src/share/vm/gc_implementation/g1/heapRegion.hpp

Tue, 19 Aug 2014 10:50:27 +0200

author
tschatzl
date
Tue, 19 Aug 2014 10:50:27 +0200
changeset 7050
6701abbc4441
parent 6992
2c6ef90f030a
child 7091
a8ea2f110d87
permissions
-rw-r--r--

8054818: Refactor HeapRegionSeq to manage heap region and auxiliary data
Summary: Let HeapRegionSeq manage the heap region and auxiliary data to decrease the amount of responsibilities of G1CollectedHeap, and encapsulate this work from other code.
Reviewed-by: jwilhelm, jmasa, mgerdin, brutisso

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    35 #include "utilities/macros.hpp"
    37 #if INCLUDE_ALL_GCS
    39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    40 // can be collected independently.
    42 // NOTE: Although a HeapRegion is a Space, its
    43 // Space::initDirtyCardClosure method must not be called.
    44 // The problem is that the existence of this method breaks
    45 // the independence of barrier sets from remembered sets.
    46 // The solution is to remove this method from the definition
    47 // of a Space.
    49 class HeapRegionRemSet;
    50 class HeapRegionRemSetIterator;
    51 class HeapRegion;
    52 class HeapRegionSetBase;
    53 class nmethod;
    55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(_hr_) \
    57                 (_hr_)->hrs_index(), \
    58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    59                 (_hr_)->startsHumongous() ? "HS" : \
    60                 (_hr_)->continuesHumongous() ? "HC" : \
    61                 !(_hr_)->is_empty() ? "O" : "F", \
    62                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
    64 // sentinel value for hrs_index
    65 #define G1_NO_HRS_INDEX ((uint) -1)
    67 // A dirty card to oop closure for heap regions. It
    68 // knows how to get the G1 heap and how to use the bitmap
    69 // in the concurrent marker used by G1 to filter remembered
    70 // sets.
    72 class HeapRegionDCTOC : public DirtyCardToOopClosure {
    73 public:
    74   // Specification of possible DirtyCardToOopClosure filtering.
    75   enum FilterKind {
    76     NoFilterKind,
    77     IntoCSFilterKind,
    78     OutOfRegionFilterKind
    79   };
    81 protected:
    82   HeapRegion* _hr;
    83   FilterKind _fk;
    84   G1CollectedHeap* _g1;
    86   // Walk the given memory region from bottom to (actual) top
    87   // looking for objects and applying the oop closure (_cl) to
    88   // them. The base implementation of this treats the area as
    89   // blocks, where a block may or may not be an object. Sub-
    90   // classes should override this to provide more accurate
    91   // or possibly more efficient walking.
    92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
    94 public:
    95   HeapRegionDCTOC(G1CollectedHeap* g1,
    96                   HeapRegion* hr, ExtendedOopClosure* cl,
    97                   CardTableModRefBS::PrecisionStyle precision,
    98                   FilterKind fk);
    99 };
   101 // The complicating factor is that BlockOffsetTable diverged
   102 // significantly, and we need functionality that is only in the G1 version.
   103 // So I copied that code, which led to an alternate G1 version of
   104 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   105 // be reconciled, then G1OffsetTableContigSpace could go away.
   107 // The idea behind time stamps is the following. Doing a save_marks on
   108 // all regions at every GC pause is time consuming (if I remember
   109 // well, 10ms or so). So, we would like to do that only for regions
   110 // that are GC alloc regions. To achieve this, we use time
   111 // stamps. For every evacuation pause, G1CollectedHeap generates a
   112 // unique time stamp (essentially a counter that gets
   113 // incremented). Every time we want to call save_marks on a region,
   114 // we set the saved_mark_word to top and also copy the current GC
   115 // time stamp to the time stamp field of the space. Reading the
   116 // saved_mark_word involves checking the time stamp of the
   117 // region. If it is the same as the current GC time stamp, then we
   118 // can safely read the saved_mark_word field, as it is valid. If the
   119 // time stamp of the region is not the same as the current GC time
   120 // stamp, then we instead read top, as the saved_mark_word field is
   121 // invalid. Time stamps (on the regions and also on the
   122 // G1CollectedHeap) are reset at every cleanup (we iterate over
   123 // the regions anyway) and at the end of a Full GC. The current scheme
   124 // that uses sequential unsigned ints will fail only if we have 4b
   125 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   126 class G1OffsetTableContigSpace: public CompactibleSpace {
   127   friend class VMStructs;
   128   HeapWord* _top;
   129  protected:
   130   G1BlockOffsetArrayContigSpace _offsets;
   131   Mutex _par_alloc_lock;
   132   volatile unsigned _gc_time_stamp;
   133   // When we need to retire an allocation region, while other threads
   134   // are also concurrently trying to allocate into it, we typically
   135   // allocate a dummy object at the end of the region to ensure that
   136   // no more allocations can take place in it. However, sometimes we
   137   // want to know where the end of the last "real" object we allocated
   138   // into the region was and this is what this keeps track.
   139   HeapWord* _pre_dummy_top;
   141  public:
   142   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   143                            MemRegion mr);
   145   void set_top(HeapWord* value) { _top = value; }
   146   HeapWord* top() const { return _top; }
   148  protected:
   149   // Reset the G1OffsetTableContigSpace.
   150   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   152   HeapWord** top_addr() { return &_top; }
   153   // Allocation helpers (return NULL if full).
   154   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   155   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   157  public:
   158   void reset_after_compaction() { set_top(compaction_top()); }
   160   size_t used() const { return byte_size(bottom(), top()); }
   161   size_t free() const { return byte_size(top(), end()); }
   162   bool is_free_block(const HeapWord* p) const { return p >= top(); }
   164   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   166   void object_iterate(ObjectClosure* blk);
   167   void safe_object_iterate(ObjectClosure* blk);
   169   void set_bottom(HeapWord* value);
   170   void set_end(HeapWord* value);
   172   virtual HeapWord* saved_mark_word() const;
   173   void record_top_and_timestamp();
   174   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   175   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   177   // See the comment above in the declaration of _pre_dummy_top for an
   178   // explanation of what it is.
   179   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   180     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   181     _pre_dummy_top = pre_dummy_top;
   182   }
   183   HeapWord* pre_dummy_top() {
   184     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   185   }
   186   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   188   virtual void clear(bool mangle_space);
   190   HeapWord* block_start(const void* p);
   191   HeapWord* block_start_const(const void* p) const;
   193   void prepare_for_compaction(CompactPoint* cp);
   195   // Add offset table update.
   196   virtual HeapWord* allocate(size_t word_size);
   197   HeapWord* par_allocate(size_t word_size);
   199   // MarkSweep support phase3
   200   virtual HeapWord* initialize_threshold();
   201   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   203   virtual void print() const;
   205   void reset_bot() {
   206     _offsets.reset_bot();
   207   }
   209   void update_bot_for_object(HeapWord* start, size_t word_size) {
   210     _offsets.alloc_block(start, word_size);
   211   }
   213   void print_bot_on(outputStream* out) {
   214     _offsets.print_on(out);
   215   }
   216 };
   218 class HeapRegion: public G1OffsetTableContigSpace {
   219   friend class VMStructs;
   220  private:
   222   enum HumongousType {
   223     NotHumongous = 0,
   224     StartsHumongous,
   225     ContinuesHumongous
   226   };
   228   // The remembered set for this region.
   229   // (Might want to make this "inline" later, to avoid some alloc failure
   230   // issues.)
   231   HeapRegionRemSet* _rem_set;
   233   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   235  protected:
   236   // The index of this region in the heap region sequence.
   237   uint  _hrs_index;
   239   HumongousType _humongous_type;
   240   // For a humongous region, region in which it starts.
   241   HeapRegion* _humongous_start_region;
   242   // For the start region of a humongous sequence, it's original end().
   243   HeapWord* _orig_end;
   245   // True iff the region is in current collection_set.
   246   bool _in_collection_set;
   248   // True iff an attempt to evacuate an object in the region failed.
   249   bool _evacuation_failed;
   251   // A heap region may be a member one of a number of special subsets, each
   252   // represented as linked lists through the field below.  Currently, there
   253   // is only one set:
   254   //   The collection set.
   255   HeapRegion* _next_in_special_set;
   257   // next region in the young "generation" region set
   258   HeapRegion* _next_young_region;
   260   // Next region whose cards need cleaning
   261   HeapRegion* _next_dirty_cards_region;
   263   // Fields used by the HeapRegionSetBase class and subclasses.
   264   HeapRegion* _next;
   265   HeapRegion* _prev;
   266 #ifdef ASSERT
   267   HeapRegionSetBase* _containing_set;
   268 #endif // ASSERT
   270   // For parallel heapRegion traversal.
   271   jint _claimed;
   273   // We use concurrent marking to determine the amount of live data
   274   // in each heap region.
   275   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   276   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   278   // The calculated GC efficiency of the region.
   279   double _gc_efficiency;
   281   enum YoungType {
   282     NotYoung,                   // a region is not young
   283     Young,                      // a region is young
   284     Survivor                    // a region is young and it contains survivors
   285   };
   287   volatile YoungType _young_type;
   288   int  _young_index_in_cset;
   289   SurvRateGroup* _surv_rate_group;
   290   int  _age_index;
   292   // The start of the unmarked area. The unmarked area extends from this
   293   // word until the top and/or end of the region, and is the part
   294   // of the region for which no marking was done, i.e. objects may
   295   // have been allocated in this part since the last mark phase.
   296   // "prev" is the top at the start of the last completed marking.
   297   // "next" is the top at the start of the in-progress marking (if any.)
   298   HeapWord* _prev_top_at_mark_start;
   299   HeapWord* _next_top_at_mark_start;
   300   // If a collection pause is in progress, this is the top at the start
   301   // of that pause.
   303   void init_top_at_mark_start() {
   304     assert(_prev_marked_bytes == 0 &&
   305            _next_marked_bytes == 0,
   306            "Must be called after zero_marked_bytes.");
   307     HeapWord* bot = bottom();
   308     _prev_top_at_mark_start = bot;
   309     _next_top_at_mark_start = bot;
   310   }
   312   void set_young_type(YoungType new_type) {
   313     //assert(_young_type != new_type, "setting the same type" );
   314     // TODO: add more assertions here
   315     _young_type = new_type;
   316   }
   318   // Cached attributes used in the collection set policy information
   320   // The RSet length that was added to the total value
   321   // for the collection set.
   322   size_t _recorded_rs_length;
   324   // The predicted elapsed time that was added to total value
   325   // for the collection set.
   326   double _predicted_elapsed_time_ms;
   328   // The predicted number of bytes to copy that was added to
   329   // the total value for the collection set.
   330   size_t _predicted_bytes_to_copy;
   332  public:
   333   HeapRegion(uint hrs_index,
   334              G1BlockOffsetSharedArray* sharedOffsetArray,
   335              MemRegion mr);
   337   // Initializing the HeapRegion not only resets the data structure, but also
   338   // resets the BOT for that heap region.
   339   // The default values for clear_space means that we will do the clearing if
   340   // there's clearing to be done ourselves. We also always mangle the space.
   341   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
   343   static int    LogOfHRGrainBytes;
   344   static int    LogOfHRGrainWords;
   346   static size_t GrainBytes;
   347   static size_t GrainWords;
   348   static size_t CardsPerRegion;
   350   static size_t align_up_to_region_byte_size(size_t sz) {
   351     return (sz + (size_t) GrainBytes - 1) &
   352                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   353   }
   355   static size_t max_region_size();
   357   // It sets up the heap region size (GrainBytes / GrainWords), as
   358   // well as other related fields that are based on the heap region
   359   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   360   // CardsPerRegion). All those fields are considered constant
   361   // throughout the JVM's execution, therefore they should only be set
   362   // up once during initialization time.
   363   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
   365   enum ClaimValues {
   366     InitialClaimValue          = 0,
   367     FinalCountClaimValue       = 1,
   368     NoteEndClaimValue          = 2,
   369     ScrubRemSetClaimValue      = 3,
   370     ParVerifyClaimValue        = 4,
   371     RebuildRSClaimValue        = 5,
   372     ParEvacFailureClaimValue   = 6,
   373     AggregateCountClaimValue   = 7,
   374     VerifyCountClaimValue      = 8,
   375     ParMarkRootClaimValue      = 9
   376   };
   378   // All allocated blocks are occupied by objects in a HeapRegion
   379   bool block_is_obj(const HeapWord* p) const;
   381   // Returns the object size for all valid block starts
   382   // and the amount of unallocated words if called on top()
   383   size_t block_size(const HeapWord* p) const;
   385   inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
   386   inline HeapWord* allocate_no_bot_updates(size_t word_size);
   388   // If this region is a member of a HeapRegionSeq, the index in that
   389   // sequence, otherwise -1.
   390   uint hrs_index() const { return _hrs_index; }
   392   // The number of bytes marked live in the region in the last marking phase.
   393   size_t marked_bytes()    { return _prev_marked_bytes; }
   394   size_t live_bytes() {
   395     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   396   }
   398   // The number of bytes counted in the next marking.
   399   size_t next_marked_bytes() { return _next_marked_bytes; }
   400   // The number of bytes live wrt the next marking.
   401   size_t next_live_bytes() {
   402     return
   403       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   404   }
   406   // A lower bound on the amount of garbage bytes in the region.
   407   size_t garbage_bytes() {
   408     size_t used_at_mark_start_bytes =
   409       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   410     assert(used_at_mark_start_bytes >= marked_bytes(),
   411            "Can't mark more than we have.");
   412     return used_at_mark_start_bytes - marked_bytes();
   413   }
   415   // Return the amount of bytes we'll reclaim if we collect this
   416   // region. This includes not only the known garbage bytes in the
   417   // region but also any unallocated space in it, i.e., [top, end),
   418   // since it will also be reclaimed if we collect the region.
   419   size_t reclaimable_bytes() {
   420     size_t known_live_bytes = live_bytes();
   421     assert(known_live_bytes <= capacity(), "sanity");
   422     return capacity() - known_live_bytes;
   423   }
   425   // An upper bound on the number of live bytes in the region.
   426   size_t max_live_bytes() { return used() - garbage_bytes(); }
   428   void add_to_marked_bytes(size_t incr_bytes) {
   429     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   430     assert(_next_marked_bytes <= used(), "invariant" );
   431   }
   433   void zero_marked_bytes()      {
   434     _prev_marked_bytes = _next_marked_bytes = 0;
   435   }
   437   bool isHumongous() const { return _humongous_type != NotHumongous; }
   438   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   439   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   440   // For a humongous region, region in which it starts.
   441   HeapRegion* humongous_start_region() const {
   442     return _humongous_start_region;
   443   }
   445   // Return the number of distinct regions that are covered by this region:
   446   // 1 if the region is not humongous, >= 1 if the region is humongous.
   447   uint region_num() const {
   448     if (!isHumongous()) {
   449       return 1U;
   450     } else {
   451       assert(startsHumongous(), "doesn't make sense on HC regions");
   452       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   453       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   454     }
   455   }
   457   // Return the index + 1 of the last HC regions that's associated
   458   // with this HS region.
   459   uint last_hc_index() const {
   460     assert(startsHumongous(), "don't call this otherwise");
   461     return hrs_index() + region_num();
   462   }
   464   // Same as Space::is_in_reserved, but will use the original size of the region.
   465   // The original size is different only for start humongous regions. They get
   466   // their _end set up to be the end of the last continues region of the
   467   // corresponding humongous object.
   468   bool is_in_reserved_raw(const void* p) const {
   469     return _bottom <= p && p < _orig_end;
   470   }
   472   // Makes the current region be a "starts humongous" region, i.e.,
   473   // the first region in a series of one or more contiguous regions
   474   // that will contain a single "humongous" object. The two parameters
   475   // are as follows:
   476   //
   477   // new_top : The new value of the top field of this region which
   478   // points to the end of the humongous object that's being
   479   // allocated. If there is more than one region in the series, top
   480   // will lie beyond this region's original end field and on the last
   481   // region in the series.
   482   //
   483   // new_end : The new value of the end field of this region which
   484   // points to the end of the last region in the series. If there is
   485   // one region in the series (namely: this one) end will be the same
   486   // as the original end of this region.
   487   //
   488   // Updating top and end as described above makes this region look as
   489   // if it spans the entire space taken up by all the regions in the
   490   // series and an single allocation moved its top to new_top. This
   491   // ensures that the space (capacity / allocated) taken up by all
   492   // humongous regions can be calculated by just looking at the
   493   // "starts humongous" regions and by ignoring the "continues
   494   // humongous" regions.
   495   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   497   // Makes the current region be a "continues humongous'
   498   // region. first_hr is the "start humongous" region of the series
   499   // which this region will be part of.
   500   void set_continuesHumongous(HeapRegion* first_hr);
   502   // Unsets the humongous-related fields on the region.
   503   void set_notHumongous();
   505   // If the region has a remembered set, return a pointer to it.
   506   HeapRegionRemSet* rem_set() const {
   507     return _rem_set;
   508   }
   510   // True iff the region is in current collection_set.
   511   bool in_collection_set() const {
   512     return _in_collection_set;
   513   }
   514   void set_in_collection_set(bool b) {
   515     _in_collection_set = b;
   516   }
   517   HeapRegion* next_in_collection_set() {
   518     assert(in_collection_set(), "should only invoke on member of CS.");
   519     assert(_next_in_special_set == NULL ||
   520            _next_in_special_set->in_collection_set(),
   521            "Malformed CS.");
   522     return _next_in_special_set;
   523   }
   524   void set_next_in_collection_set(HeapRegion* r) {
   525     assert(in_collection_set(), "should only invoke on member of CS.");
   526     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   527     _next_in_special_set = r;
   528   }
   530   // Methods used by the HeapRegionSetBase class and subclasses.
   532   // Getter and setter for the next and prev fields used to link regions into
   533   // linked lists.
   534   HeapRegion* next()              { return _next; }
   535   HeapRegion* prev()              { return _prev; }
   537   void set_next(HeapRegion* next) { _next = next; }
   538   void set_prev(HeapRegion* prev) { _prev = prev; }
   540   // Every region added to a set is tagged with a reference to that
   541   // set. This is used for doing consistency checking to make sure that
   542   // the contents of a set are as they should be and it's only
   543   // available in non-product builds.
   544 #ifdef ASSERT
   545   void set_containing_set(HeapRegionSetBase* containing_set) {
   546     assert((containing_set == NULL && _containing_set != NULL) ||
   547            (containing_set != NULL && _containing_set == NULL),
   548            err_msg("containing_set: "PTR_FORMAT" "
   549                    "_containing_set: "PTR_FORMAT,
   550                    p2i(containing_set), p2i(_containing_set)));
   552     _containing_set = containing_set;
   553   }
   555   HeapRegionSetBase* containing_set() { return _containing_set; }
   556 #else // ASSERT
   557   void set_containing_set(HeapRegionSetBase* containing_set) { }
   559   // containing_set() is only used in asserts so there's no reason
   560   // to provide a dummy version of it.
   561 #endif // ASSERT
   563   HeapRegion* get_next_young_region() { return _next_young_region; }
   564   void set_next_young_region(HeapRegion* hr) {
   565     _next_young_region = hr;
   566   }
   568   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   569   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   570   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   571   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   573   HeapWord* orig_end() { return _orig_end; }
   575   // Reset HR stuff to default values.
   576   void hr_clear(bool par, bool clear_space, bool locked = false);
   577   void par_clear();
   579   // Get the start of the unmarked area in this region.
   580   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   581   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   583   // Note the start or end of marking. This tells the heap region
   584   // that the collector is about to start or has finished (concurrently)
   585   // marking the heap.
   587   // Notify the region that concurrent marking is starting. Initialize
   588   // all fields related to the next marking info.
   589   inline void note_start_of_marking();
   591   // Notify the region that concurrent marking has finished. Copy the
   592   // (now finalized) next marking info fields into the prev marking
   593   // info fields.
   594   inline void note_end_of_marking();
   596   // Notify the region that it will be used as to-space during a GC
   597   // and we are about to start copying objects into it.
   598   inline void note_start_of_copying(bool during_initial_mark);
   600   // Notify the region that it ceases being to-space during a GC and
   601   // we will not copy objects into it any more.
   602   inline void note_end_of_copying(bool during_initial_mark);
   604   // Notify the region that we are about to start processing
   605   // self-forwarded objects during evac failure handling.
   606   void note_self_forwarding_removal_start(bool during_initial_mark,
   607                                           bool during_conc_mark);
   609   // Notify the region that we have finished processing self-forwarded
   610   // objects during evac failure handling.
   611   void note_self_forwarding_removal_end(bool during_initial_mark,
   612                                         bool during_conc_mark,
   613                                         size_t marked_bytes);
   615   // Returns "false" iff no object in the region was allocated when the
   616   // last mark phase ended.
   617   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   619   void reset_during_compaction() {
   620     assert(isHumongous() && startsHumongous(),
   621            "should only be called for starts humongous regions");
   623     zero_marked_bytes();
   624     init_top_at_mark_start();
   625   }
   627   void calc_gc_efficiency(void);
   628   double gc_efficiency() { return _gc_efficiency;}
   630   bool is_young() const     { return _young_type != NotYoung; }
   631   bool is_survivor() const  { return _young_type == Survivor; }
   633   int  young_index_in_cset() const { return _young_index_in_cset; }
   634   void set_young_index_in_cset(int index) {
   635     assert( (index == -1) || is_young(), "pre-condition" );
   636     _young_index_in_cset = index;
   637   }
   639   int age_in_surv_rate_group() {
   640     assert( _surv_rate_group != NULL, "pre-condition" );
   641     assert( _age_index > -1, "pre-condition" );
   642     return _surv_rate_group->age_in_group(_age_index);
   643   }
   645   void record_surv_words_in_group(size_t words_survived) {
   646     assert( _surv_rate_group != NULL, "pre-condition" );
   647     assert( _age_index > -1, "pre-condition" );
   648     int age_in_group = age_in_surv_rate_group();
   649     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   650   }
   652   int age_in_surv_rate_group_cond() {
   653     if (_surv_rate_group != NULL)
   654       return age_in_surv_rate_group();
   655     else
   656       return -1;
   657   }
   659   SurvRateGroup* surv_rate_group() {
   660     return _surv_rate_group;
   661   }
   663   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   664     assert( surv_rate_group != NULL, "pre-condition" );
   665     assert( _surv_rate_group == NULL, "pre-condition" );
   666     assert( is_young(), "pre-condition" );
   668     _surv_rate_group = surv_rate_group;
   669     _age_index = surv_rate_group->next_age_index();
   670   }
   672   void uninstall_surv_rate_group() {
   673     if (_surv_rate_group != NULL) {
   674       assert( _age_index > -1, "pre-condition" );
   675       assert( is_young(), "pre-condition" );
   677       _surv_rate_group = NULL;
   678       _age_index = -1;
   679     } else {
   680       assert( _age_index == -1, "pre-condition" );
   681     }
   682   }
   684   void set_young() { set_young_type(Young); }
   686   void set_survivor() { set_young_type(Survivor); }
   688   void set_not_young() { set_young_type(NotYoung); }
   690   // Determine if an object has been allocated since the last
   691   // mark performed by the collector. This returns true iff the object
   692   // is within the unmarked area of the region.
   693   bool obj_allocated_since_prev_marking(oop obj) const {
   694     return (HeapWord *) obj >= prev_top_at_mark_start();
   695   }
   696   bool obj_allocated_since_next_marking(oop obj) const {
   697     return (HeapWord *) obj >= next_top_at_mark_start();
   698   }
   700   // For parallel heapRegion traversal.
   701   bool claimHeapRegion(int claimValue);
   702   jint claim_value() { return _claimed; }
   703   // Use this carefully: only when you're sure no one is claiming...
   704   void set_claim_value(int claimValue) { _claimed = claimValue; }
   706   // Returns the "evacuation_failed" property of the region.
   707   bool evacuation_failed() { return _evacuation_failed; }
   709   // Sets the "evacuation_failed" property of the region.
   710   void set_evacuation_failed(bool b) {
   711     _evacuation_failed = b;
   713     if (b) {
   714       _next_marked_bytes = 0;
   715     }
   716   }
   718   // Requires that "mr" be entirely within the region.
   719   // Apply "cl->do_object" to all objects that intersect with "mr".
   720   // If the iteration encounters an unparseable portion of the region,
   721   // or if "cl->abort()" is true after a closure application,
   722   // terminate the iteration and return the address of the start of the
   723   // subregion that isn't done.  (The two can be distinguished by querying
   724   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   725   // completed.
   726   HeapWord*
   727   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   729   // filter_young: if true and the region is a young region then we
   730   // skip the iteration.
   731   // card_ptr: if not NULL, and we decide that the card is not young
   732   // and we iterate over it, we'll clean the card before we start the
   733   // iteration.
   734   HeapWord*
   735   oops_on_card_seq_iterate_careful(MemRegion mr,
   736                                    FilterOutOfRegionClosure* cl,
   737                                    bool filter_young,
   738                                    jbyte* card_ptr);
   740   // A version of block start that is guaranteed to find *some* block
   741   // boundary at or before "p", but does not object iteration, and may
   742   // therefore be used safely when the heap is unparseable.
   743   HeapWord* block_start_careful(const void* p) const {
   744     return _offsets.block_start_careful(p);
   745   }
   747   // Requires that "addr" is within the region.  Returns the start of the
   748   // first ("careful") block that starts at or after "addr", or else the
   749   // "end" of the region if there is no such block.
   750   HeapWord* next_block_start_careful(HeapWord* addr);
   752   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   753   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   754   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   756   void set_recorded_rs_length(size_t rs_length) {
   757     _recorded_rs_length = rs_length;
   758   }
   760   void set_predicted_elapsed_time_ms(double ms) {
   761     _predicted_elapsed_time_ms = ms;
   762   }
   764   void set_predicted_bytes_to_copy(size_t bytes) {
   765     _predicted_bytes_to_copy = bytes;
   766   }
   768   virtual CompactibleSpace* next_compaction_space() const;
   770   virtual void reset_after_compaction();
   772   // Routines for managing a list of code roots (attached to the
   773   // this region's RSet) that point into this heap region.
   774   void add_strong_code_root(nmethod* nm);
   775   void remove_strong_code_root(nmethod* nm);
   777   // During a collection, migrate the successfully evacuated
   778   // strong code roots that referenced into this region to the
   779   // new regions that they now point into. Unsuccessfully
   780   // evacuated code roots are not migrated.
   781   void migrate_strong_code_roots();
   783   // Applies blk->do_code_blob() to each of the entries in
   784   // the strong code roots list for this region
   785   void strong_code_roots_do(CodeBlobClosure* blk) const;
   787   // Verify that the entries on the strong code root list for this
   788   // region are live and include at least one pointer into this region.
   789   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
   791   void print() const;
   792   void print_on(outputStream* st) const;
   794   // vo == UsePrevMarking  -> use "prev" marking information,
   795   // vo == UseNextMarking -> use "next" marking information
   796   // vo == UseMarkWord    -> use the mark word in the object header
   797   //
   798   // NOTE: Only the "prev" marking information is guaranteed to be
   799   // consistent most of the time, so most calls to this should use
   800   // vo == UsePrevMarking.
   801   // Currently, there is only one case where this is called with
   802   // vo == UseNextMarking, which is to verify the "next" marking
   803   // information at the end of remark.
   804   // Currently there is only one place where this is called with
   805   // vo == UseMarkWord, which is to verify the marking during a
   806   // full GC.
   807   void verify(VerifyOption vo, bool *failures) const;
   809   // Override; it uses the "prev" marking information
   810   virtual void verify() const;
   811 };
   813 // HeapRegionClosure is used for iterating over regions.
   814 // Terminates the iteration when the "doHeapRegion" method returns "true".
   815 class HeapRegionClosure : public StackObj {
   816   friend class HeapRegionSeq;
   817   friend class G1CollectedHeap;
   819   bool _complete;
   820   void incomplete() { _complete = false; }
   822  public:
   823   HeapRegionClosure(): _complete(true) {}
   825   // Typically called on each region until it returns true.
   826   virtual bool doHeapRegion(HeapRegion* r) = 0;
   828   // True after iteration if the closure was applied to all heap regions
   829   // and returned "false" in all cases.
   830   bool complete() { return _complete; }
   831 };
   833 #endif // INCLUDE_ALL_GCS
   835 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial