src/cpu/sparc/vm/c1_MacroAssembler_sparc.cpp

Thu, 12 Mar 2009 10:37:46 -0700

author
kvn
date
Thu, 12 Mar 2009 10:37:46 -0700
changeset 1077
660978a2a31a
parent 631
d1605aabd0a1
child 1162
6b2273dd6fa9
permissions
-rw-r--r--

6791178: Specialize for zero as the compressed oop vm heap base
Summary: Use zero based compressed oops if java heap is below 32gb and unscaled compressed oops if java heap is below 4gb.
Reviewed-by: never, twisti, jcoomes, coleenp

     1 /*
     2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_MacroAssembler_sparc.cpp.incl"
    28 void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
    29   Label L;
    30   const Register temp_reg = G3_scratch;
    31   // Note: needs more testing of out-of-line vs. inline slow case
    32   Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
    33   verify_oop(receiver);
    34   ld_ptr(receiver, oopDesc::klass_offset_in_bytes(), temp_reg);
    35   cmp(temp_reg, iCache);
    36   brx(Assembler::equal, true, Assembler::pt, L);
    37   delayed()->nop();
    38   jump_to(ic_miss, 0);
    39   delayed()->nop();
    40   align(CodeEntryAlignment);
    41   bind(L);
    42 }
    45 void C1_MacroAssembler::method_exit(bool restore_frame) {
    46   // this code must be structured this way so that the return
    47   // instruction can be a safepoint.
    48   if (restore_frame) {
    49     restore();
    50   }
    51   retl();
    52   delayed()->nop();
    53 }
    56 void C1_MacroAssembler::explicit_null_check(Register base) {
    57   Unimplemented();
    58 }
    61 void C1_MacroAssembler::build_frame(int frame_size_in_bytes) {
    63   generate_stack_overflow_check(frame_size_in_bytes);
    64   // Create the frame.
    65   save_frame_c1(frame_size_in_bytes);
    66 }
    69 void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
    70   if (C1Breakpoint) breakpoint_trap();
    71   inline_cache_check(receiver, ic_klass);
    72 }
    75 void C1_MacroAssembler::verified_entry() {
    76   if (C1Breakpoint) breakpoint_trap();
    77   // build frame
    78   verify_FPU(0, "method_entry");
    79 }
    82 void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) {
    83   assert_different_registers(Rmark, Roop, Rbox, Rscratch);
    85   Label done;
    87   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
    89   // The following move must be the first instruction of emitted since debug
    90   // information may be generated for it.
    91   // Load object header
    92   ld_ptr(mark_addr, Rmark);
    94   verify_oop(Roop);
    96   // save object being locked into the BasicObjectLock
    97   st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes());
    99   if (UseBiasedLocking) {
   100     biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case);
   101   }
   103   // Save Rbox in Rscratch to be used for the cas operation
   104   mov(Rbox, Rscratch);
   106   // and mark it unlocked
   107   or3(Rmark, markOopDesc::unlocked_value, Rmark);
   109   // save unlocked object header into the displaced header location on the stack
   110   st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
   112   // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
   113   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
   114   casx_under_lock(mark_addr.base(), Rmark, Rscratch, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
   115   // if compare/exchange succeeded we found an unlocked object and we now have locked it
   116   // hence we are done
   117   cmp(Rmark, Rscratch);
   118   brx(Assembler::equal, false, Assembler::pt, done);
   119   delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
   120   // we did not find an unlocked object so see if this is a recursive case
   121   // sub(Rscratch, SP, Rscratch);
   122   assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
   123   andcc(Rscratch, 0xfffff003, Rscratch);
   124   brx(Assembler::notZero, false, Assembler::pn, slow_case);
   125   delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
   126   bind(done);
   127 }
   130 void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) {
   131   assert_different_registers(Rmark, Roop, Rbox);
   133   Label done;
   135   Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
   136   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
   138   if (UseBiasedLocking) {
   139     // load the object out of the BasicObjectLock
   140     ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
   141     verify_oop(Roop);
   142     biased_locking_exit(mark_addr, Rmark, done);
   143   }
   144   // Test first it it is a fast recursive unlock
   145   ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
   146   br_null(Rmark, false, Assembler::pt, done);
   147   delayed()->nop();
   148   if (!UseBiasedLocking) {
   149     // load object
   150     ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop);
   151     verify_oop(Roop);
   152   }
   154   // Check if it is still a light weight lock, this is is true if we see
   155   // the stack address of the basicLock in the markOop of the object
   156   casx_under_lock(mark_addr.base(), Rbox, Rmark, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
   157   cmp(Rbox, Rmark);
   159   brx(Assembler::notEqual, false, Assembler::pn, slow_case);
   160   delayed()->nop();
   161   // Done
   162   bind(done);
   163 }
   166 void C1_MacroAssembler::try_allocate(
   167   Register obj,                        // result: pointer to object after successful allocation
   168   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
   169   int      con_size_in_bytes,          // object size in bytes if   known at compile time
   170   Register t1,                         // temp register
   171   Register t2,                         // temp register
   172   Label&   slow_case                   // continuation point if fast allocation fails
   173 ) {
   174   if (UseTLAB) {
   175     tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
   176   } else {
   177     eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
   178   }
   179 }
   182 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
   183   assert_different_registers(obj, klass, len, t1, t2);
   184   if (UseBiasedLocking && !len->is_valid()) {
   185     ld_ptr(klass, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes(), t1);
   186   } else {
   187     set((intx)markOopDesc::prototype(), t1);
   188   }
   189   st_ptr(t1  , obj, oopDesc::mark_offset_in_bytes       ());
   190   st_ptr(klass, obj, oopDesc::klass_offset_in_bytes      ());
   191   if (len->is_valid()) st(len  , obj, arrayOopDesc::length_offset_in_bytes());
   192 }
   195 void C1_MacroAssembler::initialize_body(Register base, Register index) {
   196   assert_different_registers(base, index);
   197   Label loop;
   198   bind(loop);
   199   subcc(index, HeapWordSize, index);
   200   brx(Assembler::greaterEqual, true, Assembler::pt, loop);
   201   delayed()->st_ptr(G0, base, index);
   202 }
   205 void C1_MacroAssembler::allocate_object(
   206   Register obj,                        // result: pointer to object after successful allocation
   207   Register t1,                         // temp register
   208   Register t2,                         // temp register
   209   Register t3,                         // temp register
   210   int      hdr_size,                   // object header size in words
   211   int      obj_size,                   // object size in words
   212   Register klass,                      // object klass
   213   Label&   slow_case                   // continuation point if fast allocation fails
   214 ) {
   215   assert_different_registers(obj, t1, t2, t3, klass);
   216   assert(klass == G5, "must be G5");
   218   // allocate space & initialize header
   219   if (!is_simm13(obj_size * wordSize)) {
   220     // would need to use extra register to load
   221     // object size => go the slow case for now
   222     br(Assembler::always, false, Assembler::pt, slow_case);
   223     delayed()->nop();
   224     return;
   225   }
   226   try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case);
   228   initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2);
   229 }
   231 void C1_MacroAssembler::initialize_object(
   232   Register obj,                        // result: pointer to object after successful allocation
   233   Register klass,                      // object klass
   234   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
   235   int      con_size_in_bytes,          // object size in bytes if   known at compile time
   236   Register t1,                         // temp register
   237   Register t2                          // temp register
   238   ) {
   239   const int hdr_size_in_bytes = instanceOopDesc::base_offset_in_bytes();
   241   initialize_header(obj, klass, noreg, t1, t2);
   243 #ifdef ASSERT
   244   {
   245     Label ok;
   246     ld(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), t1);
   247     if (var_size_in_bytes != noreg) {
   248       cmp(t1, var_size_in_bytes);
   249     } else {
   250       cmp(t1, con_size_in_bytes);
   251     }
   252     brx(Assembler::equal, false, Assembler::pt, ok);
   253     delayed()->nop();
   254     stop("bad size in initialize_object");
   255     should_not_reach_here();
   257     bind(ok);
   258   }
   260 #endif
   262   // initialize body
   263   const int threshold = 5 * HeapWordSize;              // approximate break even point for code size
   264   if (var_size_in_bytes != noreg) {
   265     // use a loop
   266     add(obj, hdr_size_in_bytes, t1);               // compute address of first element
   267     sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body
   268     initialize_body(t1, t2);
   269 #ifndef _LP64
   270   } else if (VM_Version::v9_instructions_work() && con_size_in_bytes < threshold * 2) {
   271     // on v9 we can do double word stores to fill twice as much space.
   272     assert(hdr_size_in_bytes % 8 == 0, "double word aligned");
   273     assert(con_size_in_bytes % 8 == 0, "double word aligned");
   274     for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i);
   275 #endif
   276   } else if (con_size_in_bytes <= threshold) {
   277     // use explicit NULL stores
   278     for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize)     st_ptr(G0, obj, i);
   279   } else if (con_size_in_bytes > hdr_size_in_bytes) {
   280     // use a loop
   281     const Register base  = t1;
   282     const Register index = t2;
   283     add(obj, hdr_size_in_bytes, base);               // compute address of first element
   284     // compute index = number of words to clear
   285     set(con_size_in_bytes - hdr_size_in_bytes, index);
   286     initialize_body(base, index);
   287   }
   289   if (DTraceAllocProbes) {
   290     assert(obj == O0, "must be");
   291     call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
   292          relocInfo::runtime_call_type);
   293     delayed()->nop();
   294   }
   296   verify_oop(obj);
   297 }
   300 void C1_MacroAssembler::allocate_array(
   301   Register obj,                        // result: pointer to array after successful allocation
   302   Register len,                        // array length
   303   Register t1,                         // temp register
   304   Register t2,                         // temp register
   305   Register t3,                         // temp register
   306   int      hdr_size,                   // object header size in words
   307   int      elt_size,                   // element size in bytes
   308   Register klass,                      // object klass
   309   Label&   slow_case                   // continuation point if fast allocation fails
   310 ) {
   311   assert_different_registers(obj, len, t1, t2, t3, klass);
   312   assert(klass == G5, "must be G5");
   313   assert(t1 == G1, "must be G1");
   315   // determine alignment mask
   316   assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
   318   // check for negative or excessive length
   319   // note: the maximum length allowed is chosen so that arrays of any
   320   //       element size with this length are always smaller or equal
   321   //       to the largest integer (i.e., array size computation will
   322   //       not overflow)
   323   set(max_array_allocation_length, t1);
   324   cmp(len, t1);
   325   br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
   327   // compute array size
   328   // note: if 0 <= len <= max_length, len*elt_size + header + alignment is
   329   //       smaller or equal to the largest integer; also, since top is always
   330   //       aligned, we can do the alignment here instead of at the end address
   331   //       computation
   332   const Register arr_size = t1;
   333   switch (elt_size) {
   334     case  1: delayed()->mov(len,    arr_size); break;
   335     case  2: delayed()->sll(len, 1, arr_size); break;
   336     case  4: delayed()->sll(len, 2, arr_size); break;
   337     case  8: delayed()->sll(len, 3, arr_size); break;
   338     default: ShouldNotReachHere();
   339   }
   340   add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment
   341   and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size);                     // align array size
   343   // allocate space & initialize header
   344   if (UseTLAB) {
   345     tlab_allocate(obj, arr_size, 0, t2, slow_case);
   346   } else {
   347     eden_allocate(obj, arr_size, 0, t2, t3, slow_case);
   348   }
   349   initialize_header(obj, klass, len, t2, t3);
   351   // initialize body
   352   const Register base  = t2;
   353   const Register index = t3;
   354   add(obj, hdr_size * wordSize, base);               // compute address of first element
   355   sub(arr_size, hdr_size * wordSize, index);         // compute index = number of words to clear
   356   initialize_body(base, index);
   358   if (DTraceAllocProbes) {
   359     assert(obj == O0, "must be");
   360     call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
   361          relocInfo::runtime_call_type);
   362     delayed()->nop();
   363   }
   365   verify_oop(obj);
   366 }
   369 #ifndef PRODUCT
   371 void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
   372   if (!VerifyOops) return;
   373   verify_oop_addr(Address(SP, 0, stack_offset + STACK_BIAS));
   374 }
   376 void C1_MacroAssembler::verify_not_null_oop(Register r) {
   377   Label not_null;
   378   br_zero(Assembler::notEqual, false, Assembler::pt, r, not_null);
   379   delayed()->nop();
   380   stop("non-null oop required");
   381   bind(not_null);
   382   if (!VerifyOops) return;
   383   verify_oop(r);
   384 }
   386 void C1_MacroAssembler::invalidate_registers(bool iregisters, bool lregisters, bool oregisters,
   387                                              Register preserve1, Register preserve2) {
   388   if (iregisters) {
   389     for (int i = 0; i < 6; i++) {
   390       Register r = as_iRegister(i);
   391       if (r != preserve1 && r != preserve2)  set(0xdead, r);
   392     }
   393   }
   394   if (oregisters) {
   395     for (int i = 0; i < 6; i++) {
   396       Register r = as_oRegister(i);
   397       if (r != preserve1 && r != preserve2)  set(0xdead, r);
   398     }
   399   }
   400   if (lregisters) {
   401     for (int i = 0; i < 8; i++) {
   402       Register r = as_lRegister(i);
   403       if (r != preserve1 && r != preserve2)  set(0xdead, r);
   404     }
   405   }
   406 }
   409 #endif

mercurial