         if (thread->in_stack_yellow_zone(addr)) {
   309 #ifndef PRODUCT
   310 	  tty->print("exception addr is in yellow zone\n");
   311 #endif	
   312           thread->disable_stack_yellow_zone();
   313           if (thread->thread_state() == _thread_in_Java) {
   314             // Throw a stack overflow exception.  Guard pages will be reenabled
   315             // while unwinding the stack.
   316 #ifndef PRODUCT
   317 	    tty->print("this thread is in java\n");
   318 #endif	
   319             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   320           } else {
   321             // Thread was in the vm or native code.  Return and try to finish.
   322 #ifndef PRODUCT
   323 	    tty->print("this thread is in vm or native codes and return\n");
   324 #endif	
   325             return 1;
   326           }
   327         } else if (thread->in_stack_red_zone(addr)) {
   328           // Fatal red zone violation.  Disable the guard pages and fall through
   329           // to handle_unexpected_exception way down below.
   330 #ifndef PRODUCT
   331 	  tty->print("exception addr is in red zone\n");
   332 #endif	
   333           thread->disable_stack_red_zone();
   334 #ifndef PRODUCT
   335           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   336 #endif	
   337         } else {
   338           // Accessing stack address below sp may cause SEGV if current
   339           // thread has MAP_GROWSDOWN stack. This should only happen when
   340           // current thread was created by user code with MAP_GROWSDOWN flag
   341           // and then attached to VM. See notes in os_linux.cpp.
   342 #ifndef PRODUCT
   343 	  tty->print("exception addr is neither in yellow zone nor in the red one\n");
   344 #endif	
   345           if (thread->osthread()->expanding_stack() == 0) {
   346              thread->osthread()->set_expanding_stack();
   347              if (os::Linux::manually_expand_stack(thread, addr)) {
   348                thread->osthread()->clear_expanding_stack();
   349                return 1;
   350              }
   351              thread->osthread()->clear_expanding_stack();
   352           } else {
   353              fatal("recursive segv. expanding stack.");
   354           }
   355         }
   356       } //addr <
   357     } //sig == SIGSEGV
   359     if (thread->thread_state() == _thread_in_Java) {
   360       // Java thread running in Java code => find exception handler if any
   361       // a fault inside compiled code, the interpreter, or a stub
   362 #ifndef PRODUCT
   363       tty->print("java thread running in java code\n");
   364       tty->print_cr("polling address = %lx, sig=%d", os::get_polling_page(), sig);
   365 #endif	
   366       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   368         stub = SharedRuntime::get_poll_stub(pc);
   369       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
   370         // BugId 4454115: A read from a MappedByteBuffer can fault
   371         // here if the underlying file has been truncated.
   372         // Do not crash the VM in such a case.
   373         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   374         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   375 #ifndef PRODUCT
   376 	tty->print("cb = %lx, nm = %lx\n", cb, nm);
   377 #endif	
   378         if (nm != NULL && nm->has_unsafe_access()) {
   379           stub = StubRoutines::handler_for_unsafe_access();
   380         }
   381       } else if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
   382         // HACK: si_code does not work on linux 2.2.12-20!!!
   383         int op = pc[0] & 0x3f;
   384 	int op1 = pc[3] & 0x3f;
   385       	//FIXME, Must port to mips code!! 
   386         switch (op) {
   387           case 0x1e:	//ddiv
   388           case 0x1f:	//ddivu
   389           case 0x1a:	//div
   390           case 0x1b:	//divu
   391           case 0x34:	//trap
   392 		/* In MIPS, div_by_zero exception can only be triggered by explicit 'trap'.
   393 		 * Ref: [c1_LIRAssembler_mips.cpp] arithmetic_idiv()
   394                  */
   395             stub = SharedRuntime::continuation_for_implicit_exception(thread, 
   396                                     pc, 
   397                                     SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   398 	    break;
   399           default:
   400           // TODO: handle more cases if we are using other x86 instructions
   401           //   that can generate SIGFPE signal on linux.
   402           tty->print_cr("unknown opcode 0x%X -0x%X with SIGFPE.", op, op1);
   403           //fatal("please update this code.");
   404       	}
   405       }
   406      else if (sig == SIGSEGV &&
   407                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   408           // Determination of interpreter/vtable stub/compiled code null exception
   409 #ifndef PRODUCT
   410           tty->print("continuation for implicit exception\n");
   411 #endif	
   412           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   413       }
   414     } else if (thread->thread_state() == _thread_in_vm &&
   415                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
   416                thread->doing_unsafe_access()) {
   417 #ifndef PRODUCT
   418 	tty->print_cr("SIGBUS in vm thread \n");
   419 #endif	
   420         stub = StubRoutines::handler_for_unsafe_access();
   421     }
   423     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   424     // and the heap gets shrunk before the field access.
   425     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   426 #ifndef PRODUCT
   427 	//tty->print("jni fast get trap: ");
   428 #endif	
   429       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   430       if (addr != (address)-1) {
   431         stub = addr;
   432       }
   433 #ifndef PRODUCT
   434       //tty->print_cr("addr = %d, stub = %lx", addr, stub);
   435 #endif	
   436     }
   438     // Check to see if we caught the safepoint code in the
   439     // process of write protecting the memory serialization page.
   440     // It write enables the page immediately after protecting it
   441     // so we can just return to retry the write.
   442     if ((sig == SIGSEGV) &&
   443         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
   444       // Block current thread until the memory serialize page permission restored.
   445 #ifndef PRODUCT
   446       //tty->print("write protecting the memory serialiazation page\n");
   447 #endif	
   448       os::block_on_serialize_page_trap();
   449       return true;
   450     }
   451   }
   453   // Execution protection violation
   454   //
   455   // This should be kept as the last step in the triage.  We don't
   456   // have a dedicated trap number for a no-execute fault, so be
   457   // conservative and allow other handlers the first shot.
   458   //
   459   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   460   // this si_code is so generic that it is almost meaningless; and
   461   // the si_code for this condition may change in the future.
   462   // Furthermore, a false-positive should be harmless.
   463   if (UnguardOnExecutionViolation > 0 &&
   464       //(sig == SIGSEGV || sig == SIGBUS) &&
   465       //uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
   466       (sig == SIGSEGV || sig == SIGBUS 
   467 #ifdef OPT_RANGECHECK
   468 			 || sig == SIGSYS
   469 #endif
   470 			) &&
   471 			//(uc->uc_mcontext.cause == 2 || uc->uc_mcontext.cause == 3)) {
   472 			(uc->uc_mcontext.hi1 == 2 || uc->uc_mcontext.hi1 == 3)) {
   473 			//aoqi: copy from jdk1.5, dont understand the struct mcontext_t.
   474 #ifndef PRODUCT
   475     tty->print_cr("execution protection violation\n");
   476 #endif
   478     int page_size = os::vm_page_size();
   479     address addr = (address) info->si_addr;
   480     address pc = os::Linux::ucontext_get_pc(uc);
   481     // Make sure the pc and the faulting address are sane.
   482     //
   483     // If an instruction spans a page boundary, and the page containing
   484     // the beginning of the instruction is executable but the following
   485     // page is not, the pc and the faulting address might be slightly
   486     // different - we still want to unguard the 2nd page in this case.
   487     //
   488     // 15 bytes seems to be a (very) safe value for max instruction size.
   489     bool pc_is_near_addr =
   490       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   491     bool instr_spans_page_boundary =
   492       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   493                        (intptr_t) page_size) > 0);
   495     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   496       static volatile address last_addr =
   497         (address) os::non_memory_address_word();
   499       // In conservative mode, don't unguard unless the address is in the VM
   500       if (addr != last_addr &&
   501           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   503         // Set memory to RWX and retry
   504         address page_start =
   505           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   506         bool res = os::protect_memory((char*) page_start, page_size,
   507                                       os::MEM_PROT_RWX);
   509         if (PrintMiscellaneous && Verbose) {
   510           char buf[256];
   511           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   512                        "at " INTPTR_FORMAT
   513                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   514                        page_start, (res ? "success" : "failed"), errno);
   515           tty->print_raw_cr(buf);
   516         }
   517         stub = pc;
   519         // Set last_addr so if we fault again at the same address, we don't end
   520         // up in an endless loop.
   521         //
   522         // There are two potential complications here.  Two threads trapping at
   523         // the same address at the same time could cause one of the threads to
   524         // think it already unguarded, and abort the VM.  Likely very rare.
   525         //
   526         // The other race involves two threads alternately trapping at
   527         // different addresses and failing to unguard the page, resulting in
   528         // an endless loop.  This condition is probably even more unlikely than
   529         // the first.
   530         //
   531         // Although both cases could be avoided by using locks or thread local
   532         // last_addr, these solutions are unnecessary complication: this
   533         // handler is a best-effort safety net, not a complete solution.  It is
   534         // disabled by default and should only be used as a workaround in case
   535         // we missed any no-execute-unsafe VM code.
   537         last_addr = addr;
   538       }
   539     }
   540   }
   542   if (stub != NULL) {
   543 #ifndef PRODUCT
   544     //tty->print_cr("resolved stub=%lx\n",stub);
   545 #endif    
   546     // save all thread context in case we need to restore it
   547     if (thread != NULL) thread->set_saved_exception_pc(pc);
   549     uc->uc_mcontext.pc = (greg_t)stub;
   550     return true;
   551   }
   553   // signal-chaining
   554   if (os::Linux::chained_handler(sig, info, ucVoid)) {
   555 #ifndef PRODUCT
   556      tty->print_cr("signal chaining\n");
   557 #endif    
   558      return true;
   559   }
   561   if (!abort_if_unrecognized) {
   562     // caller wants another chance, so give it to him
   563 #ifndef PRODUCT
   564     tty->print_cr("abort becauce of unrecognized\n");
   565 #endif    
   566     return false;
   567   }
   569   if (pc == NULL && uc != NULL) {
   570     pc = os::Linux::ucontext_get_pc(uc);
   571   }
   573   // unmask current signal
   574   sigset_t newset;
   575   sigemptyset(&newset);
   576   sigaddset(&newset, sig);
   577   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   578 #ifndef PRODUCT
   579   tty->print_cr("VMError in signal handler\n");
   580 #endif    
   581   VMError err(t, sig, pc, info, ucVoid);
   582   err.report_and_die();
   584   ShouldNotReachHere();
   585 }
   587 void os::Linux::init_thread_fpu_state(void) {
   588   // set fpu to 53 bit precision
   589   //set_fpu_control_word(0x27f);
   590 }
   592 int os::Linux::get_fpu_control_word(void) {
   593 }
   595 void os::Linux::set_fpu_control_word(int fpu_control) {
   596 }
   598 bool os::is_allocatable(size_t bytes) {
   600   if (bytes < 2 * G) {
   601     return true;
   602   }
   604   char* addr = reserve_memory(bytes, NULL);
   606   if (addr != NULL) {
   607     release_memory(addr, bytes);
   608   }
   610   return addr != NULL;
   611 }
   613 ////////////////////////////////////////////////////////////////////////////////
   614 // thread stack
   616 size_t os::Linux::min_stack_allowed  = 96 * K;
   619 // Test if pthread library can support variable thread stack size. LinuxThreads
   620 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
   621 // in floating stack mode and NPTL support variable stack size.
   622 bool os::Linux::supports_variable_stack_size() {
   623   if (os::Linux::is_NPTL()) {
   624      // NPTL, yes
   625      return true;
   627   } else {
   628     // Note: We can't control default stack size when creating a thread.
   629     // If we use non-default stack size (pthread_attr_setstacksize), both
   630     // floating stack and non-floating stack LinuxThreads will return the
   631     // same value. This makes it impossible to implement this function by
   632     // detecting thread stack size directly.
   633     //
   634     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
   635     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
   636     // %gs (either as LDT selector or GDT selector, depending on kernel)
   637     // to access thread specific data.
   638     //
   639     // Note that %gs is a reserved glibc register since early 2001, so
   640     // applications are not allowed to change its value (Ulrich Drepper from
   641     // Red Hat confirmed that all known offenders have been modified to use
   642     // either %fs or TSD). In the worst case scenario, when VM is embedded in
   643     // a native application that plays with %gs, we might see non-zero %gs
   644     // even LinuxThreads is running in fixed stack mode. As the result, we'll
   645     // return true and skip _thread_safety_check(), so we may not be able to
   646     // detect stack-heap collisions. But otherwise it's harmless.
   647     //
   648 		//FIXME we should do something here not just return false. by yjl 6/21/2005
   649     return false;
   650   }
   651 }
   653 // return default stack size for thr_type
   654 //maybe we need change this, FIXME by yjl 6/21/2005
   655 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
   656   // default stack size (compiler thread needs larger stack)
   657   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
   658   return s;
   659 }
   661 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
   662   // Creating guard page is very expensive. Java thread has HotSpot
   663   // guard page, only enable glibc guard page for non-Java threads.
   664   return (thr_type == java_thread ? 0 : page_size());
   665 }
   667 // Java thread:
   668 //
   669 //   Low memory addresses
   670 //    +------------------------+
   671 //    |                        |\  JavaThread created by VM does not have glibc
   672 //    |    glibc guard page    | - guard, attached Java thread usually has
   673 //    |                        |/  1 page glibc guard.
   674 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   675 //    |                        |\
   676 //    |  HotSpot Guard Pages   | - red and yellow pages
   677 //    |                        |/
   678 //    +------------------------+ JavaThread::stack_yellow_zone_base()
   679 //    |                        |\
   680 //    |      Normal Stack      | -
   681 //    |                        |/
   682 // P2 +------------------------+ Thread::stack_base()
   683 //
   684 // Non-Java thread:
   685 //
   686 //   Low memory addresses
   687 //    +------------------------+
   688 //    |                        |\
   689 //    |  glibc guard page      | - usually 1 page
   690 //    |                        |/
   691 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   692 //    |                        |\
   693 //    |      Normal Stack      | -
   694 //    |                        |/
   695 // P2 +------------------------+ Thread::stack_base()
   696 //
   697 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
   698 //    pthread_attr_getstack()
   700 static void current_stack_region(address * bottom, size_t * size) {
   701   if (os::Linux::is_initial_thread()) {
   702      // initial thread needs special handling because pthread_getattr_np()
   703      // may return bogus value.
   704      *bottom = os::Linux::initial_thread_stack_bottom();
   705      *size   = os::Linux::initial_thread_stack_size();
   706   } else {
   707      pthread_attr_t attr;
   709      int rslt = pthread_getattr_np(pthread_self(), &attr);
   711      // JVM needs to know exact stack location, abort if it fails
   712      if (rslt != 0) {
   713        if (rslt == ENOMEM) {
   714          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
   715        } else {
   716          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
   717        }
   718      }
   720      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0 ) {
   721 			 fatal("Can not locate current stack attributes!");
   722 		 }
   723 		 /*
   724 		 void * top;
   725 		 if (pthread_attr_getstackaddr(&attr, &top) != 0 ||  
   726 				 pthread_attr_getstacksize(&attr, size) != 0) {
   727 		   fatal("Can not locate current stack attributes!");
   728 		 } 
   729 			*/
   730      pthread_attr_destroy(&attr);
   732      //*bottom = (address) align_size_up((uintptr_t)top - *size, os::Linux::page_size());
   733      //*size   = (address)top - *bottom;
   734   }
   735   assert(os::current_stack_pointer() >= *bottom &&
   736          os::current_stack_pointer() < *bottom + *size, "just checking");
   737 }
   739 address os::current_stack_base() {
   740   address bottom;
   741   size_t size;
   742   current_stack_region(&bottom, &size);
   743   return (bottom + size);
   744 }
   746 size_t os::current_stack_size() {
   747   // stack size includes normal stack and HotSpot guard pages
   748   address bottom;
   749   size_t size;
   750   current_stack_region(&bottom, &size);
   751   return size;
   752 }
   754 /////////////////////////////////////////////////////////////////////////////
   755 // helper functions for fatal error handler
   756 void os::print_register_info(outputStream *st, void *context) {
   757   if (context == NULL) return;
   759   ucontext_t *uc = (ucontext_t*)context;
   761   st->print_cr("Register to memory mapping:");
   762   st->cr();
   763   // this is horrendously verbose but the layout of the registers in the
   764   //   // context does not match how we defined our abstract Register set, so
   765   //     // we can't just iterate through the gregs area
   766   //
   767   //       // this is only for the "general purpose" registers
   768   st->print("R0=" ); print_location(st, uc->uc_mcontext.gregs[0]);
   769   st->print("AT=" ); print_location(st, uc->uc_mcontext.gregs[1]);
   770   st->print("V0=" ); print_location(st, uc->uc_mcontext.gregs[2]);
   771   st->print("V1=" ); print_location(st, uc->uc_mcontext.gregs[3]);
   772   st->cr();
   773   st->print("A0=" ); print_location(st, uc->uc_mcontext.gregs[4]);
   774   st->print("A1=" ); print_location(st, uc->uc_mcontext.gregs[5]);
   775   st->print("A2=" ); print_location(st, uc->uc_mcontext.gregs[6]);
   776   st->print("A3=" ); print_location(st, uc->uc_mcontext.gregs[7]);
   777   st->cr();
   778   st->print("A4=" ); print_location(st, uc->uc_mcontext.gregs[8]);
   779   st->print("A5=" ); print_location(st, uc->uc_mcontext.gregs[9]);
   780   st->print("A6=" ); print_location(st, uc->uc_mcontext.gregs[10]);
   781   st->print("A7=" ); print_location(st, uc->uc_mcontext.gregs[11]);
   782   st->cr();
   783   st->print("T0=" ); print_location(st, uc->uc_mcontext.gregs[12]);
   784   st->print("T1=" ); print_location(st, uc->uc_mcontext.gregs[13]);
   785   st->print("T2=" ); print_location(st, uc->uc_mcontext.gregs[14]);
   786   st->print("T3=" ); print_location(st, uc->uc_mcontext.gregs[15]);
   787   st->cr();
   788   st->print("S0=" ); print_location(st, uc->uc_mcontext.gregs[16]);
   789   st->print("S1=" ); print_location(st, uc->uc_mcontext.gregs[17]);
   790   st->print("S2=" ); print_location(st, uc->uc_mcontext.gregs[18]);
   791   st->print("S3=" ); print_location(st, uc->uc_mcontext.gregs[19]);
   792   st->cr();
   793   st->print("S4=" ); print_location(st, uc->uc_mcontext.gregs[20]);
   794   st->print("S5=" ); print_location(st, uc->uc_mcontext.gregs[21]);
   795   st->print("S6=" ); print_location(st, uc->uc_mcontext.gregs[22]);
   796   st->print("S7=" ); print_location(st, uc->uc_mcontext.gregs[23]);
   797   st->cr();
   798   st->print("T8=" ); print_location(st, uc->uc_mcontext.gregs[24]);
   799   st->print("T9=" ); print_location(st, uc->uc_mcontext.gregs[25]);
   800   st->print("K0=" ); print_location(st, uc->uc_mcontext.gregs[26]);
   801   st->print("K1=" ); print_location(st, uc->uc_mcontext.gregs[27]);
   802   st->cr();
   803   st->print("GP=" ); print_location(st, uc->uc_mcontext.gregs[28]);
   804   st->print("SP=" ); print_location(st, uc->uc_mcontext.gregs[29]);
   805   st->print("FP=" ); print_location(st, uc->uc_mcontext.gregs[30]);
   806   st->print("RA=" ); print_location(st, uc->uc_mcontext.gregs[31]);
   807   st->cr();
   809 }
   810 void os::print_context(outputStream *st, void *context) {
   811   if (context == NULL) return;
   813   ucontext_t *uc = (ucontext_t*)context;
   814   st->print_cr("Registers:");
   815   st->print(  "R0=" INTPTR_FORMAT, uc->uc_mcontext.gregs[0]);
   816   st->print(", AT=" INTPTR_FORMAT, uc->uc_mcontext.gregs[1]);
   817   st->print(", V0=" INTPTR_FORMAT, uc->uc_mcontext.gregs[2]);
   818   st->print(", V1=" INTPTR_FORMAT, uc->uc_mcontext.gregs[3]);
   819   st->cr();
   820   st->print(  "A0=" INTPTR_FORMAT, uc->uc_mcontext.gregs[4]);
   821   st->print(", A1=" INTPTR_FORMAT, uc->uc_mcontext.gregs[5]);
   822   st->print(", A2=" INTPTR_FORMAT, uc->uc_mcontext.gregs[6]);
   823   st->print(", A3=" INTPTR_FORMAT, uc->uc_mcontext.gregs[7]);
   824   st->cr();
   825   st->print(  "A4=" INTPTR_FORMAT, uc->uc_mcontext.gregs[8]);
   826   st->print(", A5=" INTPTR_FORMAT, uc->uc_mcontext.gregs[9]);
   827   st->print(", A6=" INTPTR_FORMAT, uc->uc_mcontext.gregs[10]);
   828   st->print(", A7=" INTPTR_FORMAT, uc->uc_mcontext.gregs[11]);
   829   st->cr();
   830   st->print(  "T0=" INTPTR_FORMAT, uc->uc_mcontext.gregs[12]);
   831   st->print(", T1=" INTPTR_FORMAT, uc->uc_mcontext.gregs[13]);
   832   st->print(", T2=" INTPTR_FORMAT, uc->uc_mcontext.gregs[14]);
   833   st->print(", T3=" INTPTR_FORMAT, uc->uc_mcontext.gregs[15]);
   834   st->cr();
   835   st->print(  "S0=" INTPTR_FORMAT, uc->uc_mcontext.gregs[16]);
   836   st->print(", S1=" INTPTR_FORMAT, uc->uc_mcontext.gregs[17]);
   837   st->print(", S2=" INTPTR_FORMAT, uc->uc_mcontext.gregs[18]);
   838   st->print(", S3=" INTPTR_FORMAT, uc->uc_mcontext.gregs[19]);
   839   st->cr();
   840   st->print(  "S4=" INTPTR_FORMAT, uc->uc_mcontext.gregs[20]);
   841   st->print(", S5=" INTPTR_FORMAT, uc->uc_mcontext.gregs[21]);
   842   st->print(", S6=" INTPTR_FORMAT, uc->uc_mcontext.gregs[22]);
   843   st->print(", S7=" INTPTR_FORMAT, uc->uc_mcontext.gregs[23]);
   844   st->cr();
   845   st->print(  "T8=" INTPTR_FORMAT, uc->uc_mcontext.gregs[24]);
   846   st->print(", T9=" INTPTR_FORMAT, uc->uc_mcontext.gregs[25]);
   847   st->print(", K0=" INTPTR_FORMAT, uc->uc_mcontext.gregs[26]);
   848   st->print(", K1=" INTPTR_FORMAT, uc->uc_mcontext.gregs[27]);
   849   st->cr();
   850   st->print(  "GP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[28]);
   851   st->print(", SP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[29]);
   852   st->print(", FP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[30]);
   853   st->print(", RA=" INTPTR_FORMAT, uc->uc_mcontext.gregs[31]);
   854   st->cr();
   855   st->cr();
   857   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
   858   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   859   //print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   860   print_hex_dump(st, (address)sp-32, (address)(sp + 32), sizeof(intptr_t));
   861   st->cr();
   863   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   864   // point to garbage if entry point in an nmethod is corrupted. Leave
   865   // this at the end, and hope for the best.
   866   address pc = os::Linux::ucontext_get_pc(uc);
   867   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   868   print_hex_dump(st, pc - 64, pc + 64, sizeof(char));
   869   Disassembler::decode(pc - 80, pc + 80, st);
   870 }
   872 #ifndef PRODUCT
   873 void os::verify_stack_alignment() {
   874   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   875 }
   876 #endif

mercurial