src/share/vm/gc_implementation/g1/concurrentMark.cpp

Mon, 12 Mar 2012 14:59:00 -0700

author
johnc
date
Mon, 12 Mar 2012 14:59:00 -0700
changeset 3666
64bf7c8270cb
parent 3464
eff609af17d7
child 3691
2a0172480595
permissions
-rw-r--r--

7147724: G1: hang in SurrogateLockerThread::manipulatePLL
Summary: Attempting to initiate a marking cycle when allocating a humongous object can, if a marking cycle is successfully initiated by another thread, result in the allocating thread spinning until the marking cycle is complete. Eliminate a deadlock between the main ConcurrentMarkThread, the SurrogateLocker thread, the VM thread, and a mutator thread waiting on the SecondaryFreeList_lock (while free regions are going to become available) by not manipulating the pending list lock during the prologue and epilogue of the cleanup pause.
Reviewed-by: brutisso, jcoomes, tonyp

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    32 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    33 #include "gc_implementation/g1/g1RemSet.hpp"
    34 #include "gc_implementation/g1/heapRegion.inline.hpp"
    35 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    36 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    37 #include "gc_implementation/shared/vmGCOperations.hpp"
    38 #include "memory/genOopClosures.inline.hpp"
    39 #include "memory/referencePolicy.hpp"
    40 #include "memory/resourceArea.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "runtime/handles.inline.hpp"
    43 #include "runtime/java.hpp"
    45 // Concurrent marking bit map wrapper
    47 CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
    48   _bm((uintptr_t*)NULL,0),
    49   _shifter(shifter) {
    50   _bmStartWord = (HeapWord*)(rs.base());
    51   _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
    52   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
    53                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
    55   guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
    56   // For now we'll just commit all of the bit map up fromt.
    57   // Later on we'll try to be more parsimonious with swap.
    58   guarantee(_virtual_space.initialize(brs, brs.size()),
    59             "couldn't reseve backing store for concurrent marking bit map");
    60   assert(_virtual_space.committed_size() == brs.size(),
    61          "didn't reserve backing store for all of concurrent marking bit map?");
    62   _bm.set_map((uintptr_t*)_virtual_space.low());
    63   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
    64          _bmWordSize, "inconsistency in bit map sizing");
    65   _bm.set_size(_bmWordSize >> _shifter);
    66 }
    68 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
    69                                                HeapWord* limit) const {
    70   // First we must round addr *up* to a possible object boundary.
    71   addr = (HeapWord*)align_size_up((intptr_t)addr,
    72                                   HeapWordSize << _shifter);
    73   size_t addrOffset = heapWordToOffset(addr);
    74   if (limit == NULL) {
    75     limit = _bmStartWord + _bmWordSize;
    76   }
    77   size_t limitOffset = heapWordToOffset(limit);
    78   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
    79   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    80   assert(nextAddr >= addr, "get_next_one postcondition");
    81   assert(nextAddr == limit || isMarked(nextAddr),
    82          "get_next_one postcondition");
    83   return nextAddr;
    84 }
    86 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
    87                                                  HeapWord* limit) const {
    88   size_t addrOffset = heapWordToOffset(addr);
    89   if (limit == NULL) {
    90     limit = _bmStartWord + _bmWordSize;
    91   }
    92   size_t limitOffset = heapWordToOffset(limit);
    93   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
    94   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
    95   assert(nextAddr >= addr, "get_next_one postcondition");
    96   assert(nextAddr == limit || !isMarked(nextAddr),
    97          "get_next_one postcondition");
    98   return nextAddr;
    99 }
   101 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
   102   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
   103   return (int) (diff >> _shifter);
   104 }
   106 void CMBitMapRO::mostly_disjoint_range_union(BitMap*   from_bitmap,
   107                                              size_t    from_start_index,
   108                                              HeapWord* to_start_word,
   109                                              size_t    word_num) {
   110   _bm.mostly_disjoint_range_union(from_bitmap,
   111                                   from_start_index,
   112                                   heapWordToOffset(to_start_word),
   113                                   word_num);
   114 }
   116 #ifndef PRODUCT
   117 bool CMBitMapRO::covers(ReservedSpace rs) const {
   118   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
   119   assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
   120          "size inconsistency");
   121   return _bmStartWord == (HeapWord*)(rs.base()) &&
   122          _bmWordSize  == rs.size()>>LogHeapWordSize;
   123 }
   124 #endif
   126 void CMBitMap::clearAll() {
   127   _bm.clear();
   128   return;
   129 }
   131 void CMBitMap::markRange(MemRegion mr) {
   132   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   133   assert(!mr.is_empty(), "unexpected empty region");
   134   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
   135           ((HeapWord *) mr.end())),
   136          "markRange memory region end is not card aligned");
   137   // convert address range into offset range
   138   _bm.at_put_range(heapWordToOffset(mr.start()),
   139                    heapWordToOffset(mr.end()), true);
   140 }
   142 void CMBitMap::clearRange(MemRegion mr) {
   143   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
   144   assert(!mr.is_empty(), "unexpected empty region");
   145   // convert address range into offset range
   146   _bm.at_put_range(heapWordToOffset(mr.start()),
   147                    heapWordToOffset(mr.end()), false);
   148 }
   150 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
   151                                             HeapWord* end_addr) {
   152   HeapWord* start = getNextMarkedWordAddress(addr);
   153   start = MIN2(start, end_addr);
   154   HeapWord* end   = getNextUnmarkedWordAddress(start);
   155   end = MIN2(end, end_addr);
   156   assert(start <= end, "Consistency check");
   157   MemRegion mr(start, end);
   158   if (!mr.is_empty()) {
   159     clearRange(mr);
   160   }
   161   return mr;
   162 }
   164 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
   165   _base(NULL), _cm(cm)
   166 #ifdef ASSERT
   167   , _drain_in_progress(false)
   168   , _drain_in_progress_yields(false)
   169 #endif
   170 {}
   172 void CMMarkStack::allocate(size_t size) {
   173   _base = NEW_C_HEAP_ARRAY(oop, size);
   174   if (_base == NULL) {
   175     vm_exit_during_initialization("Failed to allocate CM region mark stack");
   176   }
   177   _index = 0;
   178   _capacity = (jint) size;
   179   _saved_index = -1;
   180   NOT_PRODUCT(_max_depth = 0);
   181 }
   183 CMMarkStack::~CMMarkStack() {
   184   if (_base != NULL) {
   185     FREE_C_HEAP_ARRAY(oop, _base);
   186   }
   187 }
   189 void CMMarkStack::par_push(oop ptr) {
   190   while (true) {
   191     if (isFull()) {
   192       _overflow = true;
   193       return;
   194     }
   195     // Otherwise...
   196     jint index = _index;
   197     jint next_index = index+1;
   198     jint res = Atomic::cmpxchg(next_index, &_index, index);
   199     if (res == index) {
   200       _base[index] = ptr;
   201       // Note that we don't maintain this atomically.  We could, but it
   202       // doesn't seem necessary.
   203       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   204       return;
   205     }
   206     // Otherwise, we need to try again.
   207   }
   208 }
   210 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
   211   while (true) {
   212     if (isFull()) {
   213       _overflow = true;
   214       return;
   215     }
   216     // Otherwise...
   217     jint index = _index;
   218     jint next_index = index + n;
   219     if (next_index > _capacity) {
   220       _overflow = true;
   221       return;
   222     }
   223     jint res = Atomic::cmpxchg(next_index, &_index, index);
   224     if (res == index) {
   225       for (int i = 0; i < n; i++) {
   226         int ind = index + i;
   227         assert(ind < _capacity, "By overflow test above.");
   228         _base[ind] = ptr_arr[i];
   229       }
   230       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
   231       return;
   232     }
   233     // Otherwise, we need to try again.
   234   }
   235 }
   238 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
   239   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   240   jint start = _index;
   241   jint next_index = start + n;
   242   if (next_index > _capacity) {
   243     _overflow = true;
   244     return;
   245   }
   246   // Otherwise.
   247   _index = next_index;
   248   for (int i = 0; i < n; i++) {
   249     int ind = start + i;
   250     assert(ind < _capacity, "By overflow test above.");
   251     _base[ind] = ptr_arr[i];
   252   }
   253 }
   256 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
   257   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   258   jint index = _index;
   259   if (index == 0) {
   260     *n = 0;
   261     return false;
   262   } else {
   263     int k = MIN2(max, index);
   264     jint new_ind = index - k;
   265     for (int j = 0; j < k; j++) {
   266       ptr_arr[j] = _base[new_ind + j];
   267     }
   268     _index = new_ind;
   269     *n = k;
   270     return true;
   271   }
   272 }
   274 CMRegionStack::CMRegionStack() : _base(NULL) {}
   276 void CMRegionStack::allocate(size_t size) {
   277   _base = NEW_C_HEAP_ARRAY(MemRegion, size);
   278   if (_base == NULL) {
   279     vm_exit_during_initialization("Failed to allocate CM region mark stack");
   280   }
   281   _index = 0;
   282   _capacity = (jint) size;
   283 }
   285 CMRegionStack::~CMRegionStack() {
   286   if (_base != NULL) {
   287     FREE_C_HEAP_ARRAY(oop, _base);
   288   }
   289 }
   291 void CMRegionStack::push_lock_free(MemRegion mr) {
   292   guarantee(false, "push_lock_free(): don't call this any more");
   294   assert(mr.word_size() > 0, "Precondition");
   295   while (true) {
   296     jint index = _index;
   298     if (index >= _capacity) {
   299       _overflow = true;
   300       return;
   301     }
   302     // Otherwise...
   303     jint next_index = index+1;
   304     jint res = Atomic::cmpxchg(next_index, &_index, index);
   305     if (res == index) {
   306       _base[index] = mr;
   307       return;
   308     }
   309     // Otherwise, we need to try again.
   310   }
   311 }
   313 // Lock-free pop of the region stack. Called during the concurrent
   314 // marking / remark phases. Should only be called in tandem with
   315 // other lock-free pops.
   316 MemRegion CMRegionStack::pop_lock_free() {
   317   guarantee(false, "pop_lock_free(): don't call this any more");
   319   while (true) {
   320     jint index = _index;
   322     if (index == 0) {
   323       return MemRegion();
   324     }
   325     // Otherwise...
   326     jint next_index = index-1;
   327     jint res = Atomic::cmpxchg(next_index, &_index, index);
   328     if (res == index) {
   329       MemRegion mr = _base[next_index];
   330       if (mr.start() != NULL) {
   331         assert(mr.end() != NULL, "invariant");
   332         assert(mr.word_size() > 0, "invariant");
   333         return mr;
   334       } else {
   335         // that entry was invalidated... let's skip it
   336         assert(mr.end() == NULL, "invariant");
   337       }
   338     }
   339     // Otherwise, we need to try again.
   340   }
   341 }
   343 #if 0
   344 // The routines that manipulate the region stack with a lock are
   345 // not currently used. They should be retained, however, as a
   346 // diagnostic aid.
   348 void CMRegionStack::push_with_lock(MemRegion mr) {
   349   assert(mr.word_size() > 0, "Precondition");
   350   MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);
   352   if (isFull()) {
   353     _overflow = true;
   354     return;
   355   }
   357   _base[_index] = mr;
   358   _index += 1;
   359 }
   361 MemRegion CMRegionStack::pop_with_lock() {
   362   MutexLockerEx x(CMRegionStack_lock, Mutex::_no_safepoint_check_flag);
   364   while (true) {
   365     if (_index == 0) {
   366       return MemRegion();
   367     }
   368     _index -= 1;
   370     MemRegion mr = _base[_index];
   371     if (mr.start() != NULL) {
   372       assert(mr.end() != NULL, "invariant");
   373       assert(mr.word_size() > 0, "invariant");
   374       return mr;
   375     } else {
   376       // that entry was invalidated... let's skip it
   377       assert(mr.end() == NULL, "invariant");
   378     }
   379   }
   380 }
   381 #endif
   383 bool CMRegionStack::invalidate_entries_into_cset() {
   384   guarantee(false, "invalidate_entries_into_cset(): don't call this any more");
   386   bool result = false;
   387   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   388   for (int i = 0; i < _oops_do_bound; ++i) {
   389     MemRegion mr = _base[i];
   390     if (mr.start() != NULL) {
   391       assert(mr.end() != NULL, "invariant");
   392       assert(mr.word_size() > 0, "invariant");
   393       HeapRegion* hr = g1h->heap_region_containing(mr.start());
   394       assert(hr != NULL, "invariant");
   395       if (hr->in_collection_set()) {
   396         // The region points into the collection set
   397         _base[i] = MemRegion();
   398         result = true;
   399       }
   400     } else {
   401       // that entry was invalidated... let's skip it
   402       assert(mr.end() == NULL, "invariant");
   403     }
   404   }
   405   return result;
   406 }
   408 template<class OopClosureClass>
   409 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
   410   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
   411          || SafepointSynchronize::is_at_safepoint(),
   412          "Drain recursion must be yield-safe.");
   413   bool res = true;
   414   debug_only(_drain_in_progress = true);
   415   debug_only(_drain_in_progress_yields = yield_after);
   416   while (!isEmpty()) {
   417     oop newOop = pop();
   418     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
   419     assert(newOop->is_oop(), "Expected an oop");
   420     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
   421            "only grey objects on this stack");
   422     newOop->oop_iterate(cl);
   423     if (yield_after && _cm->do_yield_check()) {
   424       res = false;
   425       break;
   426     }
   427   }
   428   debug_only(_drain_in_progress = false);
   429   return res;
   430 }
   432 void CMMarkStack::note_start_of_gc() {
   433   assert(_saved_index == -1,
   434          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
   435   _saved_index = _index;
   436 }
   438 void CMMarkStack::note_end_of_gc() {
   439   // This is intentionally a guarantee, instead of an assert. If we
   440   // accidentally add something to the mark stack during GC, it
   441   // will be a correctness issue so it's better if we crash. we'll
   442   // only check this once per GC anyway, so it won't be a performance
   443   // issue in any way.
   444   guarantee(_saved_index == _index,
   445             err_msg("saved index: %d index: %d", _saved_index, _index));
   446   _saved_index = -1;
   447 }
   449 void CMMarkStack::oops_do(OopClosure* f) {
   450   assert(_saved_index == _index,
   451          err_msg("saved index: %d index: %d", _saved_index, _index));
   452   for (int i = 0; i < _index; i += 1) {
   453     f->do_oop(&_base[i]);
   454   }
   455 }
   457 bool ConcurrentMark::not_yet_marked(oop obj) const {
   458   return (_g1h->is_obj_ill(obj)
   459           || (_g1h->is_in_permanent(obj)
   460               && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
   461 }
   463 CMRootRegions::CMRootRegions() :
   464   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
   465   _should_abort(false),  _next_survivor(NULL) { }
   467 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
   468   _young_list = g1h->young_list();
   469   _cm = cm;
   470 }
   472 void CMRootRegions::prepare_for_scan() {
   473   assert(!scan_in_progress(), "pre-condition");
   475   // Currently, only survivors can be root regions.
   476   assert(_next_survivor == NULL, "pre-condition");
   477   _next_survivor = _young_list->first_survivor_region();
   478   _scan_in_progress = (_next_survivor != NULL);
   479   _should_abort = false;
   480 }
   482 HeapRegion* CMRootRegions::claim_next() {
   483   if (_should_abort) {
   484     // If someone has set the should_abort flag, we return NULL to
   485     // force the caller to bail out of their loop.
   486     return NULL;
   487   }
   489   // Currently, only survivors can be root regions.
   490   HeapRegion* res = _next_survivor;
   491   if (res != NULL) {
   492     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   493     // Read it again in case it changed while we were waiting for the lock.
   494     res = _next_survivor;
   495     if (res != NULL) {
   496       if (res == _young_list->last_survivor_region()) {
   497         // We just claimed the last survivor so store NULL to indicate
   498         // that we're done.
   499         _next_survivor = NULL;
   500       } else {
   501         _next_survivor = res->get_next_young_region();
   502       }
   503     } else {
   504       // Someone else claimed the last survivor while we were trying
   505       // to take the lock so nothing else to do.
   506     }
   507   }
   508   assert(res == NULL || res->is_survivor(), "post-condition");
   510   return res;
   511 }
   513 void CMRootRegions::scan_finished() {
   514   assert(scan_in_progress(), "pre-condition");
   516   // Currently, only survivors can be root regions.
   517   if (!_should_abort) {
   518     assert(_next_survivor == NULL, "we should have claimed all survivors");
   519   }
   520   _next_survivor = NULL;
   522   {
   523     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   524     _scan_in_progress = false;
   525     RootRegionScan_lock->notify_all();
   526   }
   527 }
   529 bool CMRootRegions::wait_until_scan_finished() {
   530   if (!scan_in_progress()) return false;
   532   {
   533     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
   534     while (scan_in_progress()) {
   535       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
   536     }
   537   }
   538   return true;
   539 }
   541 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   542 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   543 #endif // _MSC_VER
   545 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
   546   return MAX2((n_par_threads + 2) / 4, 1U);
   547 }
   549 ConcurrentMark::ConcurrentMark(ReservedSpace rs,
   550                                int max_regions) :
   551   _markBitMap1(rs, MinObjAlignment - 1),
   552   _markBitMap2(rs, MinObjAlignment - 1),
   554   _parallel_marking_threads(0),
   555   _max_parallel_marking_threads(0),
   556   _sleep_factor(0.0),
   557   _marking_task_overhead(1.0),
   558   _cleanup_sleep_factor(0.0),
   559   _cleanup_task_overhead(1.0),
   560   _cleanup_list("Cleanup List"),
   561   _region_bm(max_regions, false /* in_resource_area*/),
   562   _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
   563            CardTableModRefBS::card_shift,
   564            false /* in_resource_area*/),
   566   _prevMarkBitMap(&_markBitMap1),
   567   _nextMarkBitMap(&_markBitMap2),
   568   _at_least_one_mark_complete(false),
   570   _markStack(this),
   571   _regionStack(),
   572   // _finger set in set_non_marking_state
   574   _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
   575   // _active_tasks set in set_non_marking_state
   576   // _tasks set inside the constructor
   577   _task_queues(new CMTaskQueueSet((int) _max_task_num)),
   578   _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),
   580   _has_overflown(false),
   581   _concurrent(false),
   582   _has_aborted(false),
   583   _restart_for_overflow(false),
   584   _concurrent_marking_in_progress(false),
   585   _should_gray_objects(false),
   587   // _verbose_level set below
   589   _init_times(),
   590   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
   591   _cleanup_times(),
   592   _total_counting_time(0.0),
   593   _total_rs_scrub_time(0.0),
   595   _parallel_workers(NULL),
   597   _count_card_bitmaps(NULL),
   598   _count_marked_bytes(NULL) {
   599   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
   600   if (verbose_level < no_verbose) {
   601     verbose_level = no_verbose;
   602   }
   603   if (verbose_level > high_verbose) {
   604     verbose_level = high_verbose;
   605   }
   606   _verbose_level = verbose_level;
   608   if (verbose_low()) {
   609     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
   610                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
   611   }
   613   _markStack.allocate(MarkStackSize);
   614   _regionStack.allocate(G1MarkRegionStackSize);
   616   // Create & start a ConcurrentMark thread.
   617   _cmThread = new ConcurrentMarkThread(this);
   618   assert(cmThread() != NULL, "CM Thread should have been created");
   619   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
   621   _g1h = G1CollectedHeap::heap();
   622   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   623   assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
   624   assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");
   626   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
   627   satb_qs.set_buffer_size(G1SATBBufferSize);
   629   _root_regions.init(_g1h, this);
   631   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
   632   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);
   634   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_task_num);
   635   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_task_num);
   637   BitMap::idx_t card_bm_size = _card_bm.size();
   639   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
   640   _active_tasks = _max_task_num;
   641   for (int i = 0; i < (int) _max_task_num; ++i) {
   642     CMTaskQueue* task_queue = new CMTaskQueue();
   643     task_queue->initialize();
   644     _task_queues->register_queue(i, task_queue);
   646     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
   647     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions);
   649     _tasks[i] = new CMTask(i, this,
   650                            _count_marked_bytes[i],
   651                            &_count_card_bitmaps[i],
   652                            task_queue, _task_queues);
   654     _accum_task_vtime[i] = 0.0;
   655   }
   657   // Calculate the card number for the bottom of the heap. Used
   658   // in biasing indexes into the accounting card bitmaps.
   659   _heap_bottom_card_num =
   660     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
   661                                 CardTableModRefBS::card_shift);
   663   // Clear all the liveness counting data
   664   clear_all_count_data();
   666   if (ConcGCThreads > ParallelGCThreads) {
   667     vm_exit_during_initialization("Can't have more ConcGCThreads "
   668                                   "than ParallelGCThreads.");
   669   }
   670   if (ParallelGCThreads == 0) {
   671     // if we are not running with any parallel GC threads we will not
   672     // spawn any marking threads either
   673     _parallel_marking_threads =       0;
   674     _max_parallel_marking_threads =   0;
   675     _sleep_factor             =     0.0;
   676     _marking_task_overhead    =     1.0;
   677   } else {
   678     if (ConcGCThreads > 0) {
   679       // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
   680       // if both are set
   682       _parallel_marking_threads = (uint) ConcGCThreads;
   683       _max_parallel_marking_threads = _parallel_marking_threads;
   684       _sleep_factor             = 0.0;
   685       _marking_task_overhead    = 1.0;
   686     } else if (G1MarkingOverheadPercent > 0) {
   687       // we will calculate the number of parallel marking threads
   688       // based on a target overhead with respect to the soft real-time
   689       // goal
   691       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
   692       double overall_cm_overhead =
   693         (double) MaxGCPauseMillis * marking_overhead /
   694         (double) GCPauseIntervalMillis;
   695       double cpu_ratio = 1.0 / (double) os::processor_count();
   696       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
   697       double marking_task_overhead =
   698         overall_cm_overhead / marking_thread_num *
   699                                                 (double) os::processor_count();
   700       double sleep_factor =
   701                          (1.0 - marking_task_overhead) / marking_task_overhead;
   703       _parallel_marking_threads = (uint) marking_thread_num;
   704       _max_parallel_marking_threads = _parallel_marking_threads;
   705       _sleep_factor             = sleep_factor;
   706       _marking_task_overhead    = marking_task_overhead;
   707     } else {
   708       _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
   709       _max_parallel_marking_threads = _parallel_marking_threads;
   710       _sleep_factor             = 0.0;
   711       _marking_task_overhead    = 1.0;
   712     }
   714     if (parallel_marking_threads() > 1) {
   715       _cleanup_task_overhead = 1.0;
   716     } else {
   717       _cleanup_task_overhead = marking_task_overhead();
   718     }
   719     _cleanup_sleep_factor =
   720                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
   722 #if 0
   723     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
   724     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
   725     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
   726     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
   727     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
   728 #endif
   730     guarantee(parallel_marking_threads() > 0, "peace of mind");
   731     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
   732          _max_parallel_marking_threads, false, true);
   733     if (_parallel_workers == NULL) {
   734       vm_exit_during_initialization("Failed necessary allocation.");
   735     } else {
   736       _parallel_workers->initialize_workers();
   737     }
   738   }
   740   // so that the call below can read a sensible value
   741   _heap_start = (HeapWord*) rs.base();
   742   set_non_marking_state();
   743 }
   745 void ConcurrentMark::update_g1_committed(bool force) {
   746   // If concurrent marking is not in progress, then we do not need to
   747   // update _heap_end. This has a subtle and important
   748   // side-effect. Imagine that two evacuation pauses happen between
   749   // marking completion and remark. The first one can grow the
   750   // heap (hence now the finger is below the heap end). Then, the
   751   // second one could unnecessarily push regions on the region
   752   // stack. This causes the invariant that the region stack is empty
   753   // at the beginning of remark to be false. By ensuring that we do
   754   // not observe heap expansions after marking is complete, then we do
   755   // not have this problem.
   756   if (!concurrent_marking_in_progress() && !force) return;
   758   MemRegion committed = _g1h->g1_committed();
   759   assert(committed.start() == _heap_start, "start shouldn't change");
   760   HeapWord* new_end = committed.end();
   761   if (new_end > _heap_end) {
   762     // The heap has been expanded.
   764     _heap_end = new_end;
   765   }
   766   // Notice that the heap can also shrink. However, this only happens
   767   // during a Full GC (at least currently) and the entire marking
   768   // phase will bail out and the task will not be restarted. So, let's
   769   // do nothing.
   770 }
   772 void ConcurrentMark::reset() {
   773   // Starting values for these two. This should be called in a STW
   774   // phase. CM will be notified of any future g1_committed expansions
   775   // will be at the end of evacuation pauses, when tasks are
   776   // inactive.
   777   MemRegion committed = _g1h->g1_committed();
   778   _heap_start = committed.start();
   779   _heap_end   = committed.end();
   781   // Separated the asserts so that we know which one fires.
   782   assert(_heap_start != NULL, "heap bounds should look ok");
   783   assert(_heap_end != NULL, "heap bounds should look ok");
   784   assert(_heap_start < _heap_end, "heap bounds should look ok");
   786   // reset all the marking data structures and any necessary flags
   787   clear_marking_state();
   789   if (verbose_low()) {
   790     gclog_or_tty->print_cr("[global] resetting");
   791   }
   793   // We do reset all of them, since different phases will use
   794   // different number of active threads. So, it's easiest to have all
   795   // of them ready.
   796   for (int i = 0; i < (int) _max_task_num; ++i) {
   797     _tasks[i]->reset(_nextMarkBitMap);
   798   }
   800   // we need this to make sure that the flag is on during the evac
   801   // pause with initial mark piggy-backed
   802   set_concurrent_marking_in_progress();
   803 }
   805 void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
   806   assert(active_tasks <= _max_task_num, "we should not have more");
   808   _active_tasks = active_tasks;
   809   // Need to update the three data structures below according to the
   810   // number of active threads for this phase.
   811   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
   812   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
   813   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
   815   _concurrent = concurrent;
   816   // We propagate this to all tasks, not just the active ones.
   817   for (int i = 0; i < (int) _max_task_num; ++i)
   818     _tasks[i]->set_concurrent(concurrent);
   820   if (concurrent) {
   821     set_concurrent_marking_in_progress();
   822   } else {
   823     // We currently assume that the concurrent flag has been set to
   824     // false before we start remark. At this point we should also be
   825     // in a STW phase.
   826     assert(!concurrent_marking_in_progress(), "invariant");
   827     assert(_finger == _heap_end, "only way to get here");
   828     update_g1_committed(true);
   829   }
   830 }
   832 void ConcurrentMark::set_non_marking_state() {
   833   // We set the global marking state to some default values when we're
   834   // not doing marking.
   835   clear_marking_state();
   836   _active_tasks = 0;
   837   clear_concurrent_marking_in_progress();
   838 }
   840 ConcurrentMark::~ConcurrentMark() {
   841   // The ConcurrentMark instance is never freed.
   842   ShouldNotReachHere();
   843 }
   845 void ConcurrentMark::clearNextBitmap() {
   846   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   847   G1CollectorPolicy* g1p = g1h->g1_policy();
   849   // Make sure that the concurrent mark thread looks to still be in
   850   // the current cycle.
   851   guarantee(cmThread()->during_cycle(), "invariant");
   853   // We are finishing up the current cycle by clearing the next
   854   // marking bitmap and getting it ready for the next cycle. During
   855   // this time no other cycle can start. So, let's make sure that this
   856   // is the case.
   857   guarantee(!g1h->mark_in_progress(), "invariant");
   859   // clear the mark bitmap (no grey objects to start with).
   860   // We need to do this in chunks and offer to yield in between
   861   // each chunk.
   862   HeapWord* start  = _nextMarkBitMap->startWord();
   863   HeapWord* end    = _nextMarkBitMap->endWord();
   864   HeapWord* cur    = start;
   865   size_t chunkSize = M;
   866   while (cur < end) {
   867     HeapWord* next = cur + chunkSize;
   868     if (next > end) {
   869       next = end;
   870     }
   871     MemRegion mr(cur,next);
   872     _nextMarkBitMap->clearRange(mr);
   873     cur = next;
   874     do_yield_check();
   876     // Repeat the asserts from above. We'll do them as asserts here to
   877     // minimize their overhead on the product. However, we'll have
   878     // them as guarantees at the beginning / end of the bitmap
   879     // clearing to get some checking in the product.
   880     assert(cmThread()->during_cycle(), "invariant");
   881     assert(!g1h->mark_in_progress(), "invariant");
   882   }
   884   // Clear the liveness counting data
   885   clear_all_count_data();
   887   // Repeat the asserts from above.
   888   guarantee(cmThread()->during_cycle(), "invariant");
   889   guarantee(!g1h->mark_in_progress(), "invariant");
   890 }
   892 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
   893 public:
   894   bool doHeapRegion(HeapRegion* r) {
   895     if (!r->continuesHumongous()) {
   896       r->note_start_of_marking();
   897     }
   898     return false;
   899   }
   900 };
   902 void ConcurrentMark::checkpointRootsInitialPre() {
   903   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   904   G1CollectorPolicy* g1p = g1h->g1_policy();
   906   _has_aborted = false;
   908 #ifndef PRODUCT
   909   if (G1PrintReachableAtInitialMark) {
   910     print_reachable("at-cycle-start",
   911                     VerifyOption_G1UsePrevMarking, true /* all */);
   912   }
   913 #endif
   915   // Initialise marking structures. This has to be done in a STW phase.
   916   reset();
   918   // For each region note start of marking.
   919   NoteStartOfMarkHRClosure startcl;
   920   g1h->heap_region_iterate(&startcl);
   921 }
   924 void ConcurrentMark::checkpointRootsInitialPost() {
   925   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
   927   // If we force an overflow during remark, the remark operation will
   928   // actually abort and we'll restart concurrent marking. If we always
   929   // force an oveflow during remark we'll never actually complete the
   930   // marking phase. So, we initilize this here, at the start of the
   931   // cycle, so that at the remaining overflow number will decrease at
   932   // every remark and we'll eventually not need to cause one.
   933   force_overflow_stw()->init();
   935   // Start Concurrent Marking weak-reference discovery.
   936   ReferenceProcessor* rp = g1h->ref_processor_cm();
   937   // enable ("weak") refs discovery
   938   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   939   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
   941   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
   942   // This is the start of  the marking cycle, we're expected all
   943   // threads to have SATB queues with active set to false.
   944   satb_mq_set.set_active_all_threads(true, /* new active value */
   945                                      false /* expected_active */);
   947   _root_regions.prepare_for_scan();
   949   // update_g1_committed() will be called at the end of an evac pause
   950   // when marking is on. So, it's also called at the end of the
   951   // initial-mark pause to update the heap end, if the heap expands
   952   // during it. No need to call it here.
   953 }
   955 /*
   956  * Notice that in the next two methods, we actually leave the STS
   957  * during the barrier sync and join it immediately afterwards. If we
   958  * do not do this, the following deadlock can occur: one thread could
   959  * be in the barrier sync code, waiting for the other thread to also
   960  * sync up, whereas another one could be trying to yield, while also
   961  * waiting for the other threads to sync up too.
   962  *
   963  * Note, however, that this code is also used during remark and in
   964  * this case we should not attempt to leave / enter the STS, otherwise
   965  * we'll either hit an asseert (debug / fastdebug) or deadlock
   966  * (product). So we should only leave / enter the STS if we are
   967  * operating concurrently.
   968  *
   969  * Because the thread that does the sync barrier has left the STS, it
   970  * is possible to be suspended for a Full GC or an evacuation pause
   971  * could occur. This is actually safe, since the entering the sync
   972  * barrier is one of the last things do_marking_step() does, and it
   973  * doesn't manipulate any data structures afterwards.
   974  */
   976 void ConcurrentMark::enter_first_sync_barrier(int task_num) {
   977   if (verbose_low()) {
   978     gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
   979   }
   981   if (concurrent()) {
   982     ConcurrentGCThread::stsLeave();
   983   }
   984   _first_overflow_barrier_sync.enter();
   985   if (concurrent()) {
   986     ConcurrentGCThread::stsJoin();
   987   }
   988   // at this point everyone should have synced up and not be doing any
   989   // more work
   991   if (verbose_low()) {
   992     gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
   993   }
   995   // let task 0 do this
   996   if (task_num == 0) {
   997     // task 0 is responsible for clearing the global data structures
   998     // We should be here because of an overflow. During STW we should
   999     // not clear the overflow flag since we rely on it being true when
  1000     // we exit this method to abort the pause and restart concurent
  1001     // marking.
  1002     clear_marking_state(concurrent() /* clear_overflow */);
  1003     force_overflow()->update();
  1005     if (PrintGC) {
  1006       gclog_or_tty->date_stamp(PrintGCDateStamps);
  1007       gclog_or_tty->stamp(PrintGCTimeStamps);
  1008       gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
  1012   // after this, each task should reset its own data structures then
  1013   // then go into the second barrier
  1016 void ConcurrentMark::enter_second_sync_barrier(int task_num) {
  1017   if (verbose_low()) {
  1018     gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
  1021   if (concurrent()) {
  1022     ConcurrentGCThread::stsLeave();
  1024   _second_overflow_barrier_sync.enter();
  1025   if (concurrent()) {
  1026     ConcurrentGCThread::stsJoin();
  1028   // at this point everything should be re-initialised and ready to go
  1030   if (verbose_low()) {
  1031     gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
  1035 #ifndef PRODUCT
  1036 void ForceOverflowSettings::init() {
  1037   _num_remaining = G1ConcMarkForceOverflow;
  1038   _force = false;
  1039   update();
  1042 void ForceOverflowSettings::update() {
  1043   if (_num_remaining > 0) {
  1044     _num_remaining -= 1;
  1045     _force = true;
  1046   } else {
  1047     _force = false;
  1051 bool ForceOverflowSettings::should_force() {
  1052   if (_force) {
  1053     _force = false;
  1054     return true;
  1055   } else {
  1056     return false;
  1059 #endif // !PRODUCT
  1061 void ConcurrentMark::grayRegionIfNecessary(MemRegion mr) {
  1062   guarantee(false, "grayRegionIfNecessary(): don't call this any more");
  1064   // The objects on the region have already been marked "in bulk" by
  1065   // the caller. We only need to decide whether to push the region on
  1066   // the region stack or not.
  1068   if (!concurrent_marking_in_progress() || !_should_gray_objects) {
  1069     // We're done with marking and waiting for remark. We do not need to
  1070     // push anything else on the region stack.
  1071     return;
  1074   HeapWord* finger = _finger;
  1076   if (verbose_low()) {
  1077     gclog_or_tty->print_cr("[global] attempting to push "
  1078                            "region ["PTR_FORMAT", "PTR_FORMAT"), finger is at "
  1079                            PTR_FORMAT, mr.start(), mr.end(), finger);
  1082   if (mr.start() < finger) {
  1083     // The finger is always heap region aligned and it is not possible
  1084     // for mr to span heap regions.
  1085     assert(mr.end() <= finger, "invariant");
  1087     // Separated the asserts so that we know which one fires.
  1088     assert(mr.start() <= mr.end(),
  1089            "region boundaries should fall within the committed space");
  1090     assert(_heap_start <= mr.start(),
  1091            "region boundaries should fall within the committed space");
  1092     assert(mr.end() <= _heap_end,
  1093            "region boundaries should fall within the committed space");
  1094     if (verbose_low()) {
  1095       gclog_or_tty->print_cr("[global] region ["PTR_FORMAT", "PTR_FORMAT") "
  1096                              "below the finger, pushing it",
  1097                              mr.start(), mr.end());
  1100     if (!region_stack_push_lock_free(mr)) {
  1101       if (verbose_low()) {
  1102         gclog_or_tty->print_cr("[global] region stack has overflown.");
  1108 void ConcurrentMark::markAndGrayObjectIfNecessary(oop p) {
  1109   guarantee(false, "markAndGrayObjectIfNecessary(): don't call this any more");
  1111   // The object is not marked by the caller. We need to at least mark
  1112   // it and maybe push in on the stack.
  1114   HeapWord* addr = (HeapWord*)p;
  1115   if (!_nextMarkBitMap->isMarked(addr)) {
  1116     // We definitely need to mark it, irrespective whether we bail out
  1117     // because we're done with marking.
  1118     if (_nextMarkBitMap->parMark(addr)) {
  1119       if (!concurrent_marking_in_progress() || !_should_gray_objects) {
  1120         // If we're done with concurrent marking and we're waiting for
  1121         // remark, then we're not pushing anything on the stack.
  1122         return;
  1125       // No OrderAccess:store_load() is needed. It is implicit in the
  1126       // CAS done in parMark(addr) above
  1127       HeapWord* finger = _finger;
  1129       if (addr < finger) {
  1130         if (!mark_stack_push(oop(addr))) {
  1131           if (verbose_low()) {
  1132             gclog_or_tty->print_cr("[global] global stack overflow "
  1133                                    "during parMark");
  1141 class CMConcurrentMarkingTask: public AbstractGangTask {
  1142 private:
  1143   ConcurrentMark*       _cm;
  1144   ConcurrentMarkThread* _cmt;
  1146 public:
  1147   void work(uint worker_id) {
  1148     assert(Thread::current()->is_ConcurrentGC_thread(),
  1149            "this should only be done by a conc GC thread");
  1150     ResourceMark rm;
  1152     double start_vtime = os::elapsedVTime();
  1154     ConcurrentGCThread::stsJoin();
  1156     assert(worker_id < _cm->active_tasks(), "invariant");
  1157     CMTask* the_task = _cm->task(worker_id);
  1158     the_task->record_start_time();
  1159     if (!_cm->has_aborted()) {
  1160       do {
  1161         double start_vtime_sec = os::elapsedVTime();
  1162         double start_time_sec = os::elapsedTime();
  1163         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  1165         the_task->do_marking_step(mark_step_duration_ms,
  1166                                   true /* do_stealing    */,
  1167                                   true /* do_termination */);
  1169         double end_time_sec = os::elapsedTime();
  1170         double end_vtime_sec = os::elapsedVTime();
  1171         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
  1172         double elapsed_time_sec = end_time_sec - start_time_sec;
  1173         _cm->clear_has_overflown();
  1175         bool ret = _cm->do_yield_check(worker_id);
  1177         jlong sleep_time_ms;
  1178         if (!_cm->has_aborted() && the_task->has_aborted()) {
  1179           sleep_time_ms =
  1180             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
  1181           ConcurrentGCThread::stsLeave();
  1182           os::sleep(Thread::current(), sleep_time_ms, false);
  1183           ConcurrentGCThread::stsJoin();
  1185         double end_time2_sec = os::elapsedTime();
  1186         double elapsed_time2_sec = end_time2_sec - start_time_sec;
  1188 #if 0
  1189           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
  1190                                  "overhead %1.4lf",
  1191                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
  1192                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
  1193           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
  1194                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
  1195 #endif
  1196       } while (!_cm->has_aborted() && the_task->has_aborted());
  1198     the_task->record_end_time();
  1199     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
  1201     ConcurrentGCThread::stsLeave();
  1203     double end_vtime = os::elapsedVTime();
  1204     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
  1207   CMConcurrentMarkingTask(ConcurrentMark* cm,
  1208                           ConcurrentMarkThread* cmt) :
  1209       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
  1211   ~CMConcurrentMarkingTask() { }
  1212 };
  1214 // Calculates the number of active workers for a concurrent
  1215 // phase.
  1216 uint ConcurrentMark::calc_parallel_marking_threads() {
  1217   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1218     uint n_conc_workers = 0;
  1219     if (!UseDynamicNumberOfGCThreads ||
  1220         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
  1221          !ForceDynamicNumberOfGCThreads)) {
  1222       n_conc_workers = max_parallel_marking_threads();
  1223     } else {
  1224       n_conc_workers =
  1225         AdaptiveSizePolicy::calc_default_active_workers(
  1226                                      max_parallel_marking_threads(),
  1227                                      1, /* Minimum workers */
  1228                                      parallel_marking_threads(),
  1229                                      Threads::number_of_non_daemon_threads());
  1230       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
  1231       // that scaling has already gone into "_max_parallel_marking_threads".
  1233     assert(n_conc_workers > 0, "Always need at least 1");
  1234     return n_conc_workers;
  1236   // If we are not running with any parallel GC threads we will not
  1237   // have spawned any marking threads either. Hence the number of
  1238   // concurrent workers should be 0.
  1239   return 0;
  1242 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  1243   // Currently, only survivors can be root regions.
  1244   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  1245   G1RootRegionScanClosure cl(_g1h, this, worker_id);
  1247   const uintx interval = PrefetchScanIntervalInBytes;
  1248   HeapWord* curr = hr->bottom();
  1249   const HeapWord* end = hr->top();
  1250   while (curr < end) {
  1251     Prefetch::read(curr, interval);
  1252     oop obj = oop(curr);
  1253     int size = obj->oop_iterate(&cl);
  1254     assert(size == obj->size(), "sanity");
  1255     curr += size;
  1259 class CMRootRegionScanTask : public AbstractGangTask {
  1260 private:
  1261   ConcurrentMark* _cm;
  1263 public:
  1264   CMRootRegionScanTask(ConcurrentMark* cm) :
  1265     AbstractGangTask("Root Region Scan"), _cm(cm) { }
  1267   void work(uint worker_id) {
  1268     assert(Thread::current()->is_ConcurrentGC_thread(),
  1269            "this should only be done by a conc GC thread");
  1271     CMRootRegions* root_regions = _cm->root_regions();
  1272     HeapRegion* hr = root_regions->claim_next();
  1273     while (hr != NULL) {
  1274       _cm->scanRootRegion(hr, worker_id);
  1275       hr = root_regions->claim_next();
  1278 };
  1280 void ConcurrentMark::scanRootRegions() {
  1281   // scan_in_progress() will have been set to true only if there was
  1282   // at least one root region to scan. So, if it's false, we
  1283   // should not attempt to do any further work.
  1284   if (root_regions()->scan_in_progress()) {
  1285     _parallel_marking_threads = calc_parallel_marking_threads();
  1286     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1287            "Maximum number of marking threads exceeded");
  1288     uint active_workers = MAX2(1U, parallel_marking_threads());
  1290     CMRootRegionScanTask task(this);
  1291     if (parallel_marking_threads() > 0) {
  1292       _parallel_workers->set_active_workers((int) active_workers);
  1293       _parallel_workers->run_task(&task);
  1294     } else {
  1295       task.work(0);
  1298     // It's possible that has_aborted() is true here without actually
  1299     // aborting the survivor scan earlier. This is OK as it's
  1300     // mainly used for sanity checking.
  1301     root_regions()->scan_finished();
  1305 void ConcurrentMark::markFromRoots() {
  1306   // we might be tempted to assert that:
  1307   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  1308   //        "inconsistent argument?");
  1309   // However that wouldn't be right, because it's possible that
  1310   // a safepoint is indeed in progress as a younger generation
  1311   // stop-the-world GC happens even as we mark in this generation.
  1313   _restart_for_overflow = false;
  1314   force_overflow_conc()->init();
  1316   // _g1h has _n_par_threads
  1317   _parallel_marking_threads = calc_parallel_marking_threads();
  1318   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
  1319     "Maximum number of marking threads exceeded");
  1321   uint active_workers = MAX2(1U, parallel_marking_threads());
  1323   // Parallel task terminator is set in "set_phase()"
  1324   set_phase(active_workers, true /* concurrent */);
  1326   CMConcurrentMarkingTask markingTask(this, cmThread());
  1327   if (parallel_marking_threads() > 0) {
  1328     _parallel_workers->set_active_workers((int)active_workers);
  1329     // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
  1330     // and the decisions on that MT processing is made elsewhere.
  1331     assert(_parallel_workers->active_workers() > 0, "Should have been set");
  1332     _parallel_workers->run_task(&markingTask);
  1333   } else {
  1334     markingTask.work(0);
  1336   print_stats();
  1339 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  1340   // world is stopped at this checkpoint
  1341   assert(SafepointSynchronize::is_at_safepoint(),
  1342          "world should be stopped");
  1344   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1346   // If a full collection has happened, we shouldn't do this.
  1347   if (has_aborted()) {
  1348     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  1349     return;
  1352   SvcGCMarker sgcm(SvcGCMarker::OTHER);
  1354   if (VerifyDuringGC) {
  1355     HandleMark hm;  // handle scope
  1356     gclog_or_tty->print(" VerifyDuringGC:(before)");
  1357     Universe::heap()->prepare_for_verify();
  1358     Universe::verify(/* allow dirty */ true,
  1359                      /* silent      */ false,
  1360                      /* option      */ VerifyOption_G1UsePrevMarking);
  1363   G1CollectorPolicy* g1p = g1h->g1_policy();
  1364   g1p->record_concurrent_mark_remark_start();
  1366   double start = os::elapsedTime();
  1368   checkpointRootsFinalWork();
  1370   double mark_work_end = os::elapsedTime();
  1372   weakRefsWork(clear_all_soft_refs);
  1374   if (has_overflown()) {
  1375     // Oops.  We overflowed.  Restart concurrent marking.
  1376     _restart_for_overflow = true;
  1377     // Clear the flag. We do not need it any more.
  1378     clear_has_overflown();
  1379     if (G1TraceMarkStackOverflow) {
  1380       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  1382   } else {
  1383     // Aggregate the per-task counting data that we have accumulated
  1384     // while marking.
  1385     aggregate_count_data();
  1387     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  1388     // We're done with marking.
  1389     // This is the end of  the marking cycle, we're expected all
  1390     // threads to have SATB queues with active set to true.
  1391     satb_mq_set.set_active_all_threads(false, /* new active value */
  1392                                        true /* expected_active */);
  1394     if (VerifyDuringGC) {
  1395       HandleMark hm;  // handle scope
  1396       gclog_or_tty->print(" VerifyDuringGC:(after)");
  1397       Universe::heap()->prepare_for_verify();
  1398       Universe::verify(/* allow dirty */ true,
  1399                        /* silent      */ false,
  1400                        /* option      */ VerifyOption_G1UseNextMarking);
  1402     assert(!restart_for_overflow(), "sanity");
  1405   // Reset the marking state if marking completed
  1406   if (!restart_for_overflow()) {
  1407     set_non_marking_state();
  1410 #if VERIFY_OBJS_PROCESSED
  1411   _scan_obj_cl.objs_processed = 0;
  1412   ThreadLocalObjQueue::objs_enqueued = 0;
  1413 #endif
  1415   // Statistics
  1416   double now = os::elapsedTime();
  1417   _remark_mark_times.add((mark_work_end - start) * 1000.0);
  1418   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  1419   _remark_times.add((now - start) * 1000.0);
  1421   g1p->record_concurrent_mark_remark_end();
  1424 // Used to calculate the # live objects per region
  1425 // for verification purposes
  1426 class CalcLiveObjectsClosure: public HeapRegionClosure {
  1428   CMBitMapRO* _bm;
  1429   ConcurrentMark* _cm;
  1430   BitMap* _region_bm;
  1431   BitMap* _card_bm;
  1433   // Debugging
  1434   size_t _tot_words_done;
  1435   size_t _tot_live;
  1436   size_t _tot_used;
  1438   size_t _region_marked_bytes;
  1440   intptr_t _bottom_card_num;
  1442   void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
  1443     assert(start_card_num <= last_card_num, "sanity");
  1444     BitMap::idx_t start_idx = start_card_num - _bottom_card_num;
  1445     BitMap::idx_t last_idx = last_card_num - _bottom_card_num;
  1447     for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
  1448       _card_bm->par_at_put(i, 1);
  1452 public:
  1453   CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
  1454                          BitMap* region_bm, BitMap* card_bm) :
  1455     _bm(bm), _cm(cm), _region_bm(region_bm), _card_bm(card_bm),
  1456     _region_marked_bytes(0), _tot_words_done(0),
  1457     _tot_live(0), _tot_used(0),
  1458     _bottom_card_num(cm->heap_bottom_card_num()) { }
  1460   // It takes a region that's not empty (i.e., it has at least one
  1461   // live object in it and sets its corresponding bit on the region
  1462   // bitmap to 1. If the region is "starts humongous" it will also set
  1463   // to 1 the bits on the region bitmap that correspond to its
  1464   // associated "continues humongous" regions.
  1465   void set_bit_for_region(HeapRegion* hr) {
  1466     assert(!hr->continuesHumongous(), "should have filtered those out");
  1468     size_t index = hr->hrs_index();
  1469     if (!hr->startsHumongous()) {
  1470       // Normal (non-humongous) case: just set the bit.
  1471       _region_bm->par_at_put((BitMap::idx_t) index, true);
  1472     } else {
  1473       // Starts humongous case: calculate how many regions are part of
  1474       // this humongous region and then set the bit range.
  1475       G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1476       HeapRegion *last_hr = g1h->heap_region_containing_raw(hr->end() - 1);
  1477       size_t end_index = last_hr->hrs_index() + 1;
  1478       _region_bm->par_at_put_range((BitMap::idx_t) index,
  1479                                    (BitMap::idx_t) end_index, true);
  1483   bool doHeapRegion(HeapRegion* hr) {
  1485     if (hr->continuesHumongous()) {
  1486       // We will ignore these here and process them when their
  1487       // associated "starts humongous" region is processed (see
  1488       // set_bit_for_heap_region()). Note that we cannot rely on their
  1489       // associated "starts humongous" region to have their bit set to
  1490       // 1 since, due to the region chunking in the parallel region
  1491       // iteration, a "continues humongous" region might be visited
  1492       // before its associated "starts humongous".
  1493       return false;
  1496     HeapWord* nextTop = hr->next_top_at_mark_start();
  1497     HeapWord* start   = hr->bottom();
  1499     assert(start <= hr->end() && start <= nextTop && nextTop <= hr->end(),
  1500            err_msg("Preconditions not met - "
  1501                    "start: "PTR_FORMAT", nextTop: "PTR_FORMAT", end: "PTR_FORMAT,
  1502                    start, nextTop, hr->end()));
  1504     // Record the number of word's we'll examine.
  1505     size_t words_done = (nextTop - start);
  1507     // Find the first marked object at or after "start".
  1508     start = _bm->getNextMarkedWordAddress(start, nextTop);
  1510     size_t marked_bytes = 0;
  1512     // Below, the term "card num" means the result of shifting an address
  1513     // by the card shift -- address 0 corresponds to card number 0.  One
  1514     // must subtract the card num of the bottom of the heap to obtain a
  1515     // card table index.
  1517     // The first card num of the sequence of live cards currently being
  1518     // constructed.  -1 ==> no sequence.
  1519     intptr_t start_card_num = -1;
  1521     // The last card num of the sequence of live cards currently being
  1522     // constructed.  -1 ==> no sequence.
  1523     intptr_t last_card_num = -1;
  1525     while (start < nextTop) {
  1526       oop obj = oop(start);
  1527       int obj_sz = obj->size();
  1529       // The card num of the start of the current object.
  1530       intptr_t obj_card_num =
  1531         intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);
  1532       HeapWord* obj_last = start + obj_sz - 1;
  1533       intptr_t obj_last_card_num =
  1534         intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);
  1536       if (obj_card_num != last_card_num) {
  1537         if (start_card_num == -1) {
  1538           assert(last_card_num == -1, "Both or neither.");
  1539           start_card_num = obj_card_num;
  1540         } else {
  1541           assert(last_card_num != -1, "Both or neither.");
  1542           assert(obj_card_num >= last_card_num, "Inv");
  1543           if ((obj_card_num - last_card_num) > 1) {
  1544             // Mark the last run, and start a new one.
  1545             mark_card_num_range(start_card_num, last_card_num);
  1546             start_card_num = obj_card_num;
  1550       // In any case, we set the last card num.
  1551       last_card_num = obj_last_card_num;
  1553       marked_bytes += (size_t)obj_sz * HeapWordSize;
  1555       // Find the next marked object after this one.
  1556       start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
  1559     // Handle the last range, if any.
  1560     if (start_card_num != -1) {
  1561       mark_card_num_range(start_card_num, last_card_num);
  1564     // Mark the allocated-since-marking portion...
  1565     HeapWord* top = hr->top();
  1566     if (nextTop < top) {
  1567       start_card_num = intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
  1568       last_card_num = intptr_t(uintptr_t(top) >> CardTableModRefBS::card_shift);
  1570       mark_card_num_range(start_card_num, last_card_num);
  1572       // This definitely means the region has live objects.
  1573       set_bit_for_region(hr);
  1576     // Update the live region bitmap.
  1577     if (marked_bytes > 0) {
  1578       set_bit_for_region(hr);
  1581     // Set the marked bytes for the current region so that
  1582     // it can be queried by a calling verificiation routine
  1583     _region_marked_bytes = marked_bytes;
  1585     _tot_live += hr->next_live_bytes();
  1586     _tot_used += hr->used();
  1587     _tot_words_done = words_done;
  1589     return false;
  1592   size_t region_marked_bytes() const { return _region_marked_bytes; }
  1594   // Debugging
  1595   size_t tot_words_done() const      { return _tot_words_done; }
  1596   size_t tot_live() const            { return _tot_live; }
  1597   size_t tot_used() const            { return _tot_used; }
  1598 };
  1600 // Heap region closure used for verifying the counting data
  1601 // that was accumulated concurrently and aggregated during
  1602 // the remark pause. This closure is applied to the heap
  1603 // regions during the STW cleanup pause.
  1605 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  1606   ConcurrentMark* _cm;
  1607   CalcLiveObjectsClosure _calc_cl;
  1608   BitMap* _region_bm;   // Region BM to be verified
  1609   BitMap* _card_bm;     // Card BM to be verified
  1610   bool _verbose;        // verbose output?
  1612   BitMap* _exp_region_bm; // Expected Region BM values
  1613   BitMap* _exp_card_bm;   // Expected card BM values
  1615   int _failures;
  1617 public:
  1618   VerifyLiveObjectDataHRClosure(ConcurrentMark* cm,
  1619                                 BitMap* region_bm,
  1620                                 BitMap* card_bm,
  1621                                 BitMap* exp_region_bm,
  1622                                 BitMap* exp_card_bm,
  1623                                 bool verbose) :
  1624     _cm(cm),
  1625     _calc_cl(_cm->nextMarkBitMap(), _cm, exp_region_bm, exp_card_bm),
  1626     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
  1627     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
  1628     _failures(0) { }
  1630   int failures() const { return _failures; }
  1632   bool doHeapRegion(HeapRegion* hr) {
  1633     if (hr->continuesHumongous()) {
  1634       // We will ignore these here and process them when their
  1635       // associated "starts humongous" region is processed (see
  1636       // set_bit_for_heap_region()). Note that we cannot rely on their
  1637       // associated "starts humongous" region to have their bit set to
  1638       // 1 since, due to the region chunking in the parallel region
  1639       // iteration, a "continues humongous" region might be visited
  1640       // before its associated "starts humongous".
  1641       return false;
  1644     int failures = 0;
  1646     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
  1647     // this region and set the corresponding bits in the expected region
  1648     // and card bitmaps.
  1649     bool res = _calc_cl.doHeapRegion(hr);
  1650     assert(res == false, "should be continuing");
  1652     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
  1653                     Mutex::_no_safepoint_check_flag);
  1655     // Verify that _top_at_conc_count == ntams
  1656     if (hr->top_at_conc_mark_count() != hr->next_top_at_mark_start()) {
  1657       if (_verbose) {
  1658         gclog_or_tty->print_cr("Region " SIZE_FORMAT ": top at conc count incorrect: "
  1659                                "expected " PTR_FORMAT ", actual: " PTR_FORMAT,
  1660                                hr->hrs_index(), hr->next_top_at_mark_start(),
  1661                                hr->top_at_conc_mark_count());
  1663       failures += 1;
  1666     // Verify the marked bytes for this region.
  1667     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
  1668     size_t act_marked_bytes = hr->next_marked_bytes();
  1670     // We're not OK if expected marked bytes > actual marked bytes. It means
  1671     // we have missed accounting some objects during the actual marking.
  1672     if (exp_marked_bytes > act_marked_bytes) {
  1673       if (_verbose) {
  1674         gclog_or_tty->print_cr("Region " SIZE_FORMAT ": marked bytes mismatch: "
  1675                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
  1676                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
  1678       failures += 1;
  1681     // Verify the bit, for this region, in the actual and expected
  1682     // (which was just calculated) region bit maps.
  1683     // We're not OK if the bit in the calculated expected region
  1684     // bitmap is set and the bit in the actual region bitmap is not.
  1685     BitMap::idx_t index = (BitMap::idx_t)hr->hrs_index();
  1687     bool expected = _exp_region_bm->at(index);
  1688     bool actual = _region_bm->at(index);
  1689     if (expected && !actual) {
  1690       if (_verbose) {
  1691         gclog_or_tty->print_cr("Region " SIZE_FORMAT ": region bitmap mismatch: "
  1692                                "expected: %d, actual: %d",
  1693                                hr->hrs_index(), expected, actual);
  1695       failures += 1;
  1698     // Verify that the card bit maps for the cards spanned by the current
  1699     // region match. We have an error if we have a set bit in the expected
  1700     // bit map and the corresponding bit in the actual bitmap is not set.
  1702     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
  1703     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
  1705     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
  1706       expected = _exp_card_bm->at(i);
  1707       actual = _card_bm->at(i);
  1709       if (expected && !actual) {
  1710         if (_verbose) {
  1711           gclog_or_tty->print_cr("Region " SIZE_FORMAT ": card bitmap mismatch at " SIZE_FORMAT ": "
  1712                                  "expected: %d, actual: %d",
  1713                                  hr->hrs_index(), i, expected, actual);
  1715         failures += 1;
  1719     if (failures > 0 && _verbose)  {
  1720       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
  1721                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
  1722                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
  1723                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
  1726     _failures += failures;
  1728     // We could stop iteration over the heap when we
  1729     // find the first voilating region by returning true.
  1730     return false;
  1732 };
  1735 class G1ParVerifyFinalCountTask: public AbstractGangTask {
  1736 protected:
  1737   G1CollectedHeap* _g1h;
  1738   ConcurrentMark* _cm;
  1739   BitMap* _actual_region_bm;
  1740   BitMap* _actual_card_bm;
  1742   uint    _n_workers;
  1744   BitMap* _expected_region_bm;
  1745   BitMap* _expected_card_bm;
  1747   int  _failures;
  1748   bool _verbose;
  1750 public:
  1751   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
  1752                             BitMap* region_bm, BitMap* card_bm,
  1753                             BitMap* expected_region_bm, BitMap* expected_card_bm)
  1754     : AbstractGangTask("G1 verify final counting"),
  1755       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1756       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1757       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
  1758       _failures(0), _verbose(false),
  1759       _n_workers(0) {
  1760     assert(VerifyDuringGC, "don't call this otherwise");
  1762     // Use the value already set as the number of active threads
  1763     // in the call to run_task().
  1764     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1765       assert( _g1h->workers()->active_workers() > 0,
  1766         "Should have been previously set");
  1767       _n_workers = _g1h->workers()->active_workers();
  1768     } else {
  1769       _n_workers = 1;
  1772     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
  1773     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
  1775     _verbose = _cm->verbose_medium();
  1778   void work(uint worker_id) {
  1779     assert(worker_id < _n_workers, "invariant");
  1781     VerifyLiveObjectDataHRClosure verify_cl(_cm,
  1782                                             _actual_region_bm, _actual_card_bm,
  1783                                             _expected_region_bm,
  1784                                             _expected_card_bm,
  1785                                             _verbose);
  1787     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1788       _g1h->heap_region_par_iterate_chunked(&verify_cl,
  1789                                             worker_id,
  1790                                             _n_workers,
  1791                                             HeapRegion::VerifyCountClaimValue);
  1792     } else {
  1793       _g1h->heap_region_iterate(&verify_cl);
  1796     Atomic::add(verify_cl.failures(), &_failures);
  1799   int failures() const { return _failures; }
  1800 };
  1802 // Final update of count data (during cleanup).
  1803 // Adds [top_at_count, NTAMS) to the marked bytes for each
  1804 // region. Sets the bits in the card bitmap corresponding
  1805 // to the interval [top_at_count, top], and sets the
  1806 // liveness bit for each region containing live data
  1807 // in the region bitmap.
  1809 class FinalCountDataUpdateClosure: public HeapRegionClosure {
  1810   ConcurrentMark* _cm;
  1811   BitMap* _region_bm;
  1812   BitMap* _card_bm;
  1814   size_t _total_live_bytes;
  1815   size_t _total_used_bytes;
  1816   size_t _total_words_done;
  1818   void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
  1819     assert(start_idx <= last_idx, "sanity");
  1821     // Set the inclusive bit range [start_idx, last_idx].
  1822     // For small ranges (up to 8 cards) use a simple loop; otherwise
  1823     // use par_at_put_range.
  1824     if ((last_idx - start_idx) <= 8) {
  1825       for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
  1826         _card_bm->par_set_bit(i);
  1828     } else {
  1829       assert(last_idx < _card_bm->size(), "sanity");
  1830       // Note BitMap::par_at_put_range() is exclusive.
  1831       _card_bm->par_at_put_range(start_idx, last_idx+1, true);
  1835   // It takes a region that's not empty (i.e., it has at least one
  1836   // live object in it and sets its corresponding bit on the region
  1837   // bitmap to 1. If the region is "starts humongous" it will also set
  1838   // to 1 the bits on the region bitmap that correspond to its
  1839   // associated "continues humongous" regions.
  1840   void set_bit_for_region(HeapRegion* hr) {
  1841     assert(!hr->continuesHumongous(), "should have filtered those out");
  1843     size_t index = hr->hrs_index();
  1844     if (!hr->startsHumongous()) {
  1845       // Normal (non-humongous) case: just set the bit.
  1846       _region_bm->par_set_bit((BitMap::idx_t) index);
  1847     } else {
  1848       // Starts humongous case: calculate how many regions are part of
  1849       // this humongous region and then set the bit range.
  1850       G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1851       HeapRegion *last_hr = g1h->heap_region_containing_raw(hr->end() - 1);
  1852       size_t end_index = last_hr->hrs_index() + 1;
  1853       _region_bm->par_at_put_range((BitMap::idx_t) index,
  1854                                    (BitMap::idx_t) end_index, true);
  1858  public:
  1859   FinalCountDataUpdateClosure(ConcurrentMark* cm,
  1860                               BitMap* region_bm,
  1861                               BitMap* card_bm) :
  1862     _cm(cm), _region_bm(region_bm), _card_bm(card_bm),
  1863     _total_words_done(0), _total_live_bytes(0), _total_used_bytes(0) { }
  1865   bool doHeapRegion(HeapRegion* hr) {
  1867     if (hr->continuesHumongous()) {
  1868       // We will ignore these here and process them when their
  1869       // associated "starts humongous" region is processed (see
  1870       // set_bit_for_heap_region()). Note that we cannot rely on their
  1871       // associated "starts humongous" region to have their bit set to
  1872       // 1 since, due to the region chunking in the parallel region
  1873       // iteration, a "continues humongous" region might be visited
  1874       // before its associated "starts humongous".
  1875       return false;
  1878     HeapWord* start = hr->top_at_conc_mark_count();
  1879     HeapWord* ntams = hr->next_top_at_mark_start();
  1880     HeapWord* top   = hr->top();
  1882     assert(hr->bottom() <= start && start <= hr->end() &&
  1883            hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
  1885     size_t words_done = ntams - hr->bottom();
  1887     if (start < ntams) {
  1888       // Region was changed between remark and cleanup pauses
  1889       // We need to add (ntams - start) to the marked bytes
  1890       // for this region, and set bits for the range
  1891       // [ card_idx(start), card_idx(ntams) ) in the card bitmap.
  1892       size_t live_bytes = (ntams - start) * HeapWordSize;
  1893       hr->add_to_marked_bytes(live_bytes);
  1895       // Record the new top at conc count
  1896       hr->set_top_at_conc_mark_count(ntams);
  1898       // The setting of the bits in the card bitmap takes place below
  1901     // Mark the allocated-since-marking portion...
  1902     if (ntams < top) {
  1903       // This definitely means the region has live objects.
  1904       set_bit_for_region(hr);
  1907     // Now set the bits for [start, top]
  1908     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  1909     BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top);
  1910     set_card_bitmap_range(start_idx, last_idx);
  1912     // Set the bit for the region if it contains live data
  1913     if (hr->next_marked_bytes() > 0) {
  1914       set_bit_for_region(hr);
  1917     _total_words_done += words_done;
  1918     _total_used_bytes += hr->used();
  1919     _total_live_bytes += hr->next_marked_bytes();
  1921     return false;
  1924   size_t total_words_done() const { return _total_words_done; }
  1925   size_t total_live_bytes() const { return _total_live_bytes; }
  1926   size_t total_used_bytes() const { return _total_used_bytes; }
  1927 };
  1929 class G1ParFinalCountTask: public AbstractGangTask {
  1930 protected:
  1931   G1CollectedHeap* _g1h;
  1932   ConcurrentMark* _cm;
  1933   BitMap* _actual_region_bm;
  1934   BitMap* _actual_card_bm;
  1936   uint    _n_workers;
  1938   size_t *_live_bytes;
  1939   size_t *_used_bytes;
  1941 public:
  1942   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
  1943     : AbstractGangTask("G1 final counting"),
  1944       _g1h(g1h), _cm(_g1h->concurrent_mark()),
  1945       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
  1946       _n_workers(0) {
  1947     // Use the value already set as the number of active threads
  1948     // in the call to run_task().  Needed for the allocation of
  1949     // _live_bytes and _used_bytes.
  1950     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1951       assert( _g1h->workers()->active_workers() > 0,
  1952         "Should have been previously set");
  1953       _n_workers = _g1h->workers()->active_workers();
  1954     } else {
  1955       _n_workers = 1;
  1958     _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  1959     _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  1962   ~G1ParFinalCountTask() {
  1963     FREE_C_HEAP_ARRAY(size_t, _live_bytes);
  1964     FREE_C_HEAP_ARRAY(size_t, _used_bytes);
  1967   void work(uint worker_id) {
  1968     assert(worker_id < _n_workers, "invariant");
  1970     FinalCountDataUpdateClosure final_update_cl(_cm,
  1971                                                 _actual_region_bm,
  1972                                                 _actual_card_bm);
  1974     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1975       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
  1976                                             worker_id,
  1977                                             _n_workers,
  1978                                             HeapRegion::FinalCountClaimValue);
  1979     } else {
  1980       _g1h->heap_region_iterate(&final_update_cl);
  1983     _live_bytes[worker_id] = final_update_cl.total_live_bytes();
  1984     _used_bytes[worker_id] = final_update_cl.total_used_bytes();
  1987   size_t live_bytes()  {
  1988     size_t live_bytes = 0;
  1989     for (uint i = 0; i < _n_workers; ++i)
  1990       live_bytes += _live_bytes[i];
  1991     return live_bytes;
  1994   size_t used_bytes()  {
  1995     size_t used_bytes = 0;
  1996     for (uint i = 0; i < _n_workers; ++i)
  1997       used_bytes += _used_bytes[i];
  1998     return used_bytes;
  2000 };
  2002 class G1ParNoteEndTask;
  2004 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  2005   G1CollectedHeap* _g1;
  2006   int _worker_num;
  2007   size_t _max_live_bytes;
  2008   size_t _regions_claimed;
  2009   size_t _freed_bytes;
  2010   FreeRegionList* _local_cleanup_list;
  2011   OldRegionSet* _old_proxy_set;
  2012   HumongousRegionSet* _humongous_proxy_set;
  2013   HRRSCleanupTask* _hrrs_cleanup_task;
  2014   double _claimed_region_time;
  2015   double _max_region_time;
  2017 public:
  2018   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
  2019                              int worker_num,
  2020                              FreeRegionList* local_cleanup_list,
  2021                              OldRegionSet* old_proxy_set,
  2022                              HumongousRegionSet* humongous_proxy_set,
  2023                              HRRSCleanupTask* hrrs_cleanup_task) :
  2024     _g1(g1), _worker_num(worker_num),
  2025     _max_live_bytes(0), _regions_claimed(0),
  2026     _freed_bytes(0),
  2027     _claimed_region_time(0.0), _max_region_time(0.0),
  2028     _local_cleanup_list(local_cleanup_list),
  2029     _old_proxy_set(old_proxy_set),
  2030     _humongous_proxy_set(humongous_proxy_set),
  2031     _hrrs_cleanup_task(hrrs_cleanup_task) { }
  2033   size_t freed_bytes() { return _freed_bytes; }
  2035   bool doHeapRegion(HeapRegion *hr) {
  2036     // We use a claim value of zero here because all regions
  2037     // were claimed with value 1 in the FinalCount task.
  2038     hr->reset_gc_time_stamp();
  2039     if (!hr->continuesHumongous()) {
  2040       double start = os::elapsedTime();
  2041       _regions_claimed++;
  2042       hr->note_end_of_marking();
  2043       _max_live_bytes += hr->max_live_bytes();
  2044       _g1->free_region_if_empty(hr,
  2045                                 &_freed_bytes,
  2046                                 _local_cleanup_list,
  2047                                 _old_proxy_set,
  2048                                 _humongous_proxy_set,
  2049                                 _hrrs_cleanup_task,
  2050                                 true /* par */);
  2051       double region_time = (os::elapsedTime() - start);
  2052       _claimed_region_time += region_time;
  2053       if (region_time > _max_region_time) {
  2054         _max_region_time = region_time;
  2057     return false;
  2060   size_t max_live_bytes() { return _max_live_bytes; }
  2061   size_t regions_claimed() { return _regions_claimed; }
  2062   double claimed_region_time_sec() { return _claimed_region_time; }
  2063   double max_region_time_sec() { return _max_region_time; }
  2064 };
  2066 class G1ParNoteEndTask: public AbstractGangTask {
  2067   friend class G1NoteEndOfConcMarkClosure;
  2069 protected:
  2070   G1CollectedHeap* _g1h;
  2071   size_t _max_live_bytes;
  2072   size_t _freed_bytes;
  2073   FreeRegionList* _cleanup_list;
  2075 public:
  2076   G1ParNoteEndTask(G1CollectedHeap* g1h,
  2077                    FreeRegionList* cleanup_list) :
  2078     AbstractGangTask("G1 note end"), _g1h(g1h),
  2079     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
  2081   void work(uint worker_id) {
  2082     double start = os::elapsedTime();
  2083     FreeRegionList local_cleanup_list("Local Cleanup List");
  2084     OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
  2085     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
  2086     HRRSCleanupTask hrrs_cleanup_task;
  2087     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
  2088                                            &old_proxy_set,
  2089                                            &humongous_proxy_set,
  2090                                            &hrrs_cleanup_task);
  2091     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2092       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
  2093                                             _g1h->workers()->active_workers(),
  2094                                             HeapRegion::NoteEndClaimValue);
  2095     } else {
  2096       _g1h->heap_region_iterate(&g1_note_end);
  2098     assert(g1_note_end.complete(), "Shouldn't have yielded!");
  2100     // Now update the lists
  2101     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
  2102                                             NULL /* free_list */,
  2103                                             &old_proxy_set,
  2104                                             &humongous_proxy_set,
  2105                                             true /* par */);
  2107       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2108       _max_live_bytes += g1_note_end.max_live_bytes();
  2109       _freed_bytes += g1_note_end.freed_bytes();
  2111       // If we iterate over the global cleanup list at the end of
  2112       // cleanup to do this printing we will not guarantee to only
  2113       // generate output for the newly-reclaimed regions (the list
  2114       // might not be empty at the beginning of cleanup; we might
  2115       // still be working on its previous contents). So we do the
  2116       // printing here, before we append the new regions to the global
  2117       // cleanup list.
  2119       G1HRPrinter* hr_printer = _g1h->hr_printer();
  2120       if (hr_printer->is_active()) {
  2121         HeapRegionLinkedListIterator iter(&local_cleanup_list);
  2122         while (iter.more_available()) {
  2123           HeapRegion* hr = iter.get_next();
  2124           hr_printer->cleanup(hr);
  2128       _cleanup_list->add_as_tail(&local_cleanup_list);
  2129       assert(local_cleanup_list.is_empty(), "post-condition");
  2131       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
  2133     double end = os::elapsedTime();
  2134     if (G1PrintParCleanupStats) {
  2135       gclog_or_tty->print("     Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
  2136                           "claimed %u regions (tot = %8.3f ms, max = %8.3f ms).\n",
  2137                           worker_id, start, end, (end-start)*1000.0,
  2138                           g1_note_end.regions_claimed(),
  2139                           g1_note_end.claimed_region_time_sec()*1000.0,
  2140                           g1_note_end.max_region_time_sec()*1000.0);
  2143   size_t max_live_bytes() { return _max_live_bytes; }
  2144   size_t freed_bytes() { return _freed_bytes; }
  2145 };
  2147 class G1ParScrubRemSetTask: public AbstractGangTask {
  2148 protected:
  2149   G1RemSet* _g1rs;
  2150   BitMap* _region_bm;
  2151   BitMap* _card_bm;
  2152 public:
  2153   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
  2154                        BitMap* region_bm, BitMap* card_bm) :
  2155     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
  2156     _region_bm(region_bm), _card_bm(card_bm) { }
  2158   void work(uint worker_id) {
  2159     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2160       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
  2161                        HeapRegion::ScrubRemSetClaimValue);
  2162     } else {
  2163       _g1rs->scrub(_region_bm, _card_bm);
  2167 };
  2169 void ConcurrentMark::cleanup() {
  2170   // world is stopped at this checkpoint
  2171   assert(SafepointSynchronize::is_at_safepoint(),
  2172          "world should be stopped");
  2173   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2175   // If a full collection has happened, we shouldn't do this.
  2176   if (has_aborted()) {
  2177     g1h->set_marking_complete(); // So bitmap clearing isn't confused
  2178     return;
  2181   HRSPhaseSetter x(HRSPhaseCleanup);
  2182   g1h->verify_region_sets_optional();
  2184   if (VerifyDuringGC) {
  2185     HandleMark hm;  // handle scope
  2186     gclog_or_tty->print(" VerifyDuringGC:(before)");
  2187     Universe::heap()->prepare_for_verify();
  2188     Universe::verify(/* allow dirty */ true,
  2189                      /* silent      */ false,
  2190                      /* option      */ VerifyOption_G1UsePrevMarking);
  2193   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  2194   g1p->record_concurrent_mark_cleanup_start();
  2196   double start = os::elapsedTime();
  2198   HeapRegionRemSet::reset_for_cleanup_tasks();
  2200   uint n_workers;
  2202   // Do counting once more with the world stopped for good measure.
  2203   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
  2205   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2206    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2207            "sanity check");
  2209     g1h->set_par_threads();
  2210     n_workers = g1h->n_par_threads();
  2211     assert(g1h->n_par_threads() == n_workers,
  2212            "Should not have been reset");
  2213     g1h->workers()->run_task(&g1_par_count_task);
  2214     // Done with the parallel phase so reset to 0.
  2215     g1h->set_par_threads(0);
  2217     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
  2218            "sanity check");
  2219   } else {
  2220     n_workers = 1;
  2221     g1_par_count_task.work(0);
  2224   if (VerifyDuringGC) {
  2225     // Verify that the counting data accumulated during marking matches
  2226     // that calculated by walking the marking bitmap.
  2228     // Bitmaps to hold expected values
  2229     BitMap expected_region_bm(_region_bm.size(), false);
  2230     BitMap expected_card_bm(_card_bm.size(), false);
  2232     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
  2233                                                  &_region_bm,
  2234                                                  &_card_bm,
  2235                                                  &expected_region_bm,
  2236                                                  &expected_card_bm);
  2238     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2239       g1h->set_par_threads((int)n_workers);
  2240       g1h->workers()->run_task(&g1_par_verify_task);
  2241       // Done with the parallel phase so reset to 0.
  2242       g1h->set_par_threads(0);
  2244       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
  2245              "sanity check");
  2246     } else {
  2247       g1_par_verify_task.work(0);
  2250     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  2253   size_t known_garbage_bytes =
  2254     g1_par_count_task.used_bytes() - g1_par_count_task.live_bytes();
  2255   g1p->set_known_garbage_bytes(known_garbage_bytes);
  2257   size_t start_used_bytes = g1h->used();
  2258   _at_least_one_mark_complete = true;
  2259   g1h->set_marking_complete();
  2261   ergo_verbose4(ErgoConcCycles,
  2262            "finish cleanup",
  2263            ergo_format_byte("occupancy")
  2264            ergo_format_byte("capacity")
  2265            ergo_format_byte_perc("known garbage"),
  2266            start_used_bytes, g1h->capacity(),
  2267            known_garbage_bytes,
  2268            ((double) known_garbage_bytes / (double) g1h->capacity()) * 100.0);
  2270   double count_end = os::elapsedTime();
  2271   double this_final_counting_time = (count_end - start);
  2272   if (G1PrintParCleanupStats) {
  2273     gclog_or_tty->print_cr("Cleanup:");
  2274     gclog_or_tty->print_cr("  Finalize counting: %8.3f ms",
  2275                            this_final_counting_time*1000.0);
  2277   _total_counting_time += this_final_counting_time;
  2279   if (G1PrintRegionLivenessInfo) {
  2280     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
  2281     _g1h->heap_region_iterate(&cl);
  2284   // Install newly created mark bitMap as "prev".
  2285   swapMarkBitMaps();
  2287   g1h->reset_gc_time_stamp();
  2289   // Note end of marking in all heap regions.
  2290   double note_end_start = os::elapsedTime();
  2291   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
  2292   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2293     g1h->set_par_threads((int)n_workers);
  2294     g1h->workers()->run_task(&g1_par_note_end_task);
  2295     g1h->set_par_threads(0);
  2297     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
  2298            "sanity check");
  2299   } else {
  2300     g1_par_note_end_task.work(0);
  2303   if (!cleanup_list_is_empty()) {
  2304     // The cleanup list is not empty, so we'll have to process it
  2305     // concurrently. Notify anyone else that might be wanting free
  2306     // regions that there will be more free regions coming soon.
  2307     g1h->set_free_regions_coming();
  2309   double note_end_end = os::elapsedTime();
  2310   if (G1PrintParCleanupStats) {
  2311     gclog_or_tty->print_cr("  note end of marking: %8.3f ms.",
  2312                            (note_end_end - note_end_start)*1000.0);
  2315   // call below, since it affects the metric by which we sort the heap
  2316   // regions.
  2317   if (G1ScrubRemSets) {
  2318     double rs_scrub_start = os::elapsedTime();
  2319     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
  2320     if (G1CollectedHeap::use_parallel_gc_threads()) {
  2321       g1h->set_par_threads((int)n_workers);
  2322       g1h->workers()->run_task(&g1_par_scrub_rs_task);
  2323       g1h->set_par_threads(0);
  2325       assert(g1h->check_heap_region_claim_values(
  2326                                             HeapRegion::ScrubRemSetClaimValue),
  2327              "sanity check");
  2328     } else {
  2329       g1_par_scrub_rs_task.work(0);
  2332     double rs_scrub_end = os::elapsedTime();
  2333     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
  2334     _total_rs_scrub_time += this_rs_scrub_time;
  2337   // this will also free any regions totally full of garbage objects,
  2338   // and sort the regions.
  2339   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
  2341   // Statistics.
  2342   double end = os::elapsedTime();
  2343   _cleanup_times.add((end - start) * 1000.0);
  2345   if (PrintGC || PrintGCDetails) {
  2346     g1h->print_size_transition(gclog_or_tty,
  2347                                start_used_bytes,
  2348                                g1h->used(),
  2349                                g1h->capacity());
  2352   size_t cleaned_up_bytes = start_used_bytes - g1h->used();
  2353   g1p->decrease_known_garbage_bytes(cleaned_up_bytes);
  2355   // Clean up will have freed any regions completely full of garbage.
  2356   // Update the soft reference policy with the new heap occupancy.
  2357   Universe::update_heap_info_at_gc();
  2359   // We need to make this be a "collection" so any collection pause that
  2360   // races with it goes around and waits for completeCleanup to finish.
  2361   g1h->increment_total_collections();
  2363   // We reclaimed old regions so we should calculate the sizes to make
  2364   // sure we update the old gen/space data.
  2365   g1h->g1mm()->update_sizes();
  2367   if (VerifyDuringGC) {
  2368     HandleMark hm;  // handle scope
  2369     gclog_or_tty->print(" VerifyDuringGC:(after)");
  2370     Universe::heap()->prepare_for_verify();
  2371     Universe::verify(/* allow dirty */ true,
  2372                      /* silent      */ false,
  2373                      /* option      */ VerifyOption_G1UsePrevMarking);
  2376   g1h->verify_region_sets_optional();
  2379 void ConcurrentMark::completeCleanup() {
  2380   if (has_aborted()) return;
  2382   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2384   _cleanup_list.verify_optional();
  2385   FreeRegionList tmp_free_list("Tmp Free List");
  2387   if (G1ConcRegionFreeingVerbose) {
  2388     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2389                            "cleanup list has "SIZE_FORMAT" entries",
  2390                            _cleanup_list.length());
  2393   // Noone else should be accessing the _cleanup_list at this point,
  2394   // so it's not necessary to take any locks
  2395   while (!_cleanup_list.is_empty()) {
  2396     HeapRegion* hr = _cleanup_list.remove_head();
  2397     assert(hr != NULL, "the list was not empty");
  2398     hr->par_clear();
  2399     tmp_free_list.add_as_tail(hr);
  2401     // Instead of adding one region at a time to the secondary_free_list,
  2402     // we accumulate them in the local list and move them a few at a
  2403     // time. This also cuts down on the number of notify_all() calls
  2404     // we do during this process. We'll also append the local list when
  2405     // _cleanup_list is empty (which means we just removed the last
  2406     // region from the _cleanup_list).
  2407     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
  2408         _cleanup_list.is_empty()) {
  2409       if (G1ConcRegionFreeingVerbose) {
  2410         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
  2411                                "appending "SIZE_FORMAT" entries to the "
  2412                                "secondary_free_list, clean list still has "
  2413                                SIZE_FORMAT" entries",
  2414                                tmp_free_list.length(),
  2415                                _cleanup_list.length());
  2419         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  2420         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
  2421         SecondaryFreeList_lock->notify_all();
  2424       if (G1StressConcRegionFreeing) {
  2425         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
  2426           os::sleep(Thread::current(), (jlong) 1, false);
  2431   assert(tmp_free_list.is_empty(), "post-condition");
  2434 // Support closures for reference procssing in G1
  2436 bool G1CMIsAliveClosure::do_object_b(oop obj) {
  2437   HeapWord* addr = (HeapWord*)obj;
  2438   return addr != NULL &&
  2439          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  2442 class G1CMKeepAliveClosure: public OopClosure {
  2443   G1CollectedHeap* _g1;
  2444   ConcurrentMark*  _cm;
  2445  public:
  2446   G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
  2447     _g1(g1), _cm(cm) {
  2448     assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
  2451   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2452   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2454   template <class T> void do_oop_work(T* p) {
  2455     oop obj = oopDesc::load_decode_heap_oop(p);
  2456     HeapWord* addr = (HeapWord*)obj;
  2458     if (_cm->verbose_high()) {
  2459       gclog_or_tty->print_cr("\t[0] we're looking at location "
  2460                              "*"PTR_FORMAT" = "PTR_FORMAT,
  2461                              p, (void*) obj);
  2464     if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
  2465       _cm->mark_and_count(obj);
  2466       _cm->mark_stack_push(obj);
  2469 };
  2471 class G1CMDrainMarkingStackClosure: public VoidClosure {
  2472   ConcurrentMark*               _cm;
  2473   CMMarkStack*                  _markStack;
  2474   G1CMKeepAliveClosure*         _oopClosure;
  2475  public:
  2476   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
  2477                                G1CMKeepAliveClosure* oopClosure) :
  2478     _cm(cm),
  2479     _markStack(markStack),
  2480     _oopClosure(oopClosure) { }
  2482   void do_void() {
  2483     _markStack->drain((OopClosure*)_oopClosure, _cm->nextMarkBitMap(), false);
  2485 };
  2487 // 'Keep Alive' closure used by parallel reference processing.
  2488 // An instance of this closure is used in the parallel reference processing
  2489 // code rather than an instance of G1CMKeepAliveClosure. We could have used
  2490 // the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
  2491 // placed on to discovered ref lists once so we can mark and push with no
  2492 // need to check whether the object has already been marked. Using the
  2493 // G1CMKeepAliveClosure would mean, however, having all the worker threads
  2494 // operating on the global mark stack. This means that an individual
  2495 // worker would be doing lock-free pushes while it processes its own
  2496 // discovered ref list followed by drain call. If the discovered ref lists
  2497 // are unbalanced then this could cause interference with the other
  2498 // workers. Using a CMTask (and its embedded local data structures)
  2499 // avoids that potential interference.
  2500 class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  2501   ConcurrentMark*  _cm;
  2502   CMTask*          _task;
  2503   int              _ref_counter_limit;
  2504   int              _ref_counter;
  2505  public:
  2506   G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
  2507     _cm(cm), _task(task),
  2508     _ref_counter_limit(G1RefProcDrainInterval) {
  2509     assert(_ref_counter_limit > 0, "sanity");
  2510     _ref_counter = _ref_counter_limit;
  2513   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  2514   virtual void do_oop(      oop* p) { do_oop_work(p); }
  2516   template <class T> void do_oop_work(T* p) {
  2517     if (!_cm->has_overflown()) {
  2518       oop obj = oopDesc::load_decode_heap_oop(p);
  2519       if (_cm->verbose_high()) {
  2520         gclog_or_tty->print_cr("\t[%d] we're looking at location "
  2521                                "*"PTR_FORMAT" = "PTR_FORMAT,
  2522                                _task->task_id(), p, (void*) obj);
  2525       _task->deal_with_reference(obj);
  2526       _ref_counter--;
  2528       if (_ref_counter == 0) {
  2529         // We have dealt with _ref_counter_limit references, pushing them and objects
  2530         // reachable from them on to the local stack (and possibly the global stack).
  2531         // Call do_marking_step() to process these entries. We call the routine in a
  2532         // loop, which we'll exit if there's nothing more to do (i.e. we're done
  2533         // with the entries that we've pushed as a result of the deal_with_reference
  2534         // calls above) or we overflow.
  2535         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
  2536         // while there may still be some work to do. (See the comment at the
  2537         // beginning of CMTask::do_marking_step() for those conditions - one of which
  2538         // is reaching the specified time target.) It is only when
  2539         // CMTask::do_marking_step() returns without setting the has_aborted() flag
  2540         // that the marking has completed.
  2541         do {
  2542           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
  2543           _task->do_marking_step(mark_step_duration_ms,
  2544                                  false /* do_stealing    */,
  2545                                  false /* do_termination */);
  2546         } while (_task->has_aborted() && !_cm->has_overflown());
  2547         _ref_counter = _ref_counter_limit;
  2549     } else {
  2550       if (_cm->verbose_high()) {
  2551          gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
  2555 };
  2557 class G1CMParDrainMarkingStackClosure: public VoidClosure {
  2558   ConcurrentMark* _cm;
  2559   CMTask* _task;
  2560  public:
  2561   G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
  2562     _cm(cm), _task(task) { }
  2564   void do_void() {
  2565     do {
  2566       if (_cm->verbose_high()) {
  2567         gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
  2568                                _task->task_id());
  2571       // We call CMTask::do_marking_step() to completely drain the local and
  2572       // global marking stacks. The routine is called in a loop, which we'll
  2573       // exit if there's nothing more to do (i.e. we'completely drained the
  2574       // entries that were pushed as a result of applying the
  2575       // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
  2576       // lists above) or we overflow the global marking stack.
  2577       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
  2578       // while there may still be some work to do. (See the comment at the
  2579       // beginning of CMTask::do_marking_step() for those conditions - one of which
  2580       // is reaching the specified time target.) It is only when
  2581       // CMTask::do_marking_step() returns without setting the has_aborted() flag
  2582       // that the marking has completed.
  2584       _task->do_marking_step(1000000000.0 /* something very large */,
  2585                              true /* do_stealing    */,
  2586                              true /* do_termination */);
  2587     } while (_task->has_aborted() && !_cm->has_overflown());
  2589 };
  2591 // Implementation of AbstractRefProcTaskExecutor for parallel
  2592 // reference processing at the end of G1 concurrent marking
  2594 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  2595 private:
  2596   G1CollectedHeap* _g1h;
  2597   ConcurrentMark*  _cm;
  2598   WorkGang*        _workers;
  2599   int              _active_workers;
  2601 public:
  2602   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
  2603                         ConcurrentMark* cm,
  2604                         WorkGang* workers,
  2605                         int n_workers) :
  2606     _g1h(g1h), _cm(cm),
  2607     _workers(workers), _active_workers(n_workers) { }
  2609   // Executes the given task using concurrent marking worker threads.
  2610   virtual void execute(ProcessTask& task);
  2611   virtual void execute(EnqueueTask& task);
  2612 };
  2614 class G1CMRefProcTaskProxy: public AbstractGangTask {
  2615   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  2616   ProcessTask&     _proc_task;
  2617   G1CollectedHeap* _g1h;
  2618   ConcurrentMark*  _cm;
  2620 public:
  2621   G1CMRefProcTaskProxy(ProcessTask& proc_task,
  2622                      G1CollectedHeap* g1h,
  2623                      ConcurrentMark* cm) :
  2624     AbstractGangTask("Process reference objects in parallel"),
  2625     _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
  2627   virtual void work(uint worker_id) {
  2628     CMTask* marking_task = _cm->task(worker_id);
  2629     G1CMIsAliveClosure g1_is_alive(_g1h);
  2630     G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
  2631     G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);
  2633     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
  2635 };
  2637 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  2638   assert(_workers != NULL, "Need parallel worker threads.");
  2640   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
  2642   // We need to reset the phase for each task execution so that
  2643   // the termination protocol of CMTask::do_marking_step works.
  2644   _cm->set_phase(_active_workers, false /* concurrent */);
  2645   _g1h->set_par_threads(_active_workers);
  2646   _workers->run_task(&proc_task_proxy);
  2647   _g1h->set_par_threads(0);
  2650 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
  2651   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  2652   EnqueueTask& _enq_task;
  2654 public:
  2655   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  2656     AbstractGangTask("Enqueue reference objects in parallel"),
  2657     _enq_task(enq_task) { }
  2659   virtual void work(uint worker_id) {
  2660     _enq_task.work(worker_id);
  2662 };
  2664 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  2665   assert(_workers != NULL, "Need parallel worker threads.");
  2667   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
  2669   _g1h->set_par_threads(_active_workers);
  2670   _workers->run_task(&enq_task_proxy);
  2671   _g1h->set_par_threads(0);
  2674 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  2675   ResourceMark rm;
  2676   HandleMark   hm;
  2678   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2680   // Is alive closure.
  2681   G1CMIsAliveClosure g1_is_alive(g1h);
  2683   // Inner scope to exclude the cleaning of the string and symbol
  2684   // tables from the displayed time.
  2686     bool verbose = PrintGC && PrintGCDetails;
  2687     if (verbose) {
  2688       gclog_or_tty->put(' ');
  2690     TraceTime t("GC ref-proc", verbose, false, gclog_or_tty);
  2692     ReferenceProcessor* rp = g1h->ref_processor_cm();
  2694     // See the comment in G1CollectedHeap::ref_processing_init()
  2695     // about how reference processing currently works in G1.
  2697     // Process weak references.
  2698     rp->setup_policy(clear_all_soft_refs);
  2699     assert(_markStack.isEmpty(), "mark stack should be empty");
  2701     G1CMKeepAliveClosure g1_keep_alive(g1h, this);
  2702     G1CMDrainMarkingStackClosure
  2703       g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
  2705     // We use the work gang from the G1CollectedHeap and we utilize all
  2706     // the worker threads.
  2707     uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
  2708     active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
  2710     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
  2711                                               g1h->workers(), active_workers);
  2713     if (rp->processing_is_mt()) {
  2714       // Set the degree of MT here.  If the discovery is done MT, there
  2715       // may have been a different number of threads doing the discovery
  2716       // and a different number of discovered lists may have Ref objects.
  2717       // That is OK as long as the Reference lists are balanced (see
  2718       // balance_all_queues() and balance_queues()).
  2719       rp->set_active_mt_degree(active_workers);
  2721       rp->process_discovered_references(&g1_is_alive,
  2722                                       &g1_keep_alive,
  2723                                       &g1_drain_mark_stack,
  2724                                       &par_task_executor);
  2726       // The work routines of the parallel keep_alive and drain_marking_stack
  2727       // will set the has_overflown flag if we overflow the global marking
  2728       // stack.
  2729     } else {
  2730       rp->process_discovered_references(&g1_is_alive,
  2731                                         &g1_keep_alive,
  2732                                         &g1_drain_mark_stack,
  2733                                         NULL);
  2736     assert(_markStack.overflow() || _markStack.isEmpty(),
  2737             "mark stack should be empty (unless it overflowed)");
  2738     if (_markStack.overflow()) {
  2739       // Should have been done already when we tried to push an
  2740       // entry on to the global mark stack. But let's do it again.
  2741       set_has_overflown();
  2744     if (rp->processing_is_mt()) {
  2745       assert(rp->num_q() == active_workers, "why not");
  2746       rp->enqueue_discovered_references(&par_task_executor);
  2747     } else {
  2748       rp->enqueue_discovered_references();
  2751     rp->verify_no_references_recorded();
  2752     assert(!rp->discovery_enabled(), "Post condition");
  2755   // Now clean up stale oops in StringTable
  2756   StringTable::unlink(&g1_is_alive);
  2757   // Clean up unreferenced symbols in symbol table.
  2758   SymbolTable::unlink();
  2761 void ConcurrentMark::swapMarkBitMaps() {
  2762   CMBitMapRO* temp = _prevMarkBitMap;
  2763   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  2764   _nextMarkBitMap  = (CMBitMap*)  temp;
  2767 class CMRemarkTask: public AbstractGangTask {
  2768 private:
  2769   ConcurrentMark *_cm;
  2771 public:
  2772   void work(uint worker_id) {
  2773     // Since all available tasks are actually started, we should
  2774     // only proceed if we're supposed to be actived.
  2775     if (worker_id < _cm->active_tasks()) {
  2776       CMTask* task = _cm->task(worker_id);
  2777       task->record_start_time();
  2778       do {
  2779         task->do_marking_step(1000000000.0 /* something very large */,
  2780                               true /* do_stealing    */,
  2781                               true /* do_termination */);
  2782       } while (task->has_aborted() && !_cm->has_overflown());
  2783       // If we overflow, then we do not want to restart. We instead
  2784       // want to abort remark and do concurrent marking again.
  2785       task->record_end_time();
  2789   CMRemarkTask(ConcurrentMark* cm, int active_workers) :
  2790     AbstractGangTask("Par Remark"), _cm(cm) {
  2791     _cm->terminator()->reset_for_reuse(active_workers);
  2793 };
  2795 void ConcurrentMark::checkpointRootsFinalWork() {
  2796   ResourceMark rm;
  2797   HandleMark   hm;
  2798   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  2800   g1h->ensure_parsability(false);
  2802   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2803     G1CollectedHeap::StrongRootsScope srs(g1h);
  2804     // this is remark, so we'll use up all active threads
  2805     uint active_workers = g1h->workers()->active_workers();
  2806     if (active_workers == 0) {
  2807       assert(active_workers > 0, "Should have been set earlier");
  2808       active_workers = (uint) ParallelGCThreads;
  2809       g1h->workers()->set_active_workers(active_workers);
  2811     set_phase(active_workers, false /* concurrent */);
  2812     // Leave _parallel_marking_threads at it's
  2813     // value originally calculated in the ConcurrentMark
  2814     // constructor and pass values of the active workers
  2815     // through the gang in the task.
  2817     CMRemarkTask remarkTask(this, active_workers);
  2818     g1h->set_par_threads(active_workers);
  2819     g1h->workers()->run_task(&remarkTask);
  2820     g1h->set_par_threads(0);
  2821   } else {
  2822     G1CollectedHeap::StrongRootsScope srs(g1h);
  2823     // this is remark, so we'll use up all available threads
  2824     uint active_workers = 1;
  2825     set_phase(active_workers, false /* concurrent */);
  2827     CMRemarkTask remarkTask(this, active_workers);
  2828     // We will start all available threads, even if we decide that the
  2829     // active_workers will be fewer. The extra ones will just bail out
  2830     // immediately.
  2831     remarkTask.work(0);
  2833   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  2834   guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
  2836   print_stats();
  2838 #if VERIFY_OBJS_PROCESSED
  2839   if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
  2840     gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
  2841                            _scan_obj_cl.objs_processed,
  2842                            ThreadLocalObjQueue::objs_enqueued);
  2843     guarantee(_scan_obj_cl.objs_processed ==
  2844               ThreadLocalObjQueue::objs_enqueued,
  2845               "Different number of objs processed and enqueued.");
  2847 #endif
  2850 #ifndef PRODUCT
  2852 class PrintReachableOopClosure: public OopClosure {
  2853 private:
  2854   G1CollectedHeap* _g1h;
  2855   outputStream*    _out;
  2856   VerifyOption     _vo;
  2857   bool             _all;
  2859 public:
  2860   PrintReachableOopClosure(outputStream* out,
  2861                            VerifyOption  vo,
  2862                            bool          all) :
  2863     _g1h(G1CollectedHeap::heap()),
  2864     _out(out), _vo(vo), _all(all) { }
  2866   void do_oop(narrowOop* p) { do_oop_work(p); }
  2867   void do_oop(      oop* p) { do_oop_work(p); }
  2869   template <class T> void do_oop_work(T* p) {
  2870     oop         obj = oopDesc::load_decode_heap_oop(p);
  2871     const char* str = NULL;
  2872     const char* str2 = "";
  2874     if (obj == NULL) {
  2875       str = "";
  2876     } else if (!_g1h->is_in_g1_reserved(obj)) {
  2877       str = " O";
  2878     } else {
  2879       HeapRegion* hr  = _g1h->heap_region_containing(obj);
  2880       guarantee(hr != NULL, "invariant");
  2881       bool over_tams = false;
  2882       bool marked = false;
  2884       switch (_vo) {
  2885         case VerifyOption_G1UsePrevMarking:
  2886           over_tams = hr->obj_allocated_since_prev_marking(obj);
  2887           marked = _g1h->isMarkedPrev(obj);
  2888           break;
  2889         case VerifyOption_G1UseNextMarking:
  2890           over_tams = hr->obj_allocated_since_next_marking(obj);
  2891           marked = _g1h->isMarkedNext(obj);
  2892           break;
  2893         case VerifyOption_G1UseMarkWord:
  2894           marked = obj->is_gc_marked();
  2895           break;
  2896         default:
  2897           ShouldNotReachHere();
  2900       if (over_tams) {
  2901         str = " >";
  2902         if (marked) {
  2903           str2 = " AND MARKED";
  2905       } else if (marked) {
  2906         str = " M";
  2907       } else {
  2908         str = " NOT";
  2912     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
  2913                    p, (void*) obj, str, str2);
  2915 };
  2917 class PrintReachableObjectClosure : public ObjectClosure {
  2918 private:
  2919   G1CollectedHeap* _g1h;
  2920   outputStream*    _out;
  2921   VerifyOption     _vo;
  2922   bool             _all;
  2923   HeapRegion*      _hr;
  2925 public:
  2926   PrintReachableObjectClosure(outputStream* out,
  2927                               VerifyOption  vo,
  2928                               bool          all,
  2929                               HeapRegion*   hr) :
  2930     _g1h(G1CollectedHeap::heap()),
  2931     _out(out), _vo(vo), _all(all), _hr(hr) { }
  2933   void do_object(oop o) {
  2934     bool over_tams = false;
  2935     bool marked = false;
  2937     switch (_vo) {
  2938       case VerifyOption_G1UsePrevMarking:
  2939         over_tams = _hr->obj_allocated_since_prev_marking(o);
  2940         marked = _g1h->isMarkedPrev(o);
  2941         break;
  2942       case VerifyOption_G1UseNextMarking:
  2943         over_tams = _hr->obj_allocated_since_next_marking(o);
  2944         marked = _g1h->isMarkedNext(o);
  2945         break;
  2946       case VerifyOption_G1UseMarkWord:
  2947         marked = o->is_gc_marked();
  2948         break;
  2949       default:
  2950         ShouldNotReachHere();
  2952     bool print_it = _all || over_tams || marked;
  2954     if (print_it) {
  2955       _out->print_cr(" "PTR_FORMAT"%s",
  2956                      o, (over_tams) ? " >" : (marked) ? " M" : "");
  2957       PrintReachableOopClosure oopCl(_out, _vo, _all);
  2958       o->oop_iterate(&oopCl);
  2961 };
  2963 class PrintReachableRegionClosure : public HeapRegionClosure {
  2964 private:
  2965   outputStream* _out;
  2966   VerifyOption  _vo;
  2967   bool          _all;
  2969 public:
  2970   bool doHeapRegion(HeapRegion* hr) {
  2971     HeapWord* b = hr->bottom();
  2972     HeapWord* e = hr->end();
  2973     HeapWord* t = hr->top();
  2974     HeapWord* p = NULL;
  2976     switch (_vo) {
  2977       case VerifyOption_G1UsePrevMarking:
  2978         p = hr->prev_top_at_mark_start();
  2979         break;
  2980       case VerifyOption_G1UseNextMarking:
  2981         p = hr->next_top_at_mark_start();
  2982         break;
  2983       case VerifyOption_G1UseMarkWord:
  2984         // When we are verifying marking using the mark word
  2985         // TAMS has no relevance.
  2986         assert(p == NULL, "post-condition");
  2987         break;
  2988       default:
  2989         ShouldNotReachHere();
  2991     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
  2992                    "TAMS: "PTR_FORMAT, b, e, t, p);
  2993     _out->cr();
  2995     HeapWord* from = b;
  2996     HeapWord* to   = t;
  2998     if (to > from) {
  2999       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
  3000       _out->cr();
  3001       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
  3002       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
  3003       _out->cr();
  3006     return false;
  3009   PrintReachableRegionClosure(outputStream* out,
  3010                               VerifyOption  vo,
  3011                               bool          all) :
  3012     _out(out), _vo(vo), _all(all) { }
  3013 };
  3015 static const char* verify_option_to_tams(VerifyOption vo) {
  3016   switch (vo) {
  3017     case VerifyOption_G1UsePrevMarking:
  3018       return "PTAMS";
  3019     case VerifyOption_G1UseNextMarking:
  3020       return "NTAMS";
  3021     default:
  3022       return "NONE";
  3026 void ConcurrentMark::print_reachable(const char* str,
  3027                                      VerifyOption vo,
  3028                                      bool all) {
  3029   gclog_or_tty->cr();
  3030   gclog_or_tty->print_cr("== Doing heap dump... ");
  3032   if (G1PrintReachableBaseFile == NULL) {
  3033     gclog_or_tty->print_cr("  #### error: no base file defined");
  3034     return;
  3037   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
  3038       (JVM_MAXPATHLEN - 1)) {
  3039     gclog_or_tty->print_cr("  #### error: file name too long");
  3040     return;
  3043   char file_name[JVM_MAXPATHLEN];
  3044   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  3045   gclog_or_tty->print_cr("  dumping to file %s", file_name);
  3047   fileStream fout(file_name);
  3048   if (!fout.is_open()) {
  3049     gclog_or_tty->print_cr("  #### error: could not open file");
  3050     return;
  3053   outputStream* out = &fout;
  3054   out->print_cr("-- USING %s", verify_option_to_tams(vo));
  3055   out->cr();
  3057   out->print_cr("--- ITERATING OVER REGIONS");
  3058   out->cr();
  3059   PrintReachableRegionClosure rcl(out, vo, all);
  3060   _g1h->heap_region_iterate(&rcl);
  3061   out->cr();
  3063   gclog_or_tty->print_cr("  done");
  3064   gclog_or_tty->flush();
  3067 #endif // PRODUCT
  3069 // This note is for drainAllSATBBuffers and the code in between.
  3070 // In the future we could reuse a task to do this work during an
  3071 // evacuation pause (since now tasks are not active and can be claimed
  3072 // during an evacuation pause). This was a late change to the code and
  3073 // is currently not being taken advantage of.
  3075 void ConcurrentMark::deal_with_reference(oop obj) {
  3076   if (verbose_high()) {
  3077     gclog_or_tty->print_cr("[global] we're dealing with reference "PTR_FORMAT,
  3078                            (void*) obj);
  3081   HeapWord* objAddr = (HeapWord*) obj;
  3082   assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
  3083   if (_g1h->is_in_g1_reserved(objAddr)) {
  3084     assert(obj != NULL, "null check is implicit");
  3085     if (!_nextMarkBitMap->isMarked(objAddr)) {
  3086       // Only get the containing region if the object is not marked on the
  3087       // bitmap (otherwise, it's a waste of time since we won't do
  3088       // anything with it).
  3089       HeapRegion* hr = _g1h->heap_region_containing_raw(obj);
  3090       if (!hr->obj_allocated_since_next_marking(obj)) {
  3091         if (verbose_high()) {
  3092           gclog_or_tty->print_cr("[global] "PTR_FORMAT" is not considered "
  3093                                  "marked", (void*) obj);
  3096         // we need to mark it first
  3097         if (_nextMarkBitMap->parMark(objAddr)) {
  3098           // No OrderAccess:store_load() is needed. It is implicit in the
  3099           // CAS done in parMark(objAddr) above
  3100           HeapWord* finger = _finger;
  3101           if (objAddr < finger) {
  3102             if (verbose_high()) {
  3103               gclog_or_tty->print_cr("[global] below the global finger "
  3104                                      "("PTR_FORMAT"), pushing it", finger);
  3106             if (!mark_stack_push(obj)) {
  3107               if (verbose_low()) {
  3108                 gclog_or_tty->print_cr("[global] global stack overflow during "
  3109                                        "deal_with_reference");
  3119 class CMGlobalObjectClosure : public ObjectClosure {
  3120 private:
  3121   ConcurrentMark* _cm;
  3123 public:
  3124   void do_object(oop obj) {
  3125     _cm->deal_with_reference(obj);
  3128   CMGlobalObjectClosure(ConcurrentMark* cm) : _cm(cm) { }
  3129 };
  3131 void ConcurrentMark::drainAllSATBBuffers() {
  3132   guarantee(false, "drainAllSATBBuffers(): don't call this any more");
  3134   CMGlobalObjectClosure oc(this);
  3135   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3136   satb_mq_set.set_closure(&oc);
  3138   while (satb_mq_set.apply_closure_to_completed_buffer()) {
  3139     if (verbose_medium()) {
  3140       gclog_or_tty->print_cr("[global] processed an SATB buffer");
  3144   // no need to check whether we should do this, as this is only
  3145   // called during an evacuation pause
  3146   satb_mq_set.iterate_closure_all_threads();
  3148   satb_mq_set.set_closure(NULL);
  3149   assert(satb_mq_set.completed_buffers_num() == 0, "invariant");
  3152 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
  3153   // Note we are overriding the read-only view of the prev map here, via
  3154   // the cast.
  3155   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  3158 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
  3159   _nextMarkBitMap->clearRange(mr);
  3162 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  3163   clearRangePrevBitmap(mr);
  3164   clearRangeNextBitmap(mr);
  3167 HeapRegion*
  3168 ConcurrentMark::claim_region(int task_num) {
  3169   // "checkpoint" the finger
  3170   HeapWord* finger = _finger;
  3172   // _heap_end will not change underneath our feet; it only changes at
  3173   // yield points.
  3174   while (finger < _heap_end) {
  3175     assert(_g1h->is_in_g1_reserved(finger), "invariant");
  3177     // Note on how this code handles humongous regions. In the
  3178     // normal case the finger will reach the start of a "starts
  3179     // humongous" (SH) region. Its end will either be the end of the
  3180     // last "continues humongous" (CH) region in the sequence, or the
  3181     // standard end of the SH region (if the SH is the only region in
  3182     // the sequence). That way claim_region() will skip over the CH
  3183     // regions. However, there is a subtle race between a CM thread
  3184     // executing this method and a mutator thread doing a humongous
  3185     // object allocation. The two are not mutually exclusive as the CM
  3186     // thread does not need to hold the Heap_lock when it gets
  3187     // here. So there is a chance that claim_region() will come across
  3188     // a free region that's in the progress of becoming a SH or a CH
  3189     // region. In the former case, it will either
  3190     //   a) Miss the update to the region's end, in which case it will
  3191     //      visit every subsequent CH region, will find their bitmaps
  3192     //      empty, and do nothing, or
  3193     //   b) Will observe the update of the region's end (in which case
  3194     //      it will skip the subsequent CH regions).
  3195     // If it comes across a region that suddenly becomes CH, the
  3196     // scenario will be similar to b). So, the race between
  3197     // claim_region() and a humongous object allocation might force us
  3198     // to do a bit of unnecessary work (due to some unnecessary bitmap
  3199     // iterations) but it should not introduce and correctness issues.
  3200     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
  3201     HeapWord*   bottom        = curr_region->bottom();
  3202     HeapWord*   end           = curr_region->end();
  3203     HeapWord*   limit         = curr_region->next_top_at_mark_start();
  3205     if (verbose_low()) {
  3206       gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
  3207                              "["PTR_FORMAT", "PTR_FORMAT"), "
  3208                              "limit = "PTR_FORMAT,
  3209                              task_num, curr_region, bottom, end, limit);
  3212     // Is the gap between reading the finger and doing the CAS too long?
  3213     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
  3214     if (res == finger) {
  3215       // we succeeded
  3217       // notice that _finger == end cannot be guaranteed here since,
  3218       // someone else might have moved the finger even further
  3219       assert(_finger >= end, "the finger should have moved forward");
  3221       if (verbose_low()) {
  3222         gclog_or_tty->print_cr("[%d] we were successful with region = "
  3223                                PTR_FORMAT, task_num, curr_region);
  3226       if (limit > bottom) {
  3227         if (verbose_low()) {
  3228           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
  3229                                  "returning it ", task_num, curr_region);
  3231         return curr_region;
  3232       } else {
  3233         assert(limit == bottom,
  3234                "the region limit should be at bottom");
  3235         if (verbose_low()) {
  3236           gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
  3237                                  "returning NULL", task_num, curr_region);
  3239         // we return NULL and the caller should try calling
  3240         // claim_region() again.
  3241         return NULL;
  3243     } else {
  3244       assert(_finger > finger, "the finger should have moved forward");
  3245       if (verbose_low()) {
  3246         gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
  3247                                "global finger = "PTR_FORMAT", "
  3248                                "our finger = "PTR_FORMAT,
  3249                                task_num, _finger, finger);
  3252       // read it again
  3253       finger = _finger;
  3257   return NULL;
  3260 bool ConcurrentMark::invalidate_aborted_regions_in_cset() {
  3261   guarantee(false, "invalidate_aborted_regions_in_cset(): "
  3262                    "don't call this any more");
  3264   bool result = false;
  3265   for (int i = 0; i < (int)_max_task_num; ++i) {
  3266     CMTask* the_task = _tasks[i];
  3267     MemRegion mr = the_task->aborted_region();
  3268     if (mr.start() != NULL) {
  3269       assert(mr.end() != NULL, "invariant");
  3270       assert(mr.word_size() > 0, "invariant");
  3271       HeapRegion* hr = _g1h->heap_region_containing(mr.start());
  3272       assert(hr != NULL, "invariant");
  3273       if (hr->in_collection_set()) {
  3274         // The region points into the collection set
  3275         the_task->set_aborted_region(MemRegion());
  3276         result = true;
  3280   return result;
  3283 bool ConcurrentMark::has_aborted_regions() {
  3284   for (int i = 0; i < (int)_max_task_num; ++i) {
  3285     CMTask* the_task = _tasks[i];
  3286     MemRegion mr = the_task->aborted_region();
  3287     if (mr.start() != NULL) {
  3288       assert(mr.end() != NULL, "invariant");
  3289       assert(mr.word_size() > 0, "invariant");
  3290       return true;
  3293   return false;
  3296 void ConcurrentMark::oops_do(OopClosure* cl) {
  3297   if (_markStack.size() > 0 && verbose_low()) {
  3298     gclog_or_tty->print_cr("[global] scanning the global marking stack, "
  3299                            "size = %d", _markStack.size());
  3301   // we first iterate over the contents of the mark stack...
  3302   _markStack.oops_do(cl);
  3304   for (int i = 0; i < (int)_max_task_num; ++i) {
  3305     OopTaskQueue* queue = _task_queues->queue((int)i);
  3307     if (queue->size() > 0 && verbose_low()) {
  3308       gclog_or_tty->print_cr("[global] scanning task queue of task %d, "
  3309                              "size = %d", i, queue->size());
  3312     // ...then over the contents of the all the task queues.
  3313     queue->oops_do(cl);
  3317 #ifndef PRODUCT
  3318 enum VerifyNoCSetOopsPhase {
  3319   VerifyNoCSetOopsStack,
  3320   VerifyNoCSetOopsQueues,
  3321   VerifyNoCSetOopsSATBCompleted,
  3322   VerifyNoCSetOopsSATBThread
  3323 };
  3325 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
  3326 private:
  3327   G1CollectedHeap* _g1h;
  3328   VerifyNoCSetOopsPhase _phase;
  3329   int _info;
  3331   const char* phase_str() {
  3332     switch (_phase) {
  3333     case VerifyNoCSetOopsStack:         return "Stack";
  3334     case VerifyNoCSetOopsQueues:        return "Queue";
  3335     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
  3336     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
  3337     default:                            ShouldNotReachHere();
  3339     return NULL;
  3342   void do_object_work(oop obj) {
  3343     guarantee(!_g1h->obj_in_cs(obj),
  3344               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
  3345                       (void*) obj, phase_str(), _info));
  3348 public:
  3349   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
  3351   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
  3352     _phase = phase;
  3353     _info = info;
  3356   virtual void do_oop(oop* p) {
  3357     oop obj = oopDesc::load_decode_heap_oop(p);
  3358     do_object_work(obj);
  3361   virtual void do_oop(narrowOop* p) {
  3362     // We should not come across narrow oops while scanning marking
  3363     // stacks and SATB buffers.
  3364     ShouldNotReachHere();
  3367   virtual void do_object(oop obj) {
  3368     do_object_work(obj);
  3370 };
  3372 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
  3373                                          bool verify_enqueued_buffers,
  3374                                          bool verify_thread_buffers,
  3375                                          bool verify_fingers) {
  3376   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  3377   if (!G1CollectedHeap::heap()->mark_in_progress()) {
  3378     return;
  3381   VerifyNoCSetOopsClosure cl;
  3383   if (verify_stacks) {
  3384     // Verify entries on the global mark stack
  3385     cl.set_phase(VerifyNoCSetOopsStack);
  3386     _markStack.oops_do(&cl);
  3388     // Verify entries on the task queues
  3389     for (int i = 0; i < (int) _max_task_num; i += 1) {
  3390       cl.set_phase(VerifyNoCSetOopsQueues, i);
  3391       OopTaskQueue* queue = _task_queues->queue(i);
  3392       queue->oops_do(&cl);
  3396   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
  3398   // Verify entries on the enqueued SATB buffers
  3399   if (verify_enqueued_buffers) {
  3400     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
  3401     satb_qs.iterate_completed_buffers_read_only(&cl);
  3404   // Verify entries on the per-thread SATB buffers
  3405   if (verify_thread_buffers) {
  3406     cl.set_phase(VerifyNoCSetOopsSATBThread);
  3407     satb_qs.iterate_thread_buffers_read_only(&cl);
  3410   if (verify_fingers) {
  3411     // Verify the global finger
  3412     HeapWord* global_finger = finger();
  3413     if (global_finger != NULL && global_finger < _heap_end) {
  3414       // The global finger always points to a heap region boundary. We
  3415       // use heap_region_containing_raw() to get the containing region
  3416       // given that the global finger could be pointing to a free region
  3417       // which subsequently becomes continues humongous. If that
  3418       // happens, heap_region_containing() will return the bottom of the
  3419       // corresponding starts humongous region and the check below will
  3420       // not hold any more.
  3421       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
  3422       guarantee(global_finger == global_hr->bottom(),
  3423                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
  3424                         global_finger, HR_FORMAT_PARAMS(global_hr)));
  3427     // Verify the task fingers
  3428     assert(parallel_marking_threads() <= _max_task_num, "sanity");
  3429     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
  3430       CMTask* task = _tasks[i];
  3431       HeapWord* task_finger = task->finger();
  3432       if (task_finger != NULL && task_finger < _heap_end) {
  3433         // See above note on the global finger verification.
  3434         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
  3435         guarantee(task_finger == task_hr->bottom() ||
  3436                   !task_hr->in_collection_set(),
  3437                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
  3438                           task_finger, HR_FORMAT_PARAMS(task_hr)));
  3443 #endif // PRODUCT
  3445 void ConcurrentMark::clear_marking_state(bool clear_overflow) {
  3446   _markStack.setEmpty();
  3447   _markStack.clear_overflow();
  3448   _regionStack.setEmpty();
  3449   _regionStack.clear_overflow();
  3450   if (clear_overflow) {
  3451     clear_has_overflown();
  3452   } else {
  3453     assert(has_overflown(), "pre-condition");
  3455   _finger = _heap_start;
  3457   for (int i = 0; i < (int)_max_task_num; ++i) {
  3458     OopTaskQueue* queue = _task_queues->queue(i);
  3459     queue->set_empty();
  3460     // Clear any partial regions from the CMTasks
  3461     _tasks[i]->clear_aborted_region();
  3465 // Aggregate the counting data that was constructed concurrently
  3466 // with marking.
  3467 class AggregateCountDataHRClosure: public HeapRegionClosure {
  3468   ConcurrentMark* _cm;
  3469   BitMap* _cm_card_bm;
  3470   size_t _max_task_num;
  3472  public:
  3473   AggregateCountDataHRClosure(ConcurrentMark *cm,
  3474                               BitMap* cm_card_bm,
  3475                               size_t max_task_num) :
  3476     _cm(cm), _cm_card_bm(cm_card_bm),
  3477     _max_task_num(max_task_num) { }
  3479   bool is_card_aligned(HeapWord* p) {
  3480     return ((uintptr_t(p) & (CardTableModRefBS::card_size - 1)) == 0);
  3483   bool doHeapRegion(HeapRegion* hr) {
  3484     if (hr->continuesHumongous()) {
  3485       // We will ignore these here and process them when their
  3486       // associated "starts humongous" region is processed.
  3487       // Note that we cannot rely on their associated
  3488       // "starts humongous" region to have their bit set to 1
  3489       // since, due to the region chunking in the parallel region
  3490       // iteration, a "continues humongous" region might be visited
  3491       // before its associated "starts humongous".
  3492       return false;
  3495     HeapWord* start = hr->bottom();
  3496     HeapWord* limit = hr->next_top_at_mark_start();
  3497     HeapWord* end = hr->end();
  3499     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
  3500            err_msg("Preconditions not met - "
  3501                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
  3502                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
  3503                    start, limit, hr->top(), hr->end()));
  3505     assert(hr->next_marked_bytes() == 0, "Precondition");
  3507     if (start == limit) {
  3508       // NTAMS of this region has not been set so nothing to do.
  3509       return false;
  3512     assert(is_card_aligned(start), "sanity");
  3513     assert(is_card_aligned(end), "sanity");
  3515     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
  3516     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
  3517     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
  3519     // If ntams is not card aligned then we bump the index for
  3520     // limit so that we get the card spanning ntams.
  3521     if (!is_card_aligned(limit)) {
  3522       limit_idx += 1;
  3525     assert(limit_idx <= end_idx, "or else use atomics");
  3527     // Aggregate the "stripe" in the count data associated with hr.
  3528     size_t hrs_index = hr->hrs_index();
  3529     size_t marked_bytes = 0;
  3531     for (int i = 0; (size_t)i < _max_task_num; i += 1) {
  3532       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
  3533       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
  3535       // Fetch the marked_bytes in this region for task i and
  3536       // add it to the running total for this region.
  3537       marked_bytes += marked_bytes_array[hrs_index];
  3539       // Now union the bitmaps[0,max_task_num)[start_idx..limit_idx)
  3540       // into the global card bitmap.
  3541       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
  3543       while (scan_idx < limit_idx) {
  3544         assert(task_card_bm->at(scan_idx) == true, "should be");
  3545         _cm_card_bm->set_bit(scan_idx);
  3546         assert(_cm_card_bm->at(scan_idx) == true, "should be");
  3548         // BitMap::get_next_one_offset() can handle the case when
  3549         // its left_offset parameter is greater than its right_offset
  3550         // parameter. If does, however, have an early exit if
  3551         // left_offset == right_offset. So let's limit the value
  3552         // passed in for left offset here.
  3553         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
  3554         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
  3558     // Update the marked bytes for this region.
  3559     hr->add_to_marked_bytes(marked_bytes);
  3561     // Now set the top at count to NTAMS.
  3562     hr->set_top_at_conc_mark_count(limit);
  3564     // Next heap region
  3565     return false;
  3567 };
  3569 class G1AggregateCountDataTask: public AbstractGangTask {
  3570 protected:
  3571   G1CollectedHeap* _g1h;
  3572   ConcurrentMark* _cm;
  3573   BitMap* _cm_card_bm;
  3574   size_t _max_task_num;
  3575   int _active_workers;
  3577 public:
  3578   G1AggregateCountDataTask(G1CollectedHeap* g1h,
  3579                            ConcurrentMark* cm,
  3580                            BitMap* cm_card_bm,
  3581                            size_t max_task_num,
  3582                            int n_workers) :
  3583     AbstractGangTask("Count Aggregation"),
  3584     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
  3585     _max_task_num(max_task_num),
  3586     _active_workers(n_workers) { }
  3588   void work(uint worker_id) {
  3589     AggregateCountDataHRClosure cl(_cm, _cm_card_bm, _max_task_num);
  3591     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3592       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
  3593                                             _active_workers,
  3594                                             HeapRegion::AggregateCountClaimValue);
  3595     } else {
  3596       _g1h->heap_region_iterate(&cl);
  3599 };
  3602 void ConcurrentMark::aggregate_count_data() {
  3603   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3604                         _g1h->workers()->active_workers() :
  3605                         1);
  3607   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
  3608                                            _max_task_num, n_workers);
  3610   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3611     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3612            "sanity check");
  3613     _g1h->set_par_threads(n_workers);
  3614     _g1h->workers()->run_task(&g1_par_agg_task);
  3615     _g1h->set_par_threads(0);
  3617     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
  3618            "sanity check");
  3619     _g1h->reset_heap_region_claim_values();
  3620   } else {
  3621     g1_par_agg_task.work(0);
  3625 // Clear the per-worker arrays used to store the per-region counting data
  3626 void ConcurrentMark::clear_all_count_data() {
  3627   // Clear the global card bitmap - it will be filled during
  3628   // liveness count aggregation (during remark) and the
  3629   // final counting task.
  3630   _card_bm.clear();
  3632   // Clear the global region bitmap - it will be filled as part
  3633   // of the final counting task.
  3634   _region_bm.clear();
  3636   size_t max_regions = _g1h->max_regions();
  3637   assert(_max_task_num != 0, "unitialized");
  3639   for (int i = 0; (size_t) i < _max_task_num; i += 1) {
  3640     BitMap* task_card_bm = count_card_bitmap_for(i);
  3641     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
  3643     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
  3644     assert(marked_bytes_array != NULL, "uninitialized");
  3646     memset(marked_bytes_array, 0, (max_regions * sizeof(size_t)));
  3647     task_card_bm->clear();
  3651 void ConcurrentMark::print_stats() {
  3652   if (verbose_stats()) {
  3653     gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3654     for (size_t i = 0; i < _active_tasks; ++i) {
  3655       _tasks[i]->print_stats();
  3656       gclog_or_tty->print_cr("---------------------------------------------------------------------");
  3661 // Closures used by ConcurrentMark::complete_marking_in_collection_set().
  3663 class CSetMarkOopClosure: public OopClosure {
  3664   friend class CSetMarkBitMapClosure;
  3666   G1CollectedHeap* _g1h;
  3667   CMBitMap*        _bm;
  3668   ConcurrentMark*  _cm;
  3669   oop*             _ms;
  3670   jint*            _array_ind_stack;
  3671   int              _ms_size;
  3672   int              _ms_ind;
  3673   int              _array_increment;
  3674   uint             _worker_id;
  3676   bool push(oop obj, int arr_ind = 0) {
  3677     if (_ms_ind == _ms_size) {
  3678       gclog_or_tty->print_cr("Mark stack is full.");
  3679       return false;
  3681     _ms[_ms_ind] = obj;
  3682     if (obj->is_objArray()) {
  3683       _array_ind_stack[_ms_ind] = arr_ind;
  3685     _ms_ind++;
  3686     return true;
  3689   oop pop() {
  3690     if (_ms_ind == 0) {
  3691       return NULL;
  3692     } else {
  3693       _ms_ind--;
  3694       return _ms[_ms_ind];
  3698   template <class T> bool drain() {
  3699     while (_ms_ind > 0) {
  3700       oop obj = pop();
  3701       assert(obj != NULL, "Since index was non-zero.");
  3702       if (obj->is_objArray()) {
  3703         jint arr_ind = _array_ind_stack[_ms_ind];
  3704         objArrayOop aobj = objArrayOop(obj);
  3705         jint len = aobj->length();
  3706         jint next_arr_ind = arr_ind + _array_increment;
  3707         if (next_arr_ind < len) {
  3708           push(obj, next_arr_ind);
  3710         // Now process this portion of this one.
  3711         int lim = MIN2(next_arr_ind, len);
  3712         for (int j = arr_ind; j < lim; j++) {
  3713           do_oop(aobj->objArrayOopDesc::obj_at_addr<T>(j));
  3715       } else {
  3716         obj->oop_iterate(this);
  3718       if (abort()) return false;
  3720     return true;
  3723 public:
  3724   CSetMarkOopClosure(ConcurrentMark* cm, int ms_size, uint worker_id) :
  3725     _g1h(G1CollectedHeap::heap()),
  3726     _cm(cm),
  3727     _bm(cm->nextMarkBitMap()),
  3728     _ms_size(ms_size), _ms_ind(0),
  3729     _ms(NEW_C_HEAP_ARRAY(oop, ms_size)),
  3730     _array_ind_stack(NEW_C_HEAP_ARRAY(jint, ms_size)),
  3731     _array_increment(MAX2(ms_size/8, 16)),
  3732     _worker_id(worker_id) { }
  3734   ~CSetMarkOopClosure() {
  3735     FREE_C_HEAP_ARRAY(oop, _ms);
  3736     FREE_C_HEAP_ARRAY(jint, _array_ind_stack);
  3739   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3740   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3742   template <class T> void do_oop_work(T* p) {
  3743     T heap_oop = oopDesc::load_heap_oop(p);
  3744     if (oopDesc::is_null(heap_oop)) return;
  3745     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3746     if (obj->is_forwarded()) {
  3747       // If the object has already been forwarded, we have to make sure
  3748       // that it's marked.  So follow the forwarding pointer.  Note that
  3749       // this does the right thing for self-forwarding pointers in the
  3750       // evacuation failure case.
  3751       obj = obj->forwardee();
  3753     HeapRegion* hr = _g1h->heap_region_containing(obj);
  3754     if (hr != NULL) {
  3755       if (hr->in_collection_set()) {
  3756         if (_g1h->is_obj_ill(obj)) {
  3757           if (_bm->parMark((HeapWord*)obj)) {
  3758             if (!push(obj)) {
  3759               gclog_or_tty->print_cr("Setting abort in CSetMarkOopClosure because push failed.");
  3760               set_abort();
  3764       } else {
  3765         // Outside the collection set; we need to gray it
  3766         _cm->deal_with_reference(obj);
  3770 };
  3772 class CSetMarkBitMapClosure: public BitMapClosure {
  3773   G1CollectedHeap*   _g1h;
  3774   CMBitMap*          _bitMap;
  3775   ConcurrentMark*    _cm;
  3776   CSetMarkOopClosure _oop_cl;
  3777   uint               _worker_id;
  3779 public:
  3780   CSetMarkBitMapClosure(ConcurrentMark* cm, int ms_size, int worker_id) :
  3781     _g1h(G1CollectedHeap::heap()),
  3782     _bitMap(cm->nextMarkBitMap()),
  3783     _oop_cl(cm, ms_size, worker_id),
  3784     _worker_id(worker_id) { }
  3786   bool do_bit(size_t offset) {
  3787     // convert offset into a HeapWord*
  3788     HeapWord* addr = _bitMap->offsetToHeapWord(offset);
  3789     assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  3790            "address out of range");
  3791     assert(_bitMap->isMarked(addr), "tautology");
  3792     oop obj = oop(addr);
  3793     if (!obj->is_forwarded()) {
  3794       if (!_oop_cl.push(obj)) return false;
  3795       if (UseCompressedOops) {
  3796         if (!_oop_cl.drain<narrowOop>()) return false;
  3797       } else {
  3798         if (!_oop_cl.drain<oop>()) return false;
  3801     // Otherwise...
  3802     return true;
  3804 };
  3806 class CompleteMarkingInCSetHRClosure: public HeapRegionClosure {
  3807   CMBitMap*             _bm;
  3808   CSetMarkBitMapClosure _bit_cl;
  3809   uint                  _worker_id;
  3811   enum SomePrivateConstants {
  3812     MSSize = 1000
  3813   };
  3815 public:
  3816   CompleteMarkingInCSetHRClosure(ConcurrentMark* cm, int worker_id) :
  3817     _bm(cm->nextMarkBitMap()),
  3818     _bit_cl(cm, MSSize, worker_id),
  3819     _worker_id(worker_id) { }
  3821   bool doHeapRegion(HeapRegion* hr) {
  3822     if (hr->claimHeapRegion(HeapRegion::CompleteMarkCSetClaimValue)) {
  3823       // The current worker has successfully claimed the region.
  3824       if (!hr->evacuation_failed()) {
  3825         MemRegion mr = MemRegion(hr->bottom(), hr->next_top_at_mark_start());
  3826         if (!mr.is_empty()) {
  3827           bool done = false;
  3828           while (!done) {
  3829             done = _bm->iterate(&_bit_cl, mr);
  3834     return false;
  3836 };
  3838 class G1ParCompleteMarkInCSetTask: public AbstractGangTask {
  3839 protected:
  3840   G1CollectedHeap* _g1h;
  3841   ConcurrentMark*  _cm;
  3843 public:
  3844   G1ParCompleteMarkInCSetTask(G1CollectedHeap* g1h,
  3845                               ConcurrentMark* cm) :
  3846     AbstractGangTask("Complete Mark in CSet"),
  3847     _g1h(g1h), _cm(cm) { }
  3849   void work(uint worker_id) {
  3850     CompleteMarkingInCSetHRClosure cmplt(_cm, worker_id);
  3851     HeapRegion* hr = _g1h->start_cset_region_for_worker(worker_id);
  3852     _g1h->collection_set_iterate_from(hr, &cmplt);
  3854 };
  3856 void ConcurrentMark::complete_marking_in_collection_set() {
  3857   guarantee(false, "complete_marking_in_collection_set(): "
  3858                    "don't call this any more");
  3860   G1CollectedHeap* g1h =  G1CollectedHeap::heap();
  3862   if (!g1h->mark_in_progress()) {
  3863     g1h->g1_policy()->record_mark_closure_time(0.0);
  3864     return;
  3867   double start = os::elapsedTime();
  3868   G1ParCompleteMarkInCSetTask complete_mark_task(g1h, this);
  3870   assert(g1h->check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  3872   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3873     int n_workers = g1h->workers()->active_workers();
  3874     g1h->set_par_threads(n_workers);
  3875     g1h->workers()->run_task(&complete_mark_task);
  3876     g1h->set_par_threads(0);
  3877   } else {
  3878     complete_mark_task.work(0);
  3881   assert(g1h->check_cset_heap_region_claim_values(HeapRegion::CompleteMarkCSetClaimValue), "sanity");
  3883   // Reset the claim values in the regions in the collection set.
  3884   g1h->reset_cset_heap_region_claim_values();
  3886   assert(g1h->check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  3888   double end_time = os::elapsedTime();
  3889   double elapsed_time_ms = (end_time - start) * 1000.0;
  3890   g1h->g1_policy()->record_mark_closure_time(elapsed_time_ms);
  3893 // The next two methods deal with the following optimisation. Some
  3894 // objects are gray by being marked and located above the finger. If
  3895 // they are copied, during an evacuation pause, below the finger then
  3896 // the need to be pushed on the stack. The observation is that, if
  3897 // there are no regions in the collection set located above the
  3898 // finger, then the above cannot happen, hence we do not need to
  3899 // explicitly gray any objects when copying them to below the
  3900 // finger. The global stack will be scanned to ensure that, if it
  3901 // points to objects being copied, it will update their
  3902 // location. There is a tricky situation with the gray objects in
  3903 // region stack that are being coped, however. See the comment in
  3904 // newCSet().
  3906 void ConcurrentMark::newCSet() {
  3907   guarantee(false, "newCSet(): don't call this any more");
  3909   if (!concurrent_marking_in_progress()) {
  3910     // nothing to do if marking is not in progress
  3911     return;
  3914   // find what the lowest finger is among the global and local fingers
  3915   _min_finger = _finger;
  3916   for (int i = 0; i < (int)_max_task_num; ++i) {
  3917     CMTask* task = _tasks[i];
  3918     HeapWord* task_finger = task->finger();
  3919     if (task_finger != NULL && task_finger < _min_finger) {
  3920       _min_finger = task_finger;
  3924   _should_gray_objects = false;
  3926   // This fixes a very subtle and fustrating bug. It might be the case
  3927   // that, during en evacuation pause, heap regions that contain
  3928   // objects that are gray (by being in regions contained in the
  3929   // region stack) are included in the collection set. Since such gray
  3930   // objects will be moved, and because it's not easy to redirect
  3931   // region stack entries to point to a new location (because objects
  3932   // in one region might be scattered to multiple regions after they
  3933   // are copied), one option is to ensure that all marked objects
  3934   // copied during a pause are pushed on the stack. Notice, however,
  3935   // that this problem can only happen when the region stack is not
  3936   // empty during an evacuation pause. So, we make the fix a bit less
  3937   // conservative and ensure that regions are pushed on the stack,
  3938   // irrespective whether all collection set regions are below the
  3939   // finger, if the region stack is not empty. This is expected to be
  3940   // a rare case, so I don't think it's necessary to be smarted about it.
  3941   if (!region_stack_empty() || has_aborted_regions()) {
  3942     _should_gray_objects = true;
  3946 void ConcurrentMark::registerCSetRegion(HeapRegion* hr) {
  3947   guarantee(false, "registerCSetRegion(): don't call this any more");
  3949   if (!concurrent_marking_in_progress()) return;
  3951   HeapWord* region_end = hr->end();
  3952   if (region_end > _min_finger) {
  3953     _should_gray_objects = true;
  3957 // Resets the region fields of active CMTasks whose values point
  3958 // into the collection set.
  3959 void ConcurrentMark::reset_active_task_region_fields_in_cset() {
  3960   guarantee(false, "reset_active_task_region_fields_in_cset(): "
  3961                    "don't call this any more");
  3963   assert(SafepointSynchronize::is_at_safepoint(), "should be in STW");
  3964   assert(parallel_marking_threads() <= _max_task_num, "sanity");
  3966   for (int i = 0; i < (int)parallel_marking_threads(); i += 1) {
  3967     CMTask* task = _tasks[i];
  3968     HeapWord* task_finger = task->finger();
  3969     if (task_finger != NULL) {
  3970       assert(_g1h->is_in_g1_reserved(task_finger), "not in heap");
  3971       HeapRegion* finger_region = _g1h->heap_region_containing(task_finger);
  3972       if (finger_region->in_collection_set()) {
  3973         // The task's current region is in the collection set.
  3974         // This region will be evacuated in the current GC and
  3975         // the region fields in the task will be stale.
  3976         task->giveup_current_region();
  3982 // abandon current marking iteration due to a Full GC
  3983 void ConcurrentMark::abort() {
  3984   // Clear all marks to force marking thread to do nothing
  3985   _nextMarkBitMap->clearAll();
  3986   // Clear the liveness counting data
  3987   clear_all_count_data();
  3988   // Empty mark stack
  3989   clear_marking_state();
  3990   for (int i = 0; i < (int)_max_task_num; ++i) {
  3991     _tasks[i]->clear_region_fields();
  3993   _has_aborted = true;
  3995   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  3996   satb_mq_set.abandon_partial_marking();
  3997   // This can be called either during or outside marking, we'll read
  3998   // the expected_active value from the SATB queue set.
  3999   satb_mq_set.set_active_all_threads(
  4000                                  false, /* new active value */
  4001                                  satb_mq_set.is_active() /* expected_active */);
  4004 static void print_ms_time_info(const char* prefix, const char* name,
  4005                                NumberSeq& ns) {
  4006   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
  4007                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  4008   if (ns.num() > 0) {
  4009     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
  4010                            prefix, ns.sd(), ns.maximum());
  4014 void ConcurrentMark::print_summary_info() {
  4015   gclog_or_tty->print_cr(" Concurrent marking:");
  4016   print_ms_time_info("  ", "init marks", _init_times);
  4017   print_ms_time_info("  ", "remarks", _remark_times);
  4019     print_ms_time_info("     ", "final marks", _remark_mark_times);
  4020     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
  4023   print_ms_time_info("  ", "cleanups", _cleanup_times);
  4024   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
  4025                          _total_counting_time,
  4026                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
  4027                           (double)_cleanup_times.num()
  4028                          : 0.0));
  4029   if (G1ScrubRemSets) {
  4030     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
  4031                            _total_rs_scrub_time,
  4032                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
  4033                             (double)_cleanup_times.num()
  4034                            : 0.0));
  4036   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
  4037                          (_init_times.sum() + _remark_times.sum() +
  4038                           _cleanup_times.sum())/1000.0);
  4039   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
  4040                 "(%8.2f s marking).",
  4041                 cmThread()->vtime_accum(),
  4042                 cmThread()->vtime_mark_accum());
  4045 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  4046   _parallel_workers->print_worker_threads_on(st);
  4049 // We take a break if someone is trying to stop the world.
  4050 bool ConcurrentMark::do_yield_check(uint worker_id) {
  4051   if (should_yield()) {
  4052     if (worker_id == 0) {
  4053       _g1h->g1_policy()->record_concurrent_pause();
  4055     cmThread()->yield();
  4056     if (worker_id == 0) {
  4057       _g1h->g1_policy()->record_concurrent_pause_end();
  4059     return true;
  4060   } else {
  4061     return false;
  4065 bool ConcurrentMark::should_yield() {
  4066   return cmThread()->should_yield();
  4069 bool ConcurrentMark::containing_card_is_marked(void* p) {
  4070   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  4071   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
  4074 bool ConcurrentMark::containing_cards_are_marked(void* start,
  4075                                                  void* last) {
  4076   return containing_card_is_marked(start) &&
  4077          containing_card_is_marked(last);
  4080 #ifndef PRODUCT
  4081 // for debugging purposes
  4082 void ConcurrentMark::print_finger() {
  4083   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
  4084                          _heap_start, _heap_end, _finger);
  4085   for (int i = 0; i < (int) _max_task_num; ++i) {
  4086     gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  4088   gclog_or_tty->print_cr("");
  4090 #endif
  4092 void CMTask::scan_object(oop obj) {
  4093   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  4095   if (_cm->verbose_high()) {
  4096     gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
  4097                            _task_id, (void*) obj);
  4100   size_t obj_size = obj->size();
  4101   _words_scanned += obj_size;
  4103   obj->oop_iterate(_cm_oop_closure);
  4104   statsOnly( ++_objs_scanned );
  4105   check_limits();
  4108 // Closure for iteration over bitmaps
  4109 class CMBitMapClosure : public BitMapClosure {
  4110 private:
  4111   // the bitmap that is being iterated over
  4112   CMBitMap*                   _nextMarkBitMap;
  4113   ConcurrentMark*             _cm;
  4114   CMTask*                     _task;
  4115   // true if we're scanning a heap region claimed by the task (so that
  4116   // we move the finger along), false if we're not, i.e. currently when
  4117   // scanning a heap region popped from the region stack (so that we
  4118   // do not move the task finger along; it'd be a mistake if we did so).
  4119   bool                        _scanning_heap_region;
  4121 public:
  4122   CMBitMapClosure(CMTask *task,
  4123                   ConcurrentMark* cm,
  4124                   CMBitMap* nextMarkBitMap)
  4125     :  _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
  4127   void set_scanning_heap_region(bool scanning_heap_region) {
  4128     _scanning_heap_region = scanning_heap_region;
  4131   bool do_bit(size_t offset) {
  4132     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
  4133     assert(_nextMarkBitMap->isMarked(addr), "invariant");
  4134     assert( addr < _cm->finger(), "invariant");
  4136     if (_scanning_heap_region) {
  4137       statsOnly( _task->increase_objs_found_on_bitmap() );
  4138       assert(addr >= _task->finger(), "invariant");
  4139       // We move that task's local finger along.
  4140       _task->move_finger_to(addr);
  4141     } else {
  4142       // We move the task's region finger along.
  4143       _task->move_region_finger_to(addr);
  4146     _task->scan_object(oop(addr));
  4147     // we only partially drain the local queue and global stack
  4148     _task->drain_local_queue(true);
  4149     _task->drain_global_stack(true);
  4151     // if the has_aborted flag has been raised, we need to bail out of
  4152     // the iteration
  4153     return !_task->has_aborted();
  4155 };
  4157 // Closure for iterating over objects, currently only used for
  4158 // processing SATB buffers.
  4159 class CMObjectClosure : public ObjectClosure {
  4160 private:
  4161   CMTask* _task;
  4163 public:
  4164   void do_object(oop obj) {
  4165     _task->deal_with_reference(obj);
  4168   CMObjectClosure(CMTask* task) : _task(task) { }
  4169 };
  4171 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
  4172                                ConcurrentMark* cm,
  4173                                CMTask* task)
  4174   : _g1h(g1h), _cm(cm), _task(task) {
  4175   assert(_ref_processor == NULL, "should be initialized to NULL");
  4177   if (G1UseConcMarkReferenceProcessing) {
  4178     _ref_processor = g1h->ref_processor_cm();
  4179     assert(_ref_processor != NULL, "should not be NULL");
  4183 void CMTask::setup_for_region(HeapRegion* hr) {
  4184   // Separated the asserts so that we know which one fires.
  4185   assert(hr != NULL,
  4186         "claim_region() should have filtered out continues humongous regions");
  4187   assert(!hr->continuesHumongous(),
  4188         "claim_region() should have filtered out continues humongous regions");
  4190   if (_cm->verbose_low()) {
  4191     gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
  4192                            _task_id, hr);
  4195   _curr_region  = hr;
  4196   _finger       = hr->bottom();
  4197   update_region_limit();
  4200 void CMTask::update_region_limit() {
  4201   HeapRegion* hr            = _curr_region;
  4202   HeapWord* bottom          = hr->bottom();
  4203   HeapWord* limit           = hr->next_top_at_mark_start();
  4205   if (limit == bottom) {
  4206     if (_cm->verbose_low()) {
  4207       gclog_or_tty->print_cr("[%d] found an empty region "
  4208                              "["PTR_FORMAT", "PTR_FORMAT")",
  4209                              _task_id, bottom, limit);
  4211     // The region was collected underneath our feet.
  4212     // We set the finger to bottom to ensure that the bitmap
  4213     // iteration that will follow this will not do anything.
  4214     // (this is not a condition that holds when we set the region up,
  4215     // as the region is not supposed to be empty in the first place)
  4216     _finger = bottom;
  4217   } else if (limit >= _region_limit) {
  4218     assert(limit >= _finger, "peace of mind");
  4219   } else {
  4220     assert(limit < _region_limit, "only way to get here");
  4221     // This can happen under some pretty unusual circumstances.  An
  4222     // evacuation pause empties the region underneath our feet (NTAMS
  4223     // at bottom). We then do some allocation in the region (NTAMS
  4224     // stays at bottom), followed by the region being used as a GC
  4225     // alloc region (NTAMS will move to top() and the objects
  4226     // originally below it will be grayed). All objects now marked in
  4227     // the region are explicitly grayed, if below the global finger,
  4228     // and we do not need in fact to scan anything else. So, we simply
  4229     // set _finger to be limit to ensure that the bitmap iteration
  4230     // doesn't do anything.
  4231     _finger = limit;
  4234   _region_limit = limit;
  4237 void CMTask::giveup_current_region() {
  4238   assert(_curr_region != NULL, "invariant");
  4239   if (_cm->verbose_low()) {
  4240     gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
  4241                            _task_id, _curr_region);
  4243   clear_region_fields();
  4246 void CMTask::clear_region_fields() {
  4247   // Values for these three fields that indicate that we're not
  4248   // holding on to a region.
  4249   _curr_region   = NULL;
  4250   _finger        = NULL;
  4251   _region_limit  = NULL;
  4253   _region_finger = NULL;
  4256 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  4257   if (cm_oop_closure == NULL) {
  4258     assert(_cm_oop_closure != NULL, "invariant");
  4259   } else {
  4260     assert(_cm_oop_closure == NULL, "invariant");
  4262   _cm_oop_closure = cm_oop_closure;
  4265 void CMTask::reset(CMBitMap* nextMarkBitMap) {
  4266   guarantee(nextMarkBitMap != NULL, "invariant");
  4268   if (_cm->verbose_low()) {
  4269     gclog_or_tty->print_cr("[%d] resetting", _task_id);
  4272   _nextMarkBitMap                = nextMarkBitMap;
  4273   clear_region_fields();
  4274   assert(_aborted_region.is_empty(), "should have been cleared");
  4276   _calls                         = 0;
  4277   _elapsed_time_ms               = 0.0;
  4278   _termination_time_ms           = 0.0;
  4279   _termination_start_time_ms     = 0.0;
  4281 #if _MARKING_STATS_
  4282   _local_pushes                  = 0;
  4283   _local_pops                    = 0;
  4284   _local_max_size                = 0;
  4285   _objs_scanned                  = 0;
  4286   _global_pushes                 = 0;
  4287   _global_pops                   = 0;
  4288   _global_max_size               = 0;
  4289   _global_transfers_to           = 0;
  4290   _global_transfers_from         = 0;
  4291   _region_stack_pops             = 0;
  4292   _regions_claimed               = 0;
  4293   _objs_found_on_bitmap          = 0;
  4294   _satb_buffers_processed        = 0;
  4295   _steal_attempts                = 0;
  4296   _steals                        = 0;
  4297   _aborted                       = 0;
  4298   _aborted_overflow              = 0;
  4299   _aborted_cm_aborted            = 0;
  4300   _aborted_yield                 = 0;
  4301   _aborted_timed_out             = 0;
  4302   _aborted_satb                  = 0;
  4303   _aborted_termination           = 0;
  4304 #endif // _MARKING_STATS_
  4307 bool CMTask::should_exit_termination() {
  4308   regular_clock_call();
  4309   // This is called when we are in the termination protocol. We should
  4310   // quit if, for some reason, this task wants to abort or the global
  4311   // stack is not empty (this means that we can get work from it).
  4312   return !_cm->mark_stack_empty() || has_aborted();
  4315 void CMTask::reached_limit() {
  4316   assert(_words_scanned >= _words_scanned_limit ||
  4317          _refs_reached >= _refs_reached_limit ,
  4318          "shouldn't have been called otherwise");
  4319   regular_clock_call();
  4322 void CMTask::regular_clock_call() {
  4323   if (has_aborted()) return;
  4325   // First, we need to recalculate the words scanned and refs reached
  4326   // limits for the next clock call.
  4327   recalculate_limits();
  4329   // During the regular clock call we do the following
  4331   // (1) If an overflow has been flagged, then we abort.
  4332   if (_cm->has_overflown()) {
  4333     set_has_aborted();
  4334     return;
  4337   // If we are not concurrent (i.e. we're doing remark) we don't need
  4338   // to check anything else. The other steps are only needed during
  4339   // the concurrent marking phase.
  4340   if (!concurrent()) return;
  4342   // (2) If marking has been aborted for Full GC, then we also abort.
  4343   if (_cm->has_aborted()) {
  4344     set_has_aborted();
  4345     statsOnly( ++_aborted_cm_aborted );
  4346     return;
  4349   double curr_time_ms = os::elapsedVTime() * 1000.0;
  4351   // (3) If marking stats are enabled, then we update the step history.
  4352 #if _MARKING_STATS_
  4353   if (_words_scanned >= _words_scanned_limit) {
  4354     ++_clock_due_to_scanning;
  4356   if (_refs_reached >= _refs_reached_limit) {
  4357     ++_clock_due_to_marking;
  4360   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  4361   _interval_start_time_ms = curr_time_ms;
  4362   _all_clock_intervals_ms.add(last_interval_ms);
  4364   if (_cm->verbose_medium()) {
  4365       gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
  4366                         "scanned = %d%s, refs reached = %d%s",
  4367                         _task_id, last_interval_ms,
  4368                         _words_scanned,
  4369                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
  4370                         _refs_reached,
  4371                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  4373 #endif // _MARKING_STATS_
  4375   // (4) We check whether we should yield. If we have to, then we abort.
  4376   if (_cm->should_yield()) {
  4377     // We should yield. To do this we abort the task. The caller is
  4378     // responsible for yielding.
  4379     set_has_aborted();
  4380     statsOnly( ++_aborted_yield );
  4381     return;
  4384   // (5) We check whether we've reached our time quota. If we have,
  4385   // then we abort.
  4386   double elapsed_time_ms = curr_time_ms - _start_time_ms;
  4387   if (elapsed_time_ms > _time_target_ms) {
  4388     set_has_aborted();
  4389     _has_timed_out = true;
  4390     statsOnly( ++_aborted_timed_out );
  4391     return;
  4394   // (6) Finally, we check whether there are enough completed STAB
  4395   // buffers available for processing. If there are, we abort.
  4396   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  4397   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
  4398     if (_cm->verbose_low()) {
  4399       gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
  4400                              _task_id);
  4402     // we do need to process SATB buffers, we'll abort and restart
  4403     // the marking task to do so
  4404     set_has_aborted();
  4405     statsOnly( ++_aborted_satb );
  4406     return;
  4410 void CMTask::recalculate_limits() {
  4411   _real_words_scanned_limit = _words_scanned + words_scanned_period;
  4412   _words_scanned_limit      = _real_words_scanned_limit;
  4414   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  4415   _refs_reached_limit       = _real_refs_reached_limit;
  4418 void CMTask::decrease_limits() {
  4419   // This is called when we believe that we're going to do an infrequent
  4420   // operation which will increase the per byte scanned cost (i.e. move
  4421   // entries to/from the global stack). It basically tries to decrease the
  4422   // scanning limit so that the clock is called earlier.
  4424   if (_cm->verbose_medium()) {
  4425     gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
  4428   _words_scanned_limit = _real_words_scanned_limit -
  4429     3 * words_scanned_period / 4;
  4430   _refs_reached_limit  = _real_refs_reached_limit -
  4431     3 * refs_reached_period / 4;
  4434 void CMTask::move_entries_to_global_stack() {
  4435   // local array where we'll store the entries that will be popped
  4436   // from the local queue
  4437   oop buffer[global_stack_transfer_size];
  4439   int n = 0;
  4440   oop obj;
  4441   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
  4442     buffer[n] = obj;
  4443     ++n;
  4446   if (n > 0) {
  4447     // we popped at least one entry from the local queue
  4449     statsOnly( ++_global_transfers_to; _local_pops += n );
  4451     if (!_cm->mark_stack_push(buffer, n)) {
  4452       if (_cm->verbose_low()) {
  4453         gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
  4454                                _task_id);
  4456       set_has_aborted();
  4457     } else {
  4458       // the transfer was successful
  4460       if (_cm->verbose_medium()) {
  4461         gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
  4462                                _task_id, n);
  4464       statsOnly( int tmp_size = _cm->mark_stack_size();
  4465                  if (tmp_size > _global_max_size) {
  4466                    _global_max_size = tmp_size;
  4468                  _global_pushes += n );
  4472   // this operation was quite expensive, so decrease the limits
  4473   decrease_limits();
  4476 void CMTask::get_entries_from_global_stack() {
  4477   // local array where we'll store the entries that will be popped
  4478   // from the global stack.
  4479   oop buffer[global_stack_transfer_size];
  4480   int n;
  4481   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
  4482   assert(n <= global_stack_transfer_size,
  4483          "we should not pop more than the given limit");
  4484   if (n > 0) {
  4485     // yes, we did actually pop at least one entry
  4487     statsOnly( ++_global_transfers_from; _global_pops += n );
  4488     if (_cm->verbose_medium()) {
  4489       gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
  4490                              _task_id, n);
  4492     for (int i = 0; i < n; ++i) {
  4493       bool success = _task_queue->push(buffer[i]);
  4494       // We only call this when the local queue is empty or under a
  4495       // given target limit. So, we do not expect this push to fail.
  4496       assert(success, "invariant");
  4499     statsOnly( int tmp_size = _task_queue->size();
  4500                if (tmp_size > _local_max_size) {
  4501                  _local_max_size = tmp_size;
  4503                _local_pushes += n );
  4506   // this operation was quite expensive, so decrease the limits
  4507   decrease_limits();
  4510 void CMTask::drain_local_queue(bool partially) {
  4511   if (has_aborted()) return;
  4513   // Decide what the target size is, depending whether we're going to
  4514   // drain it partially (so that other tasks can steal if they run out
  4515   // of things to do) or totally (at the very end).
  4516   size_t target_size;
  4517   if (partially) {
  4518     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  4519   } else {
  4520     target_size = 0;
  4523   if (_task_queue->size() > target_size) {
  4524     if (_cm->verbose_high()) {
  4525       gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
  4526                              _task_id, target_size);
  4529     oop obj;
  4530     bool ret = _task_queue->pop_local(obj);
  4531     while (ret) {
  4532       statsOnly( ++_local_pops );
  4534       if (_cm->verbose_high()) {
  4535         gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
  4536                                (void*) obj);
  4539       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
  4540       assert(!_g1h->is_on_master_free_list(
  4541                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
  4543       scan_object(obj);
  4545       if (_task_queue->size() <= target_size || has_aborted()) {
  4546         ret = false;
  4547       } else {
  4548         ret = _task_queue->pop_local(obj);
  4552     if (_cm->verbose_high()) {
  4553       gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
  4554                              _task_id, _task_queue->size());
  4559 void CMTask::drain_global_stack(bool partially) {
  4560   if (has_aborted()) return;
  4562   // We have a policy to drain the local queue before we attempt to
  4563   // drain the global stack.
  4564   assert(partially || _task_queue->size() == 0, "invariant");
  4566   // Decide what the target size is, depending whether we're going to
  4567   // drain it partially (so that other tasks can steal if they run out
  4568   // of things to do) or totally (at the very end).  Notice that,
  4569   // because we move entries from the global stack in chunks or
  4570   // because another task might be doing the same, we might in fact
  4571   // drop below the target. But, this is not a problem.
  4572   size_t target_size;
  4573   if (partially) {
  4574     target_size = _cm->partial_mark_stack_size_target();
  4575   } else {
  4576     target_size = 0;
  4579   if (_cm->mark_stack_size() > target_size) {
  4580     if (_cm->verbose_low()) {
  4581       gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
  4582                              _task_id, target_size);
  4585     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
  4586       get_entries_from_global_stack();
  4587       drain_local_queue(partially);
  4590     if (_cm->verbose_low()) {
  4591       gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
  4592                              _task_id, _cm->mark_stack_size());
  4597 // SATB Queue has several assumptions on whether to call the par or
  4598 // non-par versions of the methods. this is why some of the code is
  4599 // replicated. We should really get rid of the single-threaded version
  4600 // of the code to simplify things.
  4601 void CMTask::drain_satb_buffers() {
  4602   if (has_aborted()) return;
  4604   // We set this so that the regular clock knows that we're in the
  4605   // middle of draining buffers and doesn't set the abort flag when it
  4606   // notices that SATB buffers are available for draining. It'd be
  4607   // very counter productive if it did that. :-)
  4608   _draining_satb_buffers = true;
  4610   CMObjectClosure oc(this);
  4611   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  4612   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4613     satb_mq_set.set_par_closure(_task_id, &oc);
  4614   } else {
  4615     satb_mq_set.set_closure(&oc);
  4618   // This keeps claiming and applying the closure to completed buffers
  4619   // until we run out of buffers or we need to abort.
  4620   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4621     while (!has_aborted() &&
  4622            satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
  4623       if (_cm->verbose_medium()) {
  4624         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
  4626       statsOnly( ++_satb_buffers_processed );
  4627       regular_clock_call();
  4629   } else {
  4630     while (!has_aborted() &&
  4631            satb_mq_set.apply_closure_to_completed_buffer()) {
  4632       if (_cm->verbose_medium()) {
  4633         gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
  4635       statsOnly( ++_satb_buffers_processed );
  4636       regular_clock_call();
  4640   if (!concurrent() && !has_aborted()) {
  4641     // We should only do this during remark.
  4642     if (G1CollectedHeap::use_parallel_gc_threads()) {
  4643       satb_mq_set.par_iterate_closure_all_threads(_task_id);
  4644     } else {
  4645       satb_mq_set.iterate_closure_all_threads();
  4649   _draining_satb_buffers = false;
  4651   assert(has_aborted() ||
  4652          concurrent() ||
  4653          satb_mq_set.completed_buffers_num() == 0, "invariant");
  4655   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4656     satb_mq_set.set_par_closure(_task_id, NULL);
  4657   } else {
  4658     satb_mq_set.set_closure(NULL);
  4661   // again, this was a potentially expensive operation, decrease the
  4662   // limits to get the regular clock call early
  4663   decrease_limits();
  4666 void CMTask::drain_region_stack(BitMapClosure* bc) {
  4667   assert(_cm->region_stack_empty(), "region stack should be empty");
  4668   assert(_aborted_region.is_empty(), "aborted region should be empty");
  4669   return;
  4671   if (has_aborted()) return;
  4673   assert(_region_finger == NULL,
  4674          "it should be NULL when we're not scanning a region");
  4676   if (!_cm->region_stack_empty() || !_aborted_region.is_empty()) {
  4677     if (_cm->verbose_low()) {
  4678       gclog_or_tty->print_cr("[%d] draining region stack, size = %d",
  4679                              _task_id, _cm->region_stack_size());
  4682     MemRegion mr;
  4684     if (!_aborted_region.is_empty()) {
  4685       mr = _aborted_region;
  4686       _aborted_region = MemRegion();
  4688       if (_cm->verbose_low()) {
  4689         gclog_or_tty->print_cr("[%d] scanning aborted region "
  4690                                "[ " PTR_FORMAT ", " PTR_FORMAT " )",
  4691                                _task_id, mr.start(), mr.end());
  4693     } else {
  4694       mr = _cm->region_stack_pop_lock_free();
  4695       // it returns MemRegion() if the pop fails
  4696       statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
  4699     while (mr.start() != NULL) {
  4700       if (_cm->verbose_medium()) {
  4701         gclog_or_tty->print_cr("[%d] we are scanning region "
  4702                                "["PTR_FORMAT", "PTR_FORMAT")",
  4703                                _task_id, mr.start(), mr.end());
  4706       assert(mr.end() <= _cm->finger(),
  4707              "otherwise the region shouldn't be on the stack");
  4708       assert(!mr.is_empty(), "Only non-empty regions live on the region stack");
  4709       if (_nextMarkBitMap->iterate(bc, mr)) {
  4710         assert(!has_aborted(),
  4711                "cannot abort the task without aborting the bitmap iteration");
  4713         // We finished iterating over the region without aborting.
  4714         regular_clock_call();
  4715         if (has_aborted()) {
  4716           mr = MemRegion();
  4717         } else {
  4718           mr = _cm->region_stack_pop_lock_free();
  4719           // it returns MemRegion() if the pop fails
  4720           statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
  4722       } else {
  4723         assert(has_aborted(), "currently the only way to do so");
  4725         // The only way to abort the bitmap iteration is to return
  4726         // false from the do_bit() method. However, inside the
  4727         // do_bit() method we move the _region_finger to point to the
  4728         // object currently being looked at. So, if we bail out, we
  4729         // have definitely set _region_finger to something non-null.
  4730         assert(_region_finger != NULL, "invariant");
  4732         // Make sure that any previously aborted region has been
  4733         // cleared.
  4734         assert(_aborted_region.is_empty(), "aborted region not cleared");
  4736         // The iteration was actually aborted. So now _region_finger
  4737         // points to the address of the object we last scanned. If we
  4738         // leave it there, when we restart this task, we will rescan
  4739         // the object. It is easy to avoid this. We move the finger by
  4740         // enough to point to the next possible object header (the
  4741         // bitmap knows by how much we need to move it as it knows its
  4742         // granularity).
  4743         MemRegion newRegion =
  4744           MemRegion(_nextMarkBitMap->nextWord(_region_finger), mr.end());
  4746         if (!newRegion.is_empty()) {
  4747           if (_cm->verbose_low()) {
  4748             gclog_or_tty->print_cr("[%d] recording unscanned region"
  4749                                    "[" PTR_FORMAT "," PTR_FORMAT ") in CMTask",
  4750                                    _task_id,
  4751                                    newRegion.start(), newRegion.end());
  4753           // Now record the part of the region we didn't scan to
  4754           // make sure this task scans it later.
  4755           _aborted_region = newRegion;
  4757         // break from while
  4758         mr = MemRegion();
  4760       _region_finger = NULL;
  4763     if (_cm->verbose_low()) {
  4764       gclog_or_tty->print_cr("[%d] drained region stack, size = %d",
  4765                              _task_id, _cm->region_stack_size());
  4770 void CMTask::print_stats() {
  4771   gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
  4772                          _task_id, _calls);
  4773   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
  4774                          _elapsed_time_ms, _termination_time_ms);
  4775   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4776                          _step_times_ms.num(), _step_times_ms.avg(),
  4777                          _step_times_ms.sd());
  4778   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
  4779                          _step_times_ms.maximum(), _step_times_ms.sum());
  4781 #if _MARKING_STATS_
  4782   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
  4783                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
  4784                          _all_clock_intervals_ms.sd());
  4785   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
  4786                          _all_clock_intervals_ms.maximum(),
  4787                          _all_clock_intervals_ms.sum());
  4788   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
  4789                          _clock_due_to_scanning, _clock_due_to_marking);
  4790   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
  4791                          _objs_scanned, _objs_found_on_bitmap);
  4792   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
  4793                          _local_pushes, _local_pops, _local_max_size);
  4794   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
  4795                          _global_pushes, _global_pops, _global_max_size);
  4796   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
  4797                          _global_transfers_to,_global_transfers_from);
  4798   gclog_or_tty->print_cr("  Regions: claimed = %d, Region Stack: pops = %d",
  4799                          _regions_claimed, _region_stack_pops);
  4800   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  4801   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
  4802                          _steal_attempts, _steals);
  4803   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  4804   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
  4805                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  4806   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
  4807                          _aborted_timed_out, _aborted_satb, _aborted_termination);
  4808 #endif // _MARKING_STATS_
  4811 /*****************************************************************************
  4813     The do_marking_step(time_target_ms) method is the building block
  4814     of the parallel marking framework. It can be called in parallel
  4815     with other invocations of do_marking_step() on different tasks
  4816     (but only one per task, obviously) and concurrently with the
  4817     mutator threads, or during remark, hence it eliminates the need
  4818     for two versions of the code. When called during remark, it will
  4819     pick up from where the task left off during the concurrent marking
  4820     phase. Interestingly, tasks are also claimable during evacuation
  4821     pauses too, since do_marking_step() ensures that it aborts before
  4822     it needs to yield.
  4824     The data structures that is uses to do marking work are the
  4825     following:
  4827       (1) Marking Bitmap. If there are gray objects that appear only
  4828       on the bitmap (this happens either when dealing with an overflow
  4829       or when the initial marking phase has simply marked the roots
  4830       and didn't push them on the stack), then tasks claim heap
  4831       regions whose bitmap they then scan to find gray objects. A
  4832       global finger indicates where the end of the last claimed region
  4833       is. A local finger indicates how far into the region a task has
  4834       scanned. The two fingers are used to determine how to gray an
  4835       object (i.e. whether simply marking it is OK, as it will be
  4836       visited by a task in the future, or whether it needs to be also
  4837       pushed on a stack).
  4839       (2) Local Queue. The local queue of the task which is accessed
  4840       reasonably efficiently by the task. Other tasks can steal from
  4841       it when they run out of work. Throughout the marking phase, a
  4842       task attempts to keep its local queue short but not totally
  4843       empty, so that entries are available for stealing by other
  4844       tasks. Only when there is no more work, a task will totally
  4845       drain its local queue.
  4847       (3) Global Mark Stack. This handles local queue overflow. During
  4848       marking only sets of entries are moved between it and the local
  4849       queues, as access to it requires a mutex and more fine-grain
  4850       interaction with it which might cause contention. If it
  4851       overflows, then the marking phase should restart and iterate
  4852       over the bitmap to identify gray objects. Throughout the marking
  4853       phase, tasks attempt to keep the global mark stack at a small
  4854       length but not totally empty, so that entries are available for
  4855       popping by other tasks. Only when there is no more work, tasks
  4856       will totally drain the global mark stack.
  4858       (4) Global Region Stack. Entries on it correspond to areas of
  4859       the bitmap that need to be scanned since they contain gray
  4860       objects. Pushes on the region stack only happen during
  4861       evacuation pauses and typically correspond to areas covered by
  4862       GC LABS. If it overflows, then the marking phase should restart
  4863       and iterate over the bitmap to identify gray objects. Tasks will
  4864       try to totally drain the region stack as soon as possible.
  4866       (5) SATB Buffer Queue. This is where completed SATB buffers are
  4867       made available. Buffers are regularly removed from this queue
  4868       and scanned for roots, so that the queue doesn't get too
  4869       long. During remark, all completed buffers are processed, as
  4870       well as the filled in parts of any uncompleted buffers.
  4872     The do_marking_step() method tries to abort when the time target
  4873     has been reached. There are a few other cases when the
  4874     do_marking_step() method also aborts:
  4876       (1) When the marking phase has been aborted (after a Full GC).
  4878       (2) When a global overflow (either on the global stack or the
  4879       region stack) has been triggered. Before the task aborts, it
  4880       will actually sync up with the other tasks to ensure that all
  4881       the marking data structures (local queues, stacks, fingers etc.)
  4882       are re-initialised so that when do_marking_step() completes,
  4883       the marking phase can immediately restart.
  4885       (3) When enough completed SATB buffers are available. The
  4886       do_marking_step() method only tries to drain SATB buffers right
  4887       at the beginning. So, if enough buffers are available, the
  4888       marking step aborts and the SATB buffers are processed at
  4889       the beginning of the next invocation.
  4891       (4) To yield. when we have to yield then we abort and yield
  4892       right at the end of do_marking_step(). This saves us from a lot
  4893       of hassle as, by yielding we might allow a Full GC. If this
  4894       happens then objects will be compacted underneath our feet, the
  4895       heap might shrink, etc. We save checking for this by just
  4896       aborting and doing the yield right at the end.
  4898     From the above it follows that the do_marking_step() method should
  4899     be called in a loop (or, otherwise, regularly) until it completes.
  4901     If a marking step completes without its has_aborted() flag being
  4902     true, it means it has completed the current marking phase (and
  4903     also all other marking tasks have done so and have all synced up).
  4905     A method called regular_clock_call() is invoked "regularly" (in
  4906     sub ms intervals) throughout marking. It is this clock method that
  4907     checks all the abort conditions which were mentioned above and
  4908     decides when the task should abort. A work-based scheme is used to
  4909     trigger this clock method: when the number of object words the
  4910     marking phase has scanned or the number of references the marking
  4911     phase has visited reach a given limit. Additional invocations to
  4912     the method clock have been planted in a few other strategic places
  4913     too. The initial reason for the clock method was to avoid calling
  4914     vtime too regularly, as it is quite expensive. So, once it was in
  4915     place, it was natural to piggy-back all the other conditions on it
  4916     too and not constantly check them throughout the code.
  4918  *****************************************************************************/
  4920 void CMTask::do_marking_step(double time_target_ms,
  4921                              bool do_stealing,
  4922                              bool do_termination) {
  4923   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  4924   assert(concurrent() == _cm->concurrent(), "they should be the same");
  4926   assert(concurrent() || _cm->region_stack_empty(),
  4927          "the region stack should have been cleared before remark");
  4928   assert(concurrent() || !_cm->has_aborted_regions(),
  4929          "aborted regions should have been cleared before remark");
  4930   assert(_region_finger == NULL,
  4931          "this should be non-null only when a region is being scanned");
  4933   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
  4934   assert(_task_queues != NULL, "invariant");
  4935   assert(_task_queue != NULL, "invariant");
  4936   assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
  4938   assert(!_claimed,
  4939          "only one thread should claim this task at any one time");
  4941   // OK, this doesn't safeguard again all possible scenarios, as it is
  4942   // possible for two threads to set the _claimed flag at the same
  4943   // time. But it is only for debugging purposes anyway and it will
  4944   // catch most problems.
  4945   _claimed = true;
  4947   _start_time_ms = os::elapsedVTime() * 1000.0;
  4948   statsOnly( _interval_start_time_ms = _start_time_ms );
  4950   double diff_prediction_ms =
  4951     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  4952   _time_target_ms = time_target_ms - diff_prediction_ms;
  4954   // set up the variables that are used in the work-based scheme to
  4955   // call the regular clock method
  4956   _words_scanned = 0;
  4957   _refs_reached  = 0;
  4958   recalculate_limits();
  4960   // clear all flags
  4961   clear_has_aborted();
  4962   _has_timed_out = false;
  4963   _draining_satb_buffers = false;
  4965   ++_calls;
  4967   if (_cm->verbose_low()) {
  4968     gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
  4969                            "target = %1.2lfms >>>>>>>>>>",
  4970                            _task_id, _calls, _time_target_ms);
  4973   // Set up the bitmap and oop closures. Anything that uses them is
  4974   // eventually called from this method, so it is OK to allocate these
  4975   // statically.
  4976   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  4977   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  4978   set_cm_oop_closure(&cm_oop_closure);
  4980   if (_cm->has_overflown()) {
  4981     // This can happen if the region stack or the mark stack overflows
  4982     // during a GC pause and this task, after a yield point,
  4983     // restarts. We have to abort as we need to get into the overflow
  4984     // protocol which happens right at the end of this task.
  4985     set_has_aborted();
  4988   // First drain any available SATB buffers. After this, we will not
  4989   // look at SATB buffers before the next invocation of this method.
  4990   // If enough completed SATB buffers are queued up, the regular clock
  4991   // will abort this task so that it restarts.
  4992   drain_satb_buffers();
  4993   // ...then partially drain the local queue and the global stack
  4994   drain_local_queue(true);
  4995   drain_global_stack(true);
  4997   // Then totally drain the region stack.  We will not look at
  4998   // it again before the next invocation of this method. Entries on
  4999   // the region stack are only added during evacuation pauses, for
  5000   // which we have to yield. When we do, we abort the task anyway so
  5001   // it will look at the region stack again when it restarts.
  5002   bitmap_closure.set_scanning_heap_region(false);
  5003   drain_region_stack(&bitmap_closure);
  5004   // ...then partially drain the local queue and the global stack
  5005   drain_local_queue(true);
  5006   drain_global_stack(true);
  5008   do {
  5009     if (!has_aborted() && _curr_region != NULL) {
  5010       // This means that we're already holding on to a region.
  5011       assert(_finger != NULL, "if region is not NULL, then the finger "
  5012              "should not be NULL either");
  5014       // We might have restarted this task after an evacuation pause
  5015       // which might have evacuated the region we're holding on to
  5016       // underneath our feet. Let's read its limit again to make sure
  5017       // that we do not iterate over a region of the heap that
  5018       // contains garbage (update_region_limit() will also move
  5019       // _finger to the start of the region if it is found empty).
  5020       update_region_limit();
  5021       // We will start from _finger not from the start of the region,
  5022       // as we might be restarting this task after aborting half-way
  5023       // through scanning this region. In this case, _finger points to
  5024       // the address where we last found a marked object. If this is a
  5025       // fresh region, _finger points to start().
  5026       MemRegion mr = MemRegion(_finger, _region_limit);
  5028       if (_cm->verbose_low()) {
  5029         gclog_or_tty->print_cr("[%d] we're scanning part "
  5030                                "["PTR_FORMAT", "PTR_FORMAT") "
  5031                                "of region "PTR_FORMAT,
  5032                                _task_id, _finger, _region_limit, _curr_region);
  5035       // Let's iterate over the bitmap of the part of the
  5036       // region that is left.
  5037       bitmap_closure.set_scanning_heap_region(true);
  5038       if (mr.is_empty() ||
  5039           _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
  5040         // We successfully completed iterating over the region. Now,
  5041         // let's give up the region.
  5042         giveup_current_region();
  5043         regular_clock_call();
  5044       } else {
  5045         assert(has_aborted(), "currently the only way to do so");
  5046         // The only way to abort the bitmap iteration is to return
  5047         // false from the do_bit() method. However, inside the
  5048         // do_bit() method we move the _finger to point to the
  5049         // object currently being looked at. So, if we bail out, we
  5050         // have definitely set _finger to something non-null.
  5051         assert(_finger != NULL, "invariant");
  5053         // Region iteration was actually aborted. So now _finger
  5054         // points to the address of the object we last scanned. If we
  5055         // leave it there, when we restart this task, we will rescan
  5056         // the object. It is easy to avoid this. We move the finger by
  5057         // enough to point to the next possible object header (the
  5058         // bitmap knows by how much we need to move it as it knows its
  5059         // granularity).
  5060         assert(_finger < _region_limit, "invariant");
  5061         HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
  5062         // Check if bitmap iteration was aborted while scanning the last object
  5063         if (new_finger >= _region_limit) {
  5064             giveup_current_region();
  5065         } else {
  5066             move_finger_to(new_finger);
  5070     // At this point we have either completed iterating over the
  5071     // region we were holding on to, or we have aborted.
  5073     // We then partially drain the local queue and the global stack.
  5074     // (Do we really need this?)
  5075     drain_local_queue(true);
  5076     drain_global_stack(true);
  5078     // Read the note on the claim_region() method on why it might
  5079     // return NULL with potentially more regions available for
  5080     // claiming and why we have to check out_of_regions() to determine
  5081     // whether we're done or not.
  5082     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
  5083       // We are going to try to claim a new region. We should have
  5084       // given up on the previous one.
  5085       // Separated the asserts so that we know which one fires.
  5086       assert(_curr_region  == NULL, "invariant");
  5087       assert(_finger       == NULL, "invariant");
  5088       assert(_region_limit == NULL, "invariant");
  5089       if (_cm->verbose_low()) {
  5090         gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
  5092       HeapRegion* claimed_region = _cm->claim_region(_task_id);
  5093       if (claimed_region != NULL) {
  5094         // Yes, we managed to claim one
  5095         statsOnly( ++_regions_claimed );
  5097         if (_cm->verbose_low()) {
  5098           gclog_or_tty->print_cr("[%d] we successfully claimed "
  5099                                  "region "PTR_FORMAT,
  5100                                  _task_id, claimed_region);
  5103         setup_for_region(claimed_region);
  5104         assert(_curr_region == claimed_region, "invariant");
  5106       // It is important to call the regular clock here. It might take
  5107       // a while to claim a region if, for example, we hit a large
  5108       // block of empty regions. So we need to call the regular clock
  5109       // method once round the loop to make sure it's called
  5110       // frequently enough.
  5111       regular_clock_call();
  5114     if (!has_aborted() && _curr_region == NULL) {
  5115       assert(_cm->out_of_regions(),
  5116              "at this point we should be out of regions");
  5118   } while ( _curr_region != NULL && !has_aborted());
  5120   if (!has_aborted()) {
  5121     // We cannot check whether the global stack is empty, since other
  5122     // tasks might be pushing objects to it concurrently. We also cannot
  5123     // check if the region stack is empty because if a thread is aborting
  5124     // it can push a partially done region back.
  5125     assert(_cm->out_of_regions(),
  5126            "at this point we should be out of regions");
  5128     if (_cm->verbose_low()) {
  5129       gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
  5132     // Try to reduce the number of available SATB buffers so that
  5133     // remark has less work to do.
  5134     drain_satb_buffers();
  5137   // Since we've done everything else, we can now totally drain the
  5138   // local queue and global stack.
  5139   drain_local_queue(false);
  5140   drain_global_stack(false);
  5142   // Attempt at work stealing from other task's queues.
  5143   if (do_stealing && !has_aborted()) {
  5144     // We have not aborted. This means that we have finished all that
  5145     // we could. Let's try to do some stealing...
  5147     // We cannot check whether the global stack is empty, since other
  5148     // tasks might be pushing objects to it concurrently. We also cannot
  5149     // check if the region stack is empty because if a thread is aborting
  5150     // it can push a partially done region back.
  5151     assert(_cm->out_of_regions() && _task_queue->size() == 0,
  5152            "only way to reach here");
  5154     if (_cm->verbose_low()) {
  5155       gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
  5158     while (!has_aborted()) {
  5159       oop obj;
  5160       statsOnly( ++_steal_attempts );
  5162       if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
  5163         if (_cm->verbose_medium()) {
  5164           gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
  5165                                  _task_id, (void*) obj);
  5168         statsOnly( ++_steals );
  5170         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
  5171                "any stolen object should be marked");
  5172         scan_object(obj);
  5174         // And since we're towards the end, let's totally drain the
  5175         // local queue and global stack.
  5176         drain_local_queue(false);
  5177         drain_global_stack(false);
  5178       } else {
  5179         break;
  5184   // If we are about to wrap up and go into termination, check if we
  5185   // should raise the overflow flag.
  5186   if (do_termination && !has_aborted()) {
  5187     if (_cm->force_overflow()->should_force()) {
  5188       _cm->set_has_overflown();
  5189       regular_clock_call();
  5193   // We still haven't aborted. Now, let's try to get into the
  5194   // termination protocol.
  5195   if (do_termination && !has_aborted()) {
  5196     // We cannot check whether the global stack is empty, since other
  5197     // tasks might be concurrently pushing objects on it. We also cannot
  5198     // check if the region stack is empty because if a thread is aborting
  5199     // it can push a partially done region back.
  5200     // Separated the asserts so that we know which one fires.
  5201     assert(_cm->out_of_regions(), "only way to reach here");
  5202     assert(_task_queue->size() == 0, "only way to reach here");
  5204     if (_cm->verbose_low()) {
  5205       gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
  5208     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
  5209     // The CMTask class also extends the TerminatorTerminator class,
  5210     // hence its should_exit_termination() method will also decide
  5211     // whether to exit the termination protocol or not.
  5212     bool finished = _cm->terminator()->offer_termination(this);
  5213     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
  5214     _termination_time_ms +=
  5215       termination_end_time_ms - _termination_start_time_ms;
  5217     if (finished) {
  5218       // We're all done.
  5220       if (_task_id == 0) {
  5221         // let's allow task 0 to do this
  5222         if (concurrent()) {
  5223           assert(_cm->concurrent_marking_in_progress(), "invariant");
  5224           // we need to set this to false before the next
  5225           // safepoint. This way we ensure that the marking phase
  5226           // doesn't observe any more heap expansions.
  5227           _cm->clear_concurrent_marking_in_progress();
  5231       // We can now guarantee that the global stack is empty, since
  5232       // all other tasks have finished. We separated the guarantees so
  5233       // that, if a condition is false, we can immediately find out
  5234       // which one.
  5235       guarantee(_cm->out_of_regions(), "only way to reach here");
  5236       guarantee(_aborted_region.is_empty(), "only way to reach here");
  5237       guarantee(_cm->region_stack_empty(), "only way to reach here");
  5238       guarantee(_cm->mark_stack_empty(), "only way to reach here");
  5239       guarantee(_task_queue->size() == 0, "only way to reach here");
  5240       guarantee(!_cm->has_overflown(), "only way to reach here");
  5241       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
  5242       guarantee(!_cm->region_stack_overflow(), "only way to reach here");
  5244       if (_cm->verbose_low()) {
  5245         gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
  5247     } else {
  5248       // Apparently there's more work to do. Let's abort this task. It
  5249       // will restart it and we can hopefully find more things to do.
  5251       if (_cm->verbose_low()) {
  5252         gclog_or_tty->print_cr("[%d] apparently there is more work to do",
  5253                                _task_id);
  5256       set_has_aborted();
  5257       statsOnly( ++_aborted_termination );
  5261   // Mainly for debugging purposes to make sure that a pointer to the
  5262   // closure which was statically allocated in this frame doesn't
  5263   // escape it by accident.
  5264   set_cm_oop_closure(NULL);
  5265   double end_time_ms = os::elapsedVTime() * 1000.0;
  5266   double elapsed_time_ms = end_time_ms - _start_time_ms;
  5267   // Update the step history.
  5268   _step_times_ms.add(elapsed_time_ms);
  5270   if (has_aborted()) {
  5271     // The task was aborted for some reason.
  5273     statsOnly( ++_aborted );
  5275     if (_has_timed_out) {
  5276       double diff_ms = elapsed_time_ms - _time_target_ms;
  5277       // Keep statistics of how well we did with respect to hitting
  5278       // our target only if we actually timed out (if we aborted for
  5279       // other reasons, then the results might get skewed).
  5280       _marking_step_diffs_ms.add(diff_ms);
  5283     if (_cm->has_overflown()) {
  5284       // This is the interesting one. We aborted because a global
  5285       // overflow was raised. This means we have to restart the
  5286       // marking phase and start iterating over regions. However, in
  5287       // order to do this we have to make sure that all tasks stop
  5288       // what they are doing and re-initialise in a safe manner. We
  5289       // will achieve this with the use of two barrier sync points.
  5291       if (_cm->verbose_low()) {
  5292         gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
  5295       _cm->enter_first_sync_barrier(_task_id);
  5296       // When we exit this sync barrier we know that all tasks have
  5297       // stopped doing marking work. So, it's now safe to
  5298       // re-initialise our data structures. At the end of this method,
  5299       // task 0 will clear the global data structures.
  5301       statsOnly( ++_aborted_overflow );
  5303       // We clear the local state of this task...
  5304       clear_region_fields();
  5306       // ...and enter the second barrier.
  5307       _cm->enter_second_sync_barrier(_task_id);
  5308       // At this point everything has bee re-initialised and we're
  5309       // ready to restart.
  5312     if (_cm->verbose_low()) {
  5313       gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
  5314                              "elapsed = %1.2lfms <<<<<<<<<<",
  5315                              _task_id, _time_target_ms, elapsed_time_ms);
  5316       if (_cm->has_aborted()) {
  5317         gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
  5318                                _task_id);
  5321   } else {
  5322     if (_cm->verbose_low()) {
  5323       gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
  5324                              "elapsed = %1.2lfms <<<<<<<<<<",
  5325                              _task_id, _time_target_ms, elapsed_time_ms);
  5329   _claimed = false;
  5332 CMTask::CMTask(int task_id,
  5333                ConcurrentMark* cm,
  5334                size_t* marked_bytes,
  5335                BitMap* card_bm,
  5336                CMTaskQueue* task_queue,
  5337                CMTaskQueueSet* task_queues)
  5338   : _g1h(G1CollectedHeap::heap()),
  5339     _task_id(task_id), _cm(cm),
  5340     _claimed(false),
  5341     _nextMarkBitMap(NULL), _hash_seed(17),
  5342     _task_queue(task_queue),
  5343     _task_queues(task_queues),
  5344     _cm_oop_closure(NULL),
  5345     _aborted_region(MemRegion()),
  5346     _marked_bytes_array(marked_bytes),
  5347     _card_bm(card_bm) {
  5348   guarantee(task_queue != NULL, "invariant");
  5349   guarantee(task_queues != NULL, "invariant");
  5351   statsOnly( _clock_due_to_scanning = 0;
  5352              _clock_due_to_marking  = 0 );
  5354   _marking_step_diffs_ms.add(0.5);
  5357 // These are formatting macros that are used below to ensure
  5358 // consistent formatting. The *_H_* versions are used to format the
  5359 // header for a particular value and they should be kept consistent
  5360 // with the corresponding macro. Also note that most of the macros add
  5361 // the necessary white space (as a prefix) which makes them a bit
  5362 // easier to compose.
  5364 // All the output lines are prefixed with this string to be able to
  5365 // identify them easily in a large log file.
  5366 #define G1PPRL_LINE_PREFIX            "###"
  5368 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
  5369 #ifdef _LP64
  5370 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
  5371 #else // _LP64
  5372 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
  5373 #endif // _LP64
  5375 // For per-region info
  5376 #define G1PPRL_TYPE_FORMAT            "   %-4s"
  5377 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
  5378 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
  5379 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
  5380 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
  5381 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
  5383 // For summary info
  5384 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
  5385 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
  5386 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
  5387 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
  5389 G1PrintRegionLivenessInfoClosure::
  5390 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  5391   : _out(out),
  5392     _total_used_bytes(0), _total_capacity_bytes(0),
  5393     _total_prev_live_bytes(0), _total_next_live_bytes(0),
  5394     _hum_used_bytes(0), _hum_capacity_bytes(0),
  5395     _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  5396   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  5397   MemRegion g1_committed = g1h->g1_committed();
  5398   MemRegion g1_reserved = g1h->g1_reserved();
  5399   double now = os::elapsedTime();
  5401   // Print the header of the output.
  5402   _out->cr();
  5403   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  5404   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
  5405                  G1PPRL_SUM_ADDR_FORMAT("committed")
  5406                  G1PPRL_SUM_ADDR_FORMAT("reserved")
  5407                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
  5408                  g1_committed.start(), g1_committed.end(),
  5409                  g1_reserved.start(), g1_reserved.end(),
  5410                  HeapRegion::GrainBytes);
  5411   _out->print_cr(G1PPRL_LINE_PREFIX);
  5412   _out->print_cr(G1PPRL_LINE_PREFIX
  5413                  G1PPRL_TYPE_H_FORMAT
  5414                  G1PPRL_ADDR_BASE_H_FORMAT
  5415                  G1PPRL_BYTE_H_FORMAT
  5416                  G1PPRL_BYTE_H_FORMAT
  5417                  G1PPRL_BYTE_H_FORMAT
  5418                  G1PPRL_DOUBLE_H_FORMAT,
  5419                  "type", "address-range",
  5420                  "used", "prev-live", "next-live", "gc-eff");
  5421   _out->print_cr(G1PPRL_LINE_PREFIX
  5422                  G1PPRL_TYPE_H_FORMAT
  5423                  G1PPRL_ADDR_BASE_H_FORMAT
  5424                  G1PPRL_BYTE_H_FORMAT
  5425                  G1PPRL_BYTE_H_FORMAT
  5426                  G1PPRL_BYTE_H_FORMAT
  5427                  G1PPRL_DOUBLE_H_FORMAT,
  5428                  "", "",
  5429                  "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
  5432 // It takes as a parameter a reference to one of the _hum_* fields, it
  5433 // deduces the corresponding value for a region in a humongous region
  5434 // series (either the region size, or what's left if the _hum_* field
  5435 // is < the region size), and updates the _hum_* field accordingly.
  5436 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  5437   size_t bytes = 0;
  5438   // The > 0 check is to deal with the prev and next live bytes which
  5439   // could be 0.
  5440   if (*hum_bytes > 0) {
  5441     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
  5442     *hum_bytes -= bytes;
  5444   return bytes;
  5447 // It deduces the values for a region in a humongous region series
  5448 // from the _hum_* fields and updates those accordingly. It assumes
  5449 // that that _hum_* fields have already been set up from the "starts
  5450 // humongous" region and we visit the regions in address order.
  5451 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
  5452                                                      size_t* capacity_bytes,
  5453                                                      size_t* prev_live_bytes,
  5454                                                      size_t* next_live_bytes) {
  5455   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  5456   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  5457   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  5458   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  5459   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
  5462 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  5463   const char* type = "";
  5464   HeapWord* bottom       = r->bottom();
  5465   HeapWord* end          = r->end();
  5466   size_t capacity_bytes  = r->capacity();
  5467   size_t used_bytes      = r->used();
  5468   size_t prev_live_bytes = r->live_bytes();
  5469   size_t next_live_bytes = r->next_live_bytes();
  5470   double gc_eff          = r->gc_efficiency();
  5471   if (r->used() == 0) {
  5472     type = "FREE";
  5473   } else if (r->is_survivor()) {
  5474     type = "SURV";
  5475   } else if (r->is_young()) {
  5476     type = "EDEN";
  5477   } else if (r->startsHumongous()) {
  5478     type = "HUMS";
  5480     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
  5481            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
  5482            "they should have been zeroed after the last time we used them");
  5483     // Set up the _hum_* fields.
  5484     _hum_capacity_bytes  = capacity_bytes;
  5485     _hum_used_bytes      = used_bytes;
  5486     _hum_prev_live_bytes = prev_live_bytes;
  5487     _hum_next_live_bytes = next_live_bytes;
  5488     get_hum_bytes(&used_bytes, &capacity_bytes,
  5489                   &prev_live_bytes, &next_live_bytes);
  5490     end = bottom + HeapRegion::GrainWords;
  5491   } else if (r->continuesHumongous()) {
  5492     type = "HUMC";
  5493     get_hum_bytes(&used_bytes, &capacity_bytes,
  5494                   &prev_live_bytes, &next_live_bytes);
  5495     assert(end == bottom + HeapRegion::GrainWords, "invariant");
  5496   } else {
  5497     type = "OLD";
  5500   _total_used_bytes      += used_bytes;
  5501   _total_capacity_bytes  += capacity_bytes;
  5502   _total_prev_live_bytes += prev_live_bytes;
  5503   _total_next_live_bytes += next_live_bytes;
  5505   // Print a line for this particular region.
  5506   _out->print_cr(G1PPRL_LINE_PREFIX
  5507                  G1PPRL_TYPE_FORMAT
  5508                  G1PPRL_ADDR_BASE_FORMAT
  5509                  G1PPRL_BYTE_FORMAT
  5510                  G1PPRL_BYTE_FORMAT
  5511                  G1PPRL_BYTE_FORMAT
  5512                  G1PPRL_DOUBLE_FORMAT,
  5513                  type, bottom, end,
  5514                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff);
  5516   return false;
  5519 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  5520   // Print the footer of the output.
  5521   _out->print_cr(G1PPRL_LINE_PREFIX);
  5522   _out->print_cr(G1PPRL_LINE_PREFIX
  5523                  " SUMMARY"
  5524                  G1PPRL_SUM_MB_FORMAT("capacity")
  5525                  G1PPRL_SUM_MB_PERC_FORMAT("used")
  5526                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
  5527                  G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
  5528                  bytes_to_mb(_total_capacity_bytes),
  5529                  bytes_to_mb(_total_used_bytes),
  5530                  perc(_total_used_bytes, _total_capacity_bytes),
  5531                  bytes_to_mb(_total_prev_live_bytes),
  5532                  perc(_total_prev_live_bytes, _total_capacity_bytes),
  5533                  bytes_to_mb(_total_next_live_bytes),
  5534                  perc(_total_next_live_bytes, _total_capacity_bytes));
  5535   _out->cr();

mercurial