src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 05 Oct 2011 08:44:10 -0700

author
johnc
date
Wed, 05 Oct 2011 08:44:10 -0700
changeset 3182
65a8ff39a6da
parent 3179
811ec3d0833b
child 3209
074f0252cc13
permissions
-rw-r--r--

7095194: G1: HeapRegion::GrainBytes, GrainWords, and CardsPerRegion should be size_t
Summary: Declare GrainBytes, GrainWords, and CardsPerRegion as size_t.
Reviewed-by: jcoomes, tonyp, jmasa

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1MarkSweep.hpp"
    36 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    37 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    39 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    40 #include "gc_implementation/g1/vm_operations_g1.hpp"
    41 #include "gc_implementation/shared/isGCActiveMark.hpp"
    42 #include "memory/gcLocker.inline.hpp"
    43 #include "memory/genOopClosures.inline.hpp"
    44 #include "memory/generationSpec.hpp"
    45 #include "memory/referenceProcessor.hpp"
    46 #include "oops/oop.inline.hpp"
    47 #include "oops/oop.pcgc.inline.hpp"
    48 #include "runtime/aprofiler.hpp"
    49 #include "runtime/vmThread.hpp"
    51 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    53 // turn it on so that the contents of the young list (scan-only /
    54 // to-be-collected) are printed at "strategic" points before / during
    55 // / after the collection --- this is useful for debugging
    56 #define YOUNG_LIST_VERBOSE 0
    57 // CURRENT STATUS
    58 // This file is under construction.  Search for "FIXME".
    60 // INVARIANTS/NOTES
    61 //
    62 // All allocation activity covered by the G1CollectedHeap interface is
    63 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    64 // and allocate_new_tlab, which are the "entry" points to the
    65 // allocation code from the rest of the JVM.  (Note that this does not
    66 // apply to TLAB allocation, which is not part of this interface: it
    67 // is done by clients of this interface.)
    69 // Local to this file.
    71 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    72   SuspendibleThreadSet* _sts;
    73   G1RemSet* _g1rs;
    74   ConcurrentG1Refine* _cg1r;
    75   bool _concurrent;
    76 public:
    77   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    78                               G1RemSet* g1rs,
    79                               ConcurrentG1Refine* cg1r) :
    80     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    81   {}
    82   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    83     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    84     // This path is executed by the concurrent refine or mutator threads,
    85     // concurrently, and so we do not care if card_ptr contains references
    86     // that point into the collection set.
    87     assert(!oops_into_cset, "should be");
    89     if (_concurrent && _sts->should_yield()) {
    90       // Caller will actually yield.
    91       return false;
    92     }
    93     // Otherwise, we finished successfully; return true.
    94     return true;
    95   }
    96   void set_concurrent(bool b) { _concurrent = b; }
    97 };
   100 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   101   int _calls;
   102   G1CollectedHeap* _g1h;
   103   CardTableModRefBS* _ctbs;
   104   int _histo[256];
   105 public:
   106   ClearLoggedCardTableEntryClosure() :
   107     _calls(0)
   108   {
   109     _g1h = G1CollectedHeap::heap();
   110     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   111     for (int i = 0; i < 256; i++) _histo[i] = 0;
   112   }
   113   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   114     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   115       _calls++;
   116       unsigned char* ujb = (unsigned char*)card_ptr;
   117       int ind = (int)(*ujb);
   118       _histo[ind]++;
   119       *card_ptr = -1;
   120     }
   121     return true;
   122   }
   123   int calls() { return _calls; }
   124   void print_histo() {
   125     gclog_or_tty->print_cr("Card table value histogram:");
   126     for (int i = 0; i < 256; i++) {
   127       if (_histo[i] != 0) {
   128         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   129       }
   130     }
   131   }
   132 };
   134 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   135   int _calls;
   136   G1CollectedHeap* _g1h;
   137   CardTableModRefBS* _ctbs;
   138 public:
   139   RedirtyLoggedCardTableEntryClosure() :
   140     _calls(0)
   141   {
   142     _g1h = G1CollectedHeap::heap();
   143     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   144   }
   145   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   146     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   147       _calls++;
   148       *card_ptr = 0;
   149     }
   150     return true;
   151   }
   152   int calls() { return _calls; }
   153 };
   155 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   156 public:
   157   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   158     *card_ptr = CardTableModRefBS::dirty_card_val();
   159     return true;
   160   }
   161 };
   163 YoungList::YoungList(G1CollectedHeap* g1h)
   164   : _g1h(g1h), _head(NULL),
   165     _length(0),
   166     _last_sampled_rs_lengths(0),
   167     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   168 {
   169   guarantee( check_list_empty(false), "just making sure..." );
   170 }
   172 void YoungList::push_region(HeapRegion *hr) {
   173   assert(!hr->is_young(), "should not already be young");
   174   assert(hr->get_next_young_region() == NULL, "cause it should!");
   176   hr->set_next_young_region(_head);
   177   _head = hr;
   179   hr->set_young();
   180   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   181   ++_length;
   182 }
   184 void YoungList::add_survivor_region(HeapRegion* hr) {
   185   assert(hr->is_survivor(), "should be flagged as survivor region");
   186   assert(hr->get_next_young_region() == NULL, "cause it should!");
   188   hr->set_next_young_region(_survivor_head);
   189   if (_survivor_head == NULL) {
   190     _survivor_tail = hr;
   191   }
   192   _survivor_head = hr;
   194   ++_survivor_length;
   195 }
   197 void YoungList::empty_list(HeapRegion* list) {
   198   while (list != NULL) {
   199     HeapRegion* next = list->get_next_young_region();
   200     list->set_next_young_region(NULL);
   201     list->uninstall_surv_rate_group();
   202     list->set_not_young();
   203     list = next;
   204   }
   205 }
   207 void YoungList::empty_list() {
   208   assert(check_list_well_formed(), "young list should be well formed");
   210   empty_list(_head);
   211   _head = NULL;
   212   _length = 0;
   214   empty_list(_survivor_head);
   215   _survivor_head = NULL;
   216   _survivor_tail = NULL;
   217   _survivor_length = 0;
   219   _last_sampled_rs_lengths = 0;
   221   assert(check_list_empty(false), "just making sure...");
   222 }
   224 bool YoungList::check_list_well_formed() {
   225   bool ret = true;
   227   size_t length = 0;
   228   HeapRegion* curr = _head;
   229   HeapRegion* last = NULL;
   230   while (curr != NULL) {
   231     if (!curr->is_young()) {
   232       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   233                              "incorrectly tagged (y: %d, surv: %d)",
   234                              curr->bottom(), curr->end(),
   235                              curr->is_young(), curr->is_survivor());
   236       ret = false;
   237     }
   238     ++length;
   239     last = curr;
   240     curr = curr->get_next_young_region();
   241   }
   242   ret = ret && (length == _length);
   244   if (!ret) {
   245     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   246     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   247                            length, _length);
   248   }
   250   return ret;
   251 }
   253 bool YoungList::check_list_empty(bool check_sample) {
   254   bool ret = true;
   256   if (_length != 0) {
   257     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   258                   _length);
   259     ret = false;
   260   }
   261   if (check_sample && _last_sampled_rs_lengths != 0) {
   262     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   263     ret = false;
   264   }
   265   if (_head != NULL) {
   266     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   267     ret = false;
   268   }
   269   if (!ret) {
   270     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   271   }
   273   return ret;
   274 }
   276 void
   277 YoungList::rs_length_sampling_init() {
   278   _sampled_rs_lengths = 0;
   279   _curr               = _head;
   280 }
   282 bool
   283 YoungList::rs_length_sampling_more() {
   284   return _curr != NULL;
   285 }
   287 void
   288 YoungList::rs_length_sampling_next() {
   289   assert( _curr != NULL, "invariant" );
   290   size_t rs_length = _curr->rem_set()->occupied();
   292   _sampled_rs_lengths += rs_length;
   294   // The current region may not yet have been added to the
   295   // incremental collection set (it gets added when it is
   296   // retired as the current allocation region).
   297   if (_curr->in_collection_set()) {
   298     // Update the collection set policy information for this region
   299     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   300   }
   302   _curr = _curr->get_next_young_region();
   303   if (_curr == NULL) {
   304     _last_sampled_rs_lengths = _sampled_rs_lengths;
   305     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   306   }
   307 }
   309 void
   310 YoungList::reset_auxilary_lists() {
   311   guarantee( is_empty(), "young list should be empty" );
   312   assert(check_list_well_formed(), "young list should be well formed");
   314   // Add survivor regions to SurvRateGroup.
   315   _g1h->g1_policy()->note_start_adding_survivor_regions();
   316   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   318   for (HeapRegion* curr = _survivor_head;
   319        curr != NULL;
   320        curr = curr->get_next_young_region()) {
   321     _g1h->g1_policy()->set_region_survivors(curr);
   323     // The region is a non-empty survivor so let's add it to
   324     // the incremental collection set for the next evacuation
   325     // pause.
   326     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   327   }
   328   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   330   _head   = _survivor_head;
   331   _length = _survivor_length;
   332   if (_survivor_head != NULL) {
   333     assert(_survivor_tail != NULL, "cause it shouldn't be");
   334     assert(_survivor_length > 0, "invariant");
   335     _survivor_tail->set_next_young_region(NULL);
   336   }
   338   // Don't clear the survivor list handles until the start of
   339   // the next evacuation pause - we need it in order to re-tag
   340   // the survivor regions from this evacuation pause as 'young'
   341   // at the start of the next.
   343   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   345   assert(check_list_well_formed(), "young list should be well formed");
   346 }
   348 void YoungList::print() {
   349   HeapRegion* lists[] = {_head,   _survivor_head};
   350   const char* names[] = {"YOUNG", "SURVIVOR"};
   352   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   353     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   354     HeapRegion *curr = lists[list];
   355     if (curr == NULL)
   356       gclog_or_tty->print_cr("  empty");
   357     while (curr != NULL) {
   358       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   359                              "age: %4d, y: %d, surv: %d",
   360                              curr->bottom(), curr->end(),
   361                              curr->top(),
   362                              curr->prev_top_at_mark_start(),
   363                              curr->next_top_at_mark_start(),
   364                              curr->top_at_conc_mark_count(),
   365                              curr->age_in_surv_rate_group_cond(),
   366                              curr->is_young(),
   367                              curr->is_survivor());
   368       curr = curr->get_next_young_region();
   369     }
   370   }
   372   gclog_or_tty->print_cr("");
   373 }
   375 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   376 {
   377   // Claim the right to put the region on the dirty cards region list
   378   // by installing a self pointer.
   379   HeapRegion* next = hr->get_next_dirty_cards_region();
   380   if (next == NULL) {
   381     HeapRegion* res = (HeapRegion*)
   382       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   383                           NULL);
   384     if (res == NULL) {
   385       HeapRegion* head;
   386       do {
   387         // Put the region to the dirty cards region list.
   388         head = _dirty_cards_region_list;
   389         next = (HeapRegion*)
   390           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   391         if (next == head) {
   392           assert(hr->get_next_dirty_cards_region() == hr,
   393                  "hr->get_next_dirty_cards_region() != hr");
   394           if (next == NULL) {
   395             // The last region in the list points to itself.
   396             hr->set_next_dirty_cards_region(hr);
   397           } else {
   398             hr->set_next_dirty_cards_region(next);
   399           }
   400         }
   401       } while (next != head);
   402     }
   403   }
   404 }
   406 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   407 {
   408   HeapRegion* head;
   409   HeapRegion* hr;
   410   do {
   411     head = _dirty_cards_region_list;
   412     if (head == NULL) {
   413       return NULL;
   414     }
   415     HeapRegion* new_head = head->get_next_dirty_cards_region();
   416     if (head == new_head) {
   417       // The last region.
   418       new_head = NULL;
   419     }
   420     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   421                                           head);
   422   } while (hr != head);
   423   assert(hr != NULL, "invariant");
   424   hr->set_next_dirty_cards_region(NULL);
   425   return hr;
   426 }
   428 void G1CollectedHeap::stop_conc_gc_threads() {
   429   _cg1r->stop();
   430   _cmThread->stop();
   431 }
   433 #ifdef ASSERT
   434 // A region is added to the collection set as it is retired
   435 // so an address p can point to a region which will be in the
   436 // collection set but has not yet been retired.  This method
   437 // therefore is only accurate during a GC pause after all
   438 // regions have been retired.  It is used for debugging
   439 // to check if an nmethod has references to objects that can
   440 // be move during a partial collection.  Though it can be
   441 // inaccurate, it is sufficient for G1 because the conservative
   442 // implementation of is_scavengable() for G1 will indicate that
   443 // all nmethods must be scanned during a partial collection.
   444 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   445   HeapRegion* hr = heap_region_containing(p);
   446   return hr != NULL && hr->in_collection_set();
   447 }
   448 #endif
   450 // Returns true if the reference points to an object that
   451 // can move in an incremental collecction.
   452 bool G1CollectedHeap::is_scavengable(const void* p) {
   453   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   454   G1CollectorPolicy* g1p = g1h->g1_policy();
   455   HeapRegion* hr = heap_region_containing(p);
   456   if (hr == NULL) {
   457      // perm gen (or null)
   458      return false;
   459   } else {
   460     return !hr->isHumongous();
   461   }
   462 }
   464 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   465   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   466   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   468   // Count the dirty cards at the start.
   469   CountNonCleanMemRegionClosure count1(this);
   470   ct_bs->mod_card_iterate(&count1);
   471   int orig_count = count1.n();
   473   // First clear the logged cards.
   474   ClearLoggedCardTableEntryClosure clear;
   475   dcqs.set_closure(&clear);
   476   dcqs.apply_closure_to_all_completed_buffers();
   477   dcqs.iterate_closure_all_threads(false);
   478   clear.print_histo();
   480   // Now ensure that there's no dirty cards.
   481   CountNonCleanMemRegionClosure count2(this);
   482   ct_bs->mod_card_iterate(&count2);
   483   if (count2.n() != 0) {
   484     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   485                            count2.n(), orig_count);
   486   }
   487   guarantee(count2.n() == 0, "Card table should be clean.");
   489   RedirtyLoggedCardTableEntryClosure redirty;
   490   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   491   dcqs.apply_closure_to_all_completed_buffers();
   492   dcqs.iterate_closure_all_threads(false);
   493   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   494                          clear.calls(), orig_count);
   495   guarantee(redirty.calls() == clear.calls(),
   496             "Or else mechanism is broken.");
   498   CountNonCleanMemRegionClosure count3(this);
   499   ct_bs->mod_card_iterate(&count3);
   500   if (count3.n() != orig_count) {
   501     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   502                            orig_count, count3.n());
   503     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   504   }
   506   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   507 }
   509 // Private class members.
   511 G1CollectedHeap* G1CollectedHeap::_g1h;
   513 // Private methods.
   515 HeapRegion*
   516 G1CollectedHeap::new_region_try_secondary_free_list() {
   517   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   518   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   519     if (!_secondary_free_list.is_empty()) {
   520       if (G1ConcRegionFreeingVerbose) {
   521         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   522                                "secondary_free_list has "SIZE_FORMAT" entries",
   523                                _secondary_free_list.length());
   524       }
   525       // It looks as if there are free regions available on the
   526       // secondary_free_list. Let's move them to the free_list and try
   527       // again to allocate from it.
   528       append_secondary_free_list();
   530       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   531              "empty we should have moved at least one entry to the free_list");
   532       HeapRegion* res = _free_list.remove_head();
   533       if (G1ConcRegionFreeingVerbose) {
   534         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   535                                "allocated "HR_FORMAT" from secondary_free_list",
   536                                HR_FORMAT_PARAMS(res));
   537       }
   538       return res;
   539     }
   541     // Wait here until we get notifed either when (a) there are no
   542     // more free regions coming or (b) some regions have been moved on
   543     // the secondary_free_list.
   544     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   545   }
   547   if (G1ConcRegionFreeingVerbose) {
   548     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   549                            "could not allocate from secondary_free_list");
   550   }
   551   return NULL;
   552 }
   554 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   555   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   556          "the only time we use this to allocate a humongous region is "
   557          "when we are allocating a single humongous region");
   559   HeapRegion* res;
   560   if (G1StressConcRegionFreeing) {
   561     if (!_secondary_free_list.is_empty()) {
   562       if (G1ConcRegionFreeingVerbose) {
   563         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   564                                "forced to look at the secondary_free_list");
   565       }
   566       res = new_region_try_secondary_free_list();
   567       if (res != NULL) {
   568         return res;
   569       }
   570     }
   571   }
   572   res = _free_list.remove_head_or_null();
   573   if (res == NULL) {
   574     if (G1ConcRegionFreeingVerbose) {
   575       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   576                              "res == NULL, trying the secondary_free_list");
   577     }
   578     res = new_region_try_secondary_free_list();
   579   }
   580   if (res == NULL && do_expand) {
   581     ergo_verbose1(ErgoHeapSizing,
   582                   "attempt heap expansion",
   583                   ergo_format_reason("region allocation request failed")
   584                   ergo_format_byte("allocation request"),
   585                   word_size * HeapWordSize);
   586     if (expand(word_size * HeapWordSize)) {
   587       // Even though the heap was expanded, it might not have reached
   588       // the desired size. So, we cannot assume that the allocation
   589       // will succeed.
   590       res = _free_list.remove_head_or_null();
   591     }
   592   }
   593   return res;
   594 }
   596 size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
   597                                                           size_t word_size) {
   598   assert(isHumongous(word_size), "word_size should be humongous");
   599   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   601   size_t first = G1_NULL_HRS_INDEX;
   602   if (num_regions == 1) {
   603     // Only one region to allocate, no need to go through the slower
   604     // path. The caller will attempt the expasion if this fails, so
   605     // let's not try to expand here too.
   606     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   607     if (hr != NULL) {
   608       first = hr->hrs_index();
   609     } else {
   610       first = G1_NULL_HRS_INDEX;
   611     }
   612   } else {
   613     // We can't allocate humongous regions while cleanupComplete() is
   614     // running, since some of the regions we find to be empty might not
   615     // yet be added to the free list and it is not straightforward to
   616     // know which list they are on so that we can remove them. Note
   617     // that we only need to do this if we need to allocate more than
   618     // one region to satisfy the current humongous allocation
   619     // request. If we are only allocating one region we use the common
   620     // region allocation code (see above).
   621     wait_while_free_regions_coming();
   622     append_secondary_free_list_if_not_empty_with_lock();
   624     if (free_regions() >= num_regions) {
   625       first = _hrs.find_contiguous(num_regions);
   626       if (first != G1_NULL_HRS_INDEX) {
   627         for (size_t i = first; i < first + num_regions; ++i) {
   628           HeapRegion* hr = region_at(i);
   629           assert(hr->is_empty(), "sanity");
   630           assert(is_on_master_free_list(hr), "sanity");
   631           hr->set_pending_removal(true);
   632         }
   633         _free_list.remove_all_pending(num_regions);
   634       }
   635     }
   636   }
   637   return first;
   638 }
   640 HeapWord*
   641 G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
   642                                                            size_t num_regions,
   643                                                            size_t word_size) {
   644   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   645   assert(isHumongous(word_size), "word_size should be humongous");
   646   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   648   // Index of last region in the series + 1.
   649   size_t last = first + num_regions;
   651   // We need to initialize the region(s) we just discovered. This is
   652   // a bit tricky given that it can happen concurrently with
   653   // refinement threads refining cards on these regions and
   654   // potentially wanting to refine the BOT as they are scanning
   655   // those cards (this can happen shortly after a cleanup; see CR
   656   // 6991377). So we have to set up the region(s) carefully and in
   657   // a specific order.
   659   // The word size sum of all the regions we will allocate.
   660   size_t word_size_sum = num_regions * HeapRegion::GrainWords;
   661   assert(word_size <= word_size_sum, "sanity");
   663   // This will be the "starts humongous" region.
   664   HeapRegion* first_hr = region_at(first);
   665   // The header of the new object will be placed at the bottom of
   666   // the first region.
   667   HeapWord* new_obj = first_hr->bottom();
   668   // This will be the new end of the first region in the series that
   669   // should also match the end of the last region in the seriers.
   670   HeapWord* new_end = new_obj + word_size_sum;
   671   // This will be the new top of the first region that will reflect
   672   // this allocation.
   673   HeapWord* new_top = new_obj + word_size;
   675   // First, we need to zero the header of the space that we will be
   676   // allocating. When we update top further down, some refinement
   677   // threads might try to scan the region. By zeroing the header we
   678   // ensure that any thread that will try to scan the region will
   679   // come across the zero klass word and bail out.
   680   //
   681   // NOTE: It would not have been correct to have used
   682   // CollectedHeap::fill_with_object() and make the space look like
   683   // an int array. The thread that is doing the allocation will
   684   // later update the object header to a potentially different array
   685   // type and, for a very short period of time, the klass and length
   686   // fields will be inconsistent. This could cause a refinement
   687   // thread to calculate the object size incorrectly.
   688   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   690   // We will set up the first region as "starts humongous". This
   691   // will also update the BOT covering all the regions to reflect
   692   // that there is a single object that starts at the bottom of the
   693   // first region.
   694   first_hr->set_startsHumongous(new_top, new_end);
   696   // Then, if there are any, we will set up the "continues
   697   // humongous" regions.
   698   HeapRegion* hr = NULL;
   699   for (size_t i = first + 1; i < last; ++i) {
   700     hr = region_at(i);
   701     hr->set_continuesHumongous(first_hr);
   702   }
   703   // If we have "continues humongous" regions (hr != NULL), then the
   704   // end of the last one should match new_end.
   705   assert(hr == NULL || hr->end() == new_end, "sanity");
   707   // Up to this point no concurrent thread would have been able to
   708   // do any scanning on any region in this series. All the top
   709   // fields still point to bottom, so the intersection between
   710   // [bottom,top] and [card_start,card_end] will be empty. Before we
   711   // update the top fields, we'll do a storestore to make sure that
   712   // no thread sees the update to top before the zeroing of the
   713   // object header and the BOT initialization.
   714   OrderAccess::storestore();
   716   // Now that the BOT and the object header have been initialized,
   717   // we can update top of the "starts humongous" region.
   718   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   719          "new_top should be in this region");
   720   first_hr->set_top(new_top);
   721   if (_hr_printer.is_active()) {
   722     HeapWord* bottom = first_hr->bottom();
   723     HeapWord* end = first_hr->orig_end();
   724     if ((first + 1) == last) {
   725       // the series has a single humongous region
   726       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   727     } else {
   728       // the series has more than one humongous regions
   729       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   730     }
   731   }
   733   // Now, we will update the top fields of the "continues humongous"
   734   // regions. The reason we need to do this is that, otherwise,
   735   // these regions would look empty and this will confuse parts of
   736   // G1. For example, the code that looks for a consecutive number
   737   // of empty regions will consider them empty and try to
   738   // re-allocate them. We can extend is_empty() to also include
   739   // !continuesHumongous(), but it is easier to just update the top
   740   // fields here. The way we set top for all regions (i.e., top ==
   741   // end for all regions but the last one, top == new_top for the
   742   // last one) is actually used when we will free up the humongous
   743   // region in free_humongous_region().
   744   hr = NULL;
   745   for (size_t i = first + 1; i < last; ++i) {
   746     hr = region_at(i);
   747     if ((i + 1) == last) {
   748       // last continues humongous region
   749       assert(hr->bottom() < new_top && new_top <= hr->end(),
   750              "new_top should fall on this region");
   751       hr->set_top(new_top);
   752       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   753     } else {
   754       // not last one
   755       assert(new_top > hr->end(), "new_top should be above this region");
   756       hr->set_top(hr->end());
   757       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   758     }
   759   }
   760   // If we have continues humongous regions (hr != NULL), then the
   761   // end of the last one should match new_end and its top should
   762   // match new_top.
   763   assert(hr == NULL ||
   764          (hr->end() == new_end && hr->top() == new_top), "sanity");
   766   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   767   _summary_bytes_used += first_hr->used();
   768   _humongous_set.add(first_hr);
   770   return new_obj;
   771 }
   773 // If could fit into free regions w/o expansion, try.
   774 // Otherwise, if can expand, do so.
   775 // Otherwise, if using ex regions might help, try with ex given back.
   776 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   777   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   779   verify_region_sets_optional();
   781   size_t num_regions =
   782          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   783   size_t x_size = expansion_regions();
   784   size_t fs = _hrs.free_suffix();
   785   size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
   786   if (first == G1_NULL_HRS_INDEX) {
   787     // The only thing we can do now is attempt expansion.
   788     if (fs + x_size >= num_regions) {
   789       // If the number of regions we're trying to allocate for this
   790       // object is at most the number of regions in the free suffix,
   791       // then the call to humongous_obj_allocate_find_first() above
   792       // should have succeeded and we wouldn't be here.
   793       //
   794       // We should only be trying to expand when the free suffix is
   795       // not sufficient for the object _and_ we have some expansion
   796       // room available.
   797       assert(num_regions > fs, "earlier allocation should have succeeded");
   799       ergo_verbose1(ErgoHeapSizing,
   800                     "attempt heap expansion",
   801                     ergo_format_reason("humongous allocation request failed")
   802                     ergo_format_byte("allocation request"),
   803                     word_size * HeapWordSize);
   804       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   805         // Even though the heap was expanded, it might not have
   806         // reached the desired size. So, we cannot assume that the
   807         // allocation will succeed.
   808         first = humongous_obj_allocate_find_first(num_regions, word_size);
   809       }
   810     }
   811   }
   813   HeapWord* result = NULL;
   814   if (first != G1_NULL_HRS_INDEX) {
   815     result =
   816       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   817     assert(result != NULL, "it should always return a valid result");
   819     // A successful humongous object allocation changes the used space
   820     // information of the old generation so we need to recalculate the
   821     // sizes and update the jstat counters here.
   822     g1mm()->update_sizes();
   823   }
   825   verify_region_sets_optional();
   827   return result;
   828 }
   830 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   831   assert_heap_not_locked_and_not_at_safepoint();
   832   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   834   unsigned int dummy_gc_count_before;
   835   return attempt_allocation(word_size, &dummy_gc_count_before);
   836 }
   838 HeapWord*
   839 G1CollectedHeap::mem_allocate(size_t word_size,
   840                               bool*  gc_overhead_limit_was_exceeded) {
   841   assert_heap_not_locked_and_not_at_safepoint();
   843   // Loop until the allocation is satisified, or unsatisfied after GC.
   844   for (int try_count = 1; /* we'll return */; try_count += 1) {
   845     unsigned int gc_count_before;
   847     HeapWord* result = NULL;
   848     if (!isHumongous(word_size)) {
   849       result = attempt_allocation(word_size, &gc_count_before);
   850     } else {
   851       result = attempt_allocation_humongous(word_size, &gc_count_before);
   852     }
   853     if (result != NULL) {
   854       return result;
   855     }
   857     // Create the garbage collection operation...
   858     VM_G1CollectForAllocation op(gc_count_before, word_size);
   859     // ...and get the VM thread to execute it.
   860     VMThread::execute(&op);
   862     if (op.prologue_succeeded() && op.pause_succeeded()) {
   863       // If the operation was successful we'll return the result even
   864       // if it is NULL. If the allocation attempt failed immediately
   865       // after a Full GC, it's unlikely we'll be able to allocate now.
   866       HeapWord* result = op.result();
   867       if (result != NULL && !isHumongous(word_size)) {
   868         // Allocations that take place on VM operations do not do any
   869         // card dirtying and we have to do it here. We only have to do
   870         // this for non-humongous allocations, though.
   871         dirty_young_block(result, word_size);
   872       }
   873       return result;
   874     } else {
   875       assert(op.result() == NULL,
   876              "the result should be NULL if the VM op did not succeed");
   877     }
   879     // Give a warning if we seem to be looping forever.
   880     if ((QueuedAllocationWarningCount > 0) &&
   881         (try_count % QueuedAllocationWarningCount == 0)) {
   882       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   883     }
   884   }
   886   ShouldNotReachHere();
   887   return NULL;
   888 }
   890 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   891                                            unsigned int *gc_count_before_ret) {
   892   // Make sure you read the note in attempt_allocation_humongous().
   894   assert_heap_not_locked_and_not_at_safepoint();
   895   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   896          "be called for humongous allocation requests");
   898   // We should only get here after the first-level allocation attempt
   899   // (attempt_allocation()) failed to allocate.
   901   // We will loop until a) we manage to successfully perform the
   902   // allocation or b) we successfully schedule a collection which
   903   // fails to perform the allocation. b) is the only case when we'll
   904   // return NULL.
   905   HeapWord* result = NULL;
   906   for (int try_count = 1; /* we'll return */; try_count += 1) {
   907     bool should_try_gc;
   908     unsigned int gc_count_before;
   910     {
   911       MutexLockerEx x(Heap_lock);
   913       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   914                                                       false /* bot_updates */);
   915       if (result != NULL) {
   916         return result;
   917       }
   919       // If we reach here, attempt_allocation_locked() above failed to
   920       // allocate a new region. So the mutator alloc region should be NULL.
   921       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   923       if (GC_locker::is_active_and_needs_gc()) {
   924         if (g1_policy()->can_expand_young_list()) {
   925           // No need for an ergo verbose message here,
   926           // can_expand_young_list() does this when it returns true.
   927           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   928                                                       false /* bot_updates */);
   929           if (result != NULL) {
   930             return result;
   931           }
   932         }
   933         should_try_gc = false;
   934       } else {
   935         // Read the GC count while still holding the Heap_lock.
   936         gc_count_before = SharedHeap::heap()->total_collections();
   937         should_try_gc = true;
   938       }
   939     }
   941     if (should_try_gc) {
   942       bool succeeded;
   943       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   944       if (result != NULL) {
   945         assert(succeeded, "only way to get back a non-NULL result");
   946         return result;
   947       }
   949       if (succeeded) {
   950         // If we get here we successfully scheduled a collection which
   951         // failed to allocate. No point in trying to allocate
   952         // further. We'll just return NULL.
   953         MutexLockerEx x(Heap_lock);
   954         *gc_count_before_ret = SharedHeap::heap()->total_collections();
   955         return NULL;
   956       }
   957     } else {
   958       GC_locker::stall_until_clear();
   959     }
   961     // We can reach here if we were unsuccessul in scheduling a
   962     // collection (because another thread beat us to it) or if we were
   963     // stalled due to the GC locker. In either can we should retry the
   964     // allocation attempt in case another thread successfully
   965     // performed a collection and reclaimed enough space. We do the
   966     // first attempt (without holding the Heap_lock) here and the
   967     // follow-on attempt will be at the start of the next loop
   968     // iteration (after taking the Heap_lock).
   969     result = _mutator_alloc_region.attempt_allocation(word_size,
   970                                                       false /* bot_updates */);
   971     if (result != NULL ){
   972       return result;
   973     }
   975     // Give a warning if we seem to be looping forever.
   976     if ((QueuedAllocationWarningCount > 0) &&
   977         (try_count % QueuedAllocationWarningCount == 0)) {
   978       warning("G1CollectedHeap::attempt_allocation_slow() "
   979               "retries %d times", try_count);
   980     }
   981   }
   983   ShouldNotReachHere();
   984   return NULL;
   985 }
   987 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
   988                                           unsigned int * gc_count_before_ret) {
   989   // The structure of this method has a lot of similarities to
   990   // attempt_allocation_slow(). The reason these two were not merged
   991   // into a single one is that such a method would require several "if
   992   // allocation is not humongous do this, otherwise do that"
   993   // conditional paths which would obscure its flow. In fact, an early
   994   // version of this code did use a unified method which was harder to
   995   // follow and, as a result, it had subtle bugs that were hard to
   996   // track down. So keeping these two methods separate allows each to
   997   // be more readable. It will be good to keep these two in sync as
   998   // much as possible.
  1000   assert_heap_not_locked_and_not_at_safepoint();
  1001   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1002          "should only be called for humongous allocations");
  1004   // We will loop until a) we manage to successfully perform the
  1005   // allocation or b) we successfully schedule a collection which
  1006   // fails to perform the allocation. b) is the only case when we'll
  1007   // return NULL.
  1008   HeapWord* result = NULL;
  1009   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1010     bool should_try_gc;
  1011     unsigned int gc_count_before;
  1014       MutexLockerEx x(Heap_lock);
  1016       // Given that humongous objects are not allocated in young
  1017       // regions, we'll first try to do the allocation without doing a
  1018       // collection hoping that there's enough space in the heap.
  1019       result = humongous_obj_allocate(word_size);
  1020       if (result != NULL) {
  1021         return result;
  1024       if (GC_locker::is_active_and_needs_gc()) {
  1025         should_try_gc = false;
  1026       } else {
  1027         // Read the GC count while still holding the Heap_lock.
  1028         gc_count_before = SharedHeap::heap()->total_collections();
  1029         should_try_gc = true;
  1033     if (should_try_gc) {
  1034       // If we failed to allocate the humongous object, we should try to
  1035       // do a collection pause (if we're allowed) in case it reclaims
  1036       // enough space for the allocation to succeed after the pause.
  1038       bool succeeded;
  1039       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1040       if (result != NULL) {
  1041         assert(succeeded, "only way to get back a non-NULL result");
  1042         return result;
  1045       if (succeeded) {
  1046         // If we get here we successfully scheduled a collection which
  1047         // failed to allocate. No point in trying to allocate
  1048         // further. We'll just return NULL.
  1049         MutexLockerEx x(Heap_lock);
  1050         *gc_count_before_ret = SharedHeap::heap()->total_collections();
  1051         return NULL;
  1053     } else {
  1054       GC_locker::stall_until_clear();
  1057     // We can reach here if we were unsuccessul in scheduling a
  1058     // collection (because another thread beat us to it) or if we were
  1059     // stalled due to the GC locker. In either can we should retry the
  1060     // allocation attempt in case another thread successfully
  1061     // performed a collection and reclaimed enough space.  Give a
  1062     // warning if we seem to be looping forever.
  1064     if ((QueuedAllocationWarningCount > 0) &&
  1065         (try_count % QueuedAllocationWarningCount == 0)) {
  1066       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1067               "retries %d times", try_count);
  1071   ShouldNotReachHere();
  1072   return NULL;
  1075 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1076                                        bool expect_null_mutator_alloc_region) {
  1077   assert_at_safepoint(true /* should_be_vm_thread */);
  1078   assert(_mutator_alloc_region.get() == NULL ||
  1079                                              !expect_null_mutator_alloc_region,
  1080          "the current alloc region was unexpectedly found to be non-NULL");
  1082   if (!isHumongous(word_size)) {
  1083     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1084                                                       false /* bot_updates */);
  1085   } else {
  1086     return humongous_obj_allocate(word_size);
  1089   ShouldNotReachHere();
  1092 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1093   ModRefBarrierSet* _mr_bs;
  1094 public:
  1095   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1096   bool doHeapRegion(HeapRegion* r) {
  1097     r->reset_gc_time_stamp();
  1098     if (r->continuesHumongous())
  1099       return false;
  1100     HeapRegionRemSet* hrrs = r->rem_set();
  1101     if (hrrs != NULL) hrrs->clear();
  1102     // You might think here that we could clear just the cards
  1103     // corresponding to the used region.  But no: if we leave a dirty card
  1104     // in a region we might allocate into, then it would prevent that card
  1105     // from being enqueued, and cause it to be missed.
  1106     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1107     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1108     return false;
  1110 };
  1113 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1114   ModRefBarrierSet* _mr_bs;
  1115 public:
  1116   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1117   bool doHeapRegion(HeapRegion* r) {
  1118     if (r->continuesHumongous()) return false;
  1119     if (r->used_region().word_size() != 0) {
  1120       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1122     return false;
  1124 };
  1126 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1127   G1CollectedHeap*   _g1h;
  1128   UpdateRSOopClosure _cl;
  1129   int                _worker_i;
  1130 public:
  1131   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1132     _cl(g1->g1_rem_set(), worker_i),
  1133     _worker_i(worker_i),
  1134     _g1h(g1)
  1135   { }
  1137   bool doHeapRegion(HeapRegion* r) {
  1138     if (!r->continuesHumongous()) {
  1139       _cl.set_from(r);
  1140       r->oop_iterate(&_cl);
  1142     return false;
  1144 };
  1146 class ParRebuildRSTask: public AbstractGangTask {
  1147   G1CollectedHeap* _g1;
  1148 public:
  1149   ParRebuildRSTask(G1CollectedHeap* g1)
  1150     : AbstractGangTask("ParRebuildRSTask"),
  1151       _g1(g1)
  1152   { }
  1154   void work(int i) {
  1155     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
  1156     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
  1157                                          HeapRegion::RebuildRSClaimValue);
  1159 };
  1161 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1162 private:
  1163   G1HRPrinter* _hr_printer;
  1164 public:
  1165   bool doHeapRegion(HeapRegion* hr) {
  1166     assert(!hr->is_young(), "not expecting to find young regions");
  1167     // We only generate output for non-empty regions.
  1168     if (!hr->is_empty()) {
  1169       if (!hr->isHumongous()) {
  1170         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1171       } else if (hr->startsHumongous()) {
  1172         if (hr->capacity() == HeapRegion::GrainBytes) {
  1173           // single humongous region
  1174           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1175         } else {
  1176           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1178       } else {
  1179         assert(hr->continuesHumongous(), "only way to get here");
  1180         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1183     return false;
  1186   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1187     : _hr_printer(hr_printer) { }
  1188 };
  1190 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1191                                     bool clear_all_soft_refs,
  1192                                     size_t word_size) {
  1193   assert_at_safepoint(true /* should_be_vm_thread */);
  1195   if (GC_locker::check_active_before_gc()) {
  1196     return false;
  1199   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1200   ResourceMark rm;
  1202   if (PrintHeapAtGC) {
  1203     Universe::print_heap_before_gc();
  1206   verify_region_sets_optional();
  1208   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1209                            collector_policy()->should_clear_all_soft_refs();
  1211   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1214     IsGCActiveMark x;
  1216     // Timing
  1217     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1218     assert(!system_gc || explicit_gc, "invariant");
  1219     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1220     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1221     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1222                 PrintGC, true, gclog_or_tty);
  1224     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1225     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1227     double start = os::elapsedTime();
  1228     g1_policy()->record_full_collection_start();
  1230     wait_while_free_regions_coming();
  1231     append_secondary_free_list_if_not_empty_with_lock();
  1233     gc_prologue(true);
  1234     increment_total_collections(true /* full gc */);
  1236     size_t g1h_prev_used = used();
  1237     assert(used() == recalculate_used(), "Should be equal");
  1239     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1240       HandleMark hm;  // Discard invalid handles created during verification
  1241       gclog_or_tty->print(" VerifyBeforeGC:");
  1242       prepare_for_verify();
  1243       Universe::verify(/* allow dirty */ true,
  1244                        /* silent      */ false,
  1245                        /* option      */ VerifyOption_G1UsePrevMarking);
  1248     pre_full_gc_dump();
  1250     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1252     // Disable discovery and empty the discovered lists
  1253     // for the CM ref processor.
  1254     ref_processor_cm()->disable_discovery();
  1255     ref_processor_cm()->abandon_partial_discovery();
  1256     ref_processor_cm()->verify_no_references_recorded();
  1258     // Abandon current iterations of concurrent marking and concurrent
  1259     // refinement, if any are in progress.
  1260     concurrent_mark()->abort();
  1262     // Make sure we'll choose a new allocation region afterwards.
  1263     release_mutator_alloc_region();
  1264     abandon_gc_alloc_regions();
  1265     g1_rem_set()->cleanupHRRS();
  1266     tear_down_region_lists();
  1268     // We should call this after we retire any currently active alloc
  1269     // regions so that all the ALLOC / RETIRE events are generated
  1270     // before the start GC event.
  1271     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1273     // We may have added regions to the current incremental collection
  1274     // set between the last GC or pause and now. We need to clear the
  1275     // incremental collection set and then start rebuilding it afresh
  1276     // after this full GC.
  1277     abandon_collection_set(g1_policy()->inc_cset_head());
  1278     g1_policy()->clear_incremental_cset();
  1279     g1_policy()->stop_incremental_cset_building();
  1281     empty_young_list();
  1282     g1_policy()->set_full_young_gcs(true);
  1284     // See the comments in g1CollectedHeap.hpp and
  1285     // G1CollectedHeap::ref_processing_init() about
  1286     // how reference processing currently works in G1.
  1288     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1289     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1291     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1292     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1294     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1295     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1297     // Do collection work
  1299       HandleMark hm;  // Discard invalid handles created during gc
  1300       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1303     assert(free_regions() == 0, "we should not have added any free regions");
  1304     rebuild_region_lists();
  1306     _summary_bytes_used = recalculate_used();
  1308     // Enqueue any discovered reference objects that have
  1309     // not been removed from the discovered lists.
  1310     ref_processor_stw()->enqueue_discovered_references();
  1312     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1314     MemoryService::track_memory_usage();
  1316     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1317       HandleMark hm;  // Discard invalid handles created during verification
  1318       gclog_or_tty->print(" VerifyAfterGC:");
  1319       prepare_for_verify();
  1320       Universe::verify(/* allow dirty */ false,
  1321                        /* silent      */ false,
  1322                        /* option      */ VerifyOption_G1UsePrevMarking);
  1326     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1327     ref_processor_stw()->verify_no_references_recorded();
  1329     // Note: since we've just done a full GC, concurrent
  1330     // marking is no longer active. Therefore we need not
  1331     // re-enable reference discovery for the CM ref processor.
  1332     // That will be done at the start of the next marking cycle.
  1333     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1334     ref_processor_cm()->verify_no_references_recorded();
  1336     reset_gc_time_stamp();
  1337     // Since everything potentially moved, we will clear all remembered
  1338     // sets, and clear all cards.  Later we will rebuild remebered
  1339     // sets. We will also reset the GC time stamps of the regions.
  1340     PostMCRemSetClearClosure rs_clear(mr_bs());
  1341     heap_region_iterate(&rs_clear);
  1343     // Resize the heap if necessary.
  1344     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1346     if (_hr_printer.is_active()) {
  1347       // We should do this after we potentially resize the heap so
  1348       // that all the COMMIT / UNCOMMIT events are generated before
  1349       // the end GC event.
  1351       PostCompactionPrinterClosure cl(hr_printer());
  1352       heap_region_iterate(&cl);
  1354       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1357     if (_cg1r->use_cache()) {
  1358       _cg1r->clear_and_record_card_counts();
  1359       _cg1r->clear_hot_cache();
  1362     // Rebuild remembered sets of all regions.
  1364     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1365       ParRebuildRSTask rebuild_rs_task(this);
  1366       assert(check_heap_region_claim_values(
  1367              HeapRegion::InitialClaimValue), "sanity check");
  1368       set_par_threads(workers()->total_workers());
  1369       workers()->run_task(&rebuild_rs_task);
  1370       set_par_threads(0);
  1371       assert(check_heap_region_claim_values(
  1372              HeapRegion::RebuildRSClaimValue), "sanity check");
  1373       reset_heap_region_claim_values();
  1374     } else {
  1375       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1376       heap_region_iterate(&rebuild_rs);
  1379     if (PrintGC) {
  1380       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1383     if (true) { // FIXME
  1384       // Ask the permanent generation to adjust size for full collections
  1385       perm()->compute_new_size();
  1388     // Start a new incremental collection set for the next pause
  1389     assert(g1_policy()->collection_set() == NULL, "must be");
  1390     g1_policy()->start_incremental_cset_building();
  1392     // Clear the _cset_fast_test bitmap in anticipation of adding
  1393     // regions to the incremental collection set for the next
  1394     // evacuation pause.
  1395     clear_cset_fast_test();
  1397     init_mutator_alloc_region();
  1399     double end = os::elapsedTime();
  1400     g1_policy()->record_full_collection_end();
  1402 #ifdef TRACESPINNING
  1403     ParallelTaskTerminator::print_termination_counts();
  1404 #endif
  1406     gc_epilogue(true);
  1408     // Discard all rset updates
  1409     JavaThread::dirty_card_queue_set().abandon_logs();
  1410     assert(!G1DeferredRSUpdate
  1411            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1414   _young_list->reset_sampled_info();
  1415   // At this point there should be no regions in the
  1416   // entire heap tagged as young.
  1417   assert( check_young_list_empty(true /* check_heap */),
  1418     "young list should be empty at this point");
  1420   // Update the number of full collections that have been completed.
  1421   increment_full_collections_completed(false /* concurrent */);
  1423   _hrs.verify_optional();
  1424   verify_region_sets_optional();
  1426   if (PrintHeapAtGC) {
  1427     Universe::print_heap_after_gc();
  1429   g1mm()->update_sizes();
  1430   post_full_gc_dump();
  1432   return true;
  1435 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1436   // do_collection() will return whether it succeeded in performing
  1437   // the GC. Currently, there is no facility on the
  1438   // do_full_collection() API to notify the caller than the collection
  1439   // did not succeed (e.g., because it was locked out by the GC
  1440   // locker). So, right now, we'll ignore the return value.
  1441   bool dummy = do_collection(true,                /* explicit_gc */
  1442                              clear_all_soft_refs,
  1443                              0                    /* word_size */);
  1446 // This code is mostly copied from TenuredGeneration.
  1447 void
  1448 G1CollectedHeap::
  1449 resize_if_necessary_after_full_collection(size_t word_size) {
  1450   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1452   // Include the current allocation, if any, and bytes that will be
  1453   // pre-allocated to support collections, as "used".
  1454   const size_t used_after_gc = used();
  1455   const size_t capacity_after_gc = capacity();
  1456   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1458   // This is enforced in arguments.cpp.
  1459   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1460          "otherwise the code below doesn't make sense");
  1462   // We don't have floating point command-line arguments
  1463   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1464   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1465   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1466   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1468   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1469   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1471   // We have to be careful here as these two calculations can overflow
  1472   // 32-bit size_t's.
  1473   double used_after_gc_d = (double) used_after_gc;
  1474   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1475   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1477   // Let's make sure that they are both under the max heap size, which
  1478   // by default will make them fit into a size_t.
  1479   double desired_capacity_upper_bound = (double) max_heap_size;
  1480   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1481                                     desired_capacity_upper_bound);
  1482   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1483                                     desired_capacity_upper_bound);
  1485   // We can now safely turn them into size_t's.
  1486   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1487   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1489   // This assert only makes sense here, before we adjust them
  1490   // with respect to the min and max heap size.
  1491   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1492          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1493                  "maximum_desired_capacity = "SIZE_FORMAT,
  1494                  minimum_desired_capacity, maximum_desired_capacity));
  1496   // Should not be greater than the heap max size. No need to adjust
  1497   // it with respect to the heap min size as it's a lower bound (i.e.,
  1498   // we'll try to make the capacity larger than it, not smaller).
  1499   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1500   // Should not be less than the heap min size. No need to adjust it
  1501   // with respect to the heap max size as it's an upper bound (i.e.,
  1502   // we'll try to make the capacity smaller than it, not greater).
  1503   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1505   if (capacity_after_gc < minimum_desired_capacity) {
  1506     // Don't expand unless it's significant
  1507     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1508     ergo_verbose4(ErgoHeapSizing,
  1509                   "attempt heap expansion",
  1510                   ergo_format_reason("capacity lower than "
  1511                                      "min desired capacity after Full GC")
  1512                   ergo_format_byte("capacity")
  1513                   ergo_format_byte("occupancy")
  1514                   ergo_format_byte_perc("min desired capacity"),
  1515                   capacity_after_gc, used_after_gc,
  1516                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1517     expand(expand_bytes);
  1519     // No expansion, now see if we want to shrink
  1520   } else if (capacity_after_gc > maximum_desired_capacity) {
  1521     // Capacity too large, compute shrinking size
  1522     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1523     ergo_verbose4(ErgoHeapSizing,
  1524                   "attempt heap shrinking",
  1525                   ergo_format_reason("capacity higher than "
  1526                                      "max desired capacity after Full GC")
  1527                   ergo_format_byte("capacity")
  1528                   ergo_format_byte("occupancy")
  1529                   ergo_format_byte_perc("max desired capacity"),
  1530                   capacity_after_gc, used_after_gc,
  1531                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1532     shrink(shrink_bytes);
  1537 HeapWord*
  1538 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1539                                            bool* succeeded) {
  1540   assert_at_safepoint(true /* should_be_vm_thread */);
  1542   *succeeded = true;
  1543   // Let's attempt the allocation first.
  1544   HeapWord* result =
  1545     attempt_allocation_at_safepoint(word_size,
  1546                                  false /* expect_null_mutator_alloc_region */);
  1547   if (result != NULL) {
  1548     assert(*succeeded, "sanity");
  1549     return result;
  1552   // In a G1 heap, we're supposed to keep allocation from failing by
  1553   // incremental pauses.  Therefore, at least for now, we'll favor
  1554   // expansion over collection.  (This might change in the future if we can
  1555   // do something smarter than full collection to satisfy a failed alloc.)
  1556   result = expand_and_allocate(word_size);
  1557   if (result != NULL) {
  1558     assert(*succeeded, "sanity");
  1559     return result;
  1562   // Expansion didn't work, we'll try to do a Full GC.
  1563   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1564                                     false, /* clear_all_soft_refs */
  1565                                     word_size);
  1566   if (!gc_succeeded) {
  1567     *succeeded = false;
  1568     return NULL;
  1571   // Retry the allocation
  1572   result = attempt_allocation_at_safepoint(word_size,
  1573                                   true /* expect_null_mutator_alloc_region */);
  1574   if (result != NULL) {
  1575     assert(*succeeded, "sanity");
  1576     return result;
  1579   // Then, try a Full GC that will collect all soft references.
  1580   gc_succeeded = do_collection(false, /* explicit_gc */
  1581                                true,  /* clear_all_soft_refs */
  1582                                word_size);
  1583   if (!gc_succeeded) {
  1584     *succeeded = false;
  1585     return NULL;
  1588   // Retry the allocation once more
  1589   result = attempt_allocation_at_safepoint(word_size,
  1590                                   true /* expect_null_mutator_alloc_region */);
  1591   if (result != NULL) {
  1592     assert(*succeeded, "sanity");
  1593     return result;
  1596   assert(!collector_policy()->should_clear_all_soft_refs(),
  1597          "Flag should have been handled and cleared prior to this point");
  1599   // What else?  We might try synchronous finalization later.  If the total
  1600   // space available is large enough for the allocation, then a more
  1601   // complete compaction phase than we've tried so far might be
  1602   // appropriate.
  1603   assert(*succeeded, "sanity");
  1604   return NULL;
  1607 // Attempting to expand the heap sufficiently
  1608 // to support an allocation of the given "word_size".  If
  1609 // successful, perform the allocation and return the address of the
  1610 // allocated block, or else "NULL".
  1612 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1613   assert_at_safepoint(true /* should_be_vm_thread */);
  1615   verify_region_sets_optional();
  1617   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1618   ergo_verbose1(ErgoHeapSizing,
  1619                 "attempt heap expansion",
  1620                 ergo_format_reason("allocation request failed")
  1621                 ergo_format_byte("allocation request"),
  1622                 word_size * HeapWordSize);
  1623   if (expand(expand_bytes)) {
  1624     _hrs.verify_optional();
  1625     verify_region_sets_optional();
  1626     return attempt_allocation_at_safepoint(word_size,
  1627                                  false /* expect_null_mutator_alloc_region */);
  1629   return NULL;
  1632 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1633                                              HeapWord* new_end) {
  1634   assert(old_end != new_end, "don't call this otherwise");
  1635   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1637   // Update the committed mem region.
  1638   _g1_committed.set_end(new_end);
  1639   // Tell the card table about the update.
  1640   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1641   // Tell the BOT about the update.
  1642   _bot_shared->resize(_g1_committed.word_size());
  1645 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1646   size_t old_mem_size = _g1_storage.committed_size();
  1647   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1648   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1649                                        HeapRegion::GrainBytes);
  1650   ergo_verbose2(ErgoHeapSizing,
  1651                 "expand the heap",
  1652                 ergo_format_byte("requested expansion amount")
  1653                 ergo_format_byte("attempted expansion amount"),
  1654                 expand_bytes, aligned_expand_bytes);
  1656   // First commit the memory.
  1657   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1658   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1659   if (successful) {
  1660     // Then propagate this update to the necessary data structures.
  1661     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1662     update_committed_space(old_end, new_end);
  1664     FreeRegionList expansion_list("Local Expansion List");
  1665     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1666     assert(mr.start() == old_end, "post-condition");
  1667     // mr might be a smaller region than what was requested if
  1668     // expand_by() was unable to allocate the HeapRegion instances
  1669     assert(mr.end() <= new_end, "post-condition");
  1671     size_t actual_expand_bytes = mr.byte_size();
  1672     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1673     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1674            "post-condition");
  1675     if (actual_expand_bytes < aligned_expand_bytes) {
  1676       // We could not expand _hrs to the desired size. In this case we
  1677       // need to shrink the committed space accordingly.
  1678       assert(mr.end() < new_end, "invariant");
  1680       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1681       // First uncommit the memory.
  1682       _g1_storage.shrink_by(diff_bytes);
  1683       // Then propagate this update to the necessary data structures.
  1684       update_committed_space(new_end, mr.end());
  1686     _free_list.add_as_tail(&expansion_list);
  1688     if (_hr_printer.is_active()) {
  1689       HeapWord* curr = mr.start();
  1690       while (curr < mr.end()) {
  1691         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1692         _hr_printer.commit(curr, curr_end);
  1693         curr = curr_end;
  1695       assert(curr == mr.end(), "post-condition");
  1697     g1_policy()->record_new_heap_size(n_regions());
  1698   } else {
  1699     ergo_verbose0(ErgoHeapSizing,
  1700                   "did not expand the heap",
  1701                   ergo_format_reason("heap expansion operation failed"));
  1702     // The expansion of the virtual storage space was unsuccessful.
  1703     // Let's see if it was because we ran out of swap.
  1704     if (G1ExitOnExpansionFailure &&
  1705         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1706       // We had head room...
  1707       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1710   return successful;
  1713 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1714   size_t old_mem_size = _g1_storage.committed_size();
  1715   size_t aligned_shrink_bytes =
  1716     ReservedSpace::page_align_size_down(shrink_bytes);
  1717   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1718                                          HeapRegion::GrainBytes);
  1719   size_t num_regions_deleted = 0;
  1720   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1721   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1722   assert(mr.end() == old_end, "post-condition");
  1724   ergo_verbose3(ErgoHeapSizing,
  1725                 "shrink the heap",
  1726                 ergo_format_byte("requested shrinking amount")
  1727                 ergo_format_byte("aligned shrinking amount")
  1728                 ergo_format_byte("attempted shrinking amount"),
  1729                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1730   if (mr.byte_size() > 0) {
  1731     if (_hr_printer.is_active()) {
  1732       HeapWord* curr = mr.end();
  1733       while (curr > mr.start()) {
  1734         HeapWord* curr_end = curr;
  1735         curr -= HeapRegion::GrainWords;
  1736         _hr_printer.uncommit(curr, curr_end);
  1738       assert(curr == mr.start(), "post-condition");
  1741     _g1_storage.shrink_by(mr.byte_size());
  1742     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1743     assert(mr.start() == new_end, "post-condition");
  1745     _expansion_regions += num_regions_deleted;
  1746     update_committed_space(old_end, new_end);
  1747     HeapRegionRemSet::shrink_heap(n_regions());
  1748     g1_policy()->record_new_heap_size(n_regions());
  1749   } else {
  1750     ergo_verbose0(ErgoHeapSizing,
  1751                   "did not shrink the heap",
  1752                   ergo_format_reason("heap shrinking operation failed"));
  1756 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1757   verify_region_sets_optional();
  1759   // We should only reach here at the end of a Full GC which means we
  1760   // should not not be holding to any GC alloc regions. The method
  1761   // below will make sure of that and do any remaining clean up.
  1762   abandon_gc_alloc_regions();
  1764   // Instead of tearing down / rebuilding the free lists here, we
  1765   // could instead use the remove_all_pending() method on free_list to
  1766   // remove only the ones that we need to remove.
  1767   tear_down_region_lists();  // We will rebuild them in a moment.
  1768   shrink_helper(shrink_bytes);
  1769   rebuild_region_lists();
  1771   _hrs.verify_optional();
  1772   verify_region_sets_optional();
  1775 // Public methods.
  1777 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1778 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1779 #endif // _MSC_VER
  1782 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1783   SharedHeap(policy_),
  1784   _g1_policy(policy_),
  1785   _dirty_card_queue_set(false),
  1786   _into_cset_dirty_card_queue_set(false),
  1787   _is_alive_closure_cm(this),
  1788   _is_alive_closure_stw(this),
  1789   _ref_processor_cm(NULL),
  1790   _ref_processor_stw(NULL),
  1791   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1792   _bot_shared(NULL),
  1793   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1794   _evac_failure_scan_stack(NULL) ,
  1795   _mark_in_progress(false),
  1796   _cg1r(NULL), _summary_bytes_used(0),
  1797   _g1mm(NULL),
  1798   _refine_cte_cl(NULL),
  1799   _full_collection(false),
  1800   _free_list("Master Free List"),
  1801   _secondary_free_list("Secondary Free List"),
  1802   _humongous_set("Master Humongous Set"),
  1803   _free_regions_coming(false),
  1804   _young_list(new YoungList(this)),
  1805   _gc_time_stamp(0),
  1806   _retained_old_gc_alloc_region(NULL),
  1807   _surviving_young_words(NULL),
  1808   _full_collections_completed(0),
  1809   _in_cset_fast_test(NULL),
  1810   _in_cset_fast_test_base(NULL),
  1811   _dirty_cards_region_list(NULL) {
  1812   _g1h = this; // To catch bugs.
  1813   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1814     vm_exit_during_initialization("Failed necessary allocation.");
  1817   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1819   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1820   _task_queues = new RefToScanQueueSet(n_queues);
  1822   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1823   assert(n_rem_sets > 0, "Invariant.");
  1825   HeapRegionRemSetIterator** iter_arr =
  1826     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1827   for (int i = 0; i < n_queues; i++) {
  1828     iter_arr[i] = new HeapRegionRemSetIterator();
  1830   _rem_set_iterator = iter_arr;
  1832   for (int i = 0; i < n_queues; i++) {
  1833     RefToScanQueue* q = new RefToScanQueue();
  1834     q->initialize();
  1835     _task_queues->register_queue(i, q);
  1838   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1841 jint G1CollectedHeap::initialize() {
  1842   CollectedHeap::pre_initialize();
  1843   os::enable_vtime();
  1845   // Necessary to satisfy locking discipline assertions.
  1847   MutexLocker x(Heap_lock);
  1849   // We have to initialize the printer before committing the heap, as
  1850   // it will be used then.
  1851   _hr_printer.set_active(G1PrintHeapRegions);
  1853   // While there are no constraints in the GC code that HeapWordSize
  1854   // be any particular value, there are multiple other areas in the
  1855   // system which believe this to be true (e.g. oop->object_size in some
  1856   // cases incorrectly returns the size in wordSize units rather than
  1857   // HeapWordSize).
  1858   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1860   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1861   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1863   // Ensure that the sizes are properly aligned.
  1864   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1865   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1867   _cg1r = new ConcurrentG1Refine();
  1869   // Reserve the maximum.
  1870   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1871   // Includes the perm-gen.
  1873   // When compressed oops are enabled, the preferred heap base
  1874   // is calculated by subtracting the requested size from the
  1875   // 32Gb boundary and using the result as the base address for
  1876   // heap reservation. If the requested size is not aligned to
  1877   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1878   // into the ReservedHeapSpace constructor) then the actual
  1879   // base of the reserved heap may end up differing from the
  1880   // address that was requested (i.e. the preferred heap base).
  1881   // If this happens then we could end up using a non-optimal
  1882   // compressed oops mode.
  1884   // Since max_byte_size is aligned to the size of a heap region (checked
  1885   // above), we also need to align the perm gen size as it might not be.
  1886   const size_t total_reserved = max_byte_size +
  1887                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1888   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1890   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1892   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1893                             UseLargePages, addr);
  1895   if (UseCompressedOops) {
  1896     if (addr != NULL && !heap_rs.is_reserved()) {
  1897       // Failed to reserve at specified address - the requested memory
  1898       // region is taken already, for example, by 'java' launcher.
  1899       // Try again to reserver heap higher.
  1900       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1902       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1903                                  UseLargePages, addr);
  1905       if (addr != NULL && !heap_rs0.is_reserved()) {
  1906         // Failed to reserve at specified address again - give up.
  1907         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1908         assert(addr == NULL, "");
  1910         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1911                                    UseLargePages, addr);
  1912         heap_rs = heap_rs1;
  1913       } else {
  1914         heap_rs = heap_rs0;
  1919   if (!heap_rs.is_reserved()) {
  1920     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1921     return JNI_ENOMEM;
  1924   // It is important to do this in a way such that concurrent readers can't
  1925   // temporarily think somethings in the heap.  (I've actually seen this
  1926   // happen in asserts: DLD.)
  1927   _reserved.set_word_size(0);
  1928   _reserved.set_start((HeapWord*)heap_rs.base());
  1929   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1931   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1933   // Create the gen rem set (and barrier set) for the entire reserved region.
  1934   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1935   set_barrier_set(rem_set()->bs());
  1936   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1937     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1938   } else {
  1939     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1940     return JNI_ENOMEM;
  1943   // Also create a G1 rem set.
  1944   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1945     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1946   } else {
  1947     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1948     return JNI_ENOMEM;
  1951   // Carve out the G1 part of the heap.
  1953   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1954   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1955                            g1_rs.size()/HeapWordSize);
  1956   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1958   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1960   _g1_storage.initialize(g1_rs, 0);
  1961   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1962   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  1963                   (HeapWord*) _g1_reserved.end(),
  1964                   _expansion_regions);
  1966   // 6843694 - ensure that the maximum region index can fit
  1967   // in the remembered set structures.
  1968   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1969   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1971   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1972   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1973   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  1974             "too many cards per region");
  1976   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  1978   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1979                                              heap_word_size(init_byte_size));
  1981   _g1h = this;
  1983    _in_cset_fast_test_length = max_regions();
  1984    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  1986    // We're biasing _in_cset_fast_test to avoid subtracting the
  1987    // beginning of the heap every time we want to index; basically
  1988    // it's the same with what we do with the card table.
  1989    _in_cset_fast_test = _in_cset_fast_test_base -
  1990                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  1992    // Clear the _cset_fast_test bitmap in anticipation of adding
  1993    // regions to the incremental collection set for the first
  1994    // evacuation pause.
  1995    clear_cset_fast_test();
  1997   // Create the ConcurrentMark data structure and thread.
  1998   // (Must do this late, so that "max_regions" is defined.)
  1999   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  2000   _cmThread = _cm->cmThread();
  2002   // Initialize the from_card cache structure of HeapRegionRemSet.
  2003   HeapRegionRemSet::init_heap(max_regions());
  2005   // Now expand into the initial heap size.
  2006   if (!expand(init_byte_size)) {
  2007     vm_exit_during_initialization("Failed to allocate initial heap.");
  2008     return JNI_ENOMEM;
  2011   // Perform any initialization actions delegated to the policy.
  2012   g1_policy()->init();
  2014   g1_policy()->note_start_of_mark_thread();
  2016   _refine_cte_cl =
  2017     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2018                                     g1_rem_set(),
  2019                                     concurrent_g1_refine());
  2020   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2022   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2023                                                SATB_Q_FL_lock,
  2024                                                G1SATBProcessCompletedThreshold,
  2025                                                Shared_SATB_Q_lock);
  2027   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2028                                                 DirtyCardQ_FL_lock,
  2029                                                 concurrent_g1_refine()->yellow_zone(),
  2030                                                 concurrent_g1_refine()->red_zone(),
  2031                                                 Shared_DirtyCardQ_lock);
  2033   if (G1DeferredRSUpdate) {
  2034     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2035                                       DirtyCardQ_FL_lock,
  2036                                       -1, // never trigger processing
  2037                                       -1, // no limit on length
  2038                                       Shared_DirtyCardQ_lock,
  2039                                       &JavaThread::dirty_card_queue_set());
  2042   // Initialize the card queue set used to hold cards containing
  2043   // references into the collection set.
  2044   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2045                                              DirtyCardQ_FL_lock,
  2046                                              -1, // never trigger processing
  2047                                              -1, // no limit on length
  2048                                              Shared_DirtyCardQ_lock,
  2049                                              &JavaThread::dirty_card_queue_set());
  2051   // In case we're keeping closure specialization stats, initialize those
  2052   // counts and that mechanism.
  2053   SpecializationStats::clear();
  2055   // Do later initialization work for concurrent refinement.
  2056   _cg1r->init();
  2058   // Here we allocate the dummy full region that is required by the
  2059   // G1AllocRegion class. If we don't pass an address in the reserved
  2060   // space here, lots of asserts fire.
  2062   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2063                                              _g1_reserved.start());
  2064   // We'll re-use the same region whether the alloc region will
  2065   // require BOT updates or not and, if it doesn't, then a non-young
  2066   // region will complain that it cannot support allocations without
  2067   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2068   dummy_region->set_young();
  2069   // Make sure it's full.
  2070   dummy_region->set_top(dummy_region->end());
  2071   G1AllocRegion::setup(this, dummy_region);
  2073   init_mutator_alloc_region();
  2075   // Do create of the monitoring and management support so that
  2076   // values in the heap have been properly initialized.
  2077   _g1mm = new G1MonitoringSupport(this);
  2079   return JNI_OK;
  2082 void G1CollectedHeap::ref_processing_init() {
  2083   // Reference processing in G1 currently works as follows:
  2084   //
  2085   // * There are two reference processor instances. One is
  2086   //   used to record and process discovered references
  2087   //   during concurrent marking; the other is used to
  2088   //   record and process references during STW pauses
  2089   //   (both full and incremental).
  2090   // * Both ref processors need to 'span' the entire heap as
  2091   //   the regions in the collection set may be dotted around.
  2092   //
  2093   // * For the concurrent marking ref processor:
  2094   //   * Reference discovery is enabled at initial marking.
  2095   //   * Reference discovery is disabled and the discovered
  2096   //     references processed etc during remarking.
  2097   //   * Reference discovery is MT (see below).
  2098   //   * Reference discovery requires a barrier (see below).
  2099   //   * Reference processing may or may not be MT
  2100   //     (depending on the value of ParallelRefProcEnabled
  2101   //     and ParallelGCThreads).
  2102   //   * A full GC disables reference discovery by the CM
  2103   //     ref processor and abandons any entries on it's
  2104   //     discovered lists.
  2105   //
  2106   // * For the STW processor:
  2107   //   * Non MT discovery is enabled at the start of a full GC.
  2108   //   * Processing and enqueueing during a full GC is non-MT.
  2109   //   * During a full GC, references are processed after marking.
  2110   //
  2111   //   * Discovery (may or may not be MT) is enabled at the start
  2112   //     of an incremental evacuation pause.
  2113   //   * References are processed near the end of a STW evacuation pause.
  2114   //   * For both types of GC:
  2115   //     * Discovery is atomic - i.e. not concurrent.
  2116   //     * Reference discovery will not need a barrier.
  2118   SharedHeap::ref_processing_init();
  2119   MemRegion mr = reserved_region();
  2121   // Concurrent Mark ref processor
  2122   _ref_processor_cm =
  2123     new ReferenceProcessor(mr,    // span
  2124                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2125                                 // mt processing
  2126                            (int) ParallelGCThreads,
  2127                                 // degree of mt processing
  2128                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2129                                 // mt discovery
  2130                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2131                                 // degree of mt discovery
  2132                            false,
  2133                                 // Reference discovery is not atomic
  2134                            &_is_alive_closure_cm,
  2135                                 // is alive closure
  2136                                 // (for efficiency/performance)
  2137                            true);
  2138                                 // Setting next fields of discovered
  2139                                 // lists requires a barrier.
  2141   // STW ref processor
  2142   _ref_processor_stw =
  2143     new ReferenceProcessor(mr,    // span
  2144                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2145                                 // mt processing
  2146                            MAX2((int)ParallelGCThreads, 1),
  2147                                 // degree of mt processing
  2148                            (ParallelGCThreads > 1),
  2149                                 // mt discovery
  2150                            MAX2((int)ParallelGCThreads, 1),
  2151                                 // degree of mt discovery
  2152                            true,
  2153                                 // Reference discovery is atomic
  2154                            &_is_alive_closure_stw,
  2155                                 // is alive closure
  2156                                 // (for efficiency/performance)
  2157                            false);
  2158                                 // Setting next fields of discovered
  2159                                 // lists requires a barrier.
  2162 size_t G1CollectedHeap::capacity() const {
  2163   return _g1_committed.byte_size();
  2166 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2167                                                  DirtyCardQueue* into_cset_dcq,
  2168                                                  bool concurrent,
  2169                                                  int worker_i) {
  2170   // Clean cards in the hot card cache
  2171   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2173   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2174   int n_completed_buffers = 0;
  2175   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2176     n_completed_buffers++;
  2178   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2179                                                   (double) n_completed_buffers);
  2180   dcqs.clear_n_completed_buffers();
  2181   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2185 // Computes the sum of the storage used by the various regions.
  2187 size_t G1CollectedHeap::used() const {
  2188   assert(Heap_lock->owner() != NULL,
  2189          "Should be owned on this thread's behalf.");
  2190   size_t result = _summary_bytes_used;
  2191   // Read only once in case it is set to NULL concurrently
  2192   HeapRegion* hr = _mutator_alloc_region.get();
  2193   if (hr != NULL)
  2194     result += hr->used();
  2195   return result;
  2198 size_t G1CollectedHeap::used_unlocked() const {
  2199   size_t result = _summary_bytes_used;
  2200   return result;
  2203 class SumUsedClosure: public HeapRegionClosure {
  2204   size_t _used;
  2205 public:
  2206   SumUsedClosure() : _used(0) {}
  2207   bool doHeapRegion(HeapRegion* r) {
  2208     if (!r->continuesHumongous()) {
  2209       _used += r->used();
  2211     return false;
  2213   size_t result() { return _used; }
  2214 };
  2216 size_t G1CollectedHeap::recalculate_used() const {
  2217   SumUsedClosure blk;
  2218   heap_region_iterate(&blk);
  2219   return blk.result();
  2222 size_t G1CollectedHeap::unsafe_max_alloc() {
  2223   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2224   // otherwise, is there space in the current allocation region?
  2226   // We need to store the current allocation region in a local variable
  2227   // here. The problem is that this method doesn't take any locks and
  2228   // there may be other threads which overwrite the current allocation
  2229   // region field. attempt_allocation(), for example, sets it to NULL
  2230   // and this can happen *after* the NULL check here but before the call
  2231   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2232   // to be a problem in the optimized build, since the two loads of the
  2233   // current allocation region field are optimized away.
  2234   HeapRegion* hr = _mutator_alloc_region.get();
  2235   if (hr == NULL) {
  2236     return 0;
  2238   return hr->free();
  2241 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2242   return
  2243     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
  2244      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
  2247 #ifndef PRODUCT
  2248 void G1CollectedHeap::allocate_dummy_regions() {
  2249   // Let's fill up most of the region
  2250   size_t word_size = HeapRegion::GrainWords - 1024;
  2251   // And as a result the region we'll allocate will be humongous.
  2252   guarantee(isHumongous(word_size), "sanity");
  2254   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2255     // Let's use the existing mechanism for the allocation
  2256     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2257     if (dummy_obj != NULL) {
  2258       MemRegion mr(dummy_obj, word_size);
  2259       CollectedHeap::fill_with_object(mr);
  2260     } else {
  2261       // If we can't allocate once, we probably cannot allocate
  2262       // again. Let's get out of the loop.
  2263       break;
  2267 #endif // !PRODUCT
  2269 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2270   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2272   // We assume that if concurrent == true, then the caller is a
  2273   // concurrent thread that was joined the Suspendible Thread
  2274   // Set. If there's ever a cheap way to check this, we should add an
  2275   // assert here.
  2277   // We have already incremented _total_full_collections at the start
  2278   // of the GC, so total_full_collections() represents how many full
  2279   // collections have been started.
  2280   unsigned int full_collections_started = total_full_collections();
  2282   // Given that this method is called at the end of a Full GC or of a
  2283   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2284   // interrupt a concurrent cycle), the number of full collections
  2285   // completed should be either one (in the case where there was no
  2286   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2287   // behind the number of full collections started.
  2289   // This is the case for the inner caller, i.e. a Full GC.
  2290   assert(concurrent ||
  2291          (full_collections_started == _full_collections_completed + 1) ||
  2292          (full_collections_started == _full_collections_completed + 2),
  2293          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2294                  "is inconsistent with _full_collections_completed = %u",
  2295                  full_collections_started, _full_collections_completed));
  2297   // This is the case for the outer caller, i.e. the concurrent cycle.
  2298   assert(!concurrent ||
  2299          (full_collections_started == _full_collections_completed + 1),
  2300          err_msg("for outer caller (concurrent cycle): "
  2301                  "full_collections_started = %u "
  2302                  "is inconsistent with _full_collections_completed = %u",
  2303                  full_collections_started, _full_collections_completed));
  2305   _full_collections_completed += 1;
  2307   // We need to clear the "in_progress" flag in the CM thread before
  2308   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2309   // is set) so that if a waiter requests another System.gc() it doesn't
  2310   // incorrectly see that a marking cyle is still in progress.
  2311   if (concurrent) {
  2312     _cmThread->clear_in_progress();
  2315   // This notify_all() will ensure that a thread that called
  2316   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2317   // and it's waiting for a full GC to finish will be woken up. It is
  2318   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2319   FullGCCount_lock->notify_all();
  2322 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2323   assert_at_safepoint(true /* should_be_vm_thread */);
  2324   GCCauseSetter gcs(this, cause);
  2325   switch (cause) {
  2326     case GCCause::_heap_inspection:
  2327     case GCCause::_heap_dump: {
  2328       HandleMark hm;
  2329       do_full_collection(false);         // don't clear all soft refs
  2330       break;
  2332     default: // XXX FIX ME
  2333       ShouldNotReachHere(); // Unexpected use of this function
  2337 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2338   // The caller doesn't have the Heap_lock
  2339   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  2341   unsigned int gc_count_before;
  2342   unsigned int full_gc_count_before;
  2344     MutexLocker ml(Heap_lock);
  2346     // Read the GC count while holding the Heap_lock
  2347     gc_count_before = SharedHeap::heap()->total_collections();
  2348     full_gc_count_before = SharedHeap::heap()->total_full_collections();
  2351   if (should_do_concurrent_full_gc(cause)) {
  2352     // Schedule an initial-mark evacuation pause that will start a
  2353     // concurrent cycle. We're setting word_size to 0 which means that
  2354     // we are not requesting a post-GC allocation.
  2355     VM_G1IncCollectionPause op(gc_count_before,
  2356                                0,     /* word_size */
  2357                                true,  /* should_initiate_conc_mark */
  2358                                g1_policy()->max_pause_time_ms(),
  2359                                cause);
  2360     VMThread::execute(&op);
  2361   } else {
  2362     if (cause == GCCause::_gc_locker
  2363         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2365       // Schedule a standard evacuation pause. We're setting word_size
  2366       // to 0 which means that we are not requesting a post-GC allocation.
  2367       VM_G1IncCollectionPause op(gc_count_before,
  2368                                  0,     /* word_size */
  2369                                  false, /* should_initiate_conc_mark */
  2370                                  g1_policy()->max_pause_time_ms(),
  2371                                  cause);
  2372       VMThread::execute(&op);
  2373     } else {
  2374       // Schedule a Full GC.
  2375       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2376       VMThread::execute(&op);
  2381 bool G1CollectedHeap::is_in(const void* p) const {
  2382   HeapRegion* hr = _hrs.addr_to_region((HeapWord*) p);
  2383   if (hr != NULL) {
  2384     return hr->is_in(p);
  2385   } else {
  2386     return _perm_gen->as_gen()->is_in(p);
  2390 // Iteration functions.
  2392 // Iterates an OopClosure over all ref-containing fields of objects
  2393 // within a HeapRegion.
  2395 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2396   MemRegion _mr;
  2397   OopClosure* _cl;
  2398 public:
  2399   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2400     : _mr(mr), _cl(cl) {}
  2401   bool doHeapRegion(HeapRegion* r) {
  2402     if (! r->continuesHumongous()) {
  2403       r->oop_iterate(_cl);
  2405     return false;
  2407 };
  2409 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2410   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2411   heap_region_iterate(&blk);
  2412   if (do_perm) {
  2413     perm_gen()->oop_iterate(cl);
  2417 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2418   IterateOopClosureRegionClosure blk(mr, cl);
  2419   heap_region_iterate(&blk);
  2420   if (do_perm) {
  2421     perm_gen()->oop_iterate(cl);
  2425 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2427 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2428   ObjectClosure* _cl;
  2429 public:
  2430   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2431   bool doHeapRegion(HeapRegion* r) {
  2432     if (! r->continuesHumongous()) {
  2433       r->object_iterate(_cl);
  2435     return false;
  2437 };
  2439 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2440   IterateObjectClosureRegionClosure blk(cl);
  2441   heap_region_iterate(&blk);
  2442   if (do_perm) {
  2443     perm_gen()->object_iterate(cl);
  2447 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2448   // FIXME: is this right?
  2449   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2452 // Calls a SpaceClosure on a HeapRegion.
  2454 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2455   SpaceClosure* _cl;
  2456 public:
  2457   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2458   bool doHeapRegion(HeapRegion* r) {
  2459     _cl->do_space(r);
  2460     return false;
  2462 };
  2464 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2465   SpaceClosureRegionClosure blk(cl);
  2466   heap_region_iterate(&blk);
  2469 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2470   _hrs.iterate(cl);
  2473 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2474                                                HeapRegionClosure* cl) const {
  2475   _hrs.iterate_from(r, cl);
  2478 void
  2479 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2480                                                  int worker,
  2481                                                  jint claim_value) {
  2482   const size_t regions = n_regions();
  2483   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
  2484   // try to spread out the starting points of the workers
  2485   const size_t start_index = regions / worker_num * (size_t) worker;
  2487   // each worker will actually look at all regions
  2488   for (size_t count = 0; count < regions; ++count) {
  2489     const size_t index = (start_index + count) % regions;
  2490     assert(0 <= index && index < regions, "sanity");
  2491     HeapRegion* r = region_at(index);
  2492     // we'll ignore "continues humongous" regions (we'll process them
  2493     // when we come across their corresponding "start humongous"
  2494     // region) and regions already claimed
  2495     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2496       continue;
  2498     // OK, try to claim it
  2499     if (r->claimHeapRegion(claim_value)) {
  2500       // success!
  2501       assert(!r->continuesHumongous(), "sanity");
  2502       if (r->startsHumongous()) {
  2503         // If the region is "starts humongous" we'll iterate over its
  2504         // "continues humongous" first; in fact we'll do them
  2505         // first. The order is important. In on case, calling the
  2506         // closure on the "starts humongous" region might de-allocate
  2507         // and clear all its "continues humongous" regions and, as a
  2508         // result, we might end up processing them twice. So, we'll do
  2509         // them first (notice: most closures will ignore them anyway) and
  2510         // then we'll do the "starts humongous" region.
  2511         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  2512           HeapRegion* chr = region_at(ch_index);
  2514           // if the region has already been claimed or it's not
  2515           // "continues humongous" we're done
  2516           if (chr->claim_value() == claim_value ||
  2517               !chr->continuesHumongous()) {
  2518             break;
  2521           // Noone should have claimed it directly. We can given
  2522           // that we claimed its "starts humongous" region.
  2523           assert(chr->claim_value() != claim_value, "sanity");
  2524           assert(chr->humongous_start_region() == r, "sanity");
  2526           if (chr->claimHeapRegion(claim_value)) {
  2527             // we should always be able to claim it; noone else should
  2528             // be trying to claim this region
  2530             bool res2 = cl->doHeapRegion(chr);
  2531             assert(!res2, "Should not abort");
  2533             // Right now, this holds (i.e., no closure that actually
  2534             // does something with "continues humongous" regions
  2535             // clears them). We might have to weaken it in the future,
  2536             // but let's leave these two asserts here for extra safety.
  2537             assert(chr->continuesHumongous(), "should still be the case");
  2538             assert(chr->humongous_start_region() == r, "sanity");
  2539           } else {
  2540             guarantee(false, "we should not reach here");
  2545       assert(!r->continuesHumongous(), "sanity");
  2546       bool res = cl->doHeapRegion(r);
  2547       assert(!res, "Should not abort");
  2552 class ResetClaimValuesClosure: public HeapRegionClosure {
  2553 public:
  2554   bool doHeapRegion(HeapRegion* r) {
  2555     r->set_claim_value(HeapRegion::InitialClaimValue);
  2556     return false;
  2558 };
  2560 void
  2561 G1CollectedHeap::reset_heap_region_claim_values() {
  2562   ResetClaimValuesClosure blk;
  2563   heap_region_iterate(&blk);
  2566 #ifdef ASSERT
  2567 // This checks whether all regions in the heap have the correct claim
  2568 // value. I also piggy-backed on this a check to ensure that the
  2569 // humongous_start_region() information on "continues humongous"
  2570 // regions is correct.
  2572 class CheckClaimValuesClosure : public HeapRegionClosure {
  2573 private:
  2574   jint _claim_value;
  2575   size_t _failures;
  2576   HeapRegion* _sh_region;
  2577 public:
  2578   CheckClaimValuesClosure(jint claim_value) :
  2579     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2580   bool doHeapRegion(HeapRegion* r) {
  2581     if (r->claim_value() != _claim_value) {
  2582       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2583                              "claim value = %d, should be %d",
  2584                              r->bottom(), r->end(), r->claim_value(),
  2585                              _claim_value);
  2586       ++_failures;
  2588     if (!r->isHumongous()) {
  2589       _sh_region = NULL;
  2590     } else if (r->startsHumongous()) {
  2591       _sh_region = r;
  2592     } else if (r->continuesHumongous()) {
  2593       if (r->humongous_start_region() != _sh_region) {
  2594         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2595                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2596                                r->bottom(), r->end(),
  2597                                r->humongous_start_region(),
  2598                                _sh_region);
  2599         ++_failures;
  2602     return false;
  2604   size_t failures() {
  2605     return _failures;
  2607 };
  2609 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2610   CheckClaimValuesClosure cl(claim_value);
  2611   heap_region_iterate(&cl);
  2612   return cl.failures() == 0;
  2614 #endif // ASSERT
  2616 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2617   HeapRegion* r = g1_policy()->collection_set();
  2618   while (r != NULL) {
  2619     HeapRegion* next = r->next_in_collection_set();
  2620     if (cl->doHeapRegion(r)) {
  2621       cl->incomplete();
  2622       return;
  2624     r = next;
  2628 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2629                                                   HeapRegionClosure *cl) {
  2630   if (r == NULL) {
  2631     // The CSet is empty so there's nothing to do.
  2632     return;
  2635   assert(r->in_collection_set(),
  2636          "Start region must be a member of the collection set.");
  2637   HeapRegion* cur = r;
  2638   while (cur != NULL) {
  2639     HeapRegion* next = cur->next_in_collection_set();
  2640     if (cl->doHeapRegion(cur) && false) {
  2641       cl->incomplete();
  2642       return;
  2644     cur = next;
  2646   cur = g1_policy()->collection_set();
  2647   while (cur != r) {
  2648     HeapRegion* next = cur->next_in_collection_set();
  2649     if (cl->doHeapRegion(cur) && false) {
  2650       cl->incomplete();
  2651       return;
  2653     cur = next;
  2657 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2658   return n_regions() > 0 ? region_at(0) : NULL;
  2662 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2663   Space* res = heap_region_containing(addr);
  2664   if (res == NULL)
  2665     res = perm_gen()->space_containing(addr);
  2666   return res;
  2669 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2670   Space* sp = space_containing(addr);
  2671   if (sp != NULL) {
  2672     return sp->block_start(addr);
  2674   return NULL;
  2677 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2678   Space* sp = space_containing(addr);
  2679   assert(sp != NULL, "block_size of address outside of heap");
  2680   return sp->block_size(addr);
  2683 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2684   Space* sp = space_containing(addr);
  2685   return sp->block_is_obj(addr);
  2688 bool G1CollectedHeap::supports_tlab_allocation() const {
  2689   return true;
  2692 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2693   return HeapRegion::GrainBytes;
  2696 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2697   // Return the remaining space in the cur alloc region, but not less than
  2698   // the min TLAB size.
  2700   // Also, this value can be at most the humongous object threshold,
  2701   // since we can't allow tlabs to grow big enough to accomodate
  2702   // humongous objects.
  2704   HeapRegion* hr = _mutator_alloc_region.get();
  2705   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2706   if (hr == NULL) {
  2707     return max_tlab_size;
  2708   } else {
  2709     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  2713 size_t G1CollectedHeap::max_capacity() const {
  2714   return _g1_reserved.byte_size();
  2717 jlong G1CollectedHeap::millis_since_last_gc() {
  2718   // assert(false, "NYI");
  2719   return 0;
  2722 void G1CollectedHeap::prepare_for_verify() {
  2723   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2724     ensure_parsability(false);
  2726   g1_rem_set()->prepare_for_verify();
  2729 class VerifyLivenessOopClosure: public OopClosure {
  2730   G1CollectedHeap* _g1h;
  2731   VerifyOption _vo;
  2732 public:
  2733   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  2734     _g1h(g1h), _vo(vo)
  2735   { }
  2736   void do_oop(narrowOop *p) { do_oop_work(p); }
  2737   void do_oop(      oop *p) { do_oop_work(p); }
  2739   template <class T> void do_oop_work(T *p) {
  2740     oop obj = oopDesc::load_decode_heap_oop(p);
  2741     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  2742               "Dead object referenced by a not dead object");
  2744 };
  2746 class VerifyObjsInRegionClosure: public ObjectClosure {
  2747 private:
  2748   G1CollectedHeap* _g1h;
  2749   size_t _live_bytes;
  2750   HeapRegion *_hr;
  2751   VerifyOption _vo;
  2752 public:
  2753   // _vo == UsePrevMarking -> use "prev" marking information,
  2754   // _vo == UseNextMarking -> use "next" marking information,
  2755   // _vo == UseMarkWord    -> use mark word from object header.
  2756   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  2757     : _live_bytes(0), _hr(hr), _vo(vo) {
  2758     _g1h = G1CollectedHeap::heap();
  2760   void do_object(oop o) {
  2761     VerifyLivenessOopClosure isLive(_g1h, _vo);
  2762     assert(o != NULL, "Huh?");
  2763     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  2764       // If the object is alive according to the mark word,
  2765       // then verify that the marking information agrees.
  2766       // Note we can't verify the contra-positive of the
  2767       // above: if the object is dead (according to the mark
  2768       // word), it may not be marked, or may have been marked
  2769       // but has since became dead, or may have been allocated
  2770       // since the last marking.
  2771       if (_vo == VerifyOption_G1UseMarkWord) {
  2772         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  2775       o->oop_iterate(&isLive);
  2776       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2777         size_t obj_size = o->size();    // Make sure we don't overflow
  2778         _live_bytes += (obj_size * HeapWordSize);
  2782   size_t live_bytes() { return _live_bytes; }
  2783 };
  2785 class PrintObjsInRegionClosure : public ObjectClosure {
  2786   HeapRegion *_hr;
  2787   G1CollectedHeap *_g1;
  2788 public:
  2789   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2790     _g1 = G1CollectedHeap::heap();
  2791   };
  2793   void do_object(oop o) {
  2794     if (o != NULL) {
  2795       HeapWord *start = (HeapWord *) o;
  2796       size_t word_sz = o->size();
  2797       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2798                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2799                           (void*) o, word_sz,
  2800                           _g1->isMarkedPrev(o),
  2801                           _g1->isMarkedNext(o),
  2802                           _hr->obj_allocated_since_prev_marking(o));
  2803       HeapWord *end = start + word_sz;
  2804       HeapWord *cur;
  2805       int *val;
  2806       for (cur = start; cur < end; cur++) {
  2807         val = (int *) cur;
  2808         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2812 };
  2814 class VerifyRegionClosure: public HeapRegionClosure {
  2815 private:
  2816   bool         _allow_dirty;
  2817   bool         _par;
  2818   VerifyOption _vo;
  2819   bool         _failures;
  2820 public:
  2821   // _vo == UsePrevMarking -> use "prev" marking information,
  2822   // _vo == UseNextMarking -> use "next" marking information,
  2823   // _vo == UseMarkWord    -> use mark word from object header.
  2824   VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
  2825     : _allow_dirty(allow_dirty),
  2826       _par(par),
  2827       _vo(vo),
  2828       _failures(false) {}
  2830   bool failures() {
  2831     return _failures;
  2834   bool doHeapRegion(HeapRegion* r) {
  2835     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2836               "Should be unclaimed at verify points.");
  2837     if (!r->continuesHumongous()) {
  2838       bool failures = false;
  2839       r->verify(_allow_dirty, _vo, &failures);
  2840       if (failures) {
  2841         _failures = true;
  2842       } else {
  2843         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  2844         r->object_iterate(&not_dead_yet_cl);
  2845         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  2846           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  2847                                  "max_live_bytes "SIZE_FORMAT" "
  2848                                  "< calculated "SIZE_FORMAT,
  2849                                  r->bottom(), r->end(),
  2850                                  r->max_live_bytes(),
  2851                                  not_dead_yet_cl.live_bytes());
  2852           _failures = true;
  2856     return false; // stop the region iteration if we hit a failure
  2858 };
  2860 class VerifyRootsClosure: public OopsInGenClosure {
  2861 private:
  2862   G1CollectedHeap* _g1h;
  2863   VerifyOption     _vo;
  2864   bool             _failures;
  2865 public:
  2866   // _vo == UsePrevMarking -> use "prev" marking information,
  2867   // _vo == UseNextMarking -> use "next" marking information,
  2868   // _vo == UseMarkWord    -> use mark word from object header.
  2869   VerifyRootsClosure(VerifyOption vo) :
  2870     _g1h(G1CollectedHeap::heap()),
  2871     _vo(vo),
  2872     _failures(false) { }
  2874   bool failures() { return _failures; }
  2876   template <class T> void do_oop_nv(T* p) {
  2877     T heap_oop = oopDesc::load_heap_oop(p);
  2878     if (!oopDesc::is_null(heap_oop)) {
  2879       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2880       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  2881         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2882                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2883         if (_vo == VerifyOption_G1UseMarkWord) {
  2884           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  2886         obj->print_on(gclog_or_tty);
  2887         _failures = true;
  2892   void do_oop(oop* p)       { do_oop_nv(p); }
  2893   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2894 };
  2896 // This is the task used for parallel heap verification.
  2898 class G1ParVerifyTask: public AbstractGangTask {
  2899 private:
  2900   G1CollectedHeap* _g1h;
  2901   bool             _allow_dirty;
  2902   VerifyOption     _vo;
  2903   bool             _failures;
  2905 public:
  2906   // _vo == UsePrevMarking -> use "prev" marking information,
  2907   // _vo == UseNextMarking -> use "next" marking information,
  2908   // _vo == UseMarkWord    -> use mark word from object header.
  2909   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
  2910     AbstractGangTask("Parallel verify task"),
  2911     _g1h(g1h),
  2912     _allow_dirty(allow_dirty),
  2913     _vo(vo),
  2914     _failures(false) { }
  2916   bool failures() {
  2917     return _failures;
  2920   void work(int worker_i) {
  2921     HandleMark hm;
  2922     VerifyRegionClosure blk(_allow_dirty, true, _vo);
  2923     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2924                                           HeapRegion::ParVerifyClaimValue);
  2925     if (blk.failures()) {
  2926       _failures = true;
  2929 };
  2931 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2932   verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
  2935 void G1CollectedHeap::verify(bool allow_dirty,
  2936                              bool silent,
  2937                              VerifyOption vo) {
  2938   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2939     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  2940     VerifyRootsClosure rootsCl(vo);
  2941     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2943     // We apply the relevant closures to all the oops in the
  2944     // system dictionary, the string table and the code cache.
  2945     const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  2947     process_strong_roots(true,      // activate StrongRootsScope
  2948                          true,      // we set "collecting perm gen" to true,
  2949                                     // so we don't reset the dirty cards in the perm gen.
  2950                          SharedHeap::ScanningOption(so),  // roots scanning options
  2951                          &rootsCl,
  2952                          &blobsCl,
  2953                          &rootsCl);
  2955     // If we're verifying after the marking phase of a Full GC then we can't
  2956     // treat the perm gen as roots into the G1 heap. Some of the objects in
  2957     // the perm gen may be dead and hence not marked. If one of these dead
  2958     // objects is considered to be a root then we may end up with a false
  2959     // "Root location <x> points to dead ob <y>" failure.
  2960     if (vo != VerifyOption_G1UseMarkWord) {
  2961       // Since we used "collecting_perm_gen" == true above, we will not have
  2962       // checked the refs from perm into the G1-collected heap. We check those
  2963       // references explicitly below. Whether the relevant cards are dirty
  2964       // is checked further below in the rem set verification.
  2965       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  2966       perm_gen()->oop_iterate(&rootsCl);
  2968     bool failures = rootsCl.failures();
  2970     if (vo != VerifyOption_G1UseMarkWord) {
  2971       // If we're verifying during a full GC then the region sets
  2972       // will have been torn down at the start of the GC. Therefore
  2973       // verifying the region sets will fail. So we only verify
  2974       // the region sets when not in a full GC.
  2975       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  2976       verify_region_sets();
  2979     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  2980     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2981       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2982              "sanity check");
  2984       G1ParVerifyTask task(this, allow_dirty, vo);
  2985       int n_workers = workers()->total_workers();
  2986       set_par_threads(n_workers);
  2987       workers()->run_task(&task);
  2988       set_par_threads(0);
  2989       if (task.failures()) {
  2990         failures = true;
  2993       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2994              "sanity check");
  2996       reset_heap_region_claim_values();
  2998       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2999              "sanity check");
  3000     } else {
  3001       VerifyRegionClosure blk(allow_dirty, false, vo);
  3002       heap_region_iterate(&blk);
  3003       if (blk.failures()) {
  3004         failures = true;
  3007     if (!silent) gclog_or_tty->print("RemSet ");
  3008     rem_set()->verify();
  3010     if (failures) {
  3011       gclog_or_tty->print_cr("Heap:");
  3012       print_on(gclog_or_tty, true /* extended */);
  3013       gclog_or_tty->print_cr("");
  3014 #ifndef PRODUCT
  3015       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3016         concurrent_mark()->print_reachable("at-verification-failure",
  3017                                            vo, false /* all */);
  3019 #endif
  3020       gclog_or_tty->flush();
  3022     guarantee(!failures, "there should not have been any failures");
  3023   } else {
  3024     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3028 class PrintRegionClosure: public HeapRegionClosure {
  3029   outputStream* _st;
  3030 public:
  3031   PrintRegionClosure(outputStream* st) : _st(st) {}
  3032   bool doHeapRegion(HeapRegion* r) {
  3033     r->print_on(_st);
  3034     return false;
  3036 };
  3038 void G1CollectedHeap::print() const { print_on(tty); }
  3040 void G1CollectedHeap::print_on(outputStream* st) const {
  3041   print_on(st, PrintHeapAtGCExtended);
  3044 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  3045   st->print(" %-20s", "garbage-first heap");
  3046   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3047             capacity()/K, used_unlocked()/K);
  3048   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3049             _g1_storage.low_boundary(),
  3050             _g1_storage.high(),
  3051             _g1_storage.high_boundary());
  3052   st->cr();
  3053   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3054   size_t young_regions = _young_list->length();
  3055   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  3056             young_regions, young_regions * HeapRegion::GrainBytes / K);
  3057   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  3058   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  3059             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  3060   st->cr();
  3061   perm()->as_gen()->print_on(st);
  3062   if (extended) {
  3063     st->cr();
  3064     print_on_extended(st);
  3068 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  3069   PrintRegionClosure blk(st);
  3070   heap_region_iterate(&blk);
  3073 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3074   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3075     workers()->print_worker_threads_on(st);
  3077   _cmThread->print_on(st);
  3078   st->cr();
  3079   _cm->print_worker_threads_on(st);
  3080   _cg1r->print_worker_threads_on(st);
  3081   st->cr();
  3084 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3085   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3086     workers()->threads_do(tc);
  3088   tc->do_thread(_cmThread);
  3089   _cg1r->threads_do(tc);
  3092 void G1CollectedHeap::print_tracing_info() const {
  3093   // We'll overload this to mean "trace GC pause statistics."
  3094   if (TraceGen0Time || TraceGen1Time) {
  3095     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3096     // to that.
  3097     g1_policy()->print_tracing_info();
  3099   if (G1SummarizeRSetStats) {
  3100     g1_rem_set()->print_summary_info();
  3102   if (G1SummarizeConcMark) {
  3103     concurrent_mark()->print_summary_info();
  3105   g1_policy()->print_yg_surv_rate_info();
  3106   SpecializationStats::print();
  3109 #ifndef PRODUCT
  3110 // Helpful for debugging RSet issues.
  3112 class PrintRSetsClosure : public HeapRegionClosure {
  3113 private:
  3114   const char* _msg;
  3115   size_t _occupied_sum;
  3117 public:
  3118   bool doHeapRegion(HeapRegion* r) {
  3119     HeapRegionRemSet* hrrs = r->rem_set();
  3120     size_t occupied = hrrs->occupied();
  3121     _occupied_sum += occupied;
  3123     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3124                            HR_FORMAT_PARAMS(r));
  3125     if (occupied == 0) {
  3126       gclog_or_tty->print_cr("  RSet is empty");
  3127     } else {
  3128       hrrs->print();
  3130     gclog_or_tty->print_cr("----------");
  3131     return false;
  3134   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3135     gclog_or_tty->cr();
  3136     gclog_or_tty->print_cr("========================================");
  3137     gclog_or_tty->print_cr(msg);
  3138     gclog_or_tty->cr();
  3141   ~PrintRSetsClosure() {
  3142     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3143     gclog_or_tty->print_cr("========================================");
  3144     gclog_or_tty->cr();
  3146 };
  3148 void G1CollectedHeap::print_cset_rsets() {
  3149   PrintRSetsClosure cl("Printing CSet RSets");
  3150   collection_set_iterate(&cl);
  3153 void G1CollectedHeap::print_all_rsets() {
  3154   PrintRSetsClosure cl("Printing All RSets");;
  3155   heap_region_iterate(&cl);
  3157 #endif // PRODUCT
  3159 G1CollectedHeap* G1CollectedHeap::heap() {
  3160   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3161          "not a garbage-first heap");
  3162   return _g1h;
  3165 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3166   // always_do_update_barrier = false;
  3167   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3168   // Call allocation profiler
  3169   AllocationProfiler::iterate_since_last_gc();
  3170   // Fill TLAB's and such
  3171   ensure_parsability(true);
  3174 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3175   // FIXME: what is this about?
  3176   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3177   // is set.
  3178   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3179                         "derived pointer present"));
  3180   // always_do_update_barrier = true;
  3182   // We have just completed a GC. Update the soft reference
  3183   // policy with the new heap occupancy
  3184   Universe::update_heap_info_at_gc();
  3187 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3188                                                unsigned int gc_count_before,
  3189                                                bool* succeeded) {
  3190   assert_heap_not_locked_and_not_at_safepoint();
  3191   g1_policy()->record_stop_world_start();
  3192   VM_G1IncCollectionPause op(gc_count_before,
  3193                              word_size,
  3194                              false, /* should_initiate_conc_mark */
  3195                              g1_policy()->max_pause_time_ms(),
  3196                              GCCause::_g1_inc_collection_pause);
  3197   VMThread::execute(&op);
  3199   HeapWord* result = op.result();
  3200   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3201   assert(result == NULL || ret_succeeded,
  3202          "the result should be NULL if the VM did not succeed");
  3203   *succeeded = ret_succeeded;
  3205   assert_heap_not_locked();
  3206   return result;
  3209 void
  3210 G1CollectedHeap::doConcurrentMark() {
  3211   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3212   if (!_cmThread->in_progress()) {
  3213     _cmThread->set_started();
  3214     CGC_lock->notify();
  3218 // <NEW PREDICTION>
  3220 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  3221                                                        bool young) {
  3222   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  3225 void G1CollectedHeap::check_if_region_is_too_expensive(double
  3226                                                            predicted_time_ms) {
  3227   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  3230 size_t G1CollectedHeap::pending_card_num() {
  3231   size_t extra_cards = 0;
  3232   JavaThread *curr = Threads::first();
  3233   while (curr != NULL) {
  3234     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3235     extra_cards += dcq.size();
  3236     curr = curr->next();
  3238   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3239   size_t buffer_size = dcqs.buffer_size();
  3240   size_t buffer_num = dcqs.completed_buffers_num();
  3241   return buffer_size * buffer_num + extra_cards;
  3244 size_t G1CollectedHeap::max_pending_card_num() {
  3245   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3246   size_t buffer_size = dcqs.buffer_size();
  3247   size_t buffer_num  = dcqs.completed_buffers_num();
  3248   int thread_num  = Threads::number_of_threads();
  3249   return (buffer_num + thread_num) * buffer_size;
  3252 size_t G1CollectedHeap::cards_scanned() {
  3253   return g1_rem_set()->cardsScanned();
  3256 void
  3257 G1CollectedHeap::setup_surviving_young_words() {
  3258   guarantee( _surviving_young_words == NULL, "pre-condition" );
  3259   size_t array_length = g1_policy()->young_cset_length();
  3260   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  3261   if (_surviving_young_words == NULL) {
  3262     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3263                           "Not enough space for young surv words summary.");
  3265   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  3266 #ifdef ASSERT
  3267   for (size_t i = 0;  i < array_length; ++i) {
  3268     assert( _surviving_young_words[i] == 0, "memset above" );
  3270 #endif // !ASSERT
  3273 void
  3274 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3275   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3276   size_t array_length = g1_policy()->young_cset_length();
  3277   for (size_t i = 0; i < array_length; ++i)
  3278     _surviving_young_words[i] += surv_young_words[i];
  3281 void
  3282 G1CollectedHeap::cleanup_surviving_young_words() {
  3283   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3284   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3285   _surviving_young_words = NULL;
  3288 // </NEW PREDICTION>
  3290 #ifdef ASSERT
  3291 class VerifyCSetClosure: public HeapRegionClosure {
  3292 public:
  3293   bool doHeapRegion(HeapRegion* hr) {
  3294     // Here we check that the CSet region's RSet is ready for parallel
  3295     // iteration. The fields that we'll verify are only manipulated
  3296     // when the region is part of a CSet and is collected. Afterwards,
  3297     // we reset these fields when we clear the region's RSet (when the
  3298     // region is freed) so they are ready when the region is
  3299     // re-allocated. The only exception to this is if there's an
  3300     // evacuation failure and instead of freeing the region we leave
  3301     // it in the heap. In that case, we reset these fields during
  3302     // evacuation failure handling.
  3303     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3305     // Here's a good place to add any other checks we'd like to
  3306     // perform on CSet regions.
  3307     return false;
  3309 };
  3310 #endif // ASSERT
  3312 #if TASKQUEUE_STATS
  3313 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3314   st->print_raw_cr("GC Task Stats");
  3315   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3316   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3319 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3320   print_taskqueue_stats_hdr(st);
  3322   TaskQueueStats totals;
  3323   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3324   for (int i = 0; i < n; ++i) {
  3325     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3326     totals += task_queue(i)->stats;
  3328   st->print_raw("tot "); totals.print(st); st->cr();
  3330   DEBUG_ONLY(totals.verify());
  3333 void G1CollectedHeap::reset_taskqueue_stats() {
  3334   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3335   for (int i = 0; i < n; ++i) {
  3336     task_queue(i)->stats.reset();
  3339 #endif // TASKQUEUE_STATS
  3341 bool
  3342 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3343   assert_at_safepoint(true /* should_be_vm_thread */);
  3344   guarantee(!is_gc_active(), "collection is not reentrant");
  3346   if (GC_locker::check_active_before_gc()) {
  3347     return false;
  3350   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3351   ResourceMark rm;
  3353   if (PrintHeapAtGC) {
  3354     Universe::print_heap_before_gc();
  3357   verify_region_sets_optional();
  3358   verify_dirty_young_regions();
  3361     // This call will decide whether this pause is an initial-mark
  3362     // pause. If it is, during_initial_mark_pause() will return true
  3363     // for the duration of this pause.
  3364     g1_policy()->decide_on_conc_mark_initiation();
  3366     // We do not allow initial-mark to be piggy-backed on a
  3367     // partially-young GC.
  3368     assert(!g1_policy()->during_initial_mark_pause() ||
  3369             g1_policy()->full_young_gcs(), "sanity");
  3371     // We also do not allow partially-young GCs during marking.
  3372     assert(!mark_in_progress() || g1_policy()->full_young_gcs(), "sanity");
  3374     char verbose_str[128];
  3375     sprintf(verbose_str, "GC pause ");
  3376     if (g1_policy()->full_young_gcs()) {
  3377       strcat(verbose_str, "(young)");
  3378     } else {
  3379       strcat(verbose_str, "(partial)");
  3381     if (g1_policy()->during_initial_mark_pause()) {
  3382       strcat(verbose_str, " (initial-mark)");
  3383       // We are about to start a marking cycle, so we increment the
  3384       // full collection counter.
  3385       increment_total_full_collections();
  3388     // if PrintGCDetails is on, we'll print long statistics information
  3389     // in the collector policy code, so let's not print this as the output
  3390     // is messy if we do.
  3391     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  3392     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3393     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  3395     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3396     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3398     // If the secondary_free_list is not empty, append it to the
  3399     // free_list. No need to wait for the cleanup operation to finish;
  3400     // the region allocation code will check the secondary_free_list
  3401     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3402     // set, skip this step so that the region allocation code has to
  3403     // get entries from the secondary_free_list.
  3404     if (!G1StressConcRegionFreeing) {
  3405       append_secondary_free_list_if_not_empty_with_lock();
  3408     assert(check_young_list_well_formed(),
  3409       "young list should be well formed");
  3411     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3412       IsGCActiveMark x;
  3414       gc_prologue(false);
  3415       increment_total_collections(false /* full gc */);
  3416       increment_gc_time_stamp();
  3418       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3419         HandleMark hm;  // Discard invalid handles created during verification
  3420         gclog_or_tty->print(" VerifyBeforeGC:");
  3421         prepare_for_verify();
  3422         Universe::verify(/* allow dirty */ false,
  3423                          /* silent      */ false,
  3424                          /* option      */ VerifyOption_G1UsePrevMarking);
  3428       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3430       // Please see comment in g1CollectedHeap.hpp and
  3431       // G1CollectedHeap::ref_processing_init() to see how
  3432       // reference processing currently works in G1.
  3434       // Enable discovery in the STW reference processor
  3435       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3436                                             true /*verify_no_refs*/);
  3439         // We want to temporarily turn off discovery by the
  3440         // CM ref processor, if necessary, and turn it back on
  3441         // on again later if we do. Using a scoped
  3442         // NoRefDiscovery object will do this.
  3443         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3445         // Forget the current alloc region (we might even choose it to be part
  3446         // of the collection set!).
  3447         release_mutator_alloc_region();
  3449         // We should call this after we retire the mutator alloc
  3450         // region(s) so that all the ALLOC / RETIRE events are generated
  3451         // before the start GC event.
  3452         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3454         // The elapsed time induced by the start time below deliberately elides
  3455         // the possible verification above.
  3456         double start_time_sec = os::elapsedTime();
  3457         size_t start_used_bytes = used();
  3459 #if YOUNG_LIST_VERBOSE
  3460         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3461         _young_list->print();
  3462         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3463 #endif // YOUNG_LIST_VERBOSE
  3465         g1_policy()->record_collection_pause_start(start_time_sec,
  3466                                                    start_used_bytes);
  3468 #if YOUNG_LIST_VERBOSE
  3469         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3470         _young_list->print();
  3471 #endif // YOUNG_LIST_VERBOSE
  3473         if (g1_policy()->during_initial_mark_pause()) {
  3474           concurrent_mark()->checkpointRootsInitialPre();
  3476         perm_gen()->save_marks();
  3478         // We must do this before any possible evacuation that should propagate
  3479         // marks.
  3480         if (mark_in_progress()) {
  3481           double start_time_sec = os::elapsedTime();
  3483           _cm->drainAllSATBBuffers();
  3484           double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  3485           g1_policy()->record_satb_drain_time(finish_mark_ms);
  3487         // Record the number of elements currently on the mark stack, so we
  3488         // only iterate over these.  (Since evacuation may add to the mark
  3489         // stack, doing more exposes race conditions.)  If no mark is in
  3490         // progress, this will be zero.
  3491         _cm->set_oops_do_bound();
  3493         if (mark_in_progress()) {
  3494           concurrent_mark()->newCSet();
  3497 #if YOUNG_LIST_VERBOSE
  3498         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3499         _young_list->print();
  3500         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3501 #endif // YOUNG_LIST_VERBOSE
  3503         g1_policy()->choose_collection_set(target_pause_time_ms);
  3505         if (_hr_printer.is_active()) {
  3506           HeapRegion* hr = g1_policy()->collection_set();
  3507           while (hr != NULL) {
  3508             G1HRPrinter::RegionType type;
  3509             if (!hr->is_young()) {
  3510               type = G1HRPrinter::Old;
  3511             } else if (hr->is_survivor()) {
  3512               type = G1HRPrinter::Survivor;
  3513             } else {
  3514               type = G1HRPrinter::Eden;
  3516             _hr_printer.cset(hr);
  3517             hr = hr->next_in_collection_set();
  3521         // We have chosen the complete collection set. If marking is
  3522         // active then, we clear the region fields of any of the
  3523         // concurrent marking tasks whose region fields point into
  3524         // the collection set as these values will become stale. This
  3525         // will cause the owning marking threads to claim a new region
  3526         // when marking restarts.
  3527         if (mark_in_progress()) {
  3528           concurrent_mark()->reset_active_task_region_fields_in_cset();
  3531 #ifdef ASSERT
  3532         VerifyCSetClosure cl;
  3533         collection_set_iterate(&cl);
  3534 #endif // ASSERT
  3536         setup_surviving_young_words();
  3538         // Initialize the GC alloc regions.
  3539         init_gc_alloc_regions();
  3541         // Actually do the work...
  3542         evacuate_collection_set();
  3544         free_collection_set(g1_policy()->collection_set());
  3545         g1_policy()->clear_collection_set();
  3547         cleanup_surviving_young_words();
  3549         // Start a new incremental collection set for the next pause.
  3550         g1_policy()->start_incremental_cset_building();
  3552         // Clear the _cset_fast_test bitmap in anticipation of adding
  3553         // regions to the incremental collection set for the next
  3554         // evacuation pause.
  3555         clear_cset_fast_test();
  3557         _young_list->reset_sampled_info();
  3559         // Don't check the whole heap at this point as the
  3560         // GC alloc regions from this pause have been tagged
  3561         // as survivors and moved on to the survivor list.
  3562         // Survivor regions will fail the !is_young() check.
  3563         assert(check_young_list_empty(false /* check_heap */),
  3564           "young list should be empty");
  3566 #if YOUNG_LIST_VERBOSE
  3567         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3568         _young_list->print();
  3569 #endif // YOUNG_LIST_VERBOSE
  3571         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3572                                             _young_list->first_survivor_region(),
  3573                                             _young_list->last_survivor_region());
  3575         _young_list->reset_auxilary_lists();
  3577         if (evacuation_failed()) {
  3578           _summary_bytes_used = recalculate_used();
  3579         } else {
  3580           // The "used" of the the collection set have already been subtracted
  3581           // when they were freed.  Add in the bytes evacuated.
  3582           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3585         if (g1_policy()->during_initial_mark_pause()) {
  3586           concurrent_mark()->checkpointRootsInitialPost();
  3587           set_marking_started();
  3588           // CAUTION: after the doConcurrentMark() call below,
  3589           // the concurrent marking thread(s) could be running
  3590           // concurrently with us. Make sure that anything after
  3591           // this point does not assume that we are the only GC thread
  3592           // running. Note: of course, the actual marking work will
  3593           // not start until the safepoint itself is released in
  3594           // ConcurrentGCThread::safepoint_desynchronize().
  3595           doConcurrentMark();
  3598         allocate_dummy_regions();
  3600 #if YOUNG_LIST_VERBOSE
  3601         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3602         _young_list->print();
  3603         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3604 #endif // YOUNG_LIST_VERBOSE
  3606         init_mutator_alloc_region();
  3609           size_t expand_bytes = g1_policy()->expansion_amount();
  3610           if (expand_bytes > 0) {
  3611             size_t bytes_before = capacity();
  3612             if (!expand(expand_bytes)) {
  3613               // We failed to expand the heap so let's verify that
  3614               // committed/uncommitted amount match the backing store
  3615               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3616               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3621         double end_time_sec = os::elapsedTime();
  3622         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3623         g1_policy()->record_pause_time_ms(pause_time_ms);
  3624         g1_policy()->record_collection_pause_end();
  3626         MemoryService::track_memory_usage();
  3628         // In prepare_for_verify() below we'll need to scan the deferred
  3629         // update buffers to bring the RSets up-to-date if
  3630         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3631         // the update buffers we'll probably need to scan cards on the
  3632         // regions we just allocated to (i.e., the GC alloc
  3633         // regions). However, during the last GC we called
  3634         // set_saved_mark() on all the GC alloc regions, so card
  3635         // scanning might skip the [saved_mark_word()...top()] area of
  3636         // those regions (i.e., the area we allocated objects into
  3637         // during the last GC). But it shouldn't. Given that
  3638         // saved_mark_word() is conditional on whether the GC time stamp
  3639         // on the region is current or not, by incrementing the GC time
  3640         // stamp here we invalidate all the GC time stamps on all the
  3641         // regions and saved_mark_word() will simply return top() for
  3642         // all the regions. This is a nicer way of ensuring this rather
  3643         // than iterating over the regions and fixing them. In fact, the
  3644         // GC time stamp increment here also ensures that
  3645         // saved_mark_word() will return top() between pauses, i.e.,
  3646         // during concurrent refinement. So we don't need the
  3647         // is_gc_active() check to decided which top to use when
  3648         // scanning cards (see CR 7039627).
  3649         increment_gc_time_stamp();
  3651         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3652           HandleMark hm;  // Discard invalid handles created during verification
  3653           gclog_or_tty->print(" VerifyAfterGC:");
  3654           prepare_for_verify();
  3655           Universe::verify(/* allow dirty */ true,
  3656                            /* silent      */ false,
  3657                            /* option      */ VerifyOption_G1UsePrevMarking);
  3660         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  3661         ref_processor_stw()->verify_no_references_recorded();
  3663         // CM reference discovery will be re-enabled if necessary.
  3667         size_t expand_bytes = g1_policy()->expansion_amount();
  3668         if (expand_bytes > 0) {
  3669           size_t bytes_before = capacity();
  3670           // No need for an ergo verbose message here,
  3671           // expansion_amount() does this when it returns a value > 0.
  3672           if (!expand(expand_bytes)) {
  3673             // We failed to expand the heap so let's verify that
  3674             // committed/uncommitted amount match the backing store
  3675             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3676             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3681       // We should do this after we potentially expand the heap so
  3682       // that all the COMMIT events are generated before the end GC
  3683       // event, and after we retire the GC alloc regions so that all
  3684       // RETIRE events are generated before the end GC event.
  3685       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  3687       // We have to do this after we decide whether to expand the heap or not.
  3688       g1_policy()->print_heap_transition();
  3690       if (mark_in_progress()) {
  3691         concurrent_mark()->update_g1_committed();
  3694 #ifdef TRACESPINNING
  3695       ParallelTaskTerminator::print_termination_counts();
  3696 #endif
  3698       gc_epilogue(false);
  3701     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3702       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3703       print_tracing_info();
  3704       vm_exit(-1);
  3708   _hrs.verify_optional();
  3709   verify_region_sets_optional();
  3711   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3712   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3714   if (PrintHeapAtGC) {
  3715     Universe::print_heap_after_gc();
  3717   g1mm()->update_sizes();
  3719   if (G1SummarizeRSetStats &&
  3720       (G1SummarizeRSetStatsPeriod > 0) &&
  3721       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3722     g1_rem_set()->print_summary_info();
  3725   return true;
  3728 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3730   size_t gclab_word_size;
  3731   switch (purpose) {
  3732     case GCAllocForSurvived:
  3733       gclab_word_size = YoungPLABSize;
  3734       break;
  3735     case GCAllocForTenured:
  3736       gclab_word_size = OldPLABSize;
  3737       break;
  3738     default:
  3739       assert(false, "unknown GCAllocPurpose");
  3740       gclab_word_size = OldPLABSize;
  3741       break;
  3743   return gclab_word_size;
  3746 void G1CollectedHeap::init_mutator_alloc_region() {
  3747   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  3748   _mutator_alloc_region.init();
  3751 void G1CollectedHeap::release_mutator_alloc_region() {
  3752   _mutator_alloc_region.release();
  3753   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  3756 void G1CollectedHeap::init_gc_alloc_regions() {
  3757   assert_at_safepoint(true /* should_be_vm_thread */);
  3759   _survivor_gc_alloc_region.init();
  3760   _old_gc_alloc_region.init();
  3761   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  3762   _retained_old_gc_alloc_region = NULL;
  3764   // We will discard the current GC alloc region if:
  3765   // a) it's in the collection set (it can happen!),
  3766   // b) it's already full (no point in using it),
  3767   // c) it's empty (this means that it was emptied during
  3768   // a cleanup and it should be on the free list now), or
  3769   // d) it's humongous (this means that it was emptied
  3770   // during a cleanup and was added to the free list, but
  3771   // has been subseqently used to allocate a humongous
  3772   // object that may be less than the region size).
  3773   if (retained_region != NULL &&
  3774       !retained_region->in_collection_set() &&
  3775       !(retained_region->top() == retained_region->end()) &&
  3776       !retained_region->is_empty() &&
  3777       !retained_region->isHumongous()) {
  3778     retained_region->set_saved_mark();
  3779     _old_gc_alloc_region.set(retained_region);
  3780     _hr_printer.reuse(retained_region);
  3784 void G1CollectedHeap::release_gc_alloc_regions() {
  3785   _survivor_gc_alloc_region.release();
  3786   // If we have an old GC alloc region to release, we'll save it in
  3787   // _retained_old_gc_alloc_region. If we don't
  3788   // _retained_old_gc_alloc_region will become NULL. This is what we
  3789   // want either way so no reason to check explicitly for either
  3790   // condition.
  3791   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  3794 void G1CollectedHeap::abandon_gc_alloc_regions() {
  3795   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  3796   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  3797   _retained_old_gc_alloc_region = NULL;
  3800 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3801   _drain_in_progress = false;
  3802   set_evac_failure_closure(cl);
  3803   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3806 void G1CollectedHeap::finalize_for_evac_failure() {
  3807   assert(_evac_failure_scan_stack != NULL &&
  3808          _evac_failure_scan_stack->length() == 0,
  3809          "Postcondition");
  3810   assert(!_drain_in_progress, "Postcondition");
  3811   delete _evac_failure_scan_stack;
  3812   _evac_failure_scan_stack = NULL;
  3815 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3816 private:
  3817   G1CollectedHeap* _g1;
  3818   DirtyCardQueue *_dcq;
  3819   CardTableModRefBS* _ct_bs;
  3821 public:
  3822   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3823     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3825   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3826   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3827   template <class T> void do_oop_work(T* p) {
  3828     assert(_from->is_in_reserved(p), "paranoia");
  3829     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3830         !_from->is_survivor()) {
  3831       size_t card_index = _ct_bs->index_for(p);
  3832       if (_ct_bs->mark_card_deferred(card_index)) {
  3833         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3837 };
  3839 class RemoveSelfPointerClosure: public ObjectClosure {
  3840 private:
  3841   G1CollectedHeap* _g1;
  3842   ConcurrentMark* _cm;
  3843   HeapRegion* _hr;
  3844   size_t _prev_marked_bytes;
  3845   size_t _next_marked_bytes;
  3846   OopsInHeapRegionClosure *_cl;
  3847 public:
  3848   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
  3849                            OopsInHeapRegionClosure* cl) :
  3850     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3851     _next_marked_bytes(0), _cl(cl) {}
  3853   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3854   size_t next_marked_bytes() { return _next_marked_bytes; }
  3856   // <original comment>
  3857   // The original idea here was to coalesce evacuated and dead objects.
  3858   // However that caused complications with the block offset table (BOT).
  3859   // In particular if there were two TLABs, one of them partially refined.
  3860   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3861   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3862   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3863   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3864   // would point into middle of the filler object.
  3865   // The current approach is to not coalesce and leave the BOT contents intact.
  3866   // </original comment>
  3867   //
  3868   // We now reset the BOT when we start the object iteration over the
  3869   // region and refine its entries for every object we come across. So
  3870   // the above comment is not really relevant and we should be able
  3871   // to coalesce dead objects if we want to.
  3872   void do_object(oop obj) {
  3873     HeapWord* obj_addr = (HeapWord*) obj;
  3874     assert(_hr->is_in(obj_addr), "sanity");
  3875     size_t obj_size = obj->size();
  3876     _hr->update_bot_for_object(obj_addr, obj_size);
  3877     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3878       // The object failed to move.
  3879       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3880       _cm->markPrev(obj);
  3881       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3882       _prev_marked_bytes += (obj_size * HeapWordSize);
  3883       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3884         _cm->markAndGrayObjectIfNecessary(obj);
  3886       obj->set_mark(markOopDesc::prototype());
  3887       // While we were processing RSet buffers during the
  3888       // collection, we actually didn't scan any cards on the
  3889       // collection set, since we didn't want to update remebered
  3890       // sets with entries that point into the collection set, given
  3891       // that live objects fromthe collection set are about to move
  3892       // and such entries will be stale very soon. This change also
  3893       // dealt with a reliability issue which involved scanning a
  3894       // card in the collection set and coming across an array that
  3895       // was being chunked and looking malformed. The problem is
  3896       // that, if evacuation fails, we might have remembered set
  3897       // entries missing given that we skipped cards on the
  3898       // collection set. So, we'll recreate such entries now.
  3899       obj->oop_iterate(_cl);
  3900       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3901     } else {
  3902       // The object has been either evacuated or is dead. Fill it with a
  3903       // dummy object.
  3904       MemRegion mr((HeapWord*)obj, obj_size);
  3905       CollectedHeap::fill_with_object(mr);
  3906       _cm->clearRangeBothMaps(mr);
  3909 };
  3911 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3912   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
  3913   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3914   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3915   OopsInHeapRegionClosure *cl;
  3916   if (G1DeferredRSUpdate) {
  3917     cl = &deferred_update;
  3918   } else {
  3919     cl = &immediate_update;
  3921   HeapRegion* cur = g1_policy()->collection_set();
  3922   while (cur != NULL) {
  3923     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3924     assert(!cur->isHumongous(), "sanity");
  3926     if (cur->evacuation_failed()) {
  3927       assert(cur->in_collection_set(), "bad CS");
  3928       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
  3930       // In the common case we make sure that this is done when the
  3931       // region is freed so that it is "ready-to-go" when it's
  3932       // re-allocated. However, when evacuation failure happens, a
  3933       // region will remain in the heap and might ultimately be added
  3934       // to a CSet in the future. So we have to be careful here and
  3935       // make sure the region's RSet is ready for parallel iteration
  3936       // whenever this might be required in the future.
  3937       cur->rem_set()->reset_for_par_iteration();
  3938       cur->reset_bot();
  3939       cl->set_region(cur);
  3940       cur->object_iterate(&rspc);
  3942       // A number of manipulations to make the TAMS be the current top,
  3943       // and the marked bytes be the ones observed in the iteration.
  3944       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3945         // The comments below are the postconditions achieved by the
  3946         // calls.  Note especially the last such condition, which says that
  3947         // the count of marked bytes has been properly restored.
  3948         cur->note_start_of_marking(false);
  3949         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3950         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3951         // _next_marked_bytes == prev_marked_bytes.
  3952         cur->note_end_of_marking();
  3953         // _prev_top_at_mark_start == top(),
  3954         // _prev_marked_bytes == prev_marked_bytes
  3956       // If there is no mark in progress, we modified the _next variables
  3957       // above needlessly, but harmlessly.
  3958       if (_g1h->mark_in_progress()) {
  3959         cur->note_start_of_marking(false);
  3960         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3961         // _next_marked_bytes == next_marked_bytes.
  3964       // Now make sure the region has the right index in the sorted array.
  3965       g1_policy()->note_change_in_marked_bytes(cur);
  3967     cur = cur->next_in_collection_set();
  3969   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3971   // Now restore saved marks, if any.
  3972   if (_objs_with_preserved_marks != NULL) {
  3973     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3974     guarantee(_objs_with_preserved_marks->length() ==
  3975               _preserved_marks_of_objs->length(), "Both or none.");
  3976     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3977       oop obj   = _objs_with_preserved_marks->at(i);
  3978       markOop m = _preserved_marks_of_objs->at(i);
  3979       obj->set_mark(m);
  3981     // Delete the preserved marks growable arrays (allocated on the C heap).
  3982     delete _objs_with_preserved_marks;
  3983     delete _preserved_marks_of_objs;
  3984     _objs_with_preserved_marks = NULL;
  3985     _preserved_marks_of_objs = NULL;
  3989 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3990   _evac_failure_scan_stack->push(obj);
  3993 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3994   assert(_evac_failure_scan_stack != NULL, "precondition");
  3996   while (_evac_failure_scan_stack->length() > 0) {
  3997      oop obj = _evac_failure_scan_stack->pop();
  3998      _evac_failure_closure->set_region(heap_region_containing(obj));
  3999      obj->oop_iterate_backwards(_evac_failure_closure);
  4003 oop
  4004 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4005                                                oop old,
  4006                                                bool should_mark_root) {
  4007   assert(obj_in_cs(old),
  4008          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4009                  (HeapWord*) old));
  4010   markOop m = old->mark();
  4011   oop forward_ptr = old->forward_to_atomic(old);
  4012   if (forward_ptr == NULL) {
  4013     // Forward-to-self succeeded.
  4015     // should_mark_root will be true when this routine is called
  4016     // from a root scanning closure during an initial mark pause.
  4017     // In this case the thread that succeeds in self-forwarding the
  4018     // object is also responsible for marking the object.
  4019     if (should_mark_root) {
  4020       assert(!oopDesc::is_null(old), "shouldn't be");
  4021       _cm->grayRoot(old);
  4024     if (_evac_failure_closure != cl) {
  4025       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4026       assert(!_drain_in_progress,
  4027              "Should only be true while someone holds the lock.");
  4028       // Set the global evac-failure closure to the current thread's.
  4029       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4030       set_evac_failure_closure(cl);
  4031       // Now do the common part.
  4032       handle_evacuation_failure_common(old, m);
  4033       // Reset to NULL.
  4034       set_evac_failure_closure(NULL);
  4035     } else {
  4036       // The lock is already held, and this is recursive.
  4037       assert(_drain_in_progress, "This should only be the recursive case.");
  4038       handle_evacuation_failure_common(old, m);
  4040     return old;
  4041   } else {
  4042     // Forward-to-self failed. Either someone else managed to allocate
  4043     // space for this object (old != forward_ptr) or they beat us in
  4044     // self-forwarding it (old == forward_ptr).
  4045     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4046            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4047                    "should not be in the CSet",
  4048                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4049     return forward_ptr;
  4053 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4054   set_evacuation_failed(true);
  4056   preserve_mark_if_necessary(old, m);
  4058   HeapRegion* r = heap_region_containing(old);
  4059   if (!r->evacuation_failed()) {
  4060     r->set_evacuation_failed(true);
  4061     _hr_printer.evac_failure(r);
  4064   push_on_evac_failure_scan_stack(old);
  4066   if (!_drain_in_progress) {
  4067     // prevent recursion in copy_to_survivor_space()
  4068     _drain_in_progress = true;
  4069     drain_evac_failure_scan_stack();
  4070     _drain_in_progress = false;
  4074 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4075   assert(evacuation_failed(), "Oversaving!");
  4076   // We want to call the "for_promotion_failure" version only in the
  4077   // case of a promotion failure.
  4078   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4079     if (_objs_with_preserved_marks == NULL) {
  4080       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4081       _objs_with_preserved_marks =
  4082         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4083       _preserved_marks_of_objs =
  4084         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4086     _objs_with_preserved_marks->push(obj);
  4087     _preserved_marks_of_objs->push(m);
  4091 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4092                                                   size_t word_size) {
  4093   if (purpose == GCAllocForSurvived) {
  4094     HeapWord* result = survivor_attempt_allocation(word_size);
  4095     if (result != NULL) {
  4096       return result;
  4097     } else {
  4098       // Let's try to allocate in the old gen in case we can fit the
  4099       // object there.
  4100       return old_attempt_allocation(word_size);
  4102   } else {
  4103     assert(purpose ==  GCAllocForTenured, "sanity");
  4104     HeapWord* result = old_attempt_allocation(word_size);
  4105     if (result != NULL) {
  4106       return result;
  4107     } else {
  4108       // Let's try to allocate in the survivors in case we can fit the
  4109       // object there.
  4110       return survivor_attempt_allocation(word_size);
  4114   ShouldNotReachHere();
  4115   // Trying to keep some compilers happy.
  4116   return NULL;
  4119 #ifndef PRODUCT
  4120 bool GCLabBitMapClosure::do_bit(size_t offset) {
  4121   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  4122   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  4123   return true;
  4125 #endif // PRODUCT
  4127 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4128   ParGCAllocBuffer(gclab_word_size),
  4129   _should_mark_objects(false),
  4130   _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  4131   _retired(false)
  4133   //_should_mark_objects is set to true when G1ParCopyHelper needs to
  4134   // mark the forwarded location of an evacuated object.
  4135   // We set _should_mark_objects to true if marking is active, i.e. when we
  4136   // need to propagate a mark, or during an initial mark pause, i.e. when we
  4137   // need to mark objects immediately reachable by the roots.
  4138   if (G1CollectedHeap::heap()->mark_in_progress() ||
  4139       G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
  4140     _should_mark_objects = true;
  4144 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  4145   : _g1h(g1h),
  4146     _refs(g1h->task_queue(queue_num)),
  4147     _dcq(&g1h->dirty_card_queue_set()),
  4148     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4149     _g1_rem(g1h->g1_rem_set()),
  4150     _hash_seed(17), _queue_num(queue_num),
  4151     _term_attempts(0),
  4152     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4153     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4154     _age_table(false),
  4155     _strong_roots_time(0), _term_time(0),
  4156     _alloc_buffer_waste(0), _undo_waste(0)
  4158   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4159   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4160   // non-young regions (where the age is -1)
  4161   // We also add a few elements at the beginning and at the end in
  4162   // an attempt to eliminate cache contention
  4163   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  4164   size_t array_length = PADDING_ELEM_NUM +
  4165                         real_length +
  4166                         PADDING_ELEM_NUM;
  4167   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4168   if (_surviving_young_words_base == NULL)
  4169     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4170                           "Not enough space for young surv histo.");
  4171   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4172   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  4174   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4175   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4177   _start = os::elapsedTime();
  4180 void
  4181 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4183   st->print_raw_cr("GC Termination Stats");
  4184   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4185                    " ------waste (KiB)------");
  4186   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4187                    "  total   alloc    undo");
  4188   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4189                    " ------- ------- -------");
  4192 void
  4193 G1ParScanThreadState::print_termination_stats(int i,
  4194                                               outputStream* const st) const
  4196   const double elapsed_ms = elapsed_time() * 1000.0;
  4197   const double s_roots_ms = strong_roots_time() * 1000.0;
  4198   const double term_ms    = term_time() * 1000.0;
  4199   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4200                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4201                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4202                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4203                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4204                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4205                alloc_buffer_waste() * HeapWordSize / K,
  4206                undo_waste() * HeapWordSize / K);
  4209 #ifdef ASSERT
  4210 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4211   assert(ref != NULL, "invariant");
  4212   assert(UseCompressedOops, "sanity");
  4213   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4214   oop p = oopDesc::load_decode_heap_oop(ref);
  4215   assert(_g1h->is_in_g1_reserved(p),
  4216          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4217   return true;
  4220 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4221   assert(ref != NULL, "invariant");
  4222   if (has_partial_array_mask(ref)) {
  4223     // Must be in the collection set--it's already been copied.
  4224     oop p = clear_partial_array_mask(ref);
  4225     assert(_g1h->obj_in_cs(p),
  4226            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4227   } else {
  4228     oop p = oopDesc::load_decode_heap_oop(ref);
  4229     assert(_g1h->is_in_g1_reserved(p),
  4230            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4232   return true;
  4235 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4236   if (ref.is_narrow()) {
  4237     return verify_ref((narrowOop*) ref);
  4238   } else {
  4239     return verify_ref((oop*) ref);
  4242 #endif // ASSERT
  4244 void G1ParScanThreadState::trim_queue() {
  4245   assert(_evac_cl != NULL, "not set");
  4246   assert(_evac_failure_cl != NULL, "not set");
  4247   assert(_partial_scan_cl != NULL, "not set");
  4249   StarTask ref;
  4250   do {
  4251     // Drain the overflow stack first, so other threads can steal.
  4252     while (refs()->pop_overflow(ref)) {
  4253       deal_with_reference(ref);
  4256     while (refs()->pop_local(ref)) {
  4257       deal_with_reference(ref);
  4259   } while (!refs()->is_empty());
  4262 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  4263   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4264   _par_scan_state(par_scan_state),
  4265   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4266   _mark_in_progress(_g1->mark_in_progress()) { }
  4268 template <class T> void G1ParCopyHelper::mark_object(T* p) {
  4269   // This is called from do_oop_work for objects that are not
  4270   // in the collection set. Objects in the collection set
  4271   // are marked after they have been evacuated.
  4273   T heap_oop = oopDesc::load_heap_oop(p);
  4274   if (!oopDesc::is_null(heap_oop)) {
  4275     oop obj = oopDesc::decode_heap_oop(heap_oop);
  4276     HeapWord* addr = (HeapWord*)obj;
  4277     if (_g1->is_in_g1_reserved(addr)) {
  4278       _cm->grayRoot(oop(addr));
  4283 oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_root,
  4284                                                      bool should_mark_copy) {
  4285   size_t    word_sz = old->size();
  4286   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4287   // +1 to make the -1 indexes valid...
  4288   int       young_index = from_region->young_index_in_cset()+1;
  4289   assert( (from_region->is_young() && young_index > 0) ||
  4290           (!from_region->is_young() && young_index == 0), "invariant" );
  4291   G1CollectorPolicy* g1p = _g1->g1_policy();
  4292   markOop m = old->mark();
  4293   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4294                                            : m->age();
  4295   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4296                                                              word_sz);
  4297   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4298   oop       obj     = oop(obj_ptr);
  4300   if (obj_ptr == NULL) {
  4301     // This will either forward-to-self, or detect that someone else has
  4302     // installed a forwarding pointer.
  4303     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4304     return _g1->handle_evacuation_failure_par(cl, old, should_mark_root);
  4307   // We're going to allocate linearly, so might as well prefetch ahead.
  4308   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4310   oop forward_ptr = old->forward_to_atomic(obj);
  4311   if (forward_ptr == NULL) {
  4312     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4313     if (g1p->track_object_age(alloc_purpose)) {
  4314       // We could simply do obj->incr_age(). However, this causes a
  4315       // performance issue. obj->incr_age() will first check whether
  4316       // the object has a displaced mark by checking its mark word;
  4317       // getting the mark word from the new location of the object
  4318       // stalls. So, given that we already have the mark word and we
  4319       // are about to install it anyway, it's better to increase the
  4320       // age on the mark word, when the object does not have a
  4321       // displaced mark word. We're not expecting many objects to have
  4322       // a displaced marked word, so that case is not optimized
  4323       // further (it could be...) and we simply call obj->incr_age().
  4325       if (m->has_displaced_mark_helper()) {
  4326         // in this case, we have to install the mark word first,
  4327         // otherwise obj looks to be forwarded (the old mark word,
  4328         // which contains the forward pointer, was copied)
  4329         obj->set_mark(m);
  4330         obj->incr_age();
  4331       } else {
  4332         m = m->incr_age();
  4333         obj->set_mark(m);
  4335       _par_scan_state->age_table()->add(obj, word_sz);
  4336     } else {
  4337       obj->set_mark(m);
  4340     // Mark the evacuated object or propagate "next" mark bit
  4341     if (should_mark_copy) {
  4342       if (!use_local_bitmaps ||
  4343           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4344         // if we couldn't mark it on the local bitmap (this happens when
  4345         // the object was not allocated in the GCLab), we have to bite
  4346         // the bullet and do the standard parallel mark
  4347         _cm->markAndGrayObjectIfNecessary(obj);
  4350       if (_g1->isMarkedNext(old)) {
  4351         // Unmark the object's old location so that marking
  4352         // doesn't think the old object is alive.
  4353         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4357     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4358     surv_young_words[young_index] += word_sz;
  4360     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4361       arrayOop(old)->set_length(0);
  4362       oop* old_p = set_partial_array_mask(old);
  4363       _par_scan_state->push_on_queue(old_p);
  4364     } else {
  4365       // No point in using the slower heap_region_containing() method,
  4366       // given that we know obj is in the heap.
  4367       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4368       obj->oop_iterate_backwards(_scanner);
  4370   } else {
  4371     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4372     obj = forward_ptr;
  4374   return obj;
  4377 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4378 template <class T>
  4379 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4380 ::do_oop_work(T* p) {
  4381   oop obj = oopDesc::load_decode_heap_oop(p);
  4382   assert(barrier != G1BarrierRS || obj != NULL,
  4383          "Precondition: G1BarrierRS implies obj is nonNull");
  4385   // Marking:
  4386   // If the object is in the collection set, then the thread
  4387   // that copies the object should mark, or propagate the
  4388   // mark to, the evacuated object.
  4389   // If the object is not in the collection set then we
  4390   // should call the mark_object() method depending on the
  4391   // value of the template parameter do_mark_object (which will
  4392   // be true for root scanning closures during an initial mark
  4393   // pause).
  4394   // The mark_object() method first checks whether the object
  4395   // is marked and, if not, attempts to mark the object.
  4397   // here the null check is implicit in the cset_fast_test() test
  4398   if (_g1->in_cset_fast_test(obj)) {
  4399     if (obj->is_forwarded()) {
  4400       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  4401       // If we are a root scanning closure during an initial
  4402       // mark pause (i.e. do_mark_object will be true) then
  4403       // we also need to handle marking of roots in the
  4404       // event of an evacuation failure. In the event of an
  4405       // evacuation failure, the object is forwarded to itself
  4406       // and not copied. For root-scanning closures, the
  4407       // object would be marked after a successful self-forward
  4408       // but an object could be pointed to by both a root and non
  4409       // root location and be self-forwarded by a non-root-scanning
  4410       // closure. Therefore we also have to attempt to mark the
  4411       // self-forwarded root object here.
  4412       if (do_mark_object && obj->forwardee() == obj) {
  4413         mark_object(p);
  4415     } else {
  4416       // During an initial mark pause, objects that are pointed to
  4417       // by the roots need to be marked - even in the event of an
  4418       // evacuation failure. We pass the template parameter
  4419       // do_mark_object (which is true for root scanning closures
  4420       // during an initial mark pause) to copy_to_survivor_space
  4421       // which will pass it on to the evacuation failure handling
  4422       // code. The thread that successfully self-forwards a root
  4423       // object to itself is responsible for marking the object.
  4424       bool should_mark_root = do_mark_object;
  4426       // We need to mark the copied object if we're a root scanning
  4427       // closure during an initial mark pause (i.e. do_mark_object
  4428       // will be true), or the object is already marked and we need
  4429       // to propagate the mark to the evacuated copy.
  4430       bool should_mark_copy = do_mark_object ||
  4431                               _during_initial_mark ||
  4432                               (_mark_in_progress && !_g1->is_obj_ill(obj));
  4434       oop copy_oop = copy_to_survivor_space(obj, should_mark_root,
  4435                                                  should_mark_copy);
  4436       oopDesc::encode_store_heap_oop(p, copy_oop);
  4438     // When scanning the RS, we only care about objs in CS.
  4439     if (barrier == G1BarrierRS) {
  4440       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4442   } else {
  4443     // The object is not in collection set. If we're a root scanning
  4444     // closure during an initial mark pause (i.e. do_mark_object will
  4445     // be true) then attempt to mark the object.
  4446     if (do_mark_object) {
  4447       mark_object(p);
  4451   if (barrier == G1BarrierEvac && obj != NULL) {
  4452     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4455   if (do_gen_barrier && obj != NULL) {
  4456     par_do_barrier(p);
  4460 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4461 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4463 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4464   assert(has_partial_array_mask(p), "invariant");
  4465   oop old = clear_partial_array_mask(p);
  4466   assert(old->is_objArray(), "must be obj array");
  4467   assert(old->is_forwarded(), "must be forwarded");
  4468   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4470   objArrayOop obj = objArrayOop(old->forwardee());
  4471   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4472   // Process ParGCArrayScanChunk elements now
  4473   // and push the remainder back onto queue
  4474   int start     = arrayOop(old)->length();
  4475   int end       = obj->length();
  4476   int remainder = end - start;
  4477   assert(start <= end, "just checking");
  4478   if (remainder > 2 * ParGCArrayScanChunk) {
  4479     // Test above combines last partial chunk with a full chunk
  4480     end = start + ParGCArrayScanChunk;
  4481     arrayOop(old)->set_length(end);
  4482     // Push remainder.
  4483     oop* old_p = set_partial_array_mask(old);
  4484     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  4485     _par_scan_state->push_on_queue(old_p);
  4486   } else {
  4487     // Restore length so that the heap remains parsable in
  4488     // case of evacuation failure.
  4489     arrayOop(old)->set_length(end);
  4491   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4492   // process our set of indices (include header in first chunk)
  4493   obj->oop_iterate_range(&_scanner, start, end);
  4496 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4497 protected:
  4498   G1CollectedHeap*              _g1h;
  4499   G1ParScanThreadState*         _par_scan_state;
  4500   RefToScanQueueSet*            _queues;
  4501   ParallelTaskTerminator*       _terminator;
  4503   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4504   RefToScanQueueSet*      queues()         { return _queues; }
  4505   ParallelTaskTerminator* terminator()     { return _terminator; }
  4507 public:
  4508   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4509                                 G1ParScanThreadState* par_scan_state,
  4510                                 RefToScanQueueSet* queues,
  4511                                 ParallelTaskTerminator* terminator)
  4512     : _g1h(g1h), _par_scan_state(par_scan_state),
  4513       _queues(queues), _terminator(terminator) {}
  4515   void do_void();
  4517 private:
  4518   inline bool offer_termination();
  4519 };
  4521 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4522   G1ParScanThreadState* const pss = par_scan_state();
  4523   pss->start_term_time();
  4524   const bool res = terminator()->offer_termination();
  4525   pss->end_term_time();
  4526   return res;
  4529 void G1ParEvacuateFollowersClosure::do_void() {
  4530   StarTask stolen_task;
  4531   G1ParScanThreadState* const pss = par_scan_state();
  4532   pss->trim_queue();
  4534   do {
  4535     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4536       assert(pss->verify_task(stolen_task), "sanity");
  4537       if (stolen_task.is_narrow()) {
  4538         pss->deal_with_reference((narrowOop*) stolen_task);
  4539       } else {
  4540         pss->deal_with_reference((oop*) stolen_task);
  4543       // We've just processed a reference and we might have made
  4544       // available new entries on the queues. So we have to make sure
  4545       // we drain the queues as necessary.
  4546       pss->trim_queue();
  4548   } while (!offer_termination());
  4550   pss->retire_alloc_buffers();
  4553 class G1ParTask : public AbstractGangTask {
  4554 protected:
  4555   G1CollectedHeap*       _g1h;
  4556   RefToScanQueueSet      *_queues;
  4557   ParallelTaskTerminator _terminator;
  4558   int _n_workers;
  4560   Mutex _stats_lock;
  4561   Mutex* stats_lock() { return &_stats_lock; }
  4563   size_t getNCards() {
  4564     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4565       / G1BlockOffsetSharedArray::N_bytes;
  4568 public:
  4569   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4570     : AbstractGangTask("G1 collection"),
  4571       _g1h(g1h),
  4572       _queues(task_queues),
  4573       _terminator(workers, _queues),
  4574       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  4575       _n_workers(workers)
  4576   {}
  4578   RefToScanQueueSet* queues() { return _queues; }
  4580   RefToScanQueue *work_queue(int i) {
  4581     return queues()->queue(i);
  4584   void work(int i) {
  4585     if (i >= _n_workers) return;  // no work needed this round
  4587     double start_time_ms = os::elapsedTime() * 1000.0;
  4588     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
  4590     ResourceMark rm;
  4591     HandleMark   hm;
  4593     ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4595     G1ParScanThreadState            pss(_g1h, i);
  4596     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4597     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4598     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4600     pss.set_evac_closure(&scan_evac_cl);
  4601     pss.set_evac_failure_closure(&evac_failure_cl);
  4602     pss.set_partial_scan_closure(&partial_scan_cl);
  4604     G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4605     G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4607     G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4608     G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4610     OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4611     OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4613     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4614       // We also need to mark copied objects.
  4615       scan_root_cl = &scan_mark_root_cl;
  4616       scan_perm_cl = &scan_mark_perm_cl;
  4619     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4621     pss.start_strong_roots();
  4622     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4623                                   SharedHeap::SO_AllClasses,
  4624                                   scan_root_cl,
  4625                                   &push_heap_rs_cl,
  4626                                   scan_perm_cl,
  4627                                   i);
  4628     pss.end_strong_roots();
  4631       double start = os::elapsedTime();
  4632       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4633       evac.do_void();
  4634       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4635       double term_ms = pss.term_time()*1000.0;
  4636       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4637       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
  4639     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4640     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4642     // Clean up any par-expanded rem sets.
  4643     HeapRegionRemSet::par_cleanup();
  4645     if (ParallelGCVerbose) {
  4646       MutexLocker x(stats_lock());
  4647       pss.print_termination_stats(i);
  4650     assert(pss.refs()->is_empty(), "should be empty");
  4651     double end_time_ms = os::elapsedTime() * 1000.0;
  4652     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
  4654 };
  4656 // *** Common G1 Evacuation Stuff
  4658 // This method is run in a GC worker.
  4660 void
  4661 G1CollectedHeap::
  4662 g1_process_strong_roots(bool collecting_perm_gen,
  4663                         SharedHeap::ScanningOption so,
  4664                         OopClosure* scan_non_heap_roots,
  4665                         OopsInHeapRegionClosure* scan_rs,
  4666                         OopsInGenClosure* scan_perm,
  4667                         int worker_i) {
  4669   // First scan the strong roots, including the perm gen.
  4670   double ext_roots_start = os::elapsedTime();
  4671   double closure_app_time_sec = 0.0;
  4673   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4674   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4675   buf_scan_perm.set_generation(perm_gen());
  4677   // Walk the code cache w/o buffering, because StarTask cannot handle
  4678   // unaligned oop locations.
  4679   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4681   process_strong_roots(false, // no scoping; this is parallel code
  4682                        collecting_perm_gen, so,
  4683                        &buf_scan_non_heap_roots,
  4684                        &eager_scan_code_roots,
  4685                        &buf_scan_perm);
  4687   // Now the CM ref_processor roots.
  4688   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4689     // We need to treat the discovered reference lists of the
  4690     // concurrent mark ref processor as roots and keep entries
  4691     // (which are added by the marking threads) on them live
  4692     // until they can be processed at the end of marking.
  4693     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4696   // Finish up any enqueued closure apps (attributed as object copy time).
  4697   buf_scan_non_heap_roots.done();
  4698   buf_scan_perm.done();
  4700   double ext_roots_end = os::elapsedTime();
  4702   g1_policy()->reset_obj_copy_time(worker_i);
  4703   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4704                                 buf_scan_non_heap_roots.closure_app_seconds();
  4705   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4707   double ext_root_time_ms =
  4708     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4710   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4712   // Scan strong roots in mark stack.
  4713   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4714     concurrent_mark()->oops_do(scan_non_heap_roots);
  4716   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4717   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4719   // Now scan the complement of the collection set.
  4720   if (scan_rs != NULL) {
  4721     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4724   _process_strong_tasks->all_tasks_completed();
  4727 void
  4728 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4729                                        OopClosure* non_root_closure) {
  4730   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4731   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4734 // Weak Reference Processing support
  4736 // An always "is_alive" closure that is used to preserve referents.
  4737 // If the object is non-null then it's alive.  Used in the preservation
  4738 // of referent objects that are pointed to by reference objects
  4739 // discovered by the CM ref processor.
  4740 class G1AlwaysAliveClosure: public BoolObjectClosure {
  4741   G1CollectedHeap* _g1;
  4742 public:
  4743   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4744   void do_object(oop p) { assert(false, "Do not call."); }
  4745   bool do_object_b(oop p) {
  4746     if (p != NULL) {
  4747       return true;
  4749     return false;
  4751 };
  4753 bool G1STWIsAliveClosure::do_object_b(oop p) {
  4754   // An object is reachable if it is outside the collection set,
  4755   // or is inside and copied.
  4756   return !_g1->obj_in_cs(p) || p->is_forwarded();
  4759 // Non Copying Keep Alive closure
  4760 class G1KeepAliveClosure: public OopClosure {
  4761   G1CollectedHeap* _g1;
  4762 public:
  4763   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  4764   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  4765   void do_oop(      oop* p) {
  4766     oop obj = *p;
  4768     if (_g1->obj_in_cs(obj)) {
  4769       assert( obj->is_forwarded(), "invariant" );
  4770       *p = obj->forwardee();
  4773 };
  4775 // Copying Keep Alive closure - can be called from both
  4776 // serial and parallel code as long as different worker
  4777 // threads utilize different G1ParScanThreadState instances
  4778 // and different queues.
  4780 class G1CopyingKeepAliveClosure: public OopClosure {
  4781   G1CollectedHeap*         _g1h;
  4782   OopClosure*              _copy_non_heap_obj_cl;
  4783   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  4784   G1ParScanThreadState*    _par_scan_state;
  4786 public:
  4787   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  4788                             OopClosure* non_heap_obj_cl,
  4789                             OopsInHeapRegionClosure* perm_obj_cl,
  4790                             G1ParScanThreadState* pss):
  4791     _g1h(g1h),
  4792     _copy_non_heap_obj_cl(non_heap_obj_cl),
  4793     _copy_perm_obj_cl(perm_obj_cl),
  4794     _par_scan_state(pss)
  4795   {}
  4797   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  4798   virtual void do_oop(      oop* p) { do_oop_work(p); }
  4800   template <class T> void do_oop_work(T* p) {
  4801     oop obj = oopDesc::load_decode_heap_oop(p);
  4803     if (_g1h->obj_in_cs(obj)) {
  4804       // If the referent object has been forwarded (either copied
  4805       // to a new location or to itself in the event of an
  4806       // evacuation failure) then we need to update the reference
  4807       // field and, if both reference and referent are in the G1
  4808       // heap, update the RSet for the referent.
  4809       //
  4810       // If the referent has not been forwarded then we have to keep
  4811       // it alive by policy. Therefore we have copy the referent.
  4812       //
  4813       // If the reference field is in the G1 heap then we can push
  4814       // on the PSS queue. When the queue is drained (after each
  4815       // phase of reference processing) the object and it's followers
  4816       // will be copied, the reference field set to point to the
  4817       // new location, and the RSet updated. Otherwise we need to
  4818       // use the the non-heap or perm closures directly to copy
  4819       // the refernt object and update the pointer, while avoiding
  4820       // updating the RSet.
  4822       if (_g1h->is_in_g1_reserved(p)) {
  4823         _par_scan_state->push_on_queue(p);
  4824       } else {
  4825         // The reference field is not in the G1 heap.
  4826         if (_g1h->perm_gen()->is_in(p)) {
  4827           _copy_perm_obj_cl->do_oop(p);
  4828         } else {
  4829           _copy_non_heap_obj_cl->do_oop(p);
  4834 };
  4836 // Serial drain queue closure. Called as the 'complete_gc'
  4837 // closure for each discovered list in some of the
  4838 // reference processing phases.
  4840 class G1STWDrainQueueClosure: public VoidClosure {
  4841 protected:
  4842   G1CollectedHeap* _g1h;
  4843   G1ParScanThreadState* _par_scan_state;
  4845   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4847 public:
  4848   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  4849     _g1h(g1h),
  4850     _par_scan_state(pss)
  4851   { }
  4853   void do_void() {
  4854     G1ParScanThreadState* const pss = par_scan_state();
  4855     pss->trim_queue();
  4857 };
  4859 // Parallel Reference Processing closures
  4861 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  4862 // processing during G1 evacuation pauses.
  4864 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  4865 private:
  4866   G1CollectedHeap*   _g1h;
  4867   RefToScanQueueSet* _queues;
  4868   WorkGang*          _workers;
  4869   int                _active_workers;
  4871 public:
  4872   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  4873                         WorkGang* workers,
  4874                         RefToScanQueueSet *task_queues,
  4875                         int n_workers) :
  4876     _g1h(g1h),
  4877     _queues(task_queues),
  4878     _workers(workers),
  4879     _active_workers(n_workers)
  4881     assert(n_workers > 0, "shouldn't call this otherwise");
  4884   // Executes the given task using concurrent marking worker threads.
  4885   virtual void execute(ProcessTask& task);
  4886   virtual void execute(EnqueueTask& task);
  4887 };
  4889 // Gang task for possibly parallel reference processing
  4891 class G1STWRefProcTaskProxy: public AbstractGangTask {
  4892   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  4893   ProcessTask&     _proc_task;
  4894   G1CollectedHeap* _g1h;
  4895   RefToScanQueueSet *_task_queues;
  4896   ParallelTaskTerminator* _terminator;
  4898 public:
  4899   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  4900                      G1CollectedHeap* g1h,
  4901                      RefToScanQueueSet *task_queues,
  4902                      ParallelTaskTerminator* terminator) :
  4903     AbstractGangTask("Process reference objects in parallel"),
  4904     _proc_task(proc_task),
  4905     _g1h(g1h),
  4906     _task_queues(task_queues),
  4907     _terminator(terminator)
  4908   {}
  4910   virtual void work(int i) {
  4911     // The reference processing task executed by a single worker.
  4912     ResourceMark rm;
  4913     HandleMark   hm;
  4915     G1STWIsAliveClosure is_alive(_g1h);
  4917     G1ParScanThreadState pss(_g1h, i);
  4919     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  4920     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  4921     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  4923     pss.set_evac_closure(&scan_evac_cl);
  4924     pss.set_evac_failure_closure(&evac_failure_cl);
  4925     pss.set_partial_scan_closure(&partial_scan_cl);
  4927     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  4928     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  4930     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  4931     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  4933     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  4934     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  4936     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4937       // We also need to mark copied objects.
  4938       copy_non_heap_cl = &copy_mark_non_heap_cl;
  4939       copy_perm_cl = &copy_mark_perm_cl;
  4942     // Keep alive closure.
  4943     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  4945     // Complete GC closure
  4946     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  4948     // Call the reference processing task's work routine.
  4949     _proc_task.work(i, is_alive, keep_alive, drain_queue);
  4951     // Note we cannot assert that the refs array is empty here as not all
  4952     // of the processing tasks (specifically phase2 - pp2_work) execute
  4953     // the complete_gc closure (which ordinarily would drain the queue) so
  4954     // the queue may not be empty.
  4956 };
  4958 // Driver routine for parallel reference processing.
  4959 // Creates an instance of the ref processing gang
  4960 // task and has the worker threads execute it.
  4961 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  4962   assert(_workers != NULL, "Need parallel worker threads.");
  4964   ParallelTaskTerminator terminator(_active_workers, _queues);
  4965   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  4967   _g1h->set_par_threads(_active_workers);
  4968   _workers->run_task(&proc_task_proxy);
  4969   _g1h->set_par_threads(0);
  4972 // Gang task for parallel reference enqueueing.
  4974 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  4975   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  4976   EnqueueTask& _enq_task;
  4978 public:
  4979   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  4980     AbstractGangTask("Enqueue reference objects in parallel"),
  4981     _enq_task(enq_task)
  4982   { }
  4984   virtual void work(int i) {
  4985     _enq_task.work(i);
  4987 };
  4989 // Driver routine for parallel reference enqueing.
  4990 // Creates an instance of the ref enqueueing gang
  4991 // task and has the worker threads execute it.
  4993 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  4994   assert(_workers != NULL, "Need parallel worker threads.");
  4996   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  4998   _g1h->set_par_threads(_active_workers);
  4999   _workers->run_task(&enq_task_proxy);
  5000   _g1h->set_par_threads(0);
  5003 // End of weak reference support closures
  5005 // Abstract task used to preserve (i.e. copy) any referent objects
  5006 // that are in the collection set and are pointed to by reference
  5007 // objects discovered by the CM ref processor.
  5009 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5010 protected:
  5011   G1CollectedHeap* _g1h;
  5012   RefToScanQueueSet      *_queues;
  5013   ParallelTaskTerminator _terminator;
  5014   int _n_workers;
  5016 public:
  5017   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5018     AbstractGangTask("ParPreserveCMReferents"),
  5019     _g1h(g1h),
  5020     _queues(task_queues),
  5021     _terminator(workers, _queues),
  5022     _n_workers(workers)
  5023   { }
  5025   void work(int i) {
  5026     ResourceMark rm;
  5027     HandleMark   hm;
  5029     G1ParScanThreadState            pss(_g1h, i);
  5030     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5031     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5032     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5034     pss.set_evac_closure(&scan_evac_cl);
  5035     pss.set_evac_failure_closure(&evac_failure_cl);
  5036     pss.set_partial_scan_closure(&partial_scan_cl);
  5038     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5041     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5042     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5044     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5045     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5047     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5048     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5050     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5051       // We also need to mark copied objects.
  5052       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5053       copy_perm_cl = &copy_mark_perm_cl;
  5056     // Is alive closure
  5057     G1AlwaysAliveClosure always_alive(_g1h);
  5059     // Copying keep alive closure. Applied to referent objects that need
  5060     // to be copied.
  5061     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5063     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5065     int limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5066     int stride = MIN2(MAX2(_n_workers, 1), limit);
  5068     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5069     // So this must be true - but assert just in case someone decides to
  5070     // change the worker ids.
  5071     assert(0 <= i && i < limit, "sanity");
  5072     assert(!rp->discovery_is_atomic(), "check this code");
  5074     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5075     for (int idx = i; idx < limit; idx += stride) {
  5076       DiscoveredList& ref_list = rp->discovered_soft_refs()[idx];
  5078       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5079       while (iter.has_next()) {
  5080         // Since discovery is not atomic for the CM ref processor, we
  5081         // can see some null referent objects.
  5082         iter.load_ptrs(DEBUG_ONLY(true));
  5083         oop ref = iter.obj();
  5085         // This will filter nulls.
  5086         if (iter.is_referent_alive()) {
  5087           iter.make_referent_alive();
  5089         iter.move_to_next();
  5093     // Drain the queue - which may cause stealing
  5094     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5095     drain_queue.do_void();
  5096     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5097     assert(pss.refs()->is_empty(), "should be");
  5099 };
  5101 // Weak Reference processing during an evacuation pause (part 1).
  5102 void G1CollectedHeap::process_discovered_references() {
  5103   double ref_proc_start = os::elapsedTime();
  5105   ReferenceProcessor* rp = _ref_processor_stw;
  5106   assert(rp->discovery_enabled(), "should have been enabled");
  5108   // Any reference objects, in the collection set, that were 'discovered'
  5109   // by the CM ref processor should have already been copied (either by
  5110   // applying the external root copy closure to the discovered lists, or
  5111   // by following an RSet entry).
  5112   //
  5113   // But some of the referents, that are in the collection set, that these
  5114   // reference objects point to may not have been copied: the STW ref
  5115   // processor would have seen that the reference object had already
  5116   // been 'discovered' and would have skipped discovering the reference,
  5117   // but would not have treated the reference object as a regular oop.
  5118   // As a reult the copy closure would not have been applied to the
  5119   // referent object.
  5120   //
  5121   // We need to explicitly copy these referent objects - the references
  5122   // will be processed at the end of remarking.
  5123   //
  5124   // We also need to do this copying before we process the reference
  5125   // objects discovered by the STW ref processor in case one of these
  5126   // referents points to another object which is also referenced by an
  5127   // object discovered by the STW ref processor.
  5129   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5130                         workers()->total_workers() : 1);
  5132   set_par_threads(n_workers);
  5133   G1ParPreserveCMReferentsTask keep_cm_referents(this, n_workers, _task_queues);
  5135   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5136     workers()->run_task(&keep_cm_referents);
  5137   } else {
  5138     keep_cm_referents.work(0);
  5141   set_par_threads(0);
  5143   // Closure to test whether a referent is alive.
  5144   G1STWIsAliveClosure is_alive(this);
  5146   // Even when parallel reference processing is enabled, the processing
  5147   // of JNI refs is serial and performed serially by the current thread
  5148   // rather than by a worker. The following PSS will be used for processing
  5149   // JNI refs.
  5151   // Use only a single queue for this PSS.
  5152   G1ParScanThreadState pss(this, 0);
  5154   // We do not embed a reference processor in the copying/scanning
  5155   // closures while we're actually processing the discovered
  5156   // reference objects.
  5157   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5158   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5159   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5161   pss.set_evac_closure(&scan_evac_cl);
  5162   pss.set_evac_failure_closure(&evac_failure_cl);
  5163   pss.set_partial_scan_closure(&partial_scan_cl);
  5165   assert(pss.refs()->is_empty(), "pre-condition");
  5167   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5168   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5170   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5171   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5173   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5174   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5176   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5177     // We also need to mark copied objects.
  5178     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5179     copy_perm_cl = &copy_mark_perm_cl;
  5182   // Keep alive closure.
  5183   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5185   // Serial Complete GC closure
  5186   G1STWDrainQueueClosure drain_queue(this, &pss);
  5188   // Setup the soft refs policy...
  5189   rp->setup_policy(false);
  5191   if (!rp->processing_is_mt()) {
  5192     // Serial reference processing...
  5193     rp->process_discovered_references(&is_alive,
  5194                                       &keep_alive,
  5195                                       &drain_queue,
  5196                                       NULL);
  5197   } else {
  5198     // Parallel reference processing
  5199     int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  5200     assert(rp->num_q() == active_workers, "sanity");
  5201     assert(active_workers <= rp->max_num_q(), "sanity");
  5203     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5204     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5207   // We have completed copying any necessary live referent objects
  5208   // (that were not copied during the actual pause) so we can
  5209   // retire any active alloc buffers
  5210   pss.retire_alloc_buffers();
  5211   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5213   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5214   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
  5217 // Weak Reference processing during an evacuation pause (part 2).
  5218 void G1CollectedHeap::enqueue_discovered_references() {
  5219   double ref_enq_start = os::elapsedTime();
  5221   ReferenceProcessor* rp = _ref_processor_stw;
  5222   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5224   // Now enqueue any remaining on the discovered lists on to
  5225   // the pending list.
  5226   if (!rp->processing_is_mt()) {
  5227     // Serial reference processing...
  5228     rp->enqueue_discovered_references();
  5229   } else {
  5230     // Parallel reference enqueuing
  5232     int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  5233     assert(rp->num_q() == active_workers, "sanity");
  5234     assert(active_workers <= rp->max_num_q(), "sanity");
  5236     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5237     rp->enqueue_discovered_references(&par_task_executor);
  5240   rp->verify_no_references_recorded();
  5241   assert(!rp->discovery_enabled(), "should have been disabled");
  5243   // FIXME
  5244   // CM's reference processing also cleans up the string and symbol tables.
  5245   // Should we do that here also? We could, but it is a serial operation
  5246   // and could signicantly increase the pause time.
  5248   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5249   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
  5252 void G1CollectedHeap::evacuate_collection_set() {
  5253   set_evacuation_failed(false);
  5255   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5256   concurrent_g1_refine()->set_use_cache(false);
  5257   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5259   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  5260   set_par_threads(n_workers);
  5261   G1ParTask g1_par_task(this, n_workers, _task_queues);
  5263   init_for_evac_failure(NULL);
  5265   rem_set()->prepare_for_younger_refs_iterate(true);
  5267   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5268   double start_par = os::elapsedTime();
  5270   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5271     // The individual threads will set their evac-failure closures.
  5272     StrongRootsScope srs(this);
  5273     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5274     workers()->run_task(&g1_par_task);
  5275   } else {
  5276     StrongRootsScope srs(this);
  5277     g1_par_task.work(0);
  5280   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  5281   g1_policy()->record_par_time(par_time);
  5282   set_par_threads(0);
  5284   // Process any discovered reference objects - we have
  5285   // to do this _before_ we retire the GC alloc regions
  5286   // as we may have to copy some 'reachable' referent
  5287   // objects (and their reachable sub-graphs) that were
  5288   // not copied during the pause.
  5289   process_discovered_references();
  5291   // Weak root processing.
  5292   // Note: when JSR 292 is enabled and code blobs can contain
  5293   // non-perm oops then we will need to process the code blobs
  5294   // here too.
  5296     G1STWIsAliveClosure is_alive(this);
  5297     G1KeepAliveClosure keep_alive(this);
  5298     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5301   release_gc_alloc_regions();
  5302   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5304   concurrent_g1_refine()->clear_hot_cache();
  5305   concurrent_g1_refine()->set_use_cache(true);
  5307   finalize_for_evac_failure();
  5309   // Must do this before removing self-forwarding pointers, which clears
  5310   // the per-region evac-failure flags.
  5311   concurrent_mark()->complete_marking_in_collection_set();
  5313   if (evacuation_failed()) {
  5314     remove_self_forwarding_pointers();
  5315     if (PrintGCDetails) {
  5316       gclog_or_tty->print(" (to-space overflow)");
  5317     } else if (PrintGC) {
  5318       gclog_or_tty->print("--");
  5322   // Enqueue any remaining references remaining on the STW
  5323   // reference processor's discovered lists. We need to do
  5324   // this after the card table is cleaned (and verified) as
  5325   // the act of enqueuing entries on to the pending list
  5326   // will log these updates (and dirty their associated
  5327   // cards). We need these updates logged to update any
  5328   // RSets.
  5329   enqueue_discovered_references();
  5331   if (G1DeferredRSUpdate) {
  5332     RedirtyLoggedCardTableEntryFastClosure redirty;
  5333     dirty_card_queue_set().set_closure(&redirty);
  5334     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5336     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5337     dcq.merge_bufferlists(&dirty_card_queue_set());
  5338     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5340   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5343 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5344                                      size_t* pre_used,
  5345                                      FreeRegionList* free_list,
  5346                                      HumongousRegionSet* humongous_proxy_set,
  5347                                      HRRSCleanupTask* hrrs_cleanup_task,
  5348                                      bool par) {
  5349   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5350     if (hr->isHumongous()) {
  5351       assert(hr->startsHumongous(), "we should only see starts humongous");
  5352       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5353     } else {
  5354       free_region(hr, pre_used, free_list, par);
  5356   } else {
  5357     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5361 void G1CollectedHeap::free_region(HeapRegion* hr,
  5362                                   size_t* pre_used,
  5363                                   FreeRegionList* free_list,
  5364                                   bool par) {
  5365   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5366   assert(!hr->is_empty(), "the region should not be empty");
  5367   assert(free_list != NULL, "pre-condition");
  5369   *pre_used += hr->used();
  5370   hr->hr_clear(par, true /* clear_space */);
  5371   free_list->add_as_head(hr);
  5374 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5375                                      size_t* pre_used,
  5376                                      FreeRegionList* free_list,
  5377                                      HumongousRegionSet* humongous_proxy_set,
  5378                                      bool par) {
  5379   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5380   assert(free_list != NULL, "pre-condition");
  5381   assert(humongous_proxy_set != NULL, "pre-condition");
  5383   size_t hr_used = hr->used();
  5384   size_t hr_capacity = hr->capacity();
  5385   size_t hr_pre_used = 0;
  5386   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5387   hr->set_notHumongous();
  5388   free_region(hr, &hr_pre_used, free_list, par);
  5390   size_t i = hr->hrs_index() + 1;
  5391   size_t num = 1;
  5392   while (i < n_regions()) {
  5393     HeapRegion* curr_hr = region_at(i);
  5394     if (!curr_hr->continuesHumongous()) {
  5395       break;
  5397     curr_hr->set_notHumongous();
  5398     free_region(curr_hr, &hr_pre_used, free_list, par);
  5399     num += 1;
  5400     i += 1;
  5402   assert(hr_pre_used == hr_used,
  5403          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5404                  "should be the same", hr_pre_used, hr_used));
  5405   *pre_used += hr_pre_used;
  5408 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5409                                        FreeRegionList* free_list,
  5410                                        HumongousRegionSet* humongous_proxy_set,
  5411                                        bool par) {
  5412   if (pre_used > 0) {
  5413     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5414     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5415     assert(_summary_bytes_used >= pre_used,
  5416            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5417                    "should be >= pre_used: "SIZE_FORMAT,
  5418                    _summary_bytes_used, pre_used));
  5419     _summary_bytes_used -= pre_used;
  5421   if (free_list != NULL && !free_list->is_empty()) {
  5422     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5423     _free_list.add_as_head(free_list);
  5425   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5426     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5427     _humongous_set.update_from_proxy(humongous_proxy_set);
  5431 class G1ParCleanupCTTask : public AbstractGangTask {
  5432   CardTableModRefBS* _ct_bs;
  5433   G1CollectedHeap* _g1h;
  5434   HeapRegion* volatile _su_head;
  5435 public:
  5436   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5437                      G1CollectedHeap* g1h) :
  5438     AbstractGangTask("G1 Par Cleanup CT Task"),
  5439     _ct_bs(ct_bs), _g1h(g1h) { }
  5441   void work(int i) {
  5442     HeapRegion* r;
  5443     while (r = _g1h->pop_dirty_cards_region()) {
  5444       clear_cards(r);
  5448   void clear_cards(HeapRegion* r) {
  5449     // Cards of the survivors should have already been dirtied.
  5450     if (!r->is_survivor()) {
  5451       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5454 };
  5456 #ifndef PRODUCT
  5457 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5458   G1CollectedHeap* _g1h;
  5459   CardTableModRefBS* _ct_bs;
  5460 public:
  5461   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5462     : _g1h(g1h), _ct_bs(ct_bs) { }
  5463   virtual bool doHeapRegion(HeapRegion* r) {
  5464     if (r->is_survivor()) {
  5465       _g1h->verify_dirty_region(r);
  5466     } else {
  5467       _g1h->verify_not_dirty_region(r);
  5469     return false;
  5471 };
  5473 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5474   // All of the region should be clean.
  5475   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5476   MemRegion mr(hr->bottom(), hr->end());
  5477   ct_bs->verify_not_dirty_region(mr);
  5480 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5481   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5482   // dirty allocated blocks as they allocate them. The thread that
  5483   // retires each region and replaces it with a new one will do a
  5484   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5485   // not dirty that area (one less thing to have to do while holding
  5486   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5487   // is dirty.
  5488   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5489   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5490   ct_bs->verify_dirty_region(mr);
  5493 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5494   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5495   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5496     verify_dirty_region(hr);
  5500 void G1CollectedHeap::verify_dirty_young_regions() {
  5501   verify_dirty_young_list(_young_list->first_region());
  5502   verify_dirty_young_list(_young_list->first_survivor_region());
  5504 #endif
  5506 void G1CollectedHeap::cleanUpCardTable() {
  5507   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5508   double start = os::elapsedTime();
  5510   // Iterate over the dirty cards region list.
  5511   G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5513   if (ParallelGCThreads > 0) {
  5514     set_par_threads(workers()->total_workers());
  5515     workers()->run_task(&cleanup_task);
  5516     set_par_threads(0);
  5517   } else {
  5518     while (_dirty_cards_region_list) {
  5519       HeapRegion* r = _dirty_cards_region_list;
  5520       cleanup_task.clear_cards(r);
  5521       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5522       if (_dirty_cards_region_list == r) {
  5523         // The last region.
  5524         _dirty_cards_region_list = NULL;
  5526       r->set_next_dirty_cards_region(NULL);
  5530   double elapsed = os::elapsedTime() - start;
  5531   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
  5532 #ifndef PRODUCT
  5533   if (G1VerifyCTCleanup || VerifyAfterGC) {
  5534     G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5535     heap_region_iterate(&cleanup_verifier);
  5537 #endif
  5540 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5541   size_t pre_used = 0;
  5542   FreeRegionList local_free_list("Local List for CSet Freeing");
  5544   double young_time_ms     = 0.0;
  5545   double non_young_time_ms = 0.0;
  5547   // Since the collection set is a superset of the the young list,
  5548   // all we need to do to clear the young list is clear its
  5549   // head and length, and unlink any young regions in the code below
  5550   _young_list->clear();
  5552   G1CollectorPolicy* policy = g1_policy();
  5554   double start_sec = os::elapsedTime();
  5555   bool non_young = true;
  5557   HeapRegion* cur = cs_head;
  5558   int age_bound = -1;
  5559   size_t rs_lengths = 0;
  5561   while (cur != NULL) {
  5562     assert(!is_on_master_free_list(cur), "sanity");
  5564     if (non_young) {
  5565       if (cur->is_young()) {
  5566         double end_sec = os::elapsedTime();
  5567         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5568         non_young_time_ms += elapsed_ms;
  5570         start_sec = os::elapsedTime();
  5571         non_young = false;
  5573     } else {
  5574       double end_sec = os::elapsedTime();
  5575       double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5576       young_time_ms += elapsed_ms;
  5578       start_sec = os::elapsedTime();
  5579       non_young = true;
  5582     rs_lengths += cur->rem_set()->occupied();
  5584     HeapRegion* next = cur->next_in_collection_set();
  5585     assert(cur->in_collection_set(), "bad CS");
  5586     cur->set_next_in_collection_set(NULL);
  5587     cur->set_in_collection_set(false);
  5589     if (cur->is_young()) {
  5590       int index = cur->young_index_in_cset();
  5591       guarantee( index != -1, "invariant" );
  5592       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  5593       size_t words_survived = _surviving_young_words[index];
  5594       cur->record_surv_words_in_group(words_survived);
  5596       // At this point the we have 'popped' cur from the collection set
  5597       // (linked via next_in_collection_set()) but it is still in the
  5598       // young list (linked via next_young_region()). Clear the
  5599       // _next_young_region field.
  5600       cur->set_next_young_region(NULL);
  5601     } else {
  5602       int index = cur->young_index_in_cset();
  5603       guarantee( index == -1, "invariant" );
  5606     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5607             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5608             "invariant" );
  5610     if (!cur->evacuation_failed()) {
  5611       // And the region is empty.
  5612       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
  5613       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5614     } else {
  5615       cur->uninstall_surv_rate_group();
  5616       if (cur->is_young())
  5617         cur->set_young_index_in_cset(-1);
  5618       cur->set_not_young();
  5619       cur->set_evacuation_failed(false);
  5621     cur = next;
  5624   policy->record_max_rs_lengths(rs_lengths);
  5625   policy->cset_regions_freed();
  5627   double end_sec = os::elapsedTime();
  5628   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5629   if (non_young)
  5630     non_young_time_ms += elapsed_ms;
  5631   else
  5632     young_time_ms += elapsed_ms;
  5634   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5635                                     NULL /* humongous_proxy_set */,
  5636                                     false /* par */);
  5637   policy->record_young_free_cset_time_ms(young_time_ms);
  5638   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5641 // This routine is similar to the above but does not record
  5642 // any policy statistics or update free lists; we are abandoning
  5643 // the current incremental collection set in preparation of a
  5644 // full collection. After the full GC we will start to build up
  5645 // the incremental collection set again.
  5646 // This is only called when we're doing a full collection
  5647 // and is immediately followed by the tearing down of the young list.
  5649 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5650   HeapRegion* cur = cs_head;
  5652   while (cur != NULL) {
  5653     HeapRegion* next = cur->next_in_collection_set();
  5654     assert(cur->in_collection_set(), "bad CS");
  5655     cur->set_next_in_collection_set(NULL);
  5656     cur->set_in_collection_set(false);
  5657     cur->set_young_index_in_cset(-1);
  5658     cur = next;
  5662 void G1CollectedHeap::set_free_regions_coming() {
  5663   if (G1ConcRegionFreeingVerbose) {
  5664     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5665                            "setting free regions coming");
  5668   assert(!free_regions_coming(), "pre-condition");
  5669   _free_regions_coming = true;
  5672 void G1CollectedHeap::reset_free_regions_coming() {
  5674     assert(free_regions_coming(), "pre-condition");
  5675     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5676     _free_regions_coming = false;
  5677     SecondaryFreeList_lock->notify_all();
  5680   if (G1ConcRegionFreeingVerbose) {
  5681     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5682                            "reset free regions coming");
  5686 void G1CollectedHeap::wait_while_free_regions_coming() {
  5687   // Most of the time we won't have to wait, so let's do a quick test
  5688   // first before we take the lock.
  5689   if (!free_regions_coming()) {
  5690     return;
  5693   if (G1ConcRegionFreeingVerbose) {
  5694     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5695                            "waiting for free regions");
  5699     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5700     while (free_regions_coming()) {
  5701       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5705   if (G1ConcRegionFreeingVerbose) {
  5706     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5707                            "done waiting for free regions");
  5711 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5712   assert(heap_lock_held_for_gc(),
  5713               "the heap lock should already be held by or for this thread");
  5714   _young_list->push_region(hr);
  5715   g1_policy()->set_region_short_lived(hr);
  5718 class NoYoungRegionsClosure: public HeapRegionClosure {
  5719 private:
  5720   bool _success;
  5721 public:
  5722   NoYoungRegionsClosure() : _success(true) { }
  5723   bool doHeapRegion(HeapRegion* r) {
  5724     if (r->is_young()) {
  5725       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5726                              r->bottom(), r->end());
  5727       _success = false;
  5729     return false;
  5731   bool success() { return _success; }
  5732 };
  5734 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5735   bool ret = _young_list->check_list_empty(check_sample);
  5737   if (check_heap) {
  5738     NoYoungRegionsClosure closure;
  5739     heap_region_iterate(&closure);
  5740     ret = ret && closure.success();
  5743   return ret;
  5746 void G1CollectedHeap::empty_young_list() {
  5747   assert(heap_lock_held_for_gc(),
  5748               "the heap lock should already be held by or for this thread");
  5750   _young_list->empty_list();
  5753 // Done at the start of full GC.
  5754 void G1CollectedHeap::tear_down_region_lists() {
  5755   _free_list.remove_all();
  5758 class RegionResetter: public HeapRegionClosure {
  5759   G1CollectedHeap* _g1h;
  5760   FreeRegionList _local_free_list;
  5762 public:
  5763   RegionResetter() : _g1h(G1CollectedHeap::heap()),
  5764                      _local_free_list("Local Free List for RegionResetter") { }
  5766   bool doHeapRegion(HeapRegion* r) {
  5767     if (r->continuesHumongous()) return false;
  5768     if (r->top() > r->bottom()) {
  5769       if (r->top() < r->end()) {
  5770         Copy::fill_to_words(r->top(),
  5771                           pointer_delta(r->end(), r->top()));
  5773     } else {
  5774       assert(r->is_empty(), "tautology");
  5775       _local_free_list.add_as_tail(r);
  5777     return false;
  5780   void update_free_lists() {
  5781     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
  5782                                             false /* par */);
  5784 };
  5786 // Done at the end of full GC.
  5787 void G1CollectedHeap::rebuild_region_lists() {
  5788   // This needs to go at the end of the full GC.
  5789   RegionResetter rs;
  5790   heap_region_iterate(&rs);
  5791   rs.update_free_lists();
  5794 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5795   _refine_cte_cl->set_concurrent(concurrent);
  5798 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5799   HeapRegion* hr = heap_region_containing(p);
  5800   if (hr == NULL) {
  5801     return is_in_permanent(p);
  5802   } else {
  5803     return hr->is_in(p);
  5807 // Methods for the mutator alloc region
  5809 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  5810                                                       bool force) {
  5811   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5812   assert(!force || g1_policy()->can_expand_young_list(),
  5813          "if force is true we should be able to expand the young list");
  5814   bool young_list_full = g1_policy()->is_young_list_full();
  5815   if (force || !young_list_full) {
  5816     HeapRegion* new_alloc_region = new_region(word_size,
  5817                                               false /* do_expand */);
  5818     if (new_alloc_region != NULL) {
  5819       g1_policy()->update_region_num(true /* next_is_young */);
  5820       set_region_short_lived_locked(new_alloc_region);
  5821       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  5822       return new_alloc_region;
  5825   return NULL;
  5828 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  5829                                                   size_t allocated_bytes) {
  5830   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5831   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  5833   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  5834   _summary_bytes_used += allocated_bytes;
  5835   _hr_printer.retire(alloc_region);
  5836   // We update the eden sizes here, when the region is retired,
  5837   // instead of when it's allocated, since this is the point that its
  5838   // used space has been recored in _summary_bytes_used.
  5839   g1mm()->update_eden_size();
  5842 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  5843                                                     bool force) {
  5844   return _g1h->new_mutator_alloc_region(word_size, force);
  5847 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  5848                                        size_t allocated_bytes) {
  5849   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  5852 // Methods for the GC alloc regions
  5854 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  5855                                                  size_t count,
  5856                                                  GCAllocPurpose ap) {
  5857   assert(FreeList_lock->owned_by_self(), "pre-condition");
  5859   if (count < g1_policy()->max_regions(ap)) {
  5860     HeapRegion* new_alloc_region = new_region(word_size,
  5861                                               true /* do_expand */);
  5862     if (new_alloc_region != NULL) {
  5863       // We really only need to do this for old regions given that we
  5864       // should never scan survivors. But it doesn't hurt to do it
  5865       // for survivors too.
  5866       new_alloc_region->set_saved_mark();
  5867       if (ap == GCAllocForSurvived) {
  5868         new_alloc_region->set_survivor();
  5869         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  5870       } else {
  5871         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  5873       return new_alloc_region;
  5874     } else {
  5875       g1_policy()->note_alloc_region_limit_reached(ap);
  5878   return NULL;
  5881 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  5882                                              size_t allocated_bytes,
  5883                                              GCAllocPurpose ap) {
  5884   alloc_region->note_end_of_copying();
  5885   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  5886   if (ap == GCAllocForSurvived) {
  5887     young_list()->add_survivor_region(alloc_region);
  5889   _hr_printer.retire(alloc_region);
  5892 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  5893                                                        bool force) {
  5894   assert(!force, "not supported for GC alloc regions");
  5895   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  5898 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  5899                                           size_t allocated_bytes) {
  5900   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  5901                                GCAllocForSurvived);
  5904 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  5905                                                   bool force) {
  5906   assert(!force, "not supported for GC alloc regions");
  5907   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  5910 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  5911                                      size_t allocated_bytes) {
  5912   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  5913                                GCAllocForTenured);
  5915 // Heap region set verification
  5917 class VerifyRegionListsClosure : public HeapRegionClosure {
  5918 private:
  5919   HumongousRegionSet* _humongous_set;
  5920   FreeRegionList*     _free_list;
  5921   size_t              _region_count;
  5923 public:
  5924   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
  5925                            FreeRegionList* free_list) :
  5926     _humongous_set(humongous_set), _free_list(free_list),
  5927     _region_count(0) { }
  5929   size_t region_count()      { return _region_count;      }
  5931   bool doHeapRegion(HeapRegion* hr) {
  5932     _region_count += 1;
  5934     if (hr->continuesHumongous()) {
  5935       return false;
  5938     if (hr->is_young()) {
  5939       // TODO
  5940     } else if (hr->startsHumongous()) {
  5941       _humongous_set->verify_next_region(hr);
  5942     } else if (hr->is_empty()) {
  5943       _free_list->verify_next_region(hr);
  5945     return false;
  5947 };
  5949 HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
  5950                                              HeapWord* bottom) {
  5951   HeapWord* end = bottom + HeapRegion::GrainWords;
  5952   MemRegion mr(bottom, end);
  5953   assert(_g1_reserved.contains(mr), "invariant");
  5954   // This might return NULL if the allocation fails
  5955   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  5958 void G1CollectedHeap::verify_region_sets() {
  5959   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5961   // First, check the explicit lists.
  5962   _free_list.verify();
  5964     // Given that a concurrent operation might be adding regions to
  5965     // the secondary free list we have to take the lock before
  5966     // verifying it.
  5967     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5968     _secondary_free_list.verify();
  5970   _humongous_set.verify();
  5972   // If a concurrent region freeing operation is in progress it will
  5973   // be difficult to correctly attributed any free regions we come
  5974   // across to the correct free list given that they might belong to
  5975   // one of several (free_list, secondary_free_list, any local lists,
  5976   // etc.). So, if that's the case we will skip the rest of the
  5977   // verification operation. Alternatively, waiting for the concurrent
  5978   // operation to complete will have a non-trivial effect on the GC's
  5979   // operation (no concurrent operation will last longer than the
  5980   // interval between two calls to verification) and it might hide
  5981   // any issues that we would like to catch during testing.
  5982   if (free_regions_coming()) {
  5983     return;
  5986   // Make sure we append the secondary_free_list on the free_list so
  5987   // that all free regions we will come across can be safely
  5988   // attributed to the free_list.
  5989   append_secondary_free_list_if_not_empty_with_lock();
  5991   // Finally, make sure that the region accounting in the lists is
  5992   // consistent with what we see in the heap.
  5993   _humongous_set.verify_start();
  5994   _free_list.verify_start();
  5996   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  5997   heap_region_iterate(&cl);
  5999   _humongous_set.verify_end();
  6000   _free_list.verify_end();

mercurial