src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Mon, 12 Mar 2012 14:59:00 -0700

author
johnc
date
Mon, 12 Mar 2012 14:59:00 -0700
changeset 3666
64bf7c8270cb
parent 3539
a9647476d1a4
child 3675
9a9bb0010c91
permissions
-rw-r--r--

7147724: G1: hang in SurrogateLockerThread::manipulatePLL
Summary: Attempting to initiate a marking cycle when allocating a humongous object can, if a marking cycle is successfully initiated by another thread, result in the allocating thread spinning until the marking cycle is complete. Eliminate a deadlock between the main ConcurrentMarkThread, the SurrogateLocker thread, the VM thread, and a mutator thread waiting on the SecondaryFreeList_lock (while free regions are going to become available) by not manipulating the pending list lock during the prologue and epilogue of the cleanup pause.
Reviewed-by: brutisso, jcoomes, tonyp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(root_region_scan_wait)
    69   define_num_seq(parallel) // parallel only
    70     define_num_seq(ext_root_scan)
    71     define_num_seq(satb_filtering)
    72     define_num_seq(update_rs)
    73     define_num_seq(scan_rs)
    74     define_num_seq(obj_copy)
    75     define_num_seq(termination) // parallel only
    76     define_num_seq(parallel_other) // parallel only
    77   define_num_seq(mark_closure)
    78   define_num_seq(clear_ct)
    79 };
    81 class Summary: public PauseSummary,
    82                public MainBodySummary {
    83 public:
    84   virtual MainBodySummary*    main_body_summary()    { return this; }
    85 };
    87 // There are three command line options related to the young gen size:
    88 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
    89 // just a short form for NewSize==MaxNewSize). G1 will use its internal
    90 // heuristics to calculate the actual young gen size, so these options
    91 // basically only limit the range within which G1 can pick a young gen
    92 // size. Also, these are general options taking byte sizes. G1 will
    93 // internally work with a number of regions instead. So, some rounding
    94 // will occur.
    95 //
    96 // If nothing related to the the young gen size is set on the command
    97 // line we should allow the young gen to be between
    98 // G1DefaultMinNewGenPercent and G1DefaultMaxNewGenPercent of the
    99 // heap size. This means that every time the heap size changes the
   100 // limits for the young gen size will be updated.
   101 //
   102 // If only -XX:NewSize is set we should use the specified value as the
   103 // minimum size for young gen. Still using G1DefaultMaxNewGenPercent
   104 // of the heap as maximum.
   105 //
   106 // If only -XX:MaxNewSize is set we should use the specified value as the
   107 // maximum size for young gen. Still using G1DefaultMinNewGenPercent
   108 // of the heap as minimum.
   109 //
   110 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
   111 // No updates when the heap size changes. There is a special case when
   112 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
   113 // different heuristic for calculating the collection set when we do mixed
   114 // collection.
   115 //
   116 // If only -XX:NewRatio is set we should use the specified ratio of the heap
   117 // as both min and max. This will be interpreted as "fixed" just like the
   118 // NewSize==MaxNewSize case above. But we will update the min and max
   119 // everytime the heap size changes.
   120 //
   121 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
   122 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
   123 class G1YoungGenSizer : public CHeapObj {
   124 private:
   125   enum SizerKind {
   126     SizerDefaults,
   127     SizerNewSizeOnly,
   128     SizerMaxNewSizeOnly,
   129     SizerMaxAndNewSize,
   130     SizerNewRatio
   131   };
   132   SizerKind _sizer_kind;
   133   size_t _min_desired_young_length;
   134   size_t _max_desired_young_length;
   135   bool _adaptive_size;
   136   size_t calculate_default_min_length(size_t new_number_of_heap_regions);
   137   size_t calculate_default_max_length(size_t new_number_of_heap_regions);
   139 public:
   140   G1YoungGenSizer();
   141   void heap_size_changed(size_t new_number_of_heap_regions);
   142   size_t min_desired_young_length() {
   143     return _min_desired_young_length;
   144   }
   145   size_t max_desired_young_length() {
   146     return _max_desired_young_length;
   147   }
   148   bool adaptive_young_list_length() {
   149     return _adaptive_size;
   150   }
   151 };
   153 class G1CollectorPolicy: public CollectorPolicy {
   154 private:
   155   // either equal to the number of parallel threads, if ParallelGCThreads
   156   // has been set, or 1 otherwise
   157   int _parallel_gc_threads;
   159   // The number of GC threads currently active.
   160   uintx _no_of_gc_threads;
   162   enum SomePrivateConstants {
   163     NumPrevPausesForHeuristics = 10
   164   };
   166   G1MMUTracker* _mmu_tracker;
   168   void initialize_flags();
   170   void initialize_all() {
   171     initialize_flags();
   172     initialize_size_info();
   173     initialize_perm_generation(PermGen::MarkSweepCompact);
   174   }
   176   CollectionSetChooser* _collectionSetChooser;
   178   double _cur_collection_start_sec;
   179   size_t _cur_collection_pause_used_at_start_bytes;
   180   size_t _cur_collection_pause_used_regions_at_start;
   181   double _cur_collection_par_time_ms;
   182   double _cur_satb_drain_time_ms;
   183   double _cur_clear_ct_time_ms;
   184   double _cur_ref_proc_time_ms;
   185   double _cur_ref_enq_time_ms;
   187 #ifndef PRODUCT
   188   // Card Table Count Cache stats
   189   double _min_clear_cc_time_ms;         // min
   190   double _max_clear_cc_time_ms;         // max
   191   double _cur_clear_cc_time_ms;         // clearing time during current pause
   192   double _cum_clear_cc_time_ms;         // cummulative clearing time
   193   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   194 #endif
   196   // These exclude marking times.
   197   TruncatedSeq* _recent_gc_times_ms;
   199   TruncatedSeq* _concurrent_mark_remark_times_ms;
   200   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   202   Summary*           _summary;
   204   NumberSeq* _all_pause_times_ms;
   205   NumberSeq* _all_full_gc_times_ms;
   206   double _stop_world_start;
   207   NumberSeq* _all_stop_world_times_ms;
   208   NumberSeq* _all_yield_times_ms;
   210   int        _aux_num;
   211   NumberSeq* _all_aux_times_ms;
   212   double*    _cur_aux_start_times_ms;
   213   double*    _cur_aux_times_ms;
   214   bool*      _cur_aux_times_set;
   216   double* _par_last_gc_worker_start_times_ms;
   217   double* _par_last_ext_root_scan_times_ms;
   218   double* _par_last_satb_filtering_times_ms;
   219   double* _par_last_update_rs_times_ms;
   220   double* _par_last_update_rs_processed_buffers;
   221   double* _par_last_scan_rs_times_ms;
   222   double* _par_last_obj_copy_times_ms;
   223   double* _par_last_termination_times_ms;
   224   double* _par_last_termination_attempts;
   225   double* _par_last_gc_worker_end_times_ms;
   226   double* _par_last_gc_worker_times_ms;
   228   // Each workers 'other' time i.e. the elapsed time of the parallel
   229   // phase of the pause minus the sum of the individual sub-phase
   230   // times for a given worker thread.
   231   double* _par_last_gc_worker_other_times_ms;
   233   // indicates whether we are in young or mixed GC mode
   234   bool _gcs_are_young;
   236   size_t _young_list_target_length;
   237   size_t _young_list_fixed_length;
   238   size_t _prev_eden_capacity; // used for logging
   240   // The max number of regions we can extend the eden by while the GC
   241   // locker is active. This should be >= _young_list_target_length;
   242   size_t _young_list_max_length;
   244   bool                  _last_gc_was_young;
   246   unsigned              _young_pause_num;
   247   unsigned              _mixed_pause_num;
   249   bool                  _during_marking;
   250   bool                  _in_marking_window;
   251   bool                  _in_marking_window_im;
   253   SurvRateGroup*        _short_lived_surv_rate_group;
   254   SurvRateGroup*        _survivor_surv_rate_group;
   255   // add here any more surv rate groups
   257   double                _gc_overhead_perc;
   259   double _reserve_factor;
   260   size_t _reserve_regions;
   262   bool during_marking() {
   263     return _during_marking;
   264   }
   266 private:
   267   enum PredictionConstants {
   268     TruncatedSeqLength = 10
   269   };
   271   TruncatedSeq* _alloc_rate_ms_seq;
   272   double        _prev_collection_pause_end_ms;
   274   TruncatedSeq* _pending_card_diff_seq;
   275   TruncatedSeq* _rs_length_diff_seq;
   276   TruncatedSeq* _cost_per_card_ms_seq;
   277   TruncatedSeq* _young_cards_per_entry_ratio_seq;
   278   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
   279   TruncatedSeq* _cost_per_entry_ms_seq;
   280   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
   281   TruncatedSeq* _cost_per_byte_ms_seq;
   282   TruncatedSeq* _constant_other_time_ms_seq;
   283   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   284   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   286   TruncatedSeq* _pending_cards_seq;
   287   TruncatedSeq* _rs_lengths_seq;
   289   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   291   TruncatedSeq* _young_gc_eff_seq;
   293   G1YoungGenSizer* _young_gen_sizer;
   295   size_t _eden_cset_region_length;
   296   size_t _survivor_cset_region_length;
   297   size_t _old_cset_region_length;
   299   void init_cset_region_lengths(size_t eden_cset_region_length,
   300                                 size_t survivor_cset_region_length);
   302   size_t eden_cset_region_length()     { return _eden_cset_region_length;     }
   303   size_t survivor_cset_region_length() { return _survivor_cset_region_length; }
   304   size_t old_cset_region_length()      { return _old_cset_region_length;      }
   306   size_t _free_regions_at_end_of_collection;
   308   size_t _recorded_rs_lengths;
   309   size_t _max_rs_lengths;
   311   double _recorded_young_free_cset_time_ms;
   312   double _recorded_non_young_free_cset_time_ms;
   314   double _sigma;
   316   size_t _rs_lengths_prediction;
   318   size_t _known_garbage_bytes;
   319   double _known_garbage_ratio;
   321   double sigma() { return _sigma; }
   323   // A function that prevents us putting too much stock in small sample
   324   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   325   // of samples.  5 or more samples yields one; fewer scales linearly from
   326   // 2.0 at 1 sample to 1.0 at 5.
   327   double confidence_factor(int samples) {
   328     if (samples > 4) return 1.0;
   329     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   330   }
   332   double get_new_neg_prediction(TruncatedSeq* seq) {
   333     return seq->davg() - sigma() * seq->dsd();
   334   }
   336 #ifndef PRODUCT
   337   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   338 #endif // PRODUCT
   340   void adjust_concurrent_refinement(double update_rs_time,
   341                                     double update_rs_processed_buffers,
   342                                     double goal_ms);
   344   uintx no_of_gc_threads() { return _no_of_gc_threads; }
   345   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
   347   double _pause_time_target_ms;
   348   double _recorded_young_cset_choice_time_ms;
   349   double _recorded_non_young_cset_choice_time_ms;
   350   size_t _pending_cards;
   351   size_t _max_pending_cards;
   353 public:
   354   // Accessors
   356   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
   357     hr->set_young();
   358     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   359     hr->set_young_index_in_cset(young_index_in_cset);
   360   }
   362   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
   363     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
   364     hr->install_surv_rate_group(_survivor_surv_rate_group);
   365     hr->set_young_index_in_cset(young_index_in_cset);
   366   }
   368 #ifndef PRODUCT
   369   bool verify_young_ages();
   370 #endif // PRODUCT
   372   double get_new_prediction(TruncatedSeq* seq) {
   373     return MAX2(seq->davg() + sigma() * seq->dsd(),
   374                 seq->davg() * confidence_factor(seq->num()));
   375   }
   377   void record_max_rs_lengths(size_t rs_lengths) {
   378     _max_rs_lengths = rs_lengths;
   379   }
   381   size_t predict_pending_card_diff() {
   382     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   383     if (prediction < 0.00001) {
   384       return 0;
   385     } else {
   386       return (size_t) prediction;
   387     }
   388   }
   390   size_t predict_pending_cards() {
   391     size_t max_pending_card_num = _g1->max_pending_card_num();
   392     size_t diff = predict_pending_card_diff();
   393     size_t prediction;
   394     if (diff > max_pending_card_num) {
   395       prediction = max_pending_card_num;
   396     } else {
   397       prediction = max_pending_card_num - diff;
   398     }
   400     return prediction;
   401   }
   403   size_t predict_rs_length_diff() {
   404     return (size_t) get_new_prediction(_rs_length_diff_seq);
   405   }
   407   double predict_alloc_rate_ms() {
   408     return get_new_prediction(_alloc_rate_ms_seq);
   409   }
   411   double predict_cost_per_card_ms() {
   412     return get_new_prediction(_cost_per_card_ms_seq);
   413   }
   415   double predict_rs_update_time_ms(size_t pending_cards) {
   416     return (double) pending_cards * predict_cost_per_card_ms();
   417   }
   419   double predict_young_cards_per_entry_ratio() {
   420     return get_new_prediction(_young_cards_per_entry_ratio_seq);
   421   }
   423   double predict_mixed_cards_per_entry_ratio() {
   424     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
   425       return predict_young_cards_per_entry_ratio();
   426     } else {
   427       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
   428     }
   429   }
   431   size_t predict_young_card_num(size_t rs_length) {
   432     return (size_t) ((double) rs_length *
   433                      predict_young_cards_per_entry_ratio());
   434   }
   436   size_t predict_non_young_card_num(size_t rs_length) {
   437     return (size_t) ((double) rs_length *
   438                      predict_mixed_cards_per_entry_ratio());
   439   }
   441   double predict_rs_scan_time_ms(size_t card_num) {
   442     if (gcs_are_young()) {
   443       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   444     } else {
   445       return predict_mixed_rs_scan_time_ms(card_num);
   446     }
   447   }
   449   double predict_mixed_rs_scan_time_ms(size_t card_num) {
   450     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
   451       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   452     } else {
   453       return (double) (card_num *
   454                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
   455     }
   456   }
   458   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   459     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
   460       return (1.1 * (double) bytes_to_copy) *
   461               get_new_prediction(_cost_per_byte_ms_seq);
   462     } else {
   463       return (double) bytes_to_copy *
   464              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   465     }
   466   }
   468   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   469     if (_in_marking_window && !_in_marking_window_im) {
   470       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   471     } else {
   472       return (double) bytes_to_copy *
   473               get_new_prediction(_cost_per_byte_ms_seq);
   474     }
   475   }
   477   double predict_constant_other_time_ms() {
   478     return get_new_prediction(_constant_other_time_ms_seq);
   479   }
   481   double predict_young_other_time_ms(size_t young_num) {
   482     return (double) young_num *
   483            get_new_prediction(_young_other_cost_per_region_ms_seq);
   484   }
   486   double predict_non_young_other_time_ms(size_t non_young_num) {
   487     return (double) non_young_num *
   488            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   489   }
   491   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   492   double predict_base_elapsed_time_ms(size_t pending_cards);
   493   double predict_base_elapsed_time_ms(size_t pending_cards,
   494                                       size_t scanned_cards);
   495   size_t predict_bytes_to_copy(HeapRegion* hr);
   496   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   498   void set_recorded_rs_lengths(size_t rs_lengths);
   500   size_t cset_region_length()       { return young_cset_region_length() +
   501                                              old_cset_region_length(); }
   502   size_t young_cset_region_length() { return eden_cset_region_length() +
   503                                              survivor_cset_region_length(); }
   505   void record_young_free_cset_time_ms(double time_ms) {
   506     _recorded_young_free_cset_time_ms = time_ms;
   507   }
   509   void record_non_young_free_cset_time_ms(double time_ms) {
   510     _recorded_non_young_free_cset_time_ms = time_ms;
   511   }
   513   double predict_young_gc_eff() {
   514     return get_new_neg_prediction(_young_gc_eff_seq);
   515   }
   517   double predict_survivor_regions_evac_time();
   519   void cset_regions_freed() {
   520     bool propagate = _last_gc_was_young && !_in_marking_window;
   521     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   522     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   523     // also call it on any more surv rate groups
   524   }
   526   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   527     _known_garbage_bytes = known_garbage_bytes;
   528     size_t heap_bytes = _g1->capacity();
   529     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   530   }
   532   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   533     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   535     _known_garbage_bytes -= known_garbage_bytes;
   536     size_t heap_bytes = _g1->capacity();
   537     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   538   }
   540   G1MMUTracker* mmu_tracker() {
   541     return _mmu_tracker;
   542   }
   544   double max_pause_time_ms() {
   545     return _mmu_tracker->max_gc_time() * 1000.0;
   546   }
   548   double predict_remark_time_ms() {
   549     return get_new_prediction(_concurrent_mark_remark_times_ms);
   550   }
   552   double predict_cleanup_time_ms() {
   553     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   554   }
   556   // Returns an estimate of the survival rate of the region at yg-age
   557   // "yg_age".
   558   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   559     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   560     if (seq->num() == 0)
   561       gclog_or_tty->print("BARF! age is %d", age);
   562     guarantee( seq->num() > 0, "invariant" );
   563     double pred = get_new_prediction(seq);
   564     if (pred > 1.0)
   565       pred = 1.0;
   566     return pred;
   567   }
   569   double predict_yg_surv_rate(int age) {
   570     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   571   }
   573   double accum_yg_surv_rate_pred(int age) {
   574     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   575   }
   577 private:
   578   void print_stats(int level, const char* str, double value);
   579   void print_stats(int level, const char* str, int value);
   581   void print_par_stats(int level, const char* str, double* data);
   582   void print_par_sizes(int level, const char* str, double* data);
   584   void check_other_times(int level,
   585                          NumberSeq* other_times_ms,
   586                          NumberSeq* calc_other_times_ms) const;
   588   void print_summary (PauseSummary* stats) const;
   590   void print_summary (int level, const char* str, NumberSeq* seq) const;
   591   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   593   double avg_value (double* data);
   594   double max_value (double* data);
   595   double sum_of_values (double* data);
   596   double max_sum (double* data1, double* data2);
   598   double _last_pause_time_ms;
   600   size_t _bytes_in_collection_set_before_gc;
   601   size_t _bytes_copied_during_gc;
   603   // Used to count used bytes in CS.
   604   friend class CountCSClosure;
   606   // Statistics kept per GC stoppage, pause or full.
   607   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   609   // Add a new GC of the given duration and end time to the record.
   610   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   612   // The head of the list (via "next_in_collection_set()") representing the
   613   // current collection set. Set from the incrementally built collection
   614   // set at the start of the pause.
   615   HeapRegion* _collection_set;
   617   // The number of bytes in the collection set before the pause. Set from
   618   // the incrementally built collection set at the start of an evacuation
   619   // pause.
   620   size_t _collection_set_bytes_used_before;
   622   // The associated information that is maintained while the incremental
   623   // collection set is being built with young regions. Used to populate
   624   // the recorded info for the evacuation pause.
   626   enum CSetBuildType {
   627     Active,             // We are actively building the collection set
   628     Inactive            // We are not actively building the collection set
   629   };
   631   CSetBuildType _inc_cset_build_state;
   633   // The head of the incrementally built collection set.
   634   HeapRegion* _inc_cset_head;
   636   // The tail of the incrementally built collection set.
   637   HeapRegion* _inc_cset_tail;
   639   // The number of bytes in the incrementally built collection set.
   640   // Used to set _collection_set_bytes_used_before at the start of
   641   // an evacuation pause.
   642   size_t _inc_cset_bytes_used_before;
   644   // Used to record the highest end of heap region in collection set
   645   HeapWord* _inc_cset_max_finger;
   647   // The RSet lengths recorded for regions in the CSet. It is updated
   648   // by the thread that adds a new region to the CSet. We assume that
   649   // only one thread can be allocating a new CSet region (currently,
   650   // it does so after taking the Heap_lock) hence no need to
   651   // synchronize updates to this field.
   652   size_t _inc_cset_recorded_rs_lengths;
   654   // A concurrent refinement thread periodcially samples the young
   655   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
   656   // the RSets grow. Instead of having to syncronize updates to that
   657   // field we accumulate them in this field and add it to
   658   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
   659   ssize_t _inc_cset_recorded_rs_lengths_diffs;
   661   // The predicted elapsed time it will take to collect the regions in
   662   // the CSet. This is updated by the thread that adds a new region to
   663   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
   664   // MT-safety assumptions.
   665   double _inc_cset_predicted_elapsed_time_ms;
   667   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
   668   double _inc_cset_predicted_elapsed_time_ms_diffs;
   670   // Stash a pointer to the g1 heap.
   671   G1CollectedHeap* _g1;
   673   // The ratio of gc time to elapsed time, computed over recent pauses.
   674   double _recent_avg_pause_time_ratio;
   676   double recent_avg_pause_time_ratio() {
   677     return _recent_avg_pause_time_ratio;
   678   }
   680   // At the end of a pause we check the heap occupancy and we decide
   681   // whether we will start a marking cycle during the next pause. If
   682   // we decide that we want to do that, we will set this parameter to
   683   // true. So, this parameter will stay true between the end of a
   684   // pause and the beginning of a subsequent pause (not necessarily
   685   // the next one, see the comments on the next field) when we decide
   686   // that we will indeed start a marking cycle and do the initial-mark
   687   // work.
   688   volatile bool _initiate_conc_mark_if_possible;
   690   // If initiate_conc_mark_if_possible() is set at the beginning of a
   691   // pause, it is a suggestion that the pause should start a marking
   692   // cycle by doing the initial-mark work. However, it is possible
   693   // that the concurrent marking thread is still finishing up the
   694   // previous marking cycle (e.g., clearing the next marking
   695   // bitmap). If that is the case we cannot start a new cycle and
   696   // we'll have to wait for the concurrent marking thread to finish
   697   // what it is doing. In this case we will postpone the marking cycle
   698   // initiation decision for the next pause. When we eventually decide
   699   // to start a cycle, we will set _during_initial_mark_pause which
   700   // will stay true until the end of the initial-mark pause and it's
   701   // the condition that indicates that a pause is doing the
   702   // initial-mark work.
   703   volatile bool _during_initial_mark_pause;
   705   bool _last_young_gc;
   707   // This set of variables tracks the collector efficiency, in order to
   708   // determine whether we should initiate a new marking.
   709   double _cur_mark_stop_world_time_ms;
   710   double _mark_remark_start_sec;
   711   double _mark_cleanup_start_sec;
   712   double _mark_closure_time_ms;
   713   double _root_region_scan_wait_time_ms;
   715   // Update the young list target length either by setting it to the
   716   // desired fixed value or by calculating it using G1's pause
   717   // prediction model. If no rs_lengths parameter is passed, predict
   718   // the RS lengths using the prediction model, otherwise use the
   719   // given rs_lengths as the prediction.
   720   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   722   // Calculate and return the minimum desired young list target
   723   // length. This is the minimum desired young list length according
   724   // to the user's inputs.
   725   size_t calculate_young_list_desired_min_length(size_t base_min_length);
   727   // Calculate and return the maximum desired young list target
   728   // length. This is the maximum desired young list length according
   729   // to the user's inputs.
   730   size_t calculate_young_list_desired_max_length();
   732   // Calculate and return the maximum young list target length that
   733   // can fit into the pause time goal. The parameters are: rs_lengths
   734   // represent the prediction of how large the young RSet lengths will
   735   // be, base_min_length is the alreay existing number of regions in
   736   // the young list, min_length and max_length are the desired min and
   737   // max young list length according to the user's inputs.
   738   size_t calculate_young_list_target_length(size_t rs_lengths,
   739                                             size_t base_min_length,
   740                                             size_t desired_min_length,
   741                                             size_t desired_max_length);
   743   // Check whether a given young length (young_length) fits into the
   744   // given target pause time and whether the prediction for the amount
   745   // of objects to be copied for the given length will fit into the
   746   // given free space (expressed by base_free_regions).  It is used by
   747   // calculate_young_list_target_length().
   748   bool predict_will_fit(size_t young_length, double base_time_ms,
   749                         size_t base_free_regions, double target_pause_time_ms);
   751   // Count the number of bytes used in the CS.
   752   void count_CS_bytes_used();
   754 public:
   756   G1CollectorPolicy();
   758   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   760   virtual CollectorPolicy::Name kind() {
   761     return CollectorPolicy::G1CollectorPolicyKind;
   762   }
   764   // Check the current value of the young list RSet lengths and
   765   // compare it against the last prediction. If the current value is
   766   // higher, recalculate the young list target length prediction.
   767   void revise_young_list_target_length_if_necessary();
   769   size_t bytes_in_collection_set() {
   770     return _bytes_in_collection_set_before_gc;
   771   }
   773   unsigned calc_gc_alloc_time_stamp() {
   774     return _all_pause_times_ms->num() + 1;
   775   }
   777   // This should be called after the heap is resized.
   778   void record_new_heap_size(size_t new_number_of_regions);
   780   void init();
   782   // Create jstat counters for the policy.
   783   virtual void initialize_gc_policy_counters();
   785   virtual HeapWord* mem_allocate_work(size_t size,
   786                                       bool is_tlab,
   787                                       bool* gc_overhead_limit_was_exceeded);
   789   // This method controls how a collector handles one or more
   790   // of its generations being fully allocated.
   791   virtual HeapWord* satisfy_failed_allocation(size_t size,
   792                                               bool is_tlab);
   794   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   796   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   798   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
   800   // Update the heuristic info to record a collection pause of the given
   801   // start time, where the given number of bytes were used at the start.
   802   // This may involve changing the desired size of a collection set.
   804   void record_stop_world_start();
   806   void record_collection_pause_start(double start_time_sec, size_t start_used);
   808   // Must currently be called while the world is stopped.
   809   void record_concurrent_mark_init_end(double
   810                                            mark_init_elapsed_time_ms);
   812   void record_mark_closure_time(double mark_closure_time_ms) {
   813     _mark_closure_time_ms = mark_closure_time_ms;
   814   }
   816   void record_root_region_scan_wait_time(double time_ms) {
   817     _root_region_scan_wait_time_ms = time_ms;
   818   }
   820   void record_concurrent_mark_remark_start();
   821   void record_concurrent_mark_remark_end();
   823   void record_concurrent_mark_cleanup_start();
   824   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
   825   void record_concurrent_mark_cleanup_completed();
   827   void record_concurrent_pause();
   828   void record_concurrent_pause_end();
   830   void record_collection_pause_end(int no_of_gc_threads);
   831   void print_heap_transition();
   833   // Record the fact that a full collection occurred.
   834   void record_full_collection_start();
   835   void record_full_collection_end();
   837   void record_gc_worker_start_time(int worker_i, double ms) {
   838     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   839   }
   841   void record_ext_root_scan_time(int worker_i, double ms) {
   842     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   843   }
   845   void record_satb_filtering_time(int worker_i, double ms) {
   846     _par_last_satb_filtering_times_ms[worker_i] = ms;
   847   }
   849   void record_satb_drain_time(double ms) {
   850     assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
   851     _cur_satb_drain_time_ms = ms;
   852   }
   854   void record_update_rs_time(int thread, double ms) {
   855     _par_last_update_rs_times_ms[thread] = ms;
   856   }
   858   void record_update_rs_processed_buffers (int thread,
   859                                            double processed_buffers) {
   860     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   861   }
   863   void record_scan_rs_time(int thread, double ms) {
   864     _par_last_scan_rs_times_ms[thread] = ms;
   865   }
   867   void reset_obj_copy_time(int thread) {
   868     _par_last_obj_copy_times_ms[thread] = 0.0;
   869   }
   871   void reset_obj_copy_time() {
   872     reset_obj_copy_time(0);
   873   }
   875   void record_obj_copy_time(int thread, double ms) {
   876     _par_last_obj_copy_times_ms[thread] += ms;
   877   }
   879   void record_termination(int thread, double ms, size_t attempts) {
   880     _par_last_termination_times_ms[thread] = ms;
   881     _par_last_termination_attempts[thread] = (double) attempts;
   882   }
   884   void record_gc_worker_end_time(int worker_i, double ms) {
   885     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   886   }
   888   void record_pause_time_ms(double ms) {
   889     _last_pause_time_ms = ms;
   890   }
   892   void record_clear_ct_time(double ms) {
   893     _cur_clear_ct_time_ms = ms;
   894   }
   896   void record_par_time(double ms) {
   897     _cur_collection_par_time_ms = ms;
   898   }
   900   void record_aux_start_time(int i) {
   901     guarantee(i < _aux_num, "should be within range");
   902     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   903   }
   905   void record_aux_end_time(int i) {
   906     guarantee(i < _aux_num, "should be within range");
   907     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   908     _cur_aux_times_set[i] = true;
   909     _cur_aux_times_ms[i] += ms;
   910   }
   912   void record_ref_proc_time(double ms) {
   913     _cur_ref_proc_time_ms = ms;
   914   }
   916   void record_ref_enq_time(double ms) {
   917     _cur_ref_enq_time_ms = ms;
   918   }
   920 #ifndef PRODUCT
   921   void record_cc_clear_time(double ms) {
   922     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   923       _min_clear_cc_time_ms = ms;
   924     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   925       _max_clear_cc_time_ms = ms;
   926     _cur_clear_cc_time_ms = ms;
   927     _cum_clear_cc_time_ms += ms;
   928     _num_cc_clears++;
   929   }
   930 #endif
   932   // Record how much space we copied during a GC. This is typically
   933   // called when a GC alloc region is being retired.
   934   void record_bytes_copied_during_gc(size_t bytes) {
   935     _bytes_copied_during_gc += bytes;
   936   }
   938   // The amount of space we copied during a GC.
   939   size_t bytes_copied_during_gc() {
   940     return _bytes_copied_during_gc;
   941   }
   943   // Determine whether the next GC should be mixed. Called to determine
   944   // whether to start mixed GCs or whether to carry on doing mixed
   945   // GCs. The two action strings are used in the ergo output when the
   946   // method returns true or false.
   947   bool next_gc_should_be_mixed(const char* true_action_str,
   948                                const char* false_action_str);
   950   // Choose a new collection set.  Marks the chosen regions as being
   951   // "in_collection_set", and links them together.  The head and number of
   952   // the collection set are available via access methods.
   953   void finalize_cset(double target_pause_time_ms);
   955   // The head of the list (via "next_in_collection_set()") representing the
   956   // current collection set.
   957   HeapRegion* collection_set() { return _collection_set; }
   959   void clear_collection_set() { _collection_set = NULL; }
   961   // Add old region "hr" to the CSet.
   962   void add_old_region_to_cset(HeapRegion* hr);
   964   // Incremental CSet Support
   966   // The head of the incrementally built collection set.
   967   HeapRegion* inc_cset_head() { return _inc_cset_head; }
   969   // The tail of the incrementally built collection set.
   970   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
   972   // Initialize incremental collection set info.
   973   void start_incremental_cset_building();
   975   // Perform any final calculations on the incremental CSet fields
   976   // before we can use them.
   977   void finalize_incremental_cset_building();
   979   void clear_incremental_cset() {
   980     _inc_cset_head = NULL;
   981     _inc_cset_tail = NULL;
   982   }
   984   // Stop adding regions to the incremental collection set
   985   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
   987   // Add information about hr to the aggregated information for the
   988   // incrementally built collection set.
   989   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
   991   // Update information about hr in the aggregated information for
   992   // the incrementally built collection set.
   993   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
   995 private:
   996   // Update the incremental cset information when adding a region
   997   // (should not be called directly).
   998   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1000 public:
  1001   // Add hr to the LHS of the incremental collection set.
  1002   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1004   // Add hr to the RHS of the incremental collection set.
  1005   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1007 #ifndef PRODUCT
  1008   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1009 #endif // !PRODUCT
  1011   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1012   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1013   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1015   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1016   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1017   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1019   // This sets the initiate_conc_mark_if_possible() flag to start a
  1020   // new cycle, as long as we are not already in one. It's best if it
  1021   // is called during a safepoint when the test whether a cycle is in
  1022   // progress or not is stable.
  1023   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
  1025   // This is called at the very beginning of an evacuation pause (it
  1026   // has to be the first thing that the pause does). If
  1027   // initiate_conc_mark_if_possible() is true, and the concurrent
  1028   // marking thread has completed its work during the previous cycle,
  1029   // it will set during_initial_mark_pause() to so that the pause does
  1030   // the initial-mark work and start a marking cycle.
  1031   void decide_on_conc_mark_initiation();
  1033   // If an expansion would be appropriate, because recent GC overhead had
  1034   // exceeded the desired limit, return an amount to expand by.
  1035   size_t expansion_amount();
  1037 #ifndef PRODUCT
  1038   // Check any appropriate marked bytes info, asserting false if
  1039   // something's wrong, else returning "true".
  1040   bool assertMarkedBytesDataOK();
  1041 #endif
  1043   // Print tracing information.
  1044   void print_tracing_info() const;
  1046   // Print stats on young survival ratio
  1047   void print_yg_surv_rate_info() const;
  1049   void finished_recalculating_age_indexes(bool is_survivors) {
  1050     if (is_survivors) {
  1051       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1052     } else {
  1053       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1055     // do that for any other surv rate groups
  1058   bool is_young_list_full() {
  1059     size_t young_list_length = _g1->young_list()->length();
  1060     size_t young_list_target_length = _young_list_target_length;
  1061     return young_list_length >= young_list_target_length;
  1064   bool can_expand_young_list() {
  1065     size_t young_list_length = _g1->young_list()->length();
  1066     size_t young_list_max_length = _young_list_max_length;
  1067     return young_list_length < young_list_max_length;
  1070   size_t young_list_max_length() {
  1071     return _young_list_max_length;
  1074   bool gcs_are_young() {
  1075     return _gcs_are_young;
  1077   void set_gcs_are_young(bool gcs_are_young) {
  1078     _gcs_are_young = gcs_are_young;
  1081   bool adaptive_young_list_length() {
  1082     return _young_gen_sizer->adaptive_young_list_length();
  1085   inline double get_gc_eff_factor() {
  1086     double ratio = _known_garbage_ratio;
  1088     double square = ratio * ratio;
  1089     // square = square * square;
  1090     double ret = square * 9.0 + 1.0;
  1091 #if 0
  1092     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1093 #endif // 0
  1094     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1095     return ret;
  1098 private:
  1099   //
  1100   // Survivor regions policy.
  1101   //
  1103   // Current tenuring threshold, set to 0 if the collector reaches the
  1104   // maximum amount of suvivors regions.
  1105   int _tenuring_threshold;
  1107   // The limit on the number of regions allocated for survivors.
  1108   size_t _max_survivor_regions;
  1110   // For reporting purposes.
  1111   size_t _eden_bytes_before_gc;
  1112   size_t _survivor_bytes_before_gc;
  1113   size_t _capacity_before_gc;
  1115   // The amount of survor regions after a collection.
  1116   size_t _recorded_survivor_regions;
  1117   // List of survivor regions.
  1118   HeapRegion* _recorded_survivor_head;
  1119   HeapRegion* _recorded_survivor_tail;
  1121   ageTable _survivors_age_table;
  1123 public:
  1125   inline GCAllocPurpose
  1126     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1127       if (age < _tenuring_threshold && src_region->is_young()) {
  1128         return GCAllocForSurvived;
  1129       } else {
  1130         return GCAllocForTenured;
  1134   inline bool track_object_age(GCAllocPurpose purpose) {
  1135     return purpose == GCAllocForSurvived;
  1138   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1140   size_t max_regions(int purpose);
  1142   // The limit on regions for a particular purpose is reached.
  1143   void note_alloc_region_limit_reached(int purpose) {
  1144     if (purpose == GCAllocForSurvived) {
  1145       _tenuring_threshold = 0;
  1149   void note_start_adding_survivor_regions() {
  1150     _survivor_surv_rate_group->start_adding_regions();
  1153   void note_stop_adding_survivor_regions() {
  1154     _survivor_surv_rate_group->stop_adding_regions();
  1157   void record_survivor_regions(size_t      regions,
  1158                                HeapRegion* head,
  1159                                HeapRegion* tail) {
  1160     _recorded_survivor_regions = regions;
  1161     _recorded_survivor_head    = head;
  1162     _recorded_survivor_tail    = tail;
  1165   size_t recorded_survivor_regions() {
  1166     return _recorded_survivor_regions;
  1169   void record_thread_age_table(ageTable* age_table)
  1171     _survivors_age_table.merge_par(age_table);
  1174   void update_max_gc_locker_expansion();
  1176   // Calculates survivor space parameters.
  1177   void update_survivors_policy();
  1179 };
  1181 // This should move to some place more general...
  1183 // If we have "n" measurements, and we've kept track of their "sum" and the
  1184 // "sum_of_squares" of the measurements, this returns the variance of the
  1185 // sequence.
  1186 inline double variance(int n, double sum_of_squares, double sum) {
  1187   double n_d = (double)n;
  1188   double avg = sum/n_d;
  1189   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1192 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial