src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Wed, 16 Nov 2011 01:39:50 -0800

author
twisti
date
Wed, 16 Nov 2011 01:39:50 -0800
changeset 3310
6729bbc1fcd6
parent 3037
3d42f82cd811
child 3372
dca455dea3a7
child 3391
069ab3f976d3
permissions
-rw-r--r--

7003454: order constants in constant table by number of references in code
Reviewed-by: kvn, never, bdelsart

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    48 #ifndef CC_INTERP
    49 #ifndef FAST_DISPATCH
    50 #define FAST_DISPATCH 1
    51 #endif
    52 #undef FAST_DISPATCH
    55 // Generation of Interpreter
    56 //
    57 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    60 #define __ _masm->
    63 //----------------------------------------------------------------------------------------------------
    66 void InterpreterGenerator::save_native_result(void) {
    67   // result potentially in O0/O1: save it across calls
    68   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    70   // result potentially in F0/F1: save it across calls
    71   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    73   // save and restore any potential method result value around the unlocking operation
    74   __ stf(FloatRegisterImpl::D, F0, d_tmp);
    75 #ifdef _LP64
    76   __ stx(O0, l_tmp);
    77 #else
    78   __ std(O0, l_tmp);
    79 #endif
    80 }
    82 void InterpreterGenerator::restore_native_result(void) {
    83   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    84   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    86   // Restore any method result value
    87   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
    88 #ifdef _LP64
    89   __ ldx(l_tmp, O0);
    90 #else
    91   __ ldd(l_tmp, O0);
    92 #endif
    93 }
    95 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
    96   assert(!pass_oop || message == NULL, "either oop or message but not both");
    97   address entry = __ pc();
    98   // expression stack must be empty before entering the VM if an exception happened
    99   __ empty_expression_stack();
   100   // load exception object
   101   __ set((intptr_t)name, G3_scratch);
   102   if (pass_oop) {
   103     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
   104   } else {
   105     __ set((intptr_t)message, G4_scratch);
   106     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
   107   }
   108   // throw exception
   109   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
   110   AddressLiteral thrower(Interpreter::throw_exception_entry());
   111   __ jump_to(thrower, G3_scratch);
   112   __ delayed()->nop();
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   117   address entry = __ pc();
   118   // expression stack must be empty before entering the VM if an exception
   119   // happened
   120   __ empty_expression_stack();
   121   // load exception object
   122   __ call_VM(Oexception,
   123              CAST_FROM_FN_PTR(address,
   124                               InterpreterRuntime::throw_ClassCastException),
   125              Otos_i);
   126   __ should_not_reach_here();
   127   return entry;
   128 }
   131 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
   132   address entry = __ pc();
   133   // expression stack must be empty before entering the VM if an exception happened
   134   __ empty_expression_stack();
   135   // convention: expect aberrant index in register G3_scratch, then shuffle the
   136   // index to G4_scratch for the VM call
   137   __ mov(G3_scratch, G4_scratch);
   138   __ set((intptr_t)name, G3_scratch);
   139   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
   140   __ should_not_reach_here();
   141   return entry;
   142 }
   145 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
   146   address entry = __ pc();
   147   // expression stack must be empty before entering the VM if an exception happened
   148   __ empty_expression_stack();
   149   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   150   __ should_not_reach_here();
   151   return entry;
   152 }
   155 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   156   TosState incoming_state = state;
   158   Label cont;
   159   address compiled_entry = __ pc();
   161   address entry = __ pc();
   162 #if !defined(_LP64) && defined(COMPILER2)
   163   // All return values are where we want them, except for Longs.  C2 returns
   164   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   165   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   166   // build even if we are returning from interpreted we just do a little
   167   // stupid shuffing.
   168   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   169   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   170   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   172   if (incoming_state == ltos) {
   173     __ srl (G1,  0, O1);
   174     __ srlx(G1, 32, O0);
   175   }
   176 #endif // !_LP64 && COMPILER2
   178   __ bind(cont);
   180   // The callee returns with the stack possibly adjusted by adapter transition
   181   // We remove that possible adjustment here.
   182   // All interpreter local registers are untouched. Any result is passed back
   183   // in the O0/O1 or float registers. Before continuing, the arguments must be
   184   // popped from the java expression stack; i.e., Lesp must be adjusted.
   186   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
   188   Label L_got_cache, L_giant_index;
   189   const Register cache = G3_scratch;
   190   const Register size  = G1_scratch;
   191   if (EnableInvokeDynamic) {
   192     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode.
   193     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokedynamic, Assembler::equal, Assembler::pn, L_giant_index);
   194   }
   195   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
   196   __ bind(L_got_cache);
   197   __ ld_ptr(cache, constantPoolCacheOopDesc::base_offset() +
   198                    ConstantPoolCacheEntry::flags_offset(), size);
   199   __ and3(size, 0xFF, size);                   // argument size in words
   200   __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
   201   __ add(Lesp, size, Lesp);                    // pop arguments
   202   __ dispatch_next(state, step);
   204   // out of the main line of code...
   205   if (EnableInvokeDynamic) {
   206     __ bind(L_giant_index);
   207     __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
   208     __ ba_short(L_got_cache);
   209   }
   211   return entry;
   212 }
   215 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   216   address entry = __ pc();
   217   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
   218   { Label L;
   219     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   220     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
   221     __ br_null_short(Gtemp, Assembler::pt, L);
   222     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   223     __ should_not_reach_here();
   224     __ bind(L);
   225   }
   226   __ dispatch_next(state, step);
   227   return entry;
   228 }
   230 // A result handler converts/unboxes a native call result into
   231 // a java interpreter/compiler result. The current frame is an
   232 // interpreter frame. The activation frame unwind code must be
   233 // consistent with that of TemplateTable::_return(...). In the
   234 // case of native methods, the caller's SP was not modified.
   235 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   236   address entry = __ pc();
   237   Register Itos_i  = Otos_i ->after_save();
   238   Register Itos_l  = Otos_l ->after_save();
   239   Register Itos_l1 = Otos_l1->after_save();
   240   Register Itos_l2 = Otos_l2->after_save();
   241   switch (type) {
   242     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   243     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   244     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   245     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   246     case T_LONG   :
   247 #ifndef _LP64
   248                     __ mov(O1, Itos_l2);  // move other half of long
   249 #endif              // ifdef or no ifdef, fall through to the T_INT case
   250     case T_INT    : __ mov(O0, Itos_i);                         break;
   251     case T_VOID   : /* nothing to do */                         break;
   252     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   253     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   254     case T_OBJECT :
   255       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
   256       __ verify_oop(Itos_i);
   257       break;
   258     default       : ShouldNotReachHere();
   259   }
   260   __ ret();                           // return from interpreter activation
   261   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   262   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   263   return entry;
   264 }
   266 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   267   address entry = __ pc();
   268   __ push(state);
   269   __ call_VM(noreg, runtime_entry);
   270   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
   271   return entry;
   272 }
   275 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   276   address entry = __ pc();
   277   __ dispatch_next(state);
   278   return entry;
   279 }
   281 //
   282 // Helpers for commoning out cases in the various type of method entries.
   283 //
   285 // increment invocation count & check for overflow
   286 //
   287 // Note: checking for negative value instead of overflow
   288 //       so we have a 'sticky' overflow test
   289 //
   290 // Lmethod: method
   291 // ??: invocation counter
   292 //
   293 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   294   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
   295   if (TieredCompilation) {
   296     const int increment = InvocationCounter::count_increment;
   297     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
   298     Label no_mdo, done;
   299     if (ProfileInterpreter) {
   300       // If no method data exists, go to profile_continue.
   301       __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
   302       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
   303       // Increment counter
   304       Address mdo_invocation_counter(G4_scratch,
   305                                      in_bytes(methodDataOopDesc::invocation_counter_offset()) +
   306                                      in_bytes(InvocationCounter::counter_offset()));
   307       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
   308                                  G3_scratch, Lscratch,
   309                                  Assembler::zero, overflow);
   310       __ ba_short(done);
   311     }
   313     // Increment counter in methodOop
   314     __ bind(no_mdo);
   315     Address invocation_counter(Lmethod,
   316                                in_bytes(methodOopDesc::invocation_counter_offset()) +
   317                                in_bytes(InvocationCounter::counter_offset()));
   318     __ increment_mask_and_jump(invocation_counter, increment, mask,
   319                                G3_scratch, Lscratch,
   320                                Assembler::zero, overflow);
   321     __ bind(done);
   322   } else {
   323     // Update standard invocation counters
   324     __ increment_invocation_counter(O0, G3_scratch);
   325     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   326       Address interpreter_invocation_counter(Lmethod,in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
   327       __ ld(interpreter_invocation_counter, G3_scratch);
   328       __ inc(G3_scratch);
   329       __ st(G3_scratch, interpreter_invocation_counter);
   330     }
   332     if (ProfileInterpreter && profile_method != NULL) {
   333       // Test to see if we should create a method data oop
   334       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
   335       __ load_contents(profile_limit, G3_scratch);
   336       __ cmp_and_br_short(O0, G3_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
   338       // if no method data exists, go to profile_method
   339       __ test_method_data_pointer(*profile_method);
   340     }
   342     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
   343     __ load_contents(invocation_limit, G3_scratch);
   344     __ cmp(O0, G3_scratch);
   345     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
   346     __ delayed()->nop();
   347   }
   349 }
   351 // Allocate monitor and lock method (asm interpreter)
   352 // ebx - methodOop
   353 //
   354 void InterpreterGenerator::lock_method(void) {
   355   __ ld(Lmethod, in_bytes(methodOopDesc::access_flags_offset()), O0);  // Load access flags.
   357 #ifdef ASSERT
   358  { Label ok;
   359    __ btst(JVM_ACC_SYNCHRONIZED, O0);
   360    __ br( Assembler::notZero, false, Assembler::pt, ok);
   361    __ delayed()->nop();
   362    __ stop("method doesn't need synchronization");
   363    __ bind(ok);
   364   }
   365 #endif // ASSERT
   367   // get synchronization object to O0
   368   { Label done;
   369     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   370     __ btst(JVM_ACC_STATIC, O0);
   371     __ br( Assembler::zero, true, Assembler::pt, done);
   372     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
   374     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
   375     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
   377     // lock the mirror, not the klassOop
   378     __ ld_ptr( O0, mirror_offset, O0);
   380 #ifdef ASSERT
   381     __ tst(O0);
   382     __ breakpoint_trap(Assembler::zero);
   383 #endif // ASSERT
   385     __ bind(done);
   386   }
   388   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
   389   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
   390   // __ untested("lock_object from method entry");
   391   __ lock_object(Lmonitors, O0);
   392 }
   395 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
   396                                                          Register Rscratch,
   397                                                          Register Rscratch2) {
   398   const int page_size = os::vm_page_size();
   399   Address saved_exception_pc(G2_thread, JavaThread::saved_exception_pc_offset());
   400   Label after_frame_check;
   402   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
   404   __ set(page_size, Rscratch);
   405   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
   407   // get the stack base, and in debug, verify it is non-zero
   408   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
   409 #ifdef ASSERT
   410   Label base_not_zero;
   411   __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
   412   __ stop("stack base is zero in generate_stack_overflow_check");
   413   __ bind(base_not_zero);
   414 #endif
   416   // get the stack size, and in debug, verify it is non-zero
   417   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
   418   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
   419 #ifdef ASSERT
   420   Label size_not_zero;
   421   __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
   422   __ stop("stack size is zero in generate_stack_overflow_check");
   423   __ bind(size_not_zero);
   424 #endif
   426   // compute the beginning of the protected zone minus the requested frame size
   427   __ sub( Rscratch, Rscratch2,   Rscratch );
   428   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
   429   __ add( Rscratch, Rscratch2,   Rscratch );
   431   // Add in the size of the frame (which is the same as subtracting it from the
   432   // SP, which would take another register
   433   __ add( Rscratch, Rframe_size, Rscratch );
   435   // the frame is greater than one page in size, so check against
   436   // the bottom of the stack
   437   __ cmp_and_brx_short(SP, Rscratch, Assembler::greater, Assembler::pt, after_frame_check);
   439   // Save the return address as the exception pc
   440   __ st_ptr(O7, saved_exception_pc);
   442   // the stack will overflow, throw an exception
   443   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   445   // if you get to here, then there is enough stack space
   446   __ bind( after_frame_check );
   447 }
   450 //
   451 // Generate a fixed interpreter frame. This is identical setup for interpreted
   452 // methods and for native methods hence the shared code.
   454 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   455   //
   456   //
   457   // The entry code sets up a new interpreter frame in 4 steps:
   458   //
   459   // 1) Increase caller's SP by for the extra local space needed:
   460   //    (check for overflow)
   461   //    Efficient implementation of xload/xstore bytecodes requires
   462   //    that arguments and non-argument locals are in a contigously
   463   //    addressable memory block => non-argument locals must be
   464   //    allocated in the caller's frame.
   465   //
   466   // 2) Create a new stack frame and register window:
   467   //    The new stack frame must provide space for the standard
   468   //    register save area, the maximum java expression stack size,
   469   //    the monitor slots (0 slots initially), and some frame local
   470   //    scratch locations.
   471   //
   472   // 3) The following interpreter activation registers must be setup:
   473   //    Lesp       : expression stack pointer
   474   //    Lbcp       : bytecode pointer
   475   //    Lmethod    : method
   476   //    Llocals    : locals pointer
   477   //    Lmonitors  : monitor pointer
   478   //    LcpoolCache: constant pool cache
   479   //
   480   // 4) Initialize the non-argument locals if necessary:
   481   //    Non-argument locals may need to be initialized to NULL
   482   //    for GC to work. If the oop-map information is accurate
   483   //    (in the absence of the JSR problem), no initialization
   484   //    is necessary.
   485   //
   486   // (gri - 2/25/2000)
   489   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
   490   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
   491   const Address max_stack         (G5_method, methodOopDesc::max_stack_offset());
   492   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
   494   const int extra_space =
   495     rounded_vm_local_words +                   // frame local scratch space
   496     //6815692//methodOopDesc::extra_stack_words() +       // extra push slots for MH adapters
   497     frame::memory_parameter_word_sp_offset +   // register save area
   498     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
   500   const Register Glocals_size = G3;
   501   const Register Otmp1 = O3;
   502   const Register Otmp2 = O4;
   503   // Lscratch can't be used as a temporary because the call_stub uses
   504   // it to assert that the stack frame was setup correctly.
   506   __ lduh( size_of_parameters, Glocals_size);
   508   // Gargs points to first local + BytesPerWord
   509   // Set the saved SP after the register window save
   510   //
   511   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
   512   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
   513   __ add(Gargs, Otmp1, Gargs);
   515   if (native_call) {
   516     __ calc_mem_param_words( Glocals_size, Gframe_size );
   517     __ add( Gframe_size,  extra_space, Gframe_size);
   518     __ round_to( Gframe_size, WordsPerLong );
   519     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
   520   } else {
   522     //
   523     // Compute number of locals in method apart from incoming parameters
   524     //
   525     __ lduh( size_of_locals, Otmp1 );
   526     __ sub( Otmp1, Glocals_size, Glocals_size );
   527     __ round_to( Glocals_size, WordsPerLong );
   528     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
   530     // see if the frame is greater than one page in size. If so,
   531     // then we need to verify there is enough stack space remaining
   532     // Frame_size = (max_stack + extra_space) * BytesPerWord;
   533     __ lduh( max_stack, Gframe_size );
   534     __ add( Gframe_size, extra_space, Gframe_size );
   535     __ round_to( Gframe_size, WordsPerLong );
   536     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
   538     // Add in java locals size for stack overflow check only
   539     __ add( Gframe_size, Glocals_size, Gframe_size );
   541     const Register Otmp2 = O4;
   542     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
   543     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
   545     __ sub( Gframe_size, Glocals_size, Gframe_size);
   547     //
   548     // bump SP to accomodate the extra locals
   549     //
   550     __ sub( SP, Glocals_size, SP );
   551   }
   553   //
   554   // now set up a stack frame with the size computed above
   555   //
   556   __ neg( Gframe_size );
   557   __ save( SP, Gframe_size, SP );
   559   //
   560   // now set up all the local cache registers
   561   //
   562   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
   563   // that all present references to Lbyte_code initialize the register
   564   // immediately before use
   565   if (native_call) {
   566     __ mov(G0, Lbcp);
   567   } else {
   568     __ ld_ptr(G5_method, methodOopDesc::const_offset(), Lbcp);
   569     __ add(Lbcp, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
   570   }
   571   __ mov( G5_method, Lmethod);                 // set Lmethod
   572   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
   573   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
   574 #ifdef _LP64
   575   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
   576 #endif
   577   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
   579   // setup interpreter activation registers
   580   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
   582   if (ProfileInterpreter) {
   583 #ifdef FAST_DISPATCH
   584     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
   585     // they both use I2.
   586     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
   587 #endif // FAST_DISPATCH
   588     __ set_method_data_pointer();
   589   }
   591 }
   593 // Empty method, generate a very fast return.
   595 address InterpreterGenerator::generate_empty_entry(void) {
   597   // A method that does nother but return...
   599   address entry = __ pc();
   600   Label slow_path;
   602   __ verify_oop(G5_method);
   604   // do nothing for empty methods (do not even increment invocation counter)
   605   if ( UseFastEmptyMethods) {
   606     // If we need a safepoint check, generate full interpreter entry.
   607     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   608     __ set(sync_state, G3_scratch);
   609     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
   611     // Code: _return
   612     __ retl();
   613     __ delayed()->mov(O5_savedSP, SP);
   615     __ bind(slow_path);
   616     (void) generate_normal_entry(false);
   618     return entry;
   619   }
   620   return NULL;
   621 }
   623 // Call an accessor method (assuming it is resolved, otherwise drop into
   624 // vanilla (slow path) entry
   626 // Generates code to elide accessor methods
   627 // Uses G3_scratch and G1_scratch as scratch
   628 address InterpreterGenerator::generate_accessor_entry(void) {
   630   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   631   // parameter size = 1
   632   // Note: We can only use this code if the getfield has been resolved
   633   //       and if we don't have a null-pointer exception => check for
   634   //       these conditions first and use slow path if necessary.
   635   address entry = __ pc();
   636   Label slow_path;
   639   // XXX: for compressed oops pointer loading and decoding doesn't fit in
   640   // delay slot and damages G1
   641   if ( UseFastAccessorMethods && !UseCompressedOops ) {
   642     // Check if we need to reach a safepoint and generate full interpreter
   643     // frame if so.
   644     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   645     __ load_contents(sync_state, G3_scratch);
   646     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   647     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
   649     // Check if local 0 != NULL
   650     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   651     // check if local 0 == NULL and go the slow path
   652     __ br_null_short(Otos_i, Assembler::pn, slow_path);
   655     // read first instruction word and extract bytecode @ 1 and index @ 2
   656     // get first 4 bytes of the bytecodes (big endian!)
   657     __ ld_ptr(G5_method, methodOopDesc::const_offset(), G1_scratch);
   658     __ ld(G1_scratch, constMethodOopDesc::codes_offset(), G1_scratch);
   660     // move index @ 2 far left then to the right most two bytes.
   661     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   662     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   663                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   665     // get constant pool cache
   666     __ ld_ptr(G5_method, methodOopDesc::constants_offset(), G3_scratch);
   667     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   669     // get specific constant pool cache entry
   670     __ add(G3_scratch, G1_scratch, G3_scratch);
   672     // Check the constant Pool cache entry to see if it has been resolved.
   673     // If not, need the slow path.
   674     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   675     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
   676     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   677     __ and3(G1_scratch, 0xFF, G1_scratch);
   678     __ cmp_and_br_short(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, Assembler::pn, slow_path);
   680     // Get the type and return field offset from the constant pool cache
   681     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
   682     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
   684     Label xreturn_path;
   685     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   686     // because they are different sizes.
   687     // Get the type from the constant pool cache
   688     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
   689     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
   690     ConstantPoolCacheEntry::verify_tosBits();
   691     __ cmp(G1_scratch, atos );
   692     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   693     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   694     __ cmp(G1_scratch, itos);
   695     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   696     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   697     __ cmp(G1_scratch, stos);
   698     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   699     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   700     __ cmp(G1_scratch, ctos);
   701     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   702     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   703 #ifdef ASSERT
   704     __ cmp(G1_scratch, btos);
   705     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   706     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   707     __ should_not_reach_here();
   708 #endif
   709     __ ldsb(Otos_i, G3_scratch, Otos_i);
   710     __ bind(xreturn_path);
   712     // _ireturn/_areturn
   713     __ retl();                      // return from leaf routine
   714     __ delayed()->mov(O5_savedSP, SP);
   716     // Generate regular method entry
   717     __ bind(slow_path);
   718     (void) generate_normal_entry(false);
   719     return entry;
   720   }
   721   return NULL;
   722 }
   724 // Method entry for java.lang.ref.Reference.get.
   725 address InterpreterGenerator::generate_Reference_get_entry(void) {
   726 #ifndef SERIALGC
   727   // Code: _aload_0, _getfield, _areturn
   728   // parameter size = 1
   729   //
   730   // The code that gets generated by this routine is split into 2 parts:
   731   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   732   //    2. The slow path - which is an expansion of the regular method entry.
   733   //
   734   // Notes:-
   735   // * In the G1 code we do not check whether we need to block for
   736   //   a safepoint. If G1 is enabled then we must execute the specialized
   737   //   code for Reference.get (except when the Reference object is null)
   738   //   so that we can log the value in the referent field with an SATB
   739   //   update buffer.
   740   //   If the code for the getfield template is modified so that the
   741   //   G1 pre-barrier code is executed when the current method is
   742   //   Reference.get() then going through the normal method entry
   743   //   will be fine.
   744   // * The G1 code can, however, check the receiver object (the instance
   745   //   of java.lang.Reference) and jump to the slow path if null. If the
   746   //   Reference object is null then we obviously cannot fetch the referent
   747   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   748   //   regular method entry code to generate the NPE.
   749   //
   750   // This code is based on generate_accessor_enty.
   752   address entry = __ pc();
   754   const int referent_offset = java_lang_ref_Reference::referent_offset;
   755   guarantee(referent_offset > 0, "referent offset not initialized");
   757   if (UseG1GC) {
   758      Label slow_path;
   760     // In the G1 code we don't check if we need to reach a safepoint. We
   761     // continue and the thread will safepoint at the next bytecode dispatch.
   763     // Check if local 0 != NULL
   764     // If the receiver is null then it is OK to jump to the slow path.
   765     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   766     // check if local 0 == NULL and go the slow path
   767     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
   770     // Load the value of the referent field.
   771     if (Assembler::is_simm13(referent_offset)) {
   772       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
   773     } else {
   774       __ set(referent_offset, G3_scratch);
   775       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
   776     }
   778     // Generate the G1 pre-barrier code to log the value of
   779     // the referent field in an SATB buffer. Note with
   780     // these parameters the pre-barrier does not generate
   781     // the load of the previous value
   783     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
   784                             Otos_i /* pre_val */,
   785                             G3_scratch /* tmp */,
   786                             true /* preserve_o_regs */);
   788     // _areturn
   789     __ retl();                      // return from leaf routine
   790     __ delayed()->mov(O5_savedSP, SP);
   792     // Generate regular method entry
   793     __ bind(slow_path);
   794     (void) generate_normal_entry(false);
   795     return entry;
   796   }
   797 #endif // SERIALGC
   799   // If G1 is not enabled then attempt to go through the accessor entry point
   800   // Reference.get is an accessor
   801   return generate_accessor_entry();
   802 }
   804 //
   805 // Interpreter stub for calling a native method. (asm interpreter)
   806 // This sets up a somewhat different looking stack for calling the native method
   807 // than the typical interpreter frame setup.
   808 //
   810 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   811   address entry = __ pc();
   813   // the following temporary registers are used during frame creation
   814   const Register Gtmp1 = G3_scratch ;
   815   const Register Gtmp2 = G1_scratch;
   816   bool inc_counter  = UseCompiler || CountCompiledCalls;
   818   // make sure registers are different!
   819   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   821   const Address Laccess_flags(Lmethod, methodOopDesc::access_flags_offset());
   823   __ verify_oop(G5_method);
   825   const Register Glocals_size = G3;
   826   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   828   // make sure method is native & not abstract
   829   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   830 #ifdef ASSERT
   831   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
   832   {
   833     Label L;
   834     __ btst(JVM_ACC_NATIVE, Gtmp1);
   835     __ br(Assembler::notZero, false, Assembler::pt, L);
   836     __ delayed()->nop();
   837     __ stop("tried to execute non-native method as native");
   838     __ bind(L);
   839   }
   840   { Label L;
   841     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   842     __ br(Assembler::zero, false, Assembler::pt, L);
   843     __ delayed()->nop();
   844     __ stop("tried to execute abstract method as non-abstract");
   845     __ bind(L);
   846   }
   847 #endif // ASSERT
   849  // generate the code to allocate the interpreter stack frame
   850   generate_fixed_frame(true);
   852   //
   853   // No locals to initialize for native method
   854   //
   856   // this slot will be set later, we initialize it to null here just in
   857   // case we get a GC before the actual value is stored later
   858   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
   860   const Address do_not_unlock_if_synchronized(G2_thread,
   861     JavaThread::do_not_unlock_if_synchronized_offset());
   862   // Since at this point in the method invocation the exception handler
   863   // would try to exit the monitor of synchronized methods which hasn't
   864   // been entered yet, we set the thread local variable
   865   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   866   // runtime, exception handling i.e. unlock_if_synchronized_method will
   867   // check this thread local flag.
   868   // This flag has two effects, one is to force an unwind in the topmost
   869   // interpreter frame and not perform an unlock while doing so.
   871   __ movbool(true, G3_scratch);
   872   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   874   // increment invocation counter and check for overflow
   875   //
   876   // Note: checking for negative value instead of overflow
   877   //       so we have a 'sticky' overflow test (may be of
   878   //       importance as soon as we have true MT/MP)
   879   Label invocation_counter_overflow;
   880   Label Lcontinue;
   881   if (inc_counter) {
   882     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   884   }
   885   __ bind(Lcontinue);
   887   bang_stack_shadow_pages(true);
   889   // reset the _do_not_unlock_if_synchronized flag
   890   __ stbool(G0, do_not_unlock_if_synchronized);
   892   // check for synchronized methods
   893   // Must happen AFTER invocation_counter check and stack overflow check,
   894   // so method is not locked if overflows.
   896   if (synchronized) {
   897     lock_method();
   898   } else {
   899 #ifdef ASSERT
   900     { Label ok;
   901       __ ld(Laccess_flags, O0);
   902       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   903       __ br( Assembler::zero, false, Assembler::pt, ok);
   904       __ delayed()->nop();
   905       __ stop("method needs synchronization");
   906       __ bind(ok);
   907     }
   908 #endif // ASSERT
   909   }
   912   // start execution
   913   __ verify_thread();
   915   // JVMTI support
   916   __ notify_method_entry();
   918   // native call
   920   // (note that O0 is never an oop--at most it is a handle)
   921   // It is important not to smash any handles created by this call,
   922   // until any oop handle in O0 is dereferenced.
   924   // (note that the space for outgoing params is preallocated)
   926   // get signature handler
   927   { Label L;
   928     Address signature_handler(Lmethod, methodOopDesc::signature_handler_offset());
   929     __ ld_ptr(signature_handler, G3_scratch);
   930     __ br_notnull_short(G3_scratch, Assembler::pt, L);
   931     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
   932     __ ld_ptr(signature_handler, G3_scratch);
   933     __ bind(L);
   934   }
   936   // Push a new frame so that the args will really be stored in
   937   // Copy a few locals across so the new frame has the variables
   938   // we need but these values will be dead at the jni call and
   939   // therefore not gc volatile like the values in the current
   940   // frame (Lmethod in particular)
   942   // Flush the method pointer to the register save area
   943   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   944   __ mov(Llocals, O1);
   946   // calculate where the mirror handle body is allocated in the interpreter frame:
   947   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
   949   // Calculate current frame size
   950   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   951   __ save(SP, O3, SP);        // Allocate an identical sized frame
   953   // Note I7 has leftover trash. Slow signature handler will fill it in
   954   // should we get there. Normal jni call will set reasonable last_Java_pc
   955   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   956   // in it).
   958   // Load interpreter frame's Lmethod into same register here
   960   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   962   __ mov(I1, Llocals);
   963   __ mov(I2, Lscratch2);     // save the address of the mirror
   966   // ONLY Lmethod and Llocals are valid here!
   968   // call signature handler, It will move the arg properly since Llocals in current frame
   969   // matches that in outer frame
   971   __ callr(G3_scratch, 0);
   972   __ delayed()->nop();
   974   // Result handler is in Lscratch
   976   // Reload interpreter frame's Lmethod since slow signature handler may block
   977   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   979   { Label not_static;
   981     __ ld(Laccess_flags, O0);
   982     __ btst(JVM_ACC_STATIC, O0);
   983     __ br( Assembler::zero, false, Assembler::pt, not_static);
   984     // get native function entry point(O0 is a good temp until the very end)
   985     __ delayed()->ld_ptr(Lmethod, in_bytes(methodOopDesc::native_function_offset()), O0);
   986     // for static methods insert the mirror argument
   987     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   989     __ ld_ptr(Lmethod, methodOopDesc:: constants_offset(), O1);
   990     __ ld_ptr(O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
   991     __ ld_ptr(O1, mirror_offset, O1);
   992 #ifdef ASSERT
   993     if (!PrintSignatureHandlers)  // do not dirty the output with this
   994     { Label L;
   995       __ br_notnull_short(O1, Assembler::pt, L);
   996       __ stop("mirror is missing");
   997       __ bind(L);
   998     }
   999 #endif // ASSERT
  1000     __ st_ptr(O1, Lscratch2, 0);
  1001     __ mov(Lscratch2, O1);
  1002     __ bind(not_static);
  1005   // At this point, arguments have been copied off of stack into
  1006   // their JNI positions, which are O1..O5 and SP[68..].
  1007   // Oops are boxed in-place on the stack, with handles copied to arguments.
  1008   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
  1010 #ifdef ASSERT
  1011   { Label L;
  1012     __ br_notnull_short(O0, Assembler::pt, L);
  1013     __ stop("native entry point is missing");
  1014     __ bind(L);
  1016 #endif // ASSERT
  1018   //
  1019   // setup the frame anchor
  1020   //
  1021   // The scavenge function only needs to know that the PC of this frame is
  1022   // in the interpreter method entry code, it doesn't need to know the exact
  1023   // PC and hence we can use O7 which points to the return address from the
  1024   // previous call in the code stream (signature handler function)
  1025   //
  1026   // The other trick is we set last_Java_sp to FP instead of the usual SP because
  1027   // we have pushed the extra frame in order to protect the volatile register(s)
  1028   // in that frame when we return from the jni call
  1029   //
  1031   __ set_last_Java_frame(FP, O7);
  1032   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
  1033                    // not meaningless information that'll confuse me.
  1035   // flush the windows now. We don't care about the current (protection) frame
  1036   // only the outer frames
  1038   __ flush_windows();
  1040   // mark windows as flushed
  1041   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1042   __ set(JavaFrameAnchor::flushed, G3_scratch);
  1043   __ st(G3_scratch, flags);
  1045   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
  1047   Address thread_state(G2_thread, JavaThread::thread_state_offset());
  1048 #ifdef ASSERT
  1049   { Label L;
  1050     __ ld(thread_state, G3_scratch);
  1051     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
  1052     __ stop("Wrong thread state in native stub");
  1053     __ bind(L);
  1055 #endif // ASSERT
  1056   __ set(_thread_in_native, G3_scratch);
  1057   __ st(G3_scratch, thread_state);
  1059   // Call the jni method, using the delay slot to set the JNIEnv* argument.
  1060   __ save_thread(L7_thread_cache); // save Gthread
  1061   __ callr(O0, 0);
  1062   __ delayed()->
  1063      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
  1065   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
  1067   __ restore_thread(L7_thread_cache); // restore G2_thread
  1068   __ reinit_heapbase();
  1070   // must we block?
  1072   // Block, if necessary, before resuming in _thread_in_Java state.
  1073   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  1074   { Label no_block;
  1075     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  1077     // Switch thread to "native transition" state before reading the synchronization state.
  1078     // This additional state is necessary because reading and testing the synchronization
  1079     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1080     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1081     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1082     //     Thread A is resumed to finish this native method, but doesn't block here since it
  1083     //     didn't see any synchronization is progress, and escapes.
  1084     __ set(_thread_in_native_trans, G3_scratch);
  1085     __ st(G3_scratch, thread_state);
  1086     if(os::is_MP()) {
  1087       if (UseMembar) {
  1088         // Force this write out before the read below
  1089         __ membar(Assembler::StoreLoad);
  1090       } else {
  1091         // Write serialization page so VM thread can do a pseudo remote membar.
  1092         // We use the current thread pointer to calculate a thread specific
  1093         // offset to write to within the page. This minimizes bus traffic
  1094         // due to cache line collision.
  1095         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  1098     __ load_contents(sync_state, G3_scratch);
  1099     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  1101     Label L;
  1102     __ br(Assembler::notEqual, false, Assembler::pn, L);
  1103     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
  1104     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  1105     __ bind(L);
  1107     // Block.  Save any potential method result value before the operation and
  1108     // use a leaf call to leave the last_Java_frame setup undisturbed.
  1109     save_native_result();
  1110     __ call_VM_leaf(L7_thread_cache,
  1111                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1112                     G2_thread);
  1114     // Restore any method result value
  1115     restore_native_result();
  1116     __ bind(no_block);
  1119   // Clear the frame anchor now
  1121   __ reset_last_Java_frame();
  1123   // Move the result handler address
  1124   __ mov(Lscratch, G3_scratch);
  1125   // return possible result to the outer frame
  1126 #ifndef __LP64
  1127   __ mov(O0, I0);
  1128   __ restore(O1, G0, O1);
  1129 #else
  1130   __ restore(O0, G0, O0);
  1131 #endif /* __LP64 */
  1133   // Move result handler to expected register
  1134   __ mov(G3_scratch, Lscratch);
  1136   // Back in normal (native) interpreter frame. State is thread_in_native_trans
  1137   // switch to thread_in_Java.
  1139   __ set(_thread_in_Java, G3_scratch);
  1140   __ st(G3_scratch, thread_state);
  1142   // reset handle block
  1143   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
  1144   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
  1146   // If we have an oop result store it where it will be safe for any further gc
  1147   // until we return now that we've released the handle it might be protected by
  1150     Label no_oop, store_result;
  1152     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
  1153     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
  1154     __ addcc(G0, O0, O0);
  1155     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
  1156     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
  1157     __ mov(G0, O0);
  1159     __ bind(store_result);
  1160     // Store it where gc will look for it and result handler expects it.
  1161     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
  1163     __ bind(no_oop);
  1168   // handle exceptions (exception handling will handle unlocking!)
  1169   { Label L;
  1170     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1171     __ ld_ptr(exception_addr, Gtemp);
  1172     __ br_null_short(Gtemp, Assembler::pt, L);
  1173     // Note: This could be handled more efficiently since we know that the native
  1174     //       method doesn't have an exception handler. We could directly return
  1175     //       to the exception handler for the caller.
  1176     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1177     __ should_not_reach_here();
  1178     __ bind(L);
  1181   // JVMTI support (preserves thread register)
  1182   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
  1184   if (synchronized) {
  1185     // save and restore any potential method result value around the unlocking operation
  1186     save_native_result();
  1188     __ add( __ top_most_monitor(), O1);
  1189     __ unlock_object(O1);
  1191     restore_native_result();
  1194 #if defined(COMPILER2) && !defined(_LP64)
  1196   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1197   // or compiled so just be safe.
  1199   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1200   __ srl (O1, 0, O1);           // Zero extend O1
  1201   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1203 #endif /* COMPILER2 && !_LP64 */
  1205   // dispose of return address and remove activation
  1206 #ifdef ASSERT
  1208     Label ok;
  1209     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
  1210     __ stop("bad I5_savedSP value");
  1211     __ should_not_reach_here();
  1212     __ bind(ok);
  1214 #endif
  1215   if (TraceJumps) {
  1216     // Move target to register that is recordable
  1217     __ mov(Lscratch, G3_scratch);
  1218     __ JMP(G3_scratch, 0);
  1219   } else {
  1220     __ jmp(Lscratch, 0);
  1222   __ delayed()->nop();
  1225   if (inc_counter) {
  1226     // handle invocation counter overflow
  1227     __ bind(invocation_counter_overflow);
  1228     generate_counter_overflow(Lcontinue);
  1233   return entry;
  1237 // Generic method entry to (asm) interpreter
  1238 //------------------------------------------------------------------------------------------------------------------------
  1239 //
  1240 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1241   address entry = __ pc();
  1243   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1245   // the following temporary registers are used during frame creation
  1246   const Register Gtmp1 = G3_scratch ;
  1247   const Register Gtmp2 = G1_scratch;
  1249   // make sure registers are different!
  1250   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
  1252   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
  1253   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
  1254   // Seems like G5_method is live at the point this is used. So we could make this look consistent
  1255   // and use in the asserts.
  1256   const Address access_flags      (Lmethod,   methodOopDesc::access_flags_offset());
  1258   __ verify_oop(G5_method);
  1260   const Register Glocals_size = G3;
  1261   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
  1263   // make sure method is not native & not abstract
  1264   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
  1265 #ifdef ASSERT
  1266   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
  1268     Label L;
  1269     __ btst(JVM_ACC_NATIVE, Gtmp1);
  1270     __ br(Assembler::zero, false, Assembler::pt, L);
  1271     __ delayed()->nop();
  1272     __ stop("tried to execute native method as non-native");
  1273     __ bind(L);
  1275   { Label L;
  1276     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
  1277     __ br(Assembler::zero, false, Assembler::pt, L);
  1278     __ delayed()->nop();
  1279     __ stop("tried to execute abstract method as non-abstract");
  1280     __ bind(L);
  1282 #endif // ASSERT
  1284   // generate the code to allocate the interpreter stack frame
  1286   generate_fixed_frame(false);
  1288 #ifdef FAST_DISPATCH
  1289   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1290                                           // set bytecode dispatch table base
  1291 #endif
  1293   //
  1294   // Code to initialize the extra (i.e. non-parm) locals
  1295   //
  1296   Register init_value = noreg;    // will be G0 if we must clear locals
  1297   // The way the code was setup before zerolocals was always true for vanilla java entries.
  1298   // It could only be false for the specialized entries like accessor or empty which have
  1299   // no extra locals so the testing was a waste of time and the extra locals were always
  1300   // initialized. We removed this extra complication to already over complicated code.
  1302   init_value = G0;
  1303   Label clear_loop;
  1305   // NOTE: If you change the frame layout, this code will need to
  1306   // be updated!
  1307   __ lduh( size_of_locals, O2 );
  1308   __ lduh( size_of_parameters, O1 );
  1309   __ sll( O2, Interpreter::logStackElementSize, O2);
  1310   __ sll( O1, Interpreter::logStackElementSize, O1 );
  1311   __ sub( Llocals, O2, O2 );
  1312   __ sub( Llocals, O1, O1 );
  1314   __ bind( clear_loop );
  1315   __ inc( O2, wordSize );
  1317   __ cmp( O2, O1 );
  1318   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1319   __ delayed()->st_ptr( init_value, O2, 0 );
  1321   const Address do_not_unlock_if_synchronized(G2_thread,
  1322     JavaThread::do_not_unlock_if_synchronized_offset());
  1323   // Since at this point in the method invocation the exception handler
  1324   // would try to exit the monitor of synchronized methods which hasn't
  1325   // been entered yet, we set the thread local variable
  1326   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1327   // runtime, exception handling i.e. unlock_if_synchronized_method will
  1328   // check this thread local flag.
  1329   __ movbool(true, G3_scratch);
  1330   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
  1332   // increment invocation counter and check for overflow
  1333   //
  1334   // Note: checking for negative value instead of overflow
  1335   //       so we have a 'sticky' overflow test (may be of
  1336   //       importance as soon as we have true MT/MP)
  1337   Label invocation_counter_overflow;
  1338   Label profile_method;
  1339   Label profile_method_continue;
  1340   Label Lcontinue;
  1341   if (inc_counter) {
  1342     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1343     if (ProfileInterpreter) {
  1344       __ bind(profile_method_continue);
  1347   __ bind(Lcontinue);
  1349   bang_stack_shadow_pages(false);
  1351   // reset the _do_not_unlock_if_synchronized flag
  1352   __ stbool(G0, do_not_unlock_if_synchronized);
  1354   // check for synchronized methods
  1355   // Must happen AFTER invocation_counter check and stack overflow check,
  1356   // so method is not locked if overflows.
  1358   if (synchronized) {
  1359     lock_method();
  1360   } else {
  1361 #ifdef ASSERT
  1362     { Label ok;
  1363       __ ld(access_flags, O0);
  1364       __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1365       __ br( Assembler::zero, false, Assembler::pt, ok);
  1366       __ delayed()->nop();
  1367       __ stop("method needs synchronization");
  1368       __ bind(ok);
  1370 #endif // ASSERT
  1373   // start execution
  1375   __ verify_thread();
  1377   // jvmti support
  1378   __ notify_method_entry();
  1380   // start executing instructions
  1381   __ dispatch_next(vtos);
  1384   if (inc_counter) {
  1385     if (ProfileInterpreter) {
  1386       // We have decided to profile this method in the interpreter
  1387       __ bind(profile_method);
  1389       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1390       __ set_method_data_pointer_for_bcp();
  1391       __ ba_short(profile_method_continue);
  1394     // handle invocation counter overflow
  1395     __ bind(invocation_counter_overflow);
  1396     generate_counter_overflow(Lcontinue);
  1400   return entry;
  1404 //----------------------------------------------------------------------------------------------------
  1405 // Entry points & stack frame layout
  1406 //
  1407 // Here we generate the various kind of entries into the interpreter.
  1408 // The two main entry type are generic bytecode methods and native call method.
  1409 // These both come in synchronized and non-synchronized versions but the
  1410 // frame layout they create is very similar. The other method entry
  1411 // types are really just special purpose entries that are really entry
  1412 // and interpretation all in one. These are for trivial methods like
  1413 // accessor, empty, or special math methods.
  1414 //
  1415 // When control flow reaches any of the entry types for the interpreter
  1416 // the following holds ->
  1417 //
  1418 // C2 Calling Conventions:
  1419 //
  1420 // The entry code below assumes that the following registers are set
  1421 // when coming in:
  1422 //    G5_method: holds the methodOop of the method to call
  1423 //    Lesp:    points to the TOS of the callers expression stack
  1424 //             after having pushed all the parameters
  1425 //
  1426 // The entry code does the following to setup an interpreter frame
  1427 //   pop parameters from the callers stack by adjusting Lesp
  1428 //   set O0 to Lesp
  1429 //   compute X = (max_locals - num_parameters)
  1430 //   bump SP up by X to accomadate the extra locals
  1431 //   compute X = max_expression_stack
  1432 //               + vm_local_words
  1433 //               + 16 words of register save area
  1434 //   save frame doing a save sp, -X, sp growing towards lower addresses
  1435 //   set Lbcp, Lmethod, LcpoolCache
  1436 //   set Llocals to i0
  1437 //   set Lmonitors to FP - rounded_vm_local_words
  1438 //   set Lesp to Lmonitors - 4
  1439 //
  1440 //  The frame has now been setup to do the rest of the entry code
  1442 // Try this optimization:  Most method entries could live in a
  1443 // "one size fits all" stack frame without all the dynamic size
  1444 // calculations.  It might be profitable to do all this calculation
  1445 // statically and approximately for "small enough" methods.
  1447 //-----------------------------------------------------------------------------------------------
  1449 // C1 Calling conventions
  1450 //
  1451 // Upon method entry, the following registers are setup:
  1452 //
  1453 // g2 G2_thread: current thread
  1454 // g5 G5_method: method to activate
  1455 // g4 Gargs  : pointer to last argument
  1456 //
  1457 //
  1458 // Stack:
  1459 //
  1460 // +---------------+ <--- sp
  1461 // |               |
  1462 // : reg save area :
  1463 // |               |
  1464 // +---------------+ <--- sp + 0x40
  1465 // |               |
  1466 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1467 // |               |
  1468 // +---------------+ <--- sp + 0x5c
  1469 // |               |
  1470 // :     free      :
  1471 // |               |
  1472 // +---------------+ <--- Gargs
  1473 // |               |
  1474 // :   arguments   :
  1475 // |               |
  1476 // +---------------+
  1477 // |               |
  1478 //
  1479 //
  1480 //
  1481 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
  1482 //
  1483 // +---------------+ <--- sp
  1484 // |               |
  1485 // : reg save area :
  1486 // |               |
  1487 // +---------------+ <--- sp + 0x40
  1488 // |               |
  1489 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1490 // |               |
  1491 // +---------------+ <--- sp + 0x5c
  1492 // |               |
  1493 // :               :
  1494 // |               | <--- Lesp
  1495 // +---------------+ <--- Lmonitors (fp - 0x18)
  1496 // |   VM locals   |
  1497 // +---------------+ <--- fp
  1498 // |               |
  1499 // : reg save area :
  1500 // |               |
  1501 // +---------------+ <--- fp + 0x40
  1502 // |               |
  1503 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1504 // |               |
  1505 // +---------------+ <--- fp + 0x5c
  1506 // |               |
  1507 // :     free      :
  1508 // |               |
  1509 // +---------------+
  1510 // |               |
  1511 // : nonarg locals :
  1512 // |               |
  1513 // +---------------+
  1514 // |               |
  1515 // :   arguments   :
  1516 // |               | <--- Llocals
  1517 // +---------------+ <--- Gargs
  1518 // |               |
  1520 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  1522   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  1523   // expression stack, the callee will have callee_extra_locals (so we can account for
  1524   // frame extension) and monitor_size for monitors. Basically we need to calculate
  1525   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  1526   //
  1527   //
  1528   // The big complicating thing here is that we must ensure that the stack stays properly
  1529   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  1530   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  1531   // the caller so we must ensure that it is properly aligned for our callee.
  1532   //
  1533   const int rounded_vm_local_words =
  1534        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1535   // callee_locals and max_stack are counts, not the size in frame.
  1536   const int locals_size =
  1537        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  1538   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  1539   return (round_to((max_stack_words
  1540                    //6815692//+ methodOopDesc::extra_stack_words()
  1541                    + rounded_vm_local_words
  1542                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  1543                    // already rounded
  1544                    + locals_size + monitor_size);
  1547 // How much stack a method top interpreter activation needs in words.
  1548 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1550   // See call_stub code
  1551   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  1552                                  WordsPerLong);    // 7 + register save area
  1554   // Save space for one monitor to get into the interpreted method in case
  1555   // the method is synchronized
  1556   int monitor_size    = method->is_synchronized() ?
  1557                                 1*frame::interpreter_frame_monitor_size() : 0;
  1558   return size_activation_helper(method->max_locals(), method->max_stack(),
  1559                                  monitor_size) + call_stub_size;
  1562 int AbstractInterpreter::layout_activation(methodOop method,
  1563                                            int tempcount,
  1564                                            int popframe_extra_args,
  1565                                            int moncount,
  1566                                            int caller_actual_parameters,
  1567                                            int callee_param_count,
  1568                                            int callee_local_count,
  1569                                            frame* caller,
  1570                                            frame* interpreter_frame,
  1571                                            bool is_top_frame) {
  1572   // Note: This calculation must exactly parallel the frame setup
  1573   // in InterpreterGenerator::generate_fixed_frame.
  1574   // If f!=NULL, set up the following variables:
  1575   //   - Lmethod
  1576   //   - Llocals
  1577   //   - Lmonitors (to the indicated number of monitors)
  1578   //   - Lesp (to the indicated number of temps)
  1579   // The frame f (if not NULL) on entry is a description of the caller of the frame
  1580   // we are about to layout. We are guaranteed that we will be able to fill in a
  1581   // new interpreter frame as its callee (i.e. the stack space is allocated and
  1582   // the amount was determined by an earlier call to this method with f == NULL).
  1583   // On return f (if not NULL) while describe the interpreter frame we just layed out.
  1585   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
  1586   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1588   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1589   //
  1590   // Note: if you look closely this appears to be doing something much different
  1591   // than generate_fixed_frame. What is happening is this. On sparc we have to do
  1592   // this dance with interpreter_sp_adjustment because the window save area would
  1593   // appear just below the bottom (tos) of the caller's java expression stack. Because
  1594   // the interpreter want to have the locals completely contiguous generate_fixed_frame
  1595   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
  1596   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
  1597   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
  1598   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
  1599   // because the oldest frame would have adjust its callers frame and yet that frame
  1600   // already exists and isn't part of this array of frames we are unpacking. So at first
  1601   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
  1602   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
  1603   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
  1604   // add up. It does seem like it simpler to account for the adjustment here (and remove the
  1605   // callee... parameters here). However this would mean that this routine would have to take
  1606   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
  1607   // and run the calling loop in the reverse order. This would also would appear to mean making
  1608   // this code aware of what the interactions are when that initial caller fram was an osr or
  1609   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
  1610   // there is no sense in messing working code.
  1611   //
  1613   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
  1614   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
  1616   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
  1617                                               monitor_size);
  1619   if (interpreter_frame != NULL) {
  1620     // The skeleton frame must already look like an interpreter frame
  1621     // even if not fully filled out.
  1622     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
  1624     intptr_t* fp = interpreter_frame->fp();
  1626     JavaThread* thread = JavaThread::current();
  1627     RegisterMap map(thread, false);
  1628     // More verification that skeleton frame is properly walkable
  1629     assert(fp == caller->sp(), "fp must match");
  1631     intptr_t* montop     = fp - rounded_vm_local_words;
  1633     // preallocate monitors (cf. __ add_monitor_to_stack)
  1634     intptr_t* monitors = montop - monitor_size;
  1636     // preallocate stack space
  1637     intptr_t*  esp = monitors - 1 -
  1638                      (tempcount * Interpreter::stackElementWords) -
  1639                      popframe_extra_args;
  1641     int local_words = method->max_locals() * Interpreter::stackElementWords;
  1642     NEEDS_CLEANUP;
  1643     intptr_t* locals;
  1644     if (caller->is_interpreted_frame()) {
  1645       // Can force the locals area to end up properly overlapping the top of the expression stack.
  1646       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
  1647       // Note that this computation means we replace size_of_parameters() values from the caller
  1648       // interpreter frame's expression stack with our argument locals
  1649       int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
  1650       locals = Lesp_ptr + parm_words;
  1651       int delta = local_words - parm_words;
  1652       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
  1653       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
  1654     } else {
  1655       assert(caller->is_compiled_frame() || caller->is_entry_frame() || caller->is_ricochet_frame(), "only possible cases");
  1656       // Don't have Lesp available; lay out locals block in the caller
  1657       // adjacent to the register window save area.
  1658       //
  1659       // Compiled frames do not allocate a varargs area which is why this if
  1660       // statement is needed.
  1661       //
  1662       if (caller->is_compiled_frame()) {
  1663         locals = fp + frame::register_save_words + local_words - 1;
  1664       } else {
  1665         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  1667       if (!caller->is_entry_frame()) {
  1668         // Caller wants his own SP back
  1669         int caller_frame_size = caller->cb()->frame_size();
  1670         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
  1673     if (TraceDeoptimization) {
  1674       if (caller->is_entry_frame()) {
  1675         // make sure I5_savedSP and the entry frames notion of saved SP
  1676         // agree.  This assertion duplicate a check in entry frame code
  1677         // but catches the failure earlier.
  1678         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
  1679                "would change callers SP");
  1681       if (caller->is_entry_frame()) {
  1682         tty->print("entry ");
  1684       if (caller->is_compiled_frame()) {
  1685         tty->print("compiled ");
  1686         if (caller->is_deoptimized_frame()) {
  1687           tty->print("(deopt) ");
  1690       if (caller->is_interpreted_frame()) {
  1691         tty->print("interpreted ");
  1693       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
  1694       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
  1695       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
  1696       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
  1697       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
  1698       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
  1699       tty->print_cr("Llocals = 0x%x", locals);
  1700       tty->print_cr("Lesp = 0x%x", esp);
  1701       tty->print_cr("Lmonitors = 0x%x", monitors);
  1704     if (method->max_locals() > 0) {
  1705       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
  1706       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
  1707       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
  1708       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
  1710 #ifdef _LP64
  1711     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
  1712 #endif
  1714     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
  1715     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
  1716     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
  1717     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
  1718     // Llast_SP will be same as SP as there is no adapter space
  1719     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
  1720     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
  1721 #ifdef FAST_DISPATCH
  1722     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
  1723 #endif
  1726 #ifdef ASSERT
  1727     BasicObjectLock* mp = (BasicObjectLock*)monitors;
  1729     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
  1730     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
  1731     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
  1732     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
  1733     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
  1735     // check bounds
  1736     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
  1737     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
  1738     assert(lo < monitors && montop <= hi, "monitors in bounds");
  1739     assert(lo <= esp && esp < monitors, "esp in bounds");
  1740 #endif // ASSERT
  1743   return raw_frame_size;
  1746 //----------------------------------------------------------------------------------------------------
  1747 // Exceptions
  1748 void TemplateInterpreterGenerator::generate_throw_exception() {
  1750   // Entry point in previous activation (i.e., if the caller was interpreted)
  1751   Interpreter::_rethrow_exception_entry = __ pc();
  1752   // O0: exception
  1754   // entry point for exceptions thrown within interpreter code
  1755   Interpreter::_throw_exception_entry = __ pc();
  1756   __ verify_thread();
  1757   // expression stack is undefined here
  1758   // O0: exception, i.e. Oexception
  1759   // Lbcp: exception bcx
  1760   __ verify_oop(Oexception);
  1763   // expression stack must be empty before entering the VM in case of an exception
  1764   __ empty_expression_stack();
  1765   // find exception handler address and preserve exception oop
  1766   // call C routine to find handler and jump to it
  1767   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
  1768   __ push_ptr(O1); // push exception for exception handler bytecodes
  1770   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
  1771   __ delayed()->nop();
  1774   // if the exception is not handled in the current frame
  1775   // the frame is removed and the exception is rethrown
  1776   // (i.e. exception continuation is _rethrow_exception)
  1777   //
  1778   // Note: At this point the bci is still the bxi for the instruction which caused
  1779   //       the exception and the expression stack is empty. Thus, for any VM calls
  1780   //       at this point, GC will find a legal oop map (with empty expression stack).
  1782   // in current activation
  1783   // tos: exception
  1784   // Lbcp: exception bcp
  1786   //
  1787   // JVMTI PopFrame support
  1788   //
  1790   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1791   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1792   // Set the popframe_processing bit in popframe_condition indicating that we are
  1793   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1794   // popframe handling cycles.
  1796   __ ld(popframe_condition_addr, G3_scratch);
  1797   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
  1798   __ stw(G3_scratch, popframe_condition_addr);
  1800   // Empty the expression stack, as in normal exception handling
  1801   __ empty_expression_stack();
  1802   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1805     // Check to see whether we are returning to a deoptimized frame.
  1806     // (The PopFrame call ensures that the caller of the popped frame is
  1807     // either interpreted or compiled and deoptimizes it if compiled.)
  1808     // In this case, we can't call dispatch_next() after the frame is
  1809     // popped, but instead must save the incoming arguments and restore
  1810     // them after deoptimization has occurred.
  1811     //
  1812     // Note that we don't compare the return PC against the
  1813     // deoptimization blob's unpack entry because of the presence of
  1814     // adapter frames in C2.
  1815     Label caller_not_deoptimized;
  1816     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
  1817     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
  1819     const Register Gtmp1 = G3_scratch;
  1820     const Register Gtmp2 = G1_scratch;
  1822     // Compute size of arguments for saving when returning to deoptimized caller
  1823     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
  1824     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
  1825     __ sub(Llocals, Gtmp1, Gtmp2);
  1826     __ add(Gtmp2, wordSize, Gtmp2);
  1827     // Save these arguments
  1828     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
  1829     // Inform deoptimization that it is responsible for restoring these arguments
  1830     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
  1831     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1832     __ st(Gtmp1, popframe_condition_addr);
  1834     // Return from the current method
  1835     // The caller's SP was adjusted upon method entry to accomodate
  1836     // the callee's non-argument locals. Undo that adjustment.
  1837     __ ret();
  1838     __ delayed()->restore(I5_savedSP, G0, SP);
  1840     __ bind(caller_not_deoptimized);
  1843   // Clear the popframe condition flag
  1844   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
  1846   // Get out of the current method (how this is done depends on the particular compiler calling
  1847   // convention that the interpreter currently follows)
  1848   // The caller's SP was adjusted upon method entry to accomodate
  1849   // the callee's non-argument locals. Undo that adjustment.
  1850   __ restore(I5_savedSP, G0, SP);
  1851   // The method data pointer was incremented already during
  1852   // call profiling. We have to restore the mdp for the current bcp.
  1853   if (ProfileInterpreter) {
  1854     __ set_method_data_pointer_for_bcp();
  1856   // Resume bytecode interpretation at the current bcp
  1857   __ dispatch_next(vtos);
  1858   // end of JVMTI PopFrame support
  1860   Interpreter::_remove_activation_entry = __ pc();
  1862   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
  1863   __ pop_ptr(Oexception);                                  // get exception
  1865   // Intel has the following comment:
  1866   //// remove the activation (without doing throws on illegalMonitorExceptions)
  1867   // They remove the activation without checking for bad monitor state.
  1868   // %%% We should make sure this is the right semantics before implementing.
  1870   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
  1871   __ set_vm_result(Oexception);
  1872   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
  1874   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
  1876   __ get_vm_result(Oexception);
  1877   __ verify_oop(Oexception);
  1879     const int return_reg_adjustment = frame::pc_return_offset;
  1880   Address issuing_pc_addr(I7, return_reg_adjustment);
  1882   // We are done with this activation frame; find out where to go next.
  1883   // The continuation point will be an exception handler, which expects
  1884   // the following registers set up:
  1885   //
  1886   // Oexception: exception
  1887   // Oissuing_pc: the local call that threw exception
  1888   // Other On: garbage
  1889   // In/Ln:  the contents of the caller's register window
  1890   //
  1891   // We do the required restore at the last possible moment, because we
  1892   // need to preserve some state across a runtime call.
  1893   // (Remember that the caller activation is unknown--it might not be
  1894   // interpreted, so things like Lscratch are useless in the caller.)
  1896   // Although the Intel version uses call_C, we can use the more
  1897   // compact call_VM.  (The only real difference on SPARC is a
  1898   // harmlessly ignored [re]set_last_Java_frame, compared with
  1899   // the Intel code which lacks this.)
  1900   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  1901   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  1902   __ super_call_VM_leaf(L7_thread_cache,
  1903                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1904                         G2_thread, Oissuing_pc->after_save());
  1906   // The caller's SP was adjusted upon method entry to accomodate
  1907   // the callee's non-argument locals. Undo that adjustment.
  1908   __ JMP(O0, 0);                         // return exception handler in caller
  1909   __ delayed()->restore(I5_savedSP, G0, SP);
  1911   // (same old exception object is already in Oexception; see above)
  1912   // Note that an "issuing PC" is actually the next PC after the call
  1916 //
  1917 // JVMTI ForceEarlyReturn support
  1918 //
  1920 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1921   address entry = __ pc();
  1923   __ empty_expression_stack();
  1924   __ load_earlyret_value(state);
  1926   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
  1927   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
  1929   // Clear the earlyret state
  1930   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
  1932   __ remove_activation(state,
  1933                        /* throw_monitor_exception */ false,
  1934                        /* install_monitor_exception */ false);
  1936   // The caller's SP was adjusted upon method entry to accomodate
  1937   // the callee's non-argument locals. Undo that adjustment.
  1938   __ ret();                             // return to caller
  1939   __ delayed()->restore(I5_savedSP, G0, SP);
  1941   return entry;
  1942 } // end of JVMTI ForceEarlyReturn support
  1945 //------------------------------------------------------------------------------------------------------------------------
  1946 // Helper for vtos entry point generation
  1948 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1949   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1950   Label L;
  1951   aep = __ pc(); __ push_ptr(); __ ba_short(L);
  1952   fep = __ pc(); __ push_f();   __ ba_short(L);
  1953   dep = __ pc(); __ push_d();   __ ba_short(L);
  1954   lep = __ pc(); __ push_l();   __ ba_short(L);
  1955   iep = __ pc(); __ push_i();
  1956   bep = cep = sep = iep;                        // there aren't any
  1957   vep = __ pc(); __ bind(L);                    // fall through
  1958   generate_and_dispatch(t);
  1961 // --------------------------------------------------------------------------------
  1964 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1965  : TemplateInterpreterGenerator(code) {
  1966    generate_all(); // down here so it can be "virtual"
  1969 // --------------------------------------------------------------------------------
  1971 // Non-product code
  1972 #ifndef PRODUCT
  1973 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1974   address entry = __ pc();
  1976   __ push(state);
  1977   __ mov(O7, Lscratch); // protect return address within interpreter
  1979   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
  1980   __ mov( Otos_l2, G3_scratch );
  1981   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
  1982   __ mov(Lscratch, O7); // restore return address
  1983   __ pop(state);
  1984   __ retl();
  1985   __ delayed()->nop();
  1987   return entry;
  1991 // helpers for generate_and_dispatch
  1993 void TemplateInterpreterGenerator::count_bytecode() {
  1994   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
  1998 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1999   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
  2003 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2004   AddressLiteral index   (&BytecodePairHistogram::_index);
  2005   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
  2007   // get index, shift out old bytecode, bring in new bytecode, and store it
  2008   // _index = (_index >> log2_number_of_codes) |
  2009   //          (bytecode << log2_number_of_codes);
  2011   __ load_contents(index, G4_scratch);
  2012   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
  2013   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
  2014   __ or3( G3_scratch,  G4_scratch, G4_scratch );
  2015   __ store_contents(G4_scratch, index, G3_scratch);
  2017   // bump bucket contents
  2018   // _counters[_index] ++;
  2020   __ set(counters, G3_scratch);                       // loads into G3_scratch
  2021   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
  2022   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
  2023   __ ld (G3_scratch, 0, G4_scratch);
  2024   __ inc (G4_scratch);
  2025   __ st (G4_scratch, 0, G3_scratch);
  2029 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2030   // Call a little run-time stub to avoid blow-up for each bytecode.
  2031   // The run-time runtime saves the right registers, depending on
  2032   // the tosca in-state for the given template.
  2033   address entry = Interpreter::trace_code(t->tos_in());
  2034   guarantee(entry != NULL, "entry must have been generated");
  2035   __ call(entry, relocInfo::none);
  2036   __ delayed()->nop();
  2040 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2041   AddressLiteral counter(&BytecodeCounter::_counter_value);
  2042   __ load_contents(counter, G3_scratch);
  2043   AddressLiteral stop_at(&StopInterpreterAt);
  2044   __ load_ptr_contents(stop_at, G4_scratch);
  2045   __ cmp(G3_scratch, G4_scratch);
  2046   __ breakpoint_trap(Assembler::equal);
  2048 #endif // not PRODUCT
  2049 #endif // !CC_INTERP

mercurial