src/share/vm/opto/loopTransform.cpp

Wed, 20 Apr 2011 18:29:35 -0700

author
kvn
date
Wed, 20 Apr 2011 18:29:35 -0700
changeset 2810
66b0e2371912
parent 2750
6c97c830fb6f
child 2865
ae93231c7a1f
permissions
-rw-r--r--

7026700: regression in 6u24-rev-b23: Crash in C2 compiler in PhaseIdealLoop::build_loop_late_post
Summary: memory slices should be always created for non-static fields after allocation
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_exact_trip_count-----------------------
    67 // Compute loop exact trip count if possible. Do not recalculate trip count for
    68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
    69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
    70   if (!_head->as_Loop()->is_valid_counted_loop()) {
    71     return;
    72   }
    73   CountedLoopNode* cl = _head->as_CountedLoop();
    74   // Trip count may become nonexact for iteration split loops since
    75   // RCE modifies limits. Note, _trip_count value is not reset since
    76   // it is used to limit unrolling of main loop.
    77   cl->set_nonexact_trip_count();
    79   // Loop's test should be part of loop.
    80   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
    81     return; // Infinite loop
    83 #ifdef ASSERT
    84   BoolTest::mask bt = cl->loopexit()->test_trip();
    85   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
    86          bt == BoolTest::ne, "canonical test is expected");
    87 #endif
    89   Node* init_n = cl->init_trip();
    90   Node* limit_n = cl->limit();
    91   if (init_n  != NULL &&  init_n->is_Con() &&
    92       limit_n != NULL && limit_n->is_Con()) {
    93     // Use longs to avoid integer overflow.
    94     int stride_con  = cl->stride_con();
    95     long init_con   = cl->init_trip()->get_int();
    96     long limit_con  = cl->limit()->get_int();
    97     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
    98     long trip_count = (limit_con - init_con + stride_m)/stride_con;
    99     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
   100       // Set exact trip count.
   101       cl->set_exact_trip_count((uint)trip_count);
   102     }
   103   }
   104 }
   106 //------------------------------compute_profile_trip_cnt----------------------------
   107 // Compute loop trip count from profile data as
   108 //    (backedge_count + loop_exit_count) / loop_exit_count
   109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
   110   if (!_head->is_CountedLoop()) {
   111     return;
   112   }
   113   CountedLoopNode* head = _head->as_CountedLoop();
   114   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
   115     return; // Already computed
   116   }
   117   float trip_cnt = (float)max_jint; // default is big
   119   Node* back = head->in(LoopNode::LoopBackControl);
   120   while (back != head) {
   121     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   122         back->in(0) &&
   123         back->in(0)->is_If() &&
   124         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
   125         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
   126       break;
   127     }
   128     back = phase->idom(back);
   129   }
   130   if (back != head) {
   131     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   132            back->in(0), "if-projection exists");
   133     IfNode* back_if = back->in(0)->as_If();
   134     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
   136     // Now compute a loop exit count
   137     float loop_exit_cnt = 0.0f;
   138     for( uint i = 0; i < _body.size(); i++ ) {
   139       Node *n = _body[i];
   140       if( n->is_If() ) {
   141         IfNode *iff = n->as_If();
   142         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   143           Node *exit = is_loop_exit(iff);
   144           if( exit ) {
   145             float exit_prob = iff->_prob;
   146             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   147             if (exit_prob > PROB_MIN) {
   148               float exit_cnt = iff->_fcnt * exit_prob;
   149               loop_exit_cnt += exit_cnt;
   150             }
   151           }
   152         }
   153       }
   154     }
   155     if (loop_exit_cnt > 0.0f) {
   156       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   157     } else {
   158       // No exit count so use
   159       trip_cnt = loop_back_cnt;
   160     }
   161   }
   162 #ifndef PRODUCT
   163   if (TraceProfileTripCount) {
   164     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   165   }
   166 #endif
   167   head->set_profile_trip_cnt(trip_cnt);
   168 }
   170 //---------------------is_invariant_addition-----------------------------
   171 // Return nonzero index of invariant operand for an Add or Sub
   172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   174   int op = n->Opcode();
   175   if (op == Op_AddI || op == Op_SubI) {
   176     bool in1_invar = this->is_invariant(n->in(1));
   177     bool in2_invar = this->is_invariant(n->in(2));
   178     if (in1_invar && !in2_invar) return 1;
   179     if (!in1_invar && in2_invar) return 2;
   180   }
   181   return 0;
   182 }
   184 //---------------------reassociate_add_sub-----------------------------
   185 // Reassociate invariant add and subtract expressions:
   186 //
   187 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   188 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   189 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   190 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   191 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   192 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   193 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   194 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   195 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   196 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   197 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   198 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   199 //
   200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   201   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   202   if (is_invariant(n1)) return NULL;
   203   int inv1_idx = is_invariant_addition(n1, phase);
   204   if (!inv1_idx) return NULL;
   205   // Don't mess with add of constant (igvn moves them to expression tree root.)
   206   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   207   Node* inv1 = n1->in(inv1_idx);
   208   Node* n2 = n1->in(3 - inv1_idx);
   209   int inv2_idx = is_invariant_addition(n2, phase);
   210   if (!inv2_idx) return NULL;
   211   Node* x    = n2->in(3 - inv2_idx);
   212   Node* inv2 = n2->in(inv2_idx);
   214   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   215   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   216   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   217   if (n1->is_Sub() && inv1_idx == 1) {
   218     neg_x    = !neg_x;
   219     neg_inv2 = !neg_inv2;
   220   }
   221   Node* inv1_c = phase->get_ctrl(inv1);
   222   Node* inv2_c = phase->get_ctrl(inv2);
   223   Node* n_inv1;
   224   if (neg_inv1) {
   225     Node *zero = phase->_igvn.intcon(0);
   226     phase->set_ctrl(zero, phase->C->root());
   227     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   228     phase->register_new_node(n_inv1, inv1_c);
   229   } else {
   230     n_inv1 = inv1;
   231   }
   232   Node* inv;
   233   if (neg_inv2) {
   234     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   235   } else {
   236     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   237   }
   238   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   240   Node* addx;
   241   if (neg_x) {
   242     addx = new (phase->C, 3) SubINode(inv, x);
   243   } else {
   244     addx = new (phase->C, 3) AddINode(x, inv);
   245   }
   246   phase->register_new_node(addx, phase->get_ctrl(x));
   247   phase->_igvn.replace_node(n1, addx);
   248   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   249   _body.yank(n1);
   250   return addx;
   251 }
   253 //---------------------reassociate_invariants-----------------------------
   254 // Reassociate invariant expressions:
   255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   256   for (int i = _body.size() - 1; i >= 0; i--) {
   257     Node *n = _body.at(i);
   258     for (int j = 0; j < 5; j++) {
   259       Node* nn = reassociate_add_sub(n, phase);
   260       if (nn == NULL) break;
   261       n = nn; // again
   262     };
   263   }
   264 }
   266 //------------------------------policy_peeling---------------------------------
   267 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   268 // make some loop-invariant test (usually a null-check) happen before the loop.
   269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   270   Node *test = ((IdealLoopTree*)this)->tail();
   271   int  body_size = ((IdealLoopTree*)this)->_body.size();
   272   int  uniq      = phase->C->unique();
   273   // Peeling does loop cloning which can result in O(N^2) node construction
   274   if( body_size > 255 /* Prevent overflow for large body_size */
   275       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   276     return false;           // too large to safely clone
   277   }
   278   while( test != _head ) {      // Scan till run off top of loop
   279     if( test->is_If() ) {       // Test?
   280       Node *ctrl = phase->get_ctrl(test->in(1));
   281       if (ctrl->is_top())
   282         return false;           // Found dead test on live IF?  No peeling!
   283       // Standard IF only has one input value to check for loop invariance
   284       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   285       // Condition is not a member of this loop?
   286       if( !is_member(phase->get_loop(ctrl)) &&
   287           is_loop_exit(test) )
   288         return true;            // Found reason to peel!
   289     }
   290     // Walk up dominators to loop _head looking for test which is
   291     // executed on every path thru loop.
   292     test = phase->idom(test);
   293   }
   294   return false;
   295 }
   297 //------------------------------peeled_dom_test_elim---------------------------
   298 // If we got the effect of peeling, either by actually peeling or by making
   299 // a pre-loop which must execute at least once, we can remove all
   300 // loop-invariant dominated tests in the main body.
   301 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   302   bool progress = true;
   303   while( progress ) {
   304     progress = false;           // Reset for next iteration
   305     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   306     Node *test = prev->in(0);
   307     while( test != loop->_head ) { // Scan till run off top of loop
   309       int p_op = prev->Opcode();
   310       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   311           test->is_If() &&      // Test?
   312           !test->in(1)->is_Con() && // And not already obvious?
   313           // Condition is not a member of this loop?
   314           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   315         // Walk loop body looking for instances of this test
   316         for( uint i = 0; i < loop->_body.size(); i++ ) {
   317           Node *n = loop->_body.at(i);
   318           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   319             // IfNode was dominated by version in peeled loop body
   320             progress = true;
   321             dominated_by( old_new[prev->_idx], n );
   322           }
   323         }
   324       }
   325       prev = test;
   326       test = idom(test);
   327     } // End of scan tests in loop
   329   } // End of while( progress )
   330 }
   332 //------------------------------do_peeling-------------------------------------
   333 // Peel the first iteration of the given loop.
   334 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   335 //         The pre-loop illegally has 2 control users (old & new loops).
   336 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   337 //         Do this by making the old-loop fall-in edges act as if they came
   338 //         around the loopback from the prior iteration (follow the old-loop
   339 //         backedges) and then map to the new peeled iteration.  This leaves
   340 //         the pre-loop with only 1 user (the new peeled iteration), but the
   341 //         peeled-loop backedge has 2 users.
   342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   343 //         extra backedge user.
   344 //
   345 //                   orig
   346 //
   347 //                  stmt1
   348 //                    |
   349 //                    v
   350 //              loop predicate
   351 //                    |
   352 //                    v
   353 //                   loop<----+
   354 //                     |      |
   355 //                   stmt2    |
   356 //                     |      |
   357 //                     v      |
   358 //                    if      ^
   359 //                   / \      |
   360 //                  /   \     |
   361 //                 v     v    |
   362 //               false true   |
   363 //               /       \    |
   364 //              /         ----+
   365 //             |
   366 //             v
   367 //           exit
   368 //
   369 //
   370 //            after clone loop
   371 //
   372 //                   stmt1
   373 //                     |
   374 //                     v
   375 //               loop predicate
   376 //                 /       \
   377 //        clone   /         \   orig
   378 //               /           \
   379 //              /             \
   380 //             v               v
   381 //   +---->loop clone          loop<----+
   382 //   |      |                    |      |
   383 //   |    stmt2 clone          stmt2    |
   384 //   |      |                    |      |
   385 //   |      v                    v      |
   386 //   ^      if clone            If      ^
   387 //   |      / \                / \      |
   388 //   |     /   \              /   \     |
   389 //   |    v     v            v     v    |
   390 //   |    true  false      false true   |
   391 //   |    /         \      /       \    |
   392 //   +----           \    /         ----+
   393 //                    \  /
   394 //                    1v v2
   395 //                  region
   396 //                     |
   397 //                     v
   398 //                   exit
   399 //
   400 //
   401 //         after peel and predicate move
   402 //
   403 //                   stmt1
   404 //                    /
   405 //                   /
   406 //        clone     /            orig
   407 //                 /
   408 //                /              +----------+
   409 //               /               |          |
   410 //              /          loop predicate   |
   411 //             /                 |          |
   412 //            v                  v          |
   413 //   TOP-->loop clone          loop<----+   |
   414 //          |                    |      |   |
   415 //        stmt2 clone          stmt2    |   |
   416 //          |                    |      |   ^
   417 //          v                    v      |   |
   418 //          if clone            If      ^   |
   419 //          / \                / \      |   |
   420 //         /   \              /   \     |   |
   421 //        v     v            v     v    |   |
   422 //      true   false      false  true   |   |
   423 //        |         \      /       \    |   |
   424 //        |          \    /         ----+   ^
   425 //        |           \  /                  |
   426 //        |           1v v2                 |
   427 //        v         region                  |
   428 //        |            |                    |
   429 //        |            v                    |
   430 //        |          exit                   |
   431 //        |                                 |
   432 //        +--------------->-----------------+
   433 //
   434 //
   435 //              final graph
   436 //
   437 //                  stmt1
   438 //                    |
   439 //                    v
   440 //                  stmt2 clone
   441 //                    |
   442 //                    v
   443 //                   if clone
   444 //                  / |
   445 //                 /  |
   446 //                v   v
   447 //            false  true
   448 //             |      |
   449 //             |      v
   450 //             | loop predicate
   451 //             |      |
   452 //             |      v
   453 //             |     loop<----+
   454 //             |      |       |
   455 //             |    stmt2     |
   456 //             |      |       |
   457 //             |      v       |
   458 //             v      if      ^
   459 //             |     /  \     |
   460 //             |    /    \    |
   461 //             |   v     v    |
   462 //             | false  true  |
   463 //             |  |        \  |
   464 //             v  v         --+
   465 //            region
   466 //              |
   467 //              v
   468 //             exit
   469 //
   470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   472   C->set_major_progress();
   473   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   474   // 'pre' loop from the main and the 'pre' can no longer have it's
   475   // iterations adjusted.  Therefore, we need to declare this loop as
   476   // no longer a 'main' loop; it will need new pre and post loops before
   477   // we can do further RCE.
   478 #ifndef PRODUCT
   479   if (TraceLoopOpts) {
   480     tty->print("Peel         ");
   481     loop->dump_head();
   482   }
   483 #endif
   484   Node* head = loop->_head;
   485   bool counted_loop = head->is_CountedLoop();
   486   if (counted_loop) {
   487     CountedLoopNode *cl = head->as_CountedLoop();
   488     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   489     cl->set_trip_count(cl->trip_count() - 1);
   490     if (cl->is_main_loop()) {
   491       cl->set_normal_loop();
   492 #ifndef PRODUCT
   493       if (PrintOpto && VerifyLoopOptimizations) {
   494         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   495         loop->dump_head();
   496       }
   497 #endif
   498     }
   499   }
   500   Node* entry = head->in(LoopNode::EntryControl);
   502   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   503   //         The pre-loop illegally has 2 control users (old & new loops).
   504   clone_loop( loop, old_new, dom_depth(head) );
   506   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   507   //         Do this by making the old-loop fall-in edges act as if they came
   508   //         around the loopback from the prior iteration (follow the old-loop
   509   //         backedges) and then map to the new peeled iteration.  This leaves
   510   //         the pre-loop with only 1 user (the new peeled iteration), but the
   511   //         peeled-loop backedge has 2 users.
   512   Node* new_exit_value = old_new[head->in(LoopNode::LoopBackControl)->_idx];
   513   new_exit_value = move_loop_predicates(entry, new_exit_value);
   514   _igvn.hash_delete(head);
   515   head->set_req(LoopNode::EntryControl, new_exit_value);
   516   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
   517     Node* old = head->fast_out(j);
   518     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
   519       new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   520       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
   521         // Then loop body backedge value remains the same.
   522         new_exit_value = old->in(LoopNode::LoopBackControl);
   523       _igvn.hash_delete(old);
   524       old->set_req(LoopNode::EntryControl, new_exit_value);
   525     }
   526   }
   529   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   530   //         extra backedge user.
   531   Node* new_head = old_new[head->_idx];
   532   _igvn.hash_delete(new_head);
   533   new_head->set_req(LoopNode::LoopBackControl, C->top());
   534   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
   535     Node* use = new_head->fast_out(j2);
   536     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
   537       _igvn.hash_delete(use);
   538       use->set_req(LoopNode::LoopBackControl, C->top());
   539     }
   540   }
   543   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   544   int dd = dom_depth(head);
   545   set_idom(head, head->in(1), dd);
   546   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   547     Node *old = loop->_body.at(j3);
   548     Node *nnn = old_new[old->_idx];
   549     if (!has_ctrl(nnn))
   550       set_idom(nnn, idom(nnn), dd-1);
   551     // While we're at it, remove any SafePoints from the peeled code
   552     if (old->Opcode() == Op_SafePoint) {
   553       Node *nnn = old_new[old->_idx];
   554       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   555     }
   556   }
   558   // Now force out all loop-invariant dominating tests.  The optimizer
   559   // finds some, but we _know_ they are all useless.
   560   peeled_dom_test_elim(loop,old_new);
   562   loop->record_for_igvn();
   563 }
   565 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
   567 //------------------------------policy_maximally_unroll------------------------
   568 // Calculate exact loop trip count and return true if loop can be maximally
   569 // unrolled.
   570 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   571   CountedLoopNode *cl = _head->as_CountedLoop();
   572   assert(cl->is_normal_loop(), "");
   573   if (!cl->is_valid_counted_loop())
   574     return false; // Malformed counted loop
   576   if (!cl->has_exact_trip_count()) {
   577     // Trip count is not exact.
   578     return false;
   579   }
   581   uint trip_count = cl->trip_count();
   582   // Note, max_juint is used to indicate unknown trip count.
   583   assert(trip_count > 1, "one iteration loop should be optimized out already");
   584   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
   586   // Real policy: if we maximally unroll, does it get too big?
   587   // Allow the unrolled mess to get larger than standard loop
   588   // size.  After all, it will no longer be a loop.
   589   uint body_size    = _body.size();
   590   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   591   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   592   if (trip_count > unroll_limit || body_size > unroll_limit) {
   593     return false;
   594   }
   596   // Take into account that after unroll conjoined heads and tails will fold,
   597   // otherwise policy_unroll() may allow more unrolling than max unrolling.
   598   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
   599   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
   600   if (body_size != tst_body_size) // Check for int overflow
   601     return false;
   602   if (new_body_size > unroll_limit ||
   603       // Unrolling can result in a large amount of node construction
   604       new_body_size >= MaxNodeLimit - phase->C->unique()) {
   605     return false;
   606   }
   608   // Currently we don't have policy to optimize one iteration loops.
   609   // Maximally unrolling transformation is used for that:
   610   // it is peeled and the original loop become non reachable (dead).
   611   // Also fully unroll a loop with few iterations regardless next
   612   // conditions since following loop optimizations will split
   613   // such loop anyway (pre-main-post).
   614   if (trip_count <= 3)
   615     return true;
   617   // Do not unroll a loop with String intrinsics code.
   618   // String intrinsics are large and have loops.
   619   for (uint k = 0; k < _body.size(); k++) {
   620     Node* n = _body.at(k);
   621     switch (n->Opcode()) {
   622       case Op_StrComp:
   623       case Op_StrEquals:
   624       case Op_StrIndexOf:
   625       case Op_AryEq: {
   626         return false;
   627       }
   628     } // switch
   629   }
   631   return true; // Do maximally unroll
   632 }
   635 //------------------------------policy_unroll----------------------------------
   636 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   637 // the loop is a CountedLoop and the body is small enough.
   638 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   640   CountedLoopNode *cl = _head->as_CountedLoop();
   641   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   643   if (!cl->is_valid_counted_loop())
   644     return false; // Malformed counted loop
   646   // protect against over-unrolling
   647   if (cl->trip_count() <= 1) return false;
   649   // Check for stride being a small enough constant
   650   if (abs(cl->stride_con()) > (1<<3)) return false;
   652   int future_unroll_ct = cl->unrolled_count() * 2;
   654   // Don't unroll if the next round of unrolling would push us
   655   // over the expected trip count of the loop.  One is subtracted
   656   // from the expected trip count because the pre-loop normally
   657   // executes 1 iteration.
   658   if (UnrollLimitForProfileCheck > 0 &&
   659       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   660       future_unroll_ct        > UnrollLimitForProfileCheck &&
   661       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   662     return false;
   663   }
   665   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   666   //   the residual iterations are more than 10% of the trip count
   667   //   and rounds of "unroll,optimize" are not making significant progress
   668   //   Progress defined as current size less than 20% larger than previous size.
   669   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   670       future_unroll_ct > LoopUnrollMin &&
   671       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   672       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   673     return false;
   674   }
   676   Node *init_n = cl->init_trip();
   677   Node *limit_n = cl->limit();
   678   // Non-constant bounds.
   679   // Protect against over-unrolling when init or/and limit are not constant
   680   // (so that trip_count's init value is maxint) but iv range is known.
   681   if (init_n   == NULL || !init_n->is_Con()  ||
   682       limit_n  == NULL || !limit_n->is_Con()) {
   683     Node* phi = cl->phi();
   684     if (phi != NULL) {
   685       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   686       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   687       int next_stride = cl->stride_con() * 2; // stride after this unroll
   688       if (next_stride > 0) {
   689         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   690             iv_type->_lo + next_stride >  iv_type->_hi) {
   691           return false;  // over-unrolling
   692         }
   693       } else if (next_stride < 0) {
   694         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   695             iv_type->_hi + next_stride <  iv_type->_lo) {
   696           return false;  // over-unrolling
   697         }
   698       }
   699     }
   700   }
   702   // Adjust body_size to determine if we unroll or not
   703   uint body_size = _body.size();
   704   // Key test to unroll CaffeineMark's Logic test
   705   int xors_in_loop = 0;
   706   // Also count ModL, DivL and MulL which expand mightly
   707   for (uint k = 0; k < _body.size(); k++) {
   708     Node* n = _body.at(k);
   709     switch (n->Opcode()) {
   710       case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
   711       case Op_ModL: body_size += 30; break;
   712       case Op_DivL: body_size += 30; break;
   713       case Op_MulL: body_size += 10; break;
   714       case Op_StrComp:
   715       case Op_StrEquals:
   716       case Op_StrIndexOf:
   717       case Op_AryEq: {
   718         // Do not unroll a loop with String intrinsics code.
   719         // String intrinsics are large and have loops.
   720         return false;
   721       }
   722     } // switch
   723   }
   725   // Check for being too big
   726   if (body_size > (uint)LoopUnrollLimit) {
   727     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   728     // Normal case: loop too big
   729     return false;
   730   }
   732   // Unroll once!  (Each trip will soon do double iterations)
   733   return true;
   734 }
   736 //------------------------------policy_align-----------------------------------
   737 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   738 // expression that does the alignment.  Note that only one array base can be
   739 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   740 // if we vectorize short memory ops into longer memory ops, we may want to
   741 // increase alignment.
   742 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   743   return false;
   744 }
   746 //------------------------------policy_range_check-----------------------------
   747 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   748 // Actually we do iteration-splitting, a more powerful form of RCE.
   749 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   750   if( !RangeCheckElimination ) return false;
   752   CountedLoopNode *cl = _head->as_CountedLoop();
   753   // If we unrolled with no intention of doing RCE and we later
   754   // changed our minds, we got no pre-loop.  Either we need to
   755   // make a new pre-loop, or we gotta disallow RCE.
   756   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
   757   Node *trip_counter = cl->phi();
   759   // Check loop body for tests of trip-counter plus loop-invariant vs
   760   // loop-invariant.
   761   for( uint i = 0; i < _body.size(); i++ ) {
   762     Node *iff = _body[i];
   763     if( iff->Opcode() == Op_If ) { // Test?
   765       // Comparing trip+off vs limit
   766       Node *bol = iff->in(1);
   767       if( bol->req() != 2 ) continue; // dead constant test
   768       if (!bol->is_Bool()) {
   769         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   770         continue;
   771       }
   772       Node *cmp = bol->in(1);
   774       Node *rc_exp = cmp->in(1);
   775       Node *limit = cmp->in(2);
   777       Node *limit_c = phase->get_ctrl(limit);
   778       if( limit_c == phase->C->top() )
   779         return false;           // Found dead test on live IF?  No RCE!
   780       if( is_member(phase->get_loop(limit_c) ) ) {
   781         // Compare might have operands swapped; commute them
   782         rc_exp = cmp->in(2);
   783         limit  = cmp->in(1);
   784         limit_c = phase->get_ctrl(limit);
   785         if( is_member(phase->get_loop(limit_c) ) )
   786           continue;             // Both inputs are loop varying; cannot RCE
   787       }
   789       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   790         continue;
   791       }
   792       // Yeah!  Found a test like 'trip+off vs limit'
   793       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   794       // we need loop unswitching instead of iteration splitting.
   795       if( is_loop_exit(iff) )
   796         return true;            // Found reason to split iterations
   797     } // End of is IF
   798   }
   800   return false;
   801 }
   803 //------------------------------policy_peel_only-------------------------------
   804 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   805 // for unrolling loops with NO array accesses.
   806 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   808   for( uint i = 0; i < _body.size(); i++ )
   809     if( _body[i]->is_Mem() )
   810       return false;
   812   // No memory accesses at all!
   813   return true;
   814 }
   816 //------------------------------clone_up_backedge_goo--------------------------
   817 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   818 // version of n in preheader_ctrl block and return that, otherwise return n.
   819 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   820   if( get_ctrl(n) != back_ctrl ) return n;
   822   Node *x = NULL;               // If required, a clone of 'n'
   823   // Check for 'n' being pinned in the backedge.
   824   if( n->in(0) && n->in(0) == back_ctrl ) {
   825     x = n->clone();             // Clone a copy of 'n' to preheader
   826     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   827   }
   829   // Recursive fixup any other input edges into x.
   830   // If there are no changes we can just return 'n', otherwise
   831   // we need to clone a private copy and change it.
   832   for( uint i = 1; i < n->req(); i++ ) {
   833     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   834     if( g != n->in(i) ) {
   835       if( !x )
   836         x = n->clone();
   837       x->set_req(i, g);
   838     }
   839   }
   840   if( x ) {                     // x can legally float to pre-header location
   841     register_new_node( x, preheader_ctrl );
   842     return x;
   843   } else {                      // raise n to cover LCA of uses
   844     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   845   }
   846   return n;
   847 }
   849 //------------------------------insert_pre_post_loops--------------------------
   850 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   851 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   852 // alignment.  Useful to unroll loops that do no array accesses.
   853 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   855 #ifndef PRODUCT
   856   if (TraceLoopOpts) {
   857     if (peel_only)
   858       tty->print("PeelMainPost ");
   859     else
   860       tty->print("PreMainPost  ");
   861     loop->dump_head();
   862   }
   863 #endif
   864   C->set_major_progress();
   866   // Find common pieces of the loop being guarded with pre & post loops
   867   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   868   assert( main_head->is_normal_loop(), "" );
   869   CountedLoopEndNode *main_end = main_head->loopexit();
   870   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   871   uint dd_main_head = dom_depth(main_head);
   872   uint max = main_head->outcnt();
   874   Node *pre_header= main_head->in(LoopNode::EntryControl);
   875   Node *init      = main_head->init_trip();
   876   Node *incr      = main_end ->incr();
   877   Node *limit     = main_end ->limit();
   878   Node *stride    = main_end ->stride();
   879   Node *cmp       = main_end ->cmp_node();
   880   BoolTest::mask b_test = main_end->test_trip();
   882   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   883   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   884   if( bol->outcnt() != 1 ) {
   885     bol = bol->clone();
   886     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   887     _igvn.hash_delete(main_end);
   888     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   889   }
   890   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   891   if( cmp->outcnt() != 1 ) {
   892     cmp = cmp->clone();
   893     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   894     _igvn.hash_delete(bol);
   895     bol->set_req(1, cmp);
   896   }
   898   //------------------------------
   899   // Step A: Create Post-Loop.
   900   Node* main_exit = main_end->proj_out(false);
   901   assert( main_exit->Opcode() == Op_IfFalse, "" );
   902   int dd_main_exit = dom_depth(main_exit);
   904   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   905   // loop pre-header illegally has 2 control users (old & new loops).
   906   clone_loop( loop, old_new, dd_main_exit );
   907   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   908   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   909   post_head->set_post_loop(main_head);
   911   // Reduce the post-loop trip count.
   912   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   913   post_end->_prob = PROB_FAIR;
   915   // Build the main-loop normal exit.
   916   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   917   _igvn.register_new_node_with_optimizer( new_main_exit );
   918   set_idom(new_main_exit, main_end, dd_main_exit );
   919   set_loop(new_main_exit, loop->_parent);
   921   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   922   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   923   // (the main-loop trip-counter exit value) because we will be changing
   924   // the exit value (via unrolling) so we cannot constant-fold away the zero
   925   // trip guard until all unrolling is done.
   926   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   927   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   928   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   929   register_new_node( zer_opaq, new_main_exit );
   930   register_new_node( zer_cmp , new_main_exit );
   931   register_new_node( zer_bol , new_main_exit );
   933   // Build the IfNode
   934   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   935   _igvn.register_new_node_with_optimizer( zer_iff );
   936   set_idom(zer_iff, new_main_exit, dd_main_exit);
   937   set_loop(zer_iff, loop->_parent);
   939   // Plug in the false-path, taken if we need to skip post-loop
   940   _igvn.hash_delete( main_exit );
   941   main_exit->set_req(0, zer_iff);
   942   _igvn._worklist.push(main_exit);
   943   set_idom(main_exit, zer_iff, dd_main_exit);
   944   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   945   // Make the true-path, must enter the post loop
   946   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   947   _igvn.register_new_node_with_optimizer( zer_taken );
   948   set_idom(zer_taken, zer_iff, dd_main_exit);
   949   set_loop(zer_taken, loop->_parent);
   950   // Plug in the true path
   951   _igvn.hash_delete( post_head );
   952   post_head->set_req(LoopNode::EntryControl, zer_taken);
   953   set_idom(post_head, zer_taken, dd_main_exit);
   955   // Step A3: Make the fall-in values to the post-loop come from the
   956   // fall-out values of the main-loop.
   957   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   958     Node* main_phi = main_head->fast_out(i);
   959     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   960       Node *post_phi = old_new[main_phi->_idx];
   961       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   962                                               post_head->init_control(),
   963                                               main_phi->in(LoopNode::LoopBackControl));
   964       _igvn.hash_delete(post_phi);
   965       post_phi->set_req( LoopNode::EntryControl, fallmain );
   966     }
   967   }
   969   // Update local caches for next stanza
   970   main_exit = new_main_exit;
   973   //------------------------------
   974   // Step B: Create Pre-Loop.
   976   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   977   // loop pre-header illegally has 2 control users (old & new loops).
   978   clone_loop( loop, old_new, dd_main_head );
   979   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   980   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   981   pre_head->set_pre_loop(main_head);
   982   Node *pre_incr = old_new[incr->_idx];
   984   // Reduce the pre-loop trip count.
   985   pre_end->_prob = PROB_FAIR;
   987   // Find the pre-loop normal exit.
   988   Node* pre_exit = pre_end->proj_out(false);
   989   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   990   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   991   _igvn.register_new_node_with_optimizer( new_pre_exit );
   992   set_idom(new_pre_exit, pre_end, dd_main_head);
   993   set_loop(new_pre_exit, loop->_parent);
   995   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
   996   // pre-loop, the main-loop may not execute at all.  Later in life this
   997   // zero-trip guard will become the minimum-trip guard when we unroll
   998   // the main-loop.
   999   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
  1000   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
  1001   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
  1002   register_new_node( min_opaq, new_pre_exit );
  1003   register_new_node( min_cmp , new_pre_exit );
  1004   register_new_node( min_bol , new_pre_exit );
  1006   // Build the IfNode (assume the main-loop is executed always).
  1007   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
  1008   _igvn.register_new_node_with_optimizer( min_iff );
  1009   set_idom(min_iff, new_pre_exit, dd_main_head);
  1010   set_loop(min_iff, loop->_parent);
  1012   // Plug in the false-path, taken if we need to skip main-loop
  1013   _igvn.hash_delete( pre_exit );
  1014   pre_exit->set_req(0, min_iff);
  1015   set_idom(pre_exit, min_iff, dd_main_head);
  1016   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
  1017   // Make the true-path, must enter the main loop
  1018   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
  1019   _igvn.register_new_node_with_optimizer( min_taken );
  1020   set_idom(min_taken, min_iff, dd_main_head);
  1021   set_loop(min_taken, loop->_parent);
  1022   // Plug in the true path
  1023   _igvn.hash_delete( main_head );
  1024   main_head->set_req(LoopNode::EntryControl, min_taken);
  1025   set_idom(main_head, min_taken, dd_main_head);
  1027   // Step B3: Make the fall-in values to the main-loop come from the
  1028   // fall-out values of the pre-loop.
  1029   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
  1030     Node* main_phi = main_head->fast_out(i2);
  1031     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
  1032       Node *pre_phi = old_new[main_phi->_idx];
  1033       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
  1034                                              main_head->init_control(),
  1035                                              pre_phi->in(LoopNode::LoopBackControl));
  1036       _igvn.hash_delete(main_phi);
  1037       main_phi->set_req( LoopNode::EntryControl, fallpre );
  1041   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
  1042   // RCE and alignment may change this later.
  1043   Node *cmp_end = pre_end->cmp_node();
  1044   assert( cmp_end->in(2) == limit, "" );
  1045   Node *pre_limit = new (C, 3) AddINode( init, stride );
  1047   // Save the original loop limit in this Opaque1 node for
  1048   // use by range check elimination.
  1049   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
  1051   register_new_node( pre_limit, pre_head->in(0) );
  1052   register_new_node( pre_opaq , pre_head->in(0) );
  1054   // Since no other users of pre-loop compare, I can hack limit directly
  1055   assert( cmp_end->outcnt() == 1, "no other users" );
  1056   _igvn.hash_delete(cmp_end);
  1057   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
  1059   // Special case for not-equal loop bounds:
  1060   // Change pre loop test, main loop test, and the
  1061   // main loop guard test to use lt or gt depending on stride
  1062   // direction:
  1063   // positive stride use <
  1064   // negative stride use >
  1066   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
  1068     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
  1069     // Modify pre loop end condition
  1070     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1071     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
  1072     register_new_node( new_bol0, pre_head->in(0) );
  1073     _igvn.hash_delete(pre_end);
  1074     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
  1075     // Modify main loop guard condition
  1076     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
  1077     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
  1078     register_new_node( new_bol1, new_pre_exit );
  1079     _igvn.hash_delete(min_iff);
  1080     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
  1081     // Modify main loop end condition
  1082     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1083     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
  1084     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
  1085     _igvn.hash_delete(main_end);
  1086     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
  1089   // Flag main loop
  1090   main_head->set_main_loop();
  1091   if( peel_only ) main_head->set_main_no_pre_loop();
  1093   // It's difficult to be precise about the trip-counts
  1094   // for the pre/post loops.  They are usually very short,
  1095   // so guess that 4 trips is a reasonable value.
  1096   post_head->set_profile_trip_cnt(4.0);
  1097   pre_head->set_profile_trip_cnt(4.0);
  1099   // Now force out all loop-invariant dominating tests.  The optimizer
  1100   // finds some, but we _know_ they are all useless.
  1101   peeled_dom_test_elim(loop,old_new);
  1104 //------------------------------is_invariant-----------------------------
  1105 // Return true if n is invariant
  1106 bool IdealLoopTree::is_invariant(Node* n) const {
  1107   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
  1108   if (n_c->is_top()) return false;
  1109   return !is_member(_phase->get_loop(n_c));
  1113 //------------------------------do_unroll--------------------------------------
  1114 // Unroll the loop body one step - make each trip do 2 iterations.
  1115 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
  1116   assert(LoopUnrollLimit, "");
  1117   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
  1118   CountedLoopEndNode *loop_end = loop_head->loopexit();
  1119   assert(loop_end, "");
  1120 #ifndef PRODUCT
  1121   if (PrintOpto && VerifyLoopOptimizations) {
  1122     tty->print("Unrolling ");
  1123     loop->dump_head();
  1124   } else if (TraceLoopOpts) {
  1125     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
  1126       tty->print("Unroll  %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
  1127     } else {
  1128       tty->print("Unroll  %d     ", loop_head->unrolled_count()*2);
  1130     loop->dump_head();
  1132 #endif
  1134   // Remember loop node count before unrolling to detect
  1135   // if rounds of unroll,optimize are making progress
  1136   loop_head->set_node_count_before_unroll(loop->_body.size());
  1138   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
  1139   Node *limit = loop_head->limit();
  1140   Node *init  = loop_head->init_trip();
  1141   Node *stride = loop_head->stride();
  1143   Node *opaq = NULL;
  1144   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
  1145     assert( loop_head->is_main_loop(), "" );
  1146     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1147     Node *iff = ctrl->in(0);
  1148     assert( iff->Opcode() == Op_If, "" );
  1149     Node *bol = iff->in(1);
  1150     assert( bol->Opcode() == Op_Bool, "" );
  1151     Node *cmp = bol->in(1);
  1152     assert( cmp->Opcode() == Op_CmpI, "" );
  1153     opaq = cmp->in(2);
  1154     // Occasionally it's possible for a pre-loop Opaque1 node to be
  1155     // optimized away and then another round of loop opts attempted.
  1156     // We can not optimize this particular loop in that case.
  1157     if( opaq->Opcode() != Op_Opaque1 )
  1158       return;                   // Cannot find pre-loop!  Bail out!
  1161   C->set_major_progress();
  1163   // Adjust max trip count. The trip count is intentionally rounded
  1164   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1165   // the main, unrolled, part of the loop will never execute as it is protected
  1166   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1167   // and later determined that part of the unrolled loop was dead.
  1168   loop_head->set_trip_count(loop_head->trip_count() / 2);
  1170   // Double the count of original iterations in the unrolled loop body.
  1171   loop_head->double_unrolled_count();
  1173   // -----------
  1174   // Step 2: Cut back the trip counter for an unroll amount of 2.
  1175   // Loop will normally trip (limit - init)/stride_con.  Since it's a
  1176   // CountedLoop this is exact (stride divides limit-init exactly).
  1177   // We are going to double the loop body, so we want to knock off any
  1178   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
  1179   Node *span = new (C, 3) SubINode( limit, init );
  1180   register_new_node( span, ctrl );
  1181   Node *trip = new (C, 3) DivINode( 0, span, stride );
  1182   register_new_node( trip, ctrl );
  1183   Node *mtwo = _igvn.intcon(-2);
  1184   set_ctrl(mtwo, C->root());
  1185   Node *rond = new (C, 3) AndINode( trip, mtwo );
  1186   register_new_node( rond, ctrl );
  1187   Node *spn2 = new (C, 3) MulINode( rond, stride );
  1188   register_new_node( spn2, ctrl );
  1189   Node *lim2 = new (C, 3) AddINode( spn2, init );
  1190   register_new_node( lim2, ctrl );
  1192   // Hammer in the new limit
  1193   Node *ctrl2 = loop_end->in(0);
  1194   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
  1195   register_new_node( cmp2, ctrl2 );
  1196   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
  1197   register_new_node( bol2, ctrl2 );
  1198   _igvn.hash_delete(loop_end);
  1199   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
  1201   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1202   // Make it a 1-trip test (means at least 2 trips).
  1203   if( adjust_min_trip ) {
  1204     // Guard test uses an 'opaque' node which is not shared.  Hence I
  1205     // can edit it's inputs directly.  Hammer in the new limit for the
  1206     // minimum-trip guard.
  1207     assert( opaq->outcnt() == 1, "" );
  1208     _igvn.hash_delete(opaq);
  1209     opaq->set_req(1, lim2);
  1212   // ---------
  1213   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1214   // represents the odd iterations; since the loop trips an even number of
  1215   // times its backedge is never taken.  Kill the backedge.
  1216   uint dd = dom_depth(loop_head);
  1217   clone_loop( loop, old_new, dd );
  1219   // Make backedges of the clone equal to backedges of the original.
  1220   // Make the fall-in from the original come from the fall-out of the clone.
  1221   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1222     Node* phi = loop_head->fast_out(j);
  1223     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1224       Node *newphi = old_new[phi->_idx];
  1225       _igvn.hash_delete( phi );
  1226       _igvn.hash_delete( newphi );
  1228       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1229       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1230       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1233   Node *clone_head = old_new[loop_head->_idx];
  1234   _igvn.hash_delete( clone_head );
  1235   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1236   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1237   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1238   loop->_head = clone_head;     // New loop header
  1240   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1241   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1243   // Kill the clone's backedge
  1244   Node *newcle = old_new[loop_end->_idx];
  1245   _igvn.hash_delete( newcle );
  1246   Node *one = _igvn.intcon(1);
  1247   set_ctrl(one, C->root());
  1248   newcle->set_req(1, one);
  1249   // Force clone into same loop body
  1250   uint max = loop->_body.size();
  1251   for( uint k = 0; k < max; k++ ) {
  1252     Node *old = loop->_body.at(k);
  1253     Node *nnn = old_new[old->_idx];
  1254     loop->_body.push(nnn);
  1255     if (!has_ctrl(old))
  1256       set_loop(nnn, loop);
  1259   loop->record_for_igvn();
  1262 //------------------------------do_maximally_unroll----------------------------
  1264 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1265   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1266   assert(cl->trip_count() > 0, "");
  1267 #ifndef PRODUCT
  1268   if (TraceLoopOpts) {
  1269     tty->print("MaxUnroll  %d ", cl->trip_count());
  1270     loop->dump_head();
  1272 #endif
  1274   // If loop is tripping an odd number of times, peel odd iteration
  1275   if ((cl->trip_count() & 1) == 1) {
  1276     do_peeling(loop, old_new);
  1279   // Now its tripping an even number of times remaining.  Double loop body.
  1280   // Do not adjust pre-guards; they are not needed and do not exist.
  1281   if (cl->trip_count() > 0) {
  1282     do_unroll(loop, old_new, false);
  1286 //------------------------------dominates_backedge---------------------------------
  1287 // Returns true if ctrl is executed on every complete iteration
  1288 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1289   assert(ctrl->is_CFG(), "must be control");
  1290   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1291   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1294 //------------------------------add_constraint---------------------------------
  1295 // Constrain the main loop iterations so the condition:
  1296 //    scale_con * I + offset  <  limit
  1297 // always holds true.  That is, either increase the number of iterations in
  1298 // the pre-loop or the post-loop until the condition holds true in the main
  1299 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1300 // stride and scale are constants (offset and limit often are).
  1301 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1303   // Compute "I :: (limit-offset)/scale_con"
  1304   Node *con = new (C, 3) SubINode( limit, offset );
  1305   register_new_node( con, pre_ctrl );
  1306   Node *scale = _igvn.intcon(scale_con);
  1307   set_ctrl(scale, C->root());
  1308   Node *X = new (C, 3) DivINode( 0, con, scale );
  1309   register_new_node( X, pre_ctrl );
  1311   // For positive stride, the pre-loop limit always uses a MAX function
  1312   // and the main loop a MIN function.  For negative stride these are
  1313   // reversed.
  1315   // Also for positive stride*scale the affine function is increasing, so the
  1316   // pre-loop must check for underflow and the post-loop for overflow.
  1317   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1318   // post-loop for underflow.
  1319   if( stride_con*scale_con > 0 ) {
  1320     // Compute I < (limit-offset)/scale_con
  1321     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
  1322     *main_limit = (stride_con > 0)
  1323       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
  1324       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
  1325     register_new_node( *main_limit, pre_ctrl );
  1327   } else {
  1328     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
  1329     // Add the negation of the main-loop constraint to the pre-loop.
  1330     // See footnote [++] below for a derivation of the limit expression.
  1331     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
  1332     set_ctrl(incr, C->root());
  1333     Node *adj = new (C, 3) AddINode( X, incr );
  1334     register_new_node( adj, pre_ctrl );
  1335     *pre_limit = (scale_con > 0)
  1336       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
  1337       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
  1338     register_new_node( *pre_limit, pre_ctrl );
  1340 //   [++] Here's the algebra that justifies the pre-loop limit expression:
  1341 //
  1342 //   NOT( scale_con * I + offset  <  limit )
  1343 //      ==
  1344 //   scale_con * I + offset  >=  limit
  1345 //      ==
  1346 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
  1347 //      ==
  1348 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
  1349 //      ==
  1350 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
  1351 //      ==
  1352 //   ( if (scale_con > 0) /*common case*/
  1353 //       (limit-offset)/scale_con - 1  <  I
  1354 //     else
  1355 //       (limit-offset)/scale_con + 1  >  I
  1356 //    )
  1357 //   ( if (scale_con > 0) /*common case*/
  1358 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
  1359 //     else
  1360 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
  1365 //------------------------------is_scaled_iv---------------------------------
  1366 // Return true if exp is a constant times an induction var
  1367 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1368   if (exp == iv) {
  1369     if (p_scale != NULL) {
  1370       *p_scale = 1;
  1372     return true;
  1374   int opc = exp->Opcode();
  1375   if (opc == Op_MulI) {
  1376     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1377       if (p_scale != NULL) {
  1378         *p_scale = exp->in(2)->get_int();
  1380       return true;
  1382     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1383       if (p_scale != NULL) {
  1384         *p_scale = exp->in(1)->get_int();
  1386       return true;
  1388   } else if (opc == Op_LShiftI) {
  1389     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1390       if (p_scale != NULL) {
  1391         *p_scale = 1 << exp->in(2)->get_int();
  1393       return true;
  1396   return false;
  1399 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1400 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1401 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1402   if (is_scaled_iv(exp, iv, p_scale)) {
  1403     if (p_offset != NULL) {
  1404       Node *zero = _igvn.intcon(0);
  1405       set_ctrl(zero, C->root());
  1406       *p_offset = zero;
  1408     return true;
  1410   int opc = exp->Opcode();
  1411   if (opc == Op_AddI) {
  1412     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1413       if (p_offset != NULL) {
  1414         *p_offset = exp->in(2);
  1416       return true;
  1418     if (exp->in(2)->is_Con()) {
  1419       Node* offset2 = NULL;
  1420       if (depth < 2 &&
  1421           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1422                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1423         if (p_offset != NULL) {
  1424           Node *ctrl_off2 = get_ctrl(offset2);
  1425           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1426           register_new_node(offset, ctrl_off2);
  1427           *p_offset = offset;
  1429         return true;
  1432   } else if (opc == Op_SubI) {
  1433     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1434       if (p_offset != NULL) {
  1435         Node *zero = _igvn.intcon(0);
  1436         set_ctrl(zero, C->root());
  1437         Node *ctrl_off = get_ctrl(exp->in(2));
  1438         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1439         register_new_node(offset, ctrl_off);
  1440         *p_offset = offset;
  1442       return true;
  1444     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1445       if (p_offset != NULL) {
  1446         *p_scale *= -1;
  1447         *p_offset = exp->in(1);
  1449       return true;
  1452   return false;
  1455 //------------------------------do_range_check---------------------------------
  1456 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1457 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1458 #ifndef PRODUCT
  1459   if (PrintOpto && VerifyLoopOptimizations) {
  1460     tty->print("Range Check Elimination ");
  1461     loop->dump_head();
  1462   } else if (TraceLoopOpts) {
  1463     tty->print("RangeCheck   ");
  1464     loop->dump_head();
  1466 #endif
  1467   assert(RangeCheckElimination, "");
  1468   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1469   assert(cl->is_main_loop(), "");
  1471   // protect against stride not being a constant
  1472   if (!cl->stride_is_con())
  1473     return;
  1475   // Find the trip counter; we are iteration splitting based on it
  1476   Node *trip_counter = cl->phi();
  1477   // Find the main loop limit; we will trim it's iterations
  1478   // to not ever trip end tests
  1479   Node *main_limit = cl->limit();
  1481   // Need to find the main-loop zero-trip guard
  1482   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1483   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1484   Node *iffm = ctrl->in(0);
  1485   assert(iffm->Opcode() == Op_If, "");
  1486   Node *bolzm = iffm->in(1);
  1487   assert(bolzm->Opcode() == Op_Bool, "");
  1488   Node *cmpzm = bolzm->in(1);
  1489   assert(cmpzm->is_Cmp(), "");
  1490   Node *opqzm = cmpzm->in(2);
  1491   // Can not optimize a loop if pre-loop Opaque1 node is optimized
  1492   // away and then another round of loop opts attempted.
  1493   if (opqzm->Opcode() != Op_Opaque1)
  1494     return;
  1495   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1497   // Find the pre-loop limit; we will expand it's iterations to
  1498   // not ever trip low tests.
  1499   Node *p_f = iffm->in(0);
  1500   assert(p_f->Opcode() == Op_IfFalse, "");
  1501   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1502   assert(pre_end->loopnode()->is_pre_loop(), "");
  1503   Node *pre_opaq1 = pre_end->limit();
  1504   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1505   // optimized away and then another round of loop opts attempted.
  1506   // We can not optimize this particular loop in that case.
  1507   if (pre_opaq1->Opcode() != Op_Opaque1)
  1508     return;
  1509   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1510   Node *pre_limit = pre_opaq->in(1);
  1512   // Where do we put new limit calculations
  1513   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1515   // Ensure the original loop limit is available from the
  1516   // pre-loop Opaque1 node.
  1517   Node *orig_limit = pre_opaq->original_loop_limit();
  1518   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1519     return;
  1521   // Must know if its a count-up or count-down loop
  1523   int stride_con = cl->stride_con();
  1524   Node *zero = _igvn.intcon(0);
  1525   Node *one  = _igvn.intcon(1);
  1526   set_ctrl(zero, C->root());
  1527   set_ctrl(one,  C->root());
  1529   // Range checks that do not dominate the loop backedge (ie.
  1530   // conditionally executed) can lengthen the pre loop limit beyond
  1531   // the original loop limit. To prevent this, the pre limit is
  1532   // (for stride > 0) MINed with the original loop limit (MAXed
  1533   // stride < 0) when some range_check (rc) is conditionally
  1534   // executed.
  1535   bool conditional_rc = false;
  1537   // Check loop body for tests of trip-counter plus loop-invariant vs
  1538   // loop-invariant.
  1539   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1540     Node *iff = loop->_body[i];
  1541     if( iff->Opcode() == Op_If ) { // Test?
  1543       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1544       // we need loop unswitching instead of iteration splitting.
  1545       Node *exit = loop->is_loop_exit(iff);
  1546       if( !exit ) continue;
  1547       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1549       // Get boolean condition to test
  1550       Node *i1 = iff->in(1);
  1551       if( !i1->is_Bool() ) continue;
  1552       BoolNode *bol = i1->as_Bool();
  1553       BoolTest b_test = bol->_test;
  1554       // Flip sense of test if exit condition is flipped
  1555       if( flip )
  1556         b_test = b_test.negate();
  1558       // Get compare
  1559       Node *cmp = bol->in(1);
  1561       // Look for trip_counter + offset vs limit
  1562       Node *rc_exp = cmp->in(1);
  1563       Node *limit  = cmp->in(2);
  1564       jint scale_con= 1;        // Assume trip counter not scaled
  1566       Node *limit_c = get_ctrl(limit);
  1567       if( loop->is_member(get_loop(limit_c) ) ) {
  1568         // Compare might have operands swapped; commute them
  1569         b_test = b_test.commute();
  1570         rc_exp = cmp->in(2);
  1571         limit  = cmp->in(1);
  1572         limit_c = get_ctrl(limit);
  1573         if( loop->is_member(get_loop(limit_c) ) )
  1574           continue;             // Both inputs are loop varying; cannot RCE
  1576       // Here we know 'limit' is loop invariant
  1578       // 'limit' maybe pinned below the zero trip test (probably from a
  1579       // previous round of rce), in which case, it can't be used in the
  1580       // zero trip test expression which must occur before the zero test's if.
  1581       if( limit_c == ctrl ) {
  1582         continue;  // Don't rce this check but continue looking for other candidates.
  1585       // Check for scaled induction variable plus an offset
  1586       Node *offset = NULL;
  1588       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1589         continue;
  1592       Node *offset_c = get_ctrl(offset);
  1593       if( loop->is_member( get_loop(offset_c) ) )
  1594         continue;               // Offset is not really loop invariant
  1595       // Here we know 'offset' is loop invariant.
  1597       // As above for the 'limit', the 'offset' maybe pinned below the
  1598       // zero trip test.
  1599       if( offset_c == ctrl ) {
  1600         continue; // Don't rce this check but continue looking for other candidates.
  1603       // At this point we have the expression as:
  1604       //   scale_con * trip_counter + offset :: limit
  1605       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1606       // monotonically increases by stride_con, a constant.  Both (or either)
  1607       // stride_con and scale_con can be negative which will flip about the
  1608       // sense of the test.
  1610       // Adjust pre and main loop limits to guard the correct iteration set
  1611       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1612         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1613           // The overflow limit: scale*I+offset < limit
  1614           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1615           // The underflow limit: 0 <= scale*I+offset.
  1616           // Some math yields: -scale*I-(offset+1) < 0
  1617           Node *plus_one = new (C, 3) AddINode( offset, one );
  1618           register_new_node( plus_one, pre_ctrl );
  1619           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
  1620           register_new_node( neg_offset, pre_ctrl );
  1621           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
  1622           if (!conditional_rc) {
  1623             conditional_rc = !loop->dominates_backedge(iff);
  1625         } else {
  1626 #ifndef PRODUCT
  1627           if( PrintOpto )
  1628             tty->print_cr("missed RCE opportunity");
  1629 #endif
  1630           continue;             // In release mode, ignore it
  1632       } else {                  // Otherwise work on normal compares
  1633         switch( b_test._test ) {
  1634         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
  1635           scale_con = -scale_con;
  1636           offset = new (C, 3) SubINode( zero, offset );
  1637           register_new_node( offset, pre_ctrl );
  1638           limit  = new (C, 3) SubINode( zero, limit  );
  1639           register_new_node( limit, pre_ctrl );
  1640           // Fall into LE case
  1641         case BoolTest::le:      // Convert X <= Y to X < Y+1
  1642           limit = new (C, 3) AddINode( limit, one );
  1643           register_new_node( limit, pre_ctrl );
  1644           // Fall into LT case
  1645         case BoolTest::lt:
  1646           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1647           if (!conditional_rc) {
  1648             conditional_rc = !loop->dominates_backedge(iff);
  1650           break;
  1651         default:
  1652 #ifndef PRODUCT
  1653           if( PrintOpto )
  1654             tty->print_cr("missed RCE opportunity");
  1655 #endif
  1656           continue;             // Unhandled case
  1660       // Kill the eliminated test
  1661       C->set_major_progress();
  1662       Node *kill_con = _igvn.intcon( 1-flip );
  1663       set_ctrl(kill_con, C->root());
  1664       _igvn.hash_delete(iff);
  1665       iff->set_req(1, kill_con);
  1666       _igvn._worklist.push(iff);
  1667       // Find surviving projection
  1668       assert(iff->is_If(), "");
  1669       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1670       // Find loads off the surviving projection; remove their control edge
  1671       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1672         Node* cd = dp->fast_out(i); // Control-dependent node
  1673         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1674           _igvn.hash_delete(cd);
  1675           // Allow the load to float around in the loop, or before it
  1676           // but NOT before the pre-loop.
  1677           cd->set_req(0, ctrl);   // ctrl, not NULL
  1678           _igvn._worklist.push(cd);
  1679           --i;
  1680           --imax;
  1684     } // End of is IF
  1688   // Update loop limits
  1689   if (conditional_rc) {
  1690     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1691                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1692     register_new_node(pre_limit, pre_ctrl);
  1694   _igvn.hash_delete(pre_opaq);
  1695   pre_opaq->set_req(1, pre_limit);
  1697   // Note:: we are making the main loop limit no longer precise;
  1698   // need to round up based on stride.
  1699   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
  1700     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1701     // Hopefully, compiler will optimize for powers of 2.
  1702     Node *ctrl = get_ctrl(main_limit);
  1703     Node *stride = cl->stride();
  1704     Node *init = cl->init_trip();
  1705     Node *span = new (C, 3) SubINode(main_limit,init);
  1706     register_new_node(span,ctrl);
  1707     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1708     Node *add = new (C, 3) AddINode(span,rndup);
  1709     register_new_node(add,ctrl);
  1710     Node *div = new (C, 3) DivINode(0,add,stride);
  1711     register_new_node(div,ctrl);
  1712     Node *mul = new (C, 3) MulINode(div,stride);
  1713     register_new_node(mul,ctrl);
  1714     Node *newlim = new (C, 3) AddINode(mul,init);
  1715     register_new_node(newlim,ctrl);
  1716     main_limit = newlim;
  1719   Node *main_cle = cl->loopexit();
  1720   Node *main_bol = main_cle->in(1);
  1721   // Hacking loop bounds; need private copies of exit test
  1722   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1723     _igvn.hash_delete(main_cle);
  1724     main_bol = main_bol->clone();// Clone a private BoolNode
  1725     register_new_node( main_bol, main_cle->in(0) );
  1726     main_cle->set_req(1,main_bol);
  1728   Node *main_cmp = main_bol->in(1);
  1729   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1730     _igvn.hash_delete(main_bol);
  1731     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1732     register_new_node( main_cmp, main_cle->in(0) );
  1733     main_bol->set_req(1,main_cmp);
  1735   // Hack the now-private loop bounds
  1736   _igvn.hash_delete(main_cmp);
  1737   main_cmp->set_req(2, main_limit);
  1738   _igvn._worklist.push(main_cmp);
  1739   // The OpaqueNode is unshared by design
  1740   _igvn.hash_delete(opqzm);
  1741   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1742   opqzm->set_req(1,main_limit);
  1743   _igvn._worklist.push(opqzm);
  1746 //------------------------------DCE_loop_body----------------------------------
  1747 // Remove simplistic dead code from loop body
  1748 void IdealLoopTree::DCE_loop_body() {
  1749   for( uint i = 0; i < _body.size(); i++ )
  1750     if( _body.at(i)->outcnt() == 0 )
  1751       _body.map( i--, _body.pop() );
  1755 //------------------------------adjust_loop_exit_prob--------------------------
  1756 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  1757 // Replace with a 1-in-10 exit guess.
  1758 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  1759   Node *test = tail();
  1760   while( test != _head ) {
  1761     uint top = test->Opcode();
  1762     if( top == Op_IfTrue || top == Op_IfFalse ) {
  1763       int test_con = ((ProjNode*)test)->_con;
  1764       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  1765       IfNode *iff = test->in(0)->as_If();
  1766       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  1767         Node *bol = iff->in(1);
  1768         if( bol && bol->req() > 1 && bol->in(1) &&
  1769             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  1770              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  1771              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  1772              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  1773              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  1774              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  1775              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  1776           return;               // Allocation loops RARELY take backedge
  1777         // Find the OTHER exit path from the IF
  1778         Node* ex = iff->proj_out(1-test_con);
  1779         float p = iff->_prob;
  1780         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  1781           if( top == Op_IfTrue ) {
  1782             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  1783               iff->_prob = PROB_STATIC_FREQUENT;
  1785           } else {
  1786             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  1787               iff->_prob = PROB_STATIC_INFREQUENT;
  1793     test = phase->idom(test);
  1798 //------------------------------policy_do_remove_empty_loop--------------------
  1799 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1800 // The 'DO' part is to replace the trip counter with the value it will
  1801 // have on the last iteration.  This will break the loop.
  1802 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1803   // Minimum size must be empty loop
  1804   if (_body.size() > EMPTY_LOOP_SIZE)
  1805     return false;
  1807   if (!_head->is_CountedLoop())
  1808     return false;     // Dead loop
  1809   CountedLoopNode *cl = _head->as_CountedLoop();
  1810   if (!cl->loopexit())
  1811     return false; // Malformed loop
  1812   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  1813     return false;             // Infinite loop
  1815 #ifdef ASSERT
  1816   // Ensure only one phi which is the iv.
  1817   Node* iv = NULL;
  1818   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  1819     Node* n = cl->fast_out(i);
  1820     if (n->Opcode() == Op_Phi) {
  1821       assert(iv == NULL, "Too many phis" );
  1822       iv = n;
  1825   assert(iv == cl->phi(), "Wrong phi" );
  1826 #endif
  1828   // main and post loops have explicitly created zero trip guard
  1829   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  1830   if (needs_guard) {
  1831     // Skip guard if values not overlap.
  1832     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
  1833     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
  1834     int  stride_con = cl->stride_con();
  1835     if (stride_con > 0) {
  1836       needs_guard = (init_t->_hi >= limit_t->_lo);
  1837     } else {
  1838       needs_guard = (init_t->_lo <= limit_t->_hi);
  1841   if (needs_guard) {
  1842     // Check for an obvious zero trip guard.
  1843     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
  1844     if (inctrl->Opcode() == Op_IfTrue) {
  1845       // The test should look like just the backedge of a CountedLoop
  1846       Node* iff = inctrl->in(0);
  1847       if (iff->is_If()) {
  1848         Node* bol = iff->in(1);
  1849         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  1850           Node* cmp = bol->in(1);
  1851           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  1852             needs_guard = false;
  1859 #ifndef PRODUCT
  1860   if (PrintOpto) {
  1861     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  1862     this->dump_head();
  1863   } else if (TraceLoopOpts) {
  1864     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  1865     this->dump_head();
  1867 #endif
  1869   if (needs_guard) {
  1870     // Peel the loop to ensure there's a zero trip guard
  1871     Node_List old_new;
  1872     phase->do_peeling(this, old_new);
  1875   // Replace the phi at loop head with the final value of the last
  1876   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  1877   // taken) and all loop-invariant uses of the exit values will be correct.
  1878   Node *phi = cl->phi();
  1879   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
  1880   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  1881   phase->_igvn.replace_node(phi,final);
  1882   phase->C->set_major_progress();
  1883   return true;
  1886 //------------------------------policy_do_one_iteration_loop-------------------
  1887 // Convert one iteration loop into normal code.
  1888 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
  1889   if (!_head->as_Loop()->is_valid_counted_loop())
  1890     return false; // Only for counted loop
  1892   CountedLoopNode *cl = _head->as_CountedLoop();
  1893   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
  1894     return false;
  1897 #ifndef PRODUCT
  1898   if(TraceLoopOpts) {
  1899     tty->print("OneIteration ");
  1900     this->dump_head();
  1902 #endif
  1904   Node *init_n = cl->init_trip();
  1905 #ifdef ASSERT
  1906   // Loop boundaries should be constant since trip count is exact.
  1907   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
  1908 #endif
  1909   // Replace the phi at loop head with the value of the init_trip.
  1910   // Then the CountedLoopEnd will collapse (backedge will not be taken)
  1911   // and all loop-invariant uses of the exit values will be correct.
  1912   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
  1913   phase->C->set_major_progress();
  1914   return true;
  1917 //=============================================================================
  1918 //------------------------------iteration_split_impl---------------------------
  1919 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1920   // Compute exact loop trip count if possible.
  1921   compute_exact_trip_count(phase);
  1923   // Convert one iteration loop into normal code.
  1924   if (policy_do_one_iteration_loop(phase))
  1925     return true;
  1927   // Check and remove empty loops (spam micro-benchmarks)
  1928   if (policy_do_remove_empty_loop(phase))
  1929     return true;  // Here we removed an empty loop
  1931   bool should_peel = policy_peeling(phase); // Should we peel?
  1933   bool should_unswitch = policy_unswitching(phase);
  1935   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1936   // This removes loop-invariant tests (usually null checks).
  1937   if (!_head->is_CountedLoop()) { // Non-counted loop
  1938     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1939       // Partial peel succeeded so terminate this round of loop opts
  1940       return false;
  1942     if (should_peel) {            // Should we peel?
  1943 #ifndef PRODUCT
  1944       if (PrintOpto) tty->print_cr("should_peel");
  1945 #endif
  1946       phase->do_peeling(this,old_new);
  1947     } else if (should_unswitch) {
  1948       phase->do_unswitching(this, old_new);
  1950     return true;
  1952   CountedLoopNode *cl = _head->as_CountedLoop();
  1954   if (!cl->loopexit()) return true; // Ignore various kinds of broken loops
  1956   // Do nothing special to pre- and post- loops
  1957   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
  1959   // Compute loop trip count from profile data
  1960   compute_profile_trip_cnt(phase);
  1962   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1963   // to completely unroll this loop or do loop unswitching.
  1964   if (cl->is_normal_loop()) {
  1965     if (should_unswitch) {
  1966       phase->do_unswitching(this, old_new);
  1967       return true;
  1969     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1970     if (should_maximally_unroll) {
  1971       // Here we did some unrolling and peeling.  Eventually we will
  1972       // completely unroll this loop and it will no longer be a loop.
  1973       phase->do_maximally_unroll(this,old_new);
  1974       return true;
  1978   // Skip next optimizations if running low on nodes. Note that
  1979   // policy_unswitching and policy_maximally_unroll have this check.
  1980   uint nodes_left = MaxNodeLimit - phase->C->unique();
  1981   if ((2 * _body.size()) > nodes_left) {
  1982     return true;
  1985   // Counted loops may be peeled, may need some iterations run up
  1986   // front for RCE, and may want to align loop refs to a cache
  1987   // line.  Thus we clone a full loop up front whose trip count is
  1988   // at least 1 (if peeling), but may be several more.
  1990   // The main loop will start cache-line aligned with at least 1
  1991   // iteration of the unrolled body (zero-trip test required) and
  1992   // will have some range checks removed.
  1994   // A post-loop will finish any odd iterations (leftover after
  1995   // unrolling), plus any needed for RCE purposes.
  1997   bool should_unroll = policy_unroll(phase);
  1999   bool should_rce = policy_range_check(phase);
  2001   bool should_align = policy_align(phase);
  2003   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  2004   // need a pre-loop.  We may still need to peel an initial iteration but
  2005   // we will not be needing an unknown number of pre-iterations.
  2006   //
  2007   // Basically, if may_rce_align reports FALSE first time through,
  2008   // we will not be able to later do RCE or Aligning on this loop.
  2009   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  2011   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  2012   // we switch to the pre-/main-/post-loop model.  This model also covers
  2013   // peeling.
  2014   if (should_rce || should_align || should_unroll) {
  2015     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
  2016       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  2018     // Adjust the pre- and main-loop limits to let the pre and post loops run
  2019     // with full checks, but the main-loop with no checks.  Remove said
  2020     // checks from the main body.
  2021     if (should_rce)
  2022       phase->do_range_check(this,old_new);
  2024     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  2025     // twice as many iterations as before) and the main body limit (only do
  2026     // an even number of trips).  If we are peeling, we might enable some RCE
  2027     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  2028     // peeling.
  2029     if (should_unroll && !should_peel)
  2030       phase->do_unroll(this,old_new, true);
  2032     // Adjust the pre-loop limits to align the main body
  2033     // iterations.
  2034     if (should_align)
  2035       Unimplemented();
  2037   } else {                      // Else we have an unchanged counted loop
  2038     if (should_peel)           // Might want to peel but do nothing else
  2039       phase->do_peeling(this,old_new);
  2041   return true;
  2045 //=============================================================================
  2046 //------------------------------iteration_split--------------------------------
  2047 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  2048   // Recursively iteration split nested loops
  2049   if (_child && !_child->iteration_split(phase, old_new))
  2050     return false;
  2052   // Clean out prior deadwood
  2053   DCE_loop_body();
  2056   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  2057   // Replace with a 1-in-10 exit guess.
  2058   if (_parent /*not the root loop*/ &&
  2059       !_irreducible &&
  2060       // Also ignore the occasional dead backedge
  2061       !tail()->is_top()) {
  2062     adjust_loop_exit_prob(phase);
  2065   // Gate unrolling, RCE and peeling efforts.
  2066   if (!_child &&                // If not an inner loop, do not split
  2067       !_irreducible &&
  2068       _allow_optimizations &&
  2069       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  2070     if (!_has_call) {
  2071         if (!iteration_split_impl(phase, old_new)) {
  2072           return false;
  2074     } else if (policy_unswitching(phase)) {
  2075       phase->do_unswitching(this, old_new);
  2079   // Minor offset re-organization to remove loop-fallout uses of
  2080   // trip counter when there was no major reshaping.
  2081   phase->reorg_offsets(this);
  2083   if (_next && !_next->iteration_split(phase, old_new))
  2084     return false;
  2085   return true;
  2089 //=============================================================================
  2090 // Process all the loops in the loop tree and replace any fill
  2091 // patterns with an intrisc version.
  2092 bool PhaseIdealLoop::do_intrinsify_fill() {
  2093   bool changed = false;
  2094   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2095     IdealLoopTree* lpt = iter.current();
  2096     changed |= intrinsify_fill(lpt);
  2098   return changed;
  2102 // Examine an inner loop looking for a a single store of an invariant
  2103 // value in a unit stride loop,
  2104 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2105                                      Node*& shift, Node*& con) {
  2106   const char* msg = NULL;
  2107   Node* msg_node = NULL;
  2109   store_value = NULL;
  2110   con = NULL;
  2111   shift = NULL;
  2113   // Process the loop looking for stores.  If there are multiple
  2114   // stores or extra control flow give at this point.
  2115   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2116   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2117     Node* n = lpt->_body.at(i);
  2118     if (n->outcnt() == 0) continue; // Ignore dead
  2119     if (n->is_Store()) {
  2120       if (store != NULL) {
  2121         msg = "multiple stores";
  2122         break;
  2124       int opc = n->Opcode();
  2125       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
  2126         msg = "oop fills not handled";
  2127         break;
  2129       Node* value = n->in(MemNode::ValueIn);
  2130       if (!lpt->is_invariant(value)) {
  2131         msg  = "variant store value";
  2132       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2133         msg = "not array address";
  2135       store = n;
  2136       store_value = value;
  2137     } else if (n->is_If() && n != head->loopexit()) {
  2138       msg = "extra control flow";
  2139       msg_node = n;
  2143   if (store == NULL) {
  2144     // No store in loop
  2145     return false;
  2148   if (msg == NULL && head->stride_con() != 1) {
  2149     // could handle negative strides too
  2150     if (head->stride_con() < 0) {
  2151       msg = "negative stride";
  2152     } else {
  2153       msg = "non-unit stride";
  2157   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2158     msg = "can't handle store address";
  2159     msg_node = store->in(MemNode::Address);
  2162   if (msg == NULL &&
  2163       (!store->in(MemNode::Memory)->is_Phi() ||
  2164        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2165     msg = "store memory isn't proper phi";
  2166     msg_node = store->in(MemNode::Memory);
  2169   // Make sure there is an appropriate fill routine
  2170   BasicType t = store->as_Mem()->memory_type();
  2171   const char* fill_name;
  2172   if (msg == NULL &&
  2173       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2174     msg = "unsupported store";
  2175     msg_node = store;
  2178   if (msg != NULL) {
  2179 #ifndef PRODUCT
  2180     if (TraceOptimizeFill) {
  2181       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2182       if (msg_node != NULL) msg_node->dump();
  2184 #endif
  2185     return false;
  2188   // Make sure the address expression can be handled.  It should be
  2189   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2190   Node* elements[4];
  2191   Node* conv = NULL;
  2192   bool found_index = false;
  2193   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2194   for (int e = 0; e < count; e++) {
  2195     Node* n = elements[e];
  2196     if (n->is_Con() && con == NULL) {
  2197       con = n;
  2198     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2199       Node* value = n->in(1);
  2200 #ifdef _LP64
  2201       if (value->Opcode() == Op_ConvI2L) {
  2202         conv = value;
  2203         value = value->in(1);
  2205 #endif
  2206       if (value != head->phi()) {
  2207         msg = "unhandled shift in address";
  2208       } else {
  2209         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
  2210           msg = "scale doesn't match";
  2211         } else {
  2212           found_index = true;
  2213           shift = n;
  2216     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2217       if (n->in(1) == head->phi()) {
  2218         found_index = true;
  2219         conv = n;
  2220       } else {
  2221         msg = "unhandled input to ConvI2L";
  2223     } else if (n == head->phi()) {
  2224       // no shift, check below for allowed cases
  2225       found_index = true;
  2226     } else {
  2227       msg = "unhandled node in address";
  2228       msg_node = n;
  2232   if (count == -1) {
  2233     msg = "malformed address expression";
  2234     msg_node = store;
  2237   if (!found_index) {
  2238     msg = "missing use of index";
  2241   // byte sized items won't have a shift
  2242   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2243     msg = "can't find shift";
  2244     msg_node = store;
  2247   if (msg != NULL) {
  2248 #ifndef PRODUCT
  2249     if (TraceOptimizeFill) {
  2250       tty->print_cr("not fill intrinsic: %s", msg);
  2251       if (msg_node != NULL) msg_node->dump();
  2253 #endif
  2254     return false;
  2257   // No make sure all the other nodes in the loop can be handled
  2258   VectorSet ok(Thread::current()->resource_area());
  2260   // store related values are ok
  2261   ok.set(store->_idx);
  2262   ok.set(store->in(MemNode::Memory)->_idx);
  2264   // Loop structure is ok
  2265   ok.set(head->_idx);
  2266   ok.set(head->loopexit()->_idx);
  2267   ok.set(head->phi()->_idx);
  2268   ok.set(head->incr()->_idx);
  2269   ok.set(head->loopexit()->cmp_node()->_idx);
  2270   ok.set(head->loopexit()->in(1)->_idx);
  2272   // Address elements are ok
  2273   if (con)   ok.set(con->_idx);
  2274   if (shift) ok.set(shift->_idx);
  2275   if (conv)  ok.set(conv->_idx);
  2277   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2278     Node* n = lpt->_body.at(i);
  2279     if (n->outcnt() == 0) continue; // Ignore dead
  2280     if (ok.test(n->_idx)) continue;
  2281     // Backedge projection is ok
  2282     if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
  2283     if (!n->is_AddP()) {
  2284       msg = "unhandled node";
  2285       msg_node = n;
  2286       break;
  2290   // Make sure no unexpected values are used outside the loop
  2291   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2292     Node* n = lpt->_body.at(i);
  2293     // These values can be replaced with other nodes if they are used
  2294     // outside the loop.
  2295     if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2296     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2297       Node* use = iter.get();
  2298       if (!lpt->_body.contains(use)) {
  2299         msg = "node is used outside loop";
  2300         // lpt->_body.dump();
  2301         msg_node = n;
  2302         break;
  2307 #ifdef ASSERT
  2308   if (TraceOptimizeFill) {
  2309     if (msg != NULL) {
  2310       tty->print_cr("no fill intrinsic: %s", msg);
  2311       if (msg_node != NULL) msg_node->dump();
  2312     } else {
  2313       tty->print_cr("fill intrinsic for:");
  2315     store->dump();
  2316     if (Verbose) {
  2317       lpt->_body.dump();
  2320 #endif
  2322   return msg == NULL;
  2327 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2328   // Only for counted inner loops
  2329   if (!lpt->is_counted() || !lpt->is_inner()) {
  2330     return false;
  2333   // Must have constant stride
  2334   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2335   if (!head->stride_is_con() || !head->is_normal_loop()) {
  2336     return false;
  2339   // Check that the body only contains a store of a loop invariant
  2340   // value that is indexed by the loop phi.
  2341   Node* store = NULL;
  2342   Node* store_value = NULL;
  2343   Node* shift = NULL;
  2344   Node* offset = NULL;
  2345   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2346     return false;
  2349 #ifndef PRODUCT
  2350   if (TraceLoopOpts) {
  2351     tty->print("ArrayFill    ");
  2352     lpt->dump_head();
  2354 #endif
  2356   // Now replace the whole loop body by a call to a fill routine that
  2357   // covers the same region as the loop.
  2358   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2360   // Build an expression for the beginning of the copy region
  2361   Node* index = head->init_trip();
  2362 #ifdef _LP64
  2363   index = new (C, 2) ConvI2LNode(index);
  2364   _igvn.register_new_node_with_optimizer(index);
  2365 #endif
  2366   if (shift != NULL) {
  2367     // byte arrays don't require a shift but others do.
  2368     index = new (C, 3) LShiftXNode(index, shift->in(2));
  2369     _igvn.register_new_node_with_optimizer(index);
  2371   index = new (C, 4) AddPNode(base, base, index);
  2372   _igvn.register_new_node_with_optimizer(index);
  2373   Node* from = new (C, 4) AddPNode(base, index, offset);
  2374   _igvn.register_new_node_with_optimizer(from);
  2375   // Compute the number of elements to copy
  2376   Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
  2377   _igvn.register_new_node_with_optimizer(len);
  2379   BasicType t = store->as_Mem()->memory_type();
  2380   bool aligned = false;
  2381   if (offset != NULL && head->init_trip()->is_Con()) {
  2382     int element_size = type2aelembytes(t);
  2383     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2386   // Build a call to the fill routine
  2387   const char* fill_name;
  2388   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2389   assert(fill != NULL, "what?");
  2391   // Convert float/double to int/long for fill routines
  2392   if (t == T_FLOAT) {
  2393     store_value = new (C, 2) MoveF2INode(store_value);
  2394     _igvn.register_new_node_with_optimizer(store_value);
  2395   } else if (t == T_DOUBLE) {
  2396     store_value = new (C, 2) MoveD2LNode(store_value);
  2397     _igvn.register_new_node_with_optimizer(store_value);
  2400   Node* mem_phi = store->in(MemNode::Memory);
  2401   Node* result_ctrl;
  2402   Node* result_mem;
  2403   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2404   int size = call_type->domain()->cnt();
  2405   CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
  2406                                                       fill_name, TypeAryPtr::get_array_body_type(t));
  2407   call->init_req(TypeFunc::Parms+0, from);
  2408   call->init_req(TypeFunc::Parms+1, store_value);
  2409 #ifdef _LP64
  2410   len = new (C, 2) ConvI2LNode(len);
  2411   _igvn.register_new_node_with_optimizer(len);
  2412 #endif
  2413   call->init_req(TypeFunc::Parms+2, len);
  2414 #ifdef _LP64
  2415   call->init_req(TypeFunc::Parms+3, C->top());
  2416 #endif
  2417   call->init_req( TypeFunc::Control, head->init_control());
  2418   call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
  2419   call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
  2420   call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
  2421   call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
  2422   _igvn.register_new_node_with_optimizer(call);
  2423   result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  2424   _igvn.register_new_node_with_optimizer(result_ctrl);
  2425   result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  2426   _igvn.register_new_node_with_optimizer(result_mem);
  2428   // If this fill is tightly coupled to an allocation and overwrites
  2429   // the whole body, allow it to take over the zeroing.
  2430   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2431   if (alloc != NULL && alloc->is_AllocateArray()) {
  2432     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2433     if (head->limit() == length &&
  2434         head->init_trip() == _igvn.intcon(0)) {
  2435       if (TraceOptimizeFill) {
  2436         tty->print_cr("Eliminated zeroing in allocation");
  2438       alloc->maybe_set_complete(&_igvn);
  2439     } else {
  2440 #ifdef ASSERT
  2441       if (TraceOptimizeFill) {
  2442         tty->print_cr("filling array but bounds don't match");
  2443         alloc->dump();
  2444         head->init_trip()->dump();
  2445         head->limit()->dump();
  2446         length->dump();
  2448 #endif
  2452   // Redirect the old control and memory edges that are outside the loop.
  2453   Node* exit = head->loopexit()->proj_out(0);
  2454   // Sometimes the memory phi of the head is used as the outgoing
  2455   // state of the loop.  It's safe in this case to replace it with the
  2456   // result_mem.
  2457   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2458   _igvn.replace_node(exit, result_ctrl);
  2459   _igvn.replace_node(store, result_mem);
  2460   // Any uses the increment outside of the loop become the loop limit.
  2461   _igvn.replace_node(head->incr(), head->limit());
  2463   // Disconnect the head from the loop.
  2464   for (uint i = 0; i < lpt->_body.size(); i++) {
  2465     Node* n = lpt->_body.at(i);
  2466     _igvn.replace_node(n, C->top());
  2469   return true;

mercurial