src/cpu/x86/vm/assembler_x86.hpp

Fri, 30 Jul 2010 10:21:15 -0700

author
kvn
date
Fri, 30 Jul 2010 10:21:15 -0700
changeset 2039
66c5dadb4d61
parent 1934
e9ff18c4ace7
child 2118
d6f45b55c972
permissions
-rw-r--r--

6973308: Missing zero length check before repne scas in check_klass_subtype_slow_path()
Summary: set Z = 0 (not equal) before repne_scan() to indicate that class was not found when RCX == 0.
Reviewed-by: never, phh

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 class BiasedLockingCounters;
    27 // Contains all the definitions needed for x86 assembly code generation.
    29 // Calling convention
    30 class Argument VALUE_OBJ_CLASS_SPEC {
    31  public:
    32   enum {
    33 #ifdef _LP64
    34 #ifdef _WIN64
    35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    37 #else
    38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    40 #endif // _WIN64
    41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    43 #else
    44     n_register_parameters = 0   // 0 registers used to pass arguments
    45 #endif // _LP64
    46   };
    47 };
    50 #ifdef _LP64
    51 // Symbolically name the register arguments used by the c calling convention.
    52 // Windows is different from linux/solaris. So much for standards...
    54 #ifdef _WIN64
    56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    58 REGISTER_DECLARATION(Register, c_rarg2, r8);
    59 REGISTER_DECLARATION(Register, c_rarg3, r9);
    61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    66 #else
    68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    72 REGISTER_DECLARATION(Register, c_rarg4, r8);
    73 REGISTER_DECLARATION(Register, c_rarg5, r9);
    75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    84 #endif // _WIN64
    86 // Symbolically name the register arguments used by the Java calling convention.
    87 // We have control over the convention for java so we can do what we please.
    88 // What pleases us is to offset the java calling convention so that when
    89 // we call a suitable jni method the arguments are lined up and we don't
    90 // have to do little shuffling. A suitable jni method is non-static and a
    91 // small number of arguments (two fewer args on windows)
    92 //
    93 //        |-------------------------------------------------------|
    94 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    95 //        |-------------------------------------------------------|
    96 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
    97 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
    98 //        |-------------------------------------------------------|
    99 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   100 //        |-------------------------------------------------------|
   102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   105 // Windows runs out of register args here
   106 #ifdef _WIN64
   107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   109 #else
   110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   112 #endif /* _WIN64 */
   113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   124 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   125 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   130 #else
   131 // rscratch1 will apear in 32bit code that is dead but of course must compile
   132 // Using noreg ensures if the dead code is incorrectly live and executed it
   133 // will cause an assertion failure
   134 #define rscratch1 noreg
   136 #endif // _LP64
   138 // JSR 292 fixed register usages:
   139 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
   141 // Address is an abstraction used to represent a memory location
   142 // using any of the amd64 addressing modes with one object.
   143 //
   144 // Note: A register location is represented via a Register, not
   145 //       via an address for efficiency & simplicity reasons.
   147 class ArrayAddress;
   149 class Address VALUE_OBJ_CLASS_SPEC {
   150  public:
   151   enum ScaleFactor {
   152     no_scale = -1,
   153     times_1  =  0,
   154     times_2  =  1,
   155     times_4  =  2,
   156     times_8  =  3,
   157     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   158   };
   159   static ScaleFactor times(int size) {
   160     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
   161     if (size == 8)  return times_8;
   162     if (size == 4)  return times_4;
   163     if (size == 2)  return times_2;
   164     return times_1;
   165   }
   166   static int scale_size(ScaleFactor scale) {
   167     assert(scale != no_scale, "");
   168     assert(((1 << (int)times_1) == 1 &&
   169             (1 << (int)times_2) == 2 &&
   170             (1 << (int)times_4) == 4 &&
   171             (1 << (int)times_8) == 8), "");
   172     return (1 << (int)scale);
   173   }
   175  private:
   176   Register         _base;
   177   Register         _index;
   178   ScaleFactor      _scale;
   179   int              _disp;
   180   RelocationHolder _rspec;
   182   // Easily misused constructors make them private
   183   // %%% can we make these go away?
   184   NOT_LP64(Address(address loc, RelocationHolder spec);)
   185   Address(int disp, address loc, relocInfo::relocType rtype);
   186   Address(int disp, address loc, RelocationHolder spec);
   188  public:
   190  int disp() { return _disp; }
   191   // creation
   192   Address()
   193     : _base(noreg),
   194       _index(noreg),
   195       _scale(no_scale),
   196       _disp(0) {
   197   }
   199   // No default displacement otherwise Register can be implicitly
   200   // converted to 0(Register) which is quite a different animal.
   202   Address(Register base, int disp)
   203     : _base(base),
   204       _index(noreg),
   205       _scale(no_scale),
   206       _disp(disp) {
   207   }
   209   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   210     : _base (base),
   211       _index(index),
   212       _scale(scale),
   213       _disp (disp) {
   214     assert(!index->is_valid() == (scale == Address::no_scale),
   215            "inconsistent address");
   216   }
   218   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
   219     : _base (base),
   220       _index(index.register_or_noreg()),
   221       _scale(scale),
   222       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
   223     if (!index.is_register())  scale = Address::no_scale;
   224     assert(!_index->is_valid() == (scale == Address::no_scale),
   225            "inconsistent address");
   226   }
   228   Address plus_disp(int disp) const {
   229     Address a = (*this);
   230     a._disp += disp;
   231     return a;
   232   }
   234   // The following two overloads are used in connection with the
   235   // ByteSize type (see sizes.hpp).  They simplify the use of
   236   // ByteSize'd arguments in assembly code. Note that their equivalent
   237   // for the optimized build are the member functions with int disp
   238   // argument since ByteSize is mapped to an int type in that case.
   239   //
   240   // Note: DO NOT introduce similar overloaded functions for WordSize
   241   // arguments as in the optimized mode, both ByteSize and WordSize
   242   // are mapped to the same type and thus the compiler cannot make a
   243   // distinction anymore (=> compiler errors).
   245 #ifdef ASSERT
   246   Address(Register base, ByteSize disp)
   247     : _base(base),
   248       _index(noreg),
   249       _scale(no_scale),
   250       _disp(in_bytes(disp)) {
   251   }
   253   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   254     : _base(base),
   255       _index(index),
   256       _scale(scale),
   257       _disp(in_bytes(disp)) {
   258     assert(!index->is_valid() == (scale == Address::no_scale),
   259            "inconsistent address");
   260   }
   262   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
   263     : _base (base),
   264       _index(index.register_or_noreg()),
   265       _scale(scale),
   266       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
   267     if (!index.is_register())  scale = Address::no_scale;
   268     assert(!_index->is_valid() == (scale == Address::no_scale),
   269            "inconsistent address");
   270   }
   272 #endif // ASSERT
   274   // accessors
   275   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   276   Register    base()             const { return _base;  }
   277   Register    index()            const { return _index; }
   278   ScaleFactor scale()            const { return _scale; }
   279   int         disp()             const { return _disp;  }
   281   // Convert the raw encoding form into the form expected by the constructor for
   282   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   283   // that to noreg for the Address constructor.
   284   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
   286   static Address make_array(ArrayAddress);
   288  private:
   289   bool base_needs_rex() const {
   290     return _base != noreg && _base->encoding() >= 8;
   291   }
   293   bool index_needs_rex() const {
   294     return _index != noreg &&_index->encoding() >= 8;
   295   }
   297   relocInfo::relocType reloc() const { return _rspec.type(); }
   299   friend class Assembler;
   300   friend class MacroAssembler;
   301   friend class LIR_Assembler; // base/index/scale/disp
   302 };
   304 //
   305 // AddressLiteral has been split out from Address because operands of this type
   306 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   307 // the few instructions that need to deal with address literals are unique and the
   308 // MacroAssembler does not have to implement every instruction in the Assembler
   309 // in order to search for address literals that may need special handling depending
   310 // on the instruction and the platform. As small step on the way to merging i486/amd64
   311 // directories.
   312 //
   313 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   314   friend class ArrayAddress;
   315   RelocationHolder _rspec;
   316   // Typically we use AddressLiterals we want to use their rval
   317   // However in some situations we want the lval (effect address) of the item.
   318   // We provide a special factory for making those lvals.
   319   bool _is_lval;
   321   // If the target is far we'll need to load the ea of this to
   322   // a register to reach it. Otherwise if near we can do rip
   323   // relative addressing.
   325   address          _target;
   327  protected:
   328   // creation
   329   AddressLiteral()
   330     : _is_lval(false),
   331       _target(NULL)
   332   {}
   334   public:
   337   AddressLiteral(address target, relocInfo::relocType rtype);
   339   AddressLiteral(address target, RelocationHolder const& rspec)
   340     : _rspec(rspec),
   341       _is_lval(false),
   342       _target(target)
   343   {}
   345   AddressLiteral addr() {
   346     AddressLiteral ret = *this;
   347     ret._is_lval = true;
   348     return ret;
   349   }
   352  private:
   354   address target() { return _target; }
   355   bool is_lval() { return _is_lval; }
   357   relocInfo::relocType reloc() const { return _rspec.type(); }
   358   const RelocationHolder& rspec() const { return _rspec; }
   360   friend class Assembler;
   361   friend class MacroAssembler;
   362   friend class Address;
   363   friend class LIR_Assembler;
   364 };
   366 // Convience classes
   367 class RuntimeAddress: public AddressLiteral {
   369   public:
   371   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   373 };
   375 class OopAddress: public AddressLiteral {
   377   public:
   379   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   381 };
   383 class ExternalAddress: public AddressLiteral {
   385   public:
   387   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   389 };
   391 class InternalAddress: public AddressLiteral {
   393   public:
   395   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   397 };
   399 // x86 can do array addressing as a single operation since disp can be an absolute
   400 // address amd64 can't. We create a class that expresses the concept but does extra
   401 // magic on amd64 to get the final result
   403 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   404   private:
   406   AddressLiteral _base;
   407   Address        _index;
   409   public:
   411   ArrayAddress() {};
   412   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   413   AddressLiteral base() { return _base; }
   414   Address index() { return _index; }
   416 };
   418 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   420 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   421 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   422 // is what you get. The Assembler is generating code into a CodeBuffer.
   424 class Assembler : public AbstractAssembler  {
   425   friend class AbstractAssembler; // for the non-virtual hack
   426   friend class LIR_Assembler; // as_Address()
   427   friend class StubGenerator;
   429  public:
   430   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   431     zero          = 0x4,
   432     notZero       = 0x5,
   433     equal         = 0x4,
   434     notEqual      = 0x5,
   435     less          = 0xc,
   436     lessEqual     = 0xe,
   437     greater       = 0xf,
   438     greaterEqual  = 0xd,
   439     below         = 0x2,
   440     belowEqual    = 0x6,
   441     above         = 0x7,
   442     aboveEqual    = 0x3,
   443     overflow      = 0x0,
   444     noOverflow    = 0x1,
   445     carrySet      = 0x2,
   446     carryClear    = 0x3,
   447     negative      = 0x8,
   448     positive      = 0x9,
   449     parity        = 0xa,
   450     noParity      = 0xb
   451   };
   453   enum Prefix {
   454     // segment overrides
   455     CS_segment = 0x2e,
   456     SS_segment = 0x36,
   457     DS_segment = 0x3e,
   458     ES_segment = 0x26,
   459     FS_segment = 0x64,
   460     GS_segment = 0x65,
   462     REX        = 0x40,
   464     REX_B      = 0x41,
   465     REX_X      = 0x42,
   466     REX_XB     = 0x43,
   467     REX_R      = 0x44,
   468     REX_RB     = 0x45,
   469     REX_RX     = 0x46,
   470     REX_RXB    = 0x47,
   472     REX_W      = 0x48,
   474     REX_WB     = 0x49,
   475     REX_WX     = 0x4A,
   476     REX_WXB    = 0x4B,
   477     REX_WR     = 0x4C,
   478     REX_WRB    = 0x4D,
   479     REX_WRX    = 0x4E,
   480     REX_WRXB   = 0x4F
   481   };
   483   enum WhichOperand {
   484     // input to locate_operand, and format code for relocations
   485     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   486     disp32_operand = 1,          // embedded 32-bit displacement or address
   487     call32_operand = 2,          // embedded 32-bit self-relative displacement
   488 #ifndef _LP64
   489     _WhichOperand_limit = 3
   490 #else
   491      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   492     _WhichOperand_limit = 4
   493 #endif
   494   };
   498   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   499   // of instructions are freely declared without the need for wrapping them an ifdef.
   500   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   501   // In the .cpp file the implementations are wrapped so that they are dropped out
   502   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   503   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   504   //
   505   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   506   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   508 private:
   511   // 64bit prefixes
   512   int prefix_and_encode(int reg_enc, bool byteinst = false);
   513   int prefixq_and_encode(int reg_enc);
   515   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   516   int prefixq_and_encode(int dst_enc, int src_enc);
   518   void prefix(Register reg);
   519   void prefix(Address adr);
   520   void prefixq(Address adr);
   522   void prefix(Address adr, Register reg,  bool byteinst = false);
   523   void prefixq(Address adr, Register reg);
   525   void prefix(Address adr, XMMRegister reg);
   527   void prefetch_prefix(Address src);
   529   // Helper functions for groups of instructions
   530   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   532   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   533   // only 32bit??
   534   void emit_arith(int op1, int op2, Register dst, jobject obj);
   535   void emit_arith(int op1, int op2, Register dst, Register src);
   537   void emit_operand(Register reg,
   538                     Register base, Register index, Address::ScaleFactor scale,
   539                     int disp,
   540                     RelocationHolder const& rspec,
   541                     int rip_relative_correction = 0);
   543   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   545   // operands that only take the original 32bit registers
   546   void emit_operand32(Register reg, Address adr);
   548   void emit_operand(XMMRegister reg,
   549                     Register base, Register index, Address::ScaleFactor scale,
   550                     int disp,
   551                     RelocationHolder const& rspec);
   553   void emit_operand(XMMRegister reg, Address adr);
   555   void emit_operand(MMXRegister reg, Address adr);
   557   // workaround gcc (3.2.1-7) bug
   558   void emit_operand(Address adr, MMXRegister reg);
   561   // Immediate-to-memory forms
   562   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   564   void emit_farith(int b1, int b2, int i);
   567  protected:
   568   #ifdef ASSERT
   569   void check_relocation(RelocationHolder const& rspec, int format);
   570   #endif
   572   inline void emit_long64(jlong x);
   574   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   575   void emit_data(jint data, RelocationHolder const& rspec, int format);
   576   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   577   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   580   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   582   // These are all easily abused and hence protected
   584   // 32BIT ONLY SECTION
   585 #ifndef _LP64
   586   // Make these disappear in 64bit mode since they would never be correct
   587   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   588   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   590   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   591   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   593   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   594 #else
   595   // 64BIT ONLY SECTION
   596   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   598   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
   599   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
   601   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
   602   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
   603 #endif // _LP64
   605   // These are unique in that we are ensured by the caller that the 32bit
   606   // relative in these instructions will always be able to reach the potentially
   607   // 64bit address described by entry. Since they can take a 64bit address they
   608   // don't have the 32 suffix like the other instructions in this class.
   610   void call_literal(address entry, RelocationHolder const& rspec);
   611   void jmp_literal(address entry, RelocationHolder const& rspec);
   613   // Avoid using directly section
   614   // Instructions in this section are actually usable by anyone without danger
   615   // of failure but have performance issues that are addressed my enhanced
   616   // instructions which will do the proper thing base on the particular cpu.
   617   // We protect them because we don't trust you...
   619   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   620   // could cause a partial flag stall since they don't set CF flag.
   621   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   622   // which call inc() & dec() or add() & sub() in accordance with
   623   // the product flag UseIncDec value.
   625   void decl(Register dst);
   626   void decl(Address dst);
   627   void decq(Register dst);
   628   void decq(Address dst);
   630   void incl(Register dst);
   631   void incl(Address dst);
   632   void incq(Register dst);
   633   void incq(Address dst);
   635   // New cpus require use of movsd and movss to avoid partial register stall
   636   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   637   // The selection is done in MacroAssembler::movdbl() and movflt().
   639   // Move Scalar Single-Precision Floating-Point Values
   640   void movss(XMMRegister dst, Address src);
   641   void movss(XMMRegister dst, XMMRegister src);
   642   void movss(Address dst, XMMRegister src);
   644   // Move Scalar Double-Precision Floating-Point Values
   645   void movsd(XMMRegister dst, Address src);
   646   void movsd(XMMRegister dst, XMMRegister src);
   647   void movsd(Address dst, XMMRegister src);
   648   void movlpd(XMMRegister dst, Address src);
   650   // New cpus require use of movaps and movapd to avoid partial register stall
   651   // when moving between registers.
   652   void movaps(XMMRegister dst, XMMRegister src);
   653   void movapd(XMMRegister dst, XMMRegister src);
   655   // End avoid using directly
   658   // Instruction prefixes
   659   void prefix(Prefix p);
   661   public:
   663   // Creation
   664   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   666   // Decoding
   667   static address locate_operand(address inst, WhichOperand which);
   668   static address locate_next_instruction(address inst);
   670   // Utilities
   672 #ifdef _LP64
   673  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
   674  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
   675 #else
   676  static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
   677  static bool is_simm32(int32_t x) { return true; }
   678 #endif // LP64
   680   // Generic instructions
   681   // Does 32bit or 64bit as needed for the platform. In some sense these
   682   // belong in macro assembler but there is no need for both varieties to exist
   684   void lea(Register dst, Address src);
   686   void mov(Register dst, Register src);
   688   void pusha();
   689   void popa();
   691   void pushf();
   692   void popf();
   694   void push(int32_t imm32);
   696   void push(Register src);
   698   void pop(Register dst);
   700   // These are dummies to prevent surprise implicit conversions to Register
   701   void push(void* v);
   702   void pop(void* v);
   705   // These do register sized moves/scans
   706   void rep_mov();
   707   void rep_set();
   708   void repne_scan();
   709 #ifdef _LP64
   710   void repne_scanl();
   711 #endif
   713   // Vanilla instructions in lexical order
   715   void adcl(Register dst, int32_t imm32);
   716   void adcl(Register dst, Address src);
   717   void adcl(Register dst, Register src);
   719   void adcq(Register dst, int32_t imm32);
   720   void adcq(Register dst, Address src);
   721   void adcq(Register dst, Register src);
   724   void addl(Address dst, int32_t imm32);
   725   void addl(Address dst, Register src);
   726   void addl(Register dst, int32_t imm32);
   727   void addl(Register dst, Address src);
   728   void addl(Register dst, Register src);
   730   void addq(Address dst, int32_t imm32);
   731   void addq(Address dst, Register src);
   732   void addq(Register dst, int32_t imm32);
   733   void addq(Register dst, Address src);
   734   void addq(Register dst, Register src);
   737   void addr_nop_4();
   738   void addr_nop_5();
   739   void addr_nop_7();
   740   void addr_nop_8();
   742   // Add Scalar Double-Precision Floating-Point Values
   743   void addsd(XMMRegister dst, Address src);
   744   void addsd(XMMRegister dst, XMMRegister src);
   746   // Add Scalar Single-Precision Floating-Point Values
   747   void addss(XMMRegister dst, Address src);
   748   void addss(XMMRegister dst, XMMRegister src);
   750   void andl(Register dst, int32_t imm32);
   751   void andl(Register dst, Address src);
   752   void andl(Register dst, Register src);
   754   void andq(Register dst, int32_t imm32);
   755   void andq(Register dst, Address src);
   756   void andq(Register dst, Register src);
   759   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
   760   void andpd(XMMRegister dst, Address src);
   761   void andpd(XMMRegister dst, XMMRegister src);
   763   void bsfl(Register dst, Register src);
   764   void bsrl(Register dst, Register src);
   766 #ifdef _LP64
   767   void bsfq(Register dst, Register src);
   768   void bsrq(Register dst, Register src);
   769 #endif
   771   void bswapl(Register reg);
   773   void bswapq(Register reg);
   775   void call(Label& L, relocInfo::relocType rtype);
   776   void call(Register reg);  // push pc; pc <- reg
   777   void call(Address adr);   // push pc; pc <- adr
   779   void cdql();
   781   void cdqq();
   783   void cld() { emit_byte(0xfc); }
   785   void clflush(Address adr);
   787   void cmovl(Condition cc, Register dst, Register src);
   788   void cmovl(Condition cc, Register dst, Address src);
   790   void cmovq(Condition cc, Register dst, Register src);
   791   void cmovq(Condition cc, Register dst, Address src);
   794   void cmpb(Address dst, int imm8);
   796   void cmpl(Address dst, int32_t imm32);
   798   void cmpl(Register dst, int32_t imm32);
   799   void cmpl(Register dst, Register src);
   800   void cmpl(Register dst, Address src);
   802   void cmpq(Address dst, int32_t imm32);
   803   void cmpq(Address dst, Register src);
   805   void cmpq(Register dst, int32_t imm32);
   806   void cmpq(Register dst, Register src);
   807   void cmpq(Register dst, Address src);
   809   // these are dummies used to catch attempting to convert NULL to Register
   810   void cmpl(Register dst, void* junk); // dummy
   811   void cmpq(Register dst, void* junk); // dummy
   813   void cmpw(Address dst, int imm16);
   815   void cmpxchg8 (Address adr);
   817   void cmpxchgl(Register reg, Address adr);
   819   void cmpxchgq(Register reg, Address adr);
   821   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   822   void comisd(XMMRegister dst, Address src);
   824   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   825   void comiss(XMMRegister dst, Address src);
   827   // Identify processor type and features
   828   void cpuid() {
   829     emit_byte(0x0F);
   830     emit_byte(0xA2);
   831   }
   833   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   834   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   836   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   837   void cvtsi2sdl(XMMRegister dst, Register src);
   838   void cvtsi2sdq(XMMRegister dst, Register src);
   840   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   841   void cvtsi2ssl(XMMRegister dst, Register src);
   842   void cvtsi2ssq(XMMRegister dst, Register src);
   844   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   845   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   847   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   848   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   850   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   851   void cvtss2sd(XMMRegister dst, XMMRegister src);
   853   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   854   void cvttsd2sil(Register dst, Address src);
   855   void cvttsd2sil(Register dst, XMMRegister src);
   856   void cvttsd2siq(Register dst, XMMRegister src);
   858   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
   859   void cvttss2sil(Register dst, XMMRegister src);
   860   void cvttss2siq(Register dst, XMMRegister src);
   862   // Divide Scalar Double-Precision Floating-Point Values
   863   void divsd(XMMRegister dst, Address src);
   864   void divsd(XMMRegister dst, XMMRegister src);
   866   // Divide Scalar Single-Precision Floating-Point Values
   867   void divss(XMMRegister dst, Address src);
   868   void divss(XMMRegister dst, XMMRegister src);
   870   void emms();
   872   void fabs();
   874   void fadd(int i);
   876   void fadd_d(Address src);
   877   void fadd_s(Address src);
   879   // "Alternate" versions of x87 instructions place result down in FPU
   880   // stack instead of on TOS
   882   void fadda(int i); // "alternate" fadd
   883   void faddp(int i = 1);
   885   void fchs();
   887   void fcom(int i);
   889   void fcomp(int i = 1);
   890   void fcomp_d(Address src);
   891   void fcomp_s(Address src);
   893   void fcompp();
   895   void fcos();
   897   void fdecstp();
   899   void fdiv(int i);
   900   void fdiv_d(Address src);
   901   void fdivr_s(Address src);
   902   void fdiva(int i);  // "alternate" fdiv
   903   void fdivp(int i = 1);
   905   void fdivr(int i);
   906   void fdivr_d(Address src);
   907   void fdiv_s(Address src);
   909   void fdivra(int i); // "alternate" reversed fdiv
   911   void fdivrp(int i = 1);
   913   void ffree(int i = 0);
   915   void fild_d(Address adr);
   916   void fild_s(Address adr);
   918   void fincstp();
   920   void finit();
   922   void fist_s (Address adr);
   923   void fistp_d(Address adr);
   924   void fistp_s(Address adr);
   926   void fld1();
   928   void fld_d(Address adr);
   929   void fld_s(Address adr);
   930   void fld_s(int index);
   931   void fld_x(Address adr);  // extended-precision (80-bit) format
   933   void fldcw(Address src);
   935   void fldenv(Address src);
   937   void fldlg2();
   939   void fldln2();
   941   void fldz();
   943   void flog();
   944   void flog10();
   946   void fmul(int i);
   948   void fmul_d(Address src);
   949   void fmul_s(Address src);
   951   void fmula(int i);  // "alternate" fmul
   953   void fmulp(int i = 1);
   955   void fnsave(Address dst);
   957   void fnstcw(Address src);
   959   void fnstsw_ax();
   961   void fprem();
   962   void fprem1();
   964   void frstor(Address src);
   966   void fsin();
   968   void fsqrt();
   970   void fst_d(Address adr);
   971   void fst_s(Address adr);
   973   void fstp_d(Address adr);
   974   void fstp_d(int index);
   975   void fstp_s(Address adr);
   976   void fstp_x(Address adr); // extended-precision (80-bit) format
   978   void fsub(int i);
   979   void fsub_d(Address src);
   980   void fsub_s(Address src);
   982   void fsuba(int i);  // "alternate" fsub
   984   void fsubp(int i = 1);
   986   void fsubr(int i);
   987   void fsubr_d(Address src);
   988   void fsubr_s(Address src);
   990   void fsubra(int i); // "alternate" reversed fsub
   992   void fsubrp(int i = 1);
   994   void ftan();
   996   void ftst();
   998   void fucomi(int i = 1);
   999   void fucomip(int i = 1);
  1001   void fwait();
  1003   void fxch(int i = 1);
  1005   void fxrstor(Address src);
  1007   void fxsave(Address dst);
  1009   void fyl2x();
  1011   void hlt();
  1013   void idivl(Register src);
  1015   void idivq(Register src);
  1017   void imull(Register dst, Register src);
  1018   void imull(Register dst, Register src, int value);
  1020   void imulq(Register dst, Register src);
  1021   void imulq(Register dst, Register src, int value);
  1024   // jcc is the generic conditional branch generator to run-
  1025   // time routines, jcc is used for branches to labels. jcc
  1026   // takes a branch opcode (cc) and a label (L) and generates
  1027   // either a backward branch or a forward branch and links it
  1028   // to the label fixup chain. Usage:
  1029   //
  1030   // Label L;      // unbound label
  1031   // jcc(cc, L);   // forward branch to unbound label
  1032   // bind(L);      // bind label to the current pc
  1033   // jcc(cc, L);   // backward branch to bound label
  1034   // bind(L);      // illegal: a label may be bound only once
  1035   //
  1036   // Note: The same Label can be used for forward and backward branches
  1037   // but it may be bound only once.
  1039   void jcc(Condition cc, Label& L,
  1040            relocInfo::relocType rtype = relocInfo::none);
  1042   // Conditional jump to a 8-bit offset to L.
  1043   // WARNING: be very careful using this for forward jumps.  If the label is
  1044   // not bound within an 8-bit offset of this instruction, a run-time error
  1045   // will occur.
  1046   void jccb(Condition cc, Label& L);
  1048   void jmp(Address entry);    // pc <- entry
  1050   // Label operations & relative jumps (PPUM Appendix D)
  1051   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
  1053   void jmp(Register entry); // pc <- entry
  1055   // Unconditional 8-bit offset jump to L.
  1056   // WARNING: be very careful using this for forward jumps.  If the label is
  1057   // not bound within an 8-bit offset of this instruction, a run-time error
  1058   // will occur.
  1059   void jmpb(Label& L);
  1061   void ldmxcsr( Address src );
  1063   void leal(Register dst, Address src);
  1065   void leaq(Register dst, Address src);
  1067   void lfence() {
  1068     emit_byte(0x0F);
  1069     emit_byte(0xAE);
  1070     emit_byte(0xE8);
  1073   void lock();
  1075   void lzcntl(Register dst, Register src);
  1077 #ifdef _LP64
  1078   void lzcntq(Register dst, Register src);
  1079 #endif
  1081   enum Membar_mask_bits {
  1082     StoreStore = 1 << 3,
  1083     LoadStore  = 1 << 2,
  1084     StoreLoad  = 1 << 1,
  1085     LoadLoad   = 1 << 0
  1086   };
  1088   // Serializes memory and blows flags
  1089   void membar(Membar_mask_bits order_constraint) {
  1090     if (os::is_MP()) {
  1091       // We only have to handle StoreLoad
  1092       if (order_constraint & StoreLoad) {
  1093         // All usable chips support "locked" instructions which suffice
  1094         // as barriers, and are much faster than the alternative of
  1095         // using cpuid instruction. We use here a locked add [esp],0.
  1096         // This is conveniently otherwise a no-op except for blowing
  1097         // flags.
  1098         // Any change to this code may need to revisit other places in
  1099         // the code where this idiom is used, in particular the
  1100         // orderAccess code.
  1101         lock();
  1102         addl(Address(rsp, 0), 0);// Assert the lock# signal here
  1107   void mfence();
  1109   // Moves
  1111   void mov64(Register dst, int64_t imm64);
  1113   void movb(Address dst, Register src);
  1114   void movb(Address dst, int imm8);
  1115   void movb(Register dst, Address src);
  1117   void movdl(XMMRegister dst, Register src);
  1118   void movdl(Register dst, XMMRegister src);
  1120   // Move Double Quadword
  1121   void movdq(XMMRegister dst, Register src);
  1122   void movdq(Register dst, XMMRegister src);
  1124   // Move Aligned Double Quadword
  1125   void movdqa(Address     dst, XMMRegister src);
  1126   void movdqa(XMMRegister dst, Address src);
  1127   void movdqa(XMMRegister dst, XMMRegister src);
  1129   // Move Unaligned Double Quadword
  1130   void movdqu(Address     dst, XMMRegister src);
  1131   void movdqu(XMMRegister dst, Address src);
  1132   void movdqu(XMMRegister dst, XMMRegister src);
  1134   void movl(Register dst, int32_t imm32);
  1135   void movl(Address dst, int32_t imm32);
  1136   void movl(Register dst, Register src);
  1137   void movl(Register dst, Address src);
  1138   void movl(Address dst, Register src);
  1140   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1141   // by giving the compiler two choices it can't resolve
  1143   void movl(Address  dst, void* junk);
  1144   void movl(Register dst, void* junk);
  1146 #ifdef _LP64
  1147   void movq(Register dst, Register src);
  1148   void movq(Register dst, Address src);
  1149   void movq(Address dst, Register src);
  1150 #endif
  1152   void movq(Address     dst, MMXRegister src );
  1153   void movq(MMXRegister dst, Address src );
  1155 #ifdef _LP64
  1156   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1157   // by giving the compiler two choices it can't resolve
  1159   void movq(Address  dst, void* dummy);
  1160   void movq(Register dst, void* dummy);
  1161 #endif
  1163   // Move Quadword
  1164   void movq(Address     dst, XMMRegister src);
  1165   void movq(XMMRegister dst, Address src);
  1167   void movsbl(Register dst, Address src);
  1168   void movsbl(Register dst, Register src);
  1170 #ifdef _LP64
  1171   void movsbq(Register dst, Address src);
  1172   void movsbq(Register dst, Register src);
  1174   // Move signed 32bit immediate to 64bit extending sign
  1175   void movslq(Address dst, int32_t imm64);
  1176   void movslq(Register dst, int32_t imm64);
  1178   void movslq(Register dst, Address src);
  1179   void movslq(Register dst, Register src);
  1180   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1181 #endif
  1183   void movswl(Register dst, Address src);
  1184   void movswl(Register dst, Register src);
  1186 #ifdef _LP64
  1187   void movswq(Register dst, Address src);
  1188   void movswq(Register dst, Register src);
  1189 #endif
  1191   void movw(Address dst, int imm16);
  1192   void movw(Register dst, Address src);
  1193   void movw(Address dst, Register src);
  1195   void movzbl(Register dst, Address src);
  1196   void movzbl(Register dst, Register src);
  1198 #ifdef _LP64
  1199   void movzbq(Register dst, Address src);
  1200   void movzbq(Register dst, Register src);
  1201 #endif
  1203   void movzwl(Register dst, Address src);
  1204   void movzwl(Register dst, Register src);
  1206 #ifdef _LP64
  1207   void movzwq(Register dst, Address src);
  1208   void movzwq(Register dst, Register src);
  1209 #endif
  1211   void mull(Address src);
  1212   void mull(Register src);
  1214   // Multiply Scalar Double-Precision Floating-Point Values
  1215   void mulsd(XMMRegister dst, Address src);
  1216   void mulsd(XMMRegister dst, XMMRegister src);
  1218   // Multiply Scalar Single-Precision Floating-Point Values
  1219   void mulss(XMMRegister dst, Address src);
  1220   void mulss(XMMRegister dst, XMMRegister src);
  1222   void negl(Register dst);
  1224 #ifdef _LP64
  1225   void negq(Register dst);
  1226 #endif
  1228   void nop(int i = 1);
  1230   void notl(Register dst);
  1232 #ifdef _LP64
  1233   void notq(Register dst);
  1234 #endif
  1236   void orl(Address dst, int32_t imm32);
  1237   void orl(Register dst, int32_t imm32);
  1238   void orl(Register dst, Address src);
  1239   void orl(Register dst, Register src);
  1241   void orq(Address dst, int32_t imm32);
  1242   void orq(Register dst, int32_t imm32);
  1243   void orq(Register dst, Address src);
  1244   void orq(Register dst, Register src);
  1246   // SSE4.2 string instructions
  1247   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  1248   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
  1250 #ifndef _LP64 // no 32bit push/pop on amd64
  1251   void popl(Address dst);
  1252 #endif
  1254 #ifdef _LP64
  1255   void popq(Address dst);
  1256 #endif
  1258   void popcntl(Register dst, Address src);
  1259   void popcntl(Register dst, Register src);
  1261 #ifdef _LP64
  1262   void popcntq(Register dst, Address src);
  1263   void popcntq(Register dst, Register src);
  1264 #endif
  1266   // Prefetches (SSE, SSE2, 3DNOW only)
  1268   void prefetchnta(Address src);
  1269   void prefetchr(Address src);
  1270   void prefetcht0(Address src);
  1271   void prefetcht1(Address src);
  1272   void prefetcht2(Address src);
  1273   void prefetchw(Address src);
  1275   // Shuffle Packed Doublewords
  1276   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1277   void pshufd(XMMRegister dst, Address src,     int mode);
  1279   // Shuffle Packed Low Words
  1280   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1281   void pshuflw(XMMRegister dst, Address src,     int mode);
  1283   // Shift Right Logical Quadword Immediate
  1284   void psrlq(XMMRegister dst, int shift);
  1286   // Logical Compare Double Quadword
  1287   void ptest(XMMRegister dst, XMMRegister src);
  1288   void ptest(XMMRegister dst, Address src);
  1290   // Interleave Low Bytes
  1291   void punpcklbw(XMMRegister dst, XMMRegister src);
  1293 #ifndef _LP64 // no 32bit push/pop on amd64
  1294   void pushl(Address src);
  1295 #endif
  1297   void pushq(Address src);
  1299   // Xor Packed Byte Integer Values
  1300   void pxor(XMMRegister dst, Address src);
  1301   void pxor(XMMRegister dst, XMMRegister src);
  1303   void rcll(Register dst, int imm8);
  1305   void rclq(Register dst, int imm8);
  1307   void ret(int imm16);
  1309   void sahf();
  1311   void sarl(Register dst, int imm8);
  1312   void sarl(Register dst);
  1314   void sarq(Register dst, int imm8);
  1315   void sarq(Register dst);
  1317   void sbbl(Address dst, int32_t imm32);
  1318   void sbbl(Register dst, int32_t imm32);
  1319   void sbbl(Register dst, Address src);
  1320   void sbbl(Register dst, Register src);
  1322   void sbbq(Address dst, int32_t imm32);
  1323   void sbbq(Register dst, int32_t imm32);
  1324   void sbbq(Register dst, Address src);
  1325   void sbbq(Register dst, Register src);
  1327   void setb(Condition cc, Register dst);
  1329   void shldl(Register dst, Register src);
  1331   void shll(Register dst, int imm8);
  1332   void shll(Register dst);
  1334   void shlq(Register dst, int imm8);
  1335   void shlq(Register dst);
  1337   void shrdl(Register dst, Register src);
  1339   void shrl(Register dst, int imm8);
  1340   void shrl(Register dst);
  1342   void shrq(Register dst, int imm8);
  1343   void shrq(Register dst);
  1345   void smovl(); // QQQ generic?
  1347   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1348   void sqrtsd(XMMRegister dst, Address src);
  1349   void sqrtsd(XMMRegister dst, XMMRegister src);
  1351   void std() { emit_byte(0xfd); }
  1353   void stmxcsr( Address dst );
  1355   void subl(Address dst, int32_t imm32);
  1356   void subl(Address dst, Register src);
  1357   void subl(Register dst, int32_t imm32);
  1358   void subl(Register dst, Address src);
  1359   void subl(Register dst, Register src);
  1361   void subq(Address dst, int32_t imm32);
  1362   void subq(Address dst, Register src);
  1363   void subq(Register dst, int32_t imm32);
  1364   void subq(Register dst, Address src);
  1365   void subq(Register dst, Register src);
  1368   // Subtract Scalar Double-Precision Floating-Point Values
  1369   void subsd(XMMRegister dst, Address src);
  1370   void subsd(XMMRegister dst, XMMRegister src);
  1372   // Subtract Scalar Single-Precision Floating-Point Values
  1373   void subss(XMMRegister dst, Address src);
  1374   void subss(XMMRegister dst, XMMRegister src);
  1376   void testb(Register dst, int imm8);
  1378   void testl(Register dst, int32_t imm32);
  1379   void testl(Register dst, Register src);
  1380   void testl(Register dst, Address src);
  1382   void testq(Register dst, int32_t imm32);
  1383   void testq(Register dst, Register src);
  1386   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1387   void ucomisd(XMMRegister dst, Address src);
  1388   void ucomisd(XMMRegister dst, XMMRegister src);
  1390   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1391   void ucomiss(XMMRegister dst, Address src);
  1392   void ucomiss(XMMRegister dst, XMMRegister src);
  1394   void xaddl(Address dst, Register src);
  1396   void xaddq(Address dst, Register src);
  1398   void xchgl(Register reg, Address adr);
  1399   void xchgl(Register dst, Register src);
  1401   void xchgq(Register reg, Address adr);
  1402   void xchgq(Register dst, Register src);
  1404   void xorl(Register dst, int32_t imm32);
  1405   void xorl(Register dst, Address src);
  1406   void xorl(Register dst, Register src);
  1408   void xorq(Register dst, Address src);
  1409   void xorq(Register dst, Register src);
  1411   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1412   void xorpd(XMMRegister dst, Address src);
  1413   void xorpd(XMMRegister dst, XMMRegister src);
  1415   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1416   void xorps(XMMRegister dst, Address src);
  1417   void xorps(XMMRegister dst, XMMRegister src);
  1419   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1420 };
  1423 // MacroAssembler extends Assembler by frequently used macros.
  1424 //
  1425 // Instructions for which a 'better' code sequence exists depending
  1426 // on arguments should also go in here.
  1428 class MacroAssembler: public Assembler {
  1429   friend class LIR_Assembler;
  1430   friend class Runtime1;      // as_Address()
  1431  protected:
  1433   Address as_Address(AddressLiteral adr);
  1434   Address as_Address(ArrayAddress adr);
  1436   // Support for VM calls
  1437   //
  1438   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1439   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1440   // additional registers when doing a VM call).
  1441 #ifdef CC_INTERP
  1442   // c++ interpreter never wants to use interp_masm version of call_VM
  1443   #define VIRTUAL
  1444 #else
  1445   #define VIRTUAL virtual
  1446 #endif
  1448   VIRTUAL void call_VM_leaf_base(
  1449     address entry_point,               // the entry point
  1450     int     number_of_arguments        // the number of arguments to pop after the call
  1451   );
  1453   // This is the base routine called by the different versions of call_VM. The interpreter
  1454   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1455   // additional registers when doing a VM call).
  1456   //
  1457   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1458   // returns the register which contains the thread upon return. If a thread register has been
  1459   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1460   // (noreg) than rsp will be used instead.
  1461   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1462     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1463     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1464     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1465     address  entry_point,              // the entry point
  1466     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1467     bool     check_exceptions          // whether to check for pending exceptions after return
  1468   );
  1470   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1471   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1472   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1473   virtual void check_and_handle_popframe(Register java_thread);
  1474   virtual void check_and_handle_earlyret(Register java_thread);
  1476   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1478   // helpers for FPU flag access
  1479   // tmp is a temporary register, if none is available use noreg
  1480   void save_rax   (Register tmp);
  1481   void restore_rax(Register tmp);
  1483  public:
  1484   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1486   // Support for NULL-checks
  1487   //
  1488   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1489   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1490   // offset. No explicit code generation is needed if the offset is within a certain
  1491   // range (0 <= offset <= page_size).
  1493   void null_check(Register reg, int offset = -1);
  1494   static bool needs_explicit_null_check(intptr_t offset);
  1496   // Required platform-specific helpers for Label::patch_instructions.
  1497   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1498   void pd_patch_instruction(address branch, address target);
  1499 #ifndef PRODUCT
  1500   static void pd_print_patched_instruction(address branch);
  1501 #endif
  1503   // The following 4 methods return the offset of the appropriate move instruction
  1505   // Support for fast byte/short loading with zero extension (depending on particular CPU)
  1506   int load_unsigned_byte(Register dst, Address src);
  1507   int load_unsigned_short(Register dst, Address src);
  1509   // Support for fast byte/short loading with sign extension (depending on particular CPU)
  1510   int load_signed_byte(Register dst, Address src);
  1511   int load_signed_short(Register dst, Address src);
  1513   // Support for sign-extension (hi:lo = extend_sign(lo))
  1514   void extend_sign(Register hi, Register lo);
  1516   // Loading values by size and signed-ness
  1517   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
  1519   // Support for inc/dec with optimal instruction selection depending on value
  1521   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1522   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1524   void decrementl(Address dst, int value = 1);
  1525   void decrementl(Register reg, int value = 1);
  1527   void decrementq(Register reg, int value = 1);
  1528   void decrementq(Address dst, int value = 1);
  1530   void incrementl(Address dst, int value = 1);
  1531   void incrementl(Register reg, int value = 1);
  1533   void incrementq(Register reg, int value = 1);
  1534   void incrementq(Address dst, int value = 1);
  1537   // Support optimal SSE move instructions.
  1538   void movflt(XMMRegister dst, XMMRegister src) {
  1539     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1540     else                       { movss (dst, src); return; }
  1542   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1543   void movflt(XMMRegister dst, AddressLiteral src);
  1544   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1546   void movdbl(XMMRegister dst, XMMRegister src) {
  1547     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1548     else                       { movsd (dst, src); return; }
  1551   void movdbl(XMMRegister dst, AddressLiteral src);
  1553   void movdbl(XMMRegister dst, Address src) {
  1554     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1555     else                         { movlpd(dst, src); return; }
  1557   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1559   void incrementl(AddressLiteral dst);
  1560   void incrementl(ArrayAddress dst);
  1562   // Alignment
  1563   void align(int modulus);
  1565   // Misc
  1566   void fat_nop(); // 5 byte nop
  1568   // Stack frame creation/removal
  1569   void enter();
  1570   void leave();
  1572   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1573   // The pointer will be loaded into the thread register.
  1574   void get_thread(Register thread);
  1577   // Support for VM calls
  1578   //
  1579   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1580   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1581   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1584   void call_VM(Register oop_result,
  1585                address entry_point,
  1586                bool check_exceptions = true);
  1587   void call_VM(Register oop_result,
  1588                address entry_point,
  1589                Register arg_1,
  1590                bool check_exceptions = true);
  1591   void call_VM(Register oop_result,
  1592                address entry_point,
  1593                Register arg_1, Register arg_2,
  1594                bool check_exceptions = true);
  1595   void call_VM(Register oop_result,
  1596                address entry_point,
  1597                Register arg_1, Register arg_2, Register arg_3,
  1598                bool check_exceptions = true);
  1600   // Overloadings with last_Java_sp
  1601   void call_VM(Register oop_result,
  1602                Register last_java_sp,
  1603                address entry_point,
  1604                int number_of_arguments = 0,
  1605                bool check_exceptions = true);
  1606   void call_VM(Register oop_result,
  1607                Register last_java_sp,
  1608                address entry_point,
  1609                Register arg_1, bool
  1610                check_exceptions = true);
  1611   void call_VM(Register oop_result,
  1612                Register last_java_sp,
  1613                address entry_point,
  1614                Register arg_1, Register arg_2,
  1615                bool check_exceptions = true);
  1616   void call_VM(Register oop_result,
  1617                Register last_java_sp,
  1618                address entry_point,
  1619                Register arg_1, Register arg_2, Register arg_3,
  1620                bool check_exceptions = true);
  1622   void call_VM_leaf(address entry_point,
  1623                     int number_of_arguments = 0);
  1624   void call_VM_leaf(address entry_point,
  1625                     Register arg_1);
  1626   void call_VM_leaf(address entry_point,
  1627                     Register arg_1, Register arg_2);
  1628   void call_VM_leaf(address entry_point,
  1629                     Register arg_1, Register arg_2, Register arg_3);
  1631   // last Java Frame (fills frame anchor)
  1632   void set_last_Java_frame(Register thread,
  1633                            Register last_java_sp,
  1634                            Register last_java_fp,
  1635                            address last_java_pc);
  1637   // thread in the default location (r15_thread on 64bit)
  1638   void set_last_Java_frame(Register last_java_sp,
  1639                            Register last_java_fp,
  1640                            address last_java_pc);
  1642   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  1644   // thread in the default location (r15_thread on 64bit)
  1645   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1647   // Stores
  1648   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  1649   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  1651   void g1_write_barrier_pre(Register obj,
  1652 #ifndef _LP64
  1653                             Register thread,
  1654 #endif
  1655                             Register tmp,
  1656                             Register tmp2,
  1657                             bool     tosca_live);
  1658   void g1_write_barrier_post(Register store_addr,
  1659                              Register new_val,
  1660 #ifndef _LP64
  1661                              Register thread,
  1662 #endif
  1663                              Register tmp,
  1664                              Register tmp2);
  1667   // split store_check(Register obj) to enhance instruction interleaving
  1668   void store_check_part_1(Register obj);
  1669   void store_check_part_2(Register obj);
  1671   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1672   void c2bool(Register x);
  1674   // C++ bool manipulation
  1676   void movbool(Register dst, Address src);
  1677   void movbool(Address dst, bool boolconst);
  1678   void movbool(Address dst, Register src);
  1679   void testbool(Register dst);
  1681   // oop manipulations
  1682   void load_klass(Register dst, Register src);
  1683   void store_klass(Register dst, Register src);
  1685   void load_prototype_header(Register dst, Register src);
  1687 #ifdef _LP64
  1688   void store_klass_gap(Register dst, Register src);
  1690   void load_heap_oop(Register dst, Address src);
  1691   void store_heap_oop(Address dst, Register src);
  1693   // This dummy is to prevent a call to store_heap_oop from
  1694   // converting a zero (like NULL) into a Register by giving
  1695   // the compiler two choices it can't resolve
  1697   void store_heap_oop(Address dst, void* dummy);
  1699   // Used for storing NULL. All other oop constants should be
  1700   // stored using routines that take a jobject.
  1701   void store_heap_oop_null(Address dst);
  1703   void encode_heap_oop(Register r);
  1704   void decode_heap_oop(Register r);
  1705   void encode_heap_oop_not_null(Register r);
  1706   void decode_heap_oop_not_null(Register r);
  1707   void encode_heap_oop_not_null(Register dst, Register src);
  1708   void decode_heap_oop_not_null(Register dst, Register src);
  1710   void set_narrow_oop(Register dst, jobject obj);
  1711   void set_narrow_oop(Address dst, jobject obj);
  1712   void cmp_narrow_oop(Register dst, jobject obj);
  1713   void cmp_narrow_oop(Address dst, jobject obj);
  1715   // if heap base register is used - reinit it with the correct value
  1716   void reinit_heapbase();
  1718   DEBUG_ONLY(void verify_heapbase(const char* msg);)
  1720 #endif // _LP64
  1722   // Int division/remainder for Java
  1723   // (as idivl, but checks for special case as described in JVM spec.)
  1724   // returns idivl instruction offset for implicit exception handling
  1725   int corrected_idivl(Register reg);
  1727   // Long division/remainder for Java
  1728   // (as idivq, but checks for special case as described in JVM spec.)
  1729   // returns idivq instruction offset for implicit exception handling
  1730   int corrected_idivq(Register reg);
  1732   void int3();
  1734   // Long operation macros for a 32bit cpu
  1735   // Long negation for Java
  1736   void lneg(Register hi, Register lo);
  1738   // Long multiplication for Java
  1739   // (destroys contents of eax, ebx, ecx and edx)
  1740   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  1742   // Long shifts for Java
  1743   // (semantics as described in JVM spec.)
  1744   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  1745   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  1747   // Long compare for Java
  1748   // (semantics as described in JVM spec.)
  1749   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  1752   // misc
  1754   // Sign extension
  1755   void sign_extend_short(Register reg);
  1756   void sign_extend_byte(Register reg);
  1758   // Division by power of 2, rounding towards 0
  1759   void division_with_shift(Register reg, int shift_value);
  1761   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  1762   //
  1763   // CF (corresponds to C0) if x < y
  1764   // PF (corresponds to C2) if unordered
  1765   // ZF (corresponds to C3) if x = y
  1766   //
  1767   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1768   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  1769   void fcmp(Register tmp);
  1770   // Variant of the above which allows y to be further down the stack
  1771   // and which only pops x and y if specified. If pop_right is
  1772   // specified then pop_left must also be specified.
  1773   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  1775   // Floating-point comparison for Java
  1776   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  1777   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1778   // (semantics as described in JVM spec.)
  1779   void fcmp2int(Register dst, bool unordered_is_less);
  1780   // Variant of the above which allows y to be further down the stack
  1781   // and which only pops x and y if specified. If pop_right is
  1782   // specified then pop_left must also be specified.
  1783   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  1785   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  1786   // tmp is a temporary register, if none is available use noreg
  1787   void fremr(Register tmp);
  1790   // same as fcmp2int, but using SSE2
  1791   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1792   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1794   // Inlined sin/cos generator for Java; must not use CPU instruction
  1795   // directly on Intel as it does not have high enough precision
  1796   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  1797   // number of FPU stack slots in use; all but the topmost will
  1798   // require saving if a slow case is necessary. Assumes argument is
  1799   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  1800   // this code.
  1801   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  1803   // branch to L if FPU flag C2 is set/not set
  1804   // tmp is a temporary register, if none is available use noreg
  1805   void jC2 (Register tmp, Label& L);
  1806   void jnC2(Register tmp, Label& L);
  1808   // Pop ST (ffree & fincstp combined)
  1809   void fpop();
  1811   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1812   void push_fTOS();
  1814   // pops double TOS element from CPU stack and pushes on FPU stack
  1815   void pop_fTOS();
  1817   void empty_FPU_stack();
  1819   void push_IU_state();
  1820   void pop_IU_state();
  1822   void push_FPU_state();
  1823   void pop_FPU_state();
  1825   void push_CPU_state();
  1826   void pop_CPU_state();
  1828   // Round up to a power of two
  1829   void round_to(Register reg, int modulus);
  1831   // Callee saved registers handling
  1832   void push_callee_saved_registers();
  1833   void pop_callee_saved_registers();
  1835   // allocation
  1836   void eden_allocate(
  1837     Register obj,                      // result: pointer to object after successful allocation
  1838     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1839     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1840     Register t1,                       // temp register
  1841     Label&   slow_case                 // continuation point if fast allocation fails
  1842   );
  1843   void tlab_allocate(
  1844     Register obj,                      // result: pointer to object after successful allocation
  1845     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1846     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1847     Register t1,                       // temp register
  1848     Register t2,                       // temp register
  1849     Label&   slow_case                 // continuation point if fast allocation fails
  1850   );
  1851   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1853   // interface method calling
  1854   void lookup_interface_method(Register recv_klass,
  1855                                Register intf_klass,
  1856                                RegisterOrConstant itable_index,
  1857                                Register method_result,
  1858                                Register scan_temp,
  1859                                Label& no_such_interface);
  1861   // Test sub_klass against super_klass, with fast and slow paths.
  1863   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  1864   // One of the three labels can be NULL, meaning take the fall-through.
  1865   // If super_check_offset is -1, the value is loaded up from super_klass.
  1866   // No registers are killed, except temp_reg.
  1867   void check_klass_subtype_fast_path(Register sub_klass,
  1868                                      Register super_klass,
  1869                                      Register temp_reg,
  1870                                      Label* L_success,
  1871                                      Label* L_failure,
  1872                                      Label* L_slow_path,
  1873                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  1875   // The rest of the type check; must be wired to a corresponding fast path.
  1876   // It does not repeat the fast path logic, so don't use it standalone.
  1877   // The temp_reg and temp2_reg can be noreg, if no temps are available.
  1878   // Updates the sub's secondary super cache as necessary.
  1879   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  1880   void check_klass_subtype_slow_path(Register sub_klass,
  1881                                      Register super_klass,
  1882                                      Register temp_reg,
  1883                                      Register temp2_reg,
  1884                                      Label* L_success,
  1885                                      Label* L_failure,
  1886                                      bool set_cond_codes = false);
  1888   // Simplified, combined version, good for typical uses.
  1889   // Falls through on failure.
  1890   void check_klass_subtype(Register sub_klass,
  1891                            Register super_klass,
  1892                            Register temp_reg,
  1893                            Label& L_success);
  1895   // method handles (JSR 292)
  1896   void check_method_handle_type(Register mtype_reg, Register mh_reg,
  1897                                 Register temp_reg,
  1898                                 Label& wrong_method_type);
  1899   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  1900                                   Register temp_reg);
  1901   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
  1902   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
  1905   //----
  1906   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  1908   // Debugging
  1910   // only if +VerifyOops
  1911   void verify_oop(Register reg, const char* s = "broken oop");
  1912   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  1914   // only if +VerifyFPU
  1915   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1917   // prints msg, dumps registers and stops execution
  1918   void stop(const char* msg);
  1920   // prints msg and continues
  1921   void warn(const char* msg);
  1923   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  1924   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  1926   void os_breakpoint();
  1928   void untested()                                { stop("untested"); }
  1930   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
  1932   void should_not_reach_here()                   { stop("should not reach here"); }
  1934   void print_CPU_state();
  1936   // Stack overflow checking
  1937   void bang_stack_with_offset(int offset) {
  1938     // stack grows down, caller passes positive offset
  1939     assert(offset > 0, "must bang with negative offset");
  1940     movl(Address(rsp, (-offset)), rax);
  1943   // Writes to stack successive pages until offset reached to check for
  1944   // stack overflow + shadow pages.  Also, clobbers tmp
  1945   void bang_stack_size(Register size, Register tmp);
  1947   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
  1948                                                 Register tmp,
  1949                                                 int offset);
  1951   // Support for serializing memory accesses between threads
  1952   void serialize_memory(Register thread, Register tmp);
  1954   void verify_tlab();
  1956   // Biased locking support
  1957   // lock_reg and obj_reg must be loaded up with the appropriate values.
  1958   // swap_reg must be rax, and is killed.
  1959   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  1960   // be killed; if not supplied, push/pop will be used internally to
  1961   // allocate a temporary (inefficient, avoid if possible).
  1962   // Optional slow case is for implementations (interpreter and C1) which branch to
  1963   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  1964   // Returns offset of first potentially-faulting instruction for null
  1965   // check info (currently consumed only by C1). If
  1966   // swap_reg_contains_mark is true then returns -1 as it is assumed
  1967   // the calling code has already passed any potential faults.
  1968   int biased_locking_enter(Register lock_reg, Register obj_reg,
  1969                            Register swap_reg, Register tmp_reg,
  1970                            bool swap_reg_contains_mark,
  1971                            Label& done, Label* slow_case = NULL,
  1972                            BiasedLockingCounters* counters = NULL);
  1973   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  1976   Condition negate_condition(Condition cond);
  1978   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  1979   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  1980   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  1981   // here in MacroAssembler. The major exception to this rule is call
  1983   // Arithmetics
  1986   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  1987   void addptr(Address dst, Register src);
  1989   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  1990   void addptr(Register dst, int32_t src);
  1991   void addptr(Register dst, Register src);
  1993   void andptr(Register dst, int32_t src);
  1994   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  1996   void cmp8(AddressLiteral src1, int imm);
  1998   // renamed to drag out the casting of address to int32_t/intptr_t
  1999   void cmp32(Register src1, int32_t imm);
  2001   void cmp32(AddressLiteral src1, int32_t imm);
  2002   // compare reg - mem, or reg - &mem
  2003   void cmp32(Register src1, AddressLiteral src2);
  2005   void cmp32(Register src1, Address src2);
  2007 #ifndef _LP64
  2008   void cmpoop(Address dst, jobject obj);
  2009   void cmpoop(Register dst, jobject obj);
  2010 #endif // _LP64
  2012   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  2013   void cmpptr(Address src1, AddressLiteral src2);
  2015   void cmpptr(Register src1, AddressLiteral src2);
  2017   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2018   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2019   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2021   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2022   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2024   // cmp64 to avoild hiding cmpq
  2025   void cmp64(Register src1, AddressLiteral src);
  2027   void cmpxchgptr(Register reg, Address adr);
  2029   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  2032   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  2035   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  2037   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  2039   void shlptr(Register dst, int32_t shift);
  2040   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  2042   void shrptr(Register dst, int32_t shift);
  2043   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  2045   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  2046   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  2048   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2050   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2051   void subptr(Register dst, int32_t src);
  2052   void subptr(Register dst, Register src);
  2055   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2056   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2058   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2059   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2061   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  2065   // Helper functions for statistics gathering.
  2066   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  2067   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  2068   // Unconditional atomic increment.
  2069   void atomic_incl(AddressLiteral counter_addr);
  2071   void lea(Register dst, AddressLiteral adr);
  2072   void lea(Address dst, AddressLiteral adr);
  2073   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  2075   void leal32(Register dst, Address src) { leal(dst, src); }
  2077   void test32(Register src1, AddressLiteral src2);
  2079   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2080   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2081   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2083   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  2084   void testptr(Register src1, Register src2);
  2086   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2087   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2089   // Calls
  2091   void call(Label& L, relocInfo::relocType rtype);
  2092   void call(Register entry);
  2094   // NOTE: this call tranfers to the effective address of entry NOT
  2095   // the address contained by entry. This is because this is more natural
  2096   // for jumps/calls.
  2097   void call(AddressLiteral entry);
  2099   // Jumps
  2101   // NOTE: these jumps tranfer to the effective address of dst NOT
  2102   // the address contained by dst. This is because this is more natural
  2103   // for jumps/calls.
  2104   void jump(AddressLiteral dst);
  2105   void jump_cc(Condition cc, AddressLiteral dst);
  2107   // 32bit can do a case table jump in one instruction but we no longer allow the base
  2108   // to be installed in the Address class. This jump will tranfers to the address
  2109   // contained in the location described by entry (not the address of entry)
  2110   void jump(ArrayAddress entry);
  2112   // Floating
  2114   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  2115   void andpd(XMMRegister dst, AddressLiteral src);
  2117   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  2118   void comiss(XMMRegister dst, AddressLiteral src);
  2120   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  2121   void comisd(XMMRegister dst, AddressLiteral src);
  2123   void fldcw(Address src) { Assembler::fldcw(src); }
  2124   void fldcw(AddressLiteral src);
  2126   void fld_s(int index)   { Assembler::fld_s(index); }
  2127   void fld_s(Address src) { Assembler::fld_s(src); }
  2128   void fld_s(AddressLiteral src);
  2130   void fld_d(Address src) { Assembler::fld_d(src); }
  2131   void fld_d(AddressLiteral src);
  2133   void fld_x(Address src) { Assembler::fld_x(src); }
  2134   void fld_x(AddressLiteral src);
  2136   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  2137   void ldmxcsr(AddressLiteral src);
  2139 private:
  2140   // these are private because users should be doing movflt/movdbl
  2142   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  2143   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  2144   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  2145   void movss(XMMRegister dst, AddressLiteral src);
  2147   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  2148   void movlpd(XMMRegister dst, AddressLiteral src);
  2150 public:
  2152   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  2153   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  2154   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  2155   void movsd(XMMRegister dst, AddressLiteral src);
  2157   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  2158   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  2159   void ucomiss(XMMRegister dst, AddressLiteral src);
  2161   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  2162   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  2163   void ucomisd(XMMRegister dst, AddressLiteral src);
  2165   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  2166   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  2167   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  2168   void xorpd(XMMRegister dst, AddressLiteral src);
  2170   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  2171   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  2172   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  2173   void xorps(XMMRegister dst, AddressLiteral src);
  2175   // Data
  2177   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2179   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2180   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2182   void movoop(Register dst, jobject obj);
  2183   void movoop(Address dst, jobject obj);
  2185   void movptr(ArrayAddress dst, Register src);
  2186   // can this do an lea?
  2187   void movptr(Register dst, ArrayAddress src);
  2189   void movptr(Register dst, Address src);
  2191   void movptr(Register dst, AddressLiteral src);
  2193   void movptr(Register dst, intptr_t src);
  2194   void movptr(Register dst, Register src);
  2195   void movptr(Address dst, intptr_t src);
  2197   void movptr(Address dst, Register src);
  2199 #ifdef _LP64
  2200   // Generally the next two are only used for moving NULL
  2201   // Although there are situations in initializing the mark word where
  2202   // they could be used. They are dangerous.
  2204   // They only exist on LP64 so that int32_t and intptr_t are not the same
  2205   // and we have ambiguous declarations.
  2207   void movptr(Address dst, int32_t imm32);
  2208   void movptr(Register dst, int32_t imm32);
  2209 #endif // _LP64
  2211   // to avoid hiding movl
  2212   void mov32(AddressLiteral dst, Register src);
  2213   void mov32(Register dst, AddressLiteral src);
  2215   // to avoid hiding movb
  2216   void movbyte(ArrayAddress dst, int src);
  2218   // Can push value or effective address
  2219   void pushptr(AddressLiteral src);
  2221   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2222   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2224   void pushoop(jobject obj);
  2226   // sign extend as need a l to ptr sized element
  2227   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2228   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2230   // IndexOf strings.
  2231   void string_indexof(Register str1, Register str2,
  2232                       Register cnt1, Register cnt2, Register result,
  2233                       XMMRegister vec, Register tmp);
  2235   // Compare strings.
  2236   void string_compare(Register str1, Register str2,
  2237                       Register cnt1, Register cnt2, Register result,
  2238                       XMMRegister vec1, XMMRegister vec2);
  2240   // Compare char[] arrays.
  2241   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  2242                           Register limit, Register result, Register chr,
  2243                           XMMRegister vec1, XMMRegister vec2);
  2245 #undef VIRTUAL
  2247 };
  2249 /**
  2250  * class SkipIfEqual:
  2252  * Instantiating this class will result in assembly code being output that will
  2253  * jump around any code emitted between the creation of the instance and it's
  2254  * automatic destruction at the end of a scope block, depending on the value of
  2255  * the flag passed to the constructor, which will be checked at run-time.
  2256  */
  2257 class SkipIfEqual {
  2258  private:
  2259   MacroAssembler* _masm;
  2260   Label _label;
  2262  public:
  2263    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2264    ~SkipIfEqual();
  2265 };
  2267 #ifdef ASSERT
  2268 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2269 #endif

mercurial