src/share/vm/opto/matcher.cpp

Wed, 20 Apr 2011 18:29:35 -0700

author
kvn
date
Wed, 20 Apr 2011 18:29:35 -0700
changeset 2810
66b0e2371912
parent 2708
1d1603768966
child 2877
bad7ecd0b6ed
permissions
-rw-r--r--

7026700: regression in 6u24-rev-b23: Crash in C2 compiler in PhaseIdealLoop::build_loop_late_post
Summary: memory slices should be always created for non-static fields after allocation
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/connode.hpp"
    30 #include "opto/idealGraphPrinter.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/memnode.hpp"
    33 #include "opto/opcodes.hpp"
    34 #include "opto/regmask.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "opto/runtime.hpp"
    37 #include "opto/type.hpp"
    38 #include "runtime/atomic.hpp"
    39 #include "runtime/os.hpp"
    40 #ifdef TARGET_ARCH_MODEL_x86_32
    41 # include "adfiles/ad_x86_32.hpp"
    42 #endif
    43 #ifdef TARGET_ARCH_MODEL_x86_64
    44 # include "adfiles/ad_x86_64.hpp"
    45 #endif
    46 #ifdef TARGET_ARCH_MODEL_sparc
    47 # include "adfiles/ad_sparc.hpp"
    48 #endif
    49 #ifdef TARGET_ARCH_MODEL_zero
    50 # include "adfiles/ad_zero.hpp"
    51 #endif
    52 #ifdef TARGET_ARCH_MODEL_arm
    53 # include "adfiles/ad_arm.hpp"
    54 #endif
    56 OptoReg::Name OptoReg::c_frame_pointer;
    60 const int Matcher::base2reg[Type::lastype] = {
    61   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
    62   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
    63   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
    64   0, 0/*abio*/,
    65   Op_RegP /* Return address */, 0, /* the memories */
    66   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
    67   0  /*bottom*/
    68 };
    70 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    71 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    72 RegMask Matcher::STACK_ONLY_mask;
    73 RegMask Matcher::c_frame_ptr_mask;
    74 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    75 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    77 //---------------------------Matcher-------------------------------------------
    78 Matcher::Matcher( Node_List &proj_list ) :
    79   PhaseTransform( Phase::Ins_Select ),
    80 #ifdef ASSERT
    81   _old2new_map(C->comp_arena()),
    82   _new2old_map(C->comp_arena()),
    83 #endif
    84   _shared_nodes(C->comp_arena()),
    85   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    86   _swallowed(swallowed),
    87   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    88   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    89   _must_clone(must_clone), _proj_list(proj_list),
    90   _register_save_policy(register_save_policy),
    91   _c_reg_save_policy(c_reg_save_policy),
    92   _register_save_type(register_save_type),
    93   _ruleName(ruleName),
    94   _allocation_started(false),
    95   _states_arena(Chunk::medium_size),
    96   _visited(&_states_arena),
    97   _shared(&_states_arena),
    98   _dontcare(&_states_arena) {
    99   C->set_matcher(this);
   101   idealreg2spillmask  [Op_RegI] = NULL;
   102   idealreg2spillmask  [Op_RegN] = NULL;
   103   idealreg2spillmask  [Op_RegL] = NULL;
   104   idealreg2spillmask  [Op_RegF] = NULL;
   105   idealreg2spillmask  [Op_RegD] = NULL;
   106   idealreg2spillmask  [Op_RegP] = NULL;
   108   idealreg2debugmask  [Op_RegI] = NULL;
   109   idealreg2debugmask  [Op_RegN] = NULL;
   110   idealreg2debugmask  [Op_RegL] = NULL;
   111   idealreg2debugmask  [Op_RegF] = NULL;
   112   idealreg2debugmask  [Op_RegD] = NULL;
   113   idealreg2debugmask  [Op_RegP] = NULL;
   115   idealreg2mhdebugmask[Op_RegI] = NULL;
   116   idealreg2mhdebugmask[Op_RegN] = NULL;
   117   idealreg2mhdebugmask[Op_RegL] = NULL;
   118   idealreg2mhdebugmask[Op_RegF] = NULL;
   119   idealreg2mhdebugmask[Op_RegD] = NULL;
   120   idealreg2mhdebugmask[Op_RegP] = NULL;
   122   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
   123 }
   125 //------------------------------warp_incoming_stk_arg------------------------
   126 // This warps a VMReg into an OptoReg::Name
   127 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
   128   OptoReg::Name warped;
   129   if( reg->is_stack() ) {  // Stack slot argument?
   130     warped = OptoReg::add(_old_SP, reg->reg2stack() );
   131     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
   132     if( warped >= _in_arg_limit )
   133       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
   134     if (!RegMask::can_represent(warped)) {
   135       // the compiler cannot represent this method's calling sequence
   136       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   137       return OptoReg::Bad;
   138     }
   139     return warped;
   140   }
   141   return OptoReg::as_OptoReg(reg);
   142 }
   144 //---------------------------compute_old_SP------------------------------------
   145 OptoReg::Name Compile::compute_old_SP() {
   146   int fixed    = fixed_slots();
   147   int preserve = in_preserve_stack_slots();
   148   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   149 }
   153 #ifdef ASSERT
   154 void Matcher::verify_new_nodes_only(Node* xroot) {
   155   // Make sure that the new graph only references new nodes
   156   ResourceMark rm;
   157   Unique_Node_List worklist;
   158   VectorSet visited(Thread::current()->resource_area());
   159   worklist.push(xroot);
   160   while (worklist.size() > 0) {
   161     Node* n = worklist.pop();
   162     visited <<= n->_idx;
   163     assert(C->node_arena()->contains(n), "dead node");
   164     for (uint j = 0; j < n->req(); j++) {
   165       Node* in = n->in(j);
   166       if (in != NULL) {
   167         assert(C->node_arena()->contains(in), "dead node");
   168         if (!visited.test(in->_idx)) {
   169           worklist.push(in);
   170         }
   171       }
   172     }
   173   }
   174 }
   175 #endif
   178 //---------------------------match---------------------------------------------
   179 void Matcher::match( ) {
   180   if( MaxLabelRootDepth < 100 ) { // Too small?
   181     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   182     MaxLabelRootDepth = 100;
   183   }
   184   // One-time initialization of some register masks.
   185   init_spill_mask( C->root()->in(1) );
   186   _return_addr_mask = return_addr();
   187 #ifdef _LP64
   188   // Pointers take 2 slots in 64-bit land
   189   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   190 #endif
   192   // Map a Java-signature return type into return register-value
   193   // machine registers for 0, 1 and 2 returned values.
   194   const TypeTuple *range = C->tf()->range();
   195   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   196     // Get ideal-register return type
   197     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
   198     // Get machine return register
   199     uint sop = C->start()->Opcode();
   200     OptoRegPair regs = return_value(ireg, false);
   202     // And mask for same
   203     _return_value_mask = RegMask(regs.first());
   204     if( OptoReg::is_valid(regs.second()) )
   205       _return_value_mask.Insert(regs.second());
   206   }
   208   // ---------------
   209   // Frame Layout
   211   // Need the method signature to determine the incoming argument types,
   212   // because the types determine which registers the incoming arguments are
   213   // in, and this affects the matched code.
   214   const TypeTuple *domain = C->tf()->domain();
   215   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   216   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   217   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   218   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   219   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   220   uint i;
   221   for( i = 0; i<argcnt; i++ ) {
   222     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   223   }
   225   // Pass array of ideal registers and length to USER code (from the AD file)
   226   // that will convert this to an array of register numbers.
   227   const StartNode *start = C->start();
   228   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   229 #ifdef ASSERT
   230   // Sanity check users' calling convention.  Real handy while trying to
   231   // get the initial port correct.
   232   { for (uint i = 0; i<argcnt; i++) {
   233       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   234         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   235         _parm_regs[i].set_bad();
   236         continue;
   237       }
   238       VMReg parm_reg = vm_parm_regs[i].first();
   239       assert(parm_reg->is_valid(), "invalid arg?");
   240       if (parm_reg->is_reg()) {
   241         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   242         assert(can_be_java_arg(opto_parm_reg) ||
   243                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   244                opto_parm_reg == inline_cache_reg(),
   245                "parameters in register must be preserved by runtime stubs");
   246       }
   247       for (uint j = 0; j < i; j++) {
   248         assert(parm_reg != vm_parm_regs[j].first(),
   249                "calling conv. must produce distinct regs");
   250       }
   251     }
   252   }
   253 #endif
   255   // Do some initial frame layout.
   257   // Compute the old incoming SP (may be called FP) as
   258   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   259   _old_SP = C->compute_old_SP();
   260   assert( is_even(_old_SP), "must be even" );
   262   // Compute highest incoming stack argument as
   263   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   264   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   265   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   266   for( i = 0; i < argcnt; i++ ) {
   267     // Permit args to have no register
   268     _calling_convention_mask[i].Clear();
   269     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   270       continue;
   271     }
   272     // calling_convention returns stack arguments as a count of
   273     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   274     // the allocators point of view, taking into account all the
   275     // preserve area, locks & pad2.
   277     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   278     if( OptoReg::is_valid(reg1))
   279       _calling_convention_mask[i].Insert(reg1);
   281     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   282     if( OptoReg::is_valid(reg2))
   283       _calling_convention_mask[i].Insert(reg2);
   285     // Saved biased stack-slot register number
   286     _parm_regs[i].set_pair(reg2, reg1);
   287   }
   289   // Finally, make sure the incoming arguments take up an even number of
   290   // words, in case the arguments or locals need to contain doubleword stack
   291   // slots.  The rest of the system assumes that stack slot pairs (in
   292   // particular, in the spill area) which look aligned will in fact be
   293   // aligned relative to the stack pointer in the target machine.  Double
   294   // stack slots will always be allocated aligned.
   295   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   297   // Compute highest outgoing stack argument as
   298   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   299   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   300   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   302   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
   303     // the compiler cannot represent this method's calling sequence
   304     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   305   }
   307   if (C->failing())  return;  // bailed out on incoming arg failure
   309   // ---------------
   310   // Collect roots of matcher trees.  Every node for which
   311   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   312   // can be a valid interior of some tree.
   313   find_shared( C->root() );
   314   find_shared( C->top() );
   316   C->print_method("Before Matching");
   318   // Create new ideal node ConP #NULL even if it does exist in old space
   319   // to avoid false sharing if the corresponding mach node is not used.
   320   // The corresponding mach node is only used in rare cases for derived
   321   // pointers.
   322   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   324   // Swap out to old-space; emptying new-space
   325   Arena *old = C->node_arena()->move_contents(C->old_arena());
   327   // Save debug and profile information for nodes in old space:
   328   _old_node_note_array = C->node_note_array();
   329   if (_old_node_note_array != NULL) {
   330     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   331                            (C->comp_arena(), _old_node_note_array->length(),
   332                             0, NULL));
   333   }
   335   // Pre-size the new_node table to avoid the need for range checks.
   336   grow_new_node_array(C->unique());
   338   // Reset node counter so MachNodes start with _idx at 0
   339   int nodes = C->unique(); // save value
   340   C->set_unique(0);
   342   // Recursively match trees from old space into new space.
   343   // Correct leaves of new-space Nodes; they point to old-space.
   344   _visited.Clear();             // Clear visit bits for xform call
   345   C->set_cached_top_node(xform( C->top(), nodes ));
   346   if (!C->failing()) {
   347     Node* xroot =        xform( C->root(), 1 );
   348     if (xroot == NULL) {
   349       Matcher::soft_match_failure();  // recursive matching process failed
   350       C->record_method_not_compilable("instruction match failed");
   351     } else {
   352       // During matching shared constants were attached to C->root()
   353       // because xroot wasn't available yet, so transfer the uses to
   354       // the xroot.
   355       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   356         Node* n = C->root()->fast_out(j);
   357         if (C->node_arena()->contains(n)) {
   358           assert(n->in(0) == C->root(), "should be control user");
   359           n->set_req(0, xroot);
   360           --j;
   361           --jmax;
   362         }
   363       }
   365       // Generate new mach node for ConP #NULL
   366       assert(new_ideal_null != NULL, "sanity");
   367       _mach_null = match_tree(new_ideal_null);
   368       // Don't set control, it will confuse GCM since there are no uses.
   369       // The control will be set when this node is used first time
   370       // in find_base_for_derived().
   371       assert(_mach_null != NULL, "");
   373       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   375 #ifdef ASSERT
   376       verify_new_nodes_only(xroot);
   377 #endif
   378     }
   379   }
   380   if (C->top() == NULL || C->root() == NULL) {
   381     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   382   }
   383   if (C->failing()) {
   384     // delete old;
   385     old->destruct_contents();
   386     return;
   387   }
   388   assert( C->top(), "" );
   389   assert( C->root(), "" );
   390   validate_null_checks();
   392   // Now smoke old-space
   393   NOT_DEBUG( old->destruct_contents() );
   395   // ------------------------
   396   // Set up save-on-entry registers
   397   Fixup_Save_On_Entry( );
   398 }
   401 //------------------------------Fixup_Save_On_Entry----------------------------
   402 // The stated purpose of this routine is to take care of save-on-entry
   403 // registers.  However, the overall goal of the Match phase is to convert into
   404 // machine-specific instructions which have RegMasks to guide allocation.
   405 // So what this procedure really does is put a valid RegMask on each input
   406 // to the machine-specific variations of all Return, TailCall and Halt
   407 // instructions.  It also adds edgs to define the save-on-entry values (and of
   408 // course gives them a mask).
   410 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   411   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   412   // Do all the pre-defined register masks
   413   rms[TypeFunc::Control  ] = RegMask::Empty;
   414   rms[TypeFunc::I_O      ] = RegMask::Empty;
   415   rms[TypeFunc::Memory   ] = RegMask::Empty;
   416   rms[TypeFunc::ReturnAdr] = ret_adr;
   417   rms[TypeFunc::FramePtr ] = fp;
   418   return rms;
   419 }
   421 //---------------------------init_first_stack_mask-----------------------------
   422 // Create the initial stack mask used by values spilling to the stack.
   423 // Disallow any debug info in outgoing argument areas by setting the
   424 // initial mask accordingly.
   425 void Matcher::init_first_stack_mask() {
   427   // Allocate storage for spill masks as masks for the appropriate load type.
   428   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
   430   idealreg2spillmask  [Op_RegN] = &rms[0];
   431   idealreg2spillmask  [Op_RegI] = &rms[1];
   432   idealreg2spillmask  [Op_RegL] = &rms[2];
   433   idealreg2spillmask  [Op_RegF] = &rms[3];
   434   idealreg2spillmask  [Op_RegD] = &rms[4];
   435   idealreg2spillmask  [Op_RegP] = &rms[5];
   437   idealreg2debugmask  [Op_RegN] = &rms[6];
   438   idealreg2debugmask  [Op_RegI] = &rms[7];
   439   idealreg2debugmask  [Op_RegL] = &rms[8];
   440   idealreg2debugmask  [Op_RegF] = &rms[9];
   441   idealreg2debugmask  [Op_RegD] = &rms[10];
   442   idealreg2debugmask  [Op_RegP] = &rms[11];
   444   idealreg2mhdebugmask[Op_RegN] = &rms[12];
   445   idealreg2mhdebugmask[Op_RegI] = &rms[13];
   446   idealreg2mhdebugmask[Op_RegL] = &rms[14];
   447   idealreg2mhdebugmask[Op_RegF] = &rms[15];
   448   idealreg2mhdebugmask[Op_RegD] = &rms[16];
   449   idealreg2mhdebugmask[Op_RegP] = &rms[17];
   451   OptoReg::Name i;
   453   // At first, start with the empty mask
   454   C->FIRST_STACK_mask().Clear();
   456   // Add in the incoming argument area
   457   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   458   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   459     C->FIRST_STACK_mask().Insert(i);
   461   // Add in all bits past the outgoing argument area
   462   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
   463             "must be able to represent all call arguments in reg mask");
   464   init = _out_arg_limit;
   465   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   466     C->FIRST_STACK_mask().Insert(i);
   468   // Finally, set the "infinite stack" bit.
   469   C->FIRST_STACK_mask().set_AllStack();
   471   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   472 #ifdef _LP64
   473   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   474    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   475 #endif
   476   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   477    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   478   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   479    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
   480   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   481    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   482   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   483    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
   484   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   485    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   487    if (UseFPUForSpilling) {
   488      // This mask logic assumes that the spill operations are
   489      // symmetric and that the registers involved are the same size.
   490      // On sparc for instance we may have to use 64 bit moves will
   491      // kill 2 registers when used with F0-F31.
   492      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
   493      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
   494 #ifdef _LP64
   495      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
   496      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
   497      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
   498      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
   499 #else
   500      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
   501 #endif
   502    }
   504   // Make up debug masks.  Any spill slot plus callee-save registers.
   505   // Caller-save registers are assumed to be trashable by the various
   506   // inline-cache fixup routines.
   507   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
   508   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
   509   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
   510   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
   511   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
   512   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
   514   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   515   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   516   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   517   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   518   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   519   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   521   // Prevent stub compilations from attempting to reference
   522   // callee-saved registers from debug info
   523   bool exclude_soe = !Compile::current()->is_method_compilation();
   525   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   526     // registers the caller has to save do not work
   527     if( _register_save_policy[i] == 'C' ||
   528         _register_save_policy[i] == 'A' ||
   529         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   530       idealreg2debugmask  [Op_RegN]->Remove(i);
   531       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
   532       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
   533       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
   534       idealreg2debugmask  [Op_RegD]->Remove(i);
   535       idealreg2debugmask  [Op_RegP]->Remove(i);
   537       idealreg2mhdebugmask[Op_RegN]->Remove(i);
   538       idealreg2mhdebugmask[Op_RegI]->Remove(i);
   539       idealreg2mhdebugmask[Op_RegL]->Remove(i);
   540       idealreg2mhdebugmask[Op_RegF]->Remove(i);
   541       idealreg2mhdebugmask[Op_RegD]->Remove(i);
   542       idealreg2mhdebugmask[Op_RegP]->Remove(i);
   543     }
   544   }
   546   // Subtract the register we use to save the SP for MethodHandle
   547   // invokes to from the debug mask.
   548   const RegMask save_mask = method_handle_invoke_SP_save_mask();
   549   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
   550   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
   551   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
   552   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
   553   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
   554   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
   555 }
   557 //---------------------------is_save_on_entry----------------------------------
   558 bool Matcher::is_save_on_entry( int reg ) {
   559   return
   560     _register_save_policy[reg] == 'E' ||
   561     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   562     // Also save argument registers in the trampolining stubs
   563     (C->save_argument_registers() && is_spillable_arg(reg));
   564 }
   566 //---------------------------Fixup_Save_On_Entry-------------------------------
   567 void Matcher::Fixup_Save_On_Entry( ) {
   568   init_first_stack_mask();
   570   Node *root = C->root();       // Short name for root
   571   // Count number of save-on-entry registers.
   572   uint soe_cnt = number_of_saved_registers();
   573   uint i;
   575   // Find the procedure Start Node
   576   StartNode *start = C->start();
   577   assert( start, "Expect a start node" );
   579   // Save argument registers in the trampolining stubs
   580   if( C->save_argument_registers() )
   581     for( i = 0; i < _last_Mach_Reg; i++ )
   582       if( is_spillable_arg(i) )
   583         soe_cnt++;
   585   // Input RegMask array shared by all Returns.
   586   // The type for doubles and longs has a count of 2, but
   587   // there is only 1 returned value
   588   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   589   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   590   // Returns have 0 or 1 returned values depending on call signature.
   591   // Return register is specified by return_value in the AD file.
   592   if (ret_edge_cnt > TypeFunc::Parms)
   593     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   595   // Input RegMask array shared by all Rethrows.
   596   uint reth_edge_cnt = TypeFunc::Parms+1;
   597   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   598   // Rethrow takes exception oop only, but in the argument 0 slot.
   599   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   600 #ifdef _LP64
   601   // Need two slots for ptrs in 64-bit land
   602   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   603 #endif
   605   // Input RegMask array shared by all TailCalls
   606   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   607   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   609   // Input RegMask array shared by all TailJumps
   610   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   611   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   613   // TailCalls have 2 returned values (target & moop), whose masks come
   614   // from the usual MachNode/MachOper mechanism.  Find a sample
   615   // TailCall to extract these masks and put the correct masks into
   616   // the tail_call_rms array.
   617   for( i=1; i < root->req(); i++ ) {
   618     MachReturnNode *m = root->in(i)->as_MachReturn();
   619     if( m->ideal_Opcode() == Op_TailCall ) {
   620       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   621       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   622       break;
   623     }
   624   }
   626   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   627   // from the usual MachNode/MachOper mechanism.  Find a sample
   628   // TailJump to extract these masks and put the correct masks into
   629   // the tail_jump_rms array.
   630   for( i=1; i < root->req(); i++ ) {
   631     MachReturnNode *m = root->in(i)->as_MachReturn();
   632     if( m->ideal_Opcode() == Op_TailJump ) {
   633       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   634       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   635       break;
   636     }
   637   }
   639   // Input RegMask array shared by all Halts
   640   uint halt_edge_cnt = TypeFunc::Parms;
   641   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   643   // Capture the return input masks into each exit flavor
   644   for( i=1; i < root->req(); i++ ) {
   645     MachReturnNode *exit = root->in(i)->as_MachReturn();
   646     switch( exit->ideal_Opcode() ) {
   647       case Op_Return   : exit->_in_rms = ret_rms;  break;
   648       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   649       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   650       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   651       case Op_Halt     : exit->_in_rms = halt_rms; break;
   652       default          : ShouldNotReachHere();
   653     }
   654   }
   656   // Next unused projection number from Start.
   657   int proj_cnt = C->tf()->domain()->cnt();
   659   // Do all the save-on-entry registers.  Make projections from Start for
   660   // them, and give them a use at the exit points.  To the allocator, they
   661   // look like incoming register arguments.
   662   for( i = 0; i < _last_Mach_Reg; i++ ) {
   663     if( is_save_on_entry(i) ) {
   665       // Add the save-on-entry to the mask array
   666       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   667       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   668       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   669       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   670       // Halts need the SOE registers, but only in the stack as debug info.
   671       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   672       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   674       Node *mproj;
   676       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   677       // into a single RegD.
   678       if( (i&1) == 0 &&
   679           _register_save_type[i  ] == Op_RegF &&
   680           _register_save_type[i+1] == Op_RegF &&
   681           is_save_on_entry(i+1) ) {
   682         // Add other bit for double
   683         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   684         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   685         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   686         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   687         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   688         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   689         proj_cnt += 2;          // Skip 2 for doubles
   690       }
   691       else if( (i&1) == 1 &&    // Else check for high half of double
   692                _register_save_type[i-1] == Op_RegF &&
   693                _register_save_type[i  ] == Op_RegF &&
   694                is_save_on_entry(i-1) ) {
   695         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   696         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   697         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   698         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   699         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   700         mproj = C->top();
   701       }
   702       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   703       // into a single RegL.
   704       else if( (i&1) == 0 &&
   705           _register_save_type[i  ] == Op_RegI &&
   706           _register_save_type[i+1] == Op_RegI &&
   707         is_save_on_entry(i+1) ) {
   708         // Add other bit for long
   709         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   710         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   711         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   712         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   713         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   714         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   715         proj_cnt += 2;          // Skip 2 for longs
   716       }
   717       else if( (i&1) == 1 &&    // Else check for high half of long
   718                _register_save_type[i-1] == Op_RegI &&
   719                _register_save_type[i  ] == Op_RegI &&
   720                is_save_on_entry(i-1) ) {
   721         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   722         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   723         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   724         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   725         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   726         mproj = C->top();
   727       } else {
   728         // Make a projection for it off the Start
   729         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   730       }
   732       ret_edge_cnt ++;
   733       reth_edge_cnt ++;
   734       tail_call_edge_cnt ++;
   735       tail_jump_edge_cnt ++;
   736       halt_edge_cnt ++;
   738       // Add a use of the SOE register to all exit paths
   739       for( uint j=1; j < root->req(); j++ )
   740         root->in(j)->add_req(mproj);
   741     } // End of if a save-on-entry register
   742   } // End of for all machine registers
   743 }
   745 //------------------------------init_spill_mask--------------------------------
   746 void Matcher::init_spill_mask( Node *ret ) {
   747   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   749   OptoReg::c_frame_pointer = c_frame_pointer();
   750   c_frame_ptr_mask = c_frame_pointer();
   751 #ifdef _LP64
   752   // pointers are twice as big
   753   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   754 #endif
   756   // Start at OptoReg::stack0()
   757   STACK_ONLY_mask.Clear();
   758   OptoReg::Name init = OptoReg::stack2reg(0);
   759   // STACK_ONLY_mask is all stack bits
   760   OptoReg::Name i;
   761   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   762     STACK_ONLY_mask.Insert(i);
   763   // Also set the "infinite stack" bit.
   764   STACK_ONLY_mask.set_AllStack();
   766   // Copy the register names over into the shared world
   767   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   768     // SharedInfo::regName[i] = regName[i];
   769     // Handy RegMasks per machine register
   770     mreg2regmask[i].Insert(i);
   771   }
   773   // Grab the Frame Pointer
   774   Node *fp  = ret->in(TypeFunc::FramePtr);
   775   Node *mem = ret->in(TypeFunc::Memory);
   776   const TypePtr* atp = TypePtr::BOTTOM;
   777   // Share frame pointer while making spill ops
   778   set_shared(fp);
   780   // Compute generic short-offset Loads
   781 #ifdef _LP64
   782   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   783 #endif
   784   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
   785   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
   786   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
   787   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
   788   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   789   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   790          spillD != NULL && spillP != NULL, "");
   792   // Get the ADLC notion of the right regmask, for each basic type.
   793 #ifdef _LP64
   794   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   795 #endif
   796   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   797   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   798   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   799   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   800   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   801 }
   803 #ifdef ASSERT
   804 static void match_alias_type(Compile* C, Node* n, Node* m) {
   805   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   806   const TypePtr* nat = n->adr_type();
   807   const TypePtr* mat = m->adr_type();
   808   int nidx = C->get_alias_index(nat);
   809   int midx = C->get_alias_index(mat);
   810   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   811   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   812     for (uint i = 1; i < n->req(); i++) {
   813       Node* n1 = n->in(i);
   814       const TypePtr* n1at = n1->adr_type();
   815       if (n1at != NULL) {
   816         nat = n1at;
   817         nidx = C->get_alias_index(n1at);
   818       }
   819     }
   820   }
   821   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   822   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   823     switch (n->Opcode()) {
   824     case Op_PrefetchRead:
   825     case Op_PrefetchWrite:
   826       nidx = Compile::AliasIdxRaw;
   827       nat = TypeRawPtr::BOTTOM;
   828       break;
   829     }
   830   }
   831   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   832     switch (n->Opcode()) {
   833     case Op_ClearArray:
   834       midx = Compile::AliasIdxRaw;
   835       mat = TypeRawPtr::BOTTOM;
   836       break;
   837     }
   838   }
   839   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   840     switch (n->Opcode()) {
   841     case Op_Return:
   842     case Op_Rethrow:
   843     case Op_Halt:
   844     case Op_TailCall:
   845     case Op_TailJump:
   846       nidx = Compile::AliasIdxBot;
   847       nat = TypePtr::BOTTOM;
   848       break;
   849     }
   850   }
   851   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   852     switch (n->Opcode()) {
   853     case Op_StrComp:
   854     case Op_StrEquals:
   855     case Op_StrIndexOf:
   856     case Op_AryEq:
   857     case Op_MemBarVolatile:
   858     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   859       nidx = Compile::AliasIdxTop;
   860       nat = NULL;
   861       break;
   862     }
   863   }
   864   if (nidx != midx) {
   865     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   866       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   867       n->dump();
   868       m->dump();
   869     }
   870     assert(C->subsume_loads() && C->must_alias(nat, midx),
   871            "must not lose alias info when matching");
   872   }
   873 }
   874 #endif
   877 //------------------------------MStack-----------------------------------------
   878 // State and MStack class used in xform() and find_shared() iterative methods.
   879 enum Node_State { Pre_Visit,  // node has to be pre-visited
   880                       Visit,  // visit node
   881                  Post_Visit,  // post-visit node
   882              Alt_Post_Visit   // alternative post-visit path
   883                 };
   885 class MStack: public Node_Stack {
   886   public:
   887     MStack(int size) : Node_Stack(size) { }
   889     void push(Node *n, Node_State ns) {
   890       Node_Stack::push(n, (uint)ns);
   891     }
   892     void push(Node *n, Node_State ns, Node *parent, int indx) {
   893       ++_inode_top;
   894       if ((_inode_top + 1) >= _inode_max) grow();
   895       _inode_top->node = parent;
   896       _inode_top->indx = (uint)indx;
   897       ++_inode_top;
   898       _inode_top->node = n;
   899       _inode_top->indx = (uint)ns;
   900     }
   901     Node *parent() {
   902       pop();
   903       return node();
   904     }
   905     Node_State state() const {
   906       return (Node_State)index();
   907     }
   908     void set_state(Node_State ns) {
   909       set_index((uint)ns);
   910     }
   911 };
   914 //------------------------------xform------------------------------------------
   915 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   916 // Node in new-space.  Given a new-space Node, recursively walk his children.
   917 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   918 Node *Matcher::xform( Node *n, int max_stack ) {
   919   // Use one stack to keep both: child's node/state and parent's node/index
   920   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   921   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   923   while (mstack.is_nonempty()) {
   924     n = mstack.node();          // Leave node on stack
   925     Node_State nstate = mstack.state();
   926     if (nstate == Visit) {
   927       mstack.set_state(Post_Visit);
   928       Node *oldn = n;
   929       // Old-space or new-space check
   930       if (!C->node_arena()->contains(n)) {
   931         // Old space!
   932         Node* m;
   933         if (has_new_node(n)) {  // Not yet Label/Reduced
   934           m = new_node(n);
   935         } else {
   936           if (!is_dontcare(n)) { // Matcher can match this guy
   937             // Calls match special.  They match alone with no children.
   938             // Their children, the incoming arguments, match normally.
   939             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
   940             if (C->failing())  return NULL;
   941             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
   942           } else {                  // Nothing the matcher cares about
   943             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
   944               // Convert to machine-dependent projection
   945               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
   946 #ifdef ASSERT
   947               _new2old_map.map(m->_idx, n);
   948 #endif
   949               if (m->in(0) != NULL) // m might be top
   950                 collect_null_checks(m, n);
   951             } else {                // Else just a regular 'ol guy
   952               m = n->clone();       // So just clone into new-space
   953 #ifdef ASSERT
   954               _new2old_map.map(m->_idx, n);
   955 #endif
   956               // Def-Use edges will be added incrementally as Uses
   957               // of this node are matched.
   958               assert(m->outcnt() == 0, "no Uses of this clone yet");
   959             }
   960           }
   962           set_new_node(n, m);       // Map old to new
   963           if (_old_node_note_array != NULL) {
   964             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
   965                                                   n->_idx);
   966             C->set_node_notes_at(m->_idx, nn);
   967           }
   968           debug_only(match_alias_type(C, n, m));
   969         }
   970         n = m;    // n is now a new-space node
   971         mstack.set_node(n);
   972       }
   974       // New space!
   975       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
   977       int i;
   978       // Put precedence edges on stack first (match them last).
   979       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
   980         Node *m = oldn->in(i);
   981         if (m == NULL) break;
   982         // set -1 to call add_prec() instead of set_req() during Step1
   983         mstack.push(m, Visit, n, -1);
   984       }
   986       // For constant debug info, I'd rather have unmatched constants.
   987       int cnt = n->req();
   988       JVMState* jvms = n->jvms();
   989       int debug_cnt = jvms ? jvms->debug_start() : cnt;
   991       // Now do only debug info.  Clone constants rather than matching.
   992       // Constants are represented directly in the debug info without
   993       // the need for executable machine instructions.
   994       // Monitor boxes are also represented directly.
   995       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
   996         Node *m = n->in(i);          // Get input
   997         int op = m->Opcode();
   998         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
   999         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
  1000             op == Op_ConF || op == Op_ConD || op == Op_ConL
  1001             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
  1002             ) {
  1003           m = m->clone();
  1004 #ifdef ASSERT
  1005           _new2old_map.map(m->_idx, n);
  1006 #endif
  1007           mstack.push(m, Post_Visit, n, i); // Don't need to visit
  1008           mstack.push(m->in(0), Visit, m, 0);
  1009         } else {
  1010           mstack.push(m, Visit, n, i);
  1014       // And now walk his children, and convert his inputs to new-space.
  1015       for( ; i >= 0; --i ) { // For all normal inputs do
  1016         Node *m = n->in(i);  // Get input
  1017         if(m != NULL)
  1018           mstack.push(m, Visit, n, i);
  1022     else if (nstate == Post_Visit) {
  1023       // Set xformed input
  1024       Node *p = mstack.parent();
  1025       if (p != NULL) { // root doesn't have parent
  1026         int i = (int)mstack.index();
  1027         if (i >= 0)
  1028           p->set_req(i, n); // required input
  1029         else if (i == -1)
  1030           p->add_prec(n);   // precedence input
  1031         else
  1032           ShouldNotReachHere();
  1034       mstack.pop(); // remove processed node from stack
  1036     else {
  1037       ShouldNotReachHere();
  1039   } // while (mstack.is_nonempty())
  1040   return n; // Return new-space Node
  1043 //------------------------------warp_outgoing_stk_arg------------------------
  1044 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  1045   // Convert outgoing argument location to a pre-biased stack offset
  1046   if (reg->is_stack()) {
  1047     OptoReg::Name warped = reg->reg2stack();
  1048     // Adjust the stack slot offset to be the register number used
  1049     // by the allocator.
  1050     warped = OptoReg::add(begin_out_arg_area, warped);
  1051     // Keep track of the largest numbered stack slot used for an arg.
  1052     // Largest used slot per call-site indicates the amount of stack
  1053     // that is killed by the call.
  1054     if( warped >= out_arg_limit_per_call )
  1055       out_arg_limit_per_call = OptoReg::add(warped,1);
  1056     if (!RegMask::can_represent(warped)) {
  1057       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
  1058       return OptoReg::Bad;
  1060     return warped;
  1062   return OptoReg::as_OptoReg(reg);
  1066 //------------------------------match_sfpt-------------------------------------
  1067 // Helper function to match call instructions.  Calls match special.
  1068 // They match alone with no children.  Their children, the incoming
  1069 // arguments, match normally.
  1070 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  1071   MachSafePointNode *msfpt = NULL;
  1072   MachCallNode      *mcall = NULL;
  1073   uint               cnt;
  1074   // Split out case for SafePoint vs Call
  1075   CallNode *call;
  1076   const TypeTuple *domain;
  1077   ciMethod*        method = NULL;
  1078   bool             is_method_handle_invoke = false;  // for special kill effects
  1079   if( sfpt->is_Call() ) {
  1080     call = sfpt->as_Call();
  1081     domain = call->tf()->domain();
  1082     cnt = domain->cnt();
  1084     // Match just the call, nothing else
  1085     MachNode *m = match_tree(call);
  1086     if (C->failing())  return NULL;
  1087     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1089     // Copy data from the Ideal SafePoint to the machine version
  1090     mcall = m->as_MachCall();
  1092     mcall->set_tf(         call->tf());
  1093     mcall->set_entry_point(call->entry_point());
  1094     mcall->set_cnt(        call->cnt());
  1096     if( mcall->is_MachCallJava() ) {
  1097       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1098       const CallJavaNode *call_java =  call->as_CallJava();
  1099       method = call_java->method();
  1100       mcall_java->_method = method;
  1101       mcall_java->_bci = call_java->_bci;
  1102       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1103       is_method_handle_invoke = call_java->is_method_handle_invoke();
  1104       mcall_java->_method_handle_invoke = is_method_handle_invoke;
  1105       if( mcall_java->is_MachCallStaticJava() )
  1106         mcall_java->as_MachCallStaticJava()->_name =
  1107          call_java->as_CallStaticJava()->_name;
  1108       if( mcall_java->is_MachCallDynamicJava() )
  1109         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1110          call_java->as_CallDynamicJava()->_vtable_index;
  1112     else if( mcall->is_MachCallRuntime() ) {
  1113       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1115     msfpt = mcall;
  1117   // This is a non-call safepoint
  1118   else {
  1119     call = NULL;
  1120     domain = NULL;
  1121     MachNode *mn = match_tree(sfpt);
  1122     if (C->failing())  return NULL;
  1123     msfpt = mn->as_MachSafePoint();
  1124     cnt = TypeFunc::Parms;
  1127   // Advertise the correct memory effects (for anti-dependence computation).
  1128   msfpt->set_adr_type(sfpt->adr_type());
  1130   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1131   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1132   // Empty them all.
  1133   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1135   // Do all the pre-defined non-Empty register masks
  1136   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1137   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1139   // Place first outgoing argument can possibly be put.
  1140   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1141   assert( is_even(begin_out_arg_area), "" );
  1142   // Compute max outgoing register number per call site.
  1143   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1144   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1145   // These are usually backing store for register arguments for varargs.
  1146   if( call != NULL && call->is_CallRuntime() )
  1147     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1150   // Do the normal argument list (parameters) register masks
  1151   int argcnt = cnt - TypeFunc::Parms;
  1152   if( argcnt > 0 ) {          // Skip it all if we have no args
  1153     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1154     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1155     int i;
  1156     for( i = 0; i < argcnt; i++ ) {
  1157       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1159     // V-call to pick proper calling convention
  1160     call->calling_convention( sig_bt, parm_regs, argcnt );
  1162 #ifdef ASSERT
  1163     // Sanity check users' calling convention.  Really handy during
  1164     // the initial porting effort.  Fairly expensive otherwise.
  1165     { for (int i = 0; i<argcnt; i++) {
  1166       if( !parm_regs[i].first()->is_valid() &&
  1167           !parm_regs[i].second()->is_valid() ) continue;
  1168       VMReg reg1 = parm_regs[i].first();
  1169       VMReg reg2 = parm_regs[i].second();
  1170       for (int j = 0; j < i; j++) {
  1171         if( !parm_regs[j].first()->is_valid() &&
  1172             !parm_regs[j].second()->is_valid() ) continue;
  1173         VMReg reg3 = parm_regs[j].first();
  1174         VMReg reg4 = parm_regs[j].second();
  1175         if( !reg1->is_valid() ) {
  1176           assert( !reg2->is_valid(), "valid halvsies" );
  1177         } else if( !reg3->is_valid() ) {
  1178           assert( !reg4->is_valid(), "valid halvsies" );
  1179         } else {
  1180           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1181           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1182           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1183           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1184           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1185           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1190 #endif
  1192     // Visit each argument.  Compute its outgoing register mask.
  1193     // Return results now can have 2 bits returned.
  1194     // Compute max over all outgoing arguments both per call-site
  1195     // and over the entire method.
  1196     for( i = 0; i < argcnt; i++ ) {
  1197       // Address of incoming argument mask to fill in
  1198       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1199       if( !parm_regs[i].first()->is_valid() &&
  1200           !parm_regs[i].second()->is_valid() ) {
  1201         continue;               // Avoid Halves
  1203       // Grab first register, adjust stack slots and insert in mask.
  1204       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1205       if (OptoReg::is_valid(reg1))
  1206         rm->Insert( reg1 );
  1207       // Grab second register (if any), adjust stack slots and insert in mask.
  1208       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1209       if (OptoReg::is_valid(reg2))
  1210         rm->Insert( reg2 );
  1211     } // End of for all arguments
  1213     // Compute number of stack slots needed to restore stack in case of
  1214     // Pascal-style argument popping.
  1215     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1218   if (is_method_handle_invoke) {
  1219     // Kill some extra stack space in case method handles want to do
  1220     // a little in-place argument insertion.
  1221     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
  1222     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
  1223     // Do not update mcall->_argsize because (a) the extra space is not
  1224     // pushed as arguments and (b) _argsize is dead (not used anywhere).
  1227   // Compute the max stack slot killed by any call.  These will not be
  1228   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1229   // after all call sites have been visited.
  1230   if( _out_arg_limit < out_arg_limit_per_call)
  1231     _out_arg_limit = out_arg_limit_per_call;
  1233   if (mcall) {
  1234     // Kill the outgoing argument area, including any non-argument holes and
  1235     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1236     // Since the max-per-method covers the max-per-call-site and debug info
  1237     // is excluded on the max-per-method basis, debug info cannot land in
  1238     // this killed area.
  1239     uint r_cnt = mcall->tf()->range()->cnt();
  1240     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1241     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
  1242       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1243     } else {
  1244       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1245         proj->_rout.Insert(OptoReg::Name(i));
  1247     if( proj->_rout.is_NotEmpty() )
  1248       _proj_list.push(proj);
  1250   // Transfer the safepoint information from the call to the mcall
  1251   // Move the JVMState list
  1252   msfpt->set_jvms(sfpt->jvms());
  1253   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1254     jvms->set_map(sfpt);
  1257   // Debug inputs begin just after the last incoming parameter
  1258   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1259           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1261   // Move the OopMap
  1262   msfpt->_oop_map = sfpt->_oop_map;
  1264   // Registers killed by the call are set in the local scheduling pass
  1265   // of Global Code Motion.
  1266   return msfpt;
  1269 //---------------------------match_tree----------------------------------------
  1270 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1271 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1272 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1273 // a Load's result RegMask for memoization in idealreg2regmask[]
  1274 MachNode *Matcher::match_tree( const Node *n ) {
  1275   assert( n->Opcode() != Op_Phi, "cannot match" );
  1276   assert( !n->is_block_start(), "cannot match" );
  1277   // Set the mark for all locally allocated State objects.
  1278   // When this call returns, the _states_arena arena will be reset
  1279   // freeing all State objects.
  1280   ResourceMark rm( &_states_arena );
  1282   LabelRootDepth = 0;
  1284   // StoreNodes require their Memory input to match any LoadNodes
  1285   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1286 #ifdef ASSERT
  1287   Node* save_mem_node = _mem_node;
  1288   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1289 #endif
  1290   // State object for root node of match tree
  1291   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1292   State *s = new (&_states_arena) State;
  1293   s->_kids[0] = NULL;
  1294   s->_kids[1] = NULL;
  1295   s->_leaf = (Node*)n;
  1296   // Label the input tree, allocating labels from top-level arena
  1297   Label_Root( n, s, n->in(0), mem );
  1298   if (C->failing())  return NULL;
  1300   // The minimum cost match for the whole tree is found at the root State
  1301   uint mincost = max_juint;
  1302   uint cost = max_juint;
  1303   uint i;
  1304   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1305     if( s->valid(i) &&                // valid entry and
  1306         s->_cost[i] < cost &&         // low cost and
  1307         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1308       cost = s->_cost[mincost=i];
  1310   if (mincost == max_juint) {
  1311 #ifndef PRODUCT
  1312     tty->print("No matching rule for:");
  1313     s->dump();
  1314 #endif
  1315     Matcher::soft_match_failure();
  1316     return NULL;
  1318   // Reduce input tree based upon the state labels to machine Nodes
  1319   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1320 #ifdef ASSERT
  1321   _old2new_map.map(n->_idx, m);
  1322   _new2old_map.map(m->_idx, (Node*)n);
  1323 #endif
  1325   // Add any Matcher-ignored edges
  1326   uint cnt = n->req();
  1327   uint start = 1;
  1328   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1329   if( n->is_AddP() ) {
  1330     assert( mem == (Node*)1, "" );
  1331     start = AddPNode::Base+1;
  1333   for( i = start; i < cnt; i++ ) {
  1334     if( !n->match_edge(i) ) {
  1335       if( i < m->req() )
  1336         m->ins_req( i, n->in(i) );
  1337       else
  1338         m->add_req( n->in(i) );
  1342   debug_only( _mem_node = save_mem_node; )
  1343   return m;
  1347 //------------------------------match_into_reg---------------------------------
  1348 // Choose to either match this Node in a register or part of the current
  1349 // match tree.  Return true for requiring a register and false for matching
  1350 // as part of the current match tree.
  1351 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1353   const Type *t = m->bottom_type();
  1355   if( t->singleton() ) {
  1356     // Never force constants into registers.  Allow them to match as
  1357     // constants or registers.  Copies of the same value will share
  1358     // the same register.  See find_shared_node.
  1359     return false;
  1360   } else {                      // Not a constant
  1361     // Stop recursion if they have different Controls.
  1362     // Slot 0 of constants is not really a Control.
  1363     if( control && m->in(0) && control != m->in(0) ) {
  1365       // Actually, we can live with the most conservative control we
  1366       // find, if it post-dominates the others.  This allows us to
  1367       // pick up load/op/store trees where the load can float a little
  1368       // above the store.
  1369       Node *x = control;
  1370       const uint max_scan = 6;   // Arbitrary scan cutoff
  1371       uint j;
  1372       for( j=0; j<max_scan; j++ ) {
  1373         if( x->is_Region() )    // Bail out at merge points
  1374           return true;
  1375         x = x->in(0);
  1376         if( x == m->in(0) )     // Does 'control' post-dominate
  1377           break;                // m->in(0)?  If so, we can use it
  1379       if( j == max_scan )       // No post-domination before scan end?
  1380         return true;            // Then break the match tree up
  1382     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
  1383       // These are commonly used in address expressions and can
  1384       // efficiently fold into them on X64 in some cases.
  1385       return false;
  1389   // Not forceable cloning.  If shared, put it into a register.
  1390   return shared;
  1394 //------------------------------Instruction Selection--------------------------
  1395 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1396 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1397 // things the Matcher does not match (e.g., Memory), and things with different
  1398 // Controls (hence forced into different blocks).  We pass in the Control
  1399 // selected for this entire State tree.
  1401 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1402 // Store and the Load must have identical Memories (as well as identical
  1403 // pointers).  Since the Matcher does not have anything for Memory (and
  1404 // does not handle DAGs), I have to match the Memory input myself.  If the
  1405 // Tree root is a Store, I require all Loads to have the identical memory.
  1406 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1407   // Since Label_Root is a recursive function, its possible that we might run
  1408   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1409   LabelRootDepth++;
  1410   if (LabelRootDepth > MaxLabelRootDepth) {
  1411     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1412     return NULL;
  1414   uint care = 0;                // Edges matcher cares about
  1415   uint cnt = n->req();
  1416   uint i = 0;
  1418   // Examine children for memory state
  1419   // Can only subsume a child into your match-tree if that child's memory state
  1420   // is not modified along the path to another input.
  1421   // It is unsafe even if the other inputs are separate roots.
  1422   Node *input_mem = NULL;
  1423   for( i = 1; i < cnt; i++ ) {
  1424     if( !n->match_edge(i) ) continue;
  1425     Node *m = n->in(i);         // Get ith input
  1426     assert( m, "expect non-null children" );
  1427     if( m->is_Load() ) {
  1428       if( input_mem == NULL ) {
  1429         input_mem = m->in(MemNode::Memory);
  1430       } else if( input_mem != m->in(MemNode::Memory) ) {
  1431         input_mem = NodeSentinel;
  1436   for( i = 1; i < cnt; i++ ){// For my children
  1437     if( !n->match_edge(i) ) continue;
  1438     Node *m = n->in(i);         // Get ith input
  1439     // Allocate states out of a private arena
  1440     State *s = new (&_states_arena) State;
  1441     svec->_kids[care++] = s;
  1442     assert( care <= 2, "binary only for now" );
  1444     // Recursively label the State tree.
  1445     s->_kids[0] = NULL;
  1446     s->_kids[1] = NULL;
  1447     s->_leaf = m;
  1449     // Check for leaves of the State Tree; things that cannot be a part of
  1450     // the current tree.  If it finds any, that value is matched as a
  1451     // register operand.  If not, then the normal matching is used.
  1452     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1453         //
  1454         // Stop recursion if this is LoadNode and the root of this tree is a
  1455         // StoreNode and the load & store have different memories.
  1456         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1457         // Can NOT include the match of a subtree when its memory state
  1458         // is used by any of the other subtrees
  1459         (input_mem == NodeSentinel) ) {
  1460 #ifndef PRODUCT
  1461       // Print when we exclude matching due to different memory states at input-loads
  1462       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1463         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1464         tty->print_cr("invalid input_mem");
  1466 #endif
  1467       // Switch to a register-only opcode; this value must be in a register
  1468       // and cannot be subsumed as part of a larger instruction.
  1469       s->DFA( m->ideal_reg(), m );
  1471     } else {
  1472       // If match tree has no control and we do, adopt it for entire tree
  1473       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1474         control = m->in(0);         // Pick up control
  1475       // Else match as a normal part of the match tree.
  1476       control = Label_Root(m,s,control,mem);
  1477       if (C->failing()) return NULL;
  1482   // Call DFA to match this node, and return
  1483   svec->DFA( n->Opcode(), n );
  1485 #ifdef ASSERT
  1486   uint x;
  1487   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1488     if( svec->valid(x) )
  1489       break;
  1491   if (x >= _LAST_MACH_OPER) {
  1492     n->dump();
  1493     svec->dump();
  1494     assert( false, "bad AD file" );
  1496 #endif
  1497   return control;
  1501 // Con nodes reduced using the same rule can share their MachNode
  1502 // which reduces the number of copies of a constant in the final
  1503 // program.  The register allocator is free to split uses later to
  1504 // split live ranges.
  1505 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1506   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
  1508   // See if this Con has already been reduced using this rule.
  1509   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1510   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1511   if (last != NULL && rule == last->rule()) {
  1512     // Don't expect control change for DecodeN
  1513     if (leaf->is_DecodeN())
  1514       return last;
  1515     // Get the new space root.
  1516     Node* xroot = new_node(C->root());
  1517     if (xroot == NULL) {
  1518       // This shouldn't happen give the order of matching.
  1519       return NULL;
  1522     // Shared constants need to have their control be root so they
  1523     // can be scheduled properly.
  1524     Node* control = last->in(0);
  1525     if (control != xroot) {
  1526       if (control == NULL || control == C->root()) {
  1527         last->set_req(0, xroot);
  1528       } else {
  1529         assert(false, "unexpected control");
  1530         return NULL;
  1533     return last;
  1535   return NULL;
  1539 //------------------------------ReduceInst-------------------------------------
  1540 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1541 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1542 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1543 // Each MachNode has a number of complicated MachOper operands; each
  1544 // MachOper also covers a further tree of Ideal Nodes.
  1546 // The root of the Ideal match tree is always an instruction, so we enter
  1547 // the recursion here.  After building the MachNode, we need to recurse
  1548 // the tree checking for these cases:
  1549 // (1) Child is an instruction -
  1550 //     Build the instruction (recursively), add it as an edge.
  1551 //     Build a simple operand (register) to hold the result of the instruction.
  1552 // (2) Child is an interior part of an instruction -
  1553 //     Skip over it (do nothing)
  1554 // (3) Child is the start of a operand -
  1555 //     Build the operand, place it inside the instruction
  1556 //     Call ReduceOper.
  1557 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1558   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1560   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1561   if (shared_node != NULL) {
  1562     return shared_node;
  1565   // Build the object to represent this state & prepare for recursive calls
  1566   MachNode *mach = s->MachNodeGenerator( rule, C );
  1567   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1568   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1569   Node *leaf = s->_leaf;
  1570   // Check for instruction or instruction chain rule
  1571   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1572     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1573            "duplicating node that's already been matched");
  1574     // Instruction
  1575     mach->add_req( leaf->in(0) ); // Set initial control
  1576     // Reduce interior of complex instruction
  1577     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1578   } else {
  1579     // Instruction chain rules are data-dependent on their inputs
  1580     mach->add_req(0);             // Set initial control to none
  1581     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1584   // If a Memory was used, insert a Memory edge
  1585   if( mem != (Node*)1 ) {
  1586     mach->ins_req(MemNode::Memory,mem);
  1587 #ifdef ASSERT
  1588     // Verify adr type after matching memory operation
  1589     const MachOper* oper = mach->memory_operand();
  1590     if (oper != NULL && oper != (MachOper*)-1) {
  1591       // It has a unique memory operand.  Find corresponding ideal mem node.
  1592       Node* m = NULL;
  1593       if (leaf->is_Mem()) {
  1594         m = leaf;
  1595       } else {
  1596         m = _mem_node;
  1597         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1599       const Type* mach_at = mach->adr_type();
  1600       // DecodeN node consumed by an address may have different type
  1601       // then its input. Don't compare types for such case.
  1602       if (m->adr_type() != mach_at &&
  1603           (m->in(MemNode::Address)->is_DecodeN() ||
  1604            m->in(MemNode::Address)->is_AddP() &&
  1605            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
  1606            m->in(MemNode::Address)->is_AddP() &&
  1607            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1608            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
  1609         mach_at = m->adr_type();
  1611       if (m->adr_type() != mach_at) {
  1612         m->dump();
  1613         tty->print_cr("mach:");
  1614         mach->dump(1);
  1616       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1618 #endif
  1621   // If the _leaf is an AddP, insert the base edge
  1622   if( leaf->is_AddP() )
  1623     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1625   uint num_proj = _proj_list.size();
  1627   // Perform any 1-to-many expansions required
  1628   MachNode *ex = mach->Expand(s,_proj_list, mem);
  1629   if( ex != mach ) {
  1630     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1631     if( ex->in(1)->is_Con() )
  1632       ex->in(1)->set_req(0, C->root());
  1633     // Remove old node from the graph
  1634     for( uint i=0; i<mach->req(); i++ ) {
  1635       mach->set_req(i,NULL);
  1637 #ifdef ASSERT
  1638     _new2old_map.map(ex->_idx, s->_leaf);
  1639 #endif
  1642   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1643   // via the matcher.  By the time, nodes have been wired into the CFG,
  1644   // and any further nodes generated by expand rules will be left hanging
  1645   // in space, and will not get emitted as output code.  Catch this.
  1646   // Also, catch any new register allocation constraints ("projections")
  1647   // generated belatedly during spill code generation.
  1648   if (_allocation_started) {
  1649     guarantee(ex == mach, "no expand rules during spill generation");
  1650     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1653   if (leaf->is_Con() || leaf->is_DecodeN()) {
  1654     // Record the con for sharing
  1655     _shared_nodes.map(leaf->_idx, ex);
  1658   return ex;
  1661 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1662   // 'op' is what I am expecting to receive
  1663   int op = _leftOp[rule];
  1664   // Operand type to catch childs result
  1665   // This is what my child will give me.
  1666   int opnd_class_instance = s->_rule[op];
  1667   // Choose between operand class or not.
  1668   // This is what I will receive.
  1669   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1670   // New rule for child.  Chase operand classes to get the actual rule.
  1671   int newrule = s->_rule[catch_op];
  1673   if( newrule < NUM_OPERANDS ) {
  1674     // Chain from operand or operand class, may be output of shared node
  1675     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1676             "Bad AD file: Instruction chain rule must chain from operand");
  1677     // Insert operand into array of operands for this instruction
  1678     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1680     ReduceOper( s, newrule, mem, mach );
  1681   } else {
  1682     // Chain from the result of an instruction
  1683     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1684     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1685     Node *mem1 = (Node*)1;
  1686     debug_only(Node *save_mem_node = _mem_node;)
  1687     mach->add_req( ReduceInst(s, newrule, mem1) );
  1688     debug_only(_mem_node = save_mem_node;)
  1690   return;
  1694 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1695   if( s->_leaf->is_Load() ) {
  1696     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1697     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1698     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1699     mem = mem2;
  1701   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1702     if( mach->in(0) == NULL )
  1703       mach->set_req(0, s->_leaf->in(0));
  1706   // Now recursively walk the state tree & add operand list.
  1707   for( uint i=0; i<2; i++ ) {   // binary tree
  1708     State *newstate = s->_kids[i];
  1709     if( newstate == NULL ) break;      // Might only have 1 child
  1710     // 'op' is what I am expecting to receive
  1711     int op;
  1712     if( i == 0 ) {
  1713       op = _leftOp[rule];
  1714     } else {
  1715       op = _rightOp[rule];
  1717     // Operand type to catch childs result
  1718     // This is what my child will give me.
  1719     int opnd_class_instance = newstate->_rule[op];
  1720     // Choose between operand class or not.
  1721     // This is what I will receive.
  1722     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1723     // New rule for child.  Chase operand classes to get the actual rule.
  1724     int newrule = newstate->_rule[catch_op];
  1726     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1727       // Operand/operandClass
  1728       // Insert operand into array of operands for this instruction
  1729       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1730       ReduceOper( newstate, newrule, mem, mach );
  1732     } else {                    // Child is internal operand or new instruction
  1733       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1734         // internal operand --> call ReduceInst_Interior
  1735         // Interior of complex instruction.  Do nothing but recurse.
  1736         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1737       } else {
  1738         // instruction --> call build operand(  ) to catch result
  1739         //             --> ReduceInst( newrule )
  1740         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1741         Node *mem1 = (Node*)1;
  1742         debug_only(Node *save_mem_node = _mem_node;)
  1743         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1744         debug_only(_mem_node = save_mem_node;)
  1747     assert( mach->_opnds[num_opnds-1], "" );
  1749   return num_opnds;
  1752 // This routine walks the interior of possible complex operands.
  1753 // At each point we check our children in the match tree:
  1754 // (1) No children -
  1755 //     We are a leaf; add _leaf field as an input to the MachNode
  1756 // (2) Child is an internal operand -
  1757 //     Skip over it ( do nothing )
  1758 // (3) Child is an instruction -
  1759 //     Call ReduceInst recursively and
  1760 //     and instruction as an input to the MachNode
  1761 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1762   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1763   State *kid = s->_kids[0];
  1764   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1766   // Leaf?  And not subsumed?
  1767   if( kid == NULL && !_swallowed[rule] ) {
  1768     mach->add_req( s->_leaf );  // Add leaf pointer
  1769     return;                     // Bail out
  1772   if( s->_leaf->is_Load() ) {
  1773     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1774     mem = s->_leaf->in(MemNode::Memory);
  1775     debug_only(_mem_node = s->_leaf;)
  1777   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1778     if( !mach->in(0) )
  1779       mach->set_req(0,s->_leaf->in(0));
  1780     else {
  1781       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1785   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1786     int newrule;
  1787     if( i == 0 )
  1788       newrule = kid->_rule[_leftOp[rule]];
  1789     else
  1790       newrule = kid->_rule[_rightOp[rule]];
  1792     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1793       // Internal operand; recurse but do nothing else
  1794       ReduceOper( kid, newrule, mem, mach );
  1796     } else {                    // Child is a new instruction
  1797       // Reduce the instruction, and add a direct pointer from this
  1798       // machine instruction to the newly reduced one.
  1799       Node *mem1 = (Node*)1;
  1800       debug_only(Node *save_mem_node = _mem_node;)
  1801       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1802       debug_only(_mem_node = save_mem_node;)
  1808 // -------------------------------------------------------------------------
  1809 // Java-Java calling convention
  1810 // (what you use when Java calls Java)
  1812 //------------------------------find_receiver----------------------------------
  1813 // For a given signature, return the OptoReg for parameter 0.
  1814 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1815   VMRegPair regs;
  1816   BasicType sig_bt = T_OBJECT;
  1817   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1818   // Return argument 0 register.  In the LP64 build pointers
  1819   // take 2 registers, but the VM wants only the 'main' name.
  1820   return OptoReg::as_OptoReg(regs.first());
  1823 // A method-klass-holder may be passed in the inline_cache_reg
  1824 // and then expanded into the inline_cache_reg and a method_oop register
  1825 //   defined in ad_<arch>.cpp
  1828 //------------------------------find_shared------------------------------------
  1829 // Set bits if Node is shared or otherwise a root
  1830 void Matcher::find_shared( Node *n ) {
  1831   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1832   MStack mstack(C->unique() * 2);
  1833   // Mark nodes as address_visited if they are inputs to an address expression
  1834   VectorSet address_visited(Thread::current()->resource_area());
  1835   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1836   while (mstack.is_nonempty()) {
  1837     n = mstack.node();       // Leave node on stack
  1838     Node_State nstate = mstack.state();
  1839     uint nop = n->Opcode();
  1840     if (nstate == Pre_Visit) {
  1841       if (address_visited.test(n->_idx)) { // Visited in address already?
  1842         // Flag as visited and shared now.
  1843         set_visited(n);
  1845       if (is_visited(n)) {   // Visited already?
  1846         // Node is shared and has no reason to clone.  Flag it as shared.
  1847         // This causes it to match into a register for the sharing.
  1848         set_shared(n);       // Flag as shared and
  1849         mstack.pop();        // remove node from stack
  1850         continue;
  1852       nstate = Visit; // Not already visited; so visit now
  1854     if (nstate == Visit) {
  1855       mstack.set_state(Post_Visit);
  1856       set_visited(n);   // Flag as visited now
  1857       bool mem_op = false;
  1859       switch( nop ) {  // Handle some opcodes special
  1860       case Op_Phi:             // Treat Phis as shared roots
  1861       case Op_Parm:
  1862       case Op_Proj:            // All handled specially during matching
  1863       case Op_SafePointScalarObject:
  1864         set_shared(n);
  1865         set_dontcare(n);
  1866         break;
  1867       case Op_If:
  1868       case Op_CountedLoopEnd:
  1869         mstack.set_state(Alt_Post_Visit); // Alternative way
  1870         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1871         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1872         // Bool and CmpX side-by-side, because it can only get at constants
  1873         // that are at the leaves of Match trees, and the Bool's condition acts
  1874         // as a constant here.
  1875         mstack.push(n->in(1), Visit);         // Clone the Bool
  1876         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1877         continue; // while (mstack.is_nonempty())
  1878       case Op_ConvI2D:         // These forms efficiently match with a prior
  1879       case Op_ConvI2F:         //   Load but not a following Store
  1880         if( n->in(1)->is_Load() &&        // Prior load
  1881             n->outcnt() == 1 &&           // Not already shared
  1882             n->unique_out()->is_Store() ) // Following store
  1883           set_shared(n);       // Force it to be a root
  1884         break;
  1885       case Op_ReverseBytesI:
  1886       case Op_ReverseBytesL:
  1887         if( n->in(1)->is_Load() &&        // Prior load
  1888             n->outcnt() == 1 )            // Not already shared
  1889           set_shared(n);                  // Force it to be a root
  1890         break;
  1891       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1892       case Op_IfFalse:
  1893       case Op_IfTrue:
  1894       case Op_MachProj:
  1895       case Op_MergeMem:
  1896       case Op_Catch:
  1897       case Op_CatchProj:
  1898       case Op_CProj:
  1899       case Op_JumpProj:
  1900       case Op_JProj:
  1901       case Op_NeverBranch:
  1902         set_dontcare(n);
  1903         break;
  1904       case Op_Jump:
  1905         mstack.push(n->in(1), Visit);         // Switch Value
  1906         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1907         continue;                             // while (mstack.is_nonempty())
  1908       case Op_StrComp:
  1909       case Op_StrEquals:
  1910       case Op_StrIndexOf:
  1911       case Op_AryEq:
  1912         set_shared(n); // Force result into register (it will be anyways)
  1913         break;
  1914       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1915         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1916         const TypePtr* tp = tn->type()->is_ptr();
  1917         if (tp->_ptr == TypePtr::AnyNull) {
  1918           tn->set_type(TypePtr::NULL_PTR);
  1920         break;
  1922       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  1923         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1924         const TypePtr* tp = tn->type()->make_ptr();
  1925         if (tp && tp->_ptr == TypePtr::AnyNull) {
  1926           tn->set_type(TypeNarrowOop::NULL_PTR);
  1928         break;
  1930       case Op_Binary:         // These are introduced in the Post_Visit state.
  1931         ShouldNotReachHere();
  1932         break;
  1933       case Op_ClearArray:
  1934       case Op_SafePoint:
  1935         mem_op = true;
  1936         break;
  1937       default:
  1938         if( n->is_Store() ) {
  1939           // Do match stores, despite no ideal reg
  1940           mem_op = true;
  1941           break;
  1943         if( n->is_Mem() ) { // Loads and LoadStores
  1944           mem_op = true;
  1945           // Loads must be root of match tree due to prior load conflict
  1946           if( C->subsume_loads() == false )
  1947             set_shared(n);
  1949         // Fall into default case
  1950         if( !n->ideal_reg() )
  1951           set_dontcare(n);  // Unmatchable Nodes
  1952       } // end_switch
  1954       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  1955         Node *m = n->in(i); // Get ith input
  1956         if (m == NULL) continue;  // Ignore NULLs
  1957         uint mop = m->Opcode();
  1959         // Must clone all producers of flags, or we will not match correctly.
  1960         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  1961         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  1962         // are also there, so we may match a float-branch to int-flags and
  1963         // expect the allocator to haul the flags from the int-side to the
  1964         // fp-side.  No can do.
  1965         if( _must_clone[mop] ) {
  1966           mstack.push(m, Visit);
  1967           continue; // for(int i = ...)
  1970         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
  1971           // Bases used in addresses must be shared but since
  1972           // they are shared through a DecodeN they may appear
  1973           // to have a single use so force sharing here.
  1974           set_shared(m->in(AddPNode::Base)->in(1));
  1977         // Clone addressing expressions as they are "free" in memory access instructions
  1978         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  1979           // Some inputs for address expression are not put on stack
  1980           // to avoid marking them as shared and forcing them into register
  1981           // if they are used only in address expressions.
  1982           // But they should be marked as shared if there are other uses
  1983           // besides address expressions.
  1985           Node *off = m->in(AddPNode::Offset);
  1986           if( off->is_Con() &&
  1987               // When there are other uses besides address expressions
  1988               // put it on stack and mark as shared.
  1989               !is_visited(m) ) {
  1990             address_visited.test_set(m->_idx); // Flag as address_visited
  1991             Node *adr = m->in(AddPNode::Address);
  1993             // Intel, ARM and friends can handle 2 adds in addressing mode
  1994             if( clone_shift_expressions && adr->is_AddP() &&
  1995                 // AtomicAdd is not an addressing expression.
  1996                 // Cheap to find it by looking for screwy base.
  1997                 !adr->in(AddPNode::Base)->is_top() &&
  1998                 // Are there other uses besides address expressions?
  1999                 !is_visited(adr) ) {
  2000               address_visited.set(adr->_idx); // Flag as address_visited
  2001               Node *shift = adr->in(AddPNode::Offset);
  2002               // Check for shift by small constant as well
  2003               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  2004                   shift->in(2)->get_int() <= 3 &&
  2005                   // Are there other uses besides address expressions?
  2006                   !is_visited(shift) ) {
  2007                 address_visited.set(shift->_idx); // Flag as address_visited
  2008                 mstack.push(shift->in(2), Visit);
  2009                 Node *conv = shift->in(1);
  2010 #ifdef _LP64
  2011                 // Allow Matcher to match the rule which bypass
  2012                 // ConvI2L operation for an array index on LP64
  2013                 // if the index value is positive.
  2014                 if( conv->Opcode() == Op_ConvI2L &&
  2015                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  2016                     // Are there other uses besides address expressions?
  2017                     !is_visited(conv) ) {
  2018                   address_visited.set(conv->_idx); // Flag as address_visited
  2019                   mstack.push(conv->in(1), Pre_Visit);
  2020                 } else
  2021 #endif
  2022                 mstack.push(conv, Pre_Visit);
  2023               } else {
  2024                 mstack.push(shift, Pre_Visit);
  2026               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  2027               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  2028             } else {  // Sparc, Alpha, PPC and friends
  2029               mstack.push(adr, Pre_Visit);
  2032             // Clone X+offset as it also folds into most addressing expressions
  2033             mstack.push(off, Visit);
  2034             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  2035             continue; // for(int i = ...)
  2036           } // if( off->is_Con() )
  2037         }   // if( mem_op &&
  2038         mstack.push(m, Pre_Visit);
  2039       }     // for(int i = ...)
  2041     else if (nstate == Alt_Post_Visit) {
  2042       mstack.pop(); // Remove node from stack
  2043       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  2044       // shared and all users of the Bool need to move the Cmp in parallel.
  2045       // This leaves both the Bool and the If pointing at the Cmp.  To
  2046       // prevent the Matcher from trying to Match the Cmp along both paths
  2047       // BoolNode::match_edge always returns a zero.
  2049       // We reorder the Op_If in a pre-order manner, so we can visit without
  2050       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  2051       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  2053     else if (nstate == Post_Visit) {
  2054       mstack.pop(); // Remove node from stack
  2056       // Now hack a few special opcodes
  2057       switch( n->Opcode() ) {       // Handle some opcodes special
  2058       case Op_StorePConditional:
  2059       case Op_StoreIConditional:
  2060       case Op_StoreLConditional:
  2061       case Op_CompareAndSwapI:
  2062       case Op_CompareAndSwapL:
  2063       case Op_CompareAndSwapP:
  2064       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2065         Node *newval = n->in(MemNode::ValueIn );
  2066         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
  2067         Node *pair = new (C, 3) BinaryNode( oldval, newval );
  2068         n->set_req(MemNode::ValueIn,pair);
  2069         n->del_req(LoadStoreNode::ExpectedIn);
  2070         break;
  2072       case Op_CMoveD:              // Convert trinary to binary-tree
  2073       case Op_CMoveF:
  2074       case Op_CMoveI:
  2075       case Op_CMoveL:
  2076       case Op_CMoveN:
  2077       case Op_CMoveP: {
  2078         // Restructure into a binary tree for Matching.  It's possible that
  2079         // we could move this code up next to the graph reshaping for IfNodes
  2080         // or vice-versa, but I do not want to debug this for Ladybird.
  2081         // 10/2/2000 CNC.
  2082         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
  2083         n->set_req(1,pair1);
  2084         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2085         n->set_req(2,pair2);
  2086         n->del_req(3);
  2087         break;
  2089       case Op_StrEquals: {
  2090         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2091         n->set_req(2,pair1);
  2092         n->set_req(3,n->in(4));
  2093         n->del_req(4);
  2094         break;
  2096       case Op_StrComp:
  2097       case Op_StrIndexOf: {
  2098         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2099         n->set_req(2,pair1);
  2100         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
  2101         n->set_req(3,pair2);
  2102         n->del_req(5);
  2103         n->del_req(4);
  2104         break;
  2106       default:
  2107         break;
  2110     else {
  2111       ShouldNotReachHere();
  2113   } // end of while (mstack.is_nonempty())
  2116 #ifdef ASSERT
  2117 // machine-independent root to machine-dependent root
  2118 void Matcher::dump_old2new_map() {
  2119   _old2new_map.dump();
  2121 #endif
  2123 //---------------------------collect_null_checks-------------------------------
  2124 // Find null checks in the ideal graph; write a machine-specific node for
  2125 // it.  Used by later implicit-null-check handling.  Actually collects
  2126 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2127 // value being tested.
  2128 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2129   Node *iff = proj->in(0);
  2130   if( iff->Opcode() == Op_If ) {
  2131     // During matching If's have Bool & Cmp side-by-side
  2132     BoolNode *b = iff->in(1)->as_Bool();
  2133     Node *cmp = iff->in(2);
  2134     int opc = cmp->Opcode();
  2135     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2137     const Type* ct = cmp->in(2)->bottom_type();
  2138     if (ct == TypePtr::NULL_PTR ||
  2139         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2141       bool push_it = false;
  2142       if( proj->Opcode() == Op_IfTrue ) {
  2143         extern int all_null_checks_found;
  2144         all_null_checks_found++;
  2145         if( b->_test._test == BoolTest::ne ) {
  2146           push_it = true;
  2148       } else {
  2149         assert( proj->Opcode() == Op_IfFalse, "" );
  2150         if( b->_test._test == BoolTest::eq ) {
  2151           push_it = true;
  2154       if( push_it ) {
  2155         _null_check_tests.push(proj);
  2156         Node* val = cmp->in(1);
  2157 #ifdef _LP64
  2158         if (val->bottom_type()->isa_narrowoop() &&
  2159             !Matcher::narrow_oop_use_complex_address()) {
  2160           //
  2161           // Look for DecodeN node which should be pinned to orig_proj.
  2162           // On platforms (Sparc) which can not handle 2 adds
  2163           // in addressing mode we have to keep a DecodeN node and
  2164           // use it to do implicit NULL check in address.
  2165           //
  2166           // DecodeN node was pinned to non-null path (orig_proj) during
  2167           // CastPP transformation in final_graph_reshaping_impl().
  2168           //
  2169           uint cnt = orig_proj->outcnt();
  2170           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2171             Node* d = orig_proj->raw_out(i);
  2172             if (d->is_DecodeN() && d->in(1) == val) {
  2173               val = d;
  2174               val->set_req(0, NULL); // Unpin now.
  2175               // Mark this as special case to distinguish from
  2176               // a regular case: CmpP(DecodeN, NULL).
  2177               val = (Node*)(((intptr_t)val) | 1);
  2178               break;
  2182 #endif
  2183         _null_check_tests.push(val);
  2189 //---------------------------validate_null_checks------------------------------
  2190 // Its possible that the value being NULL checked is not the root of a match
  2191 // tree.  If so, I cannot use the value in an implicit null check.
  2192 void Matcher::validate_null_checks( ) {
  2193   uint cnt = _null_check_tests.size();
  2194   for( uint i=0; i < cnt; i+=2 ) {
  2195     Node *test = _null_check_tests[i];
  2196     Node *val = _null_check_tests[i+1];
  2197     bool is_decoden = ((intptr_t)val) & 1;
  2198     val = (Node*)(((intptr_t)val) & ~1);
  2199     if (has_new_node(val)) {
  2200       Node* new_val = new_node(val);
  2201       if (is_decoden) {
  2202         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
  2203         // Note: new_val may have a control edge if
  2204         // the original ideal node DecodeN was matched before
  2205         // it was unpinned in Matcher::collect_null_checks().
  2206         // Unpin the mach node and mark it.
  2207         new_val->set_req(0, NULL);
  2208         new_val = (Node*)(((intptr_t)new_val) | 1);
  2210       // Is a match-tree root, so replace with the matched value
  2211       _null_check_tests.map(i+1, new_val);
  2212     } else {
  2213       // Yank from candidate list
  2214       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2215       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2216       _null_check_tests.pop();
  2217       _null_check_tests.pop();
  2218       i-=2;
  2224 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
  2225 // acting as an Acquire and thus we don't need an Acquire here.  We
  2226 // retain the Node to act as a compiler ordering barrier.
  2227 bool Matcher::prior_fast_lock( const Node *acq ) {
  2228   Node *r = acq->in(0);
  2229   if( !r->is_Region() || r->req() <= 1 ) return false;
  2230   Node *proj = r->in(1);
  2231   if( !proj->is_Proj() ) return false;
  2232   Node *call = proj->in(0);
  2233   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
  2234     return false;
  2236   return true;
  2239 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
  2240 // acting as a Release and thus we don't need a Release here.  We
  2241 // retain the Node to act as a compiler ordering barrier.
  2242 bool Matcher::post_fast_unlock( const Node *rel ) {
  2243   Compile *C = Compile::current();
  2244   assert( rel->Opcode() == Op_MemBarRelease, "" );
  2245   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
  2246   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2247   Node *ctrl = NULL;
  2248   while( true ) {
  2249     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2250     assert( ctrl->is_Proj(), "only projections here" );
  2251     ProjNode *proj = (ProjNode*)ctrl;
  2252     if( proj->_con == TypeFunc::Control &&
  2253         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2254       break;
  2255     i++;
  2257   Node *iff = NULL;
  2258   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2259     Node *x = ctrl->fast_out(j);
  2260     if( x->is_If() && x->req() > 1 &&
  2261         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2262       iff = x;
  2263       break;
  2266   if( !iff ) return false;
  2267   Node *bol = iff->in(1);
  2268   // The iff might be some random subclass of If or bol might be Con-Top
  2269   if (!bol->is_Bool())  return false;
  2270   assert( bol->req() > 1, "" );
  2271   return (bol->in(1)->Opcode() == Op_FastUnlock);
  2274 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2275 // atomic instruction acting as a store_load barrier without any
  2276 // intervening volatile load, and thus we don't need a barrier here.
  2277 // We retain the Node to act as a compiler ordering barrier.
  2278 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2279   Compile *C = Compile::current();
  2280   assert( vmb->is_MemBar(), "" );
  2281   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2282   const MemBarNode *mem = (const MemBarNode*)vmb;
  2284   // Get the Proj node, ctrl, that can be used to iterate forward
  2285   Node *ctrl = NULL;
  2286   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2287   while( true ) {
  2288     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2289     assert( ctrl->is_Proj(), "only projections here" );
  2290     ProjNode *proj = (ProjNode*)ctrl;
  2291     if( proj->_con == TypeFunc::Control &&
  2292         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2293       break;
  2294     i++;
  2297   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2298     Node *x = ctrl->fast_out(j);
  2299     int xop = x->Opcode();
  2301     // We don't need current barrier if we see another or a lock
  2302     // before seeing volatile load.
  2303     //
  2304     // Op_Fastunlock previously appeared in the Op_* list below.
  2305     // With the advent of 1-0 lock operations we're no longer guaranteed
  2306     // that a monitor exit operation contains a serializing instruction.
  2308     if (xop == Op_MemBarVolatile ||
  2309         xop == Op_FastLock ||
  2310         xop == Op_CompareAndSwapL ||
  2311         xop == Op_CompareAndSwapP ||
  2312         xop == Op_CompareAndSwapN ||
  2313         xop == Op_CompareAndSwapI)
  2314       return true;
  2316     if (x->is_MemBar()) {
  2317       // We must retain this membar if there is an upcoming volatile
  2318       // load, which will be preceded by acquire membar.
  2319       if (xop == Op_MemBarAcquire)
  2320         return false;
  2321       // For other kinds of barriers, check by pretending we
  2322       // are them, and seeing if we can be removed.
  2323       else
  2324         return post_store_load_barrier((const MemBarNode*)x);
  2327     // Delicate code to detect case of an upcoming fastlock block
  2328     if( x->is_If() && x->req() > 1 &&
  2329         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2330       Node *iff = x;
  2331       Node *bol = iff->in(1);
  2332       // The iff might be some random subclass of If or bol might be Con-Top
  2333       if (!bol->is_Bool())  return false;
  2334       assert( bol->req() > 1, "" );
  2335       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2337     // probably not necessary to check for these
  2338     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2339       return false;
  2341   return false;
  2344 //=============================================================================
  2345 //---------------------------State---------------------------------------------
  2346 State::State(void) {
  2347 #ifdef ASSERT
  2348   _id = 0;
  2349   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2350   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2351   //memset(_cost, -1, sizeof(_cost));
  2352   //memset(_rule, -1, sizeof(_rule));
  2353 #endif
  2354   memset(_valid, 0, sizeof(_valid));
  2357 #ifdef ASSERT
  2358 State::~State() {
  2359   _id = 99;
  2360   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2361   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2362   memset(_cost, -3, sizeof(_cost));
  2363   memset(_rule, -3, sizeof(_rule));
  2365 #endif
  2367 #ifndef PRODUCT
  2368 //---------------------------dump----------------------------------------------
  2369 void State::dump() {
  2370   tty->print("\n");
  2371   dump(0);
  2374 void State::dump(int depth) {
  2375   for( int j = 0; j < depth; j++ )
  2376     tty->print("   ");
  2377   tty->print("--N: ");
  2378   _leaf->dump();
  2379   uint i;
  2380   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2381     // Check for valid entry
  2382     if( valid(i) ) {
  2383       for( int j = 0; j < depth; j++ )
  2384         tty->print("   ");
  2385         assert(_cost[i] != max_juint, "cost must be a valid value");
  2386         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2387         tty->print_cr("%s  %d  %s",
  2388                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2390   tty->print_cr("");
  2392   for( i=0; i<2; i++ )
  2393     if( _kids[i] )
  2394       _kids[i]->dump(depth+1);
  2396 #endif

mercurial