src/share/vm/opto/loopnode.cpp

Wed, 09 Nov 2011 07:25:51 -0800

author
kvn
date
Wed, 09 Nov 2011 07:25:51 -0800
changeset 3260
670a74b863fc
parent 3135
2c24ef16533d
child 3308
e8fdaf4a66cb
permissions
-rw-r--r--

7107042: assert(no_dead_loop) failed: dead loop detected
Summary: Use dead nodes elimination code in PhaseIdealLoop before executing EA.
Reviewed-by: never, twisti

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if( n->in(0) ) {
    92     early = n->in(0);
    93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for( ; i < n->req(); i++ ) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if( c_d > e_d ) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if( c_d == e_d &&    // Same depth?
   111                early != cin ) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while( 1 ) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if( n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d )
   121           break;                // early is deeper; keep him
   122         if( n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d ) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   return early;
   136 }
   138 //------------------------------set_early_ctrl---------------------------------
   139 // Set earliest legal control
   140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   141   Node *early = get_early_ctrl(n);
   143   // Record earliest legal location
   144   set_ctrl(n, early);
   145 }
   147 //------------------------------set_subtree_ctrl-------------------------------
   148 // set missing _ctrl entries on new nodes
   149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   150   // Already set?  Get out.
   151   if( _nodes[n->_idx] ) return;
   152   // Recursively set _nodes array to indicate where the Node goes
   153   uint i;
   154   for( i = 0; i < n->req(); ++i ) {
   155     Node *m = n->in(i);
   156     if( m && m != C->root() )
   157       set_subtree_ctrl( m );
   158   }
   160   // Fixup self
   161   set_early_ctrl( n );
   162 }
   164 //------------------------------is_counted_loop--------------------------------
   165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   166   PhaseGVN *gvn = &_igvn;
   168   // Counted loop head must be a good RegionNode with only 3 not NULL
   169   // control input edges: Self, Entry, LoopBack.
   170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
   171     return false;
   173   Node *init_control = x->in(LoopNode::EntryControl);
   174   Node *back_control = x->in(LoopNode::LoopBackControl);
   175   if (init_control == NULL || back_control == NULL)    // Partially dead
   176     return false;
   177   // Must also check for TOP when looking for a dead loop
   178   if (init_control->is_top() || back_control->is_top())
   179     return false;
   181   // Allow funny placement of Safepoint
   182   if (back_control->Opcode() == Op_SafePoint)
   183     back_control = back_control->in(TypeFunc::Control);
   185   // Controlling test for loop
   186   Node *iftrue = back_control;
   187   uint iftrue_op = iftrue->Opcode();
   188   if (iftrue_op != Op_IfTrue &&
   189       iftrue_op != Op_IfFalse)
   190     // I have a weird back-control.  Probably the loop-exit test is in
   191     // the middle of the loop and I am looking at some trailing control-flow
   192     // merge point.  To fix this I would have to partially peel the loop.
   193     return false; // Obscure back-control
   195   // Get boolean guarding loop-back test
   196   Node *iff = iftrue->in(0);
   197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   198     return false;
   199   BoolNode *test = iff->in(1)->as_Bool();
   200   BoolTest::mask bt = test->_test._test;
   201   float cl_prob = iff->as_If()->_prob;
   202   if (iftrue_op == Op_IfFalse) {
   203     bt = BoolTest(bt).negate();
   204     cl_prob = 1.0 - cl_prob;
   205   }
   206   // Get backedge compare
   207   Node *cmp = test->in(1);
   208   int cmp_op = cmp->Opcode();
   209   if (cmp_op != Op_CmpI)
   210     return false;                // Avoid pointer & float compares
   212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   213   Node *incr  = cmp->in(1);
   214   Node *limit = cmp->in(2);
   216   // ---------
   217   // need 'loop()' test to tell if limit is loop invariant
   218   // ---------
   220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   221     Node *tmp = incr;            // Then reverse order into the CmpI
   222     incr = limit;
   223     limit = tmp;
   224     bt = BoolTest(bt).commute(); // And commute the exit test
   225   }
   226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   227     return false;
   228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   229     return false;
   231   Node* phi_incr = NULL;
   232   // Trip-counter increment must be commutative & associative.
   233   if (incr->is_Phi()) {
   234     if (incr->as_Phi()->region() != x || incr->req() != 3)
   235       return false; // Not simple trip counter expression
   236     phi_incr = incr;
   237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   239       return false;
   240   }
   242   Node* trunc1 = NULL;
   243   Node* trunc2 = NULL;
   244   const TypeInt* iv_trunc_t = NULL;
   245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   246     return false; // Funny increment opcode
   247   }
   248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   250   // Get merge point
   251   Node *xphi = incr->in(1);
   252   Node *stride = incr->in(2);
   253   if (!stride->is_Con()) {     // Oops, swap these
   254     if (!xphi->is_Con())       // Is the other guy a constant?
   255       return false;             // Nope, unknown stride, bail out
   256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   257     xphi = stride;
   258     stride = tmp;
   259   }
   260   // Stride must be constant
   261   int stride_con = stride->get_int();
   262   if (stride_con == 0)
   263     return false; // missed some peephole opt
   265   if (!xphi->is_Phi())
   266     return false; // Too much math on the trip counter
   267   if (phi_incr != NULL && phi_incr != xphi)
   268     return false;
   269   PhiNode *phi = xphi->as_Phi();
   271   // Phi must be of loop header; backedge must wrap to increment
   272   if (phi->region() != x)
   273     return false;
   274   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   275       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   276     return false;
   277   }
   278   Node *init_trip = phi->in(LoopNode::EntryControl);
   280   // If iv trunc type is smaller than int, check for possible wrap.
   281   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   282     assert(trunc1 != NULL, "must have found some truncation");
   284     // Get a better type for the phi (filtered thru if's)
   285     const TypeInt* phi_ft = filtered_type(phi);
   287     // Can iv take on a value that will wrap?
   288     //
   289     // Ensure iv's limit is not within "stride" of the wrap value.
   290     //
   291     // Example for "short" type
   292     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   293     //    If the stride is +10, then the last value of the induction
   294     //    variable before the increment (phi_ft->_hi) must be
   295     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   296     //    ensure no truncation occurs after the increment.
   298     if (stride_con > 0) {
   299       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   300           iv_trunc_t->_lo > phi_ft->_lo) {
   301         return false;  // truncation may occur
   302       }
   303     } else if (stride_con < 0) {
   304       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   305           iv_trunc_t->_hi < phi_ft->_hi) {
   306         return false;  // truncation may occur
   307       }
   308     }
   309     // No possibility of wrap so truncation can be discarded
   310     // Promote iv type to Int
   311   } else {
   312     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   313   }
   315   // If the condition is inverted and we will be rolling
   316   // through MININT to MAXINT, then bail out.
   317   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   318       // Odd stride
   319       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   320       // Count down loop rolls through MAXINT
   321       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   322       // Count up loop rolls through MININT
   323       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   324     return false; // Bail out
   325   }
   327   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   328   const TypeInt* limit_t = gvn->type(limit)->is_int();
   330   if (stride_con > 0) {
   331     long init_p = (long)init_t->_lo + stride_con;
   332     if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
   333       return false; // cyclic loop or this loop trips only once
   334   } else {
   335     long init_p = (long)init_t->_hi + stride_con;
   336     if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
   337       return false; // cyclic loop or this loop trips only once
   338   }
   340   // =================================================
   341   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   342   //
   343   assert(x->Opcode() == Op_Loop, "regular loops only");
   344   C->print_method("Before CountedLoop", 3);
   346   Node *hook = new (C, 6) Node(6);
   348   if (LoopLimitCheck) {
   350   // ===================================================
   351   // Generate loop limit check to avoid integer overflow
   352   // in cases like next (cyclic loops):
   353   //
   354   // for (i=0; i <= max_jint; i++) {}
   355   // for (i=0; i <  max_jint; i+=2) {}
   356   //
   357   //
   358   // Limit check predicate depends on the loop test:
   359   //
   360   // for(;i != limit; i++)       --> limit <= (max_jint)
   361   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   362   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   363   //
   365   // Check if limit is excluded to do more precise int overflow check.
   366   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   367   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   369   // If compare points directly to the phi we need to adjust
   370   // the compare so that it points to the incr. Limit have
   371   // to be adjusted to keep trip count the same and the
   372   // adjusted limit should be checked for int overflow.
   373   if (phi_incr != NULL) {
   374     stride_m  += stride_con;
   375   }
   377   if (limit->is_Con()) {
   378     int limit_con = limit->get_int();
   379     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   380         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   381       // Bailout: it could be integer overflow.
   382       return false;
   383     }
   384   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   385              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   386       // Limit's type may satisfy the condition, for example,
   387       // when it is an array length.
   388   } else {
   389     // Generate loop's limit check.
   390     // Loop limit check predicate should be near the loop.
   391     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   392     if (!limit_check_proj) {
   393       // The limit check predicate is not generated if this method trapped here before.
   394 #ifdef ASSERT
   395       if (TraceLoopLimitCheck) {
   396         tty->print("missing loop limit check:");
   397         loop->dump_head();
   398         x->dump(1);
   399       }
   400 #endif
   401       return false;
   402     }
   404     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   405     Node* cmp_limit;
   406     Node* bol;
   408     if (stride_con > 0) {
   409       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   410       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::le);
   411     } else {
   412       cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   413       bol = new (C, 2) BoolNode(cmp_limit, BoolTest::ge);
   414     }
   415     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   416     bol = _igvn.register_new_node_with_optimizer(bol);
   417     set_subtree_ctrl(bol);
   419     // Replace condition in original predicate but preserve Opaque node
   420     // so that previous predicates could be found.
   421     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   422            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   423     Node* opq = check_iff->in(1)->in(1);
   424     _igvn.hash_delete(opq);
   425     opq->set_req(1, bol);
   426     // Update ctrl.
   427     set_ctrl(opq, check_iff->in(0));
   428     set_ctrl(check_iff->in(1), check_iff->in(0));
   430 #ifndef PRODUCT
   431     // report that the loop predication has been actually performed
   432     // for this loop
   433     if (TraceLoopLimitCheck) {
   434       tty->print_cr("Counted Loop Limit Check generated:");
   435       debug_only( bol->dump(2); )
   436     }
   437 #endif
   438   }
   440   if (phi_incr != NULL) {
   441     // If compare points directly to the phi we need to adjust
   442     // the compare so that it points to the incr. Limit have
   443     // to be adjusted to keep trip count the same and we
   444     // should avoid int overflow.
   445     //
   446     //   i = init; do {} while(i++ < limit);
   447     // is converted to
   448     //   i = init; do {} while(++i < limit+1);
   449     //
   450     limit = gvn->transform(new (C, 3) AddINode(limit, stride));
   451   }
   453   // Now we need to canonicalize loop condition.
   454   if (bt == BoolTest::ne) {
   455     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   456     // 'ne' can be replaced with 'lt' only when init < limit.
   457     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
   458       bt = BoolTest::lt;
   459     // 'ne' can be replaced with 'gt' only when init > limit.
   460     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
   461       bt = BoolTest::gt;
   462   }
   464   if (incl_limit) {
   465     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   466     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   467     //
   468     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   469     limit = gvn->transform(new (C, 3) AddINode(limit, one));
   470     if (bt == BoolTest::le)
   471       bt = BoolTest::lt;
   472     else if (bt == BoolTest::ge)
   473       bt = BoolTest::gt;
   474     else
   475       ShouldNotReachHere();
   476   }
   477   set_subtree_ctrl( limit );
   479   } else { // LoopLimitCheck
   481   // If compare points to incr, we are ok.  Otherwise the compare
   482   // can directly point to the phi; in this case adjust the compare so that
   483   // it points to the incr by adjusting the limit.
   484   if (cmp->in(1) == phi || cmp->in(2) == phi)
   485     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   487   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   488   // Final value for iterator should be: trip_count * stride + init_trip.
   489   Node *one_p = gvn->intcon( 1);
   490   Node *one_m = gvn->intcon(-1);
   492   Node *trip_count = NULL;
   493   switch( bt ) {
   494   case BoolTest::eq:
   495     ShouldNotReachHere();
   496   case BoolTest::ne:            // Ahh, the case we desire
   497     if (stride_con == 1)
   498       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   499     else if (stride_con == -1)
   500       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   501     else
   502       ShouldNotReachHere();
   503     set_subtree_ctrl(trip_count);
   504     //_loop.map(trip_count->_idx,loop(limit));
   505     break;
   506   case BoolTest::le:            // Maybe convert to '<' case
   507     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   508     set_subtree_ctrl( limit );
   509     hook->init_req(4, limit);
   511     bt = BoolTest::lt;
   512     // Make the new limit be in the same loop nest as the old limit
   513     //_loop.map(limit->_idx,limit_loop);
   514     // Fall into next case
   515   case BoolTest::lt: {          // Maybe convert to '!=' case
   516     if (stride_con < 0) // Count down loop rolls through MAXINT
   517       ShouldNotReachHere();
   518     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   519     set_subtree_ctrl( range );
   520     hook->init_req(0, range);
   522     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   523     set_subtree_ctrl( bias );
   524     hook->init_req(1, bias);
   526     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   527     set_subtree_ctrl( bias1 );
   528     hook->init_req(2, bias1);
   530     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   531     set_subtree_ctrl( trip_count );
   532     hook->init_req(3, trip_count);
   533     break;
   534   }
   536   case BoolTest::ge:            // Maybe convert to '>' case
   537     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   538     set_subtree_ctrl( limit );
   539     hook->init_req(4 ,limit);
   541     bt = BoolTest::gt;
   542     // Make the new limit be in the same loop nest as the old limit
   543     //_loop.map(limit->_idx,limit_loop);
   544     // Fall into next case
   545   case BoolTest::gt: {          // Maybe convert to '!=' case
   546     if (stride_con > 0) // count up loop rolls through MININT
   547       ShouldNotReachHere();
   548     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   549     set_subtree_ctrl( range );
   550     hook->init_req(0, range);
   552     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   553     set_subtree_ctrl( bias );
   554     hook->init_req(1, bias);
   556     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   557     set_subtree_ctrl( bias1 );
   558     hook->init_req(2, bias1);
   560     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   561     set_subtree_ctrl( trip_count );
   562     hook->init_req(3, trip_count);
   563     break;
   564   }
   565   } // switch( bt )
   567   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   568   set_subtree_ctrl( span );
   569   hook->init_req(5, span);
   571   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   572   set_subtree_ctrl( limit );
   574   } // LoopLimitCheck
   576   // Check for SafePoint on backedge and remove
   577   Node *sfpt = x->in(LoopNode::LoopBackControl);
   578   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   579     lazy_replace( sfpt, iftrue );
   580     loop->_tail = iftrue;
   581   }
   583   // Build a canonical trip test.
   584   // Clone code, as old values may be in use.
   585   incr = incr->clone();
   586   incr->set_req(1,phi);
   587   incr->set_req(2,stride);
   588   incr = _igvn.register_new_node_with_optimizer(incr);
   589   set_early_ctrl( incr );
   590   _igvn.hash_delete(phi);
   591   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   593   // If phi type is more restrictive than Int, raise to
   594   // Int to prevent (almost) infinite recursion in igvn
   595   // which can only handle integer types for constants or minint..maxint.
   596   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   597     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   598     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   599     nphi = _igvn.register_new_node_with_optimizer(nphi);
   600     set_ctrl(nphi, get_ctrl(phi));
   601     _igvn.replace_node(phi, nphi);
   602     phi = nphi->as_Phi();
   603   }
   604   cmp = cmp->clone();
   605   cmp->set_req(1,incr);
   606   cmp->set_req(2,limit);
   607   cmp = _igvn.register_new_node_with_optimizer(cmp);
   608   set_ctrl(cmp, iff->in(0));
   610   test = test->clone()->as_Bool();
   611   (*(BoolTest*)&test->_test)._test = bt;
   612   test->set_req(1,cmp);
   613   _igvn.register_new_node_with_optimizer(test);
   614   set_ctrl(test, iff->in(0));
   616   // Replace the old IfNode with a new LoopEndNode
   617   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   618   IfNode *le = lex->as_If();
   619   uint dd = dom_depth(iff);
   620   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   621   set_loop(le, loop);
   623   // Get the loop-exit control
   624   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   626   // Need to swap loop-exit and loop-back control?
   627   if (iftrue_op == Op_IfFalse) {
   628     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   629     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   631     loop->_tail = back_control = ift2;
   632     set_loop(ift2, loop);
   633     set_loop(iff2, get_loop(iffalse));
   635     // Lazy update of 'get_ctrl' mechanism.
   636     lazy_replace_proj( iffalse, iff2 );
   637     lazy_replace_proj( iftrue,  ift2 );
   639     // Swap names
   640     iffalse = iff2;
   641     iftrue  = ift2;
   642   } else {
   643     _igvn.hash_delete(iffalse);
   644     _igvn.hash_delete(iftrue);
   645     iffalse->set_req_X( 0, le, &_igvn );
   646     iftrue ->set_req_X( 0, le, &_igvn );
   647   }
   649   set_idom(iftrue,  le, dd+1);
   650   set_idom(iffalse, le, dd+1);
   651   assert(iff->outcnt() == 0, "should be dead now");
   652   lazy_replace( iff, le ); // fix 'get_ctrl'
   654   // Now setup a new CountedLoopNode to replace the existing LoopNode
   655   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   656   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   657   // The following assert is approximately true, and defines the intention
   658   // of can_be_counted_loop.  It fails, however, because phase->type
   659   // is not yet initialized for this loop and its parts.
   660   //assert(l->can_be_counted_loop(this), "sanity");
   661   _igvn.register_new_node_with_optimizer(l);
   662   set_loop(l, loop);
   663   loop->_head = l;
   664   // Fix all data nodes placed at the old loop head.
   665   // Uses the lazy-update mechanism of 'get_ctrl'.
   666   lazy_replace( x, l );
   667   set_idom(l, init_control, dom_depth(x));
   669   // Check for immediately preceding SafePoint and remove
   670   Node *sfpt2 = le->in(0);
   671   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   672     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   674   // Free up intermediate goo
   675   _igvn.remove_dead_node(hook);
   677 #ifdef ASSERT
   678   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   679   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   680 #endif
   681 #ifndef PRODUCT
   682   if (TraceLoopOpts) {
   683     tty->print("Counted      ");
   684     loop->dump_head();
   685   }
   686 #endif
   688   C->print_method("After CountedLoop", 3);
   690   return true;
   691 }
   693 //----------------------exact_limit-------------------------------------------
   694 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   695   assert(loop->_head->is_CountedLoop(), "");
   696   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   697   assert(cl->is_valid_counted_loop(), "");
   699   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   700       cl->limit()->Opcode() == Op_LoopLimit) {
   701     // Old code has exact limit (it could be incorrect in case of int overflow).
   702     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   703     return cl->limit();
   704   }
   705   Node *limit = NULL;
   706 #ifdef ASSERT
   707   BoolTest::mask bt = cl->loopexit()->test_trip();
   708   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   709 #endif
   710   if (cl->has_exact_trip_count()) {
   711     // Simple case: loop has constant boundaries.
   712     // Use longs to avoid integer overflow.
   713     int stride_con = cl->stride_con();
   714     long  init_con = cl->init_trip()->get_int();
   715     long limit_con = cl->limit()->get_int();
   716     julong trip_cnt = cl->trip_count();
   717     long final_con = init_con + trip_cnt*stride_con;
   718     final_con -= stride_con;
   719     int final_int = (int)final_con;
   720     // The final value should be in integer range since the loop
   721     // is counted and the limit was checked for overflow.
   722     assert(final_con == (long)final_int, "final value should be integer");
   723     limit = _igvn.intcon(final_int);
   724   } else {
   725     // Create new LoopLimit node to get exact limit (final iv value).
   726     limit = new (C, 4) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   727     register_new_node(limit, cl->in(LoopNode::EntryControl));
   728   }
   729   assert(limit != NULL, "sanity");
   730   return limit;
   731 }
   733 //------------------------------Ideal------------------------------------------
   734 // Return a node which is more "ideal" than the current node.
   735 // Attempt to convert into a counted-loop.
   736 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   737   if (!can_be_counted_loop(phase)) {
   738     phase->C->set_major_progress();
   739   }
   740   return RegionNode::Ideal(phase, can_reshape);
   741 }
   744 //=============================================================================
   745 //------------------------------Ideal------------------------------------------
   746 // Return a node which is more "ideal" than the current node.
   747 // Attempt to convert into a counted-loop.
   748 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   749   return RegionNode::Ideal(phase, can_reshape);
   750 }
   752 //------------------------------dump_spec--------------------------------------
   753 // Dump special per-node info
   754 #ifndef PRODUCT
   755 void CountedLoopNode::dump_spec(outputStream *st) const {
   756   LoopNode::dump_spec(st);
   757   if (stride_is_con()) {
   758     st->print("stride: %d ",stride_con());
   759   }
   760   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   761   if (is_main_loop()) st->print("main of N%d", _idx);
   762   if (is_post_loop()) st->print("post of N%d", _main_idx);
   763 }
   764 #endif
   766 //=============================================================================
   767 int CountedLoopEndNode::stride_con() const {
   768   return stride()->bottom_type()->is_int()->get_con();
   769 }
   771 //=============================================================================
   772 //------------------------------Value-----------------------------------------
   773 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   774   const Type* init_t   = phase->type(in(Init));
   775   const Type* limit_t  = phase->type(in(Limit));
   776   const Type* stride_t = phase->type(in(Stride));
   777   // Either input is TOP ==> the result is TOP
   778   if (init_t   == Type::TOP) return Type::TOP;
   779   if (limit_t  == Type::TOP) return Type::TOP;
   780   if (stride_t == Type::TOP) return Type::TOP;
   782   int stride_con = stride_t->is_int()->get_con();
   783   if (stride_con == 1)
   784     return NULL;  // Identity
   786   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   787     // Use longs to avoid integer overflow.
   788     long init_con   =  init_t->is_int()->get_con();
   789     long limit_con  = limit_t->is_int()->get_con();
   790     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   791     long trip_count = (limit_con - init_con + stride_m)/stride_con;
   792     long final_con  = init_con + stride_con*trip_count;
   793     int final_int = (int)final_con;
   794     // The final value should be in integer range since the loop
   795     // is counted and the limit was checked for overflow.
   796     assert(final_con == (long)final_int, "final value should be integer");
   797     return TypeInt::make(final_int);
   798   }
   800   return bottom_type(); // TypeInt::INT
   801 }
   803 //------------------------------Ideal------------------------------------------
   804 // Return a node which is more "ideal" than the current node.
   805 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   806   if (phase->type(in(Init))   == Type::TOP ||
   807       phase->type(in(Limit))  == Type::TOP ||
   808       phase->type(in(Stride)) == Type::TOP)
   809     return NULL;  // Dead
   811   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   812   if (stride_con == 1)
   813     return NULL;  // Identity
   815   if (in(Init)->is_Con() && in(Limit)->is_Con())
   816     return NULL;  // Value
   818   // Delay following optimizations until all loop optimizations
   819   // done to keep Ideal graph simple.
   820   if (!can_reshape || phase->C->major_progress())
   821     return NULL;
   823   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   824   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   825   int stride_p;
   826   long lim, ini;
   827   julong max;
   828   if (stride_con > 0) {
   829     stride_p = stride_con;
   830     lim = limit_t->_hi;
   831     ini = init_t->_lo;
   832     max = (julong)max_jint;
   833   } else {
   834     stride_p = -stride_con;
   835     lim = init_t->_hi;
   836     ini = limit_t->_lo;
   837     max = (julong)min_jint;
   838   }
   839   julong range = lim - ini + stride_p;
   840   if (range <= max) {
   841     // Convert to integer expression if it is not overflow.
   842     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   843     Node *range = phase->transform(new (phase->C, 3) SubINode(in(Limit), in(Init)));
   844     Node *bias  = phase->transform(new (phase->C, 3) AddINode(range, stride_m));
   845     Node *trip  = phase->transform(new (phase->C, 3) DivINode(0, bias, in(Stride)));
   846     Node *span  = phase->transform(new (phase->C, 3) MulINode(trip, in(Stride)));
   847     return new (phase->C, 3) AddINode(span, in(Init)); // exact limit
   848   }
   850   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   851       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   852     // Convert to long expression to avoid integer overflow
   853     // and let igvn optimizer convert this division.
   854     //
   855     Node*   init   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Init)));
   856     Node*  limit   = phase->transform( new (phase->C, 2) ConvI2LNode(in(Limit)));
   857     Node* stride   = phase->longcon(stride_con);
   858     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   860     Node *range = phase->transform(new (phase->C, 3) SubLNode(limit, init));
   861     Node *bias  = phase->transform(new (phase->C, 3) AddLNode(range, stride_m));
   862     Node *span;
   863     if (stride_con > 0 && is_power_of_2(stride_p)) {
   864       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   865       // and avoid generating rounding for division. Zero trip guard should
   866       // guarantee that init < limit but sometimes the guard is missing and
   867       // we can get situation when init > limit. Note, for the empty loop
   868       // optimization zero trip guard is generated explicitly which leaves
   869       // only RCE predicate where exact limit is used and the predicate
   870       // will simply fail forcing recompilation.
   871       Node* neg_stride   = phase->longcon(-stride_con);
   872       span = phase->transform(new (phase->C, 3) AndLNode(bias, neg_stride));
   873     } else {
   874       Node *trip  = phase->transform(new (phase->C, 3) DivLNode(0, bias, stride));
   875       span = phase->transform(new (phase->C, 3) MulLNode(trip, stride));
   876     }
   877     // Convert back to int
   878     Node *span_int = phase->transform(new (phase->C, 2) ConvL2INode(span));
   879     return new (phase->C, 3) AddINode(span_int, in(Init)); // exact limit
   880   }
   882   return NULL;    // No progress
   883 }
   885 //------------------------------Identity---------------------------------------
   886 // If stride == 1 return limit node.
   887 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
   888   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   889   if (stride_con == 1 || stride_con == -1)
   890     return in(Limit);
   891   return this;
   892 }
   894 //=============================================================================
   895 //----------------------match_incr_with_optional_truncation--------------------
   896 // Match increment with optional truncation:
   897 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   898 // Return NULL for failure. Success returns the increment node.
   899 Node* CountedLoopNode::match_incr_with_optional_truncation(
   900                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   901   // Quick cutouts:
   902   if (expr == NULL || expr->req() != 3)  return false;
   904   Node *t1 = NULL;
   905   Node *t2 = NULL;
   906   const TypeInt* trunc_t = TypeInt::INT;
   907   Node* n1 = expr;
   908   int   n1op = n1->Opcode();
   910   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   911   if (n1op == Op_AndI &&
   912       n1->in(2)->is_Con() &&
   913       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   914     // %%% This check should match any mask of 2**K-1.
   915     t1 = n1;
   916     n1 = t1->in(1);
   917     n1op = n1->Opcode();
   918     trunc_t = TypeInt::CHAR;
   919   } else if (n1op == Op_RShiftI &&
   920              n1->in(1) != NULL &&
   921              n1->in(1)->Opcode() == Op_LShiftI &&
   922              n1->in(2) == n1->in(1)->in(2) &&
   923              n1->in(2)->is_Con()) {
   924     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   925     // %%% This check should match any shift in [1..31].
   926     if (shift == 16 || shift == 8) {
   927       t1 = n1;
   928       t2 = t1->in(1);
   929       n1 = t2->in(1);
   930       n1op = n1->Opcode();
   931       if (shift == 16) {
   932         trunc_t = TypeInt::SHORT;
   933       } else if (shift == 8) {
   934         trunc_t = TypeInt::BYTE;
   935       }
   936     }
   937   }
   939   // If (maybe after stripping) it is an AddI, we won:
   940   if (n1op == Op_AddI) {
   941     *trunc1 = t1;
   942     *trunc2 = t2;
   943     *trunc_type = trunc_t;
   944     return n1;
   945   }
   947   // failed
   948   return NULL;
   949 }
   952 //------------------------------filtered_type--------------------------------
   953 // Return a type based on condition control flow
   954 // A successful return will be a type that is restricted due
   955 // to a series of dominating if-tests, such as:
   956 //    if (i < 10) {
   957 //       if (i > 0) {
   958 //          here: "i" type is [1..10)
   959 //       }
   960 //    }
   961 // or a control flow merge
   962 //    if (i < 10) {
   963 //       do {
   964 //          phi( , ) -- at top of loop type is [min_int..10)
   965 //         i = ?
   966 //       } while ( i < 10)
   967 //
   968 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   969   assert(n && n->bottom_type()->is_int(), "must be int");
   970   const TypeInt* filtered_t = NULL;
   971   if (!n->is_Phi()) {
   972     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   973     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   975   } else {
   976     Node* phi    = n->as_Phi();
   977     Node* region = phi->in(0);
   978     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   979     if (region && region != C->top()) {
   980       for (uint i = 1; i < phi->req(); i++) {
   981         Node* val   = phi->in(i);
   982         Node* use_c = region->in(i);
   983         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   984         if (val_t != NULL) {
   985           if (filtered_t == NULL) {
   986             filtered_t = val_t;
   987           } else {
   988             filtered_t = filtered_t->meet(val_t)->is_int();
   989           }
   990         }
   991       }
   992     }
   993   }
   994   const TypeInt* n_t = _igvn.type(n)->is_int();
   995   if (filtered_t != NULL) {
   996     n_t = n_t->join(filtered_t)->is_int();
   997   }
   998   return n_t;
   999 }
  1002 //------------------------------filtered_type_from_dominators--------------------------------
  1003 // Return a possibly more restrictive type for val based on condition control flow of dominators
  1004 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
  1005   if (val->is_Con()) {
  1006      return val->bottom_type()->is_int();
  1008   uint if_limit = 10; // Max number of dominating if's visited
  1009   const TypeInt* rtn_t = NULL;
  1011   if (use_ctrl && use_ctrl != C->top()) {
  1012     Node* val_ctrl = get_ctrl(val);
  1013     uint val_dom_depth = dom_depth(val_ctrl);
  1014     Node* pred = use_ctrl;
  1015     uint if_cnt = 0;
  1016     while (if_cnt < if_limit) {
  1017       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1018         if_cnt++;
  1019         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1020         if (if_t != NULL) {
  1021           if (rtn_t == NULL) {
  1022             rtn_t = if_t;
  1023           } else {
  1024             rtn_t = rtn_t->join(if_t)->is_int();
  1028       pred = idom(pred);
  1029       if (pred == NULL || pred == C->top()) {
  1030         break;
  1032       // Stop if going beyond definition block of val
  1033       if (dom_depth(pred) < val_dom_depth) {
  1034         break;
  1038   return rtn_t;
  1042 //------------------------------dump_spec--------------------------------------
  1043 // Dump special per-node info
  1044 #ifndef PRODUCT
  1045 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1046   if( in(TestValue)->is_Bool() ) {
  1047     BoolTest bt( test_trip()); // Added this for g++.
  1049     st->print("[");
  1050     bt.dump_on(st);
  1051     st->print("]");
  1053   st->print(" ");
  1054   IfNode::dump_spec(st);
  1056 #endif
  1058 //=============================================================================
  1059 //------------------------------is_member--------------------------------------
  1060 // Is 'l' a member of 'this'?
  1061 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1062   while( l->_nest > _nest ) l = l->_parent;
  1063   return l == this;
  1066 //------------------------------set_nest---------------------------------------
  1067 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1068 int IdealLoopTree::set_nest( uint depth ) {
  1069   _nest = depth;
  1070   int bits = _has_call;
  1071   if( _child ) bits |= _child->set_nest(depth+1);
  1072   if( bits ) _has_call = 1;
  1073   if( _next  ) bits |= _next ->set_nest(depth  );
  1074   return bits;
  1077 //------------------------------split_fall_in----------------------------------
  1078 // Split out multiple fall-in edges from the loop header.  Move them to a
  1079 // private RegionNode before the loop.  This becomes the loop landing pad.
  1080 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1081   PhaseIterGVN &igvn = phase->_igvn;
  1082   uint i;
  1084   // Make a new RegionNode to be the landing pad.
  1085   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
  1086   phase->set_loop(landing_pad,_parent);
  1087   // Gather all the fall-in control paths into the landing pad
  1088   uint icnt = fall_in_cnt;
  1089   uint oreq = _head->req();
  1090   for( i = oreq-1; i>0; i-- )
  1091     if( !phase->is_member( this, _head->in(i) ) )
  1092       landing_pad->set_req(icnt--,_head->in(i));
  1094   // Peel off PhiNode edges as well
  1095   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1096     Node *oj = _head->fast_out(j);
  1097     if( oj->is_Phi() ) {
  1098       PhiNode* old_phi = oj->as_Phi();
  1099       assert( old_phi->region() == _head, "" );
  1100       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1101       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1102       uint icnt = fall_in_cnt;
  1103       for( i = oreq-1; i>0; i-- ) {
  1104         if( !phase->is_member( this, _head->in(i) ) ) {
  1105           p->init_req(icnt--, old_phi->in(i));
  1106           // Go ahead and clean out old edges from old phi
  1107           old_phi->del_req(i);
  1110       // Search for CSE's here, because ZKM.jar does a lot of
  1111       // loop hackery and we need to be a little incremental
  1112       // with the CSE to avoid O(N^2) node blow-up.
  1113       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1114       if( p2 ) {                // Found CSE
  1115         p->destruct();          // Recover useless new node
  1116         p = p2;                 // Use old node
  1117       } else {
  1118         igvn.register_new_node_with_optimizer(p, old_phi);
  1120       // Make old Phi refer to new Phi.
  1121       old_phi->add_req(p);
  1122       // Check for the special case of making the old phi useless and
  1123       // disappear it.  In JavaGrande I have a case where this useless
  1124       // Phi is the loop limit and prevents recognizing a CountedLoop
  1125       // which in turn prevents removing an empty loop.
  1126       Node *id_old_phi = old_phi->Identity( &igvn );
  1127       if( id_old_phi != old_phi ) { // Found a simple identity?
  1128         // Note that I cannot call 'replace_node' here, because
  1129         // that will yank the edge from old_phi to the Region and
  1130         // I'm mid-iteration over the Region's uses.
  1131         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1132           Node* use = old_phi->last_out(i);
  1133           igvn.hash_delete(use);
  1134           igvn._worklist.push(use);
  1135           uint uses_found = 0;
  1136           for (uint j = 0; j < use->len(); j++) {
  1137             if (use->in(j) == old_phi) {
  1138               if (j < use->req()) use->set_req (j, id_old_phi);
  1139               else                use->set_prec(j, id_old_phi);
  1140               uses_found++;
  1143           i -= uses_found;    // we deleted 1 or more copies of this edge
  1146       igvn._worklist.push(old_phi);
  1149   // Finally clean out the fall-in edges from the RegionNode
  1150   for( i = oreq-1; i>0; i-- ) {
  1151     if( !phase->is_member( this, _head->in(i) ) ) {
  1152       _head->del_req(i);
  1155   // Transform landing pad
  1156   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1157   // Insert landing pad into the header
  1158   _head->add_req(landing_pad);
  1161 //------------------------------split_outer_loop-------------------------------
  1162 // Split out the outermost loop from this shared header.
  1163 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1164   PhaseIterGVN &igvn = phase->_igvn;
  1166   // Find index of outermost loop; it should also be my tail.
  1167   uint outer_idx = 1;
  1168   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1170   // Make a LoopNode for the outermost loop.
  1171   Node *ctl = _head->in(LoopNode::EntryControl);
  1172   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
  1173   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1174   phase->set_created_loop_node();
  1176   // Outermost loop falls into '_head' loop
  1177   _head->set_req(LoopNode::EntryControl, outer);
  1178   _head->del_req(outer_idx);
  1179   // Split all the Phis up between '_head' loop and 'outer' loop.
  1180   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1181     Node *out = _head->fast_out(j);
  1182     if( out->is_Phi() ) {
  1183       PhiNode *old_phi = out->as_Phi();
  1184       assert( old_phi->region() == _head, "" );
  1185       Node *phi = PhiNode::make_blank(outer, old_phi);
  1186       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1187       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1188       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1189       // Make old Phi point to new Phi on the fall-in path
  1190       igvn.hash_delete(old_phi);
  1191       old_phi->set_req(LoopNode::EntryControl, phi);
  1192       old_phi->del_req(outer_idx);
  1193       igvn._worklist.push(old_phi);
  1197   // Use the new loop head instead of the old shared one
  1198   _head = outer;
  1199   phase->set_loop(_head, this);
  1202 //------------------------------fix_parent-------------------------------------
  1203 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1204   loop->_parent = parent;
  1205   if( loop->_child ) fix_parent( loop->_child, loop   );
  1206   if( loop->_next  ) fix_parent( loop->_next , parent );
  1209 //------------------------------estimate_path_freq-----------------------------
  1210 static float estimate_path_freq( Node *n ) {
  1211   // Try to extract some path frequency info
  1212   IfNode *iff;
  1213   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1214     uint nop = n->Opcode();
  1215     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1216       n = n->in(0);
  1217       continue;
  1219     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1220       // Assume call does not always throw exceptions: means the call-site
  1221       // count is also the frequency of the fall-through path.
  1222       assert( n->is_CatchProj(), "" );
  1223       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1224         return 0.0f;            // Assume call exception path is rare
  1225       Node *call = n->in(0)->in(0)->in(0);
  1226       assert( call->is_Call(), "expect a call here" );
  1227       const JVMState *jvms = ((CallNode*)call)->jvms();
  1228       ciMethodData* methodData = jvms->method()->method_data();
  1229       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1230       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1231       if ((data == NULL) || !data->is_CounterData()) {
  1232         // no call profile available, try call's control input
  1233         n = n->in(0);
  1234         continue;
  1236       return data->as_CounterData()->count()/FreqCountInvocations;
  1238     // See if there's a gating IF test
  1239     Node *n_c = n->in(0);
  1240     if( !n_c->is_If() ) break;       // No estimate available
  1241     iff = n_c->as_If();
  1242     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1243       // Compute how much count comes on this path
  1244       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1245     // Have no count info.  Skip dull uncommon-trap like branches.
  1246     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1247         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1248       break;
  1249     // Skip through never-taken branch; look for a real loop exit.
  1250     n = iff->in(0);
  1252   return 0.0f;                  // No estimate available
  1255 //------------------------------merge_many_backedges---------------------------
  1256 // Merge all the backedges from the shared header into a private Region.
  1257 // Feed that region as the one backedge to this loop.
  1258 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1259   uint i;
  1261   // Scan for the top 2 hottest backedges
  1262   float hotcnt = 0.0f;
  1263   float warmcnt = 0.0f;
  1264   uint hot_idx = 0;
  1265   // Loop starts at 2 because slot 1 is the fall-in path
  1266   for( i = 2; i < _head->req(); i++ ) {
  1267     float cnt = estimate_path_freq(_head->in(i));
  1268     if( cnt > hotcnt ) {       // Grab hottest path
  1269       warmcnt = hotcnt;
  1270       hotcnt = cnt;
  1271       hot_idx = i;
  1272     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1273       warmcnt = cnt;
  1277   // See if the hottest backedge is worthy of being an inner loop
  1278   // by being much hotter than the next hottest backedge.
  1279   if( hotcnt <= 0.0001 ||
  1280       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1282   // Peel out the backedges into a private merge point; peel
  1283   // them all except optionally hot_idx.
  1284   PhaseIterGVN &igvn = phase->_igvn;
  1286   Node *hot_tail = NULL;
  1287   // Make a Region for the merge point
  1288   Node *r = new (phase->C, 1) RegionNode(1);
  1289   for( i = 2; i < _head->req(); i++ ) {
  1290     if( i != hot_idx )
  1291       r->add_req( _head->in(i) );
  1292     else hot_tail = _head->in(i);
  1294   igvn.register_new_node_with_optimizer(r, _head);
  1295   // Plug region into end of loop _head, followed by hot_tail
  1296   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1297   _head->set_req(2, r);
  1298   if( hot_idx ) _head->add_req(hot_tail);
  1300   // Split all the Phis up between '_head' loop and the Region 'r'
  1301   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1302     Node *out = _head->fast_out(j);
  1303     if( out->is_Phi() ) {
  1304       PhiNode* n = out->as_Phi();
  1305       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1306       Node *hot_phi = NULL;
  1307       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
  1308       // Check all inputs for the ones to peel out
  1309       uint j = 1;
  1310       for( uint i = 2; i < n->req(); i++ ) {
  1311         if( i != hot_idx )
  1312           phi->set_req( j++, n->in(i) );
  1313         else hot_phi = n->in(i);
  1315       // Register the phi but do not transform until whole place transforms
  1316       igvn.register_new_node_with_optimizer(phi, n);
  1317       // Add the merge phi to the old Phi
  1318       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1319       n->set_req(2, phi);
  1320       if( hot_idx ) n->add_req(hot_phi);
  1325   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1326   // of self loop tree.  Turn self into a loop headed by _head and with
  1327   // tail being the new merge point.
  1328   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1329   phase->set_loop(_tail,ilt);   // Adjust tail
  1330   _tail = r;                    // Self's tail is new merge point
  1331   phase->set_loop(r,this);
  1332   ilt->_child = _child;         // New guy has my children
  1333   _child = ilt;                 // Self has new guy as only child
  1334   ilt->_parent = this;          // new guy has self for parent
  1335   ilt->_nest = _nest;           // Same nesting depth (for now)
  1337   // Starting with 'ilt', look for child loop trees using the same shared
  1338   // header.  Flatten these out; they will no longer be loops in the end.
  1339   IdealLoopTree **pilt = &_child;
  1340   while( ilt ) {
  1341     if( ilt->_head == _head ) {
  1342       uint i;
  1343       for( i = 2; i < _head->req(); i++ )
  1344         if( _head->in(i) == ilt->_tail )
  1345           break;                // Still a loop
  1346       if( i == _head->req() ) { // No longer a loop
  1347         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1348         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1349         IdealLoopTree **cp = &ilt->_child;
  1350         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1351         *cp = ilt->_next;       // Hang next list at end of child list
  1352         *pilt = ilt->_child;    // Move child up to replace ilt
  1353         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1354         ilt = ilt->_child;      // Repeat using new ilt
  1355         continue;               // do not advance over ilt->_child
  1357       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1358       phase->set_loop(_head,ilt);
  1360     pilt = &ilt->_child;        // Advance to next
  1361     ilt = *pilt;
  1364   if( _child ) fix_parent( _child, this );
  1367 //------------------------------beautify_loops---------------------------------
  1368 // Split shared headers and insert loop landing pads.
  1369 // Insert a LoopNode to replace the RegionNode.
  1370 // Return TRUE if loop tree is structurally changed.
  1371 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1372   bool result = false;
  1373   // Cache parts in locals for easy
  1374   PhaseIterGVN &igvn = phase->_igvn;
  1376   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1378   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1379   int fall_in_cnt = 0;
  1380   for( uint i = 1; i < _head->req(); i++ )
  1381     if( !phase->is_member( this, _head->in(i) ) )
  1382       fall_in_cnt++;
  1383   assert( fall_in_cnt, "at least 1 fall-in path" );
  1384   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1385     split_fall_in( phase, fall_in_cnt );
  1387   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1388   // the left.
  1389   fall_in_cnt = 1;
  1390   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1391     fall_in_cnt++;
  1392   if( fall_in_cnt > 1 ) {
  1393     // Since I am just swapping inputs I do not need to update def-use info
  1394     Node *tmp = _head->in(1);
  1395     _head->set_req( 1, _head->in(fall_in_cnt) );
  1396     _head->set_req( fall_in_cnt, tmp );
  1397     // Swap also all Phis
  1398     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1399       Node* phi = _head->fast_out(i);
  1400       if( phi->is_Phi() ) {
  1401         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1402         tmp = phi->in(1);
  1403         phi->set_req( 1, phi->in(fall_in_cnt) );
  1404         phi->set_req( fall_in_cnt, tmp );
  1408   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1409   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1411   // If I am a shared header (multiple backedges), peel off the many
  1412   // backedges into a private merge point and use the merge point as
  1413   // the one true backedge.
  1414   if( _head->req() > 3 ) {
  1415     // Merge the many backedges into a single backedge but leave
  1416     // the hottest backedge as separate edge for the following peel.
  1417     merge_many_backedges( phase );
  1418     result = true;
  1421   // If I have one hot backedge, peel off myself loop.
  1422   // I better be the outermost loop.
  1423   if( _head->req() > 3 ) {
  1424     split_outer_loop( phase );
  1425     result = true;
  1427   } else if( !_head->is_Loop() && !_irreducible ) {
  1428     // Make a new LoopNode to replace the old loop head
  1429     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1430     l = igvn.register_new_node_with_optimizer(l, _head);
  1431     phase->set_created_loop_node();
  1432     // Go ahead and replace _head
  1433     phase->_igvn.replace_node( _head, l );
  1434     _head = l;
  1435     phase->set_loop(_head, this);
  1438   // Now recursively beautify nested loops
  1439   if( _child ) result |= _child->beautify_loops( phase );
  1440   if( _next  ) result |= _next ->beautify_loops( phase );
  1441   return result;
  1444 //------------------------------allpaths_check_safepts----------------------------
  1445 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1446 // encountered.  Helper for check_safepts.
  1447 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1448   assert(stack.size() == 0, "empty stack");
  1449   stack.push(_tail);
  1450   visited.Clear();
  1451   visited.set(_tail->_idx);
  1452   while (stack.size() > 0) {
  1453     Node* n = stack.pop();
  1454     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1455       // Terminate this path
  1456     } else if (n->Opcode() == Op_SafePoint) {
  1457       if (_phase->get_loop(n) != this) {
  1458         if (_required_safept == NULL) _required_safept = new Node_List();
  1459         _required_safept->push(n);  // save the one closest to the tail
  1461       // Terminate this path
  1462     } else {
  1463       uint start = n->is_Region() ? 1 : 0;
  1464       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1465       for (uint i = start; i < end; i++) {
  1466         Node* in = n->in(i);
  1467         assert(in->is_CFG(), "must be");
  1468         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1469           stack.push(in);
  1476 //------------------------------check_safepts----------------------------
  1477 // Given dominators, try to find loops with calls that must always be
  1478 // executed (call dominates loop tail).  These loops do not need non-call
  1479 // safepoints (ncsfpt).
  1480 //
  1481 // A complication is that a safepoint in a inner loop may be needed
  1482 // by an outer loop. In the following, the inner loop sees it has a
  1483 // call (block 3) on every path from the head (block 2) to the
  1484 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1485 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1486 //
  1487 //          entry  0
  1488 //                 |
  1489 //                 v
  1490 // outer 1,2    +->1
  1491 //              |  |
  1492 //              |  v
  1493 //              |  2<---+  ncsfpt in 2
  1494 //              |_/|\   |
  1495 //                 | v  |
  1496 // inner 2,3      /  3  |  call in 3
  1497 //               /   |  |
  1498 //              v    +--+
  1499 //        exit  4
  1500 //
  1501 //
  1502 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1503 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1504 // is first looked for in the lists for the outer loops of the current loop.
  1505 //
  1506 // The insights into the problem:
  1507 //  A) counted loops are okay
  1508 //  B) innermost loops are okay (only an inner loop can delete
  1509 //     a ncsfpt needed by an outer loop)
  1510 //  C) a loop is immune from an inner loop deleting a safepoint
  1511 //     if the loop has a call on the idom-path
  1512 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1513 //     idom-path that is not in a nested loop
  1514 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1515 //     loop needs to be prevented from deletion by an inner loop
  1516 //
  1517 // There are two analyses:
  1518 //  1) The first, and cheaper one, scans the loop body from
  1519 //     tail to head following the idom (immediate dominator)
  1520 //     chain, looking for the cases (C,D,E) above.
  1521 //     Since inner loops are scanned before outer loops, there is summary
  1522 //     information about inner loops.  Inner loops can be skipped over
  1523 //     when the tail of an inner loop is encountered.
  1524 //
  1525 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1526 //     the idom path (which is rare), scans all predecessor control paths
  1527 //     from the tail to the head, terminating a path when a call or sfpt
  1528 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1529 //
  1530 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1531   // Bottom up traversal
  1532   IdealLoopTree* ch = _child;
  1533   while (ch != NULL) {
  1534     ch->check_safepts(visited, stack);
  1535     ch = ch->_next;
  1538   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1539     bool  has_call         = false; // call on dom-path
  1540     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1541     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1542     // Scan the dom-path nodes from tail to head
  1543     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1544       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1545         has_call = true;
  1546         _has_sfpt = 1;          // Then no need for a safept!
  1547         break;
  1548       } else if (n->Opcode() == Op_SafePoint) {
  1549         if (_phase->get_loop(n) == this) {
  1550           has_local_ncsfpt = true;
  1551           break;
  1553         if (nonlocal_ncsfpt == NULL) {
  1554           nonlocal_ncsfpt = n; // save the one closest to the tail
  1556       } else {
  1557         IdealLoopTree* nlpt = _phase->get_loop(n);
  1558         if (this != nlpt) {
  1559           // If at an inner loop tail, see if the inner loop has already
  1560           // recorded seeing a call on the dom-path (and stop.)  If not,
  1561           // jump to the head of the inner loop.
  1562           assert(is_member(nlpt), "nested loop");
  1563           Node* tail = nlpt->_tail;
  1564           if (tail->in(0)->is_If()) tail = tail->in(0);
  1565           if (n == tail) {
  1566             // If inner loop has call on dom-path, so does outer loop
  1567             if (nlpt->_has_sfpt) {
  1568               has_call = true;
  1569               _has_sfpt = 1;
  1570               break;
  1572             // Skip to head of inner loop
  1573             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1574             n = nlpt->_head;
  1579     // Record safept's that this loop needs preserved when an
  1580     // inner loop attempts to delete it's safepoints.
  1581     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1582       if (nonlocal_ncsfpt != NULL) {
  1583         if (_required_safept == NULL) _required_safept = new Node_List();
  1584         _required_safept->push(nonlocal_ncsfpt);
  1585       } else {
  1586         // Failed to find a suitable safept on the dom-path.  Now use
  1587         // an all paths walk from tail to head, looking for safepoints to preserve.
  1588         allpaths_check_safepts(visited, stack);
  1594 //---------------------------is_deleteable_safept----------------------------
  1595 // Is safept not required by an outer loop?
  1596 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1597   assert(sfpt->Opcode() == Op_SafePoint, "");
  1598   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1599   while (lp != NULL) {
  1600     Node_List* sfpts = lp->_required_safept;
  1601     if (sfpts != NULL) {
  1602       for (uint i = 0; i < sfpts->size(); i++) {
  1603         if (sfpt == sfpts->at(i))
  1604           return false;
  1607     lp = lp->_parent;
  1609   return true;
  1612 //---------------------------replace_parallel_iv-------------------------------
  1613 // Replace parallel induction variable (parallel to trip counter)
  1614 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1615   assert(loop->_head->is_CountedLoop(), "");
  1616   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1617   if (!cl->is_valid_counted_loop())
  1618     return;         // skip malformed counted loop
  1619   Node *incr = cl->incr();
  1620   if (incr == NULL)
  1621     return;         // Dead loop?
  1622   Node *init = cl->init_trip();
  1623   Node *phi  = cl->phi();
  1624   int stride_con = cl->stride_con();
  1626   // Visit all children, looking for Phis
  1627   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1628     Node *out = cl->out(i);
  1629     // Look for other phis (secondary IVs). Skip dead ones
  1630     if (!out->is_Phi() || out == phi || !has_node(out))
  1631       continue;
  1632     PhiNode* phi2 = out->as_Phi();
  1633     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1634     // Look for induction variables of the form:  X += constant
  1635     if (phi2->region() != loop->_head ||
  1636         incr2->req() != 3 ||
  1637         incr2->in(1) != phi2 ||
  1638         incr2 == incr ||
  1639         incr2->Opcode() != Op_AddI ||
  1640         !incr2->in(2)->is_Con())
  1641       continue;
  1643     // Check for parallel induction variable (parallel to trip counter)
  1644     // via an affine function.  In particular, count-down loops with
  1645     // count-up array indices are common. We only RCE references off
  1646     // the trip-counter, so we need to convert all these to trip-counter
  1647     // expressions.
  1648     Node *init2 = phi2->in( LoopNode::EntryControl );
  1649     int stride_con2 = incr2->in(2)->get_int();
  1651     // The general case here gets a little tricky.  We want to find the
  1652     // GCD of all possible parallel IV's and make a new IV using this
  1653     // GCD for the loop.  Then all possible IVs are simple multiples of
  1654     // the GCD.  In practice, this will cover very few extra loops.
  1655     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1656     // where +/-1 is the common case, but other integer multiples are
  1657     // also easy to handle.
  1658     int ratio_con = stride_con2/stride_con;
  1660     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1661 #ifndef PRODUCT
  1662       if (TraceLoopOpts) {
  1663         tty->print("Parallel IV: %d ", phi2->_idx);
  1664         loop->dump_head();
  1666 #endif
  1667       // Convert to using the trip counter.  The parallel induction
  1668       // variable differs from the trip counter by a loop-invariant
  1669       // amount, the difference between their respective initial values.
  1670       // It is scaled by the 'ratio_con'.
  1671       Node* ratio = _igvn.intcon(ratio_con);
  1672       set_ctrl(ratio, C->root());
  1673       Node* ratio_init = new (C, 3) MulINode(init, ratio);
  1674       _igvn.register_new_node_with_optimizer(ratio_init, init);
  1675       set_early_ctrl(ratio_init);
  1676       Node* diff = new (C, 3) SubINode(init2, ratio_init);
  1677       _igvn.register_new_node_with_optimizer(diff, init2);
  1678       set_early_ctrl(diff);
  1679       Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
  1680       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1681       set_ctrl(ratio_idx, cl);
  1682       Node* add = new (C, 3) AddINode(ratio_idx, diff);
  1683       _igvn.register_new_node_with_optimizer(add);
  1684       set_ctrl(add, cl);
  1685       _igvn.replace_node( phi2, add );
  1686       // Sometimes an induction variable is unused
  1687       if (add->outcnt() == 0) {
  1688         _igvn.remove_dead_node(add);
  1690       --i; // deleted this phi; rescan starting with next position
  1691       continue;
  1696 //------------------------------counted_loop-----------------------------------
  1697 // Convert to counted loops where possible
  1698 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1700   // For grins, set the inner-loop flag here
  1701   if (!_child) {
  1702     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1705   if (_head->is_CountedLoop() ||
  1706       phase->is_counted_loop(_head, this)) {
  1707     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1709     // Look for a safepoint to remove
  1710     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1711       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1712           phase->is_deleteable_safept(n))
  1713         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1715     // Look for induction variables
  1716     phase->replace_parallel_iv(this);
  1718   } else if (_parent != NULL && !_irreducible) {
  1719     // Not a counted loop.
  1720     // Look for a safepoint on the idom-path to remove, preserving the first one
  1721     bool found = false;
  1722     Node* n = tail();
  1723     for (; n != _head && !found; n = phase->idom(n)) {
  1724       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1725         found = true; // Found one
  1727     // Skip past it and delete the others
  1728     for (; n != _head; n = phase->idom(n)) {
  1729       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1730           phase->is_deleteable_safept(n))
  1731         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1735   // Recursively
  1736   if (_child) _child->counted_loop( phase );
  1737   if (_next)  _next ->counted_loop( phase );
  1740 #ifndef PRODUCT
  1741 //------------------------------dump_head--------------------------------------
  1742 // Dump 1 liner for loop header info
  1743 void IdealLoopTree::dump_head( ) const {
  1744   for (uint i=0; i<_nest; i++)
  1745     tty->print("  ");
  1746   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1747   if (_irreducible) tty->print(" IRREDUCIBLE");
  1748   Node* entry = _head->in(LoopNode::EntryControl);
  1749   if (LoopLimitCheck) {
  1750     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1751     if (predicate != NULL ) {
  1752       tty->print(" limit_check");
  1753       entry = entry->in(0)->in(0);
  1756   if (UseLoopPredicate) {
  1757     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1758     if (entry != NULL) {
  1759       tty->print(" predicated");
  1762   if (_head->is_CountedLoop()) {
  1763     CountedLoopNode *cl = _head->as_CountedLoop();
  1764     tty->print(" counted");
  1766     Node* init_n = cl->init_trip();
  1767     if (init_n  != NULL &&  init_n->is_Con())
  1768       tty->print(" [%d,", cl->init_trip()->get_int());
  1769     else
  1770       tty->print(" [int,");
  1771     Node* limit_n = cl->limit();
  1772     if (limit_n  != NULL &&  limit_n->is_Con())
  1773       tty->print("%d),", cl->limit()->get_int());
  1774     else
  1775       tty->print("int),");
  1776     int stride_con  = cl->stride_con();
  1777     if (stride_con > 0) tty->print("+");
  1778     tty->print("%d", stride_con);
  1780     if (cl->is_pre_loop ()) tty->print(" pre" );
  1781     if (cl->is_main_loop()) tty->print(" main");
  1782     if (cl->is_post_loop()) tty->print(" post");
  1784   tty->cr();
  1787 //------------------------------dump-------------------------------------------
  1788 // Dump loops by loop tree
  1789 void IdealLoopTree::dump( ) const {
  1790   dump_head();
  1791   if (_child) _child->dump();
  1792   if (_next)  _next ->dump();
  1795 #endif
  1797 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1798   if (loop == root) {
  1799     if (loop->_child != NULL) {
  1800       log->begin_head("loop_tree");
  1801       log->end_head();
  1802       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1803       log->tail("loop_tree");
  1804       assert(loop->_next == NULL, "what?");
  1806   } else {
  1807     Node* head = loop->_head;
  1808     log->begin_head("loop");
  1809     log->print(" idx='%d' ", head->_idx);
  1810     if (loop->_irreducible) log->print("irreducible='1' ");
  1811     if (head->is_Loop()) {
  1812       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1813       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1815     if (head->is_CountedLoop()) {
  1816       CountedLoopNode* cl = head->as_CountedLoop();
  1817       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1818       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1819       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1821     log->end_head();
  1822     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1823     log->tail("loop");
  1824     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1828 //---------------------collect_potentially_useful_predicates-----------------------
  1829 // Helper function to collect potentially useful predicates to prevent them from
  1830 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1831 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1832                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1833   if (loop->_child) { // child
  1834     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1837   // self (only loops that we can apply loop predication may use their predicates)
  1838   if (loop->_head->is_Loop() &&
  1839       !loop->_irreducible    &&
  1840       !loop->tail()->is_top()) {
  1841     LoopNode* lpn = loop->_head->as_Loop();
  1842     Node* entry = lpn->in(LoopNode::EntryControl);
  1843     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  1844     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1845       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1846       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1847       entry = entry->in(0)->in(0);
  1849     predicate_proj = find_predicate(entry); // Predicate
  1850     if (predicate_proj != NULL ) {
  1851       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1855   if (loop->_next) { // sibling
  1856     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1860 //------------------------eliminate_useless_predicates-----------------------------
  1861 // Eliminate all inserted predicates if they could not be used by loop predication.
  1862 // Note: it will also eliminates loop limits check predicate since it also uses
  1863 // Opaque1 node (see Parse::add_predicate()).
  1864 void PhaseIdealLoop::eliminate_useless_predicates() {
  1865   if (C->predicate_count() == 0)
  1866     return; // no predicate left
  1868   Unique_Node_List useful_predicates; // to store useful predicates
  1869   if (C->has_loops()) {
  1870     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1873   for (int i = C->predicate_count(); i > 0; i--) {
  1874      Node * n = C->predicate_opaque1_node(i-1);
  1875      assert(n->Opcode() == Op_Opaque1, "must be");
  1876      if (!useful_predicates.member(n)) { // not in the useful list
  1877        _igvn.replace_node(n, n->in(1));
  1882 //=============================================================================
  1883 //----------------------------build_and_optimize-------------------------------
  1884 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1885 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1886 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
  1887   ResourceMark rm;
  1889   int old_progress = C->major_progress();
  1890   uint orig_worklist_size = _igvn._worklist.size();
  1892   // Reset major-progress flag for the driver's heuristics
  1893   C->clear_major_progress();
  1895 #ifndef PRODUCT
  1896   // Capture for later assert
  1897   uint unique = C->unique();
  1898   _loop_invokes++;
  1899   _loop_work += unique;
  1900 #endif
  1902   // True if the method has at least 1 irreducible loop
  1903   _has_irreducible_loops = false;
  1905   _created_loop_node = false;
  1907   Arena *a = Thread::current()->resource_area();
  1908   VectorSet visited(a);
  1909   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1910   _nodes.map(C->unique(), NULL);
  1911   memset(_nodes.adr(), 0, wordSize * C->unique());
  1913   // Pre-build the top-level outermost loop tree entry
  1914   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1915   // Do not need a safepoint at the top level
  1916   _ltree_root->_has_sfpt = 1;
  1918   // Initialize Dominators.
  1919   // Checked in clone_loop_predicate() during beautify_loops().
  1920   _idom_size = 0;
  1921   _idom      = NULL;
  1922   _dom_depth = NULL;
  1923   _dom_stk   = NULL;
  1925   // Empty pre-order array
  1926   allocate_preorders();
  1928   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1929   // IdealLoopTree entries.  Data nodes are NOT walked.
  1930   build_loop_tree();
  1931   // Check for bailout, and return
  1932   if (C->failing()) {
  1933     return;
  1936   // No loops after all
  1937   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  1939   // There should always be an outer loop containing the Root and Return nodes.
  1940   // If not, we have a degenerate empty program.  Bail out in this case.
  1941   if (!has_node(C->root())) {
  1942     if (!_verify_only) {
  1943       C->clear_major_progress();
  1944       C->record_method_not_compilable("empty program detected during loop optimization");
  1946     return;
  1949   // Nothing to do, so get out
  1950   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
  1951     _igvn.optimize();           // Cleanup NeverBranches
  1952     return;
  1955   // Set loop nesting depth
  1956   _ltree_root->set_nest( 0 );
  1958   // Split shared headers and insert loop landing pads.
  1959   // Do not bother doing this on the Root loop of course.
  1960   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  1961     C->print_method("Before beautify loops", 3);
  1962     if( _ltree_root->_child->beautify_loops( this ) ) {
  1963       // Re-build loop tree!
  1964       _ltree_root->_child = NULL;
  1965       _nodes.clear();
  1966       reallocate_preorders();
  1967       build_loop_tree();
  1968       // Check for bailout, and return
  1969       if (C->failing()) {
  1970         return;
  1972       // Reset loop nesting depth
  1973       _ltree_root->set_nest( 0 );
  1975       C->print_method("After beautify loops", 3);
  1979   // Build Dominators for elision of NULL checks & loop finding.
  1980   // Since nodes do not have a slot for immediate dominator, make
  1981   // a persistent side array for that info indexed on node->_idx.
  1982   _idom_size = C->unique();
  1983   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1984   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1985   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1986   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1988   Dominators();
  1990   if (!_verify_only) {
  1991     // As a side effect, Dominators removed any unreachable CFG paths
  1992     // into RegionNodes.  It doesn't do this test against Root, so
  1993     // we do it here.
  1994     for( uint i = 1; i < C->root()->req(); i++ ) {
  1995       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1996         _igvn.hash_delete(C->root());
  1997         C->root()->del_req(i);
  1998         _igvn._worklist.push(C->root());
  1999         i--;                      // Rerun same iteration on compressed edges
  2003     // Given dominators, try to find inner loops with calls that must
  2004     // always be executed (call dominates loop tail).  These loops do
  2005     // not need a separate safepoint.
  2006     Node_List cisstack(a);
  2007     _ltree_root->check_safepts(visited, cisstack);
  2010   // Walk the DATA nodes and place into loops.  Find earliest control
  2011   // node.  For CFG nodes, the _nodes array starts out and remains
  2012   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2013   // _nodes array holds the earliest legal controlling CFG node.
  2015   // Allocate stack with enough space to avoid frequent realloc
  2016   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  2017   Node_Stack nstack( a, stack_size );
  2019   visited.Clear();
  2020   Node_List worklist(a);
  2021   // Don't need C->root() on worklist since
  2022   // it will be processed among C->top() inputs
  2023   worklist.push( C->top() );
  2024   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2025   build_loop_early( visited, worklist, nstack );
  2027   // Given early legal placement, try finding counted loops.  This placement
  2028   // is good enough to discover most loop invariants.
  2029   if( !_verify_me && !_verify_only )
  2030     _ltree_root->counted_loop( this );
  2032   // Find latest loop placement.  Find ideal loop placement.
  2033   visited.Clear();
  2034   init_dom_lca_tags();
  2035   // Need C->root() on worklist when processing outs
  2036   worklist.push( C->root() );
  2037   NOT_PRODUCT( C->verify_graph_edges(); )
  2038   worklist.push( C->top() );
  2039   build_loop_late( visited, worklist, nstack );
  2041   if (_verify_only) {
  2042     // restore major progress flag
  2043     for (int i = 0; i < old_progress; i++)
  2044       C->set_major_progress();
  2045     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2046     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2047     return;
  2050   // Some parser-inserted loop predicates could never be used by loop
  2051   // predication or they were moved away from loop during some optimizations.
  2052   // For example, peeling. Eliminate them before next loop optimizations.
  2053   if (UseLoopPredicate || LoopLimitCheck) {
  2054     eliminate_useless_predicates();
  2057   // clear out the dead code
  2058   while(_deadlist.size()) {
  2059     _igvn.remove_globally_dead_node(_deadlist.pop());
  2062 #ifndef PRODUCT
  2063   C->verify_graph_edges();
  2064   if (_verify_me) {             // Nested verify pass?
  2065     // Check to see if the verify mode is broken
  2066     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2067     return;
  2069   if(VerifyLoopOptimizations) verify();
  2070   if(TraceLoopOpts && C->has_loops()) {
  2071     _ltree_root->dump();
  2073 #endif
  2075   if (skip_loop_opts) {
  2076     // Cleanup any modified bits
  2077     _igvn.optimize();
  2079     if (C->log() != NULL) {
  2080       log_loop_tree(_ltree_root, _ltree_root, C->log());
  2082     return;
  2085   if (ReassociateInvariants) {
  2086     // Reassociate invariants and prep for split_thru_phi
  2087     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2088       IdealLoopTree* lpt = iter.current();
  2089       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2091       lpt->reassociate_invariants(this);
  2093       // Because RCE opportunities can be masked by split_thru_phi,
  2094       // look for RCE candidates and inhibit split_thru_phi
  2095       // on just their loop-phi's for this pass of loop opts
  2096       if (SplitIfBlocks && do_split_ifs) {
  2097         if (lpt->policy_range_check(this)) {
  2098           lpt->_rce_candidate = 1; // = true
  2104   // Check for aggressive application of split-if and other transforms
  2105   // that require basic-block info (like cloning through Phi's)
  2106   if( SplitIfBlocks && do_split_ifs ) {
  2107     visited.Clear();
  2108     split_if_with_blocks( visited, nstack );
  2109     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2112   // Perform loop predication before iteration splitting
  2113   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2114     _ltree_root->_child->loop_predication(this);
  2117   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2118     if (do_intrinsify_fill()) {
  2119       C->set_major_progress();
  2123   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2124   // range checks or one-shot null checks.
  2126   // If split-if's didn't hack the graph too bad (no CFG changes)
  2127   // then do loop opts.
  2128   if (C->has_loops() && !C->major_progress()) {
  2129     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2130     _ltree_root->_child->iteration_split( this, worklist );
  2131     // No verify after peeling!  GCM has hoisted code out of the loop.
  2132     // After peeling, the hoisted code could sink inside the peeled area.
  2133     // The peeling code does not try to recompute the best location for
  2134     // all the code before the peeled area, so the verify pass will always
  2135     // complain about it.
  2137   // Do verify graph edges in any case
  2138   NOT_PRODUCT( C->verify_graph_edges(); );
  2140   if (!do_split_ifs) {
  2141     // We saw major progress in Split-If to get here.  We forced a
  2142     // pass with unrolling and not split-if, however more split-if's
  2143     // might make progress.  If the unrolling didn't make progress
  2144     // then the major-progress flag got cleared and we won't try
  2145     // another round of Split-If.  In particular the ever-common
  2146     // instance-of/check-cast pattern requires at least 2 rounds of
  2147     // Split-If to clear out.
  2148     C->set_major_progress();
  2151   // Repeat loop optimizations if new loops were seen
  2152   if (created_loop_node()) {
  2153     C->set_major_progress();
  2156   // Keep loop predicates and perform optimizations with them
  2157   // until no more loop optimizations could be done.
  2158   // After that switch predicates off and do more loop optimizations.
  2159   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2160      C->cleanup_loop_predicates(_igvn);
  2161 #ifndef PRODUCT
  2162      if (TraceLoopOpts) {
  2163        tty->print_cr("PredicatesOff");
  2165 #endif
  2166      C->set_major_progress();
  2169   // Convert scalar to superword operations at the end of all loop opts.
  2170   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2171     // SuperWord transform
  2172     SuperWord sw(this);
  2173     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2174       IdealLoopTree* lpt = iter.current();
  2175       if (lpt->is_counted()) {
  2176         sw.transform_loop(lpt);
  2181   // Cleanup any modified bits
  2182   _igvn.optimize();
  2184   // disable assert until issue with split_flow_path is resolved (6742111)
  2185   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2186   //        "shouldn't introduce irreducible loops");
  2188   if (C->log() != NULL) {
  2189     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2193 #ifndef PRODUCT
  2194 //------------------------------print_statistics-------------------------------
  2195 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2196 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2197 void PhaseIdealLoop::print_statistics() {
  2198   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2201 //------------------------------verify-----------------------------------------
  2202 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2203 static int fail;                // debug only, so its multi-thread dont care
  2204 void PhaseIdealLoop::verify() const {
  2205   int old_progress = C->major_progress();
  2206   ResourceMark rm;
  2207   PhaseIdealLoop loop_verify( _igvn, this );
  2208   VectorSet visited(Thread::current()->resource_area());
  2210   fail = 0;
  2211   verify_compare( C->root(), &loop_verify, visited );
  2212   assert( fail == 0, "verify loops failed" );
  2213   // Verify loop structure is the same
  2214   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2215   // Reset major-progress.  It was cleared by creating a verify version of
  2216   // PhaseIdealLoop.
  2217   for( int i=0; i<old_progress; i++ )
  2218     C->set_major_progress();
  2221 //------------------------------verify_compare---------------------------------
  2222 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2223 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2224   if( !n ) return;
  2225   if( visited.test_set( n->_idx ) ) return;
  2226   if( !_nodes[n->_idx] ) {      // Unreachable
  2227     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2228     return;
  2231   uint i;
  2232   for( i = 0; i < n->req(); i++ )
  2233     verify_compare( n->in(i), loop_verify, visited );
  2235   // Check the '_nodes' block/loop structure
  2236   i = n->_idx;
  2237   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2238     if( _nodes[i] != loop_verify->_nodes[i] &&
  2239         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2240       tty->print("Mismatched control setting for: ");
  2241       n->dump();
  2242       if( fail++ > 10 ) return;
  2243       Node *c = get_ctrl_no_update(n);
  2244       tty->print("We have it as: ");
  2245       if( c->in(0) ) c->dump();
  2246         else tty->print_cr("N%d",c->_idx);
  2247       tty->print("Verify thinks: ");
  2248       if( loop_verify->has_ctrl(n) )
  2249         loop_verify->get_ctrl_no_update(n)->dump();
  2250       else
  2251         loop_verify->get_loop_idx(n)->dump();
  2252       tty->cr();
  2254   } else {                    // We have a loop
  2255     IdealLoopTree *us = get_loop_idx(n);
  2256     if( loop_verify->has_ctrl(n) ) {
  2257       tty->print("Mismatched loop setting for: ");
  2258       n->dump();
  2259       if( fail++ > 10 ) return;
  2260       tty->print("We have it as: ");
  2261       us->dump();
  2262       tty->print("Verify thinks: ");
  2263       loop_verify->get_ctrl_no_update(n)->dump();
  2264       tty->cr();
  2265     } else if (!C->major_progress()) {
  2266       // Loop selection can be messed up if we did a major progress
  2267       // operation, like split-if.  Do not verify in that case.
  2268       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2269       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2270         tty->print("Unequals loops for: ");
  2271         n->dump();
  2272         if( fail++ > 10 ) return;
  2273         tty->print("We have it as: ");
  2274         us->dump();
  2275         tty->print("Verify thinks: ");
  2276         them->dump();
  2277         tty->cr();
  2282   // Check for immediate dominators being equal
  2283   if( i >= _idom_size ) {
  2284     if( !n->is_CFG() ) return;
  2285     tty->print("CFG Node with no idom: ");
  2286     n->dump();
  2287     return;
  2289   if( !n->is_CFG() ) return;
  2290   if( n == C->root() ) return; // No IDOM here
  2292   assert(n->_idx == i, "sanity");
  2293   Node *id = idom_no_update(n);
  2294   if( id != loop_verify->idom_no_update(n) ) {
  2295     tty->print("Unequals idoms for: ");
  2296     n->dump();
  2297     if( fail++ > 10 ) return;
  2298     tty->print("We have it as: ");
  2299     id->dump();
  2300     tty->print("Verify thinks: ");
  2301     loop_verify->idom_no_update(n)->dump();
  2302     tty->cr();
  2307 //------------------------------verify_tree------------------------------------
  2308 // Verify that tree structures match.  Because the CFG can change, siblings
  2309 // within the loop tree can be reordered.  We attempt to deal with that by
  2310 // reordering the verify's loop tree if possible.
  2311 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2312   assert( _parent == parent, "Badly formed loop tree" );
  2314   // Siblings not in same order?  Attempt to re-order.
  2315   if( _head != loop->_head ) {
  2316     // Find _next pointer to update
  2317     IdealLoopTree **pp = &loop->_parent->_child;
  2318     while( *pp != loop )
  2319       pp = &((*pp)->_next);
  2320     // Find proper sibling to be next
  2321     IdealLoopTree **nn = &loop->_next;
  2322     while( (*nn) && (*nn)->_head != _head )
  2323       nn = &((*nn)->_next);
  2325     // Check for no match.
  2326     if( !(*nn) ) {
  2327       // Annoyingly, irreducible loops can pick different headers
  2328       // after a major_progress operation, so the rest of the loop
  2329       // tree cannot be matched.
  2330       if (_irreducible && Compile::current()->major_progress())  return;
  2331       assert( 0, "failed to match loop tree" );
  2334     // Move (*nn) to (*pp)
  2335     IdealLoopTree *hit = *nn;
  2336     *nn = hit->_next;
  2337     hit->_next = loop;
  2338     *pp = loop;
  2339     loop = hit;
  2340     // Now try again to verify
  2343   assert( _head  == loop->_head , "mismatched loop head" );
  2344   Node *tail = _tail;           // Inline a non-updating version of
  2345   while( !tail->in(0) )         // the 'tail()' call.
  2346     tail = tail->in(1);
  2347   assert( tail == loop->_tail, "mismatched loop tail" );
  2349   // Counted loops that are guarded should be able to find their guards
  2350   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2351     CountedLoopNode *cl = _head->as_CountedLoop();
  2352     Node *init = cl->init_trip();
  2353     Node *ctrl = cl->in(LoopNode::EntryControl);
  2354     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2355     Node *iff  = ctrl->in(0);
  2356     assert( iff->Opcode() == Op_If, "" );
  2357     Node *bol  = iff->in(1);
  2358     assert( bol->Opcode() == Op_Bool, "" );
  2359     Node *cmp  = bol->in(1);
  2360     assert( cmp->Opcode() == Op_CmpI, "" );
  2361     Node *add  = cmp->in(1);
  2362     Node *opaq;
  2363     if( add->Opcode() == Op_Opaque1 ) {
  2364       opaq = add;
  2365     } else {
  2366       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2367       assert( add == init, "" );
  2368       opaq = cmp->in(2);
  2370     assert( opaq->Opcode() == Op_Opaque1, "" );
  2374   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2375   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2376   // Innermost loops need to verify loop bodies,
  2377   // but only if no 'major_progress'
  2378   int fail = 0;
  2379   if (!Compile::current()->major_progress() && _child == NULL) {
  2380     for( uint i = 0; i < _body.size(); i++ ) {
  2381       Node *n = _body.at(i);
  2382       if (n->outcnt() == 0)  continue; // Ignore dead
  2383       uint j;
  2384       for( j = 0; j < loop->_body.size(); j++ )
  2385         if( loop->_body.at(j) == n )
  2386           break;
  2387       if( j == loop->_body.size() ) { // Not found in loop body
  2388         // Last ditch effort to avoid assertion: Its possible that we
  2389         // have some users (so outcnt not zero) but are still dead.
  2390         // Try to find from root.
  2391         if (Compile::current()->root()->find(n->_idx)) {
  2392           fail++;
  2393           tty->print("We have that verify does not: ");
  2394           n->dump();
  2398     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2399       Node *n = loop->_body.at(i2);
  2400       if (n->outcnt() == 0)  continue; // Ignore dead
  2401       uint j;
  2402       for( j = 0; j < _body.size(); j++ )
  2403         if( _body.at(j) == n )
  2404           break;
  2405       if( j == _body.size() ) { // Not found in loop body
  2406         // Last ditch effort to avoid assertion: Its possible that we
  2407         // have some users (so outcnt not zero) but are still dead.
  2408         // Try to find from root.
  2409         if (Compile::current()->root()->find(n->_idx)) {
  2410           fail++;
  2411           tty->print("Verify has that we do not: ");
  2412           n->dump();
  2416     assert( !fail, "loop body mismatch" );
  2420 #endif
  2422 //------------------------------set_idom---------------------------------------
  2423 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2424   uint idx = d->_idx;
  2425   if (idx >= _idom_size) {
  2426     uint newsize = _idom_size<<1;
  2427     while( idx >= newsize ) {
  2428       newsize <<= 1;
  2430     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2431     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2432     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2433     _idom_size = newsize;
  2435   _idom[idx] = n;
  2436   _dom_depth[idx] = dom_depth;
  2439 //------------------------------recompute_dom_depth---------------------------------------
  2440 // The dominator tree is constructed with only parent pointers.
  2441 // This recomputes the depth in the tree by first tagging all
  2442 // nodes as "no depth yet" marker.  The next pass then runs up
  2443 // the dom tree from each node marked "no depth yet", and computes
  2444 // the depth on the way back down.
  2445 void PhaseIdealLoop::recompute_dom_depth() {
  2446   uint no_depth_marker = C->unique();
  2447   uint i;
  2448   // Initialize depth to "no depth yet"
  2449   for (i = 0; i < _idom_size; i++) {
  2450     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2451      _dom_depth[i] = no_depth_marker;
  2454   if (_dom_stk == NULL) {
  2455     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2456     if (init_size < 10) init_size = 10;
  2457     _dom_stk = new GrowableArray<uint>(init_size);
  2459   // Compute new depth for each node.
  2460   for (i = 0; i < _idom_size; i++) {
  2461     uint j = i;
  2462     // Run up the dom tree to find a node with a depth
  2463     while (_dom_depth[j] == no_depth_marker) {
  2464       _dom_stk->push(j);
  2465       j = _idom[j]->_idx;
  2467     // Compute the depth on the way back down this tree branch
  2468     uint dd = _dom_depth[j] + 1;
  2469     while (_dom_stk->length() > 0) {
  2470       uint j = _dom_stk->pop();
  2471       _dom_depth[j] = dd;
  2472       dd++;
  2477 //------------------------------sort-------------------------------------------
  2478 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2479 // loop tree, not the root.
  2480 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2481   if( !innermost ) return loop; // New innermost loop
  2483   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2484   assert( loop_preorder, "not yet post-walked loop" );
  2485   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2486   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2488   // Insert at start of list
  2489   while( l ) {                  // Insertion sort based on pre-order
  2490     if( l == loop ) return innermost; // Already on list!
  2491     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2492     assert( l_preorder, "not yet post-walked l" );
  2493     // Check header pre-order number to figure proper nesting
  2494     if( loop_preorder > l_preorder )
  2495       break;                    // End of insertion
  2496     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2497     // Since I split shared headers, you'd think this could not happen.
  2498     // BUT: I must first do the preorder numbering before I can discover I
  2499     // have shared headers, so the split headers all get the same preorder
  2500     // number as the RegionNode they split from.
  2501     if( loop_preorder == l_preorder &&
  2502         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2503       break;                    // Also check for shared headers (same pre#)
  2504     pp = &l->_parent;           // Chain up list
  2505     l = *pp;
  2507   // Link into list
  2508   // Point predecessor to me
  2509   *pp = loop;
  2510   // Point me to successor
  2511   IdealLoopTree *p = loop->_parent;
  2512   loop->_parent = l;            // Point me to successor
  2513   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2514   return innermost;
  2517 //------------------------------build_loop_tree--------------------------------
  2518 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2519 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2520 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2521 // tightest enclosing IdealLoopTree for post-walked.
  2522 //
  2523 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2524 // a loop backedge with that doesn't have any work on the backedge.  This
  2525 // helps me construct nested loops with shared headers better.
  2526 //
  2527 // Once I've done the forward recursion, I do the post-work.  For each child
  2528 // I check to see if there is a backedge.  Backedges define a loop!  I
  2529 // insert an IdealLoopTree at the target of the backedge.
  2530 //
  2531 // During the post-work I also check to see if I have several children
  2532 // belonging to different loops.  If so, then this Node is a decision point
  2533 // where control flow can choose to change loop nests.  It is at this
  2534 // decision point where I can figure out how loops are nested.  At this
  2535 // time I can properly order the different loop nests from my children.
  2536 // Note that there may not be any backedges at the decision point!
  2537 //
  2538 // Since the decision point can be far removed from the backedges, I can't
  2539 // order my loops at the time I discover them.  Thus at the decision point
  2540 // I need to inspect loop header pre-order numbers to properly nest my
  2541 // loops.  This means I need to sort my childrens' loops by pre-order.
  2542 // The sort is of size number-of-control-children, which generally limits
  2543 // it to size 2 (i.e., I just choose between my 2 target loops).
  2544 void PhaseIdealLoop::build_loop_tree() {
  2545   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2546   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2547   Node *n = C->root();
  2548   bltstack.push(n);
  2549   int pre_order = 1;
  2550   int stack_size;
  2552   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2553     n = bltstack.top(); // Leave node on stack
  2554     if ( !is_visited(n) ) {
  2555       // ---- Pre-pass Work ----
  2556       // Pre-walked but not post-walked nodes need a pre_order number.
  2558       set_preorder_visited( n, pre_order ); // set as visited
  2560       // ---- Scan over children ----
  2561       // Scan first over control projections that lead to loop headers.
  2562       // This helps us find inner-to-outer loops with shared headers better.
  2564       // Scan children's children for loop headers.
  2565       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2566         Node* m = n->raw_out(i);       // Child
  2567         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2568           // Scan over children's children to find loop
  2569           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2570             Node* l = m->fast_out(j);
  2571             if( is_visited(l) &&       // Been visited?
  2572                 !is_postvisited(l) &&  // But not post-visited
  2573                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2574               // Found!  Scan the DFS down this path before doing other paths
  2575               bltstack.push(m);
  2576               break;
  2581       pre_order++;
  2583     else if ( !is_postvisited(n) ) {
  2584       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2585       // such as com.sun.rsasign.am::a.
  2586       // For non-recursive version, first, process current children.
  2587       // On next iteration, check if additional children were added.
  2588       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2589         Node* u = n->raw_out(k);
  2590         if ( u->is_CFG() && !is_visited(u) ) {
  2591           bltstack.push(u);
  2594       if ( bltstack.length() == stack_size ) {
  2595         // There were no additional children, post visit node now
  2596         (void)bltstack.pop(); // Remove node from stack
  2597         pre_order = build_loop_tree_impl( n, pre_order );
  2598         // Check for bailout
  2599         if (C->failing()) {
  2600           return;
  2602         // Check to grow _preorders[] array for the case when
  2603         // build_loop_tree_impl() adds new nodes.
  2604         check_grow_preorders();
  2607     else {
  2608       (void)bltstack.pop(); // Remove post-visited node from stack
  2613 //------------------------------build_loop_tree_impl---------------------------
  2614 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2615   // ---- Post-pass Work ----
  2616   // Pre-walked but not post-walked nodes need a pre_order number.
  2618   // Tightest enclosing loop for this Node
  2619   IdealLoopTree *innermost = NULL;
  2621   // For all children, see if any edge is a backedge.  If so, make a loop
  2622   // for it.  Then find the tightest enclosing loop for the self Node.
  2623   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2624     Node* m = n->fast_out(i);   // Child
  2625     if( n == m ) continue;      // Ignore control self-cycles
  2626     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2628     IdealLoopTree *l;           // Child's loop
  2629     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2630       // Found a backedge
  2631       assert( get_preorder(m) < pre_order, "should be backedge" );
  2632       // Check for the RootNode, which is already a LoopNode and is allowed
  2633       // to have multiple "backedges".
  2634       if( m == C->root()) {     // Found the root?
  2635         l = _ltree_root;        // Root is the outermost LoopNode
  2636       } else {                  // Else found a nested loop
  2637         // Insert a LoopNode to mark this loop.
  2638         l = new IdealLoopTree(this, m, n);
  2639       } // End of Else found a nested loop
  2640       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2641         set_loop(m, l);         // Set loop header to loop now
  2643     } else {                    // Else not a nested loop
  2644       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2645       l = get_loop(m);          // Get previously determined loop
  2646       // If successor is header of a loop (nest), move up-loop till it
  2647       // is a member of some outer enclosing loop.  Since there are no
  2648       // shared headers (I've split them already) I only need to go up
  2649       // at most 1 level.
  2650       while( l && l->_head == m ) // Successor heads loop?
  2651         l = l->_parent;         // Move up 1 for me
  2652       // If this loop is not properly parented, then this loop
  2653       // has no exit path out, i.e. its an infinite loop.
  2654       if( !l ) {
  2655         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2656         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2657         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2658         // many backedges as well.
  2660         // Here I set the loop to be the root loop.  I could have, after
  2661         // inserting a bogus loop exit, restarted the recursion and found my
  2662         // new loop exit.  This would make the infinite loop a first-class
  2663         // loop and it would then get properly optimized.  What's the use of
  2664         // optimizing an infinite loop?
  2665         l = _ltree_root;        // Oops, found infinite loop
  2667         if (!_verify_only) {
  2668           // Insert the NeverBranch between 'm' and it's control user.
  2669           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2670           _igvn.register_new_node_with_optimizer(iff);
  2671           set_loop(iff, l);
  2672           Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2673           _igvn.register_new_node_with_optimizer(if_t);
  2674           set_loop(if_t, l);
  2676           Node* cfg = NULL;       // Find the One True Control User of m
  2677           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2678             Node* x = m->fast_out(j);
  2679             if (x->is_CFG() && x != m && x != iff)
  2680               { cfg = x; break; }
  2682           assert(cfg != NULL, "must find the control user of m");
  2683           uint k = 0;             // Probably cfg->in(0)
  2684           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2685           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2687           // Now create the never-taken loop exit
  2688           Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2689           _igvn.register_new_node_with_optimizer(if_f);
  2690           set_loop(if_f, l);
  2691           // Find frame ptr for Halt.  Relies on the optimizer
  2692           // V-N'ing.  Easier and quicker than searching through
  2693           // the program structure.
  2694           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2695           _igvn.register_new_node_with_optimizer(frame);
  2696           // Halt & Catch Fire
  2697           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2698           _igvn.register_new_node_with_optimizer(halt);
  2699           set_loop(halt, l);
  2700           C->root()->add_req(halt);
  2702         set_loop(C->root(), _ltree_root);
  2705     // Weeny check for irreducible.  This child was already visited (this
  2706     // IS the post-work phase).  Is this child's loop header post-visited
  2707     // as well?  If so, then I found another entry into the loop.
  2708     if (!_verify_only) {
  2709       while( is_postvisited(l->_head) ) {
  2710         // found irreducible
  2711         l->_irreducible = 1; // = true
  2712         l = l->_parent;
  2713         _has_irreducible_loops = true;
  2714         // Check for bad CFG here to prevent crash, and bailout of compile
  2715         if (l == NULL) {
  2716           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2717           return pre_order;
  2722     // This Node might be a decision point for loops.  It is only if
  2723     // it's children belong to several different loops.  The sort call
  2724     // does a trivial amount of work if there is only 1 child or all
  2725     // children belong to the same loop.  If however, the children
  2726     // belong to different loops, the sort call will properly set the
  2727     // _parent pointers to show how the loops nest.
  2728     //
  2729     // In any case, it returns the tightest enclosing loop.
  2730     innermost = sort( l, innermost );
  2733   // Def-use info will have some dead stuff; dead stuff will have no
  2734   // loop decided on.
  2736   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2737   if( innermost && innermost->_head == n ) {
  2738     assert( get_loop(n) == innermost, "" );
  2739     IdealLoopTree *p = innermost->_parent;
  2740     IdealLoopTree *l = innermost;
  2741     while( p && l->_head == n ) {
  2742       l->_next = p->_child;     // Put self on parents 'next child'
  2743       p->_child = l;            // Make self as first child of parent
  2744       l = p;                    // Now walk up the parent chain
  2745       p = l->_parent;
  2747   } else {
  2748     // Note that it is possible for a LoopNode to reach here, if the
  2749     // backedge has been made unreachable (hence the LoopNode no longer
  2750     // denotes a Loop, and will eventually be removed).
  2752     // Record tightest enclosing loop for self.  Mark as post-visited.
  2753     set_loop(n, innermost);
  2754     // Also record has_call flag early on
  2755     if( innermost ) {
  2756       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2757         // Do not count uncommon calls
  2758         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2759           Node *iff = n->in(0)->in(0);
  2760           if( !iff->is_If() ||
  2761               (n->in(0)->Opcode() == Op_IfFalse &&
  2762                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2763               (iff->as_If()->_prob >= 0.01) )
  2764             innermost->_has_call = 1;
  2766       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2767         // Disable loop optimizations if the loop has a scalar replaceable
  2768         // allocation. This disabling may cause a potential performance lost
  2769         // if the allocation is not eliminated for some reason.
  2770         innermost->_allow_optimizations = false;
  2771         innermost->_has_call = 1; // = true
  2776   // Flag as post-visited now
  2777   set_postvisited(n);
  2778   return pre_order;
  2782 //------------------------------build_loop_early-------------------------------
  2783 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2784 // First pass computes the earliest controlling node possible.  This is the
  2785 // controlling input with the deepest dominating depth.
  2786 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2787   while (worklist.size() != 0) {
  2788     // Use local variables nstack_top_n & nstack_top_i to cache values
  2789     // on nstack's top.
  2790     Node *nstack_top_n = worklist.pop();
  2791     uint  nstack_top_i = 0;
  2792 //while_nstack_nonempty:
  2793     while (true) {
  2794       // Get parent node and next input's index from stack's top.
  2795       Node  *n = nstack_top_n;
  2796       uint   i = nstack_top_i;
  2797       uint cnt = n->req(); // Count of inputs
  2798       if (i == 0) {        // Pre-process the node.
  2799         if( has_node(n) &&            // Have either loop or control already?
  2800             !has_ctrl(n) ) {          // Have loop picked out already?
  2801           // During "merge_many_backedges" we fold up several nested loops
  2802           // into a single loop.  This makes the members of the original
  2803           // loop bodies pointing to dead loops; they need to move up
  2804           // to the new UNION'd larger loop.  I set the _head field of these
  2805           // dead loops to NULL and the _parent field points to the owning
  2806           // loop.  Shades of UNION-FIND algorithm.
  2807           IdealLoopTree *ilt;
  2808           while( !(ilt = get_loop(n))->_head ) {
  2809             // Normally I would use a set_loop here.  But in this one special
  2810             // case, it is legal (and expected) to change what loop a Node
  2811             // belongs to.
  2812             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2814           // Remove safepoints ONLY if I've already seen I don't need one.
  2815           // (the old code here would yank a 2nd safepoint after seeing a
  2816           // first one, even though the 1st did not dominate in the loop body
  2817           // and thus could be avoided indefinitely)
  2818           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2819               is_deleteable_safept(n)) {
  2820             Node *in = n->in(TypeFunc::Control);
  2821             lazy_replace(n,in);       // Pull safepoint now
  2822             // Carry on with the recursion "as if" we are walking
  2823             // only the control input
  2824             if( !visited.test_set( in->_idx ) ) {
  2825               worklist.push(in);      // Visit this guy later, using worklist
  2827             // Get next node from nstack:
  2828             // - skip n's inputs processing by setting i > cnt;
  2829             // - we also will not call set_early_ctrl(n) since
  2830             //   has_node(n) == true (see the condition above).
  2831             i = cnt + 1;
  2834       } // if (i == 0)
  2836       // Visit all inputs
  2837       bool done = true;       // Assume all n's inputs will be processed
  2838       while (i < cnt) {
  2839         Node *in = n->in(i);
  2840         ++i;
  2841         if (in == NULL) continue;
  2842         if (in->pinned() && !in->is_CFG())
  2843           set_ctrl(in, in->in(0));
  2844         int is_visited = visited.test_set( in->_idx );
  2845         if (!has_node(in)) {  // No controlling input yet?
  2846           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2847           assert( !is_visited, "visit only once" );
  2848           nstack.push(n, i);  // Save parent node and next input's index.
  2849           nstack_top_n = in;  // Process current input now.
  2850           nstack_top_i = 0;
  2851           done = false;       // Not all n's inputs processed.
  2852           break; // continue while_nstack_nonempty;
  2853         } else if (!is_visited) {
  2854           // This guy has a location picked out for him, but has not yet
  2855           // been visited.  Happens to all CFG nodes, for instance.
  2856           // Visit him using the worklist instead of recursion, to break
  2857           // cycles.  Since he has a location already we do not need to
  2858           // find his location before proceeding with the current Node.
  2859           worklist.push(in);  // Visit this guy later, using worklist
  2862       if (done) {
  2863         // All of n's inputs have been processed, complete post-processing.
  2865         // Compute earliest point this Node can go.
  2866         // CFG, Phi, pinned nodes already know their controlling input.
  2867         if (!has_node(n)) {
  2868           // Record earliest legal location
  2869           set_early_ctrl( n );
  2871         if (nstack.is_empty()) {
  2872           // Finished all nodes on stack.
  2873           // Process next node on the worklist.
  2874           break;
  2876         // Get saved parent node and next input's index.
  2877         nstack_top_n = nstack.node();
  2878         nstack_top_i = nstack.index();
  2879         nstack.pop();
  2881     } // while (true)
  2885 //------------------------------dom_lca_internal--------------------------------
  2886 // Pair-wise LCA
  2887 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2888   if( !n1 ) return n2;          // Handle NULL original LCA
  2889   assert( n1->is_CFG(), "" );
  2890   assert( n2->is_CFG(), "" );
  2891   // find LCA of all uses
  2892   uint d1 = dom_depth(n1);
  2893   uint d2 = dom_depth(n2);
  2894   while (n1 != n2) {
  2895     if (d1 > d2) {
  2896       n1 =      idom(n1);
  2897       d1 = dom_depth(n1);
  2898     } else if (d1 < d2) {
  2899       n2 =      idom(n2);
  2900       d2 = dom_depth(n2);
  2901     } else {
  2902       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2903       // of the tree might have the same depth.  These sections have
  2904       // to be searched more carefully.
  2906       // Scan up all the n1's with equal depth, looking for n2.
  2907       Node *t1 = idom(n1);
  2908       while (dom_depth(t1) == d1) {
  2909         if (t1 == n2)  return n2;
  2910         t1 = idom(t1);
  2912       // Scan up all the n2's with equal depth, looking for n1.
  2913       Node *t2 = idom(n2);
  2914       while (dom_depth(t2) == d2) {
  2915         if (t2 == n1)  return n1;
  2916         t2 = idom(t2);
  2918       // Move up to a new dominator-depth value as well as up the dom-tree.
  2919       n1 = t1;
  2920       n2 = t2;
  2921       d1 = dom_depth(n1);
  2922       d2 = dom_depth(n2);
  2925   return n1;
  2928 //------------------------------compute_idom-----------------------------------
  2929 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2930 // IDOMs are correct.
  2931 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2932   assert( region->is_Region(), "" );
  2933   Node *LCA = NULL;
  2934   for( uint i = 1; i < region->req(); i++ ) {
  2935     if( region->in(i) != C->top() )
  2936       LCA = dom_lca( LCA, region->in(i) );
  2938   return LCA;
  2941 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  2942   bool had_error = false;
  2943 #ifdef ASSERT
  2944   if (early != C->root()) {
  2945     // Make sure that there's a dominance path from use to LCA
  2946     Node* d = use;
  2947     while (d != LCA) {
  2948       d = idom(d);
  2949       if (d == C->root()) {
  2950         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
  2951         n->dump();
  2952         use->dump();
  2953         had_error = true;
  2954         break;
  2958 #endif
  2959   return had_error;
  2963 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  2964   // Compute LCA over list of uses
  2965   bool had_error = false;
  2966   Node *LCA = NULL;
  2967   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2968     Node* c = n->fast_out(i);
  2969     if (_nodes[c->_idx] == NULL)
  2970       continue;                 // Skip the occasional dead node
  2971     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2972       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2973         if( c->in(j) == n ) {   // Found matching input?
  2974           Node *use = c->in(0)->in(j);
  2975           if (_verify_only && use->is_top()) continue;
  2976           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2977           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2980     } else {
  2981       // For CFG data-users, use is in the block just prior
  2982       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2983       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2984       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2987   assert(!had_error, "bad dominance");
  2988   return LCA;
  2991 //------------------------------get_late_ctrl----------------------------------
  2992 // Compute latest legal control.
  2993 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2994   assert(early != NULL, "early control should not be NULL");
  2996   Node* LCA = compute_lca_of_uses(n, early);
  2997 #ifdef ASSERT
  2998   if (LCA == C->root() && LCA != early) {
  2999     // def doesn't dominate uses so print some useful debugging output
  3000     compute_lca_of_uses(n, early, true);
  3002 #endif
  3004   // if this is a load, check for anti-dependent stores
  3005   // We use a conservative algorithm to identify potential interfering
  3006   // instructions and for rescheduling the load.  The users of the memory
  3007   // input of this load are examined.  Any use which is not a load and is
  3008   // dominated by early is considered a potentially interfering store.
  3009   // This can produce false positives.
  3010   if (n->is_Load() && LCA != early) {
  3011     Node_List worklist;
  3013     Node *mem = n->in(MemNode::Memory);
  3014     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  3015       Node* s = mem->fast_out(i);
  3016       worklist.push(s);
  3018     while(worklist.size() != 0 && LCA != early) {
  3019       Node* s = worklist.pop();
  3020       if (s->is_Load()) {
  3021         continue;
  3022       } else if (s->is_MergeMem()) {
  3023         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3024           Node* s1 = s->fast_out(i);
  3025           worklist.push(s1);
  3027       } else {
  3028         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3029         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3030         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3031           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3037   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3038   return LCA;
  3041 // true if CFG node d dominates CFG node n
  3042 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3043   if (d == n)
  3044     return true;
  3045   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3046   uint dd = dom_depth(d);
  3047   while (dom_depth(n) >= dd) {
  3048     if (n == d)
  3049       return true;
  3050     n = idom(n);
  3052   return false;
  3055 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3056 // Pair-wise LCA with tags.
  3057 // Tag each index with the node 'tag' currently being processed
  3058 // before advancing up the dominator chain using idom().
  3059 // Later calls that find a match to 'tag' know that this path has already
  3060 // been considered in the current LCA (which is input 'n1' by convention).
  3061 // Since get_late_ctrl() is only called once for each node, the tag array
  3062 // does not need to be cleared between calls to get_late_ctrl().
  3063 // Algorithm trades a larger constant factor for better asymptotic behavior
  3064 //
  3065 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3066   uint d1 = dom_depth(n1);
  3067   uint d2 = dom_depth(n2);
  3069   do {
  3070     if (d1 > d2) {
  3071       // current lca is deeper than n2
  3072       _dom_lca_tags.map(n1->_idx, tag);
  3073       n1 =      idom(n1);
  3074       d1 = dom_depth(n1);
  3075     } else if (d1 < d2) {
  3076       // n2 is deeper than current lca
  3077       Node *memo = _dom_lca_tags[n2->_idx];
  3078       if( memo == tag ) {
  3079         return n1;    // Return the current LCA
  3081       _dom_lca_tags.map(n2->_idx, tag);
  3082       n2 =      idom(n2);
  3083       d2 = dom_depth(n2);
  3084     } else {
  3085       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3086       // of the tree might have the same depth.  These sections have
  3087       // to be searched more carefully.
  3089       // Scan up all the n1's with equal depth, looking for n2.
  3090       _dom_lca_tags.map(n1->_idx, tag);
  3091       Node *t1 = idom(n1);
  3092       while (dom_depth(t1) == d1) {
  3093         if (t1 == n2)  return n2;
  3094         _dom_lca_tags.map(t1->_idx, tag);
  3095         t1 = idom(t1);
  3097       // Scan up all the n2's with equal depth, looking for n1.
  3098       _dom_lca_tags.map(n2->_idx, tag);
  3099       Node *t2 = idom(n2);
  3100       while (dom_depth(t2) == d2) {
  3101         if (t2 == n1)  return n1;
  3102         _dom_lca_tags.map(t2->_idx, tag);
  3103         t2 = idom(t2);
  3105       // Move up to a new dominator-depth value as well as up the dom-tree.
  3106       n1 = t1;
  3107       n2 = t2;
  3108       d1 = dom_depth(n1);
  3109       d2 = dom_depth(n2);
  3111   } while (n1 != n2);
  3112   return n1;
  3115 //------------------------------init_dom_lca_tags------------------------------
  3116 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3117 // Intended use does not involve any growth for the array, so it could
  3118 // be of fixed size.
  3119 void PhaseIdealLoop::init_dom_lca_tags() {
  3120   uint limit = C->unique() + 1;
  3121   _dom_lca_tags.map( limit, NULL );
  3122 #ifdef ASSERT
  3123   for( uint i = 0; i < limit; ++i ) {
  3124     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3126 #endif // ASSERT
  3129 //------------------------------clear_dom_lca_tags------------------------------
  3130 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3131 // Intended use does not involve any growth for the array, so it could
  3132 // be of fixed size.
  3133 void PhaseIdealLoop::clear_dom_lca_tags() {
  3134   uint limit = C->unique() + 1;
  3135   _dom_lca_tags.map( limit, NULL );
  3136   _dom_lca_tags.clear();
  3137 #ifdef ASSERT
  3138   for( uint i = 0; i < limit; ++i ) {
  3139     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3141 #endif // ASSERT
  3144 //------------------------------build_loop_late--------------------------------
  3145 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3146 // Second pass finds latest legal placement, and ideal loop placement.
  3147 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3148   while (worklist.size() != 0) {
  3149     Node *n = worklist.pop();
  3150     // Only visit once
  3151     if (visited.test_set(n->_idx)) continue;
  3152     uint cnt = n->outcnt();
  3153     uint   i = 0;
  3154     while (true) {
  3155       assert( _nodes[n->_idx], "no dead nodes" );
  3156       // Visit all children
  3157       if (i < cnt) {
  3158         Node* use = n->raw_out(i);
  3159         ++i;
  3160         // Check for dead uses.  Aggressively prune such junk.  It might be
  3161         // dead in the global sense, but still have local uses so I cannot
  3162         // easily call 'remove_dead_node'.
  3163         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3164           // Due to cycles, we might not hit the same fixed point in the verify
  3165           // pass as we do in the regular pass.  Instead, visit such phis as
  3166           // simple uses of the loop head.
  3167           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3168             if( !visited.test(use->_idx) )
  3169               worklist.push(use);
  3170           } else if( !visited.test_set(use->_idx) ) {
  3171             nstack.push(n, i); // Save parent and next use's index.
  3172             n   = use;         // Process all children of current use.
  3173             cnt = use->outcnt();
  3174             i   = 0;
  3176         } else {
  3177           // Do not visit around the backedge of loops via data edges.
  3178           // push dead code onto a worklist
  3179           _deadlist.push(use);
  3181       } else {
  3182         // All of n's children have been processed, complete post-processing.
  3183         build_loop_late_post(n);
  3184         if (nstack.is_empty()) {
  3185           // Finished all nodes on stack.
  3186           // Process next node on the worklist.
  3187           break;
  3189         // Get saved parent node and next use's index. Visit the rest of uses.
  3190         n   = nstack.node();
  3191         cnt = n->outcnt();
  3192         i   = nstack.index();
  3193         nstack.pop();
  3199 //------------------------------build_loop_late_post---------------------------
  3200 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3201 // Second pass finds latest legal placement, and ideal loop placement.
  3202 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3204   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3205     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3208   // CFG and pinned nodes already handled
  3209   if( n->in(0) ) {
  3210     if( n->in(0)->is_top() ) return; // Dead?
  3212     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3213     // _must_ be pinned (they have to observe their control edge of course).
  3214     // Unlike Stores (which modify an unallocable resource, the memory
  3215     // state), Mods/Loads can float around.  So free them up.
  3216     bool pinned = true;
  3217     switch( n->Opcode() ) {
  3218     case Op_DivI:
  3219     case Op_DivF:
  3220     case Op_DivD:
  3221     case Op_ModI:
  3222     case Op_ModF:
  3223     case Op_ModD:
  3224     case Op_LoadB:              // Same with Loads; they can sink
  3225     case Op_LoadUS:             // during loop optimizations.
  3226     case Op_LoadD:
  3227     case Op_LoadF:
  3228     case Op_LoadI:
  3229     case Op_LoadKlass:
  3230     case Op_LoadNKlass:
  3231     case Op_LoadL:
  3232     case Op_LoadS:
  3233     case Op_LoadP:
  3234     case Op_LoadN:
  3235     case Op_LoadRange:
  3236     case Op_LoadD_unaligned:
  3237     case Op_LoadL_unaligned:
  3238     case Op_StrComp:            // Does a bunch of load-like effects
  3239     case Op_StrEquals:
  3240     case Op_StrIndexOf:
  3241     case Op_AryEq:
  3242       pinned = false;
  3244     if( pinned ) {
  3245       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3246       if( !chosen_loop->_child )       // Inner loop?
  3247         chosen_loop->_body.push(n); // Collect inner loops
  3248       return;
  3250   } else {                      // No slot zero
  3251     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3252       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3253       return;
  3255     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3258   // Do I have a "safe range" I can select over?
  3259   Node *early = get_ctrl(n);// Early location already computed
  3261   // Compute latest point this Node can go
  3262   Node *LCA = get_late_ctrl( n, early );
  3263   // LCA is NULL due to uses being dead
  3264   if( LCA == NULL ) {
  3265 #ifdef ASSERT
  3266     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3267       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3269 #endif
  3270     _nodes.map(n->_idx, 0);     // This node is useless
  3271     _deadlist.push(n);
  3272     return;
  3274   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3276   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3277   Node *least = legal;          // Best legal position so far
  3278   while( early != legal ) {     // While not at earliest legal
  3279 #ifdef ASSERT
  3280     if (legal->is_Start() && !early->is_Root()) {
  3281       // Bad graph. Print idom path and fail.
  3282       tty->print_cr( "Bad graph detected in build_loop_late");
  3283       tty->print("n: ");n->dump(); tty->cr();
  3284       tty->print("early: ");early->dump(); tty->cr();
  3285       int ct = 0;
  3286       Node *dbg_legal = LCA;
  3287       while(!dbg_legal->is_Start() && ct < 100) {
  3288         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
  3289         ct++;
  3290         dbg_legal = idom(dbg_legal);
  3292       assert(false, "Bad graph detected in build_loop_late");
  3294 #endif
  3295     // Find least loop nesting depth
  3296     legal = idom(legal);        // Bump up the IDOM tree
  3297     // Check for lower nesting depth
  3298     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3299       least = legal;
  3301   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3303   // Try not to place code on a loop entry projection
  3304   // which can inhibit range check elimination.
  3305   if (least != early) {
  3306     Node* ctrl_out = least->unique_ctrl_out();
  3307     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3308         least == ctrl_out->in(LoopNode::EntryControl)) {
  3309       Node* least_dom = idom(least);
  3310       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3311         least = least_dom;
  3316 #ifdef ASSERT
  3317   // If verifying, verify that 'verify_me' has a legal location
  3318   // and choose it as our location.
  3319   if( _verify_me ) {
  3320     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3321     Node *legal = LCA;
  3322     while( early != legal ) {   // While not at earliest legal
  3323       if( legal == v_ctrl ) break;  // Check for prior good location
  3324       legal = idom(legal)      ;// Bump up the IDOM tree
  3326     // Check for prior good location
  3327     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3329 #endif
  3331   // Assign discovered "here or above" point
  3332   least = find_non_split_ctrl(least);
  3333   set_ctrl(n, least);
  3335   // Collect inner loop bodies
  3336   IdealLoopTree *chosen_loop = get_loop(least);
  3337   if( !chosen_loop->_child )   // Inner loop?
  3338     chosen_loop->_body.push(n);// Collect inner loops
  3341 #ifndef PRODUCT
  3342 //------------------------------dump-------------------------------------------
  3343 void PhaseIdealLoop::dump( ) const {
  3344   ResourceMark rm;
  3345   Arena* arena = Thread::current()->resource_area();
  3346   Node_Stack stack(arena, C->unique() >> 2);
  3347   Node_List rpo_list;
  3348   VectorSet visited(arena);
  3349   visited.set(C->top()->_idx);
  3350   rpo( C->root(), stack, visited, rpo_list );
  3351   // Dump root loop indexed by last element in PO order
  3352   dump( _ltree_root, rpo_list.size(), rpo_list );
  3355 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3356   loop->dump_head();
  3358   // Now scan for CFG nodes in the same loop
  3359   for( uint j=idx; j > 0;  j-- ) {
  3360     Node *n = rpo_list[j-1];
  3361     if( !_nodes[n->_idx] )      // Skip dead nodes
  3362       continue;
  3363     if( get_loop(n) != loop ) { // Wrong loop nest
  3364       if( get_loop(n)->_head == n &&    // Found nested loop?
  3365           get_loop(n)->_parent == loop )
  3366         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3367       continue;
  3370     // Dump controlling node
  3371     for( uint x = 0; x < loop->_nest; x++ )
  3372       tty->print("  ");
  3373     tty->print("C");
  3374     if( n == C->root() ) {
  3375       n->dump();
  3376     } else {
  3377       Node* cached_idom   = idom_no_update(n);
  3378       Node *computed_idom = n->in(0);
  3379       if( n->is_Region() ) {
  3380         computed_idom = compute_idom(n);
  3381         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3382         // any MultiBranch ctrl node), so apply a similar transform to
  3383         // the cached idom returned from idom_no_update.
  3384         cached_idom = find_non_split_ctrl(cached_idom);
  3386       tty->print(" ID:%d",computed_idom->_idx);
  3387       n->dump();
  3388       if( cached_idom != computed_idom ) {
  3389         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3390                       computed_idom->_idx, cached_idom->_idx);
  3393     // Dump nodes it controls
  3394     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3395       // (k < C->unique() && get_ctrl(find(k)) == n)
  3396       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3397         Node *m = C->root()->find(k);
  3398         if( m && m->outcnt() > 0 ) {
  3399           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3400             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3401                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3403           for( uint j = 0; j < loop->_nest; j++ )
  3404             tty->print("  ");
  3405           tty->print(" ");
  3406           m->dump();
  3413 // Collect a R-P-O for the whole CFG.
  3414 // Result list is in post-order (scan backwards for RPO)
  3415 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3416   stk.push(start, 0);
  3417   visited.set(start->_idx);
  3419   while (stk.is_nonempty()) {
  3420     Node* m   = stk.node();
  3421     uint  idx = stk.index();
  3422     if (idx < m->outcnt()) {
  3423       stk.set_index(idx + 1);
  3424       Node* n = m->raw_out(idx);
  3425       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3426         stk.push(n, 0);
  3428     } else {
  3429       rpo_list.push(m);
  3430       stk.pop();
  3434 #endif
  3437 //=============================================================================
  3438 //------------------------------LoopTreeIterator-----------------------------------
  3440 // Advance to next loop tree using a preorder, left-to-right traversal.
  3441 void LoopTreeIterator::next() {
  3442   assert(!done(), "must not be done.");
  3443   if (_curnt->_child != NULL) {
  3444     _curnt = _curnt->_child;
  3445   } else if (_curnt->_next != NULL) {
  3446     _curnt = _curnt->_next;
  3447   } else {
  3448     while (_curnt != _root && _curnt->_next == NULL) {
  3449       _curnt = _curnt->_parent;
  3451     if (_curnt == _root) {
  3452       _curnt = NULL;
  3453       assert(done(), "must be done.");
  3454     } else {
  3455       assert(_curnt->_next != NULL, "must be more to do");
  3456       _curnt = _curnt->_next;

mercurial