src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 19 Aug 2014 10:50:27 +0200

author
tschatzl
date
Tue, 19 Aug 2014 10:50:27 +0200
changeset 7050
6701abbc4441
parent 7049
eec72fa4b108
child 7051
1f1d373cd044
permissions
-rw-r--r--

8054818: Refactor HeapRegionSeq to manage heap region and auxiliary data
Summary: Let HeapRegionSeq manage the heap region and auxiliary data to decrease the amount of responsibilities of G1CollectedHeap, and encapsulate this work from other code.
Reviewed-by: jwilhelm, jmasa, mgerdin, brutisso

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    40 #include "gc_implementation/g1/g1EvacFailure.hpp"
    41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    42 #include "gc_implementation/g1/g1Log.hpp"
    43 #include "gc_implementation/g1/g1MarkSweep.hpp"
    44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    45 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    46 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    47 #include "gc_implementation/g1/g1StringDedup.hpp"
    48 #include "gc_implementation/g1/g1YCTypes.hpp"
    49 #include "gc_implementation/g1/heapRegion.inline.hpp"
    50 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    51 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
    52 #include "gc_implementation/g1/vm_operations_g1.hpp"
    53 #include "gc_implementation/shared/gcHeapSummary.hpp"
    54 #include "gc_implementation/shared/gcTimer.hpp"
    55 #include "gc_implementation/shared/gcTrace.hpp"
    56 #include "gc_implementation/shared/gcTraceTime.hpp"
    57 #include "gc_implementation/shared/isGCActiveMark.hpp"
    58 #include "memory/allocation.hpp"
    59 #include "memory/gcLocker.inline.hpp"
    60 #include "memory/generationSpec.hpp"
    61 #include "memory/iterator.hpp"
    62 #include "memory/referenceProcessor.hpp"
    63 #include "oops/oop.inline.hpp"
    64 #include "oops/oop.pcgc.inline.hpp"
    65 #include "runtime/orderAccess.inline.hpp"
    66 #include "runtime/vmThread.hpp"
    68 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    70 // turn it on so that the contents of the young list (scan-only /
    71 // to-be-collected) are printed at "strategic" points before / during
    72 // / after the collection --- this is useful for debugging
    73 #define YOUNG_LIST_VERBOSE 0
    74 // CURRENT STATUS
    75 // This file is under construction.  Search for "FIXME".
    77 // INVARIANTS/NOTES
    78 //
    79 // All allocation activity covered by the G1CollectedHeap interface is
    80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    81 // and allocate_new_tlab, which are the "entry" points to the
    82 // allocation code from the rest of the JVM.  (Note that this does not
    83 // apply to TLAB allocation, which is not part of this interface: it
    84 // is done by clients of this interface.)
    86 // Notes on implementation of parallelism in different tasks.
    87 //
    88 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    89 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    90 // It does use run_task() which sets _n_workers in the task.
    91 // G1ParTask executes g1_process_roots() ->
    92 // SharedHeap::process_roots() which calls eventually to
    93 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    94 // SequentialSubTasksDone.  SharedHeap::process_roots() also
    95 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    96 //
    98 // Local to this file.
   100 class RefineCardTableEntryClosure: public CardTableEntryClosure {
   101   bool _concurrent;
   102 public:
   103   RefineCardTableEntryClosure() : _concurrent(true) { }
   105   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   106     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
   107     // This path is executed by the concurrent refine or mutator threads,
   108     // concurrently, and so we do not care if card_ptr contains references
   109     // that point into the collection set.
   110     assert(!oops_into_cset, "should be");
   112     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   113       // Caller will actually yield.
   114       return false;
   115     }
   116     // Otherwise, we finished successfully; return true.
   117     return true;
   118   }
   120   void set_concurrent(bool b) { _concurrent = b; }
   121 };
   124 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   125   size_t _num_processed;
   126   CardTableModRefBS* _ctbs;
   127   int _histo[256];
   129  public:
   130   ClearLoggedCardTableEntryClosure() :
   131     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   132   {
   133     for (int i = 0; i < 256; i++) _histo[i] = 0;
   134   }
   136   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   137     unsigned char* ujb = (unsigned char*)card_ptr;
   138     int ind = (int)(*ujb);
   139     _histo[ind]++;
   141     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   142     _num_processed++;
   144     return true;
   145   }
   147   size_t num_processed() { return _num_processed; }
   149   void print_histo() {
   150     gclog_or_tty->print_cr("Card table value histogram:");
   151     for (int i = 0; i < 256; i++) {
   152       if (_histo[i] != 0) {
   153         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   154       }
   155     }
   156   }
   157 };
   159 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   160  private:
   161   size_t _num_processed;
   163  public:
   164   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   166   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   167     *card_ptr = CardTableModRefBS::dirty_card_val();
   168     _num_processed++;
   169     return true;
   170   }
   172   size_t num_processed() const { return _num_processed; }
   173 };
   175 YoungList::YoungList(G1CollectedHeap* g1h) :
   176     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   177     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   178   guarantee(check_list_empty(false), "just making sure...");
   179 }
   181 void YoungList::push_region(HeapRegion *hr) {
   182   assert(!hr->is_young(), "should not already be young");
   183   assert(hr->get_next_young_region() == NULL, "cause it should!");
   185   hr->set_next_young_region(_head);
   186   _head = hr;
   188   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   189   ++_length;
   190 }
   192 void YoungList::add_survivor_region(HeapRegion* hr) {
   193   assert(hr->is_survivor(), "should be flagged as survivor region");
   194   assert(hr->get_next_young_region() == NULL, "cause it should!");
   196   hr->set_next_young_region(_survivor_head);
   197   if (_survivor_head == NULL) {
   198     _survivor_tail = hr;
   199   }
   200   _survivor_head = hr;
   201   ++_survivor_length;
   202 }
   204 void YoungList::empty_list(HeapRegion* list) {
   205   while (list != NULL) {
   206     HeapRegion* next = list->get_next_young_region();
   207     list->set_next_young_region(NULL);
   208     list->uninstall_surv_rate_group();
   209     list->set_not_young();
   210     list = next;
   211   }
   212 }
   214 void YoungList::empty_list() {
   215   assert(check_list_well_formed(), "young list should be well formed");
   217   empty_list(_head);
   218   _head = NULL;
   219   _length = 0;
   221   empty_list(_survivor_head);
   222   _survivor_head = NULL;
   223   _survivor_tail = NULL;
   224   _survivor_length = 0;
   226   _last_sampled_rs_lengths = 0;
   228   assert(check_list_empty(false), "just making sure...");
   229 }
   231 bool YoungList::check_list_well_formed() {
   232   bool ret = true;
   234   uint length = 0;
   235   HeapRegion* curr = _head;
   236   HeapRegion* last = NULL;
   237   while (curr != NULL) {
   238     if (!curr->is_young()) {
   239       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   240                              "incorrectly tagged (y: %d, surv: %d)",
   241                              curr->bottom(), curr->end(),
   242                              curr->is_young(), curr->is_survivor());
   243       ret = false;
   244     }
   245     ++length;
   246     last = curr;
   247     curr = curr->get_next_young_region();
   248   }
   249   ret = ret && (length == _length);
   251   if (!ret) {
   252     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   253     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   254                            length, _length);
   255   }
   257   return ret;
   258 }
   260 bool YoungList::check_list_empty(bool check_sample) {
   261   bool ret = true;
   263   if (_length != 0) {
   264     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   265                   _length);
   266     ret = false;
   267   }
   268   if (check_sample && _last_sampled_rs_lengths != 0) {
   269     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   270     ret = false;
   271   }
   272   if (_head != NULL) {
   273     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   274     ret = false;
   275   }
   276   if (!ret) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   278   }
   280   return ret;
   281 }
   283 void
   284 YoungList::rs_length_sampling_init() {
   285   _sampled_rs_lengths = 0;
   286   _curr               = _head;
   287 }
   289 bool
   290 YoungList::rs_length_sampling_more() {
   291   return _curr != NULL;
   292 }
   294 void
   295 YoungList::rs_length_sampling_next() {
   296   assert( _curr != NULL, "invariant" );
   297   size_t rs_length = _curr->rem_set()->occupied();
   299   _sampled_rs_lengths += rs_length;
   301   // The current region may not yet have been added to the
   302   // incremental collection set (it gets added when it is
   303   // retired as the current allocation region).
   304   if (_curr->in_collection_set()) {
   305     // Update the collection set policy information for this region
   306     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   307   }
   309   _curr = _curr->get_next_young_region();
   310   if (_curr == NULL) {
   311     _last_sampled_rs_lengths = _sampled_rs_lengths;
   312     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   313   }
   314 }
   316 void
   317 YoungList::reset_auxilary_lists() {
   318   guarantee( is_empty(), "young list should be empty" );
   319   assert(check_list_well_formed(), "young list should be well formed");
   321   // Add survivor regions to SurvRateGroup.
   322   _g1h->g1_policy()->note_start_adding_survivor_regions();
   323   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   325   int young_index_in_cset = 0;
   326   for (HeapRegion* curr = _survivor_head;
   327        curr != NULL;
   328        curr = curr->get_next_young_region()) {
   329     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   331     // The region is a non-empty survivor so let's add it to
   332     // the incremental collection set for the next evacuation
   333     // pause.
   334     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   335     young_index_in_cset += 1;
   336   }
   337   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   338   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   340   _head   = _survivor_head;
   341   _length = _survivor_length;
   342   if (_survivor_head != NULL) {
   343     assert(_survivor_tail != NULL, "cause it shouldn't be");
   344     assert(_survivor_length > 0, "invariant");
   345     _survivor_tail->set_next_young_region(NULL);
   346   }
   348   // Don't clear the survivor list handles until the start of
   349   // the next evacuation pause - we need it in order to re-tag
   350   // the survivor regions from this evacuation pause as 'young'
   351   // at the start of the next.
   353   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   355   assert(check_list_well_formed(), "young list should be well formed");
   356 }
   358 void YoungList::print() {
   359   HeapRegion* lists[] = {_head,   _survivor_head};
   360   const char* names[] = {"YOUNG", "SURVIVOR"};
   362   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   363     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   364     HeapRegion *curr = lists[list];
   365     if (curr == NULL)
   366       gclog_or_tty->print_cr("  empty");
   367     while (curr != NULL) {
   368       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   369                              HR_FORMAT_PARAMS(curr),
   370                              curr->prev_top_at_mark_start(),
   371                              curr->next_top_at_mark_start(),
   372                              curr->age_in_surv_rate_group_cond());
   373       curr = curr->get_next_young_region();
   374     }
   375   }
   377   gclog_or_tty->cr();
   378 }
   380 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   381 {
   382   // Claim the right to put the region on the dirty cards region list
   383   // by installing a self pointer.
   384   HeapRegion* next = hr->get_next_dirty_cards_region();
   385   if (next == NULL) {
   386     HeapRegion* res = (HeapRegion*)
   387       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   388                           NULL);
   389     if (res == NULL) {
   390       HeapRegion* head;
   391       do {
   392         // Put the region to the dirty cards region list.
   393         head = _dirty_cards_region_list;
   394         next = (HeapRegion*)
   395           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   396         if (next == head) {
   397           assert(hr->get_next_dirty_cards_region() == hr,
   398                  "hr->get_next_dirty_cards_region() != hr");
   399           if (next == NULL) {
   400             // The last region in the list points to itself.
   401             hr->set_next_dirty_cards_region(hr);
   402           } else {
   403             hr->set_next_dirty_cards_region(next);
   404           }
   405         }
   406       } while (next != head);
   407     }
   408   }
   409 }
   411 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   412 {
   413   HeapRegion* head;
   414   HeapRegion* hr;
   415   do {
   416     head = _dirty_cards_region_list;
   417     if (head == NULL) {
   418       return NULL;
   419     }
   420     HeapRegion* new_head = head->get_next_dirty_cards_region();
   421     if (head == new_head) {
   422       // The last region.
   423       new_head = NULL;
   424     }
   425     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   426                                           head);
   427   } while (hr != head);
   428   assert(hr != NULL, "invariant");
   429   hr->set_next_dirty_cards_region(NULL);
   430   return hr;
   431 }
   433 #ifdef ASSERT
   434 // A region is added to the collection set as it is retired
   435 // so an address p can point to a region which will be in the
   436 // collection set but has not yet been retired.  This method
   437 // therefore is only accurate during a GC pause after all
   438 // regions have been retired.  It is used for debugging
   439 // to check if an nmethod has references to objects that can
   440 // be move during a partial collection.  Though it can be
   441 // inaccurate, it is sufficient for G1 because the conservative
   442 // implementation of is_scavengable() for G1 will indicate that
   443 // all nmethods must be scanned during a partial collection.
   444 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   445   if (p == NULL) {
   446     return false;
   447   }
   448   return heap_region_containing(p)->in_collection_set();
   449 }
   450 #endif
   452 // Returns true if the reference points to an object that
   453 // can move in an incremental collection.
   454 bool G1CollectedHeap::is_scavengable(const void* p) {
   455   HeapRegion* hr = heap_region_containing(p);
   456   return !hr->isHumongous();
   457 }
   459 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   460   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   461   CardTableModRefBS* ct_bs = g1_barrier_set();
   463   // Count the dirty cards at the start.
   464   CountNonCleanMemRegionClosure count1(this);
   465   ct_bs->mod_card_iterate(&count1);
   466   int orig_count = count1.n();
   468   // First clear the logged cards.
   469   ClearLoggedCardTableEntryClosure clear;
   470   dcqs.apply_closure_to_all_completed_buffers(&clear);
   471   dcqs.iterate_closure_all_threads(&clear, false);
   472   clear.print_histo();
   474   // Now ensure that there's no dirty cards.
   475   CountNonCleanMemRegionClosure count2(this);
   476   ct_bs->mod_card_iterate(&count2);
   477   if (count2.n() != 0) {
   478     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   479                            count2.n(), orig_count);
   480   }
   481   guarantee(count2.n() == 0, "Card table should be clean.");
   483   RedirtyLoggedCardTableEntryClosure redirty;
   484   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   485   dcqs.iterate_closure_all_threads(&redirty, false);
   486   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   487                          clear.num_processed(), orig_count);
   488   guarantee(redirty.num_processed() == clear.num_processed(),
   489             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   490                     redirty.num_processed(), clear.num_processed()));
   492   CountNonCleanMemRegionClosure count3(this);
   493   ct_bs->mod_card_iterate(&count3);
   494   if (count3.n() != orig_count) {
   495     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   496                            orig_count, count3.n());
   497     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   498   }
   499 }
   501 // Private class members.
   503 G1CollectedHeap* G1CollectedHeap::_g1h;
   505 // Private methods.
   507 HeapRegion*
   508 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   509   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   510   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   511     if (!_secondary_free_list.is_empty()) {
   512       if (G1ConcRegionFreeingVerbose) {
   513         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   514                                "secondary_free_list has %u entries",
   515                                _secondary_free_list.length());
   516       }
   517       // It looks as if there are free regions available on the
   518       // secondary_free_list. Let's move them to the free_list and try
   519       // again to allocate from it.
   520       append_secondary_free_list();
   522       assert(_hrs.num_free_regions() > 0, "if the secondary_free_list was not "
   523              "empty we should have moved at least one entry to the free_list");
   524       HeapRegion* res = _hrs.allocate_free_region(is_old);
   525       if (G1ConcRegionFreeingVerbose) {
   526         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   527                                "allocated "HR_FORMAT" from secondary_free_list",
   528                                HR_FORMAT_PARAMS(res));
   529       }
   530       return res;
   531     }
   533     // Wait here until we get notified either when (a) there are no
   534     // more free regions coming or (b) some regions have been moved on
   535     // the secondary_free_list.
   536     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   537   }
   539   if (G1ConcRegionFreeingVerbose) {
   540     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   541                            "could not allocate from secondary_free_list");
   542   }
   543   return NULL;
   544 }
   546 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   547   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   548          "the only time we use this to allocate a humongous region is "
   549          "when we are allocating a single humongous region");
   551   HeapRegion* res;
   552   if (G1StressConcRegionFreeing) {
   553     if (!_secondary_free_list.is_empty()) {
   554       if (G1ConcRegionFreeingVerbose) {
   555         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   556                                "forced to look at the secondary_free_list");
   557       }
   558       res = new_region_try_secondary_free_list(is_old);
   559       if (res != NULL) {
   560         return res;
   561       }
   562     }
   563   }
   565   res = _hrs.allocate_free_region(is_old);
   567   if (res == NULL) {
   568     if (G1ConcRegionFreeingVerbose) {
   569       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   570                              "res == NULL, trying the secondary_free_list");
   571     }
   572     res = new_region_try_secondary_free_list(is_old);
   573   }
   574   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   575     // Currently, only attempts to allocate GC alloc regions set
   576     // do_expand to true. So, we should only reach here during a
   577     // safepoint. If this assumption changes we might have to
   578     // reconsider the use of _expand_heap_after_alloc_failure.
   579     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   581     ergo_verbose1(ErgoHeapSizing,
   582                   "attempt heap expansion",
   583                   ergo_format_reason("region allocation request failed")
   584                   ergo_format_byte("allocation request"),
   585                   word_size * HeapWordSize);
   586     if (expand(word_size * HeapWordSize)) {
   587       // Given that expand() succeeded in expanding the heap, and we
   588       // always expand the heap by an amount aligned to the heap
   589       // region size, the free list should in theory not be empty.
   590       // In either case allocate_free_region() will check for NULL.
   591       res = _hrs.allocate_free_region(is_old);
   592     } else {
   593       _expand_heap_after_alloc_failure = false;
   594     }
   595   }
   596   return res;
   597 }
   599 HeapWord*
   600 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   601                                                            uint num_regions,
   602                                                            size_t word_size) {
   603   assert(first != G1_NO_HRS_INDEX, "pre-condition");
   604   assert(isHumongous(word_size), "word_size should be humongous");
   605   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   607   // Index of last region in the series + 1.
   608   uint last = first + num_regions;
   610   // We need to initialize the region(s) we just discovered. This is
   611   // a bit tricky given that it can happen concurrently with
   612   // refinement threads refining cards on these regions and
   613   // potentially wanting to refine the BOT as they are scanning
   614   // those cards (this can happen shortly after a cleanup; see CR
   615   // 6991377). So we have to set up the region(s) carefully and in
   616   // a specific order.
   618   // The word size sum of all the regions we will allocate.
   619   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   620   assert(word_size <= word_size_sum, "sanity");
   622   // This will be the "starts humongous" region.
   623   HeapRegion* first_hr = region_at(first);
   624   // The header of the new object will be placed at the bottom of
   625   // the first region.
   626   HeapWord* new_obj = first_hr->bottom();
   627   // This will be the new end of the first region in the series that
   628   // should also match the end of the last region in the series.
   629   HeapWord* new_end = new_obj + word_size_sum;
   630   // This will be the new top of the first region that will reflect
   631   // this allocation.
   632   HeapWord* new_top = new_obj + word_size;
   634   // First, we need to zero the header of the space that we will be
   635   // allocating. When we update top further down, some refinement
   636   // threads might try to scan the region. By zeroing the header we
   637   // ensure that any thread that will try to scan the region will
   638   // come across the zero klass word and bail out.
   639   //
   640   // NOTE: It would not have been correct to have used
   641   // CollectedHeap::fill_with_object() and make the space look like
   642   // an int array. The thread that is doing the allocation will
   643   // later update the object header to a potentially different array
   644   // type and, for a very short period of time, the klass and length
   645   // fields will be inconsistent. This could cause a refinement
   646   // thread to calculate the object size incorrectly.
   647   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   649   // We will set up the first region as "starts humongous". This
   650   // will also update the BOT covering all the regions to reflect
   651   // that there is a single object that starts at the bottom of the
   652   // first region.
   653   first_hr->set_startsHumongous(new_top, new_end);
   655   // Then, if there are any, we will set up the "continues
   656   // humongous" regions.
   657   HeapRegion* hr = NULL;
   658   for (uint i = first + 1; i < last; ++i) {
   659     hr = region_at(i);
   660     hr->set_continuesHumongous(first_hr);
   661   }
   662   // If we have "continues humongous" regions (hr != NULL), then the
   663   // end of the last one should match new_end.
   664   assert(hr == NULL || hr->end() == new_end, "sanity");
   666   // Up to this point no concurrent thread would have been able to
   667   // do any scanning on any region in this series. All the top
   668   // fields still point to bottom, so the intersection between
   669   // [bottom,top] and [card_start,card_end] will be empty. Before we
   670   // update the top fields, we'll do a storestore to make sure that
   671   // no thread sees the update to top before the zeroing of the
   672   // object header and the BOT initialization.
   673   OrderAccess::storestore();
   675   // Now that the BOT and the object header have been initialized,
   676   // we can update top of the "starts humongous" region.
   677   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   678          "new_top should be in this region");
   679   first_hr->set_top(new_top);
   680   if (_hr_printer.is_active()) {
   681     HeapWord* bottom = first_hr->bottom();
   682     HeapWord* end = first_hr->orig_end();
   683     if ((first + 1) == last) {
   684       // the series has a single humongous region
   685       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   686     } else {
   687       // the series has more than one humongous regions
   688       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   689     }
   690   }
   692   // Now, we will update the top fields of the "continues humongous"
   693   // regions. The reason we need to do this is that, otherwise,
   694   // these regions would look empty and this will confuse parts of
   695   // G1. For example, the code that looks for a consecutive number
   696   // of empty regions will consider them empty and try to
   697   // re-allocate them. We can extend is_empty() to also include
   698   // !continuesHumongous(), but it is easier to just update the top
   699   // fields here. The way we set top for all regions (i.e., top ==
   700   // end for all regions but the last one, top == new_top for the
   701   // last one) is actually used when we will free up the humongous
   702   // region in free_humongous_region().
   703   hr = NULL;
   704   for (uint i = first + 1; i < last; ++i) {
   705     hr = region_at(i);
   706     if ((i + 1) == last) {
   707       // last continues humongous region
   708       assert(hr->bottom() < new_top && new_top <= hr->end(),
   709              "new_top should fall on this region");
   710       hr->set_top(new_top);
   711       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   712     } else {
   713       // not last one
   714       assert(new_top > hr->end(), "new_top should be above this region");
   715       hr->set_top(hr->end());
   716       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   717     }
   718   }
   719   // If we have continues humongous regions (hr != NULL), then the
   720   // end of the last one should match new_end and its top should
   721   // match new_top.
   722   assert(hr == NULL ||
   723          (hr->end() == new_end && hr->top() == new_top), "sanity");
   724   check_bitmaps("Humongous Region Allocation", first_hr);
   726   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   727   _summary_bytes_used += first_hr->used();
   728   _humongous_set.add(first_hr);
   730   return new_obj;
   731 }
   733 // If could fit into free regions w/o expansion, try.
   734 // Otherwise, if can expand, do so.
   735 // Otherwise, if using ex regions might help, try with ex given back.
   736 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   737   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   739   verify_region_sets_optional();
   741   uint first = G1_NO_HRS_INDEX;
   742   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
   744   if (obj_regions == 1) {
   745     // Only one region to allocate, try to use a fast path by directly allocating
   746     // from the free lists. Do not try to expand here, we will potentially do that
   747     // later.
   748     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   749     if (hr != NULL) {
   750       first = hr->hrs_index();
   751     }
   752   } else {
   753     // We can't allocate humongous regions spanning more than one region while
   754     // cleanupComplete() is running, since some of the regions we find to be
   755     // empty might not yet be added to the free list. It is not straightforward
   756     // to know in which list they are on so that we can remove them. We only
   757     // need to do this if we need to allocate more than one region to satisfy the
   758     // current humongous allocation request. If we are only allocating one region
   759     // we use the one-region region allocation code (see above), or end up here.
   760     wait_while_free_regions_coming();
   761     append_secondary_free_list_if_not_empty_with_lock();
   763     // Policy: Try only empty regions (i.e. already committed first). Maybe we
   764     // are lucky enough to find some.
   765     first = _hrs.find_contiguous(obj_regions, true);
   766     if (first != G1_NO_HRS_INDEX) {
   767       _hrs.allocate_free_regions_starting_at(first, obj_regions);
   768     }
   769   }
   771   if (first == G1_NO_HRS_INDEX) {
   772     // Policy: We could not find enough regions for the humongous object in the
   773     // free list. Look through the heap to find a mix of free and uncommitted regions.
   774     // If so, try expansion.
   775     first = _hrs.find_contiguous(obj_regions, false);
   776     if (first != G1_NO_HRS_INDEX) {
   777       // We found something. Make sure these regions are committed, i.e. expand
   778       // the heap. Alternatively we could do a defragmentation GC.
   779       ergo_verbose1(ErgoHeapSizing,
   780                     "attempt heap expansion",
   781                     ergo_format_reason("humongous allocation request failed")
   782                     ergo_format_byte("allocation request"),
   783                     word_size * HeapWordSize);
   785       _hrs.expand_at(first, obj_regions);
   786       g1_policy()->record_new_heap_size(num_regions());
   788 #ifdef ASSERT
   789       for (uint i = first; i < first + obj_regions; ++i) {
   790         HeapRegion* hr = region_at(i);
   791         assert(hr->is_empty(), "sanity");
   792         assert(is_on_master_free_list(hr), "sanity");
   793       }
   794 #endif
   795       _hrs.allocate_free_regions_starting_at(first, obj_regions);
   796     } else {
   797       // Policy: Potentially trigger a defragmentation GC.
   798     }
   799   }
   801   HeapWord* result = NULL;
   802   if (first != G1_NO_HRS_INDEX) {
   803     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
   804     assert(result != NULL, "it should always return a valid result");
   806     // A successful humongous object allocation changes the used space
   807     // information of the old generation so we need to recalculate the
   808     // sizes and update the jstat counters here.
   809     g1mm()->update_sizes();
   810   }
   812   verify_region_sets_optional();
   814   return result;
   815 }
   817 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   818   assert_heap_not_locked_and_not_at_safepoint();
   819   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   821   unsigned int dummy_gc_count_before;
   822   int dummy_gclocker_retry_count = 0;
   823   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   824 }
   826 HeapWord*
   827 G1CollectedHeap::mem_allocate(size_t word_size,
   828                               bool*  gc_overhead_limit_was_exceeded) {
   829   assert_heap_not_locked_and_not_at_safepoint();
   831   // Loop until the allocation is satisfied, or unsatisfied after GC.
   832   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   833     unsigned int gc_count_before;
   835     HeapWord* result = NULL;
   836     if (!isHumongous(word_size)) {
   837       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   838     } else {
   839       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   840     }
   841     if (result != NULL) {
   842       return result;
   843     }
   845     // Create the garbage collection operation...
   846     VM_G1CollectForAllocation op(gc_count_before, word_size);
   847     // ...and get the VM thread to execute it.
   848     VMThread::execute(&op);
   850     if (op.prologue_succeeded() && op.pause_succeeded()) {
   851       // If the operation was successful we'll return the result even
   852       // if it is NULL. If the allocation attempt failed immediately
   853       // after a Full GC, it's unlikely we'll be able to allocate now.
   854       HeapWord* result = op.result();
   855       if (result != NULL && !isHumongous(word_size)) {
   856         // Allocations that take place on VM operations do not do any
   857         // card dirtying and we have to do it here. We only have to do
   858         // this for non-humongous allocations, though.
   859         dirty_young_block(result, word_size);
   860       }
   861       return result;
   862     } else {
   863       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   864         return NULL;
   865       }
   866       assert(op.result() == NULL,
   867              "the result should be NULL if the VM op did not succeed");
   868     }
   870     // Give a warning if we seem to be looping forever.
   871     if ((QueuedAllocationWarningCount > 0) &&
   872         (try_count % QueuedAllocationWarningCount == 0)) {
   873       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   874     }
   875   }
   877   ShouldNotReachHere();
   878   return NULL;
   879 }
   881 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   882                                            unsigned int *gc_count_before_ret,
   883                                            int* gclocker_retry_count_ret) {
   884   // Make sure you read the note in attempt_allocation_humongous().
   886   assert_heap_not_locked_and_not_at_safepoint();
   887   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   888          "be called for humongous allocation requests");
   890   // We should only get here after the first-level allocation attempt
   891   // (attempt_allocation()) failed to allocate.
   893   // We will loop until a) we manage to successfully perform the
   894   // allocation or b) we successfully schedule a collection which
   895   // fails to perform the allocation. b) is the only case when we'll
   896   // return NULL.
   897   HeapWord* result = NULL;
   898   for (int try_count = 1; /* we'll return */; try_count += 1) {
   899     bool should_try_gc;
   900     unsigned int gc_count_before;
   902     {
   903       MutexLockerEx x(Heap_lock);
   905       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   906                                                       false /* bot_updates */);
   907       if (result != NULL) {
   908         return result;
   909       }
   911       // If we reach here, attempt_allocation_locked() above failed to
   912       // allocate a new region. So the mutator alloc region should be NULL.
   913       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   915       if (GC_locker::is_active_and_needs_gc()) {
   916         if (g1_policy()->can_expand_young_list()) {
   917           // No need for an ergo verbose message here,
   918           // can_expand_young_list() does this when it returns true.
   919           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   920                                                       false /* bot_updates */);
   921           if (result != NULL) {
   922             return result;
   923           }
   924         }
   925         should_try_gc = false;
   926       } else {
   927         // The GCLocker may not be active but the GCLocker initiated
   928         // GC may not yet have been performed (GCLocker::needs_gc()
   929         // returns true). In this case we do not try this GC and
   930         // wait until the GCLocker initiated GC is performed, and
   931         // then retry the allocation.
   932         if (GC_locker::needs_gc()) {
   933           should_try_gc = false;
   934         } else {
   935           // Read the GC count while still holding the Heap_lock.
   936           gc_count_before = total_collections();
   937           should_try_gc = true;
   938         }
   939       }
   940     }
   942     if (should_try_gc) {
   943       bool succeeded;
   944       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   945           GCCause::_g1_inc_collection_pause);
   946       if (result != NULL) {
   947         assert(succeeded, "only way to get back a non-NULL result");
   948         return result;
   949       }
   951       if (succeeded) {
   952         // If we get here we successfully scheduled a collection which
   953         // failed to allocate. No point in trying to allocate
   954         // further. We'll just return NULL.
   955         MutexLockerEx x(Heap_lock);
   956         *gc_count_before_ret = total_collections();
   957         return NULL;
   958       }
   959     } else {
   960       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   961         MutexLockerEx x(Heap_lock);
   962         *gc_count_before_ret = total_collections();
   963         return NULL;
   964       }
   965       // The GCLocker is either active or the GCLocker initiated
   966       // GC has not yet been performed. Stall until it is and
   967       // then retry the allocation.
   968       GC_locker::stall_until_clear();
   969       (*gclocker_retry_count_ret) += 1;
   970     }
   972     // We can reach here if we were unsuccessful in scheduling a
   973     // collection (because another thread beat us to it) or if we were
   974     // stalled due to the GC locker. In either can we should retry the
   975     // allocation attempt in case another thread successfully
   976     // performed a collection and reclaimed enough space. We do the
   977     // first attempt (without holding the Heap_lock) here and the
   978     // follow-on attempt will be at the start of the next loop
   979     // iteration (after taking the Heap_lock).
   980     result = _mutator_alloc_region.attempt_allocation(word_size,
   981                                                       false /* bot_updates */);
   982     if (result != NULL) {
   983       return result;
   984     }
   986     // Give a warning if we seem to be looping forever.
   987     if ((QueuedAllocationWarningCount > 0) &&
   988         (try_count % QueuedAllocationWarningCount == 0)) {
   989       warning("G1CollectedHeap::attempt_allocation_slow() "
   990               "retries %d times", try_count);
   991     }
   992   }
   994   ShouldNotReachHere();
   995   return NULL;
   996 }
   998 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
   999                                           unsigned int * gc_count_before_ret,
  1000                                           int* gclocker_retry_count_ret) {
  1001   // The structure of this method has a lot of similarities to
  1002   // attempt_allocation_slow(). The reason these two were not merged
  1003   // into a single one is that such a method would require several "if
  1004   // allocation is not humongous do this, otherwise do that"
  1005   // conditional paths which would obscure its flow. In fact, an early
  1006   // version of this code did use a unified method which was harder to
  1007   // follow and, as a result, it had subtle bugs that were hard to
  1008   // track down. So keeping these two methods separate allows each to
  1009   // be more readable. It will be good to keep these two in sync as
  1010   // much as possible.
  1012   assert_heap_not_locked_and_not_at_safepoint();
  1013   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1014          "should only be called for humongous allocations");
  1016   // Humongous objects can exhaust the heap quickly, so we should check if we
  1017   // need to start a marking cycle at each humongous object allocation. We do
  1018   // the check before we do the actual allocation. The reason for doing it
  1019   // before the allocation is that we avoid having to keep track of the newly
  1020   // allocated memory while we do a GC.
  1021   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1022                                            word_size)) {
  1023     collect(GCCause::_g1_humongous_allocation);
  1026   // We will loop until a) we manage to successfully perform the
  1027   // allocation or b) we successfully schedule a collection which
  1028   // fails to perform the allocation. b) is the only case when we'll
  1029   // return NULL.
  1030   HeapWord* result = NULL;
  1031   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1032     bool should_try_gc;
  1033     unsigned int gc_count_before;
  1036       MutexLockerEx x(Heap_lock);
  1038       // Given that humongous objects are not allocated in young
  1039       // regions, we'll first try to do the allocation without doing a
  1040       // collection hoping that there's enough space in the heap.
  1041       result = humongous_obj_allocate(word_size);
  1042       if (result != NULL) {
  1043         return result;
  1046       if (GC_locker::is_active_and_needs_gc()) {
  1047         should_try_gc = false;
  1048       } else {
  1049          // The GCLocker may not be active but the GCLocker initiated
  1050         // GC may not yet have been performed (GCLocker::needs_gc()
  1051         // returns true). In this case we do not try this GC and
  1052         // wait until the GCLocker initiated GC is performed, and
  1053         // then retry the allocation.
  1054         if (GC_locker::needs_gc()) {
  1055           should_try_gc = false;
  1056         } else {
  1057           // Read the GC count while still holding the Heap_lock.
  1058           gc_count_before = total_collections();
  1059           should_try_gc = true;
  1064     if (should_try_gc) {
  1065       // If we failed to allocate the humongous object, we should try to
  1066       // do a collection pause (if we're allowed) in case it reclaims
  1067       // enough space for the allocation to succeed after the pause.
  1069       bool succeeded;
  1070       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1071           GCCause::_g1_humongous_allocation);
  1072       if (result != NULL) {
  1073         assert(succeeded, "only way to get back a non-NULL result");
  1074         return result;
  1077       if (succeeded) {
  1078         // If we get here we successfully scheduled a collection which
  1079         // failed to allocate. No point in trying to allocate
  1080         // further. We'll just return NULL.
  1081         MutexLockerEx x(Heap_lock);
  1082         *gc_count_before_ret = total_collections();
  1083         return NULL;
  1085     } else {
  1086       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1087         MutexLockerEx x(Heap_lock);
  1088         *gc_count_before_ret = total_collections();
  1089         return NULL;
  1091       // The GCLocker is either active or the GCLocker initiated
  1092       // GC has not yet been performed. Stall until it is and
  1093       // then retry the allocation.
  1094       GC_locker::stall_until_clear();
  1095       (*gclocker_retry_count_ret) += 1;
  1098     // We can reach here if we were unsuccessful in scheduling a
  1099     // collection (because another thread beat us to it) or if we were
  1100     // stalled due to the GC locker. In either can we should retry the
  1101     // allocation attempt in case another thread successfully
  1102     // performed a collection and reclaimed enough space.  Give a
  1103     // warning if we seem to be looping forever.
  1105     if ((QueuedAllocationWarningCount > 0) &&
  1106         (try_count % QueuedAllocationWarningCount == 0)) {
  1107       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1108               "retries %d times", try_count);
  1112   ShouldNotReachHere();
  1113   return NULL;
  1116 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1117                                        bool expect_null_mutator_alloc_region) {
  1118   assert_at_safepoint(true /* should_be_vm_thread */);
  1119   assert(_mutator_alloc_region.get() == NULL ||
  1120                                              !expect_null_mutator_alloc_region,
  1121          "the current alloc region was unexpectedly found to be non-NULL");
  1123   if (!isHumongous(word_size)) {
  1124     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1125                                                       false /* bot_updates */);
  1126   } else {
  1127     HeapWord* result = humongous_obj_allocate(word_size);
  1128     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1129       g1_policy()->set_initiate_conc_mark_if_possible();
  1131     return result;
  1134   ShouldNotReachHere();
  1137 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1138   G1CollectedHeap* _g1h;
  1139   ModRefBarrierSet* _mr_bs;
  1140 public:
  1141   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1142     _g1h(g1h), _mr_bs(mr_bs) {}
  1144   bool doHeapRegion(HeapRegion* r) {
  1145     HeapRegionRemSet* hrrs = r->rem_set();
  1147     if (r->continuesHumongous()) {
  1148       // We'll assert that the strong code root list and RSet is empty
  1149       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1150       assert(hrrs->occupied() == 0, "RSet should be empty");
  1151       return false;
  1154     _g1h->reset_gc_time_stamps(r);
  1155     hrrs->clear();
  1156     // You might think here that we could clear just the cards
  1157     // corresponding to the used region.  But no: if we leave a dirty card
  1158     // in a region we might allocate into, then it would prevent that card
  1159     // from being enqueued, and cause it to be missed.
  1160     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1161     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1163     return false;
  1165 };
  1167 void G1CollectedHeap::clear_rsets_post_compaction() {
  1168   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1169   heap_region_iterate(&rs_clear);
  1172 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1173   G1CollectedHeap*   _g1h;
  1174   UpdateRSOopClosure _cl;
  1175   int                _worker_i;
  1176 public:
  1177   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1178     _cl(g1->g1_rem_set(), worker_i),
  1179     _worker_i(worker_i),
  1180     _g1h(g1)
  1181   { }
  1183   bool doHeapRegion(HeapRegion* r) {
  1184     if (!r->continuesHumongous()) {
  1185       _cl.set_from(r);
  1186       r->oop_iterate(&_cl);
  1188     return false;
  1190 };
  1192 class ParRebuildRSTask: public AbstractGangTask {
  1193   G1CollectedHeap* _g1;
  1194 public:
  1195   ParRebuildRSTask(G1CollectedHeap* g1)
  1196     : AbstractGangTask("ParRebuildRSTask"),
  1197       _g1(g1)
  1198   { }
  1200   void work(uint worker_id) {
  1201     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1202     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1203                                           _g1->workers()->active_workers(),
  1204                                          HeapRegion::RebuildRSClaimValue);
  1206 };
  1208 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1209 private:
  1210   G1HRPrinter* _hr_printer;
  1211 public:
  1212   bool doHeapRegion(HeapRegion* hr) {
  1213     assert(!hr->is_young(), "not expecting to find young regions");
  1214     // We only generate output for non-empty regions.
  1215     if (!hr->is_empty()) {
  1216       if (!hr->isHumongous()) {
  1217         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1218       } else if (hr->startsHumongous()) {
  1219         if (hr->region_num() == 1) {
  1220           // single humongous region
  1221           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1222         } else {
  1223           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1225       } else {
  1226         assert(hr->continuesHumongous(), "only way to get here");
  1227         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1230     return false;
  1233   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1234     : _hr_printer(hr_printer) { }
  1235 };
  1237 void G1CollectedHeap::print_hrs_post_compaction() {
  1238   PostCompactionPrinterClosure cl(hr_printer());
  1239   heap_region_iterate(&cl);
  1242 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1243                                     bool clear_all_soft_refs,
  1244                                     size_t word_size) {
  1245   assert_at_safepoint(true /* should_be_vm_thread */);
  1247   if (GC_locker::check_active_before_gc()) {
  1248     return false;
  1251   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1252   gc_timer->register_gc_start();
  1254   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1255   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1257   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1258   ResourceMark rm;
  1260   print_heap_before_gc();
  1261   trace_heap_before_gc(gc_tracer);
  1263   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1265   verify_region_sets_optional();
  1267   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1268                            collector_policy()->should_clear_all_soft_refs();
  1270   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1273     IsGCActiveMark x;
  1275     // Timing
  1276     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1277     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1278     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1281       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1282       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1283       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1285       double start = os::elapsedTime();
  1286       g1_policy()->record_full_collection_start();
  1288       // Note: When we have a more flexible GC logging framework that
  1289       // allows us to add optional attributes to a GC log record we
  1290       // could consider timing and reporting how long we wait in the
  1291       // following two methods.
  1292       wait_while_free_regions_coming();
  1293       // If we start the compaction before the CM threads finish
  1294       // scanning the root regions we might trip them over as we'll
  1295       // be moving objects / updating references. So let's wait until
  1296       // they are done. By telling them to abort, they should complete
  1297       // early.
  1298       _cm->root_regions()->abort();
  1299       _cm->root_regions()->wait_until_scan_finished();
  1300       append_secondary_free_list_if_not_empty_with_lock();
  1302       gc_prologue(true);
  1303       increment_total_collections(true /* full gc */);
  1304       increment_old_marking_cycles_started();
  1306       assert(used() == recalculate_used(), "Should be equal");
  1308       verify_before_gc();
  1310       check_bitmaps("Full GC Start");
  1311       pre_full_gc_dump(gc_timer);
  1313       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1315       // Disable discovery and empty the discovered lists
  1316       // for the CM ref processor.
  1317       ref_processor_cm()->disable_discovery();
  1318       ref_processor_cm()->abandon_partial_discovery();
  1319       ref_processor_cm()->verify_no_references_recorded();
  1321       // Abandon current iterations of concurrent marking and concurrent
  1322       // refinement, if any are in progress. We have to do this before
  1323       // wait_until_scan_finished() below.
  1324       concurrent_mark()->abort();
  1326       // Make sure we'll choose a new allocation region afterwards.
  1327       release_mutator_alloc_region();
  1328       abandon_gc_alloc_regions();
  1329       g1_rem_set()->cleanupHRRS();
  1331       // We should call this after we retire any currently active alloc
  1332       // regions so that all the ALLOC / RETIRE events are generated
  1333       // before the start GC event.
  1334       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1336       // We may have added regions to the current incremental collection
  1337       // set between the last GC or pause and now. We need to clear the
  1338       // incremental collection set and then start rebuilding it afresh
  1339       // after this full GC.
  1340       abandon_collection_set(g1_policy()->inc_cset_head());
  1341       g1_policy()->clear_incremental_cset();
  1342       g1_policy()->stop_incremental_cset_building();
  1344       tear_down_region_sets(false /* free_list_only */);
  1345       g1_policy()->set_gcs_are_young(true);
  1347       // See the comments in g1CollectedHeap.hpp and
  1348       // G1CollectedHeap::ref_processing_init() about
  1349       // how reference processing currently works in G1.
  1351       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1352       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1354       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1355       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1357       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1358       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1360       // Do collection work
  1362         HandleMark hm;  // Discard invalid handles created during gc
  1363         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1366       assert(num_free_regions() == 0, "we should not have added any free regions");
  1367       rebuild_region_sets(false /* free_list_only */);
  1369       // Enqueue any discovered reference objects that have
  1370       // not been removed from the discovered lists.
  1371       ref_processor_stw()->enqueue_discovered_references();
  1373       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1375       MemoryService::track_memory_usage();
  1377       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1378       ref_processor_stw()->verify_no_references_recorded();
  1380       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1381       ClassLoaderDataGraph::purge();
  1382       MetaspaceAux::verify_metrics();
  1384       // Note: since we've just done a full GC, concurrent
  1385       // marking is no longer active. Therefore we need not
  1386       // re-enable reference discovery for the CM ref processor.
  1387       // That will be done at the start of the next marking cycle.
  1388       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1389       ref_processor_cm()->verify_no_references_recorded();
  1391       reset_gc_time_stamp();
  1392       // Since everything potentially moved, we will clear all remembered
  1393       // sets, and clear all cards.  Later we will rebuild remembered
  1394       // sets. We will also reset the GC time stamps of the regions.
  1395       clear_rsets_post_compaction();
  1396       check_gc_time_stamps();
  1398       // Resize the heap if necessary.
  1399       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1401       if (_hr_printer.is_active()) {
  1402         // We should do this after we potentially resize the heap so
  1403         // that all the COMMIT / UNCOMMIT events are generated before
  1404         // the end GC event.
  1406         print_hrs_post_compaction();
  1407         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1410       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1411       if (hot_card_cache->use_cache()) {
  1412         hot_card_cache->reset_card_counts();
  1413         hot_card_cache->reset_hot_cache();
  1416       // Rebuild remembered sets of all regions.
  1417       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1418         uint n_workers =
  1419           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1420                                                   workers()->active_workers(),
  1421                                                   Threads::number_of_non_daemon_threads());
  1422         assert(UseDynamicNumberOfGCThreads ||
  1423                n_workers == workers()->total_workers(),
  1424                "If not dynamic should be using all the  workers");
  1425         workers()->set_active_workers(n_workers);
  1426         // Set parallel threads in the heap (_n_par_threads) only
  1427         // before a parallel phase and always reset it to 0 after
  1428         // the phase so that the number of parallel threads does
  1429         // no get carried forward to a serial phase where there
  1430         // may be code that is "possibly_parallel".
  1431         set_par_threads(n_workers);
  1433         ParRebuildRSTask rebuild_rs_task(this);
  1434         assert(check_heap_region_claim_values(
  1435                HeapRegion::InitialClaimValue), "sanity check");
  1436         assert(UseDynamicNumberOfGCThreads ||
  1437                workers()->active_workers() == workers()->total_workers(),
  1438                "Unless dynamic should use total workers");
  1439         // Use the most recent number of  active workers
  1440         assert(workers()->active_workers() > 0,
  1441                "Active workers not properly set");
  1442         set_par_threads(workers()->active_workers());
  1443         workers()->run_task(&rebuild_rs_task);
  1444         set_par_threads(0);
  1445         assert(check_heap_region_claim_values(
  1446                HeapRegion::RebuildRSClaimValue), "sanity check");
  1447         reset_heap_region_claim_values();
  1448       } else {
  1449         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1450         heap_region_iterate(&rebuild_rs);
  1453       // Rebuild the strong code root lists for each region
  1454       rebuild_strong_code_roots();
  1456       if (true) { // FIXME
  1457         MetaspaceGC::compute_new_size();
  1460 #ifdef TRACESPINNING
  1461       ParallelTaskTerminator::print_termination_counts();
  1462 #endif
  1464       // Discard all rset updates
  1465       JavaThread::dirty_card_queue_set().abandon_logs();
  1466       assert(!G1DeferredRSUpdate
  1467              || (G1DeferredRSUpdate &&
  1468                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1470       _young_list->reset_sampled_info();
  1471       // At this point there should be no regions in the
  1472       // entire heap tagged as young.
  1473       assert(check_young_list_empty(true /* check_heap */),
  1474              "young list should be empty at this point");
  1476       // Update the number of full collections that have been completed.
  1477       increment_old_marking_cycles_completed(false /* concurrent */);
  1479       _hrs.verify_optional();
  1480       verify_region_sets_optional();
  1482       verify_after_gc();
  1484       // Clear the previous marking bitmap, if needed for bitmap verification.
  1485       // Note we cannot do this when we clear the next marking bitmap in
  1486       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
  1487       // objects marked during a full GC against the previous bitmap.
  1488       // But we need to clear it before calling check_bitmaps below since
  1489       // the full GC has compacted objects and updated TAMS but not updated
  1490       // the prev bitmap.
  1491       if (G1VerifyBitmaps) {
  1492         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
  1494       check_bitmaps("Full GC End");
  1496       // Start a new incremental collection set for the next pause
  1497       assert(g1_policy()->collection_set() == NULL, "must be");
  1498       g1_policy()->start_incremental_cset_building();
  1500       clear_cset_fast_test();
  1502       init_mutator_alloc_region();
  1504       double end = os::elapsedTime();
  1505       g1_policy()->record_full_collection_end();
  1507       if (G1Log::fine()) {
  1508         g1_policy()->print_heap_transition();
  1511       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1512       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1513       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1514       // before any GC notifications are raised.
  1515       g1mm()->update_sizes();
  1517       gc_epilogue(true);
  1520     if (G1Log::finer()) {
  1521       g1_policy()->print_detailed_heap_transition(true /* full */);
  1524     print_heap_after_gc();
  1525     trace_heap_after_gc(gc_tracer);
  1527     post_full_gc_dump(gc_timer);
  1529     gc_timer->register_gc_end();
  1530     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1533   return true;
  1536 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1537   // do_collection() will return whether it succeeded in performing
  1538   // the GC. Currently, there is no facility on the
  1539   // do_full_collection() API to notify the caller than the collection
  1540   // did not succeed (e.g., because it was locked out by the GC
  1541   // locker). So, right now, we'll ignore the return value.
  1542   bool dummy = do_collection(true,                /* explicit_gc */
  1543                              clear_all_soft_refs,
  1544                              0                    /* word_size */);
  1547 // This code is mostly copied from TenuredGeneration.
  1548 void
  1549 G1CollectedHeap::
  1550 resize_if_necessary_after_full_collection(size_t word_size) {
  1551   // Include the current allocation, if any, and bytes that will be
  1552   // pre-allocated to support collections, as "used".
  1553   const size_t used_after_gc = used();
  1554   const size_t capacity_after_gc = capacity();
  1555   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1557   // This is enforced in arguments.cpp.
  1558   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1559          "otherwise the code below doesn't make sense");
  1561   // We don't have floating point command-line arguments
  1562   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1563   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1564   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1565   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1567   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1568   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1570   // We have to be careful here as these two calculations can overflow
  1571   // 32-bit size_t's.
  1572   double used_after_gc_d = (double) used_after_gc;
  1573   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1574   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1576   // Let's make sure that they are both under the max heap size, which
  1577   // by default will make them fit into a size_t.
  1578   double desired_capacity_upper_bound = (double) max_heap_size;
  1579   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1580                                     desired_capacity_upper_bound);
  1581   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1582                                     desired_capacity_upper_bound);
  1584   // We can now safely turn them into size_t's.
  1585   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1586   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1588   // This assert only makes sense here, before we adjust them
  1589   // with respect to the min and max heap size.
  1590   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1591          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1592                  "maximum_desired_capacity = "SIZE_FORMAT,
  1593                  minimum_desired_capacity, maximum_desired_capacity));
  1595   // Should not be greater than the heap max size. No need to adjust
  1596   // it with respect to the heap min size as it's a lower bound (i.e.,
  1597   // we'll try to make the capacity larger than it, not smaller).
  1598   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1599   // Should not be less than the heap min size. No need to adjust it
  1600   // with respect to the heap max size as it's an upper bound (i.e.,
  1601   // we'll try to make the capacity smaller than it, not greater).
  1602   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1604   if (capacity_after_gc < minimum_desired_capacity) {
  1605     // Don't expand unless it's significant
  1606     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1607     ergo_verbose4(ErgoHeapSizing,
  1608                   "attempt heap expansion",
  1609                   ergo_format_reason("capacity lower than "
  1610                                      "min desired capacity after Full GC")
  1611                   ergo_format_byte("capacity")
  1612                   ergo_format_byte("occupancy")
  1613                   ergo_format_byte_perc("min desired capacity"),
  1614                   capacity_after_gc, used_after_gc,
  1615                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1616     expand(expand_bytes);
  1618     // No expansion, now see if we want to shrink
  1619   } else if (capacity_after_gc > maximum_desired_capacity) {
  1620     // Capacity too large, compute shrinking size
  1621     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1622     ergo_verbose4(ErgoHeapSizing,
  1623                   "attempt heap shrinking",
  1624                   ergo_format_reason("capacity higher than "
  1625                                      "max desired capacity after Full GC")
  1626                   ergo_format_byte("capacity")
  1627                   ergo_format_byte("occupancy")
  1628                   ergo_format_byte_perc("max desired capacity"),
  1629                   capacity_after_gc, used_after_gc,
  1630                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1631     shrink(shrink_bytes);
  1636 HeapWord*
  1637 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1638                                            bool* succeeded) {
  1639   assert_at_safepoint(true /* should_be_vm_thread */);
  1641   *succeeded = true;
  1642   // Let's attempt the allocation first.
  1643   HeapWord* result =
  1644     attempt_allocation_at_safepoint(word_size,
  1645                                  false /* expect_null_mutator_alloc_region */);
  1646   if (result != NULL) {
  1647     assert(*succeeded, "sanity");
  1648     return result;
  1651   // In a G1 heap, we're supposed to keep allocation from failing by
  1652   // incremental pauses.  Therefore, at least for now, we'll favor
  1653   // expansion over collection.  (This might change in the future if we can
  1654   // do something smarter than full collection to satisfy a failed alloc.)
  1655   result = expand_and_allocate(word_size);
  1656   if (result != NULL) {
  1657     assert(*succeeded, "sanity");
  1658     return result;
  1661   // Expansion didn't work, we'll try to do a Full GC.
  1662   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1663                                     false, /* clear_all_soft_refs */
  1664                                     word_size);
  1665   if (!gc_succeeded) {
  1666     *succeeded = false;
  1667     return NULL;
  1670   // Retry the allocation
  1671   result = attempt_allocation_at_safepoint(word_size,
  1672                                   true /* expect_null_mutator_alloc_region */);
  1673   if (result != NULL) {
  1674     assert(*succeeded, "sanity");
  1675     return result;
  1678   // Then, try a Full GC that will collect all soft references.
  1679   gc_succeeded = do_collection(false, /* explicit_gc */
  1680                                true,  /* clear_all_soft_refs */
  1681                                word_size);
  1682   if (!gc_succeeded) {
  1683     *succeeded = false;
  1684     return NULL;
  1687   // Retry the allocation once more
  1688   result = attempt_allocation_at_safepoint(word_size,
  1689                                   true /* expect_null_mutator_alloc_region */);
  1690   if (result != NULL) {
  1691     assert(*succeeded, "sanity");
  1692     return result;
  1695   assert(!collector_policy()->should_clear_all_soft_refs(),
  1696          "Flag should have been handled and cleared prior to this point");
  1698   // What else?  We might try synchronous finalization later.  If the total
  1699   // space available is large enough for the allocation, then a more
  1700   // complete compaction phase than we've tried so far might be
  1701   // appropriate.
  1702   assert(*succeeded, "sanity");
  1703   return NULL;
  1706 // Attempting to expand the heap sufficiently
  1707 // to support an allocation of the given "word_size".  If
  1708 // successful, perform the allocation and return the address of the
  1709 // allocated block, or else "NULL".
  1711 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1712   assert_at_safepoint(true /* should_be_vm_thread */);
  1714   verify_region_sets_optional();
  1716   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1717   ergo_verbose1(ErgoHeapSizing,
  1718                 "attempt heap expansion",
  1719                 ergo_format_reason("allocation request failed")
  1720                 ergo_format_byte("allocation request"),
  1721                 word_size * HeapWordSize);
  1722   if (expand(expand_bytes)) {
  1723     _hrs.verify_optional();
  1724     verify_region_sets_optional();
  1725     return attempt_allocation_at_safepoint(word_size,
  1726                                  false /* expect_null_mutator_alloc_region */);
  1728   return NULL;
  1731 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1732   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1733   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1734                                        HeapRegion::GrainBytes);
  1735   ergo_verbose2(ErgoHeapSizing,
  1736                 "expand the heap",
  1737                 ergo_format_byte("requested expansion amount")
  1738                 ergo_format_byte("attempted expansion amount"),
  1739                 expand_bytes, aligned_expand_bytes);
  1741   if (is_maximal_no_gc()) {
  1742     ergo_verbose0(ErgoHeapSizing,
  1743                       "did not expand the heap",
  1744                       ergo_format_reason("heap already fully expanded"));
  1745     return false;
  1748   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
  1749   assert(regions_to_expand > 0, "Must expand by at least one region");
  1751   uint expanded_by = _hrs.expand_by(regions_to_expand);
  1753   if (expanded_by > 0) {
  1754     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
  1755     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1756     g1_policy()->record_new_heap_size(num_regions());
  1757   } else {
  1758     ergo_verbose0(ErgoHeapSizing,
  1759                   "did not expand the heap",
  1760                   ergo_format_reason("heap expansion operation failed"));
  1761     // The expansion of the virtual storage space was unsuccessful.
  1762     // Let's see if it was because we ran out of swap.
  1763     if (G1ExitOnExpansionFailure &&
  1764         _hrs.available() >= regions_to_expand) {
  1765       // We had head room...
  1766       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1769   return regions_to_expand > 0;
  1772 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1773   size_t aligned_shrink_bytes =
  1774     ReservedSpace::page_align_size_down(shrink_bytes);
  1775   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1776                                          HeapRegion::GrainBytes);
  1777   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1779   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
  1780   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1782   ergo_verbose3(ErgoHeapSizing,
  1783                 "shrink the heap",
  1784                 ergo_format_byte("requested shrinking amount")
  1785                 ergo_format_byte("aligned shrinking amount")
  1786                 ergo_format_byte("attempted shrinking amount"),
  1787                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1788   if (num_regions_removed > 0) {
  1789     g1_policy()->record_new_heap_size(num_regions());
  1790   } else {
  1791     ergo_verbose0(ErgoHeapSizing,
  1792                   "did not shrink the heap",
  1793                   ergo_format_reason("heap shrinking operation failed"));
  1797 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1798   verify_region_sets_optional();
  1800   // We should only reach here at the end of a Full GC which means we
  1801   // should not not be holding to any GC alloc regions. The method
  1802   // below will make sure of that and do any remaining clean up.
  1803   abandon_gc_alloc_regions();
  1805   // Instead of tearing down / rebuilding the free lists here, we
  1806   // could instead use the remove_all_pending() method on free_list to
  1807   // remove only the ones that we need to remove.
  1808   tear_down_region_sets(true /* free_list_only */);
  1809   shrink_helper(shrink_bytes);
  1810   rebuild_region_sets(true /* free_list_only */);
  1812   _hrs.verify_optional();
  1813   verify_region_sets_optional();
  1816 // Public methods.
  1818 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1819 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1820 #endif // _MSC_VER
  1823 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1824   SharedHeap(policy_),
  1825   _g1_policy(policy_),
  1826   _dirty_card_queue_set(false),
  1827   _into_cset_dirty_card_queue_set(false),
  1828   _is_alive_closure_cm(this),
  1829   _is_alive_closure_stw(this),
  1830   _ref_processor_cm(NULL),
  1831   _ref_processor_stw(NULL),
  1832   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1833   _bot_shared(NULL),
  1834   _evac_failure_scan_stack(NULL),
  1835   _mark_in_progress(false),
  1836   _cg1r(NULL), _summary_bytes_used(0),
  1837   _g1mm(NULL),
  1838   _refine_cte_cl(NULL),
  1839   _full_collection(false),
  1840   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1841   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1842   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1843   _humongous_is_live(),
  1844   _has_humongous_reclaim_candidates(false),
  1845   _free_regions_coming(false),
  1846   _young_list(new YoungList(this)),
  1847   _gc_time_stamp(0),
  1848   _retained_old_gc_alloc_region(NULL),
  1849   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1850   _old_plab_stats(OldPLABSize, PLABWeight),
  1851   _expand_heap_after_alloc_failure(true),
  1852   _surviving_young_words(NULL),
  1853   _old_marking_cycles_started(0),
  1854   _old_marking_cycles_completed(0),
  1855   _concurrent_cycle_started(false),
  1856   _in_cset_fast_test(),
  1857   _dirty_cards_region_list(NULL),
  1858   _worker_cset_start_region(NULL),
  1859   _worker_cset_start_region_time_stamp(NULL),
  1860   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1861   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1862   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1863   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1865   _g1h = this;
  1866   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1867     vm_exit_during_initialization("Failed necessary allocation.");
  1870   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1872   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1873   _task_queues = new RefToScanQueueSet(n_queues);
  1875   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1876   assert(n_rem_sets > 0, "Invariant.");
  1878   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1879   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1880   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1882   for (int i = 0; i < n_queues; i++) {
  1883     RefToScanQueue* q = new RefToScanQueue();
  1884     q->initialize();
  1885     _task_queues->register_queue(i, q);
  1886     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1888   clear_cset_start_regions();
  1890   // Initialize the G1EvacuationFailureALot counters and flags.
  1891   NOT_PRODUCT(reset_evacuation_should_fail();)
  1893   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1896 jint G1CollectedHeap::initialize() {
  1897   CollectedHeap::pre_initialize();
  1898   os::enable_vtime();
  1900   G1Log::init();
  1902   // Necessary to satisfy locking discipline assertions.
  1904   MutexLocker x(Heap_lock);
  1906   // We have to initialize the printer before committing the heap, as
  1907   // it will be used then.
  1908   _hr_printer.set_active(G1PrintHeapRegions);
  1910   // While there are no constraints in the GC code that HeapWordSize
  1911   // be any particular value, there are multiple other areas in the
  1912   // system which believe this to be true (e.g. oop->object_size in some
  1913   // cases incorrectly returns the size in wordSize units rather than
  1914   // HeapWordSize).
  1915   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1917   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1918   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1919   size_t heap_alignment = collector_policy()->heap_alignment();
  1921   // Ensure that the sizes are properly aligned.
  1922   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1923   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1924   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1926   _refine_cte_cl = new RefineCardTableEntryClosure();
  1928   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  1930   // Reserve the maximum.
  1932   // When compressed oops are enabled, the preferred heap base
  1933   // is calculated by subtracting the requested size from the
  1934   // 32Gb boundary and using the result as the base address for
  1935   // heap reservation. If the requested size is not aligned to
  1936   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1937   // into the ReservedHeapSpace constructor) then the actual
  1938   // base of the reserved heap may end up differing from the
  1939   // address that was requested (i.e. the preferred heap base).
  1940   // If this happens then we could end up using a non-optimal
  1941   // compressed oops mode.
  1943   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  1944                                                  heap_alignment);
  1946   // It is important to do this in a way such that concurrent readers can't
  1947   // temporarily think something is in the heap.  (I've actually seen this
  1948   // happen in asserts: DLD.)
  1949   _reserved.set_word_size(0);
  1950   _reserved.set_start((HeapWord*)heap_rs.base());
  1951   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1953   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  1955   // Create the gen rem set (and barrier set) for the entire reserved region.
  1956   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1957   set_barrier_set(rem_set()->bs());
  1958   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  1959     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  1960     return JNI_ENOMEM;
  1963   // Also create a G1 rem set.
  1964   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  1966   // Carve out the G1 part of the heap.
  1968   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
  1969   _hrs.initialize(g1_rs);
  1971   assert(_hrs.max_length() == _expansion_regions,
  1972          err_msg("max length: %u expansion regions: %u",
  1973                  _hrs.max_length(), _expansion_regions));
  1975   // Do later initialization work for concurrent refinement.
  1976   _cg1r->init();
  1978   // 6843694 - ensure that the maximum region index can fit
  1979   // in the remembered set structures.
  1980   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1981   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1983   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1984   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1985   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  1986             "too many cards per region");
  1988   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  1990   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1991                                              heap_word_size(init_byte_size));
  1993   _g1h = this;
  1995   _in_cset_fast_test.initialize(_hrs.reserved().start(), _hrs.reserved().end(), HeapRegion::GrainBytes);
  1996   _humongous_is_live.initialize(_hrs.reserved().start(), _hrs.reserved().end(), HeapRegion::GrainBytes);
  1998   // Create the ConcurrentMark data structure and thread.
  1999   // (Must do this late, so that "max_regions" is defined.)
  2000   _cm = new ConcurrentMark(this, heap_rs);
  2001   if (_cm == NULL || !_cm->completed_initialization()) {
  2002     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2003     return JNI_ENOMEM;
  2005   _cmThread = _cm->cmThread();
  2007   // Initialize the from_card cache structure of HeapRegionRemSet.
  2008   HeapRegionRemSet::init_heap(max_regions());
  2010   // Now expand into the initial heap size.
  2011   if (!expand(init_byte_size)) {
  2012     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2013     return JNI_ENOMEM;
  2016   // Perform any initialization actions delegated to the policy.
  2017   g1_policy()->init();
  2019   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2020                                                SATB_Q_FL_lock,
  2021                                                G1SATBProcessCompletedThreshold,
  2022                                                Shared_SATB_Q_lock);
  2024   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2025                                                 DirtyCardQ_CBL_mon,
  2026                                                 DirtyCardQ_FL_lock,
  2027                                                 concurrent_g1_refine()->yellow_zone(),
  2028                                                 concurrent_g1_refine()->red_zone(),
  2029                                                 Shared_DirtyCardQ_lock);
  2031   if (G1DeferredRSUpdate) {
  2032     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2033                                       DirtyCardQ_CBL_mon,
  2034                                       DirtyCardQ_FL_lock,
  2035                                       -1, // never trigger processing
  2036                                       -1, // no limit on length
  2037                                       Shared_DirtyCardQ_lock,
  2038                                       &JavaThread::dirty_card_queue_set());
  2041   // Initialize the card queue set used to hold cards containing
  2042   // references into the collection set.
  2043   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2044                                              DirtyCardQ_CBL_mon,
  2045                                              DirtyCardQ_FL_lock,
  2046                                              -1, // never trigger processing
  2047                                              -1, // no limit on length
  2048                                              Shared_DirtyCardQ_lock,
  2049                                              &JavaThread::dirty_card_queue_set());
  2051   // In case we're keeping closure specialization stats, initialize those
  2052   // counts and that mechanism.
  2053   SpecializationStats::clear();
  2055   // Here we allocate the dummy HeapRegion that is required by the
  2056   // G1AllocRegion class.
  2058   HeapRegion* dummy_region = _hrs.get_dummy_region();
  2059   // We'll re-use the same region whether the alloc region will
  2060   // require BOT updates or not and, if it doesn't, then a non-young
  2061   // region will complain that it cannot support allocations without
  2062   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2063   dummy_region->set_young();
  2064   // Make sure it's full.
  2065   dummy_region->set_top(dummy_region->end());
  2066   G1AllocRegion::setup(this, dummy_region);
  2068   init_mutator_alloc_region();
  2070   // Do create of the monitoring and management support so that
  2071   // values in the heap have been properly initialized.
  2072   _g1mm = new G1MonitoringSupport(this);
  2074   G1StringDedup::initialize();
  2076   return JNI_OK;
  2079 void G1CollectedHeap::stop() {
  2080   // Stop all concurrent threads. We do this to make sure these threads
  2081   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2082   // that are destroyed during shutdown.
  2083   _cg1r->stop();
  2084   _cmThread->stop();
  2085   if (G1StringDedup::is_enabled()) {
  2086     G1StringDedup::stop();
  2090 void G1CollectedHeap::clear_humongous_is_live_table() {
  2091   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
  2092   _humongous_is_live.clear();
  2095 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2096   return HeapRegion::max_region_size();
  2099 void G1CollectedHeap::ref_processing_init() {
  2100   // Reference processing in G1 currently works as follows:
  2101   //
  2102   // * There are two reference processor instances. One is
  2103   //   used to record and process discovered references
  2104   //   during concurrent marking; the other is used to
  2105   //   record and process references during STW pauses
  2106   //   (both full and incremental).
  2107   // * Both ref processors need to 'span' the entire heap as
  2108   //   the regions in the collection set may be dotted around.
  2109   //
  2110   // * For the concurrent marking ref processor:
  2111   //   * Reference discovery is enabled at initial marking.
  2112   //   * Reference discovery is disabled and the discovered
  2113   //     references processed etc during remarking.
  2114   //   * Reference discovery is MT (see below).
  2115   //   * Reference discovery requires a barrier (see below).
  2116   //   * Reference processing may or may not be MT
  2117   //     (depending on the value of ParallelRefProcEnabled
  2118   //     and ParallelGCThreads).
  2119   //   * A full GC disables reference discovery by the CM
  2120   //     ref processor and abandons any entries on it's
  2121   //     discovered lists.
  2122   //
  2123   // * For the STW processor:
  2124   //   * Non MT discovery is enabled at the start of a full GC.
  2125   //   * Processing and enqueueing during a full GC is non-MT.
  2126   //   * During a full GC, references are processed after marking.
  2127   //
  2128   //   * Discovery (may or may not be MT) is enabled at the start
  2129   //     of an incremental evacuation pause.
  2130   //   * References are processed near the end of a STW evacuation pause.
  2131   //   * For both types of GC:
  2132   //     * Discovery is atomic - i.e. not concurrent.
  2133   //     * Reference discovery will not need a barrier.
  2135   SharedHeap::ref_processing_init();
  2136   MemRegion mr = reserved_region();
  2138   // Concurrent Mark ref processor
  2139   _ref_processor_cm =
  2140     new ReferenceProcessor(mr,    // span
  2141                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2142                                 // mt processing
  2143                            (int) ParallelGCThreads,
  2144                                 // degree of mt processing
  2145                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2146                                 // mt discovery
  2147                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2148                                 // degree of mt discovery
  2149                            false,
  2150                                 // Reference discovery is not atomic
  2151                            &_is_alive_closure_cm);
  2152                                 // is alive closure
  2153                                 // (for efficiency/performance)
  2155   // STW ref processor
  2156   _ref_processor_stw =
  2157     new ReferenceProcessor(mr,    // span
  2158                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2159                                 // mt processing
  2160                            MAX2((int)ParallelGCThreads, 1),
  2161                                 // degree of mt processing
  2162                            (ParallelGCThreads > 1),
  2163                                 // mt discovery
  2164                            MAX2((int)ParallelGCThreads, 1),
  2165                                 // degree of mt discovery
  2166                            true,
  2167                                 // Reference discovery is atomic
  2168                            &_is_alive_closure_stw);
  2169                                 // is alive closure
  2170                                 // (for efficiency/performance)
  2173 size_t G1CollectedHeap::capacity() const {
  2174   return _hrs.length() * HeapRegion::GrainBytes;
  2177 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2178   assert(!hr->continuesHumongous(), "pre-condition");
  2179   hr->reset_gc_time_stamp();
  2180   if (hr->startsHumongous()) {
  2181     uint first_index = hr->hrs_index() + 1;
  2182     uint last_index = hr->last_hc_index();
  2183     for (uint i = first_index; i < last_index; i += 1) {
  2184       HeapRegion* chr = region_at(i);
  2185       assert(chr->continuesHumongous(), "sanity");
  2186       chr->reset_gc_time_stamp();
  2191 #ifndef PRODUCT
  2192 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2193 private:
  2194   unsigned _gc_time_stamp;
  2195   bool _failures;
  2197 public:
  2198   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2199     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2201   virtual bool doHeapRegion(HeapRegion* hr) {
  2202     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2203     if (_gc_time_stamp != region_gc_time_stamp) {
  2204       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2205                              "expected %d", HR_FORMAT_PARAMS(hr),
  2206                              region_gc_time_stamp, _gc_time_stamp);
  2207       _failures = true;
  2209     return false;
  2212   bool failures() { return _failures; }
  2213 };
  2215 void G1CollectedHeap::check_gc_time_stamps() {
  2216   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2217   heap_region_iterate(&cl);
  2218   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2220 #endif // PRODUCT
  2222 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2223                                                  DirtyCardQueue* into_cset_dcq,
  2224                                                  bool concurrent,
  2225                                                  uint worker_i) {
  2226   // Clean cards in the hot card cache
  2227   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2228   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2230   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2231   int n_completed_buffers = 0;
  2232   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2233     n_completed_buffers++;
  2235   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2236   dcqs.clear_n_completed_buffers();
  2237   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2241 // Computes the sum of the storage used by the various regions.
  2243 size_t G1CollectedHeap::used() const {
  2244   assert(Heap_lock->owner() != NULL,
  2245          "Should be owned on this thread's behalf.");
  2246   size_t result = _summary_bytes_used;
  2247   // Read only once in case it is set to NULL concurrently
  2248   HeapRegion* hr = _mutator_alloc_region.get();
  2249   if (hr != NULL)
  2250     result += hr->used();
  2251   return result;
  2254 size_t G1CollectedHeap::used_unlocked() const {
  2255   size_t result = _summary_bytes_used;
  2256   return result;
  2259 class SumUsedClosure: public HeapRegionClosure {
  2260   size_t _used;
  2261 public:
  2262   SumUsedClosure() : _used(0) {}
  2263   bool doHeapRegion(HeapRegion* r) {
  2264     if (!r->continuesHumongous()) {
  2265       _used += r->used();
  2267     return false;
  2269   size_t result() { return _used; }
  2270 };
  2272 size_t G1CollectedHeap::recalculate_used() const {
  2273   double recalculate_used_start = os::elapsedTime();
  2275   SumUsedClosure blk;
  2276   heap_region_iterate(&blk);
  2278   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2279   return blk.result();
  2282 size_t G1CollectedHeap::unsafe_max_alloc() {
  2283   if (num_free_regions() > 0) return HeapRegion::GrainBytes;
  2284   // otherwise, is there space in the current allocation region?
  2286   // We need to store the current allocation region in a local variable
  2287   // here. The problem is that this method doesn't take any locks and
  2288   // there may be other threads which overwrite the current allocation
  2289   // region field. attempt_allocation(), for example, sets it to NULL
  2290   // and this can happen *after* the NULL check here but before the call
  2291   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2292   // to be a problem in the optimized build, since the two loads of the
  2293   // current allocation region field are optimized away.
  2294   HeapRegion* hr = _mutator_alloc_region.get();
  2295   if (hr == NULL) {
  2296     return 0;
  2298   return hr->free();
  2301 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2302   switch (cause) {
  2303     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2304     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2305     case GCCause::_g1_humongous_allocation: return true;
  2306     default:                                return false;
  2310 #ifndef PRODUCT
  2311 void G1CollectedHeap::allocate_dummy_regions() {
  2312   // Let's fill up most of the region
  2313   size_t word_size = HeapRegion::GrainWords - 1024;
  2314   // And as a result the region we'll allocate will be humongous.
  2315   guarantee(isHumongous(word_size), "sanity");
  2317   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2318     // Let's use the existing mechanism for the allocation
  2319     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2320     if (dummy_obj != NULL) {
  2321       MemRegion mr(dummy_obj, word_size);
  2322       CollectedHeap::fill_with_object(mr);
  2323     } else {
  2324       // If we can't allocate once, we probably cannot allocate
  2325       // again. Let's get out of the loop.
  2326       break;
  2330 #endif // !PRODUCT
  2332 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2333   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2334     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2335     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2336     _old_marking_cycles_started, _old_marking_cycles_completed));
  2338   _old_marking_cycles_started++;
  2341 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2342   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2344   // We assume that if concurrent == true, then the caller is a
  2345   // concurrent thread that was joined the Suspendible Thread
  2346   // Set. If there's ever a cheap way to check this, we should add an
  2347   // assert here.
  2349   // Given that this method is called at the end of a Full GC or of a
  2350   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2351   // interrupt a concurrent cycle), the number of full collections
  2352   // completed should be either one (in the case where there was no
  2353   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2354   // behind the number of full collections started.
  2356   // This is the case for the inner caller, i.e. a Full GC.
  2357   assert(concurrent ||
  2358          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2359          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2360          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2361                  "is inconsistent with _old_marking_cycles_completed = %u",
  2362                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2364   // This is the case for the outer caller, i.e. the concurrent cycle.
  2365   assert(!concurrent ||
  2366          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2367          err_msg("for outer caller (concurrent cycle): "
  2368                  "_old_marking_cycles_started = %u "
  2369                  "is inconsistent with _old_marking_cycles_completed = %u",
  2370                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2372   _old_marking_cycles_completed += 1;
  2374   // We need to clear the "in_progress" flag in the CM thread before
  2375   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2376   // is set) so that if a waiter requests another System.gc() it doesn't
  2377   // incorrectly see that a marking cycle is still in progress.
  2378   if (concurrent) {
  2379     _cmThread->clear_in_progress();
  2382   // This notify_all() will ensure that a thread that called
  2383   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2384   // and it's waiting for a full GC to finish will be woken up. It is
  2385   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2386   FullGCCount_lock->notify_all();
  2389 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2390   _concurrent_cycle_started = true;
  2391   _gc_timer_cm->register_gc_start(start_time);
  2393   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2394   trace_heap_before_gc(_gc_tracer_cm);
  2397 void G1CollectedHeap::register_concurrent_cycle_end() {
  2398   if (_concurrent_cycle_started) {
  2399     if (_cm->has_aborted()) {
  2400       _gc_tracer_cm->report_concurrent_mode_failure();
  2403     _gc_timer_cm->register_gc_end();
  2404     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2406     _concurrent_cycle_started = false;
  2410 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2411   if (_concurrent_cycle_started) {
  2412     trace_heap_after_gc(_gc_tracer_cm);
  2416 G1YCType G1CollectedHeap::yc_type() {
  2417   bool is_young = g1_policy()->gcs_are_young();
  2418   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2419   bool is_during_mark = mark_in_progress();
  2421   if (is_initial_mark) {
  2422     return InitialMark;
  2423   } else if (is_during_mark) {
  2424     return DuringMark;
  2425   } else if (is_young) {
  2426     return Normal;
  2427   } else {
  2428     return Mixed;
  2432 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2433   assert_heap_not_locked();
  2435   unsigned int gc_count_before;
  2436   unsigned int old_marking_count_before;
  2437   bool retry_gc;
  2439   do {
  2440     retry_gc = false;
  2443       MutexLocker ml(Heap_lock);
  2445       // Read the GC count while holding the Heap_lock
  2446       gc_count_before = total_collections();
  2447       old_marking_count_before = _old_marking_cycles_started;
  2450     if (should_do_concurrent_full_gc(cause)) {
  2451       // Schedule an initial-mark evacuation pause that will start a
  2452       // concurrent cycle. We're setting word_size to 0 which means that
  2453       // we are not requesting a post-GC allocation.
  2454       VM_G1IncCollectionPause op(gc_count_before,
  2455                                  0,     /* word_size */
  2456                                  true,  /* should_initiate_conc_mark */
  2457                                  g1_policy()->max_pause_time_ms(),
  2458                                  cause);
  2460       VMThread::execute(&op);
  2461       if (!op.pause_succeeded()) {
  2462         if (old_marking_count_before == _old_marking_cycles_started) {
  2463           retry_gc = op.should_retry_gc();
  2464         } else {
  2465           // A Full GC happened while we were trying to schedule the
  2466           // initial-mark GC. No point in starting a new cycle given
  2467           // that the whole heap was collected anyway.
  2470         if (retry_gc) {
  2471           if (GC_locker::is_active_and_needs_gc()) {
  2472             GC_locker::stall_until_clear();
  2476     } else {
  2477       if (cause == GCCause::_gc_locker
  2478           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2480         // Schedule a standard evacuation pause. We're setting word_size
  2481         // to 0 which means that we are not requesting a post-GC allocation.
  2482         VM_G1IncCollectionPause op(gc_count_before,
  2483                                    0,     /* word_size */
  2484                                    false, /* should_initiate_conc_mark */
  2485                                    g1_policy()->max_pause_time_ms(),
  2486                                    cause);
  2487         VMThread::execute(&op);
  2488       } else {
  2489         // Schedule a Full GC.
  2490         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2491         VMThread::execute(&op);
  2494   } while (retry_gc);
  2497 bool G1CollectedHeap::is_in(const void* p) const {
  2498   if (_hrs.committed().contains(p)) {
  2499     // Given that we know that p is in the committed space,
  2500     // heap_region_containing_raw() should successfully
  2501     // return the containing region.
  2502     HeapRegion* hr = heap_region_containing_raw(p);
  2503     return hr->is_in(p);
  2504   } else {
  2505     return false;
  2509 // Iteration functions.
  2511 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
  2513 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2514   ExtendedOopClosure* _cl;
  2515 public:
  2516   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
  2517   bool doHeapRegion(HeapRegion* r) {
  2518     if (!r->continuesHumongous()) {
  2519       r->oop_iterate(_cl);
  2521     return false;
  2523 };
  2525 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2526   IterateOopClosureRegionClosure blk(cl);
  2527   heap_region_iterate(&blk);
  2530 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2532 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2533   ObjectClosure* _cl;
  2534 public:
  2535   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2536   bool doHeapRegion(HeapRegion* r) {
  2537     if (! r->continuesHumongous()) {
  2538       r->object_iterate(_cl);
  2540     return false;
  2542 };
  2544 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2545   IterateObjectClosureRegionClosure blk(cl);
  2546   heap_region_iterate(&blk);
  2549 // Calls a SpaceClosure on a HeapRegion.
  2551 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2552   SpaceClosure* _cl;
  2553 public:
  2554   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2555   bool doHeapRegion(HeapRegion* r) {
  2556     _cl->do_space(r);
  2557     return false;
  2559 };
  2561 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2562   SpaceClosureRegionClosure blk(cl);
  2563   heap_region_iterate(&blk);
  2566 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2567   _hrs.iterate(cl);
  2570 void
  2571 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2572                                                  uint worker_id,
  2573                                                  uint num_workers,
  2574                                                  jint claim_value) const {
  2575   _hrs.par_iterate(cl, worker_id, num_workers, claim_value);
  2578 class ResetClaimValuesClosure: public HeapRegionClosure {
  2579 public:
  2580   bool doHeapRegion(HeapRegion* r) {
  2581     r->set_claim_value(HeapRegion::InitialClaimValue);
  2582     return false;
  2584 };
  2586 void G1CollectedHeap::reset_heap_region_claim_values() {
  2587   ResetClaimValuesClosure blk;
  2588   heap_region_iterate(&blk);
  2591 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2592   ResetClaimValuesClosure blk;
  2593   collection_set_iterate(&blk);
  2596 #ifdef ASSERT
  2597 // This checks whether all regions in the heap have the correct claim
  2598 // value. I also piggy-backed on this a check to ensure that the
  2599 // humongous_start_region() information on "continues humongous"
  2600 // regions is correct.
  2602 class CheckClaimValuesClosure : public HeapRegionClosure {
  2603 private:
  2604   jint _claim_value;
  2605   uint _failures;
  2606   HeapRegion* _sh_region;
  2608 public:
  2609   CheckClaimValuesClosure(jint claim_value) :
  2610     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2611   bool doHeapRegion(HeapRegion* r) {
  2612     if (r->claim_value() != _claim_value) {
  2613       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2614                              "claim value = %d, should be %d",
  2615                              HR_FORMAT_PARAMS(r),
  2616                              r->claim_value(), _claim_value);
  2617       ++_failures;
  2619     if (!r->isHumongous()) {
  2620       _sh_region = NULL;
  2621     } else if (r->startsHumongous()) {
  2622       _sh_region = r;
  2623     } else if (r->continuesHumongous()) {
  2624       if (r->humongous_start_region() != _sh_region) {
  2625         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2626                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2627                                HR_FORMAT_PARAMS(r),
  2628                                r->humongous_start_region(),
  2629                                _sh_region);
  2630         ++_failures;
  2633     return false;
  2635   uint failures() { return _failures; }
  2636 };
  2638 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2639   CheckClaimValuesClosure cl(claim_value);
  2640   heap_region_iterate(&cl);
  2641   return cl.failures() == 0;
  2644 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2645 private:
  2646   jint _claim_value;
  2647   uint _failures;
  2649 public:
  2650   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2651     _claim_value(claim_value), _failures(0) { }
  2653   uint failures() { return _failures; }
  2655   bool doHeapRegion(HeapRegion* hr) {
  2656     assert(hr->in_collection_set(), "how?");
  2657     assert(!hr->isHumongous(), "H-region in CSet");
  2658     if (hr->claim_value() != _claim_value) {
  2659       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2660                              "claim value = %d, should be %d",
  2661                              HR_FORMAT_PARAMS(hr),
  2662                              hr->claim_value(), _claim_value);
  2663       _failures += 1;
  2665     return false;
  2667 };
  2669 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2670   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2671   collection_set_iterate(&cl);
  2672   return cl.failures() == 0;
  2674 #endif // ASSERT
  2676 // Clear the cached CSet starting regions and (more importantly)
  2677 // the time stamps. Called when we reset the GC time stamp.
  2678 void G1CollectedHeap::clear_cset_start_regions() {
  2679   assert(_worker_cset_start_region != NULL, "sanity");
  2680   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2682   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2683   for (int i = 0; i < n_queues; i++) {
  2684     _worker_cset_start_region[i] = NULL;
  2685     _worker_cset_start_region_time_stamp[i] = 0;
  2689 // Given the id of a worker, obtain or calculate a suitable
  2690 // starting region for iterating over the current collection set.
  2691 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2692   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2694   HeapRegion* result = NULL;
  2695   unsigned gc_time_stamp = get_gc_time_stamp();
  2697   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2698     // Cached starting region for current worker was set
  2699     // during the current pause - so it's valid.
  2700     // Note: the cached starting heap region may be NULL
  2701     // (when the collection set is empty).
  2702     result = _worker_cset_start_region[worker_i];
  2703     assert(result == NULL || result->in_collection_set(), "sanity");
  2704     return result;
  2707   // The cached entry was not valid so let's calculate
  2708   // a suitable starting heap region for this worker.
  2710   // We want the parallel threads to start their collection
  2711   // set iteration at different collection set regions to
  2712   // avoid contention.
  2713   // If we have:
  2714   //          n collection set regions
  2715   //          p threads
  2716   // Then thread t will start at region floor ((t * n) / p)
  2718   result = g1_policy()->collection_set();
  2719   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2720     uint cs_size = g1_policy()->cset_region_length();
  2721     uint active_workers = workers()->active_workers();
  2722     assert(UseDynamicNumberOfGCThreads ||
  2723              active_workers == workers()->total_workers(),
  2724              "Unless dynamic should use total workers");
  2726     uint end_ind   = (cs_size * worker_i) / active_workers;
  2727     uint start_ind = 0;
  2729     if (worker_i > 0 &&
  2730         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2731       // Previous workers starting region is valid
  2732       // so let's iterate from there
  2733       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2734       result = _worker_cset_start_region[worker_i - 1];
  2737     for (uint i = start_ind; i < end_ind; i++) {
  2738       result = result->next_in_collection_set();
  2742   // Note: the calculated starting heap region may be NULL
  2743   // (when the collection set is empty).
  2744   assert(result == NULL || result->in_collection_set(), "sanity");
  2745   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2746          "should be updated only once per pause");
  2747   _worker_cset_start_region[worker_i] = result;
  2748   OrderAccess::storestore();
  2749   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2750   return result;
  2753 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2754   HeapRegion* r = g1_policy()->collection_set();
  2755   while (r != NULL) {
  2756     HeapRegion* next = r->next_in_collection_set();
  2757     if (cl->doHeapRegion(r)) {
  2758       cl->incomplete();
  2759       return;
  2761     r = next;
  2765 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2766                                                   HeapRegionClosure *cl) {
  2767   if (r == NULL) {
  2768     // The CSet is empty so there's nothing to do.
  2769     return;
  2772   assert(r->in_collection_set(),
  2773          "Start region must be a member of the collection set.");
  2774   HeapRegion* cur = r;
  2775   while (cur != NULL) {
  2776     HeapRegion* next = cur->next_in_collection_set();
  2777     if (cl->doHeapRegion(cur) && false) {
  2778       cl->incomplete();
  2779       return;
  2781     cur = next;
  2783   cur = g1_policy()->collection_set();
  2784   while (cur != r) {
  2785     HeapRegion* next = cur->next_in_collection_set();
  2786     if (cl->doHeapRegion(cur) && false) {
  2787       cl->incomplete();
  2788       return;
  2790     cur = next;
  2794 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
  2795   HeapRegion* result = _hrs.next_region_in_heap(from);
  2796   while (result != NULL && result->isHumongous()) {
  2797     result = _hrs.next_region_in_heap(result);
  2799   return result;
  2802 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2803   return heap_region_containing(addr);
  2806 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2807   Space* sp = space_containing(addr);
  2808   return sp->block_start(addr);
  2811 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2812   Space* sp = space_containing(addr);
  2813   return sp->block_size(addr);
  2816 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2817   Space* sp = space_containing(addr);
  2818   return sp->block_is_obj(addr);
  2821 bool G1CollectedHeap::supports_tlab_allocation() const {
  2822   return true;
  2825 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2826   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2829 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2830   return young_list()->eden_used_bytes();
  2833 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  2834 // must be smaller than the humongous object limit.
  2835 size_t G1CollectedHeap::max_tlab_size() const {
  2836   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  2839 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2840   // Return the remaining space in the cur alloc region, but not less than
  2841   // the min TLAB size.
  2843   // Also, this value can be at most the humongous object threshold,
  2844   // since we can't allow tlabs to grow big enough to accommodate
  2845   // humongous objects.
  2847   HeapRegion* hr = _mutator_alloc_region.get();
  2848   size_t max_tlab = max_tlab_size() * wordSize;
  2849   if (hr == NULL) {
  2850     return max_tlab;
  2851   } else {
  2852     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  2856 size_t G1CollectedHeap::max_capacity() const {
  2857   return _hrs.reserved().byte_size();
  2860 jlong G1CollectedHeap::millis_since_last_gc() {
  2861   // assert(false, "NYI");
  2862   return 0;
  2865 void G1CollectedHeap::prepare_for_verify() {
  2866   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2867     ensure_parsability(false);
  2869   g1_rem_set()->prepare_for_verify();
  2872 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  2873                                               VerifyOption vo) {
  2874   switch (vo) {
  2875   case VerifyOption_G1UsePrevMarking:
  2876     return hr->obj_allocated_since_prev_marking(obj);
  2877   case VerifyOption_G1UseNextMarking:
  2878     return hr->obj_allocated_since_next_marking(obj);
  2879   case VerifyOption_G1UseMarkWord:
  2880     return false;
  2881   default:
  2882     ShouldNotReachHere();
  2884   return false; // keep some compilers happy
  2887 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  2888   switch (vo) {
  2889   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  2890   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  2891   case VerifyOption_G1UseMarkWord:    return NULL;
  2892   default:                            ShouldNotReachHere();
  2894   return NULL; // keep some compilers happy
  2897 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  2898   switch (vo) {
  2899   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  2900   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  2901   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  2902   default:                            ShouldNotReachHere();
  2904   return false; // keep some compilers happy
  2907 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  2908   switch (vo) {
  2909   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  2910   case VerifyOption_G1UseNextMarking: return "NTAMS";
  2911   case VerifyOption_G1UseMarkWord:    return "NONE";
  2912   default:                            ShouldNotReachHere();
  2914   return NULL; // keep some compilers happy
  2917 class VerifyRootsClosure: public OopClosure {
  2918 private:
  2919   G1CollectedHeap* _g1h;
  2920   VerifyOption     _vo;
  2921   bool             _failures;
  2922 public:
  2923   // _vo == UsePrevMarking -> use "prev" marking information,
  2924   // _vo == UseNextMarking -> use "next" marking information,
  2925   // _vo == UseMarkWord    -> use mark word from object header.
  2926   VerifyRootsClosure(VerifyOption vo) :
  2927     _g1h(G1CollectedHeap::heap()),
  2928     _vo(vo),
  2929     _failures(false) { }
  2931   bool failures() { return _failures; }
  2933   template <class T> void do_oop_nv(T* p) {
  2934     T heap_oop = oopDesc::load_heap_oop(p);
  2935     if (!oopDesc::is_null(heap_oop)) {
  2936       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2937       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  2938         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2939                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2940         if (_vo == VerifyOption_G1UseMarkWord) {
  2941           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  2943         obj->print_on(gclog_or_tty);
  2944         _failures = true;
  2949   void do_oop(oop* p)       { do_oop_nv(p); }
  2950   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2951 };
  2953 class G1VerifyCodeRootOopClosure: public OopClosure {
  2954   G1CollectedHeap* _g1h;
  2955   OopClosure* _root_cl;
  2956   nmethod* _nm;
  2957   VerifyOption _vo;
  2958   bool _failures;
  2960   template <class T> void do_oop_work(T* p) {
  2961     // First verify that this root is live
  2962     _root_cl->do_oop(p);
  2964     if (!G1VerifyHeapRegionCodeRoots) {
  2965       // We're not verifying the code roots attached to heap region.
  2966       return;
  2969     // Don't check the code roots during marking verification in a full GC
  2970     if (_vo == VerifyOption_G1UseMarkWord) {
  2971       return;
  2974     // Now verify that the current nmethod (which contains p) is
  2975     // in the code root list of the heap region containing the
  2976     // object referenced by p.
  2978     T heap_oop = oopDesc::load_heap_oop(p);
  2979     if (!oopDesc::is_null(heap_oop)) {
  2980       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2982       // Now fetch the region containing the object
  2983       HeapRegion* hr = _g1h->heap_region_containing(obj);
  2984       HeapRegionRemSet* hrrs = hr->rem_set();
  2985       // Verify that the strong code root list for this region
  2986       // contains the nmethod
  2987       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  2988         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  2989                               "from nmethod "PTR_FORMAT" not in strong "
  2990                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  2991                               p, _nm, hr->bottom(), hr->end());
  2992         _failures = true;
  2997 public:
  2998   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  2999     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3001   void do_oop(oop* p) { do_oop_work(p); }
  3002   void do_oop(narrowOop* p) { do_oop_work(p); }
  3004   void set_nmethod(nmethod* nm) { _nm = nm; }
  3005   bool failures() { return _failures; }
  3006 };
  3008 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3009   G1VerifyCodeRootOopClosure* _oop_cl;
  3011 public:
  3012   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3013     _oop_cl(oop_cl) {}
  3015   void do_code_blob(CodeBlob* cb) {
  3016     nmethod* nm = cb->as_nmethod_or_null();
  3017     if (nm != NULL) {
  3018       _oop_cl->set_nmethod(nm);
  3019       nm->oops_do(_oop_cl);
  3022 };
  3024 class YoungRefCounterClosure : public OopClosure {
  3025   G1CollectedHeap* _g1h;
  3026   int              _count;
  3027  public:
  3028   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3029   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3030   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3032   int count() { return _count; }
  3033   void reset_count() { _count = 0; };
  3034 };
  3036 class VerifyKlassClosure: public KlassClosure {
  3037   YoungRefCounterClosure _young_ref_counter_closure;
  3038   OopClosure *_oop_closure;
  3039  public:
  3040   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3041   void do_klass(Klass* k) {
  3042     k->oops_do(_oop_closure);
  3044     _young_ref_counter_closure.reset_count();
  3045     k->oops_do(&_young_ref_counter_closure);
  3046     if (_young_ref_counter_closure.count() > 0) {
  3047       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3050 };
  3052 class VerifyLivenessOopClosure: public OopClosure {
  3053   G1CollectedHeap* _g1h;
  3054   VerifyOption _vo;
  3055 public:
  3056   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3057     _g1h(g1h), _vo(vo)
  3058   { }
  3059   void do_oop(narrowOop *p) { do_oop_work(p); }
  3060   void do_oop(      oop *p) { do_oop_work(p); }
  3062   template <class T> void do_oop_work(T *p) {
  3063     oop obj = oopDesc::load_decode_heap_oop(p);
  3064     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3065               "Dead object referenced by a not dead object");
  3067 };
  3069 class VerifyObjsInRegionClosure: public ObjectClosure {
  3070 private:
  3071   G1CollectedHeap* _g1h;
  3072   size_t _live_bytes;
  3073   HeapRegion *_hr;
  3074   VerifyOption _vo;
  3075 public:
  3076   // _vo == UsePrevMarking -> use "prev" marking information,
  3077   // _vo == UseNextMarking -> use "next" marking information,
  3078   // _vo == UseMarkWord    -> use mark word from object header.
  3079   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3080     : _live_bytes(0), _hr(hr), _vo(vo) {
  3081     _g1h = G1CollectedHeap::heap();
  3083   void do_object(oop o) {
  3084     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3085     assert(o != NULL, "Huh?");
  3086     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3087       // If the object is alive according to the mark word,
  3088       // then verify that the marking information agrees.
  3089       // Note we can't verify the contra-positive of the
  3090       // above: if the object is dead (according to the mark
  3091       // word), it may not be marked, or may have been marked
  3092       // but has since became dead, or may have been allocated
  3093       // since the last marking.
  3094       if (_vo == VerifyOption_G1UseMarkWord) {
  3095         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3098       o->oop_iterate_no_header(&isLive);
  3099       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3100         size_t obj_size = o->size();    // Make sure we don't overflow
  3101         _live_bytes += (obj_size * HeapWordSize);
  3105   size_t live_bytes() { return _live_bytes; }
  3106 };
  3108 class PrintObjsInRegionClosure : public ObjectClosure {
  3109   HeapRegion *_hr;
  3110   G1CollectedHeap *_g1;
  3111 public:
  3112   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3113     _g1 = G1CollectedHeap::heap();
  3114   };
  3116   void do_object(oop o) {
  3117     if (o != NULL) {
  3118       HeapWord *start = (HeapWord *) o;
  3119       size_t word_sz = o->size();
  3120       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3121                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3122                           (void*) o, word_sz,
  3123                           _g1->isMarkedPrev(o),
  3124                           _g1->isMarkedNext(o),
  3125                           _hr->obj_allocated_since_prev_marking(o));
  3126       HeapWord *end = start + word_sz;
  3127       HeapWord *cur;
  3128       int *val;
  3129       for (cur = start; cur < end; cur++) {
  3130         val = (int *) cur;
  3131         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3135 };
  3137 class VerifyRegionClosure: public HeapRegionClosure {
  3138 private:
  3139   bool             _par;
  3140   VerifyOption     _vo;
  3141   bool             _failures;
  3142 public:
  3143   // _vo == UsePrevMarking -> use "prev" marking information,
  3144   // _vo == UseNextMarking -> use "next" marking information,
  3145   // _vo == UseMarkWord    -> use mark word from object header.
  3146   VerifyRegionClosure(bool par, VerifyOption vo)
  3147     : _par(par),
  3148       _vo(vo),
  3149       _failures(false) {}
  3151   bool failures() {
  3152     return _failures;
  3155   bool doHeapRegion(HeapRegion* r) {
  3156     if (!r->continuesHumongous()) {
  3157       bool failures = false;
  3158       r->verify(_vo, &failures);
  3159       if (failures) {
  3160         _failures = true;
  3161       } else {
  3162         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3163         r->object_iterate(&not_dead_yet_cl);
  3164         if (_vo != VerifyOption_G1UseNextMarking) {
  3165           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3166             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3167                                    "max_live_bytes "SIZE_FORMAT" "
  3168                                    "< calculated "SIZE_FORMAT,
  3169                                    r->bottom(), r->end(),
  3170                                    r->max_live_bytes(),
  3171                                  not_dead_yet_cl.live_bytes());
  3172             _failures = true;
  3174         } else {
  3175           // When vo == UseNextMarking we cannot currently do a sanity
  3176           // check on the live bytes as the calculation has not been
  3177           // finalized yet.
  3181     return false; // stop the region iteration if we hit a failure
  3183 };
  3185 // This is the task used for parallel verification of the heap regions
  3187 class G1ParVerifyTask: public AbstractGangTask {
  3188 private:
  3189   G1CollectedHeap* _g1h;
  3190   VerifyOption     _vo;
  3191   bool             _failures;
  3193 public:
  3194   // _vo == UsePrevMarking -> use "prev" marking information,
  3195   // _vo == UseNextMarking -> use "next" marking information,
  3196   // _vo == UseMarkWord    -> use mark word from object header.
  3197   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3198     AbstractGangTask("Parallel verify task"),
  3199     _g1h(g1h),
  3200     _vo(vo),
  3201     _failures(false) { }
  3203   bool failures() {
  3204     return _failures;
  3207   void work(uint worker_id) {
  3208     HandleMark hm;
  3209     VerifyRegionClosure blk(true, _vo);
  3210     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3211                                           _g1h->workers()->active_workers(),
  3212                                           HeapRegion::ParVerifyClaimValue);
  3213     if (blk.failures()) {
  3214       _failures = true;
  3217 };
  3219 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3220   if (SafepointSynchronize::is_at_safepoint()) {
  3221     assert(Thread::current()->is_VM_thread(),
  3222            "Expected to be executed serially by the VM thread at this point");
  3224     if (!silent) { gclog_or_tty->print("Roots "); }
  3225     VerifyRootsClosure rootsCl(vo);
  3226     VerifyKlassClosure klassCl(this, &rootsCl);
  3227     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
  3229     // We apply the relevant closures to all the oops in the
  3230     // system dictionary, class loader data graph, the string table
  3231     // and the nmethods in the code cache.
  3232     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3233     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3235     process_all_roots(true,            // activate StrongRootsScope
  3236                       SO_AllCodeCache, // roots scanning options
  3237                       &rootsCl,
  3238                       &cldCl,
  3239                       &blobsCl);
  3241     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3243     if (vo != VerifyOption_G1UseMarkWord) {
  3244       // If we're verifying during a full GC then the region sets
  3245       // will have been torn down at the start of the GC. Therefore
  3246       // verifying the region sets will fail. So we only verify
  3247       // the region sets when not in a full GC.
  3248       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3249       verify_region_sets();
  3252     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3253     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3254       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3255              "sanity check");
  3257       G1ParVerifyTask task(this, vo);
  3258       assert(UseDynamicNumberOfGCThreads ||
  3259         workers()->active_workers() == workers()->total_workers(),
  3260         "If not dynamic should be using all the workers");
  3261       int n_workers = workers()->active_workers();
  3262       set_par_threads(n_workers);
  3263       workers()->run_task(&task);
  3264       set_par_threads(0);
  3265       if (task.failures()) {
  3266         failures = true;
  3269       // Checks that the expected amount of parallel work was done.
  3270       // The implication is that n_workers is > 0.
  3271       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3272              "sanity check");
  3274       reset_heap_region_claim_values();
  3276       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3277              "sanity check");
  3278     } else {
  3279       VerifyRegionClosure blk(false, vo);
  3280       heap_region_iterate(&blk);
  3281       if (blk.failures()) {
  3282         failures = true;
  3285     if (!silent) gclog_or_tty->print("RemSet ");
  3286     rem_set()->verify();
  3288     if (G1StringDedup::is_enabled()) {
  3289       if (!silent) gclog_or_tty->print("StrDedup ");
  3290       G1StringDedup::verify();
  3293     if (failures) {
  3294       gclog_or_tty->print_cr("Heap:");
  3295       // It helps to have the per-region information in the output to
  3296       // help us track down what went wrong. This is why we call
  3297       // print_extended_on() instead of print_on().
  3298       print_extended_on(gclog_or_tty);
  3299       gclog_or_tty->cr();
  3300 #ifndef PRODUCT
  3301       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3302         concurrent_mark()->print_reachable("at-verification-failure",
  3303                                            vo, false /* all */);
  3305 #endif
  3306       gclog_or_tty->flush();
  3308     guarantee(!failures, "there should not have been any failures");
  3309   } else {
  3310     if (!silent) {
  3311       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3312       if (G1StringDedup::is_enabled()) {
  3313         gclog_or_tty->print(", StrDedup");
  3315       gclog_or_tty->print(") ");
  3320 void G1CollectedHeap::verify(bool silent) {
  3321   verify(silent, VerifyOption_G1UsePrevMarking);
  3324 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3325   double verify_time_ms = 0.0;
  3327   if (guard && total_collections() >= VerifyGCStartAt) {
  3328     double verify_start = os::elapsedTime();
  3329     HandleMark hm;  // Discard invalid handles created during verification
  3330     prepare_for_verify();
  3331     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3332     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3335   return verify_time_ms;
  3338 void G1CollectedHeap::verify_before_gc() {
  3339   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3340   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3343 void G1CollectedHeap::verify_after_gc() {
  3344   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3345   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3348 class PrintRegionClosure: public HeapRegionClosure {
  3349   outputStream* _st;
  3350 public:
  3351   PrintRegionClosure(outputStream* st) : _st(st) {}
  3352   bool doHeapRegion(HeapRegion* r) {
  3353     r->print_on(_st);
  3354     return false;
  3356 };
  3358 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3359                                        const HeapRegion* hr,
  3360                                        const VerifyOption vo) const {
  3361   switch (vo) {
  3362   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3363   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3364   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3365   default:                            ShouldNotReachHere();
  3367   return false; // keep some compilers happy
  3370 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3371                                        const VerifyOption vo) const {
  3372   switch (vo) {
  3373   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3374   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3375   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3376   default:                            ShouldNotReachHere();
  3378   return false; // keep some compilers happy
  3381 void G1CollectedHeap::print_on(outputStream* st) const {
  3382   st->print(" %-20s", "garbage-first heap");
  3383   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3384             capacity()/K, used_unlocked()/K);
  3385   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3386             _hrs.committed().start(),
  3387             _hrs.committed().end(),
  3388             _hrs.reserved().end());
  3389   st->cr();
  3390   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3391   uint young_regions = _young_list->length();
  3392   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3393             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3394   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3395   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3396             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3397   st->cr();
  3398   MetaspaceAux::print_on(st);
  3401 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3402   print_on(st);
  3404   // Print the per-region information.
  3405   st->cr();
  3406   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3407                "HS=humongous(starts), HC=humongous(continues), "
  3408                "CS=collection set, F=free, TS=gc time stamp, "
  3409                "PTAMS=previous top-at-mark-start, "
  3410                "NTAMS=next top-at-mark-start)");
  3411   PrintRegionClosure blk(st);
  3412   heap_region_iterate(&blk);
  3415 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3416   this->CollectedHeap::print_on_error(st);
  3418   if (_cm != NULL) {
  3419     st->cr();
  3420     _cm->print_on_error(st);
  3424 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3425   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3426     workers()->print_worker_threads_on(st);
  3428   _cmThread->print_on(st);
  3429   st->cr();
  3430   _cm->print_worker_threads_on(st);
  3431   _cg1r->print_worker_threads_on(st);
  3432   if (G1StringDedup::is_enabled()) {
  3433     G1StringDedup::print_worker_threads_on(st);
  3437 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3438   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3439     workers()->threads_do(tc);
  3441   tc->do_thread(_cmThread);
  3442   _cg1r->threads_do(tc);
  3443   if (G1StringDedup::is_enabled()) {
  3444     G1StringDedup::threads_do(tc);
  3448 void G1CollectedHeap::print_tracing_info() const {
  3449   // We'll overload this to mean "trace GC pause statistics."
  3450   if (TraceGen0Time || TraceGen1Time) {
  3451     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3452     // to that.
  3453     g1_policy()->print_tracing_info();
  3455   if (G1SummarizeRSetStats) {
  3456     g1_rem_set()->print_summary_info();
  3458   if (G1SummarizeConcMark) {
  3459     concurrent_mark()->print_summary_info();
  3461   g1_policy()->print_yg_surv_rate_info();
  3462   SpecializationStats::print();
  3465 #ifndef PRODUCT
  3466 // Helpful for debugging RSet issues.
  3468 class PrintRSetsClosure : public HeapRegionClosure {
  3469 private:
  3470   const char* _msg;
  3471   size_t _occupied_sum;
  3473 public:
  3474   bool doHeapRegion(HeapRegion* r) {
  3475     HeapRegionRemSet* hrrs = r->rem_set();
  3476     size_t occupied = hrrs->occupied();
  3477     _occupied_sum += occupied;
  3479     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3480                            HR_FORMAT_PARAMS(r));
  3481     if (occupied == 0) {
  3482       gclog_or_tty->print_cr("  RSet is empty");
  3483     } else {
  3484       hrrs->print();
  3486     gclog_or_tty->print_cr("----------");
  3487     return false;
  3490   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3491     gclog_or_tty->cr();
  3492     gclog_or_tty->print_cr("========================================");
  3493     gclog_or_tty->print_cr("%s", msg);
  3494     gclog_or_tty->cr();
  3497   ~PrintRSetsClosure() {
  3498     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3499     gclog_or_tty->print_cr("========================================");
  3500     gclog_or_tty->cr();
  3502 };
  3504 void G1CollectedHeap::print_cset_rsets() {
  3505   PrintRSetsClosure cl("Printing CSet RSets");
  3506   collection_set_iterate(&cl);
  3509 void G1CollectedHeap::print_all_rsets() {
  3510   PrintRSetsClosure cl("Printing All RSets");;
  3511   heap_region_iterate(&cl);
  3513 #endif // PRODUCT
  3515 G1CollectedHeap* G1CollectedHeap::heap() {
  3516   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3517          "not a garbage-first heap");
  3518   return _g1h;
  3521 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3522   // always_do_update_barrier = false;
  3523   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3524   // Fill TLAB's and such
  3525   accumulate_statistics_all_tlabs();
  3526   ensure_parsability(true);
  3528   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3529       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3530     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3534 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3536   if (G1SummarizeRSetStats &&
  3537       (G1SummarizeRSetStatsPeriod > 0) &&
  3538       // we are at the end of the GC. Total collections has already been increased.
  3539       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3540     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3543   // FIXME: what is this about?
  3544   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3545   // is set.
  3546   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3547                         "derived pointer present"));
  3548   // always_do_update_barrier = true;
  3550   resize_all_tlabs();
  3552   // We have just completed a GC. Update the soft reference
  3553   // policy with the new heap occupancy
  3554   Universe::update_heap_info_at_gc();
  3557 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3558                                                unsigned int gc_count_before,
  3559                                                bool* succeeded,
  3560                                                GCCause::Cause gc_cause) {
  3561   assert_heap_not_locked_and_not_at_safepoint();
  3562   g1_policy()->record_stop_world_start();
  3563   VM_G1IncCollectionPause op(gc_count_before,
  3564                              word_size,
  3565                              false, /* should_initiate_conc_mark */
  3566                              g1_policy()->max_pause_time_ms(),
  3567                              gc_cause);
  3568   VMThread::execute(&op);
  3570   HeapWord* result = op.result();
  3571   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3572   assert(result == NULL || ret_succeeded,
  3573          "the result should be NULL if the VM did not succeed");
  3574   *succeeded = ret_succeeded;
  3576   assert_heap_not_locked();
  3577   return result;
  3580 void
  3581 G1CollectedHeap::doConcurrentMark() {
  3582   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3583   if (!_cmThread->in_progress()) {
  3584     _cmThread->set_started();
  3585     CGC_lock->notify();
  3589 size_t G1CollectedHeap::pending_card_num() {
  3590   size_t extra_cards = 0;
  3591   JavaThread *curr = Threads::first();
  3592   while (curr != NULL) {
  3593     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3594     extra_cards += dcq.size();
  3595     curr = curr->next();
  3597   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3598   size_t buffer_size = dcqs.buffer_size();
  3599   size_t buffer_num = dcqs.completed_buffers_num();
  3601   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3602   // in bytes - not the number of 'entries'. We need to convert
  3603   // into a number of cards.
  3604   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3607 size_t G1CollectedHeap::cards_scanned() {
  3608   return g1_rem_set()->cardsScanned();
  3611 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
  3612   HeapRegion* region = region_at(index);
  3613   assert(region->startsHumongous(), "Must start a humongous object");
  3614   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
  3617 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
  3618  private:
  3619   size_t _total_humongous;
  3620   size_t _candidate_humongous;
  3621  public:
  3622   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
  3625   virtual bool doHeapRegion(HeapRegion* r) {
  3626     if (!r->startsHumongous()) {
  3627       return false;
  3629     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  3631     uint region_idx = r->hrs_index();
  3632     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
  3633     // Is_candidate already filters out humongous regions with some remembered set.
  3634     // This will not lead to humongous object that we mistakenly keep alive because
  3635     // during young collection the remembered sets will only be added to.
  3636     if (is_candidate) {
  3637       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
  3638       _candidate_humongous++;
  3640     _total_humongous++;
  3642     return false;
  3645   size_t total_humongous() const { return _total_humongous; }
  3646   size_t candidate_humongous() const { return _candidate_humongous; }
  3647 };
  3649 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
  3650   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
  3651     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
  3652     return;
  3655   RegisterHumongousWithInCSetFastTestClosure cl;
  3656   heap_region_iterate(&cl);
  3657   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
  3658                                                                   cl.candidate_humongous());
  3659   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
  3661   if (_has_humongous_reclaim_candidates) {
  3662     clear_humongous_is_live_table();
  3666 void
  3667 G1CollectedHeap::setup_surviving_young_words() {
  3668   assert(_surviving_young_words == NULL, "pre-condition");
  3669   uint array_length = g1_policy()->young_cset_region_length();
  3670   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3671   if (_surviving_young_words == NULL) {
  3672     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3673                           "Not enough space for young surv words summary.");
  3675   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3676 #ifdef ASSERT
  3677   for (uint i = 0;  i < array_length; ++i) {
  3678     assert( _surviving_young_words[i] == 0, "memset above" );
  3680 #endif // !ASSERT
  3683 void
  3684 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3685   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3686   uint array_length = g1_policy()->young_cset_region_length();
  3687   for (uint i = 0; i < array_length; ++i) {
  3688     _surviving_young_words[i] += surv_young_words[i];
  3692 void
  3693 G1CollectedHeap::cleanup_surviving_young_words() {
  3694   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3695   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3696   _surviving_young_words = NULL;
  3699 #ifdef ASSERT
  3700 class VerifyCSetClosure: public HeapRegionClosure {
  3701 public:
  3702   bool doHeapRegion(HeapRegion* hr) {
  3703     // Here we check that the CSet region's RSet is ready for parallel
  3704     // iteration. The fields that we'll verify are only manipulated
  3705     // when the region is part of a CSet and is collected. Afterwards,
  3706     // we reset these fields when we clear the region's RSet (when the
  3707     // region is freed) so they are ready when the region is
  3708     // re-allocated. The only exception to this is if there's an
  3709     // evacuation failure and instead of freeing the region we leave
  3710     // it in the heap. In that case, we reset these fields during
  3711     // evacuation failure handling.
  3712     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3714     // Here's a good place to add any other checks we'd like to
  3715     // perform on CSet regions.
  3716     return false;
  3718 };
  3719 #endif // ASSERT
  3721 #if TASKQUEUE_STATS
  3722 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3723   st->print_raw_cr("GC Task Stats");
  3724   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3725   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3728 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3729   print_taskqueue_stats_hdr(st);
  3731   TaskQueueStats totals;
  3732   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3733   for (int i = 0; i < n; ++i) {
  3734     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3735     totals += task_queue(i)->stats;
  3737   st->print_raw("tot "); totals.print(st); st->cr();
  3739   DEBUG_ONLY(totals.verify());
  3742 void G1CollectedHeap::reset_taskqueue_stats() {
  3743   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3744   for (int i = 0; i < n; ++i) {
  3745     task_queue(i)->stats.reset();
  3748 #endif // TASKQUEUE_STATS
  3750 void G1CollectedHeap::log_gc_header() {
  3751   if (!G1Log::fine()) {
  3752     return;
  3755   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3757   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3758     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3759     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3761   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3764 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3765   if (!G1Log::fine()) {
  3766     return;
  3769   if (G1Log::finer()) {
  3770     if (evacuation_failed()) {
  3771       gclog_or_tty->print(" (to-space exhausted)");
  3773     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3774     g1_policy()->phase_times()->note_gc_end();
  3775     g1_policy()->phase_times()->print(pause_time_sec);
  3776     g1_policy()->print_detailed_heap_transition();
  3777   } else {
  3778     if (evacuation_failed()) {
  3779       gclog_or_tty->print("--");
  3781     g1_policy()->print_heap_transition();
  3782     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3784   gclog_or_tty->flush();
  3787 bool
  3788 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3789   assert_at_safepoint(true /* should_be_vm_thread */);
  3790   guarantee(!is_gc_active(), "collection is not reentrant");
  3792   if (GC_locker::check_active_before_gc()) {
  3793     return false;
  3796   _gc_timer_stw->register_gc_start();
  3798   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3800   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3801   ResourceMark rm;
  3803   print_heap_before_gc();
  3804   trace_heap_before_gc(_gc_tracer_stw);
  3806   verify_region_sets_optional();
  3807   verify_dirty_young_regions();
  3809   // This call will decide whether this pause is an initial-mark
  3810   // pause. If it is, during_initial_mark_pause() will return true
  3811   // for the duration of this pause.
  3812   g1_policy()->decide_on_conc_mark_initiation();
  3814   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3815   assert(!g1_policy()->during_initial_mark_pause() ||
  3816           g1_policy()->gcs_are_young(), "sanity");
  3818   // We also do not allow mixed GCs during marking.
  3819   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3821   // Record whether this pause is an initial mark. When the current
  3822   // thread has completed its logging output and it's safe to signal
  3823   // the CM thread, the flag's value in the policy has been reset.
  3824   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3826   // Inner scope for scope based logging, timers, and stats collection
  3828     EvacuationInfo evacuation_info;
  3830     if (g1_policy()->during_initial_mark_pause()) {
  3831       // We are about to start a marking cycle, so we increment the
  3832       // full collection counter.
  3833       increment_old_marking_cycles_started();
  3834       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3837     _gc_tracer_stw->report_yc_type(yc_type());
  3839     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3841     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3842                                 workers()->active_workers() : 1);
  3843     double pause_start_sec = os::elapsedTime();
  3844     g1_policy()->phase_times()->note_gc_start(active_workers);
  3845     log_gc_header();
  3847     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3848     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3850     // If the secondary_free_list is not empty, append it to the
  3851     // free_list. No need to wait for the cleanup operation to finish;
  3852     // the region allocation code will check the secondary_free_list
  3853     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3854     // set, skip this step so that the region allocation code has to
  3855     // get entries from the secondary_free_list.
  3856     if (!G1StressConcRegionFreeing) {
  3857       append_secondary_free_list_if_not_empty_with_lock();
  3860     assert(check_young_list_well_formed(), "young list should be well formed");
  3861     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3862            "sanity check");
  3864     // Don't dynamically change the number of GC threads this early.  A value of
  3865     // 0 is used to indicate serial work.  When parallel work is done,
  3866     // it will be set.
  3868     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3869       IsGCActiveMark x;
  3871       gc_prologue(false);
  3872       increment_total_collections(false /* full gc */);
  3873       increment_gc_time_stamp();
  3875       verify_before_gc();
  3876       check_bitmaps("GC Start");
  3878       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3880       // Please see comment in g1CollectedHeap.hpp and
  3881       // G1CollectedHeap::ref_processing_init() to see how
  3882       // reference processing currently works in G1.
  3884       // Enable discovery in the STW reference processor
  3885       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3886                                             true /*verify_no_refs*/);
  3889         // We want to temporarily turn off discovery by the
  3890         // CM ref processor, if necessary, and turn it back on
  3891         // on again later if we do. Using a scoped
  3892         // NoRefDiscovery object will do this.
  3893         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3895         // Forget the current alloc region (we might even choose it to be part
  3896         // of the collection set!).
  3897         release_mutator_alloc_region();
  3899         // We should call this after we retire the mutator alloc
  3900         // region(s) so that all the ALLOC / RETIRE events are generated
  3901         // before the start GC event.
  3902         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3904         // This timing is only used by the ergonomics to handle our pause target.
  3905         // It is unclear why this should not include the full pause. We will
  3906         // investigate this in CR 7178365.
  3907         //
  3908         // Preserving the old comment here if that helps the investigation:
  3909         //
  3910         // The elapsed time induced by the start time below deliberately elides
  3911         // the possible verification above.
  3912         double sample_start_time_sec = os::elapsedTime();
  3914 #if YOUNG_LIST_VERBOSE
  3915         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3916         _young_list->print();
  3917         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3918 #endif // YOUNG_LIST_VERBOSE
  3920         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  3922         double scan_wait_start = os::elapsedTime();
  3923         // We have to wait until the CM threads finish scanning the
  3924         // root regions as it's the only way to ensure that all the
  3925         // objects on them have been correctly scanned before we start
  3926         // moving them during the GC.
  3927         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3928         double wait_time_ms = 0.0;
  3929         if (waited) {
  3930           double scan_wait_end = os::elapsedTime();
  3931           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3933         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3935 #if YOUNG_LIST_VERBOSE
  3936         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3937         _young_list->print();
  3938 #endif // YOUNG_LIST_VERBOSE
  3940         if (g1_policy()->during_initial_mark_pause()) {
  3941           concurrent_mark()->checkpointRootsInitialPre();
  3944 #if YOUNG_LIST_VERBOSE
  3945         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3946         _young_list->print();
  3947         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3948 #endif // YOUNG_LIST_VERBOSE
  3950         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  3952         register_humongous_regions_with_in_cset_fast_test();
  3954         _cm->note_start_of_gc();
  3955         // We should not verify the per-thread SATB buffers given that
  3956         // we have not filtered them yet (we'll do so during the
  3957         // GC). We also call this after finalize_cset() to
  3958         // ensure that the CSet has been finalized.
  3959         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3960                                  true  /* verify_enqueued_buffers */,
  3961                                  false /* verify_thread_buffers */,
  3962                                  true  /* verify_fingers */);
  3964         if (_hr_printer.is_active()) {
  3965           HeapRegion* hr = g1_policy()->collection_set();
  3966           while (hr != NULL) {
  3967             G1HRPrinter::RegionType type;
  3968             if (!hr->is_young()) {
  3969               type = G1HRPrinter::Old;
  3970             } else if (hr->is_survivor()) {
  3971               type = G1HRPrinter::Survivor;
  3972             } else {
  3973               type = G1HRPrinter::Eden;
  3975             _hr_printer.cset(hr);
  3976             hr = hr->next_in_collection_set();
  3980 #ifdef ASSERT
  3981         VerifyCSetClosure cl;
  3982         collection_set_iterate(&cl);
  3983 #endif // ASSERT
  3985         setup_surviving_young_words();
  3987         // Initialize the GC alloc regions.
  3988         init_gc_alloc_regions(evacuation_info);
  3990         // Actually do the work...
  3991         evacuate_collection_set(evacuation_info);
  3993         // We do this to mainly verify the per-thread SATB buffers
  3994         // (which have been filtered by now) since we didn't verify
  3995         // them earlier. No point in re-checking the stacks / enqueued
  3996         // buffers given that the CSet has not changed since last time
  3997         // we checked.
  3998         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3999                                  false /* verify_enqueued_buffers */,
  4000                                  true  /* verify_thread_buffers */,
  4001                                  true  /* verify_fingers */);
  4003         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4005         eagerly_reclaim_humongous_regions();
  4007         g1_policy()->clear_collection_set();
  4009         cleanup_surviving_young_words();
  4011         // Start a new incremental collection set for the next pause.
  4012         g1_policy()->start_incremental_cset_building();
  4014         clear_cset_fast_test();
  4016         _young_list->reset_sampled_info();
  4018         // Don't check the whole heap at this point as the
  4019         // GC alloc regions from this pause have been tagged
  4020         // as survivors and moved on to the survivor list.
  4021         // Survivor regions will fail the !is_young() check.
  4022         assert(check_young_list_empty(false /* check_heap */),
  4023           "young list should be empty");
  4025 #if YOUNG_LIST_VERBOSE
  4026         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4027         _young_list->print();
  4028 #endif // YOUNG_LIST_VERBOSE
  4030         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4031                                              _young_list->first_survivor_region(),
  4032                                              _young_list->last_survivor_region());
  4034         _young_list->reset_auxilary_lists();
  4036         if (evacuation_failed()) {
  4037           _summary_bytes_used = recalculate_used();
  4038           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4039           for (uint i = 0; i < n_queues; i++) {
  4040             if (_evacuation_failed_info_array[i].has_failed()) {
  4041               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4044         } else {
  4045           // The "used" of the the collection set have already been subtracted
  4046           // when they were freed.  Add in the bytes evacuated.
  4047           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  4050         if (g1_policy()->during_initial_mark_pause()) {
  4051           // We have to do this before we notify the CM threads that
  4052           // they can start working to make sure that all the
  4053           // appropriate initialization is done on the CM object.
  4054           concurrent_mark()->checkpointRootsInitialPost();
  4055           set_marking_started();
  4056           // Note that we don't actually trigger the CM thread at
  4057           // this point. We do that later when we're sure that
  4058           // the current thread has completed its logging output.
  4061         allocate_dummy_regions();
  4063 #if YOUNG_LIST_VERBOSE
  4064         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4065         _young_list->print();
  4066         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4067 #endif // YOUNG_LIST_VERBOSE
  4069         init_mutator_alloc_region();
  4072           size_t expand_bytes = g1_policy()->expansion_amount();
  4073           if (expand_bytes > 0) {
  4074             size_t bytes_before = capacity();
  4075             // No need for an ergo verbose message here,
  4076             // expansion_amount() does this when it returns a value > 0.
  4077             if (!expand(expand_bytes)) {
  4078               // We failed to expand the heap. Cannot do anything about it.
  4083         // We redo the verification but now wrt to the new CSet which
  4084         // has just got initialized after the previous CSet was freed.
  4085         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4086                                  true  /* verify_enqueued_buffers */,
  4087                                  true  /* verify_thread_buffers */,
  4088                                  true  /* verify_fingers */);
  4089         _cm->note_end_of_gc();
  4091         // This timing is only used by the ergonomics to handle our pause target.
  4092         // It is unclear why this should not include the full pause. We will
  4093         // investigate this in CR 7178365.
  4094         double sample_end_time_sec = os::elapsedTime();
  4095         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4096         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4098         MemoryService::track_memory_usage();
  4100         // In prepare_for_verify() below we'll need to scan the deferred
  4101         // update buffers to bring the RSets up-to-date if
  4102         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4103         // the update buffers we'll probably need to scan cards on the
  4104         // regions we just allocated to (i.e., the GC alloc
  4105         // regions). However, during the last GC we called
  4106         // set_saved_mark() on all the GC alloc regions, so card
  4107         // scanning might skip the [saved_mark_word()...top()] area of
  4108         // those regions (i.e., the area we allocated objects into
  4109         // during the last GC). But it shouldn't. Given that
  4110         // saved_mark_word() is conditional on whether the GC time stamp
  4111         // on the region is current or not, by incrementing the GC time
  4112         // stamp here we invalidate all the GC time stamps on all the
  4113         // regions and saved_mark_word() will simply return top() for
  4114         // all the regions. This is a nicer way of ensuring this rather
  4115         // than iterating over the regions and fixing them. In fact, the
  4116         // GC time stamp increment here also ensures that
  4117         // saved_mark_word() will return top() between pauses, i.e.,
  4118         // during concurrent refinement. So we don't need the
  4119         // is_gc_active() check to decided which top to use when
  4120         // scanning cards (see CR 7039627).
  4121         increment_gc_time_stamp();
  4123         verify_after_gc();
  4124         check_bitmaps("GC End");
  4126         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4127         ref_processor_stw()->verify_no_references_recorded();
  4129         // CM reference discovery will be re-enabled if necessary.
  4132       // We should do this after we potentially expand the heap so
  4133       // that all the COMMIT events are generated before the end GC
  4134       // event, and after we retire the GC alloc regions so that all
  4135       // RETIRE events are generated before the end GC event.
  4136       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4138       if (mark_in_progress()) {
  4139         concurrent_mark()->update_heap_boundaries(_hrs.committed());
  4142 #ifdef TRACESPINNING
  4143       ParallelTaskTerminator::print_termination_counts();
  4144 #endif
  4146       gc_epilogue(false);
  4149     // Print the remainder of the GC log output.
  4150     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4152     // It is not yet to safe to tell the concurrent mark to
  4153     // start as we have some optional output below. We don't want the
  4154     // output from the concurrent mark thread interfering with this
  4155     // logging output either.
  4157     _hrs.verify_optional();
  4158     verify_region_sets_optional();
  4160     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4161     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4163     print_heap_after_gc();
  4164     trace_heap_after_gc(_gc_tracer_stw);
  4166     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4167     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4168     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4169     // before any GC notifications are raised.
  4170     g1mm()->update_sizes();
  4172     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4173     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4174     _gc_timer_stw->register_gc_end();
  4175     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4177   // It should now be safe to tell the concurrent mark thread to start
  4178   // without its logging output interfering with the logging output
  4179   // that came from the pause.
  4181   if (should_start_conc_mark) {
  4182     // CAUTION: after the doConcurrentMark() call below,
  4183     // the concurrent marking thread(s) could be running
  4184     // concurrently with us. Make sure that anything after
  4185     // this point does not assume that we are the only GC thread
  4186     // running. Note: of course, the actual marking work will
  4187     // not start until the safepoint itself is released in
  4188     // SuspendibleThreadSet::desynchronize().
  4189     doConcurrentMark();
  4192   return true;
  4195 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4197   size_t gclab_word_size;
  4198   switch (purpose) {
  4199     case GCAllocForSurvived:
  4200       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4201       break;
  4202     case GCAllocForTenured:
  4203       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4204       break;
  4205     default:
  4206       assert(false, "unknown GCAllocPurpose");
  4207       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4208       break;
  4211   // Prevent humongous PLAB sizes for two reasons:
  4212   // * PLABs are allocated using a similar paths as oops, but should
  4213   //   never be in a humongous region
  4214   // * Allowing humongous PLABs needlessly churns the region free lists
  4215   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4218 void G1CollectedHeap::init_mutator_alloc_region() {
  4219   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4220   _mutator_alloc_region.init();
  4223 void G1CollectedHeap::release_mutator_alloc_region() {
  4224   _mutator_alloc_region.release();
  4225   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4228 void G1CollectedHeap::use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info) {
  4229   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4230   _retained_old_gc_alloc_region = NULL;
  4232   // We will discard the current GC alloc region if:
  4233   // a) it's in the collection set (it can happen!),
  4234   // b) it's already full (no point in using it),
  4235   // c) it's empty (this means that it was emptied during
  4236   // a cleanup and it should be on the free list now), or
  4237   // d) it's humongous (this means that it was emptied
  4238   // during a cleanup and was added to the free list, but
  4239   // has been subsequently used to allocate a humongous
  4240   // object that may be less than the region size).
  4241   if (retained_region != NULL &&
  4242       !retained_region->in_collection_set() &&
  4243       !(retained_region->top() == retained_region->end()) &&
  4244       !retained_region->is_empty() &&
  4245       !retained_region->isHumongous()) {
  4246     retained_region->record_top_and_timestamp();
  4247     // The retained region was added to the old region set when it was
  4248     // retired. We have to remove it now, since we don't allow regions
  4249     // we allocate to in the region sets. We'll re-add it later, when
  4250     // it's retired again.
  4251     _old_set.remove(retained_region);
  4252     bool during_im = g1_policy()->during_initial_mark_pause();
  4253     retained_region->note_start_of_copying(during_im);
  4254     _old_gc_alloc_region.set(retained_region);
  4255     _hr_printer.reuse(retained_region);
  4256     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  4260 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  4261   assert_at_safepoint(true /* should_be_vm_thread */);
  4263   _survivor_gc_alloc_region.init();
  4264   _old_gc_alloc_region.init();
  4266   use_retained_old_gc_alloc_region(evacuation_info);
  4269 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  4270   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
  4271                                          _old_gc_alloc_region.count());
  4272   _survivor_gc_alloc_region.release();
  4273   // If we have an old GC alloc region to release, we'll save it in
  4274   // _retained_old_gc_alloc_region. If we don't
  4275   // _retained_old_gc_alloc_region will become NULL. This is what we
  4276   // want either way so no reason to check explicitly for either
  4277   // condition.
  4278   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4280   if (ResizePLAB) {
  4281     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4282     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4286 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4287   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4288   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4289   _retained_old_gc_alloc_region = NULL;
  4292 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4293   _drain_in_progress = false;
  4294   set_evac_failure_closure(cl);
  4295   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4298 void G1CollectedHeap::finalize_for_evac_failure() {
  4299   assert(_evac_failure_scan_stack != NULL &&
  4300          _evac_failure_scan_stack->length() == 0,
  4301          "Postcondition");
  4302   assert(!_drain_in_progress, "Postcondition");
  4303   delete _evac_failure_scan_stack;
  4304   _evac_failure_scan_stack = NULL;
  4307 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4308   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4310   double remove_self_forwards_start = os::elapsedTime();
  4312   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4314   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4315     set_par_threads();
  4316     workers()->run_task(&rsfp_task);
  4317     set_par_threads(0);
  4318   } else {
  4319     rsfp_task.work(0);
  4322   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4324   // Reset the claim values in the regions in the collection set.
  4325   reset_cset_heap_region_claim_values();
  4327   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4329   // Now restore saved marks, if any.
  4330   assert(_objs_with_preserved_marks.size() ==
  4331             _preserved_marks_of_objs.size(), "Both or none.");
  4332   while (!_objs_with_preserved_marks.is_empty()) {
  4333     oop obj = _objs_with_preserved_marks.pop();
  4334     markOop m = _preserved_marks_of_objs.pop();
  4335     obj->set_mark(m);
  4337   _objs_with_preserved_marks.clear(true);
  4338   _preserved_marks_of_objs.clear(true);
  4340   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4343 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4344   _evac_failure_scan_stack->push(obj);
  4347 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4348   assert(_evac_failure_scan_stack != NULL, "precondition");
  4350   while (_evac_failure_scan_stack->length() > 0) {
  4351      oop obj = _evac_failure_scan_stack->pop();
  4352      _evac_failure_closure->set_region(heap_region_containing(obj));
  4353      obj->oop_iterate_backwards(_evac_failure_closure);
  4357 oop
  4358 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4359                                                oop old) {
  4360   assert(obj_in_cs(old),
  4361          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4362                  (HeapWord*) old));
  4363   markOop m = old->mark();
  4364   oop forward_ptr = old->forward_to_atomic(old);
  4365   if (forward_ptr == NULL) {
  4366     // Forward-to-self succeeded.
  4367     assert(_par_scan_state != NULL, "par scan state");
  4368     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4369     uint queue_num = _par_scan_state->queue_num();
  4371     _evacuation_failed = true;
  4372     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4373     if (_evac_failure_closure != cl) {
  4374       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4375       assert(!_drain_in_progress,
  4376              "Should only be true while someone holds the lock.");
  4377       // Set the global evac-failure closure to the current thread's.
  4378       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4379       set_evac_failure_closure(cl);
  4380       // Now do the common part.
  4381       handle_evacuation_failure_common(old, m);
  4382       // Reset to NULL.
  4383       set_evac_failure_closure(NULL);
  4384     } else {
  4385       // The lock is already held, and this is recursive.
  4386       assert(_drain_in_progress, "This should only be the recursive case.");
  4387       handle_evacuation_failure_common(old, m);
  4389     return old;
  4390   } else {
  4391     // Forward-to-self failed. Either someone else managed to allocate
  4392     // space for this object (old != forward_ptr) or they beat us in
  4393     // self-forwarding it (old == forward_ptr).
  4394     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4395            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4396                    "should not be in the CSet",
  4397                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4398     return forward_ptr;
  4402 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4403   preserve_mark_if_necessary(old, m);
  4405   HeapRegion* r = heap_region_containing(old);
  4406   if (!r->evacuation_failed()) {
  4407     r->set_evacuation_failed(true);
  4408     _hr_printer.evac_failure(r);
  4411   push_on_evac_failure_scan_stack(old);
  4413   if (!_drain_in_progress) {
  4414     // prevent recursion in copy_to_survivor_space()
  4415     _drain_in_progress = true;
  4416     drain_evac_failure_scan_stack();
  4417     _drain_in_progress = false;
  4421 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4422   assert(evacuation_failed(), "Oversaving!");
  4423   // We want to call the "for_promotion_failure" version only in the
  4424   // case of a promotion failure.
  4425   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4426     _objs_with_preserved_marks.push(obj);
  4427     _preserved_marks_of_objs.push(m);
  4431 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4432                                                   size_t word_size) {
  4433   if (purpose == GCAllocForSurvived) {
  4434     HeapWord* result = survivor_attempt_allocation(word_size);
  4435     if (result != NULL) {
  4436       return result;
  4437     } else {
  4438       // Let's try to allocate in the old gen in case we can fit the
  4439       // object there.
  4440       return old_attempt_allocation(word_size);
  4442   } else {
  4443     assert(purpose ==  GCAllocForTenured, "sanity");
  4444     HeapWord* result = old_attempt_allocation(word_size);
  4445     if (result != NULL) {
  4446       return result;
  4447     } else {
  4448       // Let's try to allocate in the survivors in case we can fit the
  4449       // object there.
  4450       return survivor_attempt_allocation(word_size);
  4454   ShouldNotReachHere();
  4455   // Trying to keep some compilers happy.
  4456   return NULL;
  4459 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4460   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
  4462 void G1ParCopyHelper::mark_object(oop obj) {
  4463   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
  4465   // We know that the object is not moving so it's safe to read its size.
  4466   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4469 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4470   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4471   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4472   assert(from_obj != to_obj, "should not be self-forwarded");
  4474   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
  4475   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
  4477   // The object might be in the process of being copied by another
  4478   // worker so we cannot trust that its to-space image is
  4479   // well-formed. So we have to read its size from its from-space
  4480   // image which we know should not be changing.
  4481   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4484 template <class T>
  4485 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4486   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4487     _scanned_klass->record_modified_oops();
  4491 template <G1Barrier barrier, G1Mark do_mark_object>
  4492 template <class T>
  4493 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4494   T heap_oop = oopDesc::load_heap_oop(p);
  4496   if (oopDesc::is_null(heap_oop)) {
  4497     return;
  4500   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4502   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4504   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
  4506   if (state == G1CollectedHeap::InCSet) {
  4507     oop forwardee;
  4508     if (obj->is_forwarded()) {
  4509       forwardee = obj->forwardee();
  4510     } else {
  4511       forwardee = _par_scan_state->copy_to_survivor_space(obj);
  4513     assert(forwardee != NULL, "forwardee should not be NULL");
  4514     oopDesc::encode_store_heap_oop(p, forwardee);
  4515     if (do_mark_object != G1MarkNone && forwardee != obj) {
  4516       // If the object is self-forwarded we don't need to explicitly
  4517       // mark it, the evacuation failure protocol will do so.
  4518       mark_forwarded_object(obj, forwardee);
  4521     if (barrier == G1BarrierKlass) {
  4522       do_klass_barrier(p, forwardee);
  4524   } else {
  4525     if (state == G1CollectedHeap::IsHumongous) {
  4526       _g1->set_humongous_is_live(obj);
  4528     // The object is not in collection set. If we're a root scanning
  4529     // closure during an initial mark pause then attempt to mark the object.
  4530     if (do_mark_object == G1MarkFromRoot) {
  4531       mark_object(obj);
  4535   if (barrier == G1BarrierEvac) {
  4536     _par_scan_state->update_rs(_from, p, _worker_id);
  4540 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
  4541 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
  4543 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4544 protected:
  4545   G1CollectedHeap*              _g1h;
  4546   G1ParScanThreadState*         _par_scan_state;
  4547   RefToScanQueueSet*            _queues;
  4548   ParallelTaskTerminator*       _terminator;
  4550   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4551   RefToScanQueueSet*      queues()         { return _queues; }
  4552   ParallelTaskTerminator* terminator()     { return _terminator; }
  4554 public:
  4555   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4556                                 G1ParScanThreadState* par_scan_state,
  4557                                 RefToScanQueueSet* queues,
  4558                                 ParallelTaskTerminator* terminator)
  4559     : _g1h(g1h), _par_scan_state(par_scan_state),
  4560       _queues(queues), _terminator(terminator) {}
  4562   void do_void();
  4564 private:
  4565   inline bool offer_termination();
  4566 };
  4568 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4569   G1ParScanThreadState* const pss = par_scan_state();
  4570   pss->start_term_time();
  4571   const bool res = terminator()->offer_termination();
  4572   pss->end_term_time();
  4573   return res;
  4576 void G1ParEvacuateFollowersClosure::do_void() {
  4577   G1ParScanThreadState* const pss = par_scan_state();
  4578   pss->trim_queue();
  4579   do {
  4580     pss->steal_and_trim_queue(queues());
  4581   } while (!offer_termination());
  4584 class G1KlassScanClosure : public KlassClosure {
  4585  G1ParCopyHelper* _closure;
  4586  bool             _process_only_dirty;
  4587  int              _count;
  4588  public:
  4589   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4590       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4591   void do_klass(Klass* klass) {
  4592     // If the klass has not been dirtied we know that there's
  4593     // no references into  the young gen and we can skip it.
  4594    if (!_process_only_dirty || klass->has_modified_oops()) {
  4595       // Clean the klass since we're going to scavenge all the metadata.
  4596       klass->clear_modified_oops();
  4598       // Tell the closure that this klass is the Klass to scavenge
  4599       // and is the one to dirty if oops are left pointing into the young gen.
  4600       _closure->set_scanned_klass(klass);
  4602       klass->oops_do(_closure);
  4604       _closure->set_scanned_klass(NULL);
  4606     _count++;
  4608 };
  4610 class G1ParTask : public AbstractGangTask {
  4611 protected:
  4612   G1CollectedHeap*       _g1h;
  4613   RefToScanQueueSet      *_queues;
  4614   ParallelTaskTerminator _terminator;
  4615   uint _n_workers;
  4617   Mutex _stats_lock;
  4618   Mutex* stats_lock() { return &_stats_lock; }
  4620 public:
  4621   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
  4622     : AbstractGangTask("G1 collection"),
  4623       _g1h(g1h),
  4624       _queues(task_queues),
  4625       _terminator(0, _queues),
  4626       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4627   {}
  4629   RefToScanQueueSet* queues() { return _queues; }
  4631   RefToScanQueue *work_queue(int i) {
  4632     return queues()->queue(i);
  4635   ParallelTaskTerminator* terminator() { return &_terminator; }
  4637   virtual void set_for_termination(int active_workers) {
  4638     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4639     // in the young space (_par_seq_tasks) in the G1 heap
  4640     // for SequentialSubTasksDone.
  4641     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4642     // both of which need setting by set_n_termination().
  4643     _g1h->SharedHeap::set_n_termination(active_workers);
  4644     _g1h->set_n_termination(active_workers);
  4645     terminator()->reset_for_reuse(active_workers);
  4646     _n_workers = active_workers;
  4649   // Helps out with CLD processing.
  4650   //
  4651   // During InitialMark we need to:
  4652   // 1) Scavenge all CLDs for the young GC.
  4653   // 2) Mark all objects directly reachable from strong CLDs.
  4654   template <G1Mark do_mark_object>
  4655   class G1CLDClosure : public CLDClosure {
  4656     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
  4657     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
  4658     G1KlassScanClosure                                _klass_in_cld_closure;
  4659     bool                                              _claim;
  4661    public:
  4662     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
  4663                  bool only_young, bool claim)
  4664         : _oop_closure(oop_closure),
  4665           _oop_in_klass_closure(oop_closure->g1(),
  4666                                 oop_closure->pss(),
  4667                                 oop_closure->rp()),
  4668           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
  4669           _claim(claim) {
  4673     void do_cld(ClassLoaderData* cld) {
  4674       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
  4676   };
  4678   class G1CodeBlobClosure: public CodeBlobClosure {
  4679     OopClosure* _f;
  4681    public:
  4682     G1CodeBlobClosure(OopClosure* f) : _f(f) {}
  4683     void do_code_blob(CodeBlob* blob) {
  4684       nmethod* that = blob->as_nmethod_or_null();
  4685       if (that != NULL) {
  4686         if (!that->test_set_oops_do_mark()) {
  4687           that->oops_do(_f);
  4688           that->fix_oop_relocations();
  4692   };
  4694   void work(uint worker_id) {
  4695     if (worker_id >= _n_workers) return;  // no work needed this round
  4697     double start_time_ms = os::elapsedTime() * 1000.0;
  4698     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4701       ResourceMark rm;
  4702       HandleMark   hm;
  4704       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4706       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4707       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4709       pss.set_evac_failure_closure(&evac_failure_cl);
  4711       bool only_young = _g1h->g1_policy()->gcs_are_young();
  4713       // Non-IM young GC.
  4714       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
  4715       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
  4716                                                                                only_young, // Only process dirty klasses.
  4717                                                                                false);     // No need to claim CLDs.
  4718       // IM young GC.
  4719       //    Strong roots closures.
  4720       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
  4721       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
  4722                                                                                false, // Process all klasses.
  4723                                                                                true); // Need to claim CLDs.
  4724       //    Weak roots closures.
  4725       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
  4726       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
  4727                                                                                     false, // Process all klasses.
  4728                                                                                     true); // Need to claim CLDs.
  4730       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
  4731       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
  4732       // IM Weak code roots are handled later.
  4734       OopClosure* strong_root_cl;
  4735       OopClosure* weak_root_cl;
  4736       CLDClosure* strong_cld_cl;
  4737       CLDClosure* weak_cld_cl;
  4738       CodeBlobClosure* strong_code_cl;
  4740       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4741         // We also need to mark copied objects.
  4742         strong_root_cl = &scan_mark_root_cl;
  4743         strong_cld_cl  = &scan_mark_cld_cl;
  4744         strong_code_cl = &scan_mark_code_cl;
  4745         if (ClassUnloadingWithConcurrentMark) {
  4746           weak_root_cl = &scan_mark_weak_root_cl;
  4747           weak_cld_cl  = &scan_mark_weak_cld_cl;
  4748         } else {
  4749           weak_root_cl = &scan_mark_root_cl;
  4750           weak_cld_cl  = &scan_mark_cld_cl;
  4752       } else {
  4753         strong_root_cl = &scan_only_root_cl;
  4754         weak_root_cl   = &scan_only_root_cl;
  4755         strong_cld_cl  = &scan_only_cld_cl;
  4756         weak_cld_cl    = &scan_only_cld_cl;
  4757         strong_code_cl = &scan_only_code_cl;
  4761       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
  4763       pss.start_strong_roots();
  4764       _g1h->g1_process_roots(strong_root_cl,
  4765                              weak_root_cl,
  4766                              &push_heap_rs_cl,
  4767                              strong_cld_cl,
  4768                              weak_cld_cl,
  4769                              strong_code_cl,
  4770                              worker_id);
  4772       pss.end_strong_roots();
  4775         double start = os::elapsedTime();
  4776         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4777         evac.do_void();
  4778         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4779         double term_ms = pss.term_time()*1000.0;
  4780         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4781         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4783       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4784       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4786       if (ParallelGCVerbose) {
  4787         MutexLocker x(stats_lock());
  4788         pss.print_termination_stats(worker_id);
  4791       assert(pss.queue_is_empty(), "should be empty");
  4793       // Close the inner scope so that the ResourceMark and HandleMark
  4794       // destructors are executed here and are included as part of the
  4795       // "GC Worker Time".
  4798     double end_time_ms = os::elapsedTime() * 1000.0;
  4799     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4801 };
  4803 // *** Common G1 Evacuation Stuff
  4805 // This method is run in a GC worker.
  4807 void
  4808 G1CollectedHeap::
  4809 g1_process_roots(OopClosure* scan_non_heap_roots,
  4810                  OopClosure* scan_non_heap_weak_roots,
  4811                  OopsInHeapRegionClosure* scan_rs,
  4812                  CLDClosure* scan_strong_clds,
  4813                  CLDClosure* scan_weak_clds,
  4814                  CodeBlobClosure* scan_strong_code,
  4815                  uint worker_i) {
  4817   // First scan the shared roots.
  4818   double ext_roots_start = os::elapsedTime();
  4819   double closure_app_time_sec = 0.0;
  4821   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
  4822   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
  4824   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4825   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
  4827   process_roots(false, // no scoping; this is parallel code
  4828                 SharedHeap::SO_None,
  4829                 &buf_scan_non_heap_roots,
  4830                 &buf_scan_non_heap_weak_roots,
  4831                 scan_strong_clds,
  4832                 // Unloading Initial Marks handle the weak CLDs separately.
  4833                 (trace_metadata ? NULL : scan_weak_clds),
  4834                 scan_strong_code);
  4836   // Now the CM ref_processor roots.
  4837   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4838     // We need to treat the discovered reference lists of the
  4839     // concurrent mark ref processor as roots and keep entries
  4840     // (which are added by the marking threads) on them live
  4841     // until they can be processed at the end of marking.
  4842     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4845   if (trace_metadata) {
  4846     // Barrier to make sure all workers passed
  4847     // the strong CLD and strong nmethods phases.
  4848     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
  4850     // Now take the complement of the strong CLDs.
  4851     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  4854   // Finish up any enqueued closure apps (attributed as object copy time).
  4855   buf_scan_non_heap_roots.done();
  4856   buf_scan_non_heap_weak_roots.done();
  4858   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
  4859       + buf_scan_non_heap_weak_roots.closure_app_seconds();
  4861   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4863   double ext_root_time_ms =
  4864     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4866   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4868   // During conc marking we have to filter the per-thread SATB buffers
  4869   // to make sure we remove any oops into the CSet (which will show up
  4870   // as implicitly live).
  4871   double satb_filtering_ms = 0.0;
  4872   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4873     if (mark_in_progress()) {
  4874       double satb_filter_start = os::elapsedTime();
  4876       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4878       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  4881   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4883   // Now scan the complement of the collection set.
  4884   MarkingCodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots, CodeBlobToOopClosure::FixRelocations);
  4886   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
  4888   _process_strong_tasks->all_tasks_completed();
  4891 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  4892 private:
  4893   BoolObjectClosure* _is_alive;
  4894   int _initial_string_table_size;
  4895   int _initial_symbol_table_size;
  4897   bool  _process_strings;
  4898   int _strings_processed;
  4899   int _strings_removed;
  4901   bool  _process_symbols;
  4902   int _symbols_processed;
  4903   int _symbols_removed;
  4905   bool _do_in_parallel;
  4906 public:
  4907   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  4908     AbstractGangTask("String/Symbol Unlinking"),
  4909     _is_alive(is_alive),
  4910     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  4911     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  4912     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  4914     _initial_string_table_size = StringTable::the_table()->table_size();
  4915     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  4916     if (process_strings) {
  4917       StringTable::clear_parallel_claimed_index();
  4919     if (process_symbols) {
  4920       SymbolTable::clear_parallel_claimed_index();
  4924   ~G1StringSymbolTableUnlinkTask() {
  4925     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  4926               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  4927                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  4928     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  4929               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  4930                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  4932     if (G1TraceStringSymbolTableScrubbing) {
  4933       gclog_or_tty->print_cr("Cleaned string and symbol table, "
  4934                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  4935                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  4936                              strings_processed(), strings_removed(),
  4937                              symbols_processed(), symbols_removed());
  4941   void work(uint worker_id) {
  4942     if (_do_in_parallel) {
  4943       int strings_processed = 0;
  4944       int strings_removed = 0;
  4945       int symbols_processed = 0;
  4946       int symbols_removed = 0;
  4947       if (_process_strings) {
  4948         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  4949         Atomic::add(strings_processed, &_strings_processed);
  4950         Atomic::add(strings_removed, &_strings_removed);
  4952       if (_process_symbols) {
  4953         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  4954         Atomic::add(symbols_processed, &_symbols_processed);
  4955         Atomic::add(symbols_removed, &_symbols_removed);
  4957     } else {
  4958       if (_process_strings) {
  4959         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  4961       if (_process_symbols) {
  4962         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  4967   size_t strings_processed() const { return (size_t)_strings_processed; }
  4968   size_t strings_removed()   const { return (size_t)_strings_removed; }
  4970   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  4971   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  4972 };
  4974 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
  4975 private:
  4976   static Monitor* _lock;
  4978   BoolObjectClosure* const _is_alive;
  4979   const bool               _unloading_occurred;
  4980   const uint               _num_workers;
  4982   // Variables used to claim nmethods.
  4983   nmethod* _first_nmethod;
  4984   volatile nmethod* _claimed_nmethod;
  4986   // The list of nmethods that need to be processed by the second pass.
  4987   volatile nmethod* _postponed_list;
  4988   volatile uint     _num_entered_barrier;
  4990  public:
  4991   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
  4992       _is_alive(is_alive),
  4993       _unloading_occurred(unloading_occurred),
  4994       _num_workers(num_workers),
  4995       _first_nmethod(NULL),
  4996       _claimed_nmethod(NULL),
  4997       _postponed_list(NULL),
  4998       _num_entered_barrier(0)
  5000     nmethod::increase_unloading_clock();
  5001     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
  5002     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
  5005   ~G1CodeCacheUnloadingTask() {
  5006     CodeCache::verify_clean_inline_caches();
  5008     CodeCache::set_needs_cache_clean(false);
  5009     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
  5011     CodeCache::verify_icholder_relocations();
  5014  private:
  5015   void add_to_postponed_list(nmethod* nm) {
  5016       nmethod* old;
  5017       do {
  5018         old = (nmethod*)_postponed_list;
  5019         nm->set_unloading_next(old);
  5020       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
  5023   void clean_nmethod(nmethod* nm) {
  5024     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
  5026     if (postponed) {
  5027       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
  5028       add_to_postponed_list(nm);
  5031     // Mark that this thread has been cleaned/unloaded.
  5032     // After this call, it will be safe to ask if this nmethod was unloaded or not.
  5033     nm->set_unloading_clock(nmethod::global_unloading_clock());
  5036   void clean_nmethod_postponed(nmethod* nm) {
  5037     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
  5040   static const int MaxClaimNmethods = 16;
  5042   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
  5043     nmethod* first;
  5044     nmethod* last;
  5046     do {
  5047       *num_claimed_nmethods = 0;
  5049       first = last = (nmethod*)_claimed_nmethod;
  5051       if (first != NULL) {
  5052         for (int i = 0; i < MaxClaimNmethods; i++) {
  5053           last = CodeCache::alive_nmethod(CodeCache::next(last));
  5055           if (last == NULL) {
  5056             break;
  5059           claimed_nmethods[i] = last;
  5060           (*num_claimed_nmethods)++;
  5064     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
  5067   nmethod* claim_postponed_nmethod() {
  5068     nmethod* claim;
  5069     nmethod* next;
  5071     do {
  5072       claim = (nmethod*)_postponed_list;
  5073       if (claim == NULL) {
  5074         return NULL;
  5077       next = claim->unloading_next();
  5079     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
  5081     return claim;
  5084  public:
  5085   // Mark that we're done with the first pass of nmethod cleaning.
  5086   void barrier_mark(uint worker_id) {
  5087     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5088     _num_entered_barrier++;
  5089     if (_num_entered_barrier == _num_workers) {
  5090       ml.notify_all();
  5094   // See if we have to wait for the other workers to
  5095   // finish their first-pass nmethod cleaning work.
  5096   void barrier_wait(uint worker_id) {
  5097     if (_num_entered_barrier < _num_workers) {
  5098       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
  5099       while (_num_entered_barrier < _num_workers) {
  5100           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
  5105   // Cleaning and unloading of nmethods. Some work has to be postponed
  5106   // to the second pass, when we know which nmethods survive.
  5107   void work_first_pass(uint worker_id) {
  5108     // The first nmethods is claimed by the first worker.
  5109     if (worker_id == 0 && _first_nmethod != NULL) {
  5110       clean_nmethod(_first_nmethod);
  5111       _first_nmethod = NULL;
  5114     int num_claimed_nmethods;
  5115     nmethod* claimed_nmethods[MaxClaimNmethods];
  5117     while (true) {
  5118       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
  5120       if (num_claimed_nmethods == 0) {
  5121         break;
  5124       for (int i = 0; i < num_claimed_nmethods; i++) {
  5125         clean_nmethod(claimed_nmethods[i]);
  5130   void work_second_pass(uint worker_id) {
  5131     nmethod* nm;
  5132     // Take care of postponed nmethods.
  5133     while ((nm = claim_postponed_nmethod()) != NULL) {
  5134       clean_nmethod_postponed(nm);
  5137 };
  5139 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
  5141 class G1KlassCleaningTask : public StackObj {
  5142   BoolObjectClosure*                      _is_alive;
  5143   volatile jint                           _clean_klass_tree_claimed;
  5144   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
  5146  public:
  5147   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
  5148       _is_alive(is_alive),
  5149       _clean_klass_tree_claimed(0),
  5150       _klass_iterator() {
  5153  private:
  5154   bool claim_clean_klass_tree_task() {
  5155     if (_clean_klass_tree_claimed) {
  5156       return false;
  5159     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
  5162   InstanceKlass* claim_next_klass() {
  5163     Klass* klass;
  5164     do {
  5165       klass =_klass_iterator.next_klass();
  5166     } while (klass != NULL && !klass->oop_is_instance());
  5168     return (InstanceKlass*)klass;
  5171 public:
  5173   void clean_klass(InstanceKlass* ik) {
  5174     ik->clean_implementors_list(_is_alive);
  5175     ik->clean_method_data(_is_alive);
  5177     // G1 specific cleanup work that has
  5178     // been moved here to be done in parallel.
  5179     ik->clean_dependent_nmethods();
  5182   void work() {
  5183     ResourceMark rm;
  5185     // One worker will clean the subklass/sibling klass tree.
  5186     if (claim_clean_klass_tree_task()) {
  5187       Klass::clean_subklass_tree(_is_alive);
  5190     // All workers will help cleaning the classes,
  5191     InstanceKlass* klass;
  5192     while ((klass = claim_next_klass()) != NULL) {
  5193       clean_klass(klass);
  5196 };
  5198 // To minimize the remark pause times, the tasks below are done in parallel.
  5199 class G1ParallelCleaningTask : public AbstractGangTask {
  5200 private:
  5201   G1StringSymbolTableUnlinkTask _string_symbol_task;
  5202   G1CodeCacheUnloadingTask      _code_cache_task;
  5203   G1KlassCleaningTask           _klass_cleaning_task;
  5205 public:
  5206   // The constructor is run in the VMThread.
  5207   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
  5208       AbstractGangTask("Parallel Cleaning"),
  5209       _string_symbol_task(is_alive, process_strings, process_symbols),
  5210       _code_cache_task(num_workers, is_alive, unloading_occurred),
  5211       _klass_cleaning_task(is_alive) {
  5214   // The parallel work done by all worker threads.
  5215   void work(uint worker_id) {
  5216     // Do first pass of code cache cleaning.
  5217     _code_cache_task.work_first_pass(worker_id);
  5219     // Let the threads mark that the first pass is done.
  5220     _code_cache_task.barrier_mark(worker_id);
  5222     // Clean the Strings and Symbols.
  5223     _string_symbol_task.work(worker_id);
  5225     // Wait for all workers to finish the first code cache cleaning pass.
  5226     _code_cache_task.barrier_wait(worker_id);
  5228     // Do the second code cache cleaning work, which realize on
  5229     // the liveness information gathered during the first pass.
  5230     _code_cache_task.work_second_pass(worker_id);
  5232     // Clean all klasses that were not unloaded.
  5233     _klass_cleaning_task.work();
  5235 };
  5238 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
  5239                                         bool process_strings,
  5240                                         bool process_symbols,
  5241                                         bool class_unloading_occurred) {
  5242   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5243                     workers()->active_workers() : 1);
  5245   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
  5246                                         n_workers, class_unloading_occurred);
  5247   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5248     set_par_threads(n_workers);
  5249     workers()->run_task(&g1_unlink_task);
  5250     set_par_threads(0);
  5251   } else {
  5252     g1_unlink_task.work(0);
  5256 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5257                                                      bool process_strings, bool process_symbols) {
  5259     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5260                      _g1h->workers()->active_workers() : 1);
  5261     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5262     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5263       set_par_threads(n_workers);
  5264       workers()->run_task(&g1_unlink_task);
  5265       set_par_threads(0);
  5266     } else {
  5267       g1_unlink_task.work(0);
  5271   if (G1StringDedup::is_enabled()) {
  5272     G1StringDedup::unlink(is_alive);
  5276 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5277  private:
  5278   DirtyCardQueueSet* _queue;
  5279  public:
  5280   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5282   virtual void work(uint worker_id) {
  5283     double start_time = os::elapsedTime();
  5285     RedirtyLoggedCardTableEntryClosure cl;
  5286     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5287       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5288     } else {
  5289       _queue->apply_closure_to_all_completed_buffers(&cl);
  5292     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5293     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
  5294     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  5296 };
  5298 void G1CollectedHeap::redirty_logged_cards() {
  5299   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  5300   double redirty_logged_cards_start = os::elapsedTime();
  5302   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5303                    _g1h->workers()->active_workers() : 1);
  5305   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5306   dirty_card_queue_set().reset_for_par_iteration();
  5307   if (use_parallel_gc_threads()) {
  5308     set_par_threads(n_workers);
  5309     workers()->run_task(&redirty_task);
  5310     set_par_threads(0);
  5311   } else {
  5312     redirty_task.work(0);
  5315   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5316   dcq.merge_bufferlists(&dirty_card_queue_set());
  5317   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5319   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5322 // Weak Reference Processing support
  5324 // An always "is_alive" closure that is used to preserve referents.
  5325 // If the object is non-null then it's alive.  Used in the preservation
  5326 // of referent objects that are pointed to by reference objects
  5327 // discovered by the CM ref processor.
  5328 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5329   G1CollectedHeap* _g1;
  5330 public:
  5331   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5332   bool do_object_b(oop p) {
  5333     if (p != NULL) {
  5334       return true;
  5336     return false;
  5338 };
  5340 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5341   // An object is reachable if it is outside the collection set,
  5342   // or is inside and copied.
  5343   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5346 // Non Copying Keep Alive closure
  5347 class G1KeepAliveClosure: public OopClosure {
  5348   G1CollectedHeap* _g1;
  5349 public:
  5350   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5351   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5352   void do_oop(oop* p) {
  5353     oop obj = *p;
  5355     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
  5356     if (obj == NULL || cset_state == G1CollectedHeap::InNeither) {
  5357       return;
  5359     if (cset_state == G1CollectedHeap::InCSet) {
  5360       assert( obj->is_forwarded(), "invariant" );
  5361       *p = obj->forwardee();
  5362     } else {
  5363       assert(!obj->is_forwarded(), "invariant" );
  5364       assert(cset_state == G1CollectedHeap::IsHumongous,
  5365              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
  5366       _g1->set_humongous_is_live(obj);
  5369 };
  5371 // Copying Keep Alive closure - can be called from both
  5372 // serial and parallel code as long as different worker
  5373 // threads utilize different G1ParScanThreadState instances
  5374 // and different queues.
  5376 class G1CopyingKeepAliveClosure: public OopClosure {
  5377   G1CollectedHeap*         _g1h;
  5378   OopClosure*              _copy_non_heap_obj_cl;
  5379   G1ParScanThreadState*    _par_scan_state;
  5381 public:
  5382   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5383                             OopClosure* non_heap_obj_cl,
  5384                             G1ParScanThreadState* pss):
  5385     _g1h(g1h),
  5386     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5387     _par_scan_state(pss)
  5388   {}
  5390   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5391   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5393   template <class T> void do_oop_work(T* p) {
  5394     oop obj = oopDesc::load_decode_heap_oop(p);
  5396     if (_g1h->is_in_cset_or_humongous(obj)) {
  5397       // If the referent object has been forwarded (either copied
  5398       // to a new location or to itself in the event of an
  5399       // evacuation failure) then we need to update the reference
  5400       // field and, if both reference and referent are in the G1
  5401       // heap, update the RSet for the referent.
  5402       //
  5403       // If the referent has not been forwarded then we have to keep
  5404       // it alive by policy. Therefore we have copy the referent.
  5405       //
  5406       // If the reference field is in the G1 heap then we can push
  5407       // on the PSS queue. When the queue is drained (after each
  5408       // phase of reference processing) the object and it's followers
  5409       // will be copied, the reference field set to point to the
  5410       // new location, and the RSet updated. Otherwise we need to
  5411       // use the the non-heap or metadata closures directly to copy
  5412       // the referent object and update the pointer, while avoiding
  5413       // updating the RSet.
  5415       if (_g1h->is_in_g1_reserved(p)) {
  5416         _par_scan_state->push_on_queue(p);
  5417       } else {
  5418         assert(!Metaspace::contains((const void*)p),
  5419                err_msg("Unexpectedly found a pointer from metadata: "
  5420                               PTR_FORMAT, p));
  5421         _copy_non_heap_obj_cl->do_oop(p);
  5425 };
  5427 // Serial drain queue closure. Called as the 'complete_gc'
  5428 // closure for each discovered list in some of the
  5429 // reference processing phases.
  5431 class G1STWDrainQueueClosure: public VoidClosure {
  5432 protected:
  5433   G1CollectedHeap* _g1h;
  5434   G1ParScanThreadState* _par_scan_state;
  5436   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5438 public:
  5439   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5440     _g1h(g1h),
  5441     _par_scan_state(pss)
  5442   { }
  5444   void do_void() {
  5445     G1ParScanThreadState* const pss = par_scan_state();
  5446     pss->trim_queue();
  5448 };
  5450 // Parallel Reference Processing closures
  5452 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5453 // processing during G1 evacuation pauses.
  5455 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5456 private:
  5457   G1CollectedHeap*   _g1h;
  5458   RefToScanQueueSet* _queues;
  5459   FlexibleWorkGang*  _workers;
  5460   int                _active_workers;
  5462 public:
  5463   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5464                         FlexibleWorkGang* workers,
  5465                         RefToScanQueueSet *task_queues,
  5466                         int n_workers) :
  5467     _g1h(g1h),
  5468     _queues(task_queues),
  5469     _workers(workers),
  5470     _active_workers(n_workers)
  5472     assert(n_workers > 0, "shouldn't call this otherwise");
  5475   // Executes the given task using concurrent marking worker threads.
  5476   virtual void execute(ProcessTask& task);
  5477   virtual void execute(EnqueueTask& task);
  5478 };
  5480 // Gang task for possibly parallel reference processing
  5482 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5483   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5484   ProcessTask&     _proc_task;
  5485   G1CollectedHeap* _g1h;
  5486   RefToScanQueueSet *_task_queues;
  5487   ParallelTaskTerminator* _terminator;
  5489 public:
  5490   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5491                      G1CollectedHeap* g1h,
  5492                      RefToScanQueueSet *task_queues,
  5493                      ParallelTaskTerminator* terminator) :
  5494     AbstractGangTask("Process reference objects in parallel"),
  5495     _proc_task(proc_task),
  5496     _g1h(g1h),
  5497     _task_queues(task_queues),
  5498     _terminator(terminator)
  5499   {}
  5501   virtual void work(uint worker_id) {
  5502     // The reference processing task executed by a single worker.
  5503     ResourceMark rm;
  5504     HandleMark   hm;
  5506     G1STWIsAliveClosure is_alive(_g1h);
  5508     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5509     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5511     pss.set_evac_failure_closure(&evac_failure_cl);
  5513     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5515     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5517     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5519     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5520       // We also need to mark copied objects.
  5521       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5524     // Keep alive closure.
  5525     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5527     // Complete GC closure
  5528     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5530     // Call the reference processing task's work routine.
  5531     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5533     // Note we cannot assert that the refs array is empty here as not all
  5534     // of the processing tasks (specifically phase2 - pp2_work) execute
  5535     // the complete_gc closure (which ordinarily would drain the queue) so
  5536     // the queue may not be empty.
  5538 };
  5540 // Driver routine for parallel reference processing.
  5541 // Creates an instance of the ref processing gang
  5542 // task and has the worker threads execute it.
  5543 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5544   assert(_workers != NULL, "Need parallel worker threads.");
  5546   ParallelTaskTerminator terminator(_active_workers, _queues);
  5547   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5549   _g1h->set_par_threads(_active_workers);
  5550   _workers->run_task(&proc_task_proxy);
  5551   _g1h->set_par_threads(0);
  5554 // Gang task for parallel reference enqueueing.
  5556 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5557   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5558   EnqueueTask& _enq_task;
  5560 public:
  5561   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5562     AbstractGangTask("Enqueue reference objects in parallel"),
  5563     _enq_task(enq_task)
  5564   { }
  5566   virtual void work(uint worker_id) {
  5567     _enq_task.work(worker_id);
  5569 };
  5571 // Driver routine for parallel reference enqueueing.
  5572 // Creates an instance of the ref enqueueing gang
  5573 // task and has the worker threads execute it.
  5575 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5576   assert(_workers != NULL, "Need parallel worker threads.");
  5578   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5580   _g1h->set_par_threads(_active_workers);
  5581   _workers->run_task(&enq_task_proxy);
  5582   _g1h->set_par_threads(0);
  5585 // End of weak reference support closures
  5587 // Abstract task used to preserve (i.e. copy) any referent objects
  5588 // that are in the collection set and are pointed to by reference
  5589 // objects discovered by the CM ref processor.
  5591 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5592 protected:
  5593   G1CollectedHeap* _g1h;
  5594   RefToScanQueueSet      *_queues;
  5595   ParallelTaskTerminator _terminator;
  5596   uint _n_workers;
  5598 public:
  5599   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5600     AbstractGangTask("ParPreserveCMReferents"),
  5601     _g1h(g1h),
  5602     _queues(task_queues),
  5603     _terminator(workers, _queues),
  5604     _n_workers(workers)
  5605   { }
  5607   void work(uint worker_id) {
  5608     ResourceMark rm;
  5609     HandleMark   hm;
  5611     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5612     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5614     pss.set_evac_failure_closure(&evac_failure_cl);
  5616     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5618     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5620     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5622     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5624     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5625       // We also need to mark copied objects.
  5626       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5629     // Is alive closure
  5630     G1AlwaysAliveClosure always_alive(_g1h);
  5632     // Copying keep alive closure. Applied to referent objects that need
  5633     // to be copied.
  5634     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
  5636     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5638     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5639     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5641     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5642     // So this must be true - but assert just in case someone decides to
  5643     // change the worker ids.
  5644     assert(0 <= worker_id && worker_id < limit, "sanity");
  5645     assert(!rp->discovery_is_atomic(), "check this code");
  5647     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5648     for (uint idx = worker_id; idx < limit; idx += stride) {
  5649       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5651       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5652       while (iter.has_next()) {
  5653         // Since discovery is not atomic for the CM ref processor, we
  5654         // can see some null referent objects.
  5655         iter.load_ptrs(DEBUG_ONLY(true));
  5656         oop ref = iter.obj();
  5658         // This will filter nulls.
  5659         if (iter.is_referent_alive()) {
  5660           iter.make_referent_alive();
  5662         iter.move_to_next();
  5666     // Drain the queue - which may cause stealing
  5667     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5668     drain_queue.do_void();
  5669     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5670     assert(pss.queue_is_empty(), "should be");
  5672 };
  5674 // Weak Reference processing during an evacuation pause (part 1).
  5675 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5676   double ref_proc_start = os::elapsedTime();
  5678   ReferenceProcessor* rp = _ref_processor_stw;
  5679   assert(rp->discovery_enabled(), "should have been enabled");
  5681   // Any reference objects, in the collection set, that were 'discovered'
  5682   // by the CM ref processor should have already been copied (either by
  5683   // applying the external root copy closure to the discovered lists, or
  5684   // by following an RSet entry).
  5685   //
  5686   // But some of the referents, that are in the collection set, that these
  5687   // reference objects point to may not have been copied: the STW ref
  5688   // processor would have seen that the reference object had already
  5689   // been 'discovered' and would have skipped discovering the reference,
  5690   // but would not have treated the reference object as a regular oop.
  5691   // As a result the copy closure would not have been applied to the
  5692   // referent object.
  5693   //
  5694   // We need to explicitly copy these referent objects - the references
  5695   // will be processed at the end of remarking.
  5696   //
  5697   // We also need to do this copying before we process the reference
  5698   // objects discovered by the STW ref processor in case one of these
  5699   // referents points to another object which is also referenced by an
  5700   // object discovered by the STW ref processor.
  5702   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5703            no_of_gc_workers == workers()->active_workers(),
  5704            "Need to reset active GC workers");
  5706   set_par_threads(no_of_gc_workers);
  5707   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5708                                                  no_of_gc_workers,
  5709                                                  _task_queues);
  5711   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5712     workers()->run_task(&keep_cm_referents);
  5713   } else {
  5714     keep_cm_referents.work(0);
  5717   set_par_threads(0);
  5719   // Closure to test whether a referent is alive.
  5720   G1STWIsAliveClosure is_alive(this);
  5722   // Even when parallel reference processing is enabled, the processing
  5723   // of JNI refs is serial and performed serially by the current thread
  5724   // rather than by a worker. The following PSS will be used for processing
  5725   // JNI refs.
  5727   // Use only a single queue for this PSS.
  5728   G1ParScanThreadState            pss(this, 0, NULL);
  5730   // We do not embed a reference processor in the copying/scanning
  5731   // closures while we're actually processing the discovered
  5732   // reference objects.
  5733   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5735   pss.set_evac_failure_closure(&evac_failure_cl);
  5737   assert(pss.queue_is_empty(), "pre-condition");
  5739   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5741   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5743   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5745   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5746     // We also need to mark copied objects.
  5747     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5750   // Keep alive closure.
  5751   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
  5753   // Serial Complete GC closure
  5754   G1STWDrainQueueClosure drain_queue(this, &pss);
  5756   // Setup the soft refs policy...
  5757   rp->setup_policy(false);
  5759   ReferenceProcessorStats stats;
  5760   if (!rp->processing_is_mt()) {
  5761     // Serial reference processing...
  5762     stats = rp->process_discovered_references(&is_alive,
  5763                                               &keep_alive,
  5764                                               &drain_queue,
  5765                                               NULL,
  5766                                               _gc_timer_stw,
  5767                                               _gc_tracer_stw->gc_id());
  5768   } else {
  5769     // Parallel reference processing
  5770     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5771     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5773     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5774     stats = rp->process_discovered_references(&is_alive,
  5775                                               &keep_alive,
  5776                                               &drain_queue,
  5777                                               &par_task_executor,
  5778                                               _gc_timer_stw,
  5779                                               _gc_tracer_stw->gc_id());
  5782   _gc_tracer_stw->report_gc_reference_stats(stats);
  5784   // We have completed copying any necessary live referent objects.
  5785   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5787   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5788   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5791 // Weak Reference processing during an evacuation pause (part 2).
  5792 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5793   double ref_enq_start = os::elapsedTime();
  5795   ReferenceProcessor* rp = _ref_processor_stw;
  5796   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5798   // Now enqueue any remaining on the discovered lists on to
  5799   // the pending list.
  5800   if (!rp->processing_is_mt()) {
  5801     // Serial reference processing...
  5802     rp->enqueue_discovered_references();
  5803   } else {
  5804     // Parallel reference enqueueing
  5806     assert(no_of_gc_workers == workers()->active_workers(),
  5807            "Need to reset active workers");
  5808     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5809     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5811     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5812     rp->enqueue_discovered_references(&par_task_executor);
  5815   rp->verify_no_references_recorded();
  5816   assert(!rp->discovery_enabled(), "should have been disabled");
  5818   // FIXME
  5819   // CM's reference processing also cleans up the string and symbol tables.
  5820   // Should we do that here also? We could, but it is a serial operation
  5821   // and could significantly increase the pause time.
  5823   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5824   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5827 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5828   _expand_heap_after_alloc_failure = true;
  5829   _evacuation_failed = false;
  5831   // Should G1EvacuationFailureALot be in effect for this GC?
  5832   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5834   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5836   // Disable the hot card cache.
  5837   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5838   hot_card_cache->reset_hot_cache_claimed_index();
  5839   hot_card_cache->set_use_cache(false);
  5841   uint n_workers;
  5842   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5843     n_workers =
  5844       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5845                                      workers()->active_workers(),
  5846                                      Threads::number_of_non_daemon_threads());
  5847     assert(UseDynamicNumberOfGCThreads ||
  5848            n_workers == workers()->total_workers(),
  5849            "If not dynamic should be using all the  workers");
  5850     workers()->set_active_workers(n_workers);
  5851     set_par_threads(n_workers);
  5852   } else {
  5853     assert(n_par_threads() == 0,
  5854            "Should be the original non-parallel value");
  5855     n_workers = 1;
  5858   G1ParTask g1_par_task(this, _task_queues);
  5860   init_for_evac_failure(NULL);
  5862   rem_set()->prepare_for_younger_refs_iterate(true);
  5864   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5865   double start_par_time_sec = os::elapsedTime();
  5866   double end_par_time_sec;
  5869     StrongRootsScope srs(this);
  5870     // InitialMark needs claim bits to keep track of the marked-through CLDs.
  5871     if (g1_policy()->during_initial_mark_pause()) {
  5872       ClassLoaderDataGraph::clear_claimed_marks();
  5875     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5876       // The individual threads will set their evac-failure closures.
  5877       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5878       // These tasks use ShareHeap::_process_strong_tasks
  5879       assert(UseDynamicNumberOfGCThreads ||
  5880              workers()->active_workers() == workers()->total_workers(),
  5881              "If not dynamic should be using all the  workers");
  5882       workers()->run_task(&g1_par_task);
  5883     } else {
  5884       g1_par_task.set_for_termination(n_workers);
  5885       g1_par_task.work(0);
  5887     end_par_time_sec = os::elapsedTime();
  5889     // Closing the inner scope will execute the destructor
  5890     // for the StrongRootsScope object. We record the current
  5891     // elapsed time before closing the scope so that time
  5892     // taken for the SRS destructor is NOT included in the
  5893     // reported parallel time.
  5896   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5897   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5899   double code_root_fixup_time_ms =
  5900         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5901   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5903   set_par_threads(0);
  5905   // Process any discovered reference objects - we have
  5906   // to do this _before_ we retire the GC alloc regions
  5907   // as we may have to copy some 'reachable' referent
  5908   // objects (and their reachable sub-graphs) that were
  5909   // not copied during the pause.
  5910   process_discovered_references(n_workers);
  5912   // Weak root processing.
  5914     G1STWIsAliveClosure is_alive(this);
  5915     G1KeepAliveClosure keep_alive(this);
  5916     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5917     if (G1StringDedup::is_enabled()) {
  5918       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  5922   release_gc_alloc_regions(n_workers, evacuation_info);
  5923   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5925   // Reset and re-enable the hot card cache.
  5926   // Note the counts for the cards in the regions in the
  5927   // collection set are reset when the collection set is freed.
  5928   hot_card_cache->reset_hot_cache();
  5929   hot_card_cache->set_use_cache(true);
  5931   // Migrate the strong code roots attached to each region in
  5932   // the collection set. Ideally we would like to do this
  5933   // after we have finished the scanning/evacuation of the
  5934   // strong code roots for a particular heap region.
  5935   migrate_strong_code_roots();
  5937   purge_code_root_memory();
  5939   if (g1_policy()->during_initial_mark_pause()) {
  5940     // Reset the claim values set during marking the strong code roots
  5941     reset_heap_region_claim_values();
  5944   finalize_for_evac_failure();
  5946   if (evacuation_failed()) {
  5947     remove_self_forwarding_pointers();
  5949     // Reset the G1EvacuationFailureALot counters and flags
  5950     // Note: the values are reset only when an actual
  5951     // evacuation failure occurs.
  5952     NOT_PRODUCT(reset_evacuation_should_fail();)
  5955   // Enqueue any remaining references remaining on the STW
  5956   // reference processor's discovered lists. We need to do
  5957   // this after the card table is cleaned (and verified) as
  5958   // the act of enqueueing entries on to the pending list
  5959   // will log these updates (and dirty their associated
  5960   // cards). We need these updates logged to update any
  5961   // RSets.
  5962   enqueue_discovered_references(n_workers);
  5964   if (G1DeferredRSUpdate) {
  5965     redirty_logged_cards();
  5967   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5970 void G1CollectedHeap::free_region(HeapRegion* hr,
  5971                                   FreeRegionList* free_list,
  5972                                   bool par,
  5973                                   bool locked) {
  5974   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5975   assert(!hr->is_empty(), "the region should not be empty");
  5976   assert(_hrs.is_available(hr->hrs_index()), "region should be committed");
  5977   assert(free_list != NULL, "pre-condition");
  5979   if (G1VerifyBitmaps) {
  5980     MemRegion mr(hr->bottom(), hr->end());
  5981     concurrent_mark()->clearRangePrevBitmap(mr);
  5984   // Clear the card counts for this region.
  5985   // Note: we only need to do this if the region is not young
  5986   // (since we don't refine cards in young regions).
  5987   if (!hr->is_young()) {
  5988     _cg1r->hot_card_cache()->reset_card_counts(hr);
  5990   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  5991   free_list->add_ordered(hr);
  5994 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5995                                      FreeRegionList* free_list,
  5996                                      bool par) {
  5997   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5998   assert(free_list != NULL, "pre-condition");
  6000   size_t hr_capacity = hr->capacity();
  6001   // We need to read this before we make the region non-humongous,
  6002   // otherwise the information will be gone.
  6003   uint last_index = hr->last_hc_index();
  6004   hr->set_notHumongous();
  6005   free_region(hr, free_list, par);
  6007   uint i = hr->hrs_index() + 1;
  6008   while (i < last_index) {
  6009     HeapRegion* curr_hr = region_at(i);
  6010     assert(curr_hr->continuesHumongous(), "invariant");
  6011     curr_hr->set_notHumongous();
  6012     free_region(curr_hr, free_list, par);
  6013     i += 1;
  6017 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  6018                                        const HeapRegionSetCount& humongous_regions_removed) {
  6019   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  6020     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  6021     _old_set.bulk_remove(old_regions_removed);
  6022     _humongous_set.bulk_remove(humongous_regions_removed);
  6027 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  6028   assert(list != NULL, "list can't be null");
  6029   if (!list->is_empty()) {
  6030     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  6031     _hrs.insert_list_into_free_list(list);
  6035 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  6036   assert(_summary_bytes_used >= bytes,
  6037          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
  6038                   _summary_bytes_used, bytes));
  6039   _summary_bytes_used -= bytes;
  6042 class G1ParCleanupCTTask : public AbstractGangTask {
  6043   G1SATBCardTableModRefBS* _ct_bs;
  6044   G1CollectedHeap* _g1h;
  6045   HeapRegion* volatile _su_head;
  6046 public:
  6047   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  6048                      G1CollectedHeap* g1h) :
  6049     AbstractGangTask("G1 Par Cleanup CT Task"),
  6050     _ct_bs(ct_bs), _g1h(g1h) { }
  6052   void work(uint worker_id) {
  6053     HeapRegion* r;
  6054     while (r = _g1h->pop_dirty_cards_region()) {
  6055       clear_cards(r);
  6059   void clear_cards(HeapRegion* r) {
  6060     // Cards of the survivors should have already been dirtied.
  6061     if (!r->is_survivor()) {
  6062       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  6065 };
  6067 #ifndef PRODUCT
  6068 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  6069   G1CollectedHeap* _g1h;
  6070   G1SATBCardTableModRefBS* _ct_bs;
  6071 public:
  6072   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  6073     : _g1h(g1h), _ct_bs(ct_bs) { }
  6074   virtual bool doHeapRegion(HeapRegion* r) {
  6075     if (r->is_survivor()) {
  6076       _g1h->verify_dirty_region(r);
  6077     } else {
  6078       _g1h->verify_not_dirty_region(r);
  6080     return false;
  6082 };
  6084 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  6085   // All of the region should be clean.
  6086   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6087   MemRegion mr(hr->bottom(), hr->end());
  6088   ct_bs->verify_not_dirty_region(mr);
  6091 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  6092   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  6093   // dirty allocated blocks as they allocate them. The thread that
  6094   // retires each region and replaces it with a new one will do a
  6095   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  6096   // not dirty that area (one less thing to have to do while holding
  6097   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  6098   // is dirty.
  6099   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6100   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  6101   if (hr->is_young()) {
  6102     ct_bs->verify_g1_young_region(mr);
  6103   } else {
  6104     ct_bs->verify_dirty_region(mr);
  6108 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  6109   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6110   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  6111     verify_dirty_region(hr);
  6115 void G1CollectedHeap::verify_dirty_young_regions() {
  6116   verify_dirty_young_list(_young_list->first_region());
  6119 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
  6120                                                HeapWord* tams, HeapWord* end) {
  6121   guarantee(tams <= end,
  6122             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
  6123   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
  6124   if (result < end) {
  6125     gclog_or_tty->cr();
  6126     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
  6127                            bitmap_name, result);
  6128     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
  6129                            bitmap_name, tams, end);
  6130     return false;
  6132   return true;
  6135 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
  6136   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
  6137   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
  6139   HeapWord* bottom = hr->bottom();
  6140   HeapWord* ptams  = hr->prev_top_at_mark_start();
  6141   HeapWord* ntams  = hr->next_top_at_mark_start();
  6142   HeapWord* end    = hr->end();
  6144   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
  6146   bool res_n = true;
  6147   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
  6148   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
  6149   // if we happen to be in that state.
  6150   if (mark_in_progress() || !_cmThread->in_progress()) {
  6151     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
  6153   if (!res_p || !res_n) {
  6154     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
  6155                            HR_FORMAT_PARAMS(hr));
  6156     gclog_or_tty->print_cr("#### Caller: %s", caller);
  6157     return false;
  6159   return true;
  6162 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
  6163   if (!G1VerifyBitmaps) return;
  6165   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
  6168 class G1VerifyBitmapClosure : public HeapRegionClosure {
  6169 private:
  6170   const char* _caller;
  6171   G1CollectedHeap* _g1h;
  6172   bool _failures;
  6174 public:
  6175   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
  6176     _caller(caller), _g1h(g1h), _failures(false) { }
  6178   bool failures() { return _failures; }
  6180   virtual bool doHeapRegion(HeapRegion* hr) {
  6181     if (hr->continuesHumongous()) return false;
  6183     bool result = _g1h->verify_bitmaps(_caller, hr);
  6184     if (!result) {
  6185       _failures = true;
  6187     return false;
  6189 };
  6191 void G1CollectedHeap::check_bitmaps(const char* caller) {
  6192   if (!G1VerifyBitmaps) return;
  6194   G1VerifyBitmapClosure cl(caller, this);
  6195   heap_region_iterate(&cl);
  6196   guarantee(!cl.failures(), "bitmap verification");
  6198 #endif // PRODUCT
  6200 void G1CollectedHeap::cleanUpCardTable() {
  6201   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  6202   double start = os::elapsedTime();
  6205     // Iterate over the dirty cards region list.
  6206     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  6208     if (G1CollectedHeap::use_parallel_gc_threads()) {
  6209       set_par_threads();
  6210       workers()->run_task(&cleanup_task);
  6211       set_par_threads(0);
  6212     } else {
  6213       while (_dirty_cards_region_list) {
  6214         HeapRegion* r = _dirty_cards_region_list;
  6215         cleanup_task.clear_cards(r);
  6216         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  6217         if (_dirty_cards_region_list == r) {
  6218           // The last region.
  6219           _dirty_cards_region_list = NULL;
  6221         r->set_next_dirty_cards_region(NULL);
  6224 #ifndef PRODUCT
  6225     if (G1VerifyCTCleanup || VerifyAfterGC) {
  6226       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  6227       heap_region_iterate(&cleanup_verifier);
  6229 #endif
  6232   double elapsed = os::elapsedTime() - start;
  6233   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  6236 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  6237   size_t pre_used = 0;
  6238   FreeRegionList local_free_list("Local List for CSet Freeing");
  6240   double young_time_ms     = 0.0;
  6241   double non_young_time_ms = 0.0;
  6243   // Since the collection set is a superset of the the young list,
  6244   // all we need to do to clear the young list is clear its
  6245   // head and length, and unlink any young regions in the code below
  6246   _young_list->clear();
  6248   G1CollectorPolicy* policy = g1_policy();
  6250   double start_sec = os::elapsedTime();
  6251   bool non_young = true;
  6253   HeapRegion* cur = cs_head;
  6254   int age_bound = -1;
  6255   size_t rs_lengths = 0;
  6257   while (cur != NULL) {
  6258     assert(!is_on_master_free_list(cur), "sanity");
  6259     if (non_young) {
  6260       if (cur->is_young()) {
  6261         double end_sec = os::elapsedTime();
  6262         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6263         non_young_time_ms += elapsed_ms;
  6265         start_sec = os::elapsedTime();
  6266         non_young = false;
  6268     } else {
  6269       if (!cur->is_young()) {
  6270         double end_sec = os::elapsedTime();
  6271         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6272         young_time_ms += elapsed_ms;
  6274         start_sec = os::elapsedTime();
  6275         non_young = true;
  6279     rs_lengths += cur->rem_set()->occupied_locked();
  6281     HeapRegion* next = cur->next_in_collection_set();
  6282     assert(cur->in_collection_set(), "bad CS");
  6283     cur->set_next_in_collection_set(NULL);
  6284     cur->set_in_collection_set(false);
  6286     if (cur->is_young()) {
  6287       int index = cur->young_index_in_cset();
  6288       assert(index != -1, "invariant");
  6289       assert((uint) index < policy->young_cset_region_length(), "invariant");
  6290       size_t words_survived = _surviving_young_words[index];
  6291       cur->record_surv_words_in_group(words_survived);
  6293       // At this point the we have 'popped' cur from the collection set
  6294       // (linked via next_in_collection_set()) but it is still in the
  6295       // young list (linked via next_young_region()). Clear the
  6296       // _next_young_region field.
  6297       cur->set_next_young_region(NULL);
  6298     } else {
  6299       int index = cur->young_index_in_cset();
  6300       assert(index == -1, "invariant");
  6303     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  6304             (!cur->is_young() && cur->young_index_in_cset() == -1),
  6305             "invariant" );
  6307     if (!cur->evacuation_failed()) {
  6308       MemRegion used_mr = cur->used_region();
  6310       // And the region is empty.
  6311       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  6312       pre_used += cur->used();
  6313       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  6314     } else {
  6315       cur->uninstall_surv_rate_group();
  6316       if (cur->is_young()) {
  6317         cur->set_young_index_in_cset(-1);
  6319       cur->set_not_young();
  6320       cur->set_evacuation_failed(false);
  6321       // The region is now considered to be old.
  6322       _old_set.add(cur);
  6323       evacuation_info.increment_collectionset_used_after(cur->used());
  6325     cur = next;
  6328   evacuation_info.set_regions_freed(local_free_list.length());
  6329   policy->record_max_rs_lengths(rs_lengths);
  6330   policy->cset_regions_freed();
  6332   double end_sec = os::elapsedTime();
  6333   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6335   if (non_young) {
  6336     non_young_time_ms += elapsed_ms;
  6337   } else {
  6338     young_time_ms += elapsed_ms;
  6341   prepend_to_freelist(&local_free_list);
  6342   decrement_summary_bytes(pre_used);
  6343   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6344   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6347 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
  6348  private:
  6349   FreeRegionList* _free_region_list;
  6350   HeapRegionSet* _proxy_set;
  6351   HeapRegionSetCount _humongous_regions_removed;
  6352   size_t _freed_bytes;
  6353  public:
  6355   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
  6356     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
  6359   virtual bool doHeapRegion(HeapRegion* r) {
  6360     if (!r->startsHumongous()) {
  6361       return false;
  6364     G1CollectedHeap* g1h = G1CollectedHeap::heap();
  6366     oop obj = (oop)r->bottom();
  6367     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
  6369     // The following checks whether the humongous object is live are sufficient.
  6370     // The main additional check (in addition to having a reference from the roots
  6371     // or the young gen) is whether the humongous object has a remembered set entry.
  6372     //
  6373     // A humongous object cannot be live if there is no remembered set for it
  6374     // because:
  6375     // - there can be no references from within humongous starts regions referencing
  6376     // the object because we never allocate other objects into them.
  6377     // (I.e. there are no intra-region references that may be missed by the
  6378     // remembered set)
  6379     // - as soon there is a remembered set entry to the humongous starts region
  6380     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
  6381     // until the end of a concurrent mark.
  6382     //
  6383     // It is not required to check whether the object has been found dead by marking
  6384     // or not, in fact it would prevent reclamation within a concurrent cycle, as
  6385     // all objects allocated during that time are considered live.
  6386     // SATB marking is even more conservative than the remembered set.
  6387     // So if at this point in the collection there is no remembered set entry,
  6388     // nobody has a reference to it.
  6389     // At the start of collection we flush all refinement logs, and remembered sets
  6390     // are completely up-to-date wrt to references to the humongous object.
  6391     //
  6392     // Other implementation considerations:
  6393     // - never consider object arrays: while they are a valid target, they have not
  6394     // been observed to be used as temporary objects.
  6395     // - they would also pose considerable effort for cleaning up the the remembered
  6396     // sets.
  6397     // While this cleanup is not strictly necessary to be done (or done instantly),
  6398     // given that their occurrence is very low, this saves us this additional
  6399     // complexity.
  6400     uint region_idx = r->hrs_index();
  6401     if (g1h->humongous_is_live(region_idx) ||
  6402         g1h->humongous_region_is_always_live(region_idx)) {
  6404       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6405         gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6406                                r->isHumongous(),
  6407                                region_idx,
  6408                                r->rem_set()->occupied(),
  6409                                r->rem_set()->strong_code_roots_list_length(),
  6410                                next_bitmap->isMarked(r->bottom()),
  6411                                g1h->humongous_is_live(region_idx),
  6412                                obj->is_objArray()
  6413                               );
  6416       return false;
  6419     guarantee(!obj->is_objArray(),
  6420               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
  6421                       r->bottom()));
  6423     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
  6424       gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
  6425                              r->isHumongous(),
  6426                              r->bottom(),
  6427                              region_idx,
  6428                              r->region_num(),
  6429                              r->rem_set()->occupied(),
  6430                              r->rem_set()->strong_code_roots_list_length(),
  6431                              next_bitmap->isMarked(r->bottom()),
  6432                              g1h->humongous_is_live(region_idx),
  6433                              obj->is_objArray()
  6434                             );
  6436     // Need to clear mark bit of the humongous object if already set.
  6437     if (next_bitmap->isMarked(r->bottom())) {
  6438       next_bitmap->clear(r->bottom());
  6440     _freed_bytes += r->used();
  6441     r->set_containing_set(NULL);
  6442     _humongous_regions_removed.increment(1u, r->capacity());
  6443     g1h->free_humongous_region(r, _free_region_list, false);
  6445     return false;
  6448   HeapRegionSetCount& humongous_free_count() {
  6449     return _humongous_regions_removed;
  6452   size_t bytes_freed() const {
  6453     return _freed_bytes;
  6456   size_t humongous_reclaimed() const {
  6457     return _humongous_regions_removed.length();
  6459 };
  6461 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
  6462   assert_at_safepoint(true);
  6464   if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
  6465     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
  6466     return;
  6469   double start_time = os::elapsedTime();
  6471   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
  6473   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
  6474   heap_region_iterate(&cl);
  6476   HeapRegionSetCount empty_set;
  6477   remove_from_old_sets(empty_set, cl.humongous_free_count());
  6479   G1HRPrinter* hr_printer = _g1h->hr_printer();
  6480   if (hr_printer->is_active()) {
  6481     FreeRegionListIterator iter(&local_cleanup_list);
  6482     while (iter.more_available()) {
  6483       HeapRegion* hr = iter.get_next();
  6484       hr_printer->cleanup(hr);
  6488   prepend_to_freelist(&local_cleanup_list);
  6489   decrement_summary_bytes(cl.bytes_freed());
  6491   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
  6492                                                                     cl.humongous_reclaimed());
  6495 // This routine is similar to the above but does not record
  6496 // any policy statistics or update free lists; we are abandoning
  6497 // the current incremental collection set in preparation of a
  6498 // full collection. After the full GC we will start to build up
  6499 // the incremental collection set again.
  6500 // This is only called when we're doing a full collection
  6501 // and is immediately followed by the tearing down of the young list.
  6503 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6504   HeapRegion* cur = cs_head;
  6506   while (cur != NULL) {
  6507     HeapRegion* next = cur->next_in_collection_set();
  6508     assert(cur->in_collection_set(), "bad CS");
  6509     cur->set_next_in_collection_set(NULL);
  6510     cur->set_in_collection_set(false);
  6511     cur->set_young_index_in_cset(-1);
  6512     cur = next;
  6516 void G1CollectedHeap::set_free_regions_coming() {
  6517   if (G1ConcRegionFreeingVerbose) {
  6518     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6519                            "setting free regions coming");
  6522   assert(!free_regions_coming(), "pre-condition");
  6523   _free_regions_coming = true;
  6526 void G1CollectedHeap::reset_free_regions_coming() {
  6527   assert(free_regions_coming(), "pre-condition");
  6530     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6531     _free_regions_coming = false;
  6532     SecondaryFreeList_lock->notify_all();
  6535   if (G1ConcRegionFreeingVerbose) {
  6536     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6537                            "reset free regions coming");
  6541 void G1CollectedHeap::wait_while_free_regions_coming() {
  6542   // Most of the time we won't have to wait, so let's do a quick test
  6543   // first before we take the lock.
  6544   if (!free_regions_coming()) {
  6545     return;
  6548   if (G1ConcRegionFreeingVerbose) {
  6549     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6550                            "waiting for free regions");
  6554     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6555     while (free_regions_coming()) {
  6556       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6560   if (G1ConcRegionFreeingVerbose) {
  6561     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6562                            "done waiting for free regions");
  6566 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6567   assert(heap_lock_held_for_gc(),
  6568               "the heap lock should already be held by or for this thread");
  6569   _young_list->push_region(hr);
  6572 class NoYoungRegionsClosure: public HeapRegionClosure {
  6573 private:
  6574   bool _success;
  6575 public:
  6576   NoYoungRegionsClosure() : _success(true) { }
  6577   bool doHeapRegion(HeapRegion* r) {
  6578     if (r->is_young()) {
  6579       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6580                              r->bottom(), r->end());
  6581       _success = false;
  6583     return false;
  6585   bool success() { return _success; }
  6586 };
  6588 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6589   bool ret = _young_list->check_list_empty(check_sample);
  6591   if (check_heap) {
  6592     NoYoungRegionsClosure closure;
  6593     heap_region_iterate(&closure);
  6594     ret = ret && closure.success();
  6597   return ret;
  6600 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6601 private:
  6602   HeapRegionSet *_old_set;
  6604 public:
  6605   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6607   bool doHeapRegion(HeapRegion* r) {
  6608     if (r->is_empty()) {
  6609       // We ignore empty regions, we'll empty the free list afterwards
  6610     } else if (r->is_young()) {
  6611       // We ignore young regions, we'll empty the young list afterwards
  6612     } else if (r->isHumongous()) {
  6613       // We ignore humongous regions, we're not tearing down the
  6614       // humongous region set
  6615     } else {
  6616       // The rest should be old
  6617       _old_set->remove(r);
  6619     return false;
  6622   ~TearDownRegionSetsClosure() {
  6623     assert(_old_set->is_empty(), "post-condition");
  6625 };
  6627 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6628   assert_at_safepoint(true /* should_be_vm_thread */);
  6630   if (!free_list_only) {
  6631     TearDownRegionSetsClosure cl(&_old_set);
  6632     heap_region_iterate(&cl);
  6634     // Note that emptying the _young_list is postponed and instead done as
  6635     // the first step when rebuilding the regions sets again. The reason for
  6636     // this is that during a full GC string deduplication needs to know if
  6637     // a collected region was young or old when the full GC was initiated.
  6639   _hrs.remove_all_free_regions();
  6642 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6643 private:
  6644   bool            _free_list_only;
  6645   HeapRegionSet*   _old_set;
  6646   HeapRegionSeq*   _hrs;
  6647   size_t          _total_used;
  6649 public:
  6650   RebuildRegionSetsClosure(bool free_list_only,
  6651                            HeapRegionSet* old_set, HeapRegionSeq* hrs) :
  6652     _free_list_only(free_list_only),
  6653     _old_set(old_set), _hrs(hrs), _total_used(0) {
  6654     assert(_hrs->num_free_regions() == 0, "pre-condition");
  6655     if (!free_list_only) {
  6656       assert(_old_set->is_empty(), "pre-condition");
  6660   bool doHeapRegion(HeapRegion* r) {
  6661     if (r->continuesHumongous()) {
  6662       return false;
  6665     if (r->is_empty()) {
  6666       // Add free regions to the free list
  6667       _hrs->insert_into_free_list(r);
  6668     } else if (!_free_list_only) {
  6669       assert(!r->is_young(), "we should not come across young regions");
  6671       if (r->isHumongous()) {
  6672         // We ignore humongous regions, we left the humongous set unchanged
  6673       } else {
  6674         // The rest should be old, add them to the old set
  6675         _old_set->add(r);
  6677       _total_used += r->used();
  6680     return false;
  6683   size_t total_used() {
  6684     return _total_used;
  6686 };
  6688 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6689   assert_at_safepoint(true /* should_be_vm_thread */);
  6691   if (!free_list_only) {
  6692     _young_list->empty_list();
  6695   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrs);
  6696   heap_region_iterate(&cl);
  6698   if (!free_list_only) {
  6699     _summary_bytes_used = cl.total_used();
  6701   assert(_summary_bytes_used == recalculate_used(),
  6702          err_msg("inconsistent _summary_bytes_used, "
  6703                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6704                  _summary_bytes_used, recalculate_used()));
  6707 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6708   _refine_cte_cl->set_concurrent(concurrent);
  6711 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6712   HeapRegion* hr = heap_region_containing(p);
  6713   return hr->is_in(p);
  6716 // Methods for the mutator alloc region
  6718 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6719                                                       bool force) {
  6720   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6721   assert(!force || g1_policy()->can_expand_young_list(),
  6722          "if force is true we should be able to expand the young list");
  6723   bool young_list_full = g1_policy()->is_young_list_full();
  6724   if (force || !young_list_full) {
  6725     HeapRegion* new_alloc_region = new_region(word_size,
  6726                                               false /* is_old */,
  6727                                               false /* do_expand */);
  6728     if (new_alloc_region != NULL) {
  6729       set_region_short_lived_locked(new_alloc_region);
  6730       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6731       check_bitmaps("Mutator Region Allocation", new_alloc_region);
  6732       return new_alloc_region;
  6735   return NULL;
  6738 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6739                                                   size_t allocated_bytes) {
  6740   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6741   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6743   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6744   _summary_bytes_used += allocated_bytes;
  6745   _hr_printer.retire(alloc_region);
  6746   // We update the eden sizes here, when the region is retired,
  6747   // instead of when it's allocated, since this is the point that its
  6748   // used space has been recored in _summary_bytes_used.
  6749   g1mm()->update_eden_size();
  6752 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6753                                                     bool force) {
  6754   return _g1h->new_mutator_alloc_region(word_size, force);
  6757 void G1CollectedHeap::set_par_threads() {
  6758   // Don't change the number of workers.  Use the value previously set
  6759   // in the workgroup.
  6760   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6761   uint n_workers = workers()->active_workers();
  6762   assert(UseDynamicNumberOfGCThreads ||
  6763            n_workers == workers()->total_workers(),
  6764       "Otherwise should be using the total number of workers");
  6765   if (n_workers == 0) {
  6766     assert(false, "Should have been set in prior evacuation pause.");
  6767     n_workers = ParallelGCThreads;
  6768     workers()->set_active_workers(n_workers);
  6770   set_par_threads(n_workers);
  6773 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6774                                        size_t allocated_bytes) {
  6775   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6778 // Methods for the GC alloc regions
  6780 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6781                                                  uint count,
  6782                                                  GCAllocPurpose ap) {
  6783   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6785   if (count < g1_policy()->max_regions(ap)) {
  6786     bool survivor = (ap == GCAllocForSurvived);
  6787     HeapRegion* new_alloc_region = new_region(word_size,
  6788                                               !survivor,
  6789                                               true /* do_expand */);
  6790     if (new_alloc_region != NULL) {
  6791       // We really only need to do this for old regions given that we
  6792       // should never scan survivors. But it doesn't hurt to do it
  6793       // for survivors too.
  6794       new_alloc_region->record_top_and_timestamp();
  6795       if (survivor) {
  6796         new_alloc_region->set_survivor();
  6797         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6798         check_bitmaps("Survivor Region Allocation", new_alloc_region);
  6799       } else {
  6800         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6801         check_bitmaps("Old Region Allocation", new_alloc_region);
  6803       bool during_im = g1_policy()->during_initial_mark_pause();
  6804       new_alloc_region->note_start_of_copying(during_im);
  6805       return new_alloc_region;
  6806     } else {
  6807       g1_policy()->note_alloc_region_limit_reached(ap);
  6810   return NULL;
  6813 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6814                                              size_t allocated_bytes,
  6815                                              GCAllocPurpose ap) {
  6816   bool during_im = g1_policy()->during_initial_mark_pause();
  6817   alloc_region->note_end_of_copying(during_im);
  6818   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6819   if (ap == GCAllocForSurvived) {
  6820     young_list()->add_survivor_region(alloc_region);
  6821   } else {
  6822     _old_set.add(alloc_region);
  6824   _hr_printer.retire(alloc_region);
  6827 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6828                                                        bool force) {
  6829   assert(!force, "not supported for GC alloc regions");
  6830   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6833 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6834                                           size_t allocated_bytes) {
  6835   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6836                                GCAllocForSurvived);
  6839 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6840                                                   bool force) {
  6841   assert(!force, "not supported for GC alloc regions");
  6842   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6845 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6846                                      size_t allocated_bytes) {
  6847   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6848                                GCAllocForTenured);
  6851 HeapRegion* OldGCAllocRegion::release() {
  6852   HeapRegion* cur = get();
  6853   if (cur != NULL) {
  6854     // Determine how far we are from the next card boundary. If it is smaller than
  6855     // the minimum object size we can allocate into, expand into the next card.
  6856     HeapWord* top = cur->top();
  6857     HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes);
  6859     size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
  6861     if (to_allocate_words != 0) {
  6862       // We are not at a card boundary. Fill up, possibly into the next, taking the
  6863       // end of the region and the minimum object size into account.
  6864       to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
  6865                                MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
  6867       // Skip allocation if there is not enough space to allocate even the smallest
  6868       // possible object. In this case this region will not be retained, so the
  6869       // original problem cannot occur.
  6870       if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
  6871         HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
  6872         CollectedHeap::fill_with_object(dummy, to_allocate_words);
  6876   return G1AllocRegion::release();
  6879 // Heap region set verification
  6881 class VerifyRegionListsClosure : public HeapRegionClosure {
  6882 private:
  6883   HeapRegionSet*   _old_set;
  6884   HeapRegionSet*   _humongous_set;
  6885   HeapRegionSeq*   _hrs;
  6887 public:
  6888   HeapRegionSetCount _old_count;
  6889   HeapRegionSetCount _humongous_count;
  6890   HeapRegionSetCount _free_count;
  6892   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6893                            HeapRegionSet* humongous_set,
  6894                            HeapRegionSeq* hrs) :
  6895     _old_set(old_set), _humongous_set(humongous_set), _hrs(hrs),
  6896     _old_count(), _humongous_count(), _free_count(){ }
  6898   bool doHeapRegion(HeapRegion* hr) {
  6899     if (hr->continuesHumongous()) {
  6900       return false;
  6903     if (hr->is_young()) {
  6904       // TODO
  6905     } else if (hr->startsHumongous()) {
  6906       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
  6907       _humongous_count.increment(1u, hr->capacity());
  6908     } else if (hr->is_empty()) {
  6909       assert(_hrs->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
  6910       _free_count.increment(1u, hr->capacity());
  6911     } else {
  6912       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
  6913       _old_count.increment(1u, hr->capacity());
  6915     return false;
  6918   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionSeq* free_list) {
  6919     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6920     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6921         old_set->total_capacity_bytes(), _old_count.capacity()));
  6923     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6924     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6925         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6927     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
  6928     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6929         free_list->total_capacity_bytes(), _free_count.capacity()));
  6931 };
  6933 void G1CollectedHeap::verify_region_sets() {
  6934   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6936   // First, check the explicit lists.
  6937   _hrs.verify();
  6939     // Given that a concurrent operation might be adding regions to
  6940     // the secondary free list we have to take the lock before
  6941     // verifying it.
  6942     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6943     _secondary_free_list.verify_list();
  6946   // If a concurrent region freeing operation is in progress it will
  6947   // be difficult to correctly attributed any free regions we come
  6948   // across to the correct free list given that they might belong to
  6949   // one of several (free_list, secondary_free_list, any local lists,
  6950   // etc.). So, if that's the case we will skip the rest of the
  6951   // verification operation. Alternatively, waiting for the concurrent
  6952   // operation to complete will have a non-trivial effect on the GC's
  6953   // operation (no concurrent operation will last longer than the
  6954   // interval between two calls to verification) and it might hide
  6955   // any issues that we would like to catch during testing.
  6956   if (free_regions_coming()) {
  6957     return;
  6960   // Make sure we append the secondary_free_list on the free_list so
  6961   // that all free regions we will come across can be safely
  6962   // attributed to the free_list.
  6963   append_secondary_free_list_if_not_empty_with_lock();
  6965   // Finally, make sure that the region accounting in the lists is
  6966   // consistent with what we see in the heap.
  6968   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrs);
  6969   heap_region_iterate(&cl);
  6970   cl.verify_counts(&_old_set, &_humongous_set, &_hrs);
  6973 // Optimized nmethod scanning
  6975 class RegisterNMethodOopClosure: public OopClosure {
  6976   G1CollectedHeap* _g1h;
  6977   nmethod* _nm;
  6979   template <class T> void do_oop_work(T* p) {
  6980     T heap_oop = oopDesc::load_heap_oop(p);
  6981     if (!oopDesc::is_null(heap_oop)) {
  6982       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6983       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6984       assert(!hr->continuesHumongous(),
  6985              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6986                      " starting at "HR_FORMAT,
  6987                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6989       // HeapRegion::add_strong_code_root() avoids adding duplicate
  6990       // entries but having duplicates is  OK since we "mark" nmethods
  6991       // as visited when we scan the strong code root lists during the GC.
  6992       hr->add_strong_code_root(_nm);
  6993       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
  6994              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
  6995                      _nm, HR_FORMAT_PARAMS(hr)));
  6999 public:
  7000   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  7001     _g1h(g1h), _nm(nm) {}
  7003   void do_oop(oop* p)       { do_oop_work(p); }
  7004   void do_oop(narrowOop* p) { do_oop_work(p); }
  7005 };
  7007 class UnregisterNMethodOopClosure: public OopClosure {
  7008   G1CollectedHeap* _g1h;
  7009   nmethod* _nm;
  7011   template <class T> void do_oop_work(T* p) {
  7012     T heap_oop = oopDesc::load_heap_oop(p);
  7013     if (!oopDesc::is_null(heap_oop)) {
  7014       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  7015       HeapRegion* hr = _g1h->heap_region_containing(obj);
  7016       assert(!hr->continuesHumongous(),
  7017              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  7018                      " starting at "HR_FORMAT,
  7019                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  7021       hr->remove_strong_code_root(_nm);
  7022       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
  7023              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
  7024                      _nm, HR_FORMAT_PARAMS(hr)));
  7028 public:
  7029   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  7030     _g1h(g1h), _nm(nm) {}
  7032   void do_oop(oop* p)       { do_oop_work(p); }
  7033   void do_oop(narrowOop* p) { do_oop_work(p); }
  7034 };
  7036 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  7037   CollectedHeap::register_nmethod(nm);
  7039   guarantee(nm != NULL, "sanity");
  7040   RegisterNMethodOopClosure reg_cl(this, nm);
  7041   nm->oops_do(&reg_cl);
  7044 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  7045   CollectedHeap::unregister_nmethod(nm);
  7047   guarantee(nm != NULL, "sanity");
  7048   UnregisterNMethodOopClosure reg_cl(this, nm);
  7049   nm->oops_do(&reg_cl, true);
  7052 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
  7053 public:
  7054   bool doHeapRegion(HeapRegion *hr) {
  7055     assert(!hr->isHumongous(),
  7056            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
  7057                    HR_FORMAT_PARAMS(hr)));
  7058     hr->migrate_strong_code_roots();
  7059     return false;
  7061 };
  7063 void G1CollectedHeap::migrate_strong_code_roots() {
  7064   MigrateCodeRootsHeapRegionClosure cl;
  7065   double migrate_start = os::elapsedTime();
  7066   collection_set_iterate(&cl);
  7067   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  7068   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
  7071 void G1CollectedHeap::purge_code_root_memory() {
  7072   double purge_start = os::elapsedTime();
  7073   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  7074   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  7075   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  7078 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  7079   G1CollectedHeap* _g1h;
  7081 public:
  7082   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  7083     _g1h(g1h) {}
  7085   void do_code_blob(CodeBlob* cb) {
  7086     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  7087     if (nm == NULL) {
  7088       return;
  7091     if (ScavengeRootsInCode) {
  7092       _g1h->register_nmethod(nm);
  7095 };
  7097 void G1CollectedHeap::rebuild_strong_code_roots() {
  7098   RebuildStrongCodeRootClosure blob_cl(this);
  7099   CodeCache::blobs_do(&blob_cl);

mercurial