src/share/vm/memory/genCollectedHeap.cpp

Thu, 12 Mar 2009 10:37:46 -0700

author
kvn
date
Thu, 12 Mar 2009 10:37:46 -0700
changeset 1077
660978a2a31a
parent 1050
c6c601a0f2d6
child 1082
bd441136a5ce
permissions
-rw-r--r--

6791178: Specialize for zero as the compressed oop vm heap base
Summary: Use zero based compressed oops if java heap is below 32gb and unscaled compressed oops if java heap is below 4gb.
Reviewed-by: never, twisti, jcoomes, coleenp

     1 /*
     2  * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_genCollectedHeap.cpp.incl"
    28 GenCollectedHeap* GenCollectedHeap::_gch;
    29 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    31 // The set of potentially parallel tasks in strong root scanning.
    32 enum GCH_process_strong_roots_tasks {
    33   // We probably want to parallelize both of these internally, but for now...
    34   GCH_PS_younger_gens,
    35   // Leave this one last.
    36   GCH_PS_NumElements
    37 };
    39 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    40   SharedHeap(policy),
    41   _gen_policy(policy),
    42   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    43   _full_collections_completed(0)
    44 {
    45   if (_gen_process_strong_tasks == NULL ||
    46       !_gen_process_strong_tasks->valid()) {
    47     vm_exit_during_initialization("Failed necessary allocation.");
    48   }
    49   assert(policy != NULL, "Sanity check");
    50   _preloading_shared_classes = false;
    51 }
    53 jint GenCollectedHeap::initialize() {
    54   int i;
    55   _n_gens = gen_policy()->number_of_generations();
    57   // While there are no constraints in the GC code that HeapWordSize
    58   // be any particular value, there are multiple other areas in the
    59   // system which believe this to be true (e.g. oop->object_size in some
    60   // cases incorrectly returns the size in wordSize units rather than
    61   // HeapWordSize).
    62   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    64   // The heap must be at least as aligned as generations.
    65   size_t alignment = Generation::GenGrain;
    67   _gen_specs = gen_policy()->generations();
    68   PermanentGenerationSpec *perm_gen_spec =
    69                                 collector_policy()->permanent_generation();
    71   // Make sure the sizes are all aligned.
    72   for (i = 0; i < _n_gens; i++) {
    73     _gen_specs[i]->align(alignment);
    74   }
    75   perm_gen_spec->align(alignment);
    77   // If we are dumping the heap, then allocate a wasted block of address
    78   // space in order to push the heap to a lower address.  This extra
    79   // address range allows for other (or larger) libraries to be loaded
    80   // without them occupying the space required for the shared spaces.
    82   if (DumpSharedSpaces) {
    83     uintx reserved = 0;
    84     uintx block_size = 64*1024*1024;
    85     while (reserved < SharedDummyBlockSize) {
    86       char* dummy = os::reserve_memory(block_size);
    87       reserved += block_size;
    88     }
    89   }
    91   // Allocate space for the heap.
    93   char* heap_address;
    94   size_t total_reserved = 0;
    95   int n_covered_regions = 0;
    96   ReservedSpace heap_rs(0);
    98   heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
    99                           &n_covered_regions, &heap_rs);
   101   if (UseSharedSpaces) {
   102     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
   103       if (heap_rs.is_reserved()) {
   104         heap_rs.release();
   105       }
   106       FileMapInfo* mapinfo = FileMapInfo::current_info();
   107       mapinfo->fail_continue("Unable to reserve shared region.");
   108       allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
   109                &heap_rs);
   110     }
   111   }
   113   if (!heap_rs.is_reserved()) {
   114     vm_shutdown_during_initialization(
   115       "Could not reserve enough space for object heap");
   116     return JNI_ENOMEM;
   117   }
   119   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   120                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   122   // It is important to do this in a way such that concurrent readers can't
   123   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   124   _reserved.set_word_size(0);
   125   _reserved.set_start((HeapWord*)heap_rs.base());
   126   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
   127                                            - perm_gen_spec->misc_code_size();
   128   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   130   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   131   set_barrier_set(rem_set()->bs());
   132   _gch = this;
   134   for (i = 0; i < _n_gens; i++) {
   135     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
   136                                               UseSharedSpaces, UseSharedSpaces);
   137     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   138     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   139   }
   140   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
   142   clear_incremental_collection_will_fail();
   143   clear_last_incremental_collection_failed();
   145 #ifndef SERIALGC
   146   // If we are running CMS, create the collector responsible
   147   // for collecting the CMS generations.
   148   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   149     bool success = create_cms_collector();
   150     if (!success) return JNI_ENOMEM;
   151   }
   152 #endif // SERIALGC
   154   return JNI_OK;
   155 }
   158 char* GenCollectedHeap::allocate(size_t alignment,
   159                                  PermanentGenerationSpec* perm_gen_spec,
   160                                  size_t* _total_reserved,
   161                                  int* _n_covered_regions,
   162                                  ReservedSpace* heap_rs){
   163   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   164     "the maximum representable size";
   166   // Now figure out the total size.
   167   size_t total_reserved = 0;
   168   int n_covered_regions = 0;
   169   const size_t pageSize = UseLargePages ?
   170       os::large_page_size() : os::vm_page_size();
   172   for (int i = 0; i < _n_gens; i++) {
   173     total_reserved += _gen_specs[i]->max_size();
   174     if (total_reserved < _gen_specs[i]->max_size()) {
   175       vm_exit_during_initialization(overflow_msg);
   176     }
   177     n_covered_regions += _gen_specs[i]->n_covered_regions();
   178   }
   179   assert(total_reserved % pageSize == 0, "Gen size");
   180   total_reserved += perm_gen_spec->max_size();
   181   assert(total_reserved % pageSize == 0, "Perm Gen size");
   183   if (total_reserved < perm_gen_spec->max_size()) {
   184     vm_exit_during_initialization(overflow_msg);
   185   }
   186   n_covered_regions += perm_gen_spec->n_covered_regions();
   188   // Add the size of the data area which shares the same reserved area
   189   // as the heap, but which is not actually part of the heap.
   190   size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
   192   total_reserved += s;
   193   if (total_reserved < s) {
   194     vm_exit_during_initialization(overflow_msg);
   195   }
   197   if (UseLargePages) {
   198     assert(total_reserved != 0, "total_reserved cannot be 0");
   199     total_reserved = round_to(total_reserved, os::large_page_size());
   200     if (total_reserved < os::large_page_size()) {
   201       vm_exit_during_initialization(overflow_msg);
   202     }
   203   }
   205   // Calculate the address at which the heap must reside in order for
   206   // the shared data to be at the required address.
   208   char* heap_address;
   209   if (UseSharedSpaces) {
   211     // Calculate the address of the first word beyond the heap.
   212     FileMapInfo* mapinfo = FileMapInfo::current_info();
   213     int lr = CompactingPermGenGen::n_regions - 1;
   214     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
   215     heap_address = mapinfo->region_base(lr) + capacity;
   217     // Calculate the address of the first word of the heap.
   218     heap_address -= total_reserved;
   219   } else {
   220     heap_address = NULL;  // any address will do.
   221     if (UseCompressedOops) {
   222       heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   223       *_total_reserved = total_reserved;
   224       *_n_covered_regions = n_covered_regions;
   225       *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   226                                    UseLargePages, heap_address);
   228       if (heap_address != NULL && !heap_rs->is_reserved()) {
   229         // Failed to reserve at specified address - the requested memory
   230         // region is taken already, for example, by 'java' launcher.
   231         // Try again to reserver heap higher.
   232         heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   233         *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   234                                      UseLargePages, heap_address);
   236         if (heap_address != NULL && !heap_rs->is_reserved()) {
   237           // Failed to reserve at specified address again - give up.
   238           heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   239           assert(heap_address == NULL, "");
   240           *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   241                                        UseLargePages, heap_address);
   242         }
   243       }
   244       return heap_address;
   245     }
   246   }
   248   *_total_reserved = total_reserved;
   249   *_n_covered_regions = n_covered_regions;
   250   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   251                                UseLargePages, heap_address);
   253   return heap_address;
   254 }
   257 void GenCollectedHeap::post_initialize() {
   258   SharedHeap::post_initialize();
   259   TwoGenerationCollectorPolicy *policy =
   260     (TwoGenerationCollectorPolicy *)collector_policy();
   261   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   262   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   263   assert(def_new_gen->kind() == Generation::DefNew ||
   264          def_new_gen->kind() == Generation::ParNew ||
   265          def_new_gen->kind() == Generation::ASParNew,
   266          "Wrong generation kind");
   268   Generation* old_gen = get_gen(1);
   269   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   270          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   271          old_gen->kind() == Generation::MarkSweepCompact,
   272     "Wrong generation kind");
   274   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   275                                  old_gen->capacity(),
   276                                  def_new_gen->from()->capacity());
   277   policy->initialize_gc_policy_counters();
   278 }
   280 void GenCollectedHeap::ref_processing_init() {
   281   SharedHeap::ref_processing_init();
   282   for (int i = 0; i < _n_gens; i++) {
   283     _gens[i]->ref_processor_init();
   284   }
   285 }
   287 size_t GenCollectedHeap::capacity() const {
   288   size_t res = 0;
   289   for (int i = 0; i < _n_gens; i++) {
   290     res += _gens[i]->capacity();
   291   }
   292   return res;
   293 }
   295 size_t GenCollectedHeap::used() const {
   296   size_t res = 0;
   297   for (int i = 0; i < _n_gens; i++) {
   298     res += _gens[i]->used();
   299   }
   300   return res;
   301 }
   303 // Save the "used_region" for generations level and lower,
   304 // and, if perm is true, for perm gen.
   305 void GenCollectedHeap::save_used_regions(int level, bool perm) {
   306   assert(level < _n_gens, "Illegal level parameter");
   307   for (int i = level; i >= 0; i--) {
   308     _gens[i]->save_used_region();
   309   }
   310   if (perm) {
   311     perm_gen()->save_used_region();
   312   }
   313 }
   315 size_t GenCollectedHeap::max_capacity() const {
   316   size_t res = 0;
   317   for (int i = 0; i < _n_gens; i++) {
   318     res += _gens[i]->max_capacity();
   319   }
   320   return res;
   321 }
   323 // Update the _full_collections_completed counter
   324 // at the end of a stop-world full GC.
   325 unsigned int GenCollectedHeap::update_full_collections_completed() {
   326   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   327   assert(_full_collections_completed <= _total_full_collections,
   328          "Can't complete more collections than were started");
   329   _full_collections_completed = _total_full_collections;
   330   ml.notify_all();
   331   return _full_collections_completed;
   332 }
   334 // Update the _full_collections_completed counter, as appropriate,
   335 // at the end of a concurrent GC cycle. Note the conditional update
   336 // below to allow this method to be called by a concurrent collector
   337 // without synchronizing in any manner with the VM thread (which
   338 // may already have initiated a STW full collection "concurrently").
   339 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   340   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   341   assert((_full_collections_completed <= _total_full_collections) &&
   342          (count <= _total_full_collections),
   343          "Can't complete more collections than were started");
   344   if (count > _full_collections_completed) {
   345     _full_collections_completed = count;
   346     ml.notify_all();
   347   }
   348   return _full_collections_completed;
   349 }
   352 #ifndef PRODUCT
   353 // Override of memory state checking method in CollectedHeap:
   354 // Some collectors (CMS for example) can't have badHeapWordVal written
   355 // in the first two words of an object. (For instance , in the case of
   356 // CMS these words hold state used to synchronize between certain
   357 // (concurrent) GC steps and direct allocating mutators.)
   358 // The skip_header_HeapWords() method below, allows us to skip
   359 // over the requisite number of HeapWord's. Note that (for
   360 // generational collectors) this means that those many words are
   361 // skipped in each object, irrespective of the generation in which
   362 // that object lives. The resultant loss of precision seems to be
   363 // harmless and the pain of avoiding that imprecision appears somewhat
   364 // higher than we are prepared to pay for such rudimentary debugging
   365 // support.
   366 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   367                                                          size_t size) {
   368   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   369     // We are asked to check a size in HeapWords,
   370     // but the memory is mangled in juint words.
   371     juint* start = (juint*) (addr + skip_header_HeapWords());
   372     juint* end   = (juint*) (addr + size);
   373     for (juint* slot = start; slot < end; slot += 1) {
   374       assert(*slot == badHeapWordVal,
   375              "Found non badHeapWordValue in pre-allocation check");
   376     }
   377   }
   378 }
   379 #endif
   381 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   382                                                bool is_tlab,
   383                                                bool first_only) {
   384   HeapWord* res;
   385   for (int i = 0; i < _n_gens; i++) {
   386     if (_gens[i]->should_allocate(size, is_tlab)) {
   387       res = _gens[i]->allocate(size, is_tlab);
   388       if (res != NULL) return res;
   389       else if (first_only) break;
   390     }
   391   }
   392   // Otherwise...
   393   return NULL;
   394 }
   396 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   397                                          bool is_large_noref,
   398                                          bool is_tlab,
   399                                          bool* gc_overhead_limit_was_exceeded) {
   400   return collector_policy()->mem_allocate_work(size,
   401                                                is_tlab,
   402                                                gc_overhead_limit_was_exceeded);
   403 }
   405 bool GenCollectedHeap::must_clear_all_soft_refs() {
   406   return _gc_cause == GCCause::_last_ditch_collection;
   407 }
   409 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   410   return (cause == GCCause::_java_lang_system_gc ||
   411           cause == GCCause::_gc_locker) &&
   412          UseConcMarkSweepGC && ExplicitGCInvokesConcurrent;
   413 }
   415 void GenCollectedHeap::do_collection(bool  full,
   416                                      bool   clear_all_soft_refs,
   417                                      size_t size,
   418                                      bool   is_tlab,
   419                                      int    max_level) {
   420   bool prepared_for_verification = false;
   421   ResourceMark rm;
   422   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   424   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   425   assert(my_thread->is_VM_thread() ||
   426          my_thread->is_ConcurrentGC_thread(),
   427          "incorrect thread type capability");
   428   assert(Heap_lock->is_locked(), "the requesting thread should have the Heap_lock");
   429   guarantee(!is_gc_active(), "collection is not reentrant");
   430   assert(max_level < n_gens(), "sanity check");
   432   if (GC_locker::check_active_before_gc()) {
   433     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   434   }
   436   const size_t perm_prev_used = perm_gen()->used();
   438   if (PrintHeapAtGC) {
   439     Universe::print_heap_before_gc();
   440     if (Verbose) {
   441       gclog_or_tty->print_cr("GC Cause: %s", GCCause::to_string(gc_cause()));
   442     }
   443   }
   445   {
   446     FlagSetting fl(_is_gc_active, true);
   448     bool complete = full && (max_level == (n_gens()-1));
   449     const char* gc_cause_str = "GC ";
   450     if (complete) {
   451       GCCause::Cause cause = gc_cause();
   452       if (cause == GCCause::_java_lang_system_gc) {
   453         gc_cause_str = "Full GC (System) ";
   454       } else {
   455         gc_cause_str = "Full GC ";
   456       }
   457     }
   458     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   459     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   460     TraceTime t(gc_cause_str, PrintGCDetails, false, gclog_or_tty);
   462     gc_prologue(complete);
   463     increment_total_collections(complete);
   465     size_t gch_prev_used = used();
   467     int starting_level = 0;
   468     if (full) {
   469       // Search for the oldest generation which will collect all younger
   470       // generations, and start collection loop there.
   471       for (int i = max_level; i >= 0; i--) {
   472         if (_gens[i]->full_collects_younger_generations()) {
   473           starting_level = i;
   474           break;
   475         }
   476       }
   477     }
   479     bool must_restore_marks_for_biased_locking = false;
   481     int max_level_collected = starting_level;
   482     for (int i = starting_level; i <= max_level; i++) {
   483       if (_gens[i]->should_collect(full, size, is_tlab)) {
   484         if (i == n_gens() - 1) {  // a major collection is to happen
   485           pre_full_gc_dump();    // do any pre full gc dumps
   486         }
   487         // Timer for individual generations. Last argument is false: no CR
   488         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
   489         TraceCollectorStats tcs(_gens[i]->counters());
   490         TraceMemoryManagerStats tmms(_gens[i]->kind());
   492         size_t prev_used = _gens[i]->used();
   493         _gens[i]->stat_record()->invocations++;
   494         _gens[i]->stat_record()->accumulated_time.start();
   496         // Must be done anew before each collection because
   497         // a previous collection will do mangling and will
   498         // change top of some spaces.
   499         record_gen_tops_before_GC();
   501         if (PrintGC && Verbose) {
   502           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   503                      i,
   504                      _gens[i]->stat_record()->invocations,
   505                      size*HeapWordSize);
   506         }
   508         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   509             total_collections() >= VerifyGCStartAt) {
   510           HandleMark hm;  // Discard invalid handles created during verification
   511           if (!prepared_for_verification) {
   512             prepare_for_verify();
   513             prepared_for_verification = true;
   514           }
   515           gclog_or_tty->print(" VerifyBeforeGC:");
   516           Universe::verify(true);
   517         }
   518         COMPILER2_PRESENT(DerivedPointerTable::clear());
   520         if (!must_restore_marks_for_biased_locking &&
   521             _gens[i]->performs_in_place_marking()) {
   522           // We perform this mark word preservation work lazily
   523           // because it's only at this point that we know whether we
   524           // absolutely have to do it; we want to avoid doing it for
   525           // scavenge-only collections where it's unnecessary
   526           must_restore_marks_for_biased_locking = true;
   527           BiasedLocking::preserve_marks();
   528         }
   530         // Do collection work
   531         {
   532           // Note on ref discovery: For what appear to be historical reasons,
   533           // GCH enables and disabled (by enqueing) refs discovery.
   534           // In the future this should be moved into the generation's
   535           // collect method so that ref discovery and enqueueing concerns
   536           // are local to a generation. The collect method could return
   537           // an appropriate indication in the case that notification on
   538           // the ref lock was needed. This will make the treatment of
   539           // weak refs more uniform (and indeed remove such concerns
   540           // from GCH). XXX
   542           HandleMark hm;  // Discard invalid handles created during gc
   543           save_marks();   // save marks for all gens
   544           // We want to discover references, but not process them yet.
   545           // This mode is disabled in process_discovered_references if the
   546           // generation does some collection work, or in
   547           // enqueue_discovered_references if the generation returns
   548           // without doing any work.
   549           ReferenceProcessor* rp = _gens[i]->ref_processor();
   550           // If the discovery of ("weak") refs in this generation is
   551           // atomic wrt other collectors in this configuration, we
   552           // are guaranteed to have empty discovered ref lists.
   553           if (rp->discovery_is_atomic()) {
   554             rp->verify_no_references_recorded();
   555             rp->enable_discovery();
   556             rp->setup_policy(clear_all_soft_refs);
   557           } else {
   558             // collect() below will enable discovery as appropriate
   559           }
   560           _gens[i]->collect(full, clear_all_soft_refs, size, is_tlab);
   561           if (!rp->enqueuing_is_done()) {
   562             rp->enqueue_discovered_references();
   563           } else {
   564             rp->set_enqueuing_is_done(false);
   565           }
   566           rp->verify_no_references_recorded();
   567         }
   568         max_level_collected = i;
   570         // Determine if allocation request was met.
   571         if (size > 0) {
   572           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   573             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   574               size = 0;
   575             }
   576           }
   577         }
   579         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   581         _gens[i]->stat_record()->accumulated_time.stop();
   583         update_gc_stats(i, full);
   585         if (VerifyAfterGC && i >= VerifyGCLevel &&
   586             total_collections() >= VerifyGCStartAt) {
   587           HandleMark hm;  // Discard invalid handles created during verification
   588           gclog_or_tty->print(" VerifyAfterGC:");
   589           Universe::verify(false);
   590         }
   592         if (PrintGCDetails) {
   593           gclog_or_tty->print(":");
   594           _gens[i]->print_heap_change(prev_used);
   595         }
   596       }
   597     }
   599     // Update "complete" boolean wrt what actually transpired --
   600     // for instance, a promotion failure could have led to
   601     // a whole heap collection.
   602     complete = complete || (max_level_collected == n_gens() - 1);
   604     if (complete) { // We did a "major" collection
   605       post_full_gc_dump();   // do any post full gc dumps
   606     }
   608     if (PrintGCDetails) {
   609       print_heap_change(gch_prev_used);
   611       // Print perm gen info for full GC with PrintGCDetails flag.
   612       if (complete) {
   613         print_perm_heap_change(perm_prev_used);
   614       }
   615     }
   617     for (int j = max_level_collected; j >= 0; j -= 1) {
   618       // Adjust generation sizes.
   619       _gens[j]->compute_new_size();
   620     }
   622     if (complete) {
   623       // Ask the permanent generation to adjust size for full collections
   624       perm()->compute_new_size();
   625       update_full_collections_completed();
   626     }
   628     // Track memory usage and detect low memory after GC finishes
   629     MemoryService::track_memory_usage();
   631     gc_epilogue(complete);
   633     if (must_restore_marks_for_biased_locking) {
   634       BiasedLocking::restore_marks();
   635     }
   636   }
   638   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   639   AdaptiveSizePolicyOutput(sp, total_collections());
   641   if (PrintHeapAtGC) {
   642     Universe::print_heap_after_gc();
   643   }
   645 #ifdef TRACESPINNING
   646   ParallelTaskTerminator::print_termination_counts();
   647 #endif
   649   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
   650     tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
   651     vm_exit(-1);
   652   }
   653 }
   655 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   656   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   657 }
   659 void GenCollectedHeap::set_par_threads(int t) {
   660   SharedHeap::set_par_threads(t);
   661   _gen_process_strong_tasks->set_par_threads(t);
   662 }
   664 class AssertIsPermClosure: public OopClosure {
   665 public:
   666   void do_oop(oop* p) {
   667     assert((*p) == NULL || (*p)->is_perm(), "Referent should be perm.");
   668   }
   669   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
   670 };
   671 static AssertIsPermClosure assert_is_perm_closure;
   673 void GenCollectedHeap::
   674 gen_process_strong_roots(int level,
   675                          bool younger_gens_as_roots,
   676                          bool collecting_perm_gen,
   677                          SharedHeap::ScanningOption so,
   678                          OopsInGenClosure* older_gens,
   679                          OopsInGenClosure* not_older_gens) {
   680   // General strong roots.
   681   SharedHeap::process_strong_roots(collecting_perm_gen, so,
   682                                    not_older_gens, older_gens);
   684   if (younger_gens_as_roots) {
   685     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   686       for (int i = 0; i < level; i++) {
   687         not_older_gens->set_generation(_gens[i]);
   688         _gens[i]->oop_iterate(not_older_gens);
   689       }
   690       not_older_gens->reset_generation();
   691     }
   692   }
   693   // When collection is parallel, all threads get to cooperate to do
   694   // older-gen scanning.
   695   for (int i = level+1; i < _n_gens; i++) {
   696     older_gens->set_generation(_gens[i]);
   697     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   698     older_gens->reset_generation();
   699   }
   701   _gen_process_strong_tasks->all_tasks_completed();
   702 }
   704 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   705                                               OopClosure* non_root_closure) {
   706   SharedHeap::process_weak_roots(root_closure, non_root_closure);
   707   // "Local" "weak" refs
   708   for (int i = 0; i < _n_gens; i++) {
   709     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   710   }
   711 }
   713 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   714 void GenCollectedHeap::                                                 \
   715 oop_since_save_marks_iterate(int level,                                 \
   716                              OopClosureType* cur,                       \
   717                              OopClosureType* older) {                   \
   718   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   719   for (int i = level+1; i < n_gens(); i++) {                            \
   720     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   721   }                                                                     \
   722   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
   723 }
   725 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   727 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   729 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   730   for (int i = level; i < _n_gens; i++) {
   731     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   732   }
   733   return perm_gen()->no_allocs_since_save_marks();
   734 }
   736 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   737   return _gens[0]->supports_inline_contig_alloc();
   738 }
   740 HeapWord** GenCollectedHeap::top_addr() const {
   741   return _gens[0]->top_addr();
   742 }
   744 HeapWord** GenCollectedHeap::end_addr() const {
   745   return _gens[0]->end_addr();
   746 }
   748 size_t GenCollectedHeap::unsafe_max_alloc() {
   749   return _gens[0]->unsafe_max_alloc_nogc();
   750 }
   752 // public collection interfaces
   754 void GenCollectedHeap::collect(GCCause::Cause cause) {
   755   if (should_do_concurrent_full_gc(cause)) {
   756 #ifndef SERIALGC
   757     // mostly concurrent full collection
   758     collect_mostly_concurrent(cause);
   759 #else  // SERIALGC
   760     ShouldNotReachHere();
   761 #endif // SERIALGC
   762   } else {
   763 #ifdef ASSERT
   764     if (cause == GCCause::_scavenge_alot) {
   765       // minor collection only
   766       collect(cause, 0);
   767     } else {
   768       // Stop-the-world full collection
   769       collect(cause, n_gens() - 1);
   770     }
   771 #else
   772     // Stop-the-world full collection
   773     collect(cause, n_gens() - 1);
   774 #endif
   775   }
   776 }
   778 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   779   // The caller doesn't have the Heap_lock
   780   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   781   MutexLocker ml(Heap_lock);
   782   collect_locked(cause, max_level);
   783 }
   785 // This interface assumes that it's being called by the
   786 // vm thread. It collects the heap assuming that the
   787 // heap lock is already held and that we are executing in
   788 // the context of the vm thread.
   789 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   790   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   791   assert(Heap_lock->is_locked(), "Precondition#2");
   792   GCCauseSetter gcs(this, cause);
   793   switch (cause) {
   794     case GCCause::_heap_inspection:
   795     case GCCause::_heap_dump: {
   796       HandleMark hm;
   797       do_full_collection(false,         // don't clear all soft refs
   798                          n_gens() - 1);
   799       break;
   800     }
   801     default: // XXX FIX ME
   802       ShouldNotReachHere(); // Unexpected use of this function
   803   }
   804 }
   806 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   807   // The caller has the Heap_lock
   808   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   809   collect_locked(cause, n_gens() - 1);
   810 }
   812 // this is the private collection interface
   813 // The Heap_lock is expected to be held on entry.
   815 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   816   if (_preloading_shared_classes) {
   817     warning("\nThe permanent generation is not large enough to preload "
   818             "requested classes.\nUse -XX:PermSize= to increase the initial "
   819             "size of the permanent generation.\n");
   820     vm_exit(2);
   821   }
   822   // Read the GC count while holding the Heap_lock
   823   unsigned int gc_count_before      = total_collections();
   824   unsigned int full_gc_count_before = total_full_collections();
   825   {
   826     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   827     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   828                          cause, max_level);
   829     VMThread::execute(&op);
   830   }
   831 }
   833 #ifndef SERIALGC
   834 bool GenCollectedHeap::create_cms_collector() {
   836   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   837          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
   838          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
   839          "Unexpected generation kinds");
   840   // Skip two header words in the block content verification
   841   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   842   CMSCollector* collector = new CMSCollector(
   843     (ConcurrentMarkSweepGeneration*)_gens[1],
   844     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
   845     _rem_set->as_CardTableRS(),
   846     (ConcurrentMarkSweepPolicy*) collector_policy());
   848   if (collector == NULL || !collector->completed_initialization()) {
   849     if (collector) {
   850       delete collector;  // Be nice in embedded situation
   851     }
   852     vm_shutdown_during_initialization("Could not create CMS collector");
   853     return false;
   854   }
   855   return true;  // success
   856 }
   858 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   859   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   861   MutexLocker ml(Heap_lock);
   862   // Read the GC counts while holding the Heap_lock
   863   unsigned int full_gc_count_before = total_full_collections();
   864   unsigned int gc_count_before      = total_collections();
   865   {
   866     MutexUnlocker mu(Heap_lock);
   867     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   868     VMThread::execute(&op);
   869   }
   870 }
   871 #endif // SERIALGC
   874 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   875                                           int max_level) {
   876   int local_max_level;
   877   if (!incremental_collection_will_fail() &&
   878       gc_cause() == GCCause::_gc_locker) {
   879     local_max_level = 0;
   880   } else {
   881     local_max_level = max_level;
   882   }
   884   do_collection(true                 /* full */,
   885                 clear_all_soft_refs  /* clear_all_soft_refs */,
   886                 0                    /* size */,
   887                 false                /* is_tlab */,
   888                 local_max_level      /* max_level */);
   889   // Hack XXX FIX ME !!!
   890   // A scavenge may not have been attempted, or may have
   891   // been attempted and failed, because the old gen was too full
   892   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   893       incremental_collection_will_fail()) {
   894     if (PrintGCDetails) {
   895       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   896                              "because scavenge failed");
   897     }
   898     // This time allow the old gen to be collected as well
   899     do_collection(true                 /* full */,
   900                   clear_all_soft_refs  /* clear_all_soft_refs */,
   901                   0                    /* size */,
   902                   false                /* is_tlab */,
   903                   n_gens() - 1         /* max_level */);
   904   }
   905 }
   907 // Returns "TRUE" iff "p" points into the allocated area of the heap.
   908 bool GenCollectedHeap::is_in(const void* p) const {
   909   #ifndef ASSERT
   910   guarantee(VerifyBeforeGC   ||
   911             VerifyDuringGC   ||
   912             VerifyBeforeExit ||
   913             VerifyAfterGC, "too expensive");
   914   #endif
   915   // This might be sped up with a cache of the last generation that
   916   // answered yes.
   917   for (int i = 0; i < _n_gens; i++) {
   918     if (_gens[i]->is_in(p)) return true;
   919   }
   920   if (_perm_gen->as_gen()->is_in(p)) return true;
   921   // Otherwise...
   922   return false;
   923 }
   925 // Returns "TRUE" iff "p" points into the allocated area of the heap.
   926 bool GenCollectedHeap::is_in_youngest(void* p) {
   927   return _gens[0]->is_in(p);
   928 }
   930 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
   931   for (int i = 0; i < _n_gens; i++) {
   932     _gens[i]->oop_iterate(cl);
   933   }
   934 }
   936 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
   937   for (int i = 0; i < _n_gens; i++) {
   938     _gens[i]->oop_iterate(mr, cl);
   939   }
   940 }
   942 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   943   for (int i = 0; i < _n_gens; i++) {
   944     _gens[i]->object_iterate(cl);
   945   }
   946   perm_gen()->object_iterate(cl);
   947 }
   949 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   950   for (int i = 0; i < _n_gens; i++) {
   951     _gens[i]->safe_object_iterate(cl);
   952   }
   953   perm_gen()->safe_object_iterate(cl);
   954 }
   956 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
   957   for (int i = 0; i < _n_gens; i++) {
   958     _gens[i]->object_iterate_since_last_GC(cl);
   959   }
   960 }
   962 Space* GenCollectedHeap::space_containing(const void* addr) const {
   963   for (int i = 0; i < _n_gens; i++) {
   964     Space* res = _gens[i]->space_containing(addr);
   965     if (res != NULL) return res;
   966   }
   967   Space* res = perm_gen()->space_containing(addr);
   968   if (res != NULL) return res;
   969   // Otherwise...
   970   assert(false, "Could not find containing space");
   971   return NULL;
   972 }
   975 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
   976   assert(is_in_reserved(addr), "block_start of address outside of heap");
   977   for (int i = 0; i < _n_gens; i++) {
   978     if (_gens[i]->is_in_reserved(addr)) {
   979       assert(_gens[i]->is_in(addr),
   980              "addr should be in allocated part of generation");
   981       return _gens[i]->block_start(addr);
   982     }
   983   }
   984   if (perm_gen()->is_in_reserved(addr)) {
   985     assert(perm_gen()->is_in(addr),
   986            "addr should be in allocated part of perm gen");
   987     return perm_gen()->block_start(addr);
   988   }
   989   assert(false, "Some generation should contain the address");
   990   return NULL;
   991 }
   993 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
   994   assert(is_in_reserved(addr), "block_size of address outside of heap");
   995   for (int i = 0; i < _n_gens; i++) {
   996     if (_gens[i]->is_in_reserved(addr)) {
   997       assert(_gens[i]->is_in(addr),
   998              "addr should be in allocated part of generation");
   999       return _gens[i]->block_size(addr);
  1002   if (perm_gen()->is_in_reserved(addr)) {
  1003     assert(perm_gen()->is_in(addr),
  1004            "addr should be in allocated part of perm gen");
  1005     return perm_gen()->block_size(addr);
  1007   assert(false, "Some generation should contain the address");
  1008   return 0;
  1011 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
  1012   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
  1013   assert(block_start(addr) == addr, "addr must be a block start");
  1014   for (int i = 0; i < _n_gens; i++) {
  1015     if (_gens[i]->is_in_reserved(addr)) {
  1016       return _gens[i]->block_is_obj(addr);
  1019   if (perm_gen()->is_in_reserved(addr)) {
  1020     return perm_gen()->block_is_obj(addr);
  1022   assert(false, "Some generation should contain the address");
  1023   return false;
  1026 bool GenCollectedHeap::supports_tlab_allocation() const {
  1027   for (int i = 0; i < _n_gens; i += 1) {
  1028     if (_gens[i]->supports_tlab_allocation()) {
  1029       return true;
  1032   return false;
  1035 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  1036   size_t result = 0;
  1037   for (int i = 0; i < _n_gens; i += 1) {
  1038     if (_gens[i]->supports_tlab_allocation()) {
  1039       result += _gens[i]->tlab_capacity();
  1042   return result;
  1045 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  1046   size_t result = 0;
  1047   for (int i = 0; i < _n_gens; i += 1) {
  1048     if (_gens[i]->supports_tlab_allocation()) {
  1049       result += _gens[i]->unsafe_max_tlab_alloc();
  1052   return result;
  1055 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  1056   bool gc_overhead_limit_was_exceeded;
  1057   HeapWord* result = mem_allocate(size   /* size */,
  1058                                   false  /* is_large_noref */,
  1059                                   true   /* is_tlab */,
  1060                                   &gc_overhead_limit_was_exceeded);
  1061   return result;
  1064 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
  1065 // from the list headed by "*prev_ptr".
  1066 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  1067   bool first = true;
  1068   size_t min_size = 0;   // "first" makes this conceptually infinite.
  1069   ScratchBlock **smallest_ptr, *smallest;
  1070   ScratchBlock  *cur = *prev_ptr;
  1071   while (cur) {
  1072     assert(*prev_ptr == cur, "just checking");
  1073     if (first || cur->num_words < min_size) {
  1074       smallest_ptr = prev_ptr;
  1075       smallest     = cur;
  1076       min_size     = smallest->num_words;
  1077       first        = false;
  1079     prev_ptr = &cur->next;
  1080     cur     =  cur->next;
  1082   smallest      = *smallest_ptr;
  1083   *smallest_ptr = smallest->next;
  1084   return smallest;
  1087 // Sort the scratch block list headed by res into decreasing size order,
  1088 // and set "res" to the result.
  1089 static void sort_scratch_list(ScratchBlock*& list) {
  1090   ScratchBlock* sorted = NULL;
  1091   ScratchBlock* unsorted = list;
  1092   while (unsorted) {
  1093     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
  1094     smallest->next  = sorted;
  1095     sorted          = smallest;
  1097   list = sorted;
  1100 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1101                                                size_t max_alloc_words) {
  1102   ScratchBlock* res = NULL;
  1103   for (int i = 0; i < _n_gens; i++) {
  1104     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1106   sort_scratch_list(res);
  1107   return res;
  1110 void GenCollectedHeap::release_scratch() {
  1111   for (int i = 0; i < _n_gens; i++) {
  1112     _gens[i]->reset_scratch();
  1116 size_t GenCollectedHeap::large_typearray_limit() {
  1117   return gen_policy()->large_typearray_limit();
  1120 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1121   void do_generation(Generation* gen) {
  1122     gen->prepare_for_verify();
  1124 };
  1126 void GenCollectedHeap::prepare_for_verify() {
  1127   ensure_parsability(false);        // no need to retire TLABs
  1128   GenPrepareForVerifyClosure blk;
  1129   generation_iterate(&blk, false);
  1130   perm_gen()->prepare_for_verify();
  1134 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1135                                           bool old_to_young) {
  1136   if (old_to_young) {
  1137     for (int i = _n_gens-1; i >= 0; i--) {
  1138       cl->do_generation(_gens[i]);
  1140   } else {
  1141     for (int i = 0; i < _n_gens; i++) {
  1142       cl->do_generation(_gens[i]);
  1147 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1148   for (int i = 0; i < _n_gens; i++) {
  1149     _gens[i]->space_iterate(cl, true);
  1151   perm_gen()->space_iterate(cl, true);
  1154 bool GenCollectedHeap::is_maximal_no_gc() const {
  1155   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
  1156     if (!_gens[i]->is_maximal_no_gc()) {
  1157       return false;
  1160   return true;
  1163 void GenCollectedHeap::save_marks() {
  1164   for (int i = 0; i < _n_gens; i++) {
  1165     _gens[i]->save_marks();
  1167   perm_gen()->save_marks();
  1170 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  1171   for (int i = 0; i <= collectedGen; i++) {
  1172     _gens[i]->compute_new_size();
  1176 GenCollectedHeap* GenCollectedHeap::heap() {
  1177   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1178   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1179   return _gch;
  1183 void GenCollectedHeap::prepare_for_compaction() {
  1184   Generation* scanning_gen = _gens[_n_gens-1];
  1185   // Start by compacting into same gen.
  1186   CompactPoint cp(scanning_gen, NULL, NULL);
  1187   while (scanning_gen != NULL) {
  1188     scanning_gen->prepare_for_compaction(&cp);
  1189     scanning_gen = prev_gen(scanning_gen);
  1193 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1194   return _gens[level]->gc_stats();
  1197 void GenCollectedHeap::verify(bool allow_dirty, bool silent) {
  1198   if (!silent) {
  1199     gclog_or_tty->print("permgen ");
  1201   perm_gen()->verify(allow_dirty);
  1202   for (int i = _n_gens-1; i >= 0; i--) {
  1203     Generation* g = _gens[i];
  1204     if (!silent) {
  1205       gclog_or_tty->print(g->name());
  1206       gclog_or_tty->print(" ");
  1208     g->verify(allow_dirty);
  1210   if (!silent) {
  1211     gclog_or_tty->print("remset ");
  1213   rem_set()->verify();
  1214   if (!silent) {
  1215      gclog_or_tty->print("ref_proc ");
  1217   ReferenceProcessor::verify();
  1220 void GenCollectedHeap::print() const { print_on(tty); }
  1221 void GenCollectedHeap::print_on(outputStream* st) const {
  1222   for (int i = 0; i < _n_gens; i++) {
  1223     _gens[i]->print_on(st);
  1225   perm_gen()->print_on(st);
  1228 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1229   if (workers() != NULL) {
  1230     workers()->threads_do(tc);
  1232 #ifndef SERIALGC
  1233   if (UseConcMarkSweepGC) {
  1234     ConcurrentMarkSweepThread::threads_do(tc);
  1236 #endif // SERIALGC
  1239 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1240 #ifndef SERIALGC
  1241   if (UseParNewGC) {
  1242     workers()->print_worker_threads_on(st);
  1244   if (UseConcMarkSweepGC) {
  1245     ConcurrentMarkSweepThread::print_all_on(st);
  1247 #endif // SERIALGC
  1250 void GenCollectedHeap::print_tracing_info() const {
  1251   if (TraceGen0Time) {
  1252     get_gen(0)->print_summary_info();
  1254   if (TraceGen1Time) {
  1255     get_gen(1)->print_summary_info();
  1259 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1260   if (PrintGCDetails && Verbose) {
  1261     gclog_or_tty->print(" "  SIZE_FORMAT
  1262                         "->" SIZE_FORMAT
  1263                         "("  SIZE_FORMAT ")",
  1264                         prev_used, used(), capacity());
  1265   } else {
  1266     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1267                         "->" SIZE_FORMAT "K"
  1268                         "("  SIZE_FORMAT "K)",
  1269                         prev_used / K, used() / K, capacity() / K);
  1273 //New method to print perm gen info with PrintGCDetails flag
  1274 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
  1275   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
  1276   perm_gen()->print_heap_change(perm_prev_used);
  1277   gclog_or_tty->print("]");
  1280 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1281  private:
  1282   bool _full;
  1283  public:
  1284   void do_generation(Generation* gen) {
  1285     gen->gc_prologue(_full);
  1287   GenGCPrologueClosure(bool full) : _full(full) {};
  1288 };
  1290 void GenCollectedHeap::gc_prologue(bool full) {
  1291   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1293   always_do_update_barrier = false;
  1294   // Fill TLAB's and such
  1295   CollectedHeap::accumulate_statistics_all_tlabs();
  1296   ensure_parsability(true);   // retire TLABs
  1298   // Call allocation profiler
  1299   AllocationProfiler::iterate_since_last_gc();
  1300   // Walk generations
  1301   GenGCPrologueClosure blk(full);
  1302   generation_iterate(&blk, false);  // not old-to-young.
  1303   perm_gen()->gc_prologue(full);
  1304 };
  1306 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1307  private:
  1308   bool _full;
  1309  public:
  1310   void do_generation(Generation* gen) {
  1311     gen->gc_epilogue(_full);
  1313   GenGCEpilogueClosure(bool full) : _full(full) {};
  1314 };
  1316 void GenCollectedHeap::gc_epilogue(bool full) {
  1317   // Remember if a partial collection of the heap failed, and
  1318   // we did a complete collection.
  1319   if (full && incremental_collection_will_fail()) {
  1320     set_last_incremental_collection_failed();
  1321   } else {
  1322     clear_last_incremental_collection_failed();
  1324   // Clear the flag, if set; the generation gc_epilogues will set the
  1325   // flag again if the condition persists despite the collection.
  1326   clear_incremental_collection_will_fail();
  1328 #ifdef COMPILER2
  1329   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1330   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1331   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1332 #endif /* COMPILER2 */
  1334   resize_all_tlabs();
  1336   GenGCEpilogueClosure blk(full);
  1337   generation_iterate(&blk, false);  // not old-to-young.
  1338   perm_gen()->gc_epilogue(full);
  1340   always_do_update_barrier = UseConcMarkSweepGC;
  1341 };
  1343 #ifndef PRODUCT
  1344 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1345  private:
  1346  public:
  1347   void do_generation(Generation* gen) {
  1348     gen->record_spaces_top();
  1350 };
  1352 void GenCollectedHeap::record_gen_tops_before_GC() {
  1353   if (ZapUnusedHeapArea) {
  1354     GenGCSaveTopsBeforeGCClosure blk;
  1355     generation_iterate(&blk, false);  // not old-to-young.
  1356     perm_gen()->record_spaces_top();
  1359 #endif  // not PRODUCT
  1361 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1362  public:
  1363   void do_generation(Generation* gen) {
  1364     gen->ensure_parsability();
  1366 };
  1368 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1369   CollectedHeap::ensure_parsability(retire_tlabs);
  1370   GenEnsureParsabilityClosure ep_cl;
  1371   generation_iterate(&ep_cl, false);
  1372   perm_gen()->ensure_parsability();
  1375 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
  1376                                               oop obj,
  1377                                               size_t obj_size) {
  1378   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1379   HeapWord* result = NULL;
  1381   // First give each higher generation a chance to allocate the promoted object.
  1382   Generation* allocator = next_gen(gen);
  1383   if (allocator != NULL) {
  1384     do {
  1385       result = allocator->allocate(obj_size, false);
  1386     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  1389   if (result == NULL) {
  1390     // Then give gen and higher generations a chance to expand and allocate the
  1391     // object.
  1392     do {
  1393       result = gen->expand_and_allocate(obj_size, false);
  1394     } while (result == NULL && (gen = next_gen(gen)) != NULL);
  1397   if (result != NULL) {
  1398     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1400   return oop(result);
  1403 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1404   jlong _time;   // in ms
  1405   jlong _now;    // in ms
  1407  public:
  1408   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1410   jlong time() { return _time; }
  1412   void do_generation(Generation* gen) {
  1413     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1415 };
  1417 jlong GenCollectedHeap::millis_since_last_gc() {
  1418   jlong now = os::javaTimeMillis();
  1419   GenTimeOfLastGCClosure tolgc_cl(now);
  1420   // iterate over generations getting the oldest
  1421   // time that a generation was collected
  1422   generation_iterate(&tolgc_cl, false);
  1423   tolgc_cl.do_generation(perm_gen());
  1424   // XXX Despite the assert above, since javaTimeMillis()
  1425   // doesnot guarantee monotonically increasing return
  1426   // values (note, i didn't say "strictly monotonic"),
  1427   // we need to guard against getting back a time
  1428   // later than now. This should be fixed by basing
  1429   // on someting like gethrtime() which guarantees
  1430   // monotonicity. Note that cond_wait() is susceptible
  1431   // to a similar problem, because its interface is
  1432   // based on absolute time in the form of the
  1433   // system time's notion of UCT. See also 4506635
  1434   // for yet another problem of similar nature. XXX
  1435   jlong retVal = now - tolgc_cl.time();
  1436   if (retVal < 0) {
  1437     NOT_PRODUCT(warning("time warp: %d", retVal);)
  1438     return 0;
  1440   return retVal;

mercurial