src/share/vm/opto/block.cpp

Mon, 26 Aug 2013 12:50:23 +0200

author
adlertz
date
Mon, 26 Aug 2013 12:50:23 +0200
changeset 5635
650868c062a9
parent 5539
adb9a7d94cb5
child 5639
4b078f877b56
permissions
-rw-r--r--

8023691: Create interface for nodes in class Block
Summary: Create public methods for accessing the nodes in a block
Reviewed-by: kvn, roland

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "libadt/vectset.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/block.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/chaitin.hpp"
    31 #include "opto/loopnode.hpp"
    32 #include "opto/machnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/rootnode.hpp"
    36 #include "utilities/copy.hpp"
    38 void Block_Array::grow( uint i ) {
    39   assert(i >= Max(), "must be an overflow");
    40   debug_only(_limit = i+1);
    41   if( i < _size )  return;
    42   if( !_size ) {
    43     _size = 1;
    44     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
    45     _blocks[0] = NULL;
    46   }
    47   uint old = _size;
    48   while( i >= _size ) _size <<= 1;      // Double to fit
    49   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
    50   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
    51 }
    53 void Block_List::remove(uint i) {
    54   assert(i < _cnt, "index out of bounds");
    55   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
    56   pop(); // shrink list by one block
    57 }
    59 void Block_List::insert(uint i, Block *b) {
    60   push(b); // grow list by one block
    61   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
    62   _blocks[i] = b;
    63 }
    65 #ifndef PRODUCT
    66 void Block_List::print() {
    67   for (uint i=0; i < size(); i++) {
    68     tty->print("B%d ", _blocks[i]->_pre_order);
    69   }
    70   tty->print("size = %d\n", size());
    71 }
    72 #endif
    74 uint Block::code_alignment() {
    75   // Check for Root block
    76   if (_pre_order == 0) return CodeEntryAlignment;
    77   // Check for Start block
    78   if (_pre_order == 1) return InteriorEntryAlignment;
    79   // Check for loop alignment
    80   if (has_loop_alignment()) return loop_alignment();
    82   return relocInfo::addr_unit(); // no particular alignment
    83 }
    85 uint Block::compute_loop_alignment() {
    86   Node *h = head();
    87   int unit_sz = relocInfo::addr_unit();
    88   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
    89     // Pre- and post-loops have low trip count so do not bother with
    90     // NOPs for align loop head.  The constants are hidden from tuning
    91     // but only because my "divide by 4" heuristic surely gets nearly
    92     // all possible gain (a "do not align at all" heuristic has a
    93     // chance of getting a really tiny gain).
    94     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
    95                                 h->as_CountedLoop()->is_post_loop())) {
    96       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
    97     }
    98     // Loops with low backedge frequency should not be aligned.
    99     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
   100     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
   101       return unit_sz; // Loop does not loop, more often than not!
   102     }
   103     return OptoLoopAlignment; // Otherwise align loop head
   104   }
   106   return unit_sz; // no particular alignment
   107 }
   109 // Compute the size of first 'inst_cnt' instructions in this block.
   110 // Return the number of instructions left to compute if the block has
   111 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
   112 // exceeds OptoLoopAlignment.
   113 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
   114                                     PhaseRegAlloc* ra) {
   115   uint last_inst = number_of_nodes();
   116   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
   117     uint inst_size = get_node(j)->size(ra);
   118     if( inst_size > 0 ) {
   119       inst_cnt--;
   120       uint sz = sum_size + inst_size;
   121       if( sz <= (uint)OptoLoopAlignment ) {
   122         // Compute size of instructions which fit into fetch buffer only
   123         // since all inst_cnt instructions will not fit even if we align them.
   124         sum_size = sz;
   125       } else {
   126         return 0;
   127       }
   128     }
   129   }
   130   return inst_cnt;
   131 }
   133 uint Block::find_node( const Node *n ) const {
   134   for( uint i = 0; i < number_of_nodes(); i++ ) {
   135     if( get_node(i) == n )
   136       return i;
   137   }
   138   ShouldNotReachHere();
   139   return 0;
   140 }
   142 // Find and remove n from block list
   143 void Block::find_remove( const Node *n ) {
   144   remove_node(find_node(n));
   145 }
   147 // Return empty status of a block.  Empty blocks contain only the head, other
   148 // ideal nodes, and an optional trailing goto.
   149 int Block::is_Empty() const {
   151   // Root or start block is not considered empty
   152   if (head()->is_Root() || head()->is_Start()) {
   153     return not_empty;
   154   }
   156   int success_result = completely_empty;
   157   int end_idx = number_of_nodes() - 1;
   159   // Check for ending goto
   160   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
   161     success_result = empty_with_goto;
   162     end_idx--;
   163   }
   165   // Unreachable blocks are considered empty
   166   if (num_preds() <= 1) {
   167     return success_result;
   168   }
   170   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
   171   // turn directly into code, because only MachNodes have non-trivial
   172   // emit() functions.
   173   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
   174     end_idx--;
   175   }
   177   // No room for any interesting instructions?
   178   if (end_idx == 0) {
   179     return success_result;
   180   }
   182   return not_empty;
   183 }
   185 // Return true if the block's code implies that it is likely to be
   186 // executed infrequently.  Check to see if the block ends in a Halt or
   187 // a low probability call.
   188 bool Block::has_uncommon_code() const {
   189   Node* en = end();
   191   if (en->is_MachGoto())
   192     en = en->in(0);
   193   if (en->is_Catch())
   194     en = en->in(0);
   195   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
   196     MachCallNode* call = en->in(0)->as_MachCall();
   197     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
   198       // This is true for slow-path stubs like new_{instance,array},
   199       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
   200       // The magic number corresponds to the probability of an uncommon_trap,
   201       // even though it is a count not a probability.
   202       return true;
   203     }
   204   }
   206   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
   207   return op == Op_Halt;
   208 }
   210 // True if block is low enough frequency or guarded by a test which
   211 // mostly does not go here.
   212 bool Block::is_uncommon(PhaseCFG* cfg) const {
   213   // Initial blocks must never be moved, so are never uncommon.
   214   if (head()->is_Root() || head()->is_Start())  return false;
   216   // Check for way-low freq
   217   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
   219   // Look for code shape indicating uncommon_trap or slow path
   220   if (has_uncommon_code()) return true;
   222   const float epsilon = 0.05f;
   223   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
   224   uint uncommon_preds = 0;
   225   uint freq_preds = 0;
   226   uint uncommon_for_freq_preds = 0;
   228   for( uint i=1; i<num_preds(); i++ ) {
   229     Block* guard = cfg->get_block_for_node(pred(i));
   230     // Check to see if this block follows its guard 1 time out of 10000
   231     // or less.
   232     //
   233     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
   234     // we intend to be "uncommon", such as slow-path TLE allocation,
   235     // predicted call failure, and uncommon trap triggers.
   236     //
   237     // Use an epsilon value of 5% to allow for variability in frequency
   238     // predictions and floating point calculations. The net effect is
   239     // that guard_factor is set to 9500.
   240     //
   241     // Ignore low-frequency blocks.
   242     // The next check is (guard->_freq < 1.e-5 * 9500.).
   243     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
   244       uncommon_preds++;
   245     } else {
   246       freq_preds++;
   247       if( _freq < guard->_freq * guard_factor ) {
   248         uncommon_for_freq_preds++;
   249       }
   250     }
   251   }
   252   if( num_preds() > 1 &&
   253       // The block is uncommon if all preds are uncommon or
   254       (uncommon_preds == (num_preds()-1) ||
   255       // it is uncommon for all frequent preds.
   256        uncommon_for_freq_preds == freq_preds) ) {
   257     return true;
   258   }
   259   return false;
   260 }
   262 #ifndef PRODUCT
   263 void Block::dump_bidx(const Block* orig, outputStream* st) const {
   264   if (_pre_order) st->print("B%d",_pre_order);
   265   else st->print("N%d", head()->_idx);
   267   if (Verbose && orig != this) {
   268     // Dump the original block's idx
   269     st->print(" (");
   270     orig->dump_bidx(orig, st);
   271     st->print(")");
   272   }
   273 }
   275 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
   276   if (is_connector()) {
   277     for (uint i=1; i<num_preds(); i++) {
   278       Block *p = cfg->get_block_for_node(pred(i));
   279       p->dump_pred(cfg, orig, st);
   280     }
   281   } else {
   282     dump_bidx(orig, st);
   283     st->print(" ");
   284   }
   285 }
   287 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
   288   // Print the basic block
   289   dump_bidx(this, st);
   290   st->print(": #\t");
   292   // Print the incoming CFG edges and the outgoing CFG edges
   293   for( uint i=0; i<_num_succs; i++ ) {
   294     non_connector_successor(i)->dump_bidx(_succs[i], st);
   295     st->print(" ");
   296   }
   297   st->print("<- ");
   298   if( head()->is_block_start() ) {
   299     for (uint i=1; i<num_preds(); i++) {
   300       Node *s = pred(i);
   301       if (cfg != NULL) {
   302         Block *p = cfg->get_block_for_node(s);
   303         p->dump_pred(cfg, p, st);
   304       } else {
   305         while (!s->is_block_start())
   306           s = s->in(0);
   307         st->print("N%d ", s->_idx );
   308       }
   309     }
   310   } else {
   311     st->print("BLOCK HEAD IS JUNK  ");
   312   }
   314   // Print loop, if any
   315   const Block *bhead = this;    // Head of self-loop
   316   Node *bh = bhead->head();
   318   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
   319     LoopNode *loop = bh->as_Loop();
   320     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
   321     while (bx->is_connector()) {
   322       bx = cfg->get_block_for_node(bx->pred(1));
   323     }
   324     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
   325     // Dump any loop-specific bits, especially for CountedLoops.
   326     loop->dump_spec(st);
   327   } else if (has_loop_alignment()) {
   328     st->print(" top-of-loop");
   329   }
   330   st->print(" Freq: %g",_freq);
   331   if( Verbose || WizardMode ) {
   332     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
   333     st->print(" RegPressure: %d",_reg_pressure);
   334     st->print(" IHRP Index: %d",_ihrp_index);
   335     st->print(" FRegPressure: %d",_freg_pressure);
   336     st->print(" FHRP Index: %d",_fhrp_index);
   337   }
   338   st->print_cr("");
   339 }
   341 void Block::dump() const {
   342   dump(NULL);
   343 }
   345 void Block::dump(const PhaseCFG* cfg) const {
   346   dump_head(cfg);
   347   for (uint i=0; i< number_of_nodes(); i++) {
   348     get_node(i)->dump();
   349   }
   350   tty->print("\n");
   351 }
   352 #endif
   354 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
   355 : Phase(CFG)
   356 , _block_arena(arena)
   357 , _root(root)
   358 , _matcher(matcher)
   359 , _node_to_block_mapping(arena)
   360 , _node_latency(NULL)
   361 #ifndef PRODUCT
   362 , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
   363 #endif
   364 #ifdef ASSERT
   365 , _raw_oops(arena)
   366 #endif
   367 {
   368   ResourceMark rm;
   369   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
   370   // then Match it into a machine-specific Node.  Then clone the machine
   371   // Node on demand.
   372   Node *x = new (C) GotoNode(NULL);
   373   x->init_req(0, x);
   374   _goto = matcher.match_tree(x);
   375   assert(_goto != NULL, "");
   376   _goto->set_req(0,_goto);
   378   // Build the CFG in Reverse Post Order
   379   _number_of_blocks = build_cfg();
   380   _root_block = get_block_for_node(_root);
   381 }
   383 // Build a proper looking CFG.  Make every block begin with either a StartNode
   384 // or a RegionNode.  Make every block end with either a Goto, If or Return.
   385 // The RootNode both starts and ends it's own block.  Do this with a recursive
   386 // backwards walk over the control edges.
   387 uint PhaseCFG::build_cfg() {
   388   Arena *a = Thread::current()->resource_area();
   389   VectorSet visited(a);
   391   // Allocate stack with enough space to avoid frequent realloc
   392   Node_Stack nstack(a, C->unique() >> 1);
   393   nstack.push(_root, 0);
   394   uint sum = 0;                 // Counter for blocks
   396   while (nstack.is_nonempty()) {
   397     // node and in's index from stack's top
   398     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
   399     // only nodes which point to the start of basic block (see below).
   400     Node *np = nstack.node();
   401     // idx > 0, except for the first node (_root) pushed on stack
   402     // at the beginning when idx == 0.
   403     // We will use the condition (idx == 0) later to end the build.
   404     uint idx = nstack.index();
   405     Node *proj = np->in(idx);
   406     const Node *x = proj->is_block_proj();
   407     // Does the block end with a proper block-ending Node?  One of Return,
   408     // If or Goto? (This check should be done for visited nodes also).
   409     if (x == NULL) {                    // Does not end right...
   410       Node *g = _goto->clone(); // Force it to end in a Goto
   411       g->set_req(0, proj);
   412       np->set_req(idx, g);
   413       x = proj = g;
   414     }
   415     if (!visited.test_set(x->_idx)) { // Visit this block once
   416       // Skip any control-pinned middle'in stuff
   417       Node *p = proj;
   418       do {
   419         proj = p;                   // Update pointer to last Control
   420         p = p->in(0);               // Move control forward
   421       } while( !p->is_block_proj() &&
   422                !p->is_block_start() );
   423       // Make the block begin with one of Region or StartNode.
   424       if( !p->is_block_start() ) {
   425         RegionNode *r = new (C) RegionNode( 2 );
   426         r->init_req(1, p);         // Insert RegionNode in the way
   427         proj->set_req(0, r);        // Insert RegionNode in the way
   428         p = r;
   429       }
   430       // 'p' now points to the start of this basic block
   432       // Put self in array of basic blocks
   433       Block *bb = new (_block_arena) Block(_block_arena, p);
   434       map_node_to_block(p, bb);
   435       map_node_to_block(x, bb);
   436       if( x != p ) {                // Only for root is x == p
   437         bb->push_node((Node*)x);
   438       }
   439       // Now handle predecessors
   440       ++sum;                        // Count 1 for self block
   441       uint cnt = bb->num_preds();
   442       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
   443         Node *prevproj = p->in(i);  // Get prior input
   444         assert( !prevproj->is_Con(), "dead input not removed" );
   445         // Check to see if p->in(i) is a "control-dependent" CFG edge -
   446         // i.e., it splits at the source (via an IF or SWITCH) and merges
   447         // at the destination (via a many-input Region).
   448         // This breaks critical edges.  The RegionNode to start the block
   449         // will be added when <p,i> is pulled off the node stack
   450         if ( cnt > 2 ) {             // Merging many things?
   451           assert( prevproj== bb->pred(i),"");
   452           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
   453             // Force a block on the control-dependent edge
   454             Node *g = _goto->clone();       // Force it to end in a Goto
   455             g->set_req(0,prevproj);
   456             p->set_req(i,g);
   457           }
   458         }
   459         nstack.push(p, i);  // 'p' is RegionNode or StartNode
   460       }
   461     } else { // Post-processing visited nodes
   462       nstack.pop();                 // remove node from stack
   463       // Check if it the fist node pushed on stack at the beginning.
   464       if (idx == 0) break;          // end of the build
   465       // Find predecessor basic block
   466       Block *pb = get_block_for_node(x);
   467       // Insert into nodes array, if not already there
   468       if (!has_block(proj)) {
   469         assert( x != proj, "" );
   470         // Map basic block of projection
   471         map_node_to_block(proj, pb);
   472         pb->push_node(proj);
   473       }
   474       // Insert self as a child of my predecessor block
   475       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
   476       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
   477               "too many control users, not a CFG?" );
   478     }
   479   }
   480   // Return number of basic blocks for all children and self
   481   return sum;
   482 }
   484 // Inserts a goto & corresponding basic block between
   485 // block[block_no] and its succ_no'th successor block
   486 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
   487   // get block with block_no
   488   assert(block_no < number_of_blocks(), "illegal block number");
   489   Block* in  = get_block(block_no);
   490   // get successor block succ_no
   491   assert(succ_no < in->_num_succs, "illegal successor number");
   492   Block* out = in->_succs[succ_no];
   493   // Compute frequency of the new block. Do this before inserting
   494   // new block in case succ_prob() needs to infer the probability from
   495   // surrounding blocks.
   496   float freq = in->_freq * in->succ_prob(succ_no);
   497   // get ProjNode corresponding to the succ_no'th successor of the in block
   498   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
   499   // create region for basic block
   500   RegionNode* region = new (C) RegionNode(2);
   501   region->init_req(1, proj);
   502   // setup corresponding basic block
   503   Block* block = new (_block_arena) Block(_block_arena, region);
   504   map_node_to_block(region, block);
   505   C->regalloc()->set_bad(region->_idx);
   506   // add a goto node
   507   Node* gto = _goto->clone(); // get a new goto node
   508   gto->set_req(0, region);
   509   // add it to the basic block
   510   block->push_node(gto);
   511   map_node_to_block(gto, block);
   512   C->regalloc()->set_bad(gto->_idx);
   513   // hook up successor block
   514   block->_succs.map(block->_num_succs++, out);
   515   // remap successor's predecessors if necessary
   516   for (uint i = 1; i < out->num_preds(); i++) {
   517     if (out->pred(i) == proj) out->head()->set_req(i, gto);
   518   }
   519   // remap predecessor's successor to new block
   520   in->_succs.map(succ_no, block);
   521   // Set the frequency of the new block
   522   block->_freq = freq;
   523   // add new basic block to basic block list
   524   add_block_at(block_no + 1, block);
   525 }
   527 // Does this block end in a multiway branch that cannot have the default case
   528 // flipped for another case?
   529 static bool no_flip_branch( Block *b ) {
   530   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
   531   if( branch_idx < 1 ) return false;
   532   Node *bra = b->get_node(branch_idx);
   533   if( bra->is_Catch() )
   534     return true;
   535   if( bra->is_Mach() ) {
   536     if( bra->is_MachNullCheck() )
   537       return true;
   538     int iop = bra->as_Mach()->ideal_Opcode();
   539     if( iop == Op_FastLock || iop == Op_FastUnlock )
   540       return true;
   541   }
   542   return false;
   543 }
   545 // Check for NeverBranch at block end.  This needs to become a GOTO to the
   546 // true target.  NeverBranch are treated as a conditional branch that always
   547 // goes the same direction for most of the optimizer and are used to give a
   548 // fake exit path to infinite loops.  At this late stage they need to turn
   549 // into Goto's so that when you enter the infinite loop you indeed hang.
   550 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
   551   // Find true target
   552   int end_idx = b->end_idx();
   553   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
   554   Block *succ = b->_succs[idx];
   555   Node* gto = _goto->clone(); // get a new goto node
   556   gto->set_req(0, b->head());
   557   Node *bp = b->get_node(end_idx);
   558   b->map_node(gto, end_idx); // Slam over NeverBranch
   559   map_node_to_block(gto, b);
   560   C->regalloc()->set_bad(gto->_idx);
   561   b->pop_node();              // Yank projections
   562   b->pop_node();              // Yank projections
   563   b->_succs.map(0,succ);        // Map only successor
   564   b->_num_succs = 1;
   565   // remap successor's predecessors if necessary
   566   uint j;
   567   for( j = 1; j < succ->num_preds(); j++)
   568     if( succ->pred(j)->in(0) == bp )
   569       succ->head()->set_req(j, gto);
   570   // Kill alternate exit path
   571   Block *dead = b->_succs[1-idx];
   572   for( j = 1; j < dead->num_preds(); j++)
   573     if( dead->pred(j)->in(0) == bp )
   574       break;
   575   // Scan through block, yanking dead path from
   576   // all regions and phis.
   577   dead->head()->del_req(j);
   578   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
   579     dead->get_node(k)->del_req(j);
   580 }
   582 // Helper function to move block bx to the slot following b_index. Return
   583 // true if the move is successful, otherwise false
   584 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
   585   if (bx == NULL) return false;
   587   // Return false if bx is already scheduled.
   588   uint bx_index = bx->_pre_order;
   589   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
   590     return false;
   591   }
   593   // Find the current index of block bx on the block list
   594   bx_index = b_index + 1;
   595   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
   596     bx_index++;
   597   }
   598   assert(get_block(bx_index) == bx, "block not found");
   600   // If the previous block conditionally falls into bx, return false,
   601   // because moving bx will create an extra jump.
   602   for(uint k = 1; k < bx->num_preds(); k++ ) {
   603     Block* pred = get_block_for_node(bx->pred(k));
   604     if (pred == get_block(bx_index - 1)) {
   605       if (pred->_num_succs != 1) {
   606         return false;
   607       }
   608     }
   609   }
   611   // Reinsert bx just past block 'b'
   612   _blocks.remove(bx_index);
   613   _blocks.insert(b_index + 1, bx);
   614   return true;
   615 }
   617 // Move empty and uncommon blocks to the end.
   618 void PhaseCFG::move_to_end(Block *b, uint i) {
   619   int e = b->is_Empty();
   620   if (e != Block::not_empty) {
   621     if (e == Block::empty_with_goto) {
   622       // Remove the goto, but leave the block.
   623       b->pop_node();
   624     }
   625     // Mark this block as a connector block, which will cause it to be
   626     // ignored in certain functions such as non_connector_successor().
   627     b->set_connector();
   628   }
   629   // Move the empty block to the end, and don't recheck.
   630   _blocks.remove(i);
   631   _blocks.push(b);
   632 }
   634 // Set loop alignment for every block
   635 void PhaseCFG::set_loop_alignment() {
   636   uint last = number_of_blocks();
   637   assert(get_block(0) == get_root_block(), "");
   639   for (uint i = 1; i < last; i++) {
   640     Block* block = get_block(i);
   641     if (block->head()->is_Loop()) {
   642       block->set_loop_alignment(block);
   643     }
   644   }
   645 }
   647 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
   648 // to the end.
   649 void PhaseCFG::remove_empty_blocks() {
   650   // Move uncommon blocks to the end
   651   uint last = number_of_blocks();
   652   assert(get_block(0) == get_root_block(), "");
   654   for (uint i = 1; i < last; i++) {
   655     Block* block = get_block(i);
   656     if (block->is_connector()) {
   657       break;
   658     }
   660     // Check for NeverBranch at block end.  This needs to become a GOTO to the
   661     // true target.  NeverBranch are treated as a conditional branch that
   662     // always goes the same direction for most of the optimizer and are used
   663     // to give a fake exit path to infinite loops.  At this late stage they
   664     // need to turn into Goto's so that when you enter the infinite loop you
   665     // indeed hang.
   666     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
   667       convert_NeverBranch_to_Goto(block);
   668     }
   670     // Look for uncommon blocks and move to end.
   671     if (!C->do_freq_based_layout()) {
   672       if (block->is_uncommon(this)) {
   673         move_to_end(block, i);
   674         last--;                   // No longer check for being uncommon!
   675         if (no_flip_branch(block)) { // Fall-thru case must follow?
   676           // Find the fall-thru block
   677           block = get_block(i);
   678           move_to_end(block, i);
   679           last--;
   680         }
   681         // backup block counter post-increment
   682         i--;
   683       }
   684     }
   685   }
   687   // Move empty blocks to the end
   688   last = number_of_blocks();
   689   for (uint i = 1; i < last; i++) {
   690     Block* block = get_block(i);
   691     if (block->is_Empty() != Block::not_empty) {
   692       move_to_end(block, i);
   693       last--;
   694       i--;
   695     }
   696   } // End of for all blocks
   697 }
   699 // Fix up the final control flow for basic blocks.
   700 void PhaseCFG::fixup_flow() {
   701   // Fixup final control flow for the blocks.  Remove jump-to-next
   702   // block.  If neither arm of a IF follows the conditional branch, we
   703   // have to add a second jump after the conditional.  We place the
   704   // TRUE branch target in succs[0] for both GOTOs and IFs.
   705   for (uint i = 0; i < number_of_blocks(); i++) {
   706     Block* block = get_block(i);
   707     block->_pre_order = i;          // turn pre-order into block-index
   709     // Connector blocks need no further processing.
   710     if (block->is_connector()) {
   711       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
   712       continue;
   713     }
   714     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
   716     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
   717     Block* bs0 = block->non_connector_successor(0);
   719     // Check for multi-way branches where I cannot negate the test to
   720     // exchange the true and false targets.
   721     if (no_flip_branch(block)) {
   722       // Find fall through case - if must fall into its target
   723       int branch_idx = block->number_of_nodes() - block->_num_succs;
   724       for (uint j2 = 0; j2 < block->_num_succs; j2++) {
   725         const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
   726         if (p->_con == 0) {
   727           // successor j2 is fall through case
   728           if (block->non_connector_successor(j2) != bnext) {
   729             // but it is not the next block => insert a goto
   730             insert_goto_at(i, j2);
   731           }
   732           // Put taken branch in slot 0
   733           if (j2 == 0 && block->_num_succs == 2) {
   734             // Flip targets in succs map
   735             Block *tbs0 = block->_succs[0];
   736             Block *tbs1 = block->_succs[1];
   737             block->_succs.map(0, tbs1);
   738             block->_succs.map(1, tbs0);
   739           }
   740           break;
   741         }
   742       }
   744       // Remove all CatchProjs
   745       for (uint j = 0; j < block->_num_succs; j++) {
   746         block->pop_node();
   747       }
   749     } else if (block->_num_succs == 1) {
   750       // Block ends in a Goto?
   751       if (bnext == bs0) {
   752         // We fall into next block; remove the Goto
   753         block->pop_node();
   754       }
   756     } else if(block->_num_succs == 2) { // Block ends in a If?
   757       // Get opcode of 1st projection (matches _succs[0])
   758       // Note: Since this basic block has 2 exits, the last 2 nodes must
   759       //       be projections (in any order), the 3rd last node must be
   760       //       the IfNode (we have excluded other 2-way exits such as
   761       //       CatchNodes already).
   762       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
   763       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
   764       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
   766       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
   767       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
   768       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
   770       Block* bs1 = block->non_connector_successor(1);
   772       // Check for neither successor block following the current
   773       // block ending in a conditional. If so, move one of the
   774       // successors after the current one, provided that the
   775       // successor was previously unscheduled, but moveable
   776       // (i.e., all paths to it involve a branch).
   777       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
   778         // Choose the more common successor based on the probability
   779         // of the conditional branch.
   780         Block* bx = bs0;
   781         Block* by = bs1;
   783         // _prob is the probability of taking the true path. Make
   784         // p the probability of taking successor #1.
   785         float p = iff->as_MachIf()->_prob;
   786         if (proj0->Opcode() == Op_IfTrue) {
   787           p = 1.0 - p;
   788         }
   790         // Prefer successor #1 if p > 0.5
   791         if (p > PROB_FAIR) {
   792           bx = bs1;
   793           by = bs0;
   794         }
   796         // Attempt the more common successor first
   797         if (move_to_next(bx, i)) {
   798           bnext = bx;
   799         } else if (move_to_next(by, i)) {
   800           bnext = by;
   801         }
   802       }
   804       // Check for conditional branching the wrong way.  Negate
   805       // conditional, if needed, so it falls into the following block
   806       // and branches to the not-following block.
   808       // Check for the next block being in succs[0].  We are going to branch
   809       // to succs[0], so we want the fall-thru case as the next block in
   810       // succs[1].
   811       if (bnext == bs0) {
   812         // Fall-thru case in succs[0], so flip targets in succs map
   813         Block* tbs0 = block->_succs[0];
   814         Block* tbs1 = block->_succs[1];
   815         block->_succs.map(0, tbs1);
   816         block->_succs.map(1, tbs0);
   817         // Flip projection for each target
   818         ProjNode* tmp = proj0;
   819         proj0 = proj1;
   820         proj1 = tmp;
   822       } else if(bnext != bs1) {
   823         // Need a double-branch
   824         // The existing conditional branch need not change.
   825         // Add a unconditional branch to the false target.
   826         // Alas, it must appear in its own block and adding a
   827         // block this late in the game is complicated.  Sigh.
   828         insert_goto_at(i, 1);
   829       }
   831       // Make sure we TRUE branch to the target
   832       if (proj0->Opcode() == Op_IfFalse) {
   833         iff->as_MachIf()->negate();
   834       }
   836       block->pop_node();          // Remove IfFalse & IfTrue projections
   837       block->pop_node();
   839     } else {
   840       // Multi-exit block, e.g. a switch statement
   841       // But we don't need to do anything here
   842     }
   843   } // End of for all blocks
   844 }
   847 #ifndef PRODUCT
   848 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
   849   const Node *x = end->is_block_proj();
   850   assert( x, "not a CFG" );
   852   // Do not visit this block again
   853   if( visited.test_set(x->_idx) ) return;
   855   // Skip through this block
   856   const Node *p = x;
   857   do {
   858     p = p->in(0);               // Move control forward
   859     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
   860   } while( !p->is_block_start() );
   862   // Recursively visit
   863   for (uint i = 1; i < p->req(); i++) {
   864     _dump_cfg(p->in(i), visited);
   865   }
   867   // Dump the block
   868   get_block_for_node(p)->dump(this);
   869 }
   871 void PhaseCFG::dump( ) const {
   872   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
   873   if (_blocks.size()) {        // Did we do basic-block layout?
   874     for (uint i = 0; i < number_of_blocks(); i++) {
   875       const Block* block = get_block(i);
   876       block->dump(this);
   877     }
   878   } else {                      // Else do it with a DFS
   879     VectorSet visited(_block_arena);
   880     _dump_cfg(_root,visited);
   881   }
   882 }
   884 void PhaseCFG::dump_headers() {
   885   for (uint i = 0; i < number_of_blocks(); i++) {
   886     Block* block = get_block(i);
   887     if (block != NULL) {
   888       block->dump_head(this);
   889     }
   890   }
   891 }
   893 void PhaseCFG::verify() const {
   894 #ifdef ASSERT
   895   // Verify sane CFG
   896   for (uint i = 0; i < number_of_blocks(); i++) {
   897     Block* block = get_block(i);
   898     uint cnt = block->number_of_nodes();
   899     uint j;
   900     for (j = 0; j < cnt; j++)  {
   901       Node *n = block->get_node(j);
   902       assert(get_block_for_node(n) == block, "");
   903       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   904         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
   905       }
   906       for (uint k = 0; k < n->req(); k++) {
   907         Node *def = n->in(k);
   908         if (def && def != n) {
   909           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
   910           // Verify that instructions in the block is in correct order.
   911           // Uses must follow their definition if they are at the same block.
   912           // Mostly done to check that MachSpillCopy nodes are placed correctly
   913           // when CreateEx node is moved in build_ifg_physical().
   914           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
   915               // See (+++) comment in reg_split.cpp
   916               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
   917             bool is_loop = false;
   918             if (n->is_Phi()) {
   919               for (uint l = 1; l < def->req(); l++) {
   920                 if (n == def->in(l)) {
   921                   is_loop = true;
   922                   break; // Some kind of loop
   923                 }
   924               }
   925             }
   926             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
   927           }
   928         }
   929       }
   930     }
   932     j = block->end_idx();
   933     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
   934     assert(bp, "last instruction must be a block proj");
   935     assert(bp == block->get_node(j), "wrong number of successors for this block");
   936     if (bp->is_Catch()) {
   937       while (block->get_node(--j)->is_MachProj()) {
   938         ;
   939       }
   940       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
   941     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
   942       assert(block->_num_succs == 2, "Conditional branch must have two targets");
   943     }
   944   }
   945 #endif
   946 }
   947 #endif
   949 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
   950   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
   951 }
   953 void UnionFind::extend( uint from_idx, uint to_idx ) {
   954   _nesting.check();
   955   if( from_idx >= _max ) {
   956     uint size = 16;
   957     while( size <= from_idx ) size <<=1;
   958     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
   959     _max = size;
   960   }
   961   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
   962   _indices[from_idx] = to_idx;
   963 }
   965 void UnionFind::reset( uint max ) {
   966   assert( max <= max_uint, "Must fit within uint" );
   967   // Force the Union-Find mapping to be at least this large
   968   extend(max,0);
   969   // Initialize to be the ID mapping.
   970   for( uint i=0; i<max; i++ ) map(i,i);
   971 }
   973 // Straight out of Tarjan's union-find algorithm
   974 uint UnionFind::Find_compress( uint idx ) {
   975   uint cur  = idx;
   976   uint next = lookup(cur);
   977   while( next != cur ) {        // Scan chain of equivalences
   978     assert( next < cur, "always union smaller" );
   979     cur = next;                 // until find a fixed-point
   980     next = lookup(cur);
   981   }
   982   // Core of union-find algorithm: update chain of
   983   // equivalences to be equal to the root.
   984   while( idx != next ) {
   985     uint tmp = lookup(idx);
   986     map(idx, next);
   987     idx = tmp;
   988   }
   989   return idx;
   990 }
   992 // Like Find above, but no path compress, so bad asymptotic behavior
   993 uint UnionFind::Find_const( uint idx ) const {
   994   if( idx == 0 ) return idx;    // Ignore the zero idx
   995   // Off the end?  This can happen during debugging dumps
   996   // when data structures have not finished being updated.
   997   if( idx >= _max ) return idx;
   998   uint next = lookup(idx);
   999   while( next != idx ) {        // Scan chain of equivalences
  1000     idx = next;                 // until find a fixed-point
  1001     next = lookup(idx);
  1003   return next;
  1006 // union 2 sets together.
  1007 void UnionFind::Union( uint idx1, uint idx2 ) {
  1008   uint src = Find(idx1);
  1009   uint dst = Find(idx2);
  1010   assert( src, "" );
  1011   assert( dst, "" );
  1012   assert( src < _max, "oob" );
  1013   assert( dst < _max, "oob" );
  1014   assert( src < dst, "always union smaller" );
  1015   map(dst,src);
  1018 #ifndef PRODUCT
  1019 void Trace::dump( ) const {
  1020   tty->print_cr("Trace (freq %f)", first_block()->_freq);
  1021   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1022     tty->print("  B%d", b->_pre_order);
  1023     if (b->head()->is_Loop()) {
  1024       tty->print(" (L%d)", b->compute_loop_alignment());
  1026     if (b->has_loop_alignment()) {
  1027       tty->print(" (T%d)", b->code_alignment());
  1030   tty->cr();
  1033 void CFGEdge::dump( ) const {
  1034   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
  1035              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
  1036   switch(state()) {
  1037   case connected:
  1038     tty->print("connected");
  1039     break;
  1040   case open:
  1041     tty->print("open");
  1042     break;
  1043   case interior:
  1044     tty->print("interior");
  1045     break;
  1047   if (infrequent()) {
  1048     tty->print("  infrequent");
  1050   tty->cr();
  1052 #endif
  1054 // Comparison function for edges
  1055 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
  1056   float freq0 = (*e0)->freq();
  1057   float freq1 = (*e1)->freq();
  1058   if (freq0 != freq1) {
  1059     return freq0 > freq1 ? -1 : 1;
  1062   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
  1063   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
  1065   return dist1 - dist0;
  1068 // Comparison function for edges
  1069 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
  1070   Trace *tr0 = *(Trace **) p0;
  1071   Trace *tr1 = *(Trace **) p1;
  1072   Block *b0 = tr0->first_block();
  1073   Block *b1 = tr1->first_block();
  1075   // The trace of connector blocks goes at the end;
  1076   // we only expect one such trace
  1077   if (b0->is_connector() != b1->is_connector()) {
  1078     return b1->is_connector() ? -1 : 1;
  1081   // Pull more frequently executed blocks to the beginning
  1082   float freq0 = b0->_freq;
  1083   float freq1 = b1->_freq;
  1084   if (freq0 != freq1) {
  1085     return freq0 > freq1 ? -1 : 1;
  1088   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
  1090   return diff;
  1093 // Find edges of interest, i.e, those which can fall through. Presumes that
  1094 // edges which don't fall through are of low frequency and can be generally
  1095 // ignored.  Initialize the list of traces.
  1096 void PhaseBlockLayout::find_edges() {
  1097   // Walk the blocks, creating edges and Traces
  1098   uint i;
  1099   Trace *tr = NULL;
  1100   for (i = 0; i < _cfg.number_of_blocks(); i++) {
  1101     Block* b = _cfg.get_block(i);
  1102     tr = new Trace(b, next, prev);
  1103     traces[tr->id()] = tr;
  1105     // All connector blocks should be at the end of the list
  1106     if (b->is_connector()) break;
  1108     // If this block and the next one have a one-to-one successor
  1109     // predecessor relationship, simply append the next block
  1110     int nfallthru = b->num_fall_throughs();
  1111     while (nfallthru == 1 &&
  1112            b->succ_fall_through(0)) {
  1113       Block *n = b->_succs[0];
  1115       // Skip over single-entry connector blocks, we don't want to
  1116       // add them to the trace.
  1117       while (n->is_connector() && n->num_preds() == 1) {
  1118         n = n->_succs[0];
  1121       // We see a merge point, so stop search for the next block
  1122       if (n->num_preds() != 1) break;
  1124       i++;
  1125       assert(n = _cfg.get_block(i), "expecting next block");
  1126       tr->append(n);
  1127       uf->map(n->_pre_order, tr->id());
  1128       traces[n->_pre_order] = NULL;
  1129       nfallthru = b->num_fall_throughs();
  1130       b = n;
  1133     if (nfallthru > 0) {
  1134       // Create a CFGEdge for each outgoing
  1135       // edge that could be a fall-through.
  1136       for (uint j = 0; j < b->_num_succs; j++ ) {
  1137         if (b->succ_fall_through(j)) {
  1138           Block *target = b->non_connector_successor(j);
  1139           float freq = b->_freq * b->succ_prob(j);
  1140           int from_pct = (int) ((100 * freq) / b->_freq);
  1141           int to_pct = (int) ((100 * freq) / target->_freq);
  1142           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
  1148   // Group connector blocks into one trace
  1149   for (i++; i < _cfg.number_of_blocks(); i++) {
  1150     Block *b = _cfg.get_block(i);
  1151     assert(b->is_connector(), "connector blocks at the end");
  1152     tr->append(b);
  1153     uf->map(b->_pre_order, tr->id());
  1154     traces[b->_pre_order] = NULL;
  1158 // Union two traces together in uf, and null out the trace in the list
  1159 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
  1160   uint old_id = old_trace->id();
  1161   uint updated_id = updated_trace->id();
  1163   uint lo_id = updated_id;
  1164   uint hi_id = old_id;
  1166   // If from is greater than to, swap values to meet
  1167   // UnionFind guarantee.
  1168   if (updated_id > old_id) {
  1169     lo_id = old_id;
  1170     hi_id = updated_id;
  1172     // Fix up the trace ids
  1173     traces[lo_id] = traces[updated_id];
  1174     updated_trace->set_id(lo_id);
  1177   // Union the lower with the higher and remove the pointer
  1178   // to the higher.
  1179   uf->Union(lo_id, hi_id);
  1180   traces[hi_id] = NULL;
  1183 // Append traces together via the most frequently executed edges
  1184 void PhaseBlockLayout::grow_traces() {
  1185   // Order the edges, and drive the growth of Traces via the most
  1186   // frequently executed edges.
  1187   edges->sort(edge_order);
  1188   for (int i = 0; i < edges->length(); i++) {
  1189     CFGEdge *e = edges->at(i);
  1191     if (e->state() != CFGEdge::open) continue;
  1193     Block *src_block = e->from();
  1194     Block *targ_block = e->to();
  1196     // Don't grow traces along backedges?
  1197     if (!BlockLayoutRotateLoops) {
  1198       if (targ_block->_rpo <= src_block->_rpo) {
  1199         targ_block->set_loop_alignment(targ_block);
  1200         continue;
  1204     Trace *src_trace = trace(src_block);
  1205     Trace *targ_trace = trace(targ_block);
  1207     // If the edge in question can join two traces at their ends,
  1208     // append one trace to the other.
  1209    if (src_trace->last_block() == src_block) {
  1210       if (src_trace == targ_trace) {
  1211         e->set_state(CFGEdge::interior);
  1212         if (targ_trace->backedge(e)) {
  1213           // Reset i to catch any newly eligible edge
  1214           // (Or we could remember the first "open" edge, and reset there)
  1215           i = 0;
  1217       } else if (targ_trace->first_block() == targ_block) {
  1218         e->set_state(CFGEdge::connected);
  1219         src_trace->append(targ_trace);
  1220         union_traces(src_trace, targ_trace);
  1226 // Embed one trace into another, if the fork or join points are sufficiently
  1227 // balanced.
  1228 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
  1229   // Walk the edge list a another time, looking at unprocessed edges.
  1230   // Fold in diamonds
  1231   for (int i = 0; i < edges->length(); i++) {
  1232     CFGEdge *e = edges->at(i);
  1234     if (e->state() != CFGEdge::open) continue;
  1235     if (fall_thru_only) {
  1236       if (e->infrequent()) continue;
  1239     Block *src_block = e->from();
  1240     Trace *src_trace = trace(src_block);
  1241     bool src_at_tail = src_trace->last_block() == src_block;
  1243     Block *targ_block  = e->to();
  1244     Trace *targ_trace  = trace(targ_block);
  1245     bool targ_at_start = targ_trace->first_block() == targ_block;
  1247     if (src_trace == targ_trace) {
  1248       // This may be a loop, but we can't do much about it.
  1249       e->set_state(CFGEdge::interior);
  1250       continue;
  1253     if (fall_thru_only) {
  1254       // If the edge links the middle of two traces, we can't do anything.
  1255       // Mark the edge and continue.
  1256       if (!src_at_tail & !targ_at_start) {
  1257         continue;
  1260       // Don't grow traces along backedges?
  1261       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
  1262           continue;
  1265       // If both ends of the edge are available, why didn't we handle it earlier?
  1266       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
  1268       if (targ_at_start) {
  1269         // Insert the "targ" trace in the "src" trace if the insertion point
  1270         // is a two way branch.
  1271         // Better profitability check possible, but may not be worth it.
  1272         // Someday, see if the this "fork" has an associated "join";
  1273         // then make a policy on merging this trace at the fork or join.
  1274         // For example, other things being equal, it may be better to place this
  1275         // trace at the join point if the "src" trace ends in a two-way, but
  1276         // the insertion point is one-way.
  1277         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
  1278         e->set_state(CFGEdge::connected);
  1279         src_trace->insert_after(src_block, targ_trace);
  1280         union_traces(src_trace, targ_trace);
  1281       } else if (src_at_tail) {
  1282         if (src_trace != trace(_cfg.get_root_block())) {
  1283           e->set_state(CFGEdge::connected);
  1284           targ_trace->insert_before(targ_block, src_trace);
  1285           union_traces(targ_trace, src_trace);
  1288     } else if (e->state() == CFGEdge::open) {
  1289       // Append traces, even without a fall-thru connection.
  1290       // But leave root entry at the beginning of the block list.
  1291       if (targ_trace != trace(_cfg.get_root_block())) {
  1292         e->set_state(CFGEdge::connected);
  1293         src_trace->append(targ_trace);
  1294         union_traces(src_trace, targ_trace);
  1300 // Order the sequence of the traces in some desirable way, and fixup the
  1301 // jumps at the end of each block.
  1302 void PhaseBlockLayout::reorder_traces(int count) {
  1303   ResourceArea *area = Thread::current()->resource_area();
  1304   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
  1305   Block_List worklist;
  1306   int new_count = 0;
  1308   // Compact the traces.
  1309   for (int i = 0; i < count; i++) {
  1310     Trace *tr = traces[i];
  1311     if (tr != NULL) {
  1312       new_traces[new_count++] = tr;
  1316   // The entry block should be first on the new trace list.
  1317   Trace *tr = trace(_cfg.get_root_block());
  1318   assert(tr == new_traces[0], "entry trace misplaced");
  1320   // Sort the new trace list by frequency
  1321   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
  1323   // Patch up the successor blocks
  1324   _cfg.clear_blocks();
  1325   for (int i = 0; i < new_count; i++) {
  1326     Trace *tr = new_traces[i];
  1327     if (tr != NULL) {
  1328       tr->fixup_blocks(_cfg);
  1333 // Order basic blocks based on frequency
  1334 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
  1335 : Phase(BlockLayout)
  1336 , _cfg(cfg) {
  1337   ResourceMark rm;
  1338   ResourceArea *area = Thread::current()->resource_area();
  1340   // List of traces
  1341   int size = _cfg.number_of_blocks() + 1;
  1342   traces = NEW_ARENA_ARRAY(area, Trace *, size);
  1343   memset(traces, 0, size*sizeof(Trace*));
  1344   next = NEW_ARENA_ARRAY(area, Block *, size);
  1345   memset(next,   0, size*sizeof(Block *));
  1346   prev = NEW_ARENA_ARRAY(area, Block *, size);
  1347   memset(prev  , 0, size*sizeof(Block *));
  1349   // List of edges
  1350   edges = new GrowableArray<CFGEdge*>;
  1352   // Mapping block index --> block_trace
  1353   uf = new UnionFind(size);
  1354   uf->reset(size);
  1356   // Find edges and create traces.
  1357   find_edges();
  1359   // Grow traces at their ends via most frequent edges.
  1360   grow_traces();
  1362   // Merge one trace into another, but only at fall-through points.
  1363   // This may make diamonds and other related shapes in a trace.
  1364   merge_traces(true);
  1366   // Run merge again, allowing two traces to be catenated, even if
  1367   // one does not fall through into the other. This appends loosely
  1368   // related traces to be near each other.
  1369   merge_traces(false);
  1371   // Re-order all the remaining traces by frequency
  1372   reorder_traces(size);
  1374   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
  1378 // Edge e completes a loop in a trace. If the target block is head of the
  1379 // loop, rotate the loop block so that the loop ends in a conditional branch.
  1380 bool Trace::backedge(CFGEdge *e) {
  1381   bool loop_rotated = false;
  1382   Block *src_block  = e->from();
  1383   Block *targ_block    = e->to();
  1385   assert(last_block() == src_block, "loop discovery at back branch");
  1386   if (first_block() == targ_block) {
  1387     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
  1388       // Find the last block in the trace that has a conditional
  1389       // branch.
  1390       Block *b;
  1391       for (b = last_block(); b != NULL; b = prev(b)) {
  1392         if (b->num_fall_throughs() == 2) {
  1393           break;
  1397       if (b != last_block() && b != NULL) {
  1398         loop_rotated = true;
  1400         // Rotate the loop by doing two-part linked-list surgery.
  1401         append(first_block());
  1402         break_loop_after(b);
  1406     // Backbranch to the top of a trace
  1407     // Scroll forward through the trace from the targ_block. If we find
  1408     // a loop head before another loop top, use the the loop head alignment.
  1409     for (Block *b = targ_block; b != NULL; b = next(b)) {
  1410       if (b->has_loop_alignment()) {
  1411         break;
  1413       if (b->head()->is_Loop()) {
  1414         targ_block = b;
  1415         break;
  1419     first_block()->set_loop_alignment(targ_block);
  1421   } else {
  1422     // Backbranch into the middle of a trace
  1423     targ_block->set_loop_alignment(targ_block);
  1426   return loop_rotated;
  1429 // push blocks onto the CFG list
  1430 // ensure that blocks have the correct two-way branch sense
  1431 void Trace::fixup_blocks(PhaseCFG &cfg) {
  1432   Block *last = last_block();
  1433   for (Block *b = first_block(); b != NULL; b = next(b)) {
  1434     cfg.add_block(b);
  1435     if (!b->is_connector()) {
  1436       int nfallthru = b->num_fall_throughs();
  1437       if (b != last) {
  1438         if (nfallthru == 2) {
  1439           // Ensure that the sense of the branch is correct
  1440           Block *bnext = next(b);
  1441           Block *bs0 = b->non_connector_successor(0);
  1443           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
  1444           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
  1445           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
  1447           if (bnext == bs0) {
  1448             // Fall-thru case in succs[0], should be in succs[1]
  1450             // Flip targets in _succs map
  1451             Block *tbs0 = b->_succs[0];
  1452             Block *tbs1 = b->_succs[1];
  1453             b->_succs.map( 0, tbs1 );
  1454             b->_succs.map( 1, tbs0 );
  1456             // Flip projections to match targets
  1457             b->map_node(proj1, b->number_of_nodes() - 2);
  1458             b->map_node(proj0, b->number_of_nodes() - 1);

mercurial