src/cpu/sparc/vm/interpreter_sparc.cpp

Wed, 16 Nov 2011 01:39:50 -0800

author
twisti
date
Wed, 16 Nov 2011 01:39:50 -0800
changeset 3310
6729bbc1fcd6
parent 3037
3d42f82cd811
child 3787
6759698e3140
permissions
-rw-r--r--

7003454: order constants in constant table by number of references in code
Reviewed-by: kvn, never, bdelsart

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "prims/methodHandles.hpp"
    39 #include "runtime/arguments.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/frame.inline.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "runtime/synchronizer.hpp"
    45 #include "runtime/timer.hpp"
    46 #include "runtime/vframeArray.hpp"
    47 #include "utilities/debug.hpp"
    48 #ifdef COMPILER1
    49 #include "c1/c1_Runtime1.hpp"
    50 #endif
    54 // Generation of Interpreter
    55 //
    56 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    59 #define __ _masm->
    62 //----------------------------------------------------------------------------------------------------
    67 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    68   int i = 0;
    69   switch (type) {
    70     case T_BOOLEAN: i = 0; break;
    71     case T_CHAR   : i = 1; break;
    72     case T_BYTE   : i = 2; break;
    73     case T_SHORT  : i = 3; break;
    74     case T_INT    : i = 4; break;
    75     case T_LONG   : i = 5; break;
    76     case T_VOID   : i = 6; break;
    77     case T_FLOAT  : i = 7; break;
    78     case T_DOUBLE : i = 8; break;
    79     case T_OBJECT : i = 9; break;
    80     case T_ARRAY  : i = 9; break;
    81     default       : ShouldNotReachHere();
    82   }
    83   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
    84   return i;
    85 }
    88 #ifndef _LP64
    89 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
    90   address entry = __ pc();
    91   Argument argv(0, true);
    93   // We are in the jni transition frame. Save the last_java_frame corresponding to the
    94   // outer interpreter frame
    95   //
    96   __ set_last_Java_frame(FP, noreg);
    97   // make sure the interpreter frame we've pushed has a valid return pc
    98   __ mov(O7, I7);
    99   __ mov(Lmethod, G3_scratch);
   100   __ mov(Llocals, G4_scratch);
   101   __ save_frame(0);
   102   __ mov(G2_thread, L7_thread_cache);
   103   __ add(argv.address_in_frame(), O3);
   104   __ mov(G2_thread, O0);
   105   __ mov(G3_scratch, O1);
   106   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
   107   __ delayed()->mov(G4_scratch, O2);
   108   __ mov(L7_thread_cache, G2_thread);
   109   __ reset_last_Java_frame();
   111   // load the register arguments (the C code packed them as varargs)
   112   for (Argument ldarg = argv.successor(); ldarg.is_register(); ldarg = ldarg.successor()) {
   113       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
   114   }
   115   __ ret();
   116   __ delayed()->
   117      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
   118   return entry;
   119 }
   122 #else
   123 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
   124 // O0, O1, O2 etc..
   125 // Doubles are passed in D0, D2, D4
   126 // We store the signature of the first 16 arguments in the first argument
   127 // slot because it will be overwritten prior to calling the native
   128 // function, with the pointer to the JNIEnv.
   129 // If LP64 there can be up to 16 floating point arguments in registers
   130 // or 6 integer registers.
   131 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
   133   enum {
   134     non_float  = 0,
   135     float_sig  = 1,
   136     double_sig = 2,
   137     sig_mask   = 3
   138   };
   140   address entry = __ pc();
   141   Argument argv(0, true);
   143   // We are in the jni transition frame. Save the last_java_frame corresponding to the
   144   // outer interpreter frame
   145   //
   146   __ set_last_Java_frame(FP, noreg);
   147   // make sure the interpreter frame we've pushed has a valid return pc
   148   __ mov(O7, I7);
   149   __ mov(Lmethod, G3_scratch);
   150   __ mov(Llocals, G4_scratch);
   151   __ save_frame(0);
   152   __ mov(G2_thread, L7_thread_cache);
   153   __ add(argv.address_in_frame(), O3);
   154   __ mov(G2_thread, O0);
   155   __ mov(G3_scratch, O1);
   156   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
   157   __ delayed()->mov(G4_scratch, O2);
   158   __ mov(L7_thread_cache, G2_thread);
   159   __ reset_last_Java_frame();
   162   // load the register arguments (the C code packed them as varargs)
   163   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
   164   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
   165   __ mov( G3_scratch, G4_scratch);
   166   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
   167   Label done;
   168   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
   169     Label NonFloatArg;
   170     Label LoadFloatArg;
   171     Label LoadDoubleArg;
   172     Label NextArg;
   173     Address a = ldarg.address_in_frame();
   174     __ andcc(G4_scratch, sig_mask, G3_scratch);
   175     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
   176     __ delayed()->nop();
   178     __ cmp(G3_scratch, float_sig );
   179     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
   180     __ delayed()->nop();
   182     __ cmp(G3_scratch, double_sig );
   183     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
   184     __ delayed()->nop();
   186     __ bind(NonFloatArg);
   187     // There are only 6 integer register arguments!
   188     if ( ldarg.is_register() )
   189       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
   190     else {
   191     // Optimization, see if there are any more args and get out prior to checking
   192     // all 16 float registers.  My guess is that this is rare.
   193     // If is_register is false, then we are done the first six integer args.
   194       __ br_null_short(G4_scratch, Assembler::pt, done);
   195     }
   196     __ ba(NextArg);
   197     __ delayed()->srl( G4_scratch, 2, G4_scratch );
   199     __ bind(LoadFloatArg);
   200     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
   201     __ ba(NextArg);
   202     __ delayed()->srl( G4_scratch, 2, G4_scratch );
   204     __ bind(LoadDoubleArg);
   205     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
   206     __ ba(NextArg);
   207     __ delayed()->srl( G4_scratch, 2, G4_scratch );
   209     __ bind(NextArg);
   211   }
   213   __ bind(done);
   214   __ ret();
   215   __ delayed()->
   216      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
   217   return entry;
   218 }
   219 #endif
   221 void InterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
   223   // Generate code to initiate compilation on the counter overflow.
   225   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
   226   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
   227   // and the second is only used when the first is true.  We pass zero for both.
   228   // The call returns the address of the verified entry point for the method or NULL
   229   // if the compilation did not complete (either went background or bailed out).
   230   __ set((int)false, O2);
   231   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
   232   // returns verified_entry_point or NULL
   233   // we ignore it in any case
   234   __ ba_short(Lcontinue);
   236 }
   239 // End of helpers
   241 // Various method entries
   243 // Abstract method entry
   244 // Attempt to execute abstract method. Throw exception
   245 //
   246 address InterpreterGenerator::generate_abstract_entry(void) {
   247   address entry = __ pc();
   248   // abstract method entry
   249   // throw exception
   250   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
   251   // the call_VM checks for exception, so we should never return here.
   252   __ should_not_reach_here();
   253   return entry;
   255 }
   258 // Method handle invoker
   259 // Dispatch a method of the form java.lang.invoke.MethodHandles::invoke(...)
   260 address InterpreterGenerator::generate_method_handle_entry(void) {
   261   if (!EnableInvokeDynamic) {
   262     return generate_abstract_entry();
   263   }
   265   return MethodHandles::generate_method_handle_interpreter_entry(_masm);
   266 }
   269 //----------------------------------------------------------------------------------------------------
   270 // Entry points & stack frame layout
   271 //
   272 // Here we generate the various kind of entries into the interpreter.
   273 // The two main entry type are generic bytecode methods and native call method.
   274 // These both come in synchronized and non-synchronized versions but the
   275 // frame layout they create is very similar. The other method entry
   276 // types are really just special purpose entries that are really entry
   277 // and interpretation all in one. These are for trivial methods like
   278 // accessor, empty, or special math methods.
   279 //
   280 // When control flow reaches any of the entry types for the interpreter
   281 // the following holds ->
   282 //
   283 // C2 Calling Conventions:
   284 //
   285 // The entry code below assumes that the following registers are set
   286 // when coming in:
   287 //    G5_method: holds the methodOop of the method to call
   288 //    Lesp:    points to the TOS of the callers expression stack
   289 //             after having pushed all the parameters
   290 //
   291 // The entry code does the following to setup an interpreter frame
   292 //   pop parameters from the callers stack by adjusting Lesp
   293 //   set O0 to Lesp
   294 //   compute X = (max_locals - num_parameters)
   295 //   bump SP up by X to accomadate the extra locals
   296 //   compute X = max_expression_stack
   297 //               + vm_local_words
   298 //               + 16 words of register save area
   299 //   save frame doing a save sp, -X, sp growing towards lower addresses
   300 //   set Lbcp, Lmethod, LcpoolCache
   301 //   set Llocals to i0
   302 //   set Lmonitors to FP - rounded_vm_local_words
   303 //   set Lesp to Lmonitors - 4
   304 //
   305 //  The frame has now been setup to do the rest of the entry code
   307 // Try this optimization:  Most method entries could live in a
   308 // "one size fits all" stack frame without all the dynamic size
   309 // calculations.  It might be profitable to do all this calculation
   310 // statically and approximately for "small enough" methods.
   312 //-----------------------------------------------------------------------------------------------
   314 // C1 Calling conventions
   315 //
   316 // Upon method entry, the following registers are setup:
   317 //
   318 // g2 G2_thread: current thread
   319 // g5 G5_method: method to activate
   320 // g4 Gargs  : pointer to last argument
   321 //
   322 //
   323 // Stack:
   324 //
   325 // +---------------+ <--- sp
   326 // |               |
   327 // : reg save area :
   328 // |               |
   329 // +---------------+ <--- sp + 0x40
   330 // |               |
   331 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
   332 // |               |
   333 // +---------------+ <--- sp + 0x5c
   334 // |               |
   335 // :     free      :
   336 // |               |
   337 // +---------------+ <--- Gargs
   338 // |               |
   339 // :   arguments   :
   340 // |               |
   341 // +---------------+
   342 // |               |
   343 //
   344 //
   345 //
   346 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
   347 //
   348 // +---------------+ <--- sp
   349 // |               |
   350 // : reg save area :
   351 // |               |
   352 // +---------------+ <--- sp + 0x40
   353 // |               |
   354 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
   355 // |               |
   356 // +---------------+ <--- sp + 0x5c
   357 // |               |
   358 // :               :
   359 // |               | <--- Lesp
   360 // +---------------+ <--- Lmonitors (fp - 0x18)
   361 // |   VM locals   |
   362 // +---------------+ <--- fp
   363 // |               |
   364 // : reg save area :
   365 // |               |
   366 // +---------------+ <--- fp + 0x40
   367 // |               |
   368 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
   369 // |               |
   370 // +---------------+ <--- fp + 0x5c
   371 // |               |
   372 // :     free      :
   373 // |               |
   374 // +---------------+
   375 // |               |
   376 // : nonarg locals :
   377 // |               |
   378 // +---------------+
   379 // |               |
   380 // :   arguments   :
   381 // |               | <--- Llocals
   382 // +---------------+ <--- Gargs
   383 // |               |
   385 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
   386   // determine code generation flags
   387   bool synchronized = false;
   388   address entry_point = NULL;
   390   switch (kind) {
   391     case Interpreter::zerolocals             :                                                                             break;
   392     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
   393     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
   394     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
   395     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
   396     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
   397     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
   398     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
   399     case Interpreter::java_lang_math_sin     :                                                                             break;
   400     case Interpreter::java_lang_math_cos     :                                                                             break;
   401     case Interpreter::java_lang_math_tan     :                                                                             break;
   402     case Interpreter::java_lang_math_sqrt    :                                                                             break;
   403     case Interpreter::java_lang_math_abs     :                                                                             break;
   404     case Interpreter::java_lang_math_log     :                                                                             break;
   405     case Interpreter::java_lang_math_log10   :                                                                             break;
   406     case Interpreter::java_lang_ref_reference_get
   407                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
   408     default                                  : ShouldNotReachHere();                                                       break;
   409   }
   411   if (entry_point) return entry_point;
   413   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
   414 }
   417 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
   418   // No special entry points that preclude compilation
   419   return true;
   420 }
   422 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
   424   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
   425   // the days we had adapter frames. When we deoptimize a situation where a
   426   // compiled caller calls a compiled caller will have registers it expects
   427   // to survive the call to the callee. If we deoptimize the callee the only
   428   // way we can restore these registers is to have the oldest interpreter
   429   // frame that we create restore these values. That is what this routine
   430   // will accomplish.
   432   // At the moment we have modified c2 to not have any callee save registers
   433   // so this problem does not exist and this routine is just a place holder.
   435   assert(f->is_interpreted_frame(), "must be interpreted");
   436 }
   439 //----------------------------------------------------------------------------------------------------
   440 // Exceptions

mercurial