src/cpu/x86/vm/stubGenerator_x86_32.cpp

Wed, 07 Apr 2010 09:37:47 -0700

author
kvn
date
Wed, 07 Apr 2010 09:37:47 -0700
changeset 1800
6476042f815c
parent 1734
9eba43136cb5
child 1803
93767e6a2dfd
permissions
-rw-r--r--

6940701: Don't align loops in stubs for Niagara sparc
Summary: Don't align loops in stubs for Niagara sparc since NOPs are expensive.
Reviewed-by: twisti, never

     1 /*
     2  * Copyright 1999-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_x86_32.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp
    32 #define __ _masm->
    33 #define a__ ((Assembler*)_masm)->
    35 #ifdef PRODUCT
    36 #define BLOCK_COMMENT(str) /* nothing */
    37 #else
    38 #define BLOCK_COMMENT(str) __ block_comment(str)
    39 #endif
    41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    43 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    44 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    46 // -------------------------------------------------------------------------------------------------------------------------
    47 // Stub Code definitions
    49 static address handle_unsafe_access() {
    50   JavaThread* thread = JavaThread::current();
    51   address pc  = thread->saved_exception_pc();
    52   // pc is the instruction which we must emulate
    53   // doing a no-op is fine:  return garbage from the load
    54   // therefore, compute npc
    55   address npc = Assembler::locate_next_instruction(pc);
    57   // request an async exception
    58   thread->set_pending_unsafe_access_error();
    60   // return address of next instruction to execute
    61   return npc;
    62 }
    64 class StubGenerator: public StubCodeGenerator {
    65  private:
    67 #ifdef PRODUCT
    68 #define inc_counter_np(counter) (0)
    69 #else
    70   void inc_counter_np_(int& counter) {
    71     __ incrementl(ExternalAddress((address)&counter));
    72   }
    73 #define inc_counter_np(counter) \
    74   BLOCK_COMMENT("inc_counter " #counter); \
    75   inc_counter_np_(counter);
    76 #endif //PRODUCT
    78   void inc_copy_counter_np(BasicType t) {
    79 #ifndef PRODUCT
    80     switch (t) {
    81     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
    82     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
    83     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
    84     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
    85     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
    86     }
    87     ShouldNotReachHere();
    88 #endif //PRODUCT
    89   }
    91   //------------------------------------------------------------------------------------------------------------------------
    92   // Call stubs are used to call Java from C
    93   //
    94   //    [ return_from_Java     ] <--- rsp
    95   //    [ argument word n      ]
    96   //      ...
    97   // -N [ argument word 1      ]
    98   // -7 [ Possible padding for stack alignment ]
    99   // -6 [ Possible padding for stack alignment ]
   100   // -5 [ Possible padding for stack alignment ]
   101   // -4 [ mxcsr save           ] <--- rsp_after_call
   102   // -3 [ saved rbx,            ]
   103   // -2 [ saved rsi            ]
   104   // -1 [ saved rdi            ]
   105   //  0 [ saved rbp,            ] <--- rbp,
   106   //  1 [ return address       ]
   107   //  2 [ ptr. to call wrapper ]
   108   //  3 [ result               ]
   109   //  4 [ result_type          ]
   110   //  5 [ method               ]
   111   //  6 [ entry_point          ]
   112   //  7 [ parameters           ]
   113   //  8 [ parameter_size       ]
   114   //  9 [ thread               ]
   117   address generate_call_stub(address& return_address) {
   118     StubCodeMark mark(this, "StubRoutines", "call_stub");
   119     address start = __ pc();
   121     // stub code parameters / addresses
   122     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   123     bool  sse_save = false;
   124     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   125     const int     locals_count_in_bytes  (4*wordSize);
   126     const Address mxcsr_save    (rbp, -4 * wordSize);
   127     const Address saved_rbx     (rbp, -3 * wordSize);
   128     const Address saved_rsi     (rbp, -2 * wordSize);
   129     const Address saved_rdi     (rbp, -1 * wordSize);
   130     const Address result        (rbp,  3 * wordSize);
   131     const Address result_type   (rbp,  4 * wordSize);
   132     const Address method        (rbp,  5 * wordSize);
   133     const Address entry_point   (rbp,  6 * wordSize);
   134     const Address parameters    (rbp,  7 * wordSize);
   135     const Address parameter_size(rbp,  8 * wordSize);
   136     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   137     sse_save =  UseSSE > 0;
   139     // stub code
   140     __ enter();
   141     __ movptr(rcx, parameter_size);              // parameter counter
   142     __ shlptr(rcx, Interpreter::logStackElementSize()); // convert parameter count to bytes
   143     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   144     __ subptr(rsp, rcx);
   145     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   147     // save rdi, rsi, & rbx, according to C calling conventions
   148     __ movptr(saved_rdi, rdi);
   149     __ movptr(saved_rsi, rsi);
   150     __ movptr(saved_rbx, rbx);
   151     // save and initialize %mxcsr
   152     if (sse_save) {
   153       Label skip_ldmx;
   154       __ stmxcsr(mxcsr_save);
   155       __ movl(rax, mxcsr_save);
   156       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   157       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   158       __ cmp32(rax, mxcsr_std);
   159       __ jcc(Assembler::equal, skip_ldmx);
   160       __ ldmxcsr(mxcsr_std);
   161       __ bind(skip_ldmx);
   162     }
   164     // make sure the control word is correct.
   165     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   167 #ifdef ASSERT
   168     // make sure we have no pending exceptions
   169     { Label L;
   170       __ movptr(rcx, thread);
   171       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   172       __ jcc(Assembler::equal, L);
   173       __ stop("StubRoutines::call_stub: entered with pending exception");
   174       __ bind(L);
   175     }
   176 #endif
   178     // pass parameters if any
   179     BLOCK_COMMENT("pass parameters if any");
   180     Label parameters_done;
   181     __ movl(rcx, parameter_size);  // parameter counter
   182     __ testl(rcx, rcx);
   183     __ jcc(Assembler::zero, parameters_done);
   185     // parameter passing loop
   187     Label loop;
   188     // Copy Java parameters in reverse order (receiver last)
   189     // Note that the argument order is inverted in the process
   190     // source is rdx[rcx: N-1..0]
   191     // dest   is rsp[rbx: 0..N-1]
   193     __ movptr(rdx, parameters);          // parameter pointer
   194     __ xorptr(rbx, rbx);
   196     __ BIND(loop);
   197     if (TaggedStackInterpreter) {
   198       __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(),
   199                       -2*wordSize));                          // get tag
   200       __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   201                       Interpreter::expr_tag_offset_in_bytes(0)), rax);     // store tag
   202     }
   204     // get parameter
   205     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   206     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   207                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   208     __ increment(rbx);
   209     __ decrement(rcx);
   210     __ jcc(Assembler::notZero, loop);
   212     // call Java function
   213     __ BIND(parameters_done);
   214     __ movptr(rbx, method);           // get methodOop
   215     __ movptr(rax, entry_point);      // get entry_point
   216     __ mov(rsi, rsp);                 // set sender sp
   217     BLOCK_COMMENT("call Java function");
   218     __ call(rax);
   220     BLOCK_COMMENT("call_stub_return_address:");
   221     return_address = __ pc();
   223     Label common_return;
   225     __ BIND(common_return);
   227     // store result depending on type
   228     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   229     __ movptr(rdi, result);
   230     Label is_long, is_float, is_double, exit;
   231     __ movl(rsi, result_type);
   232     __ cmpl(rsi, T_LONG);
   233     __ jcc(Assembler::equal, is_long);
   234     __ cmpl(rsi, T_FLOAT);
   235     __ jcc(Assembler::equal, is_float);
   236     __ cmpl(rsi, T_DOUBLE);
   237     __ jcc(Assembler::equal, is_double);
   239     // handle T_INT case
   240     __ movl(Address(rdi, 0), rax);
   241     __ BIND(exit);
   243     // check that FPU stack is empty
   244     __ verify_FPU(0, "generate_call_stub");
   246     // pop parameters
   247     __ lea(rsp, rsp_after_call);
   249     // restore %mxcsr
   250     if (sse_save) {
   251       __ ldmxcsr(mxcsr_save);
   252     }
   254     // restore rdi, rsi and rbx,
   255     __ movptr(rbx, saved_rbx);
   256     __ movptr(rsi, saved_rsi);
   257     __ movptr(rdi, saved_rdi);
   258     __ addptr(rsp, 4*wordSize);
   260     // return
   261     __ pop(rbp);
   262     __ ret(0);
   264     // handle return types different from T_INT
   265     __ BIND(is_long);
   266     __ movl(Address(rdi, 0 * wordSize), rax);
   267     __ movl(Address(rdi, 1 * wordSize), rdx);
   268     __ jmp(exit);
   270     __ BIND(is_float);
   271     // interpreter uses xmm0 for return values
   272     if (UseSSE >= 1) {
   273       __ movflt(Address(rdi, 0), xmm0);
   274     } else {
   275       __ fstp_s(Address(rdi, 0));
   276     }
   277     __ jmp(exit);
   279     __ BIND(is_double);
   280     // interpreter uses xmm0 for return values
   281     if (UseSSE >= 2) {
   282       __ movdbl(Address(rdi, 0), xmm0);
   283     } else {
   284       __ fstp_d(Address(rdi, 0));
   285     }
   286     __ jmp(exit);
   288     // If we call compiled code directly from the call stub we will
   289     // need to adjust the return back to the call stub to a specialized
   290     // piece of code that can handle compiled results and cleaning the fpu
   291     // stack. compiled code will be set to return here instead of the
   292     // return above that handles interpreter returns.
   294     BLOCK_COMMENT("call_stub_compiled_return:");
   295     StubRoutines::x86::set_call_stub_compiled_return( __ pc());
   297 #ifdef COMPILER2
   298     if (UseSSE >= 2) {
   299       __ verify_FPU(0, "call_stub_compiled_return");
   300     } else {
   301       for (int i = 1; i < 8; i++) {
   302         __ ffree(i);
   303       }
   305       // UseSSE <= 1 so double result should be left on TOS
   306       __ movl(rsi, result_type);
   307       __ cmpl(rsi, T_DOUBLE);
   308       __ jcc(Assembler::equal, common_return);
   309       if (UseSSE == 0) {
   310         // UseSSE == 0 so float result should be left on TOS
   311         __ cmpl(rsi, T_FLOAT);
   312         __ jcc(Assembler::equal, common_return);
   313       }
   314       __ ffree(0);
   315     }
   316 #endif /* COMPILER2 */
   317     __ jmp(common_return);
   319     return start;
   320   }
   323   //------------------------------------------------------------------------------------------------------------------------
   324   // Return point for a Java call if there's an exception thrown in Java code.
   325   // The exception is caught and transformed into a pending exception stored in
   326   // JavaThread that can be tested from within the VM.
   327   //
   328   // Note: Usually the parameters are removed by the callee. In case of an exception
   329   //       crossing an activation frame boundary, that is not the case if the callee
   330   //       is compiled code => need to setup the rsp.
   331   //
   332   // rax,: exception oop
   334   address generate_catch_exception() {
   335     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   336     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   337     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   338     address start = __ pc();
   340     // get thread directly
   341     __ movptr(rcx, thread);
   342 #ifdef ASSERT
   343     // verify that threads correspond
   344     { Label L;
   345       __ get_thread(rbx);
   346       __ cmpptr(rbx, rcx);
   347       __ jcc(Assembler::equal, L);
   348       __ stop("StubRoutines::catch_exception: threads must correspond");
   349       __ bind(L);
   350     }
   351 #endif
   352     // set pending exception
   353     __ verify_oop(rax);
   354     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   355     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   356            ExternalAddress((address)__FILE__));
   357     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   358     // complete return to VM
   359     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   360     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   362     return start;
   363   }
   366   //------------------------------------------------------------------------------------------------------------------------
   367   // Continuation point for runtime calls returning with a pending exception.
   368   // The pending exception check happened in the runtime or native call stub.
   369   // The pending exception in Thread is converted into a Java-level exception.
   370   //
   371   // Contract with Java-level exception handlers:
   372   // rax: exception
   373   // rdx: throwing pc
   374   //
   375   // NOTE: At entry of this stub, exception-pc must be on stack !!
   377   address generate_forward_exception() {
   378     StubCodeMark mark(this, "StubRoutines", "forward exception");
   379     address start = __ pc();
   380     const Register thread = rcx;
   382     // other registers used in this stub
   383     const Register exception_oop = rax;
   384     const Register handler_addr  = rbx;
   385     const Register exception_pc  = rdx;
   387     // Upon entry, the sp points to the return address returning into Java
   388     // (interpreted or compiled) code; i.e., the return address becomes the
   389     // throwing pc.
   390     //
   391     // Arguments pushed before the runtime call are still on the stack but
   392     // the exception handler will reset the stack pointer -> ignore them.
   393     // A potential result in registers can be ignored as well.
   395 #ifdef ASSERT
   396     // make sure this code is only executed if there is a pending exception
   397     { Label L;
   398       __ get_thread(thread);
   399       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   400       __ jcc(Assembler::notEqual, L);
   401       __ stop("StubRoutines::forward exception: no pending exception (1)");
   402       __ bind(L);
   403     }
   404 #endif
   406     // compute exception handler into rbx,
   407     __ get_thread(thread);
   408     __ movptr(exception_pc, Address(rsp, 0));
   409     BLOCK_COMMENT("call exception_handler_for_return_address");
   410     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   411     __ mov(handler_addr, rax);
   413     // setup rax & rdx, remove return address & clear pending exception
   414     __ get_thread(thread);
   415     __ pop(exception_pc);
   416     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   417     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   419 #ifdef ASSERT
   420     // make sure exception is set
   421     { Label L;
   422       __ testptr(exception_oop, exception_oop);
   423       __ jcc(Assembler::notEqual, L);
   424       __ stop("StubRoutines::forward exception: no pending exception (2)");
   425       __ bind(L);
   426     }
   427 #endif
   429     // Verify that there is really a valid exception in RAX.
   430     __ verify_oop(exception_oop);
   432     // Restore SP from BP if the exception PC is a MethodHandle call site.
   433     __ cmpl(Address(thread, JavaThread::is_method_handle_exception_offset()), 0);
   434     __ cmovptr(Assembler::notEqual, rsp, rbp);
   436     // continue at exception handler (return address removed)
   437     // rax: exception
   438     // rbx: exception handler
   439     // rdx: throwing pc
   440     __ jmp(handler_addr);
   442     return start;
   443   }
   446   //----------------------------------------------------------------------------------------------------
   447   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   448   //
   449   // xchg exists as far back as 8086, lock needed for MP only
   450   // Stack layout immediately after call:
   451   //
   452   // 0 [ret addr ] <--- rsp
   453   // 1 [  ex     ]
   454   // 2 [  dest   ]
   455   //
   456   // Result:   *dest <- ex, return (old *dest)
   457   //
   458   // Note: win32 does not currently use this code
   460   address generate_atomic_xchg() {
   461     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   462     address start = __ pc();
   464     __ push(rdx);
   465     Address exchange(rsp, 2 * wordSize);
   466     Address dest_addr(rsp, 3 * wordSize);
   467     __ movl(rax, exchange);
   468     __ movptr(rdx, dest_addr);
   469     __ xchgl(rax, Address(rdx, 0));
   470     __ pop(rdx);
   471     __ ret(0);
   473     return start;
   474   }
   476   //----------------------------------------------------------------------------------------------------
   477   // Support for void verify_mxcsr()
   478   //
   479   // This routine is used with -Xcheck:jni to verify that native
   480   // JNI code does not return to Java code without restoring the
   481   // MXCSR register to our expected state.
   484   address generate_verify_mxcsr() {
   485     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   486     address start = __ pc();
   488     const Address mxcsr_save(rsp, 0);
   490     if (CheckJNICalls && UseSSE > 0 ) {
   491       Label ok_ret;
   492       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   493       __ push(rax);
   494       __ subptr(rsp, wordSize);      // allocate a temp location
   495       __ stmxcsr(mxcsr_save);
   496       __ movl(rax, mxcsr_save);
   497       __ andl(rax, MXCSR_MASK);
   498       __ cmp32(rax, mxcsr_std);
   499       __ jcc(Assembler::equal, ok_ret);
   501       __ warn("MXCSR changed by native JNI code.");
   503       __ ldmxcsr(mxcsr_std);
   505       __ bind(ok_ret);
   506       __ addptr(rsp, wordSize);
   507       __ pop(rax);
   508     }
   510     __ ret(0);
   512     return start;
   513   }
   516   //---------------------------------------------------------------------------
   517   // Support for void verify_fpu_cntrl_wrd()
   518   //
   519   // This routine is used with -Xcheck:jni to verify that native
   520   // JNI code does not return to Java code without restoring the
   521   // FP control word to our expected state.
   523   address generate_verify_fpu_cntrl_wrd() {
   524     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   525     address start = __ pc();
   527     const Address fpu_cntrl_wrd_save(rsp, 0);
   529     if (CheckJNICalls) {
   530       Label ok_ret;
   531       __ push(rax);
   532       __ subptr(rsp, wordSize);      // allocate a temp location
   533       __ fnstcw(fpu_cntrl_wrd_save);
   534       __ movl(rax, fpu_cntrl_wrd_save);
   535       __ andl(rax, FPU_CNTRL_WRD_MASK);
   536       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   537       __ cmp32(rax, fpu_std);
   538       __ jcc(Assembler::equal, ok_ret);
   540       __ warn("Floating point control word changed by native JNI code.");
   542       __ fldcw(fpu_std);
   544       __ bind(ok_ret);
   545       __ addptr(rsp, wordSize);
   546       __ pop(rax);
   547     }
   549     __ ret(0);
   551     return start;
   552   }
   554   //---------------------------------------------------------------------------
   555   // Wrapper for slow-case handling of double-to-integer conversion
   556   // d2i or f2i fast case failed either because it is nan or because
   557   // of under/overflow.
   558   // Input:  FPU TOS: float value
   559   // Output: rax, (rdx): integer (long) result
   561   address generate_d2i_wrapper(BasicType t, address fcn) {
   562     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   563     address start = __ pc();
   565   // Capture info about frame layout
   566   enum layout { FPUState_off         = 0,
   567                 rbp_off              = FPUStateSizeInWords,
   568                 rdi_off,
   569                 rsi_off,
   570                 rcx_off,
   571                 rbx_off,
   572                 saved_argument_off,
   573                 saved_argument_off2, // 2nd half of double
   574                 framesize
   575   };
   577   assert(FPUStateSizeInWords == 27, "update stack layout");
   579     // Save outgoing argument to stack across push_FPU_state()
   580     __ subptr(rsp, wordSize * 2);
   581     __ fstp_d(Address(rsp, 0));
   583     // Save CPU & FPU state
   584     __ push(rbx);
   585     __ push(rcx);
   586     __ push(rsi);
   587     __ push(rdi);
   588     __ push(rbp);
   589     __ push_FPU_state();
   591     // push_FPU_state() resets the FP top of stack
   592     // Load original double into FP top of stack
   593     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   594     // Store double into stack as outgoing argument
   595     __ subptr(rsp, wordSize*2);
   596     __ fst_d(Address(rsp, 0));
   598     // Prepare FPU for doing math in C-land
   599     __ empty_FPU_stack();
   600     // Call the C code to massage the double.  Result in EAX
   601     if (t == T_INT)
   602       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   603     else if (t == T_LONG)
   604       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   605     __ call_VM_leaf( fcn, 2 );
   607     // Restore CPU & FPU state
   608     __ pop_FPU_state();
   609     __ pop(rbp);
   610     __ pop(rdi);
   611     __ pop(rsi);
   612     __ pop(rcx);
   613     __ pop(rbx);
   614     __ addptr(rsp, wordSize * 2);
   616     __ ret(0);
   618     return start;
   619   }
   622   //---------------------------------------------------------------------------
   623   // The following routine generates a subroutine to throw an asynchronous
   624   // UnknownError when an unsafe access gets a fault that could not be
   625   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   626   address generate_handler_for_unsafe_access() {
   627     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   628     address start = __ pc();
   630     __ push(0);                       // hole for return address-to-be
   631     __ pusha();                       // push registers
   632     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   633     BLOCK_COMMENT("call handle_unsafe_access");
   634     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   635     __ movptr(next_pc, rax);          // stuff next address
   636     __ popa();
   637     __ ret(0);                        // jump to next address
   639     return start;
   640   }
   643   //----------------------------------------------------------------------------------------------------
   644   // Non-destructive plausibility checks for oops
   646   address generate_verify_oop() {
   647     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   648     address start = __ pc();
   650     // Incoming arguments on stack after saving rax,:
   651     //
   652     // [tos    ]: saved rdx
   653     // [tos + 1]: saved EFLAGS
   654     // [tos + 2]: return address
   655     // [tos + 3]: char* error message
   656     // [tos + 4]: oop   object to verify
   657     // [tos + 5]: saved rax, - saved by caller and bashed
   659     Label exit, error;
   660     __ pushf();
   661     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   662     __ push(rdx);                                // save rdx
   663     // make sure object is 'reasonable'
   664     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   665     __ testptr(rax, rax);
   666     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   668     // Check if the oop is in the right area of memory
   669     const int oop_mask = Universe::verify_oop_mask();
   670     const int oop_bits = Universe::verify_oop_bits();
   671     __ mov(rdx, rax);
   672     __ andptr(rdx, oop_mask);
   673     __ cmpptr(rdx, oop_bits);
   674     __ jcc(Assembler::notZero, error);
   676     // make sure klass is 'reasonable'
   677     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   678     __ testptr(rax, rax);
   679     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   681     // Check if the klass is in the right area of memory
   682     const int klass_mask = Universe::verify_klass_mask();
   683     const int klass_bits = Universe::verify_klass_bits();
   684     __ mov(rdx, rax);
   685     __ andptr(rdx, klass_mask);
   686     __ cmpptr(rdx, klass_bits);
   687     __ jcc(Assembler::notZero, error);
   689     // make sure klass' klass is 'reasonable'
   690     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   691     __ testptr(rax, rax);
   692     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   694     __ mov(rdx, rax);
   695     __ andptr(rdx, klass_mask);
   696     __ cmpptr(rdx, klass_bits);
   697     __ jcc(Assembler::notZero, error);           // if klass not in right area
   698                                                  // of memory it is broken too.
   700     // return if everything seems ok
   701     __ bind(exit);
   702     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   703     __ pop(rdx);                                 // restore rdx
   704     __ popf();                                   // restore EFLAGS
   705     __ ret(3 * wordSize);                        // pop arguments
   707     // handle errors
   708     __ bind(error);
   709     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   710     __ pop(rdx);                                 // get saved rdx back
   711     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   712     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   713     BLOCK_COMMENT("call MacroAssembler::debug");
   714     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   715     __ popa();
   716     __ ret(3 * wordSize);                        // pop arguments
   717     return start;
   718   }
   720   //
   721   //  Generate pre-barrier for array stores
   722   //
   723   //  Input:
   724   //     start   -  starting address
   725   //     count   -  element count
   726   void  gen_write_ref_array_pre_barrier(Register start, Register count) {
   727     assert_different_registers(start, count);
   728     BarrierSet* bs = Universe::heap()->barrier_set();
   729     switch (bs->kind()) {
   730       case BarrierSet::G1SATBCT:
   731       case BarrierSet::G1SATBCTLogging:
   732         {
   733           __ pusha();                      // push registers
   734           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   735                           start, count);
   736           __ popa();
   737         }
   738         break;
   739       case BarrierSet::CardTableModRef:
   740       case BarrierSet::CardTableExtension:
   741       case BarrierSet::ModRef:
   742         break;
   743       default      :
   744         ShouldNotReachHere();
   746     }
   747   }
   750   //
   751   // Generate a post-barrier for an array store
   752   //
   753   //     start    -  starting address
   754   //     count    -  element count
   755   //
   756   //  The two input registers are overwritten.
   757   //
   758   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   759     BarrierSet* bs = Universe::heap()->barrier_set();
   760     assert_different_registers(start, count);
   761     switch (bs->kind()) {
   762       case BarrierSet::G1SATBCT:
   763       case BarrierSet::G1SATBCTLogging:
   764         {
   765           __ pusha();                      // push registers
   766           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   767                           start, count);
   768           __ popa();
   769         }
   770         break;
   772       case BarrierSet::CardTableModRef:
   773       case BarrierSet::CardTableExtension:
   774         {
   775           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   776           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   778           Label L_loop;
   779           const Register end = count;  // elements count; end == start+count-1
   780           assert_different_registers(start, end);
   782           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   783           __ shrptr(start, CardTableModRefBS::card_shift);
   784           __ shrptr(end,   CardTableModRefBS::card_shift);
   785           __ subptr(end, start); // end --> count
   786         __ BIND(L_loop);
   787           intptr_t disp = (intptr_t) ct->byte_map_base;
   788           Address cardtable(start, count, Address::times_1, disp);
   789           __ movb(cardtable, 0);
   790           __ decrement(count);
   791           __ jcc(Assembler::greaterEqual, L_loop);
   792         }
   793         break;
   794       case BarrierSet::ModRef:
   795         break;
   796       default      :
   797         ShouldNotReachHere();
   799     }
   800   }
   803   // Copy 64 bytes chunks
   804   //
   805   // Inputs:
   806   //   from        - source array address
   807   //   to_from     - destination array address - from
   808   //   qword_count - 8-bytes element count, negative
   809   //
   810   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   811     assert( UseSSE >= 2, "supported cpu only" );
   812     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   813     // Copy 64-byte chunks
   814     __ jmpb(L_copy_64_bytes);
   815     __ align(OptoLoopAlignment);
   816   __ BIND(L_copy_64_bytes_loop);
   818     if(UseUnalignedLoadStores) {
   819       __ movdqu(xmm0, Address(from, 0));
   820       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   821       __ movdqu(xmm1, Address(from, 16));
   822       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   823       __ movdqu(xmm2, Address(from, 32));
   824       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   825       __ movdqu(xmm3, Address(from, 48));
   826       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   828     } else {
   829       __ movq(xmm0, Address(from, 0));
   830       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   831       __ movq(xmm1, Address(from, 8));
   832       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   833       __ movq(xmm2, Address(from, 16));
   834       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   835       __ movq(xmm3, Address(from, 24));
   836       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   837       __ movq(xmm4, Address(from, 32));
   838       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   839       __ movq(xmm5, Address(from, 40));
   840       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   841       __ movq(xmm6, Address(from, 48));
   842       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   843       __ movq(xmm7, Address(from, 56));
   844       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   845     }
   847     __ addl(from, 64);
   848   __ BIND(L_copy_64_bytes);
   849     __ subl(qword_count, 8);
   850     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   851     __ addl(qword_count, 8);
   852     __ jccb(Assembler::zero, L_exit);
   853     //
   854     // length is too short, just copy qwords
   855     //
   856   __ BIND(L_copy_8_bytes);
   857     __ movq(xmm0, Address(from, 0));
   858     __ movq(Address(from, to_from, Address::times_1), xmm0);
   859     __ addl(from, 8);
   860     __ decrement(qword_count);
   861     __ jcc(Assembler::greater, L_copy_8_bytes);
   862   __ BIND(L_exit);
   863   }
   865   // Copy 64 bytes chunks
   866   //
   867   // Inputs:
   868   //   from        - source array address
   869   //   to_from     - destination array address - from
   870   //   qword_count - 8-bytes element count, negative
   871   //
   872   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   873     assert( VM_Version::supports_mmx(), "supported cpu only" );
   874     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   875     // Copy 64-byte chunks
   876     __ jmpb(L_copy_64_bytes);
   877     __ align(OptoLoopAlignment);
   878   __ BIND(L_copy_64_bytes_loop);
   879     __ movq(mmx0, Address(from, 0));
   880     __ movq(mmx1, Address(from, 8));
   881     __ movq(mmx2, Address(from, 16));
   882     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   883     __ movq(mmx3, Address(from, 24));
   884     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   885     __ movq(mmx4, Address(from, 32));
   886     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   887     __ movq(mmx5, Address(from, 40));
   888     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   889     __ movq(mmx6, Address(from, 48));
   890     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   891     __ movq(mmx7, Address(from, 56));
   892     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   893     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   894     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   895     __ addptr(from, 64);
   896   __ BIND(L_copy_64_bytes);
   897     __ subl(qword_count, 8);
   898     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   899     __ addl(qword_count, 8);
   900     __ jccb(Assembler::zero, L_exit);
   901     //
   902     // length is too short, just copy qwords
   903     //
   904   __ BIND(L_copy_8_bytes);
   905     __ movq(mmx0, Address(from, 0));
   906     __ movq(Address(from, to_from, Address::times_1), mmx0);
   907     __ addptr(from, 8);
   908     __ decrement(qword_count);
   909     __ jcc(Assembler::greater, L_copy_8_bytes);
   910   __ BIND(L_exit);
   911     __ emms();
   912   }
   914   address generate_disjoint_copy(BasicType t, bool aligned,
   915                                  Address::ScaleFactor sf,
   916                                  address* entry, const char *name) {
   917     __ align(CodeEntryAlignment);
   918     StubCodeMark mark(this, "StubRoutines", name);
   919     address start = __ pc();
   921     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   922     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   924     int shift = Address::times_ptr - sf;
   926     const Register from     = rsi;  // source array address
   927     const Register to       = rdi;  // destination array address
   928     const Register count    = rcx;  // elements count
   929     const Register to_from  = to;   // (to - from)
   930     const Register saved_to = rdx;  // saved destination array address
   932     __ enter(); // required for proper stackwalking of RuntimeStub frame
   933     __ push(rsi);
   934     __ push(rdi);
   935     __ movptr(from , Address(rsp, 12+ 4));
   936     __ movptr(to   , Address(rsp, 12+ 8));
   937     __ movl(count, Address(rsp, 12+ 12));
   938     if (t == T_OBJECT) {
   939       __ testl(count, count);
   940       __ jcc(Assembler::zero, L_0_count);
   941       gen_write_ref_array_pre_barrier(to, count);
   942       __ mov(saved_to, to);          // save 'to'
   943     }
   945     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   946     BLOCK_COMMENT("Entry:");
   948     __ subptr(to, from); // to --> to_from
   949     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   950     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   951     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   952       // align source address at 4 bytes address boundary
   953       if (t == T_BYTE) {
   954         // One byte misalignment happens only for byte arrays
   955         __ testl(from, 1);
   956         __ jccb(Assembler::zero, L_skip_align1);
   957         __ movb(rax, Address(from, 0));
   958         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   959         __ increment(from);
   960         __ decrement(count);
   961       __ BIND(L_skip_align1);
   962       }
   963       // Two bytes misalignment happens only for byte and short (char) arrays
   964       __ testl(from, 2);
   965       __ jccb(Assembler::zero, L_skip_align2);
   966       __ movw(rax, Address(from, 0));
   967       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   968       __ addptr(from, 2);
   969       __ subl(count, 1<<(shift-1));
   970     __ BIND(L_skip_align2);
   971     }
   972     if (!VM_Version::supports_mmx()) {
   973       __ mov(rax, count);      // save 'count'
   974       __ shrl(count, shift); // bytes count
   975       __ addptr(to_from, from);// restore 'to'
   976       __ rep_mov();
   977       __ subptr(to_from, from);// restore 'to_from'
   978       __ mov(count, rax);      // restore 'count'
   979       __ jmpb(L_copy_2_bytes); // all dwords were copied
   980     } else {
   981       if (!UseUnalignedLoadStores) {
   982         // align to 8 bytes, we know we are 4 byte aligned to start
   983         __ testptr(from, 4);
   984         __ jccb(Assembler::zero, L_copy_64_bytes);
   985         __ movl(rax, Address(from, 0));
   986         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   987         __ addptr(from, 4);
   988         __ subl(count, 1<<shift);
   989       }
   990     __ BIND(L_copy_64_bytes);
   991       __ mov(rax, count);
   992       __ shrl(rax, shift+1);  // 8 bytes chunk count
   993       //
   994       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
   995       //
   996       if (UseXMMForArrayCopy) {
   997         xmm_copy_forward(from, to_from, rax);
   998       } else {
   999         mmx_copy_forward(from, to_from, rax);
  1002     // copy tailing dword
  1003   __ BIND(L_copy_4_bytes);
  1004     __ testl(count, 1<<shift);
  1005     __ jccb(Assembler::zero, L_copy_2_bytes);
  1006     __ movl(rax, Address(from, 0));
  1007     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1008     if (t == T_BYTE || t == T_SHORT) {
  1009       __ addptr(from, 4);
  1010     __ BIND(L_copy_2_bytes);
  1011       // copy tailing word
  1012       __ testl(count, 1<<(shift-1));
  1013       __ jccb(Assembler::zero, L_copy_byte);
  1014       __ movw(rax, Address(from, 0));
  1015       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1016       if (t == T_BYTE) {
  1017         __ addptr(from, 2);
  1018       __ BIND(L_copy_byte);
  1019         // copy tailing byte
  1020         __ testl(count, 1);
  1021         __ jccb(Assembler::zero, L_exit);
  1022         __ movb(rax, Address(from, 0));
  1023         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1024       __ BIND(L_exit);
  1025       } else {
  1026       __ BIND(L_copy_byte);
  1028     } else {
  1029     __ BIND(L_copy_2_bytes);
  1032     if (t == T_OBJECT) {
  1033       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1034       __ mov(to, saved_to); // restore 'to'
  1035       gen_write_ref_array_post_barrier(to, count);
  1036     __ BIND(L_0_count);
  1038     inc_copy_counter_np(t);
  1039     __ pop(rdi);
  1040     __ pop(rsi);
  1041     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1042     __ xorptr(rax, rax); // return 0
  1043     __ ret(0);
  1044     return start;
  1048   address generate_conjoint_copy(BasicType t, bool aligned,
  1049                                  Address::ScaleFactor sf,
  1050                                  address nooverlap_target,
  1051                                  address* entry, const char *name) {
  1052     __ align(CodeEntryAlignment);
  1053     StubCodeMark mark(this, "StubRoutines", name);
  1054     address start = __ pc();
  1056     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1057     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1059     int shift = Address::times_ptr - sf;
  1061     const Register src   = rax;  // source array address
  1062     const Register dst   = rdx;  // destination array address
  1063     const Register from  = rsi;  // source array address
  1064     const Register to    = rdi;  // destination array address
  1065     const Register count = rcx;  // elements count
  1066     const Register end   = rax;  // array end address
  1068     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1069     __ push(rsi);
  1070     __ push(rdi);
  1071     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1072     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1073     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1074     if (t == T_OBJECT) {
  1075        gen_write_ref_array_pre_barrier(dst, count);
  1078     if (entry != NULL) {
  1079       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1080       BLOCK_COMMENT("Entry:");
  1083     if (t == T_OBJECT) {
  1084       __ testl(count, count);
  1085       __ jcc(Assembler::zero, L_0_count);
  1087     __ mov(from, src);
  1088     __ mov(to  , dst);
  1090     // arrays overlap test
  1091     RuntimeAddress nooverlap(nooverlap_target);
  1092     __ cmpptr(dst, src);
  1093     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1094     __ jump_cc(Assembler::belowEqual, nooverlap);
  1095     __ cmpptr(dst, end);
  1096     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1098     // copy from high to low
  1099     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1100     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1101     if (t == T_BYTE || t == T_SHORT) {
  1102       // Align the end of destination array at 4 bytes address boundary
  1103       __ lea(end, Address(dst, count, sf, 0));
  1104       if (t == T_BYTE) {
  1105         // One byte misalignment happens only for byte arrays
  1106         __ testl(end, 1);
  1107         __ jccb(Assembler::zero, L_skip_align1);
  1108         __ decrement(count);
  1109         __ movb(rdx, Address(from, count, sf, 0));
  1110         __ movb(Address(to, count, sf, 0), rdx);
  1111       __ BIND(L_skip_align1);
  1113       // Two bytes misalignment happens only for byte and short (char) arrays
  1114       __ testl(end, 2);
  1115       __ jccb(Assembler::zero, L_skip_align2);
  1116       __ subptr(count, 1<<(shift-1));
  1117       __ movw(rdx, Address(from, count, sf, 0));
  1118       __ movw(Address(to, count, sf, 0), rdx);
  1119     __ BIND(L_skip_align2);
  1120       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1121       __ jcc(Assembler::below, L_copy_4_bytes);
  1124     if (!VM_Version::supports_mmx()) {
  1125       __ std();
  1126       __ mov(rax, count); // Save 'count'
  1127       __ mov(rdx, to);    // Save 'to'
  1128       __ lea(rsi, Address(from, count, sf, -4));
  1129       __ lea(rdi, Address(to  , count, sf, -4));
  1130       __ shrptr(count, shift); // bytes count
  1131       __ rep_mov();
  1132       __ cld();
  1133       __ mov(count, rax); // restore 'count'
  1134       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1135       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1136       __ mov(to, rdx);   // restore 'to'
  1137       __ jmpb(L_copy_2_bytes); // all dword were copied
  1138    } else {
  1139       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1140       __ testptr(end, 4);
  1141       __ jccb(Assembler::zero, L_copy_8_bytes);
  1142       __ subl(count, 1<<shift);
  1143       __ movl(rdx, Address(from, count, sf, 0));
  1144       __ movl(Address(to, count, sf, 0), rdx);
  1145       __ jmpb(L_copy_8_bytes);
  1147       __ align(OptoLoopAlignment);
  1148       // Move 8 bytes
  1149     __ BIND(L_copy_8_bytes_loop);
  1150       if (UseXMMForArrayCopy) {
  1151         __ movq(xmm0, Address(from, count, sf, 0));
  1152         __ movq(Address(to, count, sf, 0), xmm0);
  1153       } else {
  1154         __ movq(mmx0, Address(from, count, sf, 0));
  1155         __ movq(Address(to, count, sf, 0), mmx0);
  1157     __ BIND(L_copy_8_bytes);
  1158       __ subl(count, 2<<shift);
  1159       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1160       __ addl(count, 2<<shift);
  1161       if (!UseXMMForArrayCopy) {
  1162         __ emms();
  1165   __ BIND(L_copy_4_bytes);
  1166     // copy prefix qword
  1167     __ testl(count, 1<<shift);
  1168     __ jccb(Assembler::zero, L_copy_2_bytes);
  1169     __ movl(rdx, Address(from, count, sf, -4));
  1170     __ movl(Address(to, count, sf, -4), rdx);
  1172     if (t == T_BYTE || t == T_SHORT) {
  1173         __ subl(count, (1<<shift));
  1174       __ BIND(L_copy_2_bytes);
  1175         // copy prefix dword
  1176         __ testl(count, 1<<(shift-1));
  1177         __ jccb(Assembler::zero, L_copy_byte);
  1178         __ movw(rdx, Address(from, count, sf, -2));
  1179         __ movw(Address(to, count, sf, -2), rdx);
  1180         if (t == T_BYTE) {
  1181           __ subl(count, 1<<(shift-1));
  1182         __ BIND(L_copy_byte);
  1183           // copy prefix byte
  1184           __ testl(count, 1);
  1185           __ jccb(Assembler::zero, L_exit);
  1186           __ movb(rdx, Address(from, 0));
  1187           __ movb(Address(to, 0), rdx);
  1188         __ BIND(L_exit);
  1189         } else {
  1190         __ BIND(L_copy_byte);
  1192     } else {
  1193     __ BIND(L_copy_2_bytes);
  1195     if (t == T_OBJECT) {
  1196       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1197       gen_write_ref_array_post_barrier(to, count);
  1198     __ BIND(L_0_count);
  1200     inc_copy_counter_np(t);
  1201     __ pop(rdi);
  1202     __ pop(rsi);
  1203     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1204     __ xorptr(rax, rax); // return 0
  1205     __ ret(0);
  1206     return start;
  1210   address generate_disjoint_long_copy(address* entry, const char *name) {
  1211     __ align(CodeEntryAlignment);
  1212     StubCodeMark mark(this, "StubRoutines", name);
  1213     address start = __ pc();
  1215     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1216     const Register from       = rax;  // source array address
  1217     const Register to         = rdx;  // destination array address
  1218     const Register count      = rcx;  // elements count
  1219     const Register to_from    = rdx;  // (to - from)
  1221     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1222     __ movptr(from , Address(rsp, 8+0));       // from
  1223     __ movptr(to   , Address(rsp, 8+4));       // to
  1224     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1226     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1227     BLOCK_COMMENT("Entry:");
  1229     __ subptr(to, from); // to --> to_from
  1230     if (VM_Version::supports_mmx()) {
  1231       if (UseXMMForArrayCopy) {
  1232         xmm_copy_forward(from, to_from, count);
  1233       } else {
  1234         mmx_copy_forward(from, to_from, count);
  1236     } else {
  1237       __ jmpb(L_copy_8_bytes);
  1238       __ align(OptoLoopAlignment);
  1239     __ BIND(L_copy_8_bytes_loop);
  1240       __ fild_d(Address(from, 0));
  1241       __ fistp_d(Address(from, to_from, Address::times_1));
  1242       __ addptr(from, 8);
  1243     __ BIND(L_copy_8_bytes);
  1244       __ decrement(count);
  1245       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1247     inc_copy_counter_np(T_LONG);
  1248     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1249     __ xorptr(rax, rax); // return 0
  1250     __ ret(0);
  1251     return start;
  1254   address generate_conjoint_long_copy(address nooverlap_target,
  1255                                       address* entry, const char *name) {
  1256     __ align(CodeEntryAlignment);
  1257     StubCodeMark mark(this, "StubRoutines", name);
  1258     address start = __ pc();
  1260     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1261     const Register from       = rax;  // source array address
  1262     const Register to         = rdx;  // destination array address
  1263     const Register count      = rcx;  // elements count
  1264     const Register end_from   = rax;  // source array end address
  1266     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1267     __ movptr(from , Address(rsp, 8+0));       // from
  1268     __ movptr(to   , Address(rsp, 8+4));       // to
  1269     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1271     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1272     BLOCK_COMMENT("Entry:");
  1274     // arrays overlap test
  1275     __ cmpptr(to, from);
  1276     RuntimeAddress nooverlap(nooverlap_target);
  1277     __ jump_cc(Assembler::belowEqual, nooverlap);
  1278     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1279     __ cmpptr(to, end_from);
  1280     __ movptr(from, Address(rsp, 8));  // from
  1281     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1283     __ jmpb(L_copy_8_bytes);
  1285     __ align(OptoLoopAlignment);
  1286   __ BIND(L_copy_8_bytes_loop);
  1287     if (VM_Version::supports_mmx()) {
  1288       if (UseXMMForArrayCopy) {
  1289         __ movq(xmm0, Address(from, count, Address::times_8));
  1290         __ movq(Address(to, count, Address::times_8), xmm0);
  1291       } else {
  1292         __ movq(mmx0, Address(from, count, Address::times_8));
  1293         __ movq(Address(to, count, Address::times_8), mmx0);
  1295     } else {
  1296       __ fild_d(Address(from, count, Address::times_8));
  1297       __ fistp_d(Address(to, count, Address::times_8));
  1299   __ BIND(L_copy_8_bytes);
  1300     __ decrement(count);
  1301     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1303     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1304       __ emms();
  1306     inc_copy_counter_np(T_LONG);
  1307     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1308     __ xorptr(rax, rax); // return 0
  1309     __ ret(0);
  1310     return start;
  1314   // Helper for generating a dynamic type check.
  1315   // The sub_klass must be one of {rbx, rdx, rsi}.
  1316   // The temp is killed.
  1317   void generate_type_check(Register sub_klass,
  1318                            Address& super_check_offset_addr,
  1319                            Address& super_klass_addr,
  1320                            Register temp,
  1321                            Label* L_success, Label* L_failure) {
  1322     BLOCK_COMMENT("type_check:");
  1324     Label L_fallthrough;
  1325 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1326     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1327     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1329     // The following is a strange variation of the fast path which requires
  1330     // one less register, because needed values are on the argument stack.
  1331     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1332     //                                  L_success, L_failure, NULL);
  1333     assert_different_registers(sub_klass, temp);
  1335     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  1336                      Klass::secondary_super_cache_offset_in_bytes());
  1338     // if the pointers are equal, we are done (e.g., String[] elements)
  1339     __ cmpptr(sub_klass, super_klass_addr);
  1340     LOCAL_JCC(Assembler::equal, L_success);
  1342     // check the supertype display:
  1343     __ movl2ptr(temp, super_check_offset_addr);
  1344     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1345     __ movptr(temp, super_check_addr); // load displayed supertype
  1346     __ cmpptr(temp, super_klass_addr); // test the super type
  1347     LOCAL_JCC(Assembler::equal, L_success);
  1349     // if it was a primary super, we can just fail immediately
  1350     __ cmpl(super_check_offset_addr, sc_offset);
  1351     LOCAL_JCC(Assembler::notEqual, L_failure);
  1353     // The repne_scan instruction uses fixed registers, which will get spilled.
  1354     // We happen to know this works best when super_klass is in rax.
  1355     Register super_klass = temp;
  1356     __ movptr(super_klass, super_klass_addr);
  1357     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1358                                      L_success, L_failure);
  1360     __ bind(L_fallthrough);
  1362     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1363     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1365 #undef LOCAL_JCC
  1368   //
  1369   //  Generate checkcasting array copy stub
  1370   //
  1371   //  Input:
  1372   //    4(rsp)   - source array address
  1373   //    8(rsp)   - destination array address
  1374   //   12(rsp)   - element count, can be zero
  1375   //   16(rsp)   - size_t ckoff (super_check_offset)
  1376   //   20(rsp)   - oop ckval (super_klass)
  1377   //
  1378   //  Output:
  1379   //    rax, ==  0  -  success
  1380   //    rax, == -1^K - failure, where K is partial transfer count
  1381   //
  1382   address generate_checkcast_copy(const char *name, address* entry) {
  1383     __ align(CodeEntryAlignment);
  1384     StubCodeMark mark(this, "StubRoutines", name);
  1385     address start = __ pc();
  1387     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1389     // register use:
  1390     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1391     //  rdi, rsi      -- element access (oop, klass)
  1392     //  rbx,           -- temp
  1393     const Register from       = rax;    // source array address
  1394     const Register to         = rdx;    // destination array address
  1395     const Register length     = rcx;    // elements count
  1396     const Register elem       = rdi;    // each oop copied
  1397     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1398     const Register temp       = rbx;    // lone remaining temp
  1400     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1402     __ push(rsi);
  1403     __ push(rdi);
  1404     __ push(rbx);
  1406     Address   from_arg(rsp, 16+ 4);     // from
  1407     Address     to_arg(rsp, 16+ 8);     // to
  1408     Address length_arg(rsp, 16+12);     // elements count
  1409     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1410     Address  ckval_arg(rsp, 16+20);     // super_klass
  1412     // Load up:
  1413     __ movptr(from,     from_arg);
  1414     __ movptr(to,         to_arg);
  1415     __ movl2ptr(length, length_arg);
  1417     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1418     BLOCK_COMMENT("Entry:");
  1420     //---------------------------------------------------------------
  1421     // Assembler stub will be used for this call to arraycopy
  1422     // if the two arrays are subtypes of Object[] but the
  1423     // destination array type is not equal to or a supertype
  1424     // of the source type.  Each element must be separately
  1425     // checked.
  1427     // Loop-invariant addresses.  They are exclusive end pointers.
  1428     Address end_from_addr(from, length, Address::times_ptr, 0);
  1429     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1431     Register end_from = from;           // re-use
  1432     Register end_to   = to;             // re-use
  1433     Register count    = length;         // re-use
  1435     // Loop-variant addresses.  They assume post-incremented count < 0.
  1436     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1437     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1438     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1440     // Copy from low to high addresses, indexed from the end of each array.
  1441     gen_write_ref_array_pre_barrier(to, count);
  1442     __ lea(end_from, end_from_addr);
  1443     __ lea(end_to,   end_to_addr);
  1444     assert(length == count, "");        // else fix next line:
  1445     __ negptr(count);                   // negate and test the length
  1446     __ jccb(Assembler::notZero, L_load_element);
  1448     // Empty array:  Nothing to do.
  1449     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1450     __ jmp(L_done);
  1452     // ======== begin loop ========
  1453     // (Loop is rotated; its entry is L_load_element.)
  1454     // Loop control:
  1455     //   for (count = -count; count != 0; count++)
  1456     // Base pointers src, dst are biased by 8*count,to last element.
  1457     __ align(OptoLoopAlignment);
  1459     __ BIND(L_store_element);
  1460     __ movptr(to_element_addr, elem);     // store the oop
  1461     __ increment(count);                // increment the count toward zero
  1462     __ jccb(Assembler::zero, L_do_card_marks);
  1464     // ======== loop entry is here ========
  1465     __ BIND(L_load_element);
  1466     __ movptr(elem, from_element_addr);   // load the oop
  1467     __ testptr(elem, elem);
  1468     __ jccb(Assembler::zero, L_store_element);
  1470     // (Could do a trick here:  Remember last successful non-null
  1471     // element stored and make a quick oop equality check on it.)
  1473     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1474     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1475                         &L_store_element, NULL);
  1476       // (On fall-through, we have failed the element type check.)
  1477     // ======== end loop ========
  1479     // It was a real error; we must depend on the caller to finish the job.
  1480     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1481     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1482     // and report their number to the caller.
  1483     __ addl(count, length_arg);         // transfers = (length - remaining)
  1484     __ movl2ptr(rax, count);            // save the value
  1485     __ notptr(rax);                     // report (-1^K) to caller
  1486     __ movptr(to, to_arg);              // reload
  1487     assert_different_registers(to, count, rax);
  1488     gen_write_ref_array_post_barrier(to, count);
  1489     __ jmpb(L_done);
  1491     // Come here on success only.
  1492     __ BIND(L_do_card_marks);
  1493     __ movl2ptr(count, length_arg);
  1494     __ movptr(to, to_arg);                // reload
  1495     gen_write_ref_array_post_barrier(to, count);
  1496     __ xorptr(rax, rax);                  // return 0 on success
  1498     // Common exit point (success or failure).
  1499     __ BIND(L_done);
  1500     __ pop(rbx);
  1501     __ pop(rdi);
  1502     __ pop(rsi);
  1503     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1504     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1505     __ ret(0);
  1507     return start;
  1510   //
  1511   //  Generate 'unsafe' array copy stub
  1512   //  Though just as safe as the other stubs, it takes an unscaled
  1513   //  size_t argument instead of an element count.
  1514   //
  1515   //  Input:
  1516   //    4(rsp)   - source array address
  1517   //    8(rsp)   - destination array address
  1518   //   12(rsp)   - byte count, can be zero
  1519   //
  1520   //  Output:
  1521   //    rax, ==  0  -  success
  1522   //    rax, == -1  -  need to call System.arraycopy
  1523   //
  1524   // Examines the alignment of the operands and dispatches
  1525   // to a long, int, short, or byte copy loop.
  1526   //
  1527   address generate_unsafe_copy(const char *name,
  1528                                address byte_copy_entry,
  1529                                address short_copy_entry,
  1530                                address int_copy_entry,
  1531                                address long_copy_entry) {
  1533     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1535     __ align(CodeEntryAlignment);
  1536     StubCodeMark mark(this, "StubRoutines", name);
  1537     address start = __ pc();
  1539     const Register from       = rax;  // source array address
  1540     const Register to         = rdx;  // destination array address
  1541     const Register count      = rcx;  // elements count
  1543     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1544     __ push(rsi);
  1545     __ push(rdi);
  1546     Address  from_arg(rsp, 12+ 4);      // from
  1547     Address    to_arg(rsp, 12+ 8);      // to
  1548     Address count_arg(rsp, 12+12);      // byte count
  1550     // Load up:
  1551     __ movptr(from ,  from_arg);
  1552     __ movptr(to   ,    to_arg);
  1553     __ movl2ptr(count, count_arg);
  1555     // bump this on entry, not on exit:
  1556     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1558     const Register bits = rsi;
  1559     __ mov(bits, from);
  1560     __ orptr(bits, to);
  1561     __ orptr(bits, count);
  1563     __ testl(bits, BytesPerLong-1);
  1564     __ jccb(Assembler::zero, L_long_aligned);
  1566     __ testl(bits, BytesPerInt-1);
  1567     __ jccb(Assembler::zero, L_int_aligned);
  1569     __ testl(bits, BytesPerShort-1);
  1570     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1572     __ BIND(L_short_aligned);
  1573     __ shrptr(count, LogBytesPerShort); // size => short_count
  1574     __ movl(count_arg, count);          // update 'count'
  1575     __ jump(RuntimeAddress(short_copy_entry));
  1577     __ BIND(L_int_aligned);
  1578     __ shrptr(count, LogBytesPerInt); // size => int_count
  1579     __ movl(count_arg, count);          // update 'count'
  1580     __ jump(RuntimeAddress(int_copy_entry));
  1582     __ BIND(L_long_aligned);
  1583     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1584     __ movl(count_arg, count);          // update 'count'
  1585     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1586     __ pop(rsi);
  1587     __ jump(RuntimeAddress(long_copy_entry));
  1589     return start;
  1593   // Perform range checks on the proposed arraycopy.
  1594   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1595   void arraycopy_range_checks(Register src,
  1596                               Register src_pos,
  1597                               Register dst,
  1598                               Register dst_pos,
  1599                               Address& length,
  1600                               Label& L_failed) {
  1601     BLOCK_COMMENT("arraycopy_range_checks:");
  1602     const Register src_end = src_pos;   // source array end position
  1603     const Register dst_end = dst_pos;   // destination array end position
  1604     __ addl(src_end, length); // src_pos + length
  1605     __ addl(dst_end, length); // dst_pos + length
  1607     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1608     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1609     __ jcc(Assembler::above, L_failed);
  1611     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1612     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1613     __ jcc(Assembler::above, L_failed);
  1615     BLOCK_COMMENT("arraycopy_range_checks done");
  1619   //
  1620   //  Generate generic array copy stubs
  1621   //
  1622   //  Input:
  1623   //     4(rsp)    -  src oop
  1624   //     8(rsp)    -  src_pos
  1625   //    12(rsp)    -  dst oop
  1626   //    16(rsp)    -  dst_pos
  1627   //    20(rsp)    -  element count
  1628   //
  1629   //  Output:
  1630   //    rax, ==  0  -  success
  1631   //    rax, == -1^K - failure, where K is partial transfer count
  1632   //
  1633   address generate_generic_copy(const char *name,
  1634                                 address entry_jbyte_arraycopy,
  1635                                 address entry_jshort_arraycopy,
  1636                                 address entry_jint_arraycopy,
  1637                                 address entry_oop_arraycopy,
  1638                                 address entry_jlong_arraycopy,
  1639                                 address entry_checkcast_arraycopy) {
  1640     Label L_failed, L_failed_0, L_objArray;
  1642     { int modulus = CodeEntryAlignment;
  1643       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1644       int advance = target - (__ offset() % modulus);
  1645       if (advance < 0)  advance += modulus;
  1646       if (advance > 0)  __ nop(advance);
  1648     StubCodeMark mark(this, "StubRoutines", name);
  1650     // Short-hop target to L_failed.  Makes for denser prologue code.
  1651     __ BIND(L_failed_0);
  1652     __ jmp(L_failed);
  1653     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1655     __ align(CodeEntryAlignment);
  1656     address start = __ pc();
  1658     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1659     __ push(rsi);
  1660     __ push(rdi);
  1662     // bump this on entry, not on exit:
  1663     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1665     // Input values
  1666     Address SRC     (rsp, 12+ 4);
  1667     Address SRC_POS (rsp, 12+ 8);
  1668     Address DST     (rsp, 12+12);
  1669     Address DST_POS (rsp, 12+16);
  1670     Address LENGTH  (rsp, 12+20);
  1672     //-----------------------------------------------------------------------
  1673     // Assembler stub will be used for this call to arraycopy
  1674     // if the following conditions are met:
  1675     //
  1676     // (1) src and dst must not be null.
  1677     // (2) src_pos must not be negative.
  1678     // (3) dst_pos must not be negative.
  1679     // (4) length  must not be negative.
  1680     // (5) src klass and dst klass should be the same and not NULL.
  1681     // (6) src and dst should be arrays.
  1682     // (7) src_pos + length must not exceed length of src.
  1683     // (8) dst_pos + length must not exceed length of dst.
  1684     //
  1686     const Register src     = rax;       // source array oop
  1687     const Register src_pos = rsi;
  1688     const Register dst     = rdx;       // destination array oop
  1689     const Register dst_pos = rdi;
  1690     const Register length  = rcx;       // transfer count
  1692     //  if (src == NULL) return -1;
  1693     __ movptr(src, SRC);      // src oop
  1694     __ testptr(src, src);
  1695     __ jccb(Assembler::zero, L_failed_0);
  1697     //  if (src_pos < 0) return -1;
  1698     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1699     __ testl(src_pos, src_pos);
  1700     __ jccb(Assembler::negative, L_failed_0);
  1702     //  if (dst == NULL) return -1;
  1703     __ movptr(dst, DST);      // dst oop
  1704     __ testptr(dst, dst);
  1705     __ jccb(Assembler::zero, L_failed_0);
  1707     //  if (dst_pos < 0) return -1;
  1708     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1709     __ testl(dst_pos, dst_pos);
  1710     __ jccb(Assembler::negative, L_failed_0);
  1712     //  if (length < 0) return -1;
  1713     __ movl2ptr(length, LENGTH);   // length
  1714     __ testl(length, length);
  1715     __ jccb(Assembler::negative, L_failed_0);
  1717     //  if (src->klass() == NULL) return -1;
  1718     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1719     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1720     const Register rcx_src_klass = rcx;    // array klass
  1721     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1723 #ifdef ASSERT
  1724     //  assert(src->klass() != NULL);
  1725     BLOCK_COMMENT("assert klasses not null");
  1726     { Label L1, L2;
  1727       __ testptr(rcx_src_klass, rcx_src_klass);
  1728       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1729       __ bind(L1);
  1730       __ stop("broken null klass");
  1731       __ bind(L2);
  1732       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1733       __ jccb(Assembler::equal, L1);      // this would be broken also
  1734       BLOCK_COMMENT("assert done");
  1736 #endif //ASSERT
  1738     // Load layout helper (32-bits)
  1739     //
  1740     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1741     // 32        30    24            16              8     2                 0
  1742     //
  1743     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1744     //
  1746     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  1747                     Klass::layout_helper_offset_in_bytes();
  1748     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1750     // Handle objArrays completely differently...
  1751     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1752     __ cmpl(src_klass_lh_addr, objArray_lh);
  1753     __ jcc(Assembler::equal, L_objArray);
  1755     //  if (src->klass() != dst->klass()) return -1;
  1756     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1757     __ jccb(Assembler::notEqual, L_failed_0);
  1759     const Register rcx_lh = rcx;  // layout helper
  1760     assert(rcx_lh == rcx_src_klass, "known alias");
  1761     __ movl(rcx_lh, src_klass_lh_addr);
  1763     //  if (!src->is_Array()) return -1;
  1764     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1765     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1767     // At this point, it is known to be a typeArray (array_tag 0x3).
  1768 #ifdef ASSERT
  1769     { Label L;
  1770       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1771       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1772       __ stop("must be a primitive array");
  1773       __ bind(L);
  1775 #endif
  1777     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1778     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1780     // typeArrayKlass
  1781     //
  1782     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1783     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1784     //
  1785     const Register rsi_offset = rsi; // array offset
  1786     const Register src_array  = src; // src array offset
  1787     const Register dst_array  = dst; // dst array offset
  1788     const Register rdi_elsize = rdi; // log2 element size
  1790     __ mov(rsi_offset, rcx_lh);
  1791     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1792     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1793     __ addptr(src_array, rsi_offset);  // src array offset
  1794     __ addptr(dst_array, rsi_offset);  // dst array offset
  1795     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1797     // next registers should be set before the jump to corresponding stub
  1798     const Register from       = src; // source array address
  1799     const Register to         = dst; // destination array address
  1800     const Register count      = rcx; // elements count
  1801     // some of them should be duplicated on stack
  1802 #define FROM   Address(rsp, 12+ 4)
  1803 #define TO     Address(rsp, 12+ 8)   // Not used now
  1804 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1806     BLOCK_COMMENT("scale indexes to element size");
  1807     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1808     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1809     assert(src_array == from, "");
  1810     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1811     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1812     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1813     assert(dst_array == to, "");
  1814     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1815     __ movptr(FROM, from);      // src_addr
  1816     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1817     __ movl2ptr(count, LENGTH); // elements count
  1819     BLOCK_COMMENT("choose copy loop based on element size");
  1820     __ cmpl(rdi_elsize, 0);
  1822     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1823     __ cmpl(rdi_elsize, LogBytesPerShort);
  1824     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1825     __ cmpl(rdi_elsize, LogBytesPerInt);
  1826     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1827 #ifdef ASSERT
  1828     __ cmpl(rdi_elsize, LogBytesPerLong);
  1829     __ jccb(Assembler::notEqual, L_failed);
  1830 #endif
  1831     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1832     __ pop(rsi);
  1833     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1835   __ BIND(L_failed);
  1836     __ xorptr(rax, rax);
  1837     __ notptr(rax); // return -1
  1838     __ pop(rdi);
  1839     __ pop(rsi);
  1840     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1841     __ ret(0);
  1843     // objArrayKlass
  1844   __ BIND(L_objArray);
  1845     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1847     Label L_plain_copy, L_checkcast_copy;
  1848     //  test array classes for subtyping
  1849     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1850     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1852     // Identically typed arrays can be copied without element-wise checks.
  1853     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1854     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1856   __ BIND(L_plain_copy);
  1857     __ movl2ptr(count, LENGTH); // elements count
  1858     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1859     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1860                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1861     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1862     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1863                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1864     __ movptr(FROM,  from);   // src_addr
  1865     __ movptr(TO,    to);     // dst_addr
  1866     __ movl(COUNT, count);  // count
  1867     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1869   __ BIND(L_checkcast_copy);
  1870     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1872       // Handy offsets:
  1873       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  1874                         objArrayKlass::element_klass_offset_in_bytes());
  1875       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  1876                         Klass::super_check_offset_offset_in_bytes());
  1878       Register rsi_dst_klass = rsi;
  1879       Register rdi_temp      = rdi;
  1880       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1881       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1882       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1884       // Before looking at dst.length, make sure dst is also an objArray.
  1885       __ movptr(rsi_dst_klass, dst_klass_addr);
  1886       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1887       __ jccb(Assembler::notEqual, L_failed);
  1889       // It is safe to examine both src.length and dst.length.
  1890       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1891       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1892       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1894       // We'll need this temp (don't forget to pop it after the type check).
  1895       __ push(rbx);
  1896       Register rbx_src_klass = rbx;
  1898       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1899       __ movptr(rsi_dst_klass, dst_klass_addr);
  1900       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1901       Label L_fail_array_check;
  1902       generate_type_check(rbx_src_klass,
  1903                           super_check_offset_addr, dst_klass_addr,
  1904                           rdi_temp, NULL, &L_fail_array_check);
  1905       // (On fall-through, we have passed the array type check.)
  1906       __ pop(rbx);
  1907       __ jmp(L_plain_copy);
  1909       __ BIND(L_fail_array_check);
  1910       // Reshuffle arguments so we can call checkcast_arraycopy:
  1912       // match initial saves for checkcast_arraycopy
  1913       // push(rsi);    // already done; see above
  1914       // push(rdi);    // already done; see above
  1915       // push(rbx);    // already done; see above
  1917       // Marshal outgoing arguments now, freeing registers.
  1918       Address   from_arg(rsp, 16+ 4);   // from
  1919       Address     to_arg(rsp, 16+ 8);   // to
  1920       Address length_arg(rsp, 16+12);   // elements count
  1921       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1922       Address  ckval_arg(rsp, 16+20);   // super_klass
  1924       Address SRC_POS_arg(rsp, 16+ 8);
  1925       Address DST_POS_arg(rsp, 16+16);
  1926       Address  LENGTH_arg(rsp, 16+20);
  1927       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1928       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1930       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1931       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1932       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1933       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1935       __ movptr(ckval_arg, rbx);          // destination element type
  1936       __ movl(rbx, Address(rbx, sco_offset));
  1937       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1939       __ movl(length_arg, length);      // outgoing length argument
  1941       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1942                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1943       __ movptr(from_arg, from);
  1945       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1946                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1947       __ movptr(to_arg, to);
  1948       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1951     return start;
  1954   void generate_arraycopy_stubs() {
  1955     address entry;
  1956     address entry_jbyte_arraycopy;
  1957     address entry_jshort_arraycopy;
  1958     address entry_jint_arraycopy;
  1959     address entry_oop_arraycopy;
  1960     address entry_jlong_arraycopy;
  1961     address entry_checkcast_arraycopy;
  1963     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  1964         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  1965                                "arrayof_jbyte_disjoint_arraycopy");
  1966     StubRoutines::_arrayof_jbyte_arraycopy =
  1967         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  1968                                NULL, "arrayof_jbyte_arraycopy");
  1969     StubRoutines::_jbyte_disjoint_arraycopy =
  1970         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  1971                                "jbyte_disjoint_arraycopy");
  1972     StubRoutines::_jbyte_arraycopy =
  1973         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  1974                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  1976     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  1977         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  1978                                "arrayof_jshort_disjoint_arraycopy");
  1979     StubRoutines::_arrayof_jshort_arraycopy =
  1980         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  1981                                NULL, "arrayof_jshort_arraycopy");
  1982     StubRoutines::_jshort_disjoint_arraycopy =
  1983         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  1984                                "jshort_disjoint_arraycopy");
  1985     StubRoutines::_jshort_arraycopy =
  1986         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  1987                                &entry_jshort_arraycopy, "jshort_arraycopy");
  1989     // Next arrays are always aligned on 4 bytes at least.
  1990     StubRoutines::_jint_disjoint_arraycopy =
  1991         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  1992                                "jint_disjoint_arraycopy");
  1993     StubRoutines::_jint_arraycopy =
  1994         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  1995                                &entry_jint_arraycopy, "jint_arraycopy");
  1997     StubRoutines::_oop_disjoint_arraycopy =
  1998         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  1999                                "oop_disjoint_arraycopy");
  2000     StubRoutines::_oop_arraycopy =
  2001         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2002                                &entry_oop_arraycopy, "oop_arraycopy");
  2004     StubRoutines::_jlong_disjoint_arraycopy =
  2005         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2006     StubRoutines::_jlong_arraycopy =
  2007         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2008                                     "jlong_arraycopy");
  2010     StubRoutines::_arrayof_jint_disjoint_arraycopy  =
  2011         StubRoutines::_jint_disjoint_arraycopy;
  2012     StubRoutines::_arrayof_oop_disjoint_arraycopy   =
  2013         StubRoutines::_oop_disjoint_arraycopy;
  2014     StubRoutines::_arrayof_jlong_disjoint_arraycopy =
  2015         StubRoutines::_jlong_disjoint_arraycopy;
  2017     StubRoutines::_arrayof_jint_arraycopy  = StubRoutines::_jint_arraycopy;
  2018     StubRoutines::_arrayof_oop_arraycopy   = StubRoutines::_oop_arraycopy;
  2019     StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
  2021     StubRoutines::_checkcast_arraycopy =
  2022         generate_checkcast_copy("checkcast_arraycopy",
  2023                                   &entry_checkcast_arraycopy);
  2025     StubRoutines::_unsafe_arraycopy =
  2026         generate_unsafe_copy("unsafe_arraycopy",
  2027                                entry_jbyte_arraycopy,
  2028                                entry_jshort_arraycopy,
  2029                                entry_jint_arraycopy,
  2030                                entry_jlong_arraycopy);
  2032     StubRoutines::_generic_arraycopy =
  2033         generate_generic_copy("generic_arraycopy",
  2034                                entry_jbyte_arraycopy,
  2035                                entry_jshort_arraycopy,
  2036                                entry_jint_arraycopy,
  2037                                entry_oop_arraycopy,
  2038                                entry_jlong_arraycopy,
  2039                                entry_checkcast_arraycopy);
  2042   void generate_math_stubs() {
  2044       StubCodeMark mark(this, "StubRoutines", "log");
  2045       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2047       __ fld_d(Address(rsp, 4));
  2048       __ flog();
  2049       __ ret(0);
  2052       StubCodeMark mark(this, "StubRoutines", "log10");
  2053       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2055       __ fld_d(Address(rsp, 4));
  2056       __ flog10();
  2057       __ ret(0);
  2060       StubCodeMark mark(this, "StubRoutines", "sin");
  2061       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2063       __ fld_d(Address(rsp, 4));
  2064       __ trigfunc('s');
  2065       __ ret(0);
  2068       StubCodeMark mark(this, "StubRoutines", "cos");
  2069       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2071       __ fld_d(Address(rsp, 4));
  2072       __ trigfunc('c');
  2073       __ ret(0);
  2076       StubCodeMark mark(this, "StubRoutines", "tan");
  2077       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2079       __ fld_d(Address(rsp, 4));
  2080       __ trigfunc('t');
  2081       __ ret(0);
  2084     // The intrinsic version of these seem to return the same value as
  2085     // the strict version.
  2086     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2087     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2090  public:
  2091   // Information about frame layout at time of blocking runtime call.
  2092   // Note that we only have to preserve callee-saved registers since
  2093   // the compilers are responsible for supplying a continuation point
  2094   // if they expect all registers to be preserved.
  2095   enum layout {
  2096     thread_off,    // last_java_sp
  2097     rbp_off,       // callee saved register
  2098     ret_pc,
  2099     framesize
  2100   };
  2102  private:
  2104 #undef  __
  2105 #define __ masm->
  2107   //------------------------------------------------------------------------------------------------------------------------
  2108   // Continuation point for throwing of implicit exceptions that are not handled in
  2109   // the current activation. Fabricates an exception oop and initiates normal
  2110   // exception dispatching in this frame.
  2111   //
  2112   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2113   // This is no longer true after adapter frames were removed but could possibly
  2114   // be brought back in the future if the interpreter code was reworked and it
  2115   // was deemed worthwhile. The comment below was left to describe what must
  2116   // happen here if callee saves were resurrected. As it stands now this stub
  2117   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2118   // Since it doesn't make much difference we've chosen to leave it the
  2119   // way it was in the callee save days and keep the comment.
  2121   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2122   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2123   // If the compiler needs all registers to be preserved between the fault
  2124   // point and the exception handler then it must assume responsibility for that in
  2125   // AbstractCompiler::continuation_for_implicit_null_exception or
  2126   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2127   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2128   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2129   // so caller saved registers were assumed volatile in the compiler.
  2130   address generate_throw_exception(const char* name, address runtime_entry,
  2131                                    bool restore_saved_exception_pc) {
  2133     int insts_size = 256;
  2134     int locs_size  = 32;
  2136     CodeBuffer code(name, insts_size, locs_size);
  2137     OopMapSet* oop_maps  = new OopMapSet();
  2138     MacroAssembler* masm = new MacroAssembler(&code);
  2140     address start = __ pc();
  2142     // This is an inlined and slightly modified version of call_VM
  2143     // which has the ability to fetch the return PC out of
  2144     // thread-local storage and also sets up last_Java_sp slightly
  2145     // differently than the real call_VM
  2146     Register java_thread = rbx;
  2147     __ get_thread(java_thread);
  2148     if (restore_saved_exception_pc) {
  2149       __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
  2150       __ push(rax);
  2153     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2155     // pc and rbp, already pushed
  2156     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2158     // Frame is now completed as far as size and linkage.
  2160     int frame_complete = __ pc() - start;
  2162     // push java thread (becomes first argument of C function)
  2163     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2165     // Set up last_Java_sp and last_Java_fp
  2166     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2168     // Call runtime
  2169     BLOCK_COMMENT("call runtime_entry");
  2170     __ call(RuntimeAddress(runtime_entry));
  2171     // Generate oop map
  2172     OopMap* map =  new OopMap(framesize, 0);
  2173     oop_maps->add_gc_map(__ pc() - start, map);
  2175     // restore the thread (cannot use the pushed argument since arguments
  2176     // may be overwritten by C code generated by an optimizing compiler);
  2177     // however can use the register value directly if it is callee saved.
  2178     __ get_thread(java_thread);
  2180     __ reset_last_Java_frame(java_thread, true, false);
  2182     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2184     // check for pending exceptions
  2185 #ifdef ASSERT
  2186     Label L;
  2187     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2188     __ jcc(Assembler::notEqual, L);
  2189     __ should_not_reach_here();
  2190     __ bind(L);
  2191 #endif /* ASSERT */
  2192     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2195     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2196     return stub->entry_point();
  2200   void create_control_words() {
  2201     // Round to nearest, 53-bit mode, exceptions masked
  2202     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2203     // Round to zero, 53-bit mode, exception mased
  2204     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2205     // Round to nearest, 24-bit mode, exceptions masked
  2206     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2207     // Round to nearest, 64-bit mode, exceptions masked
  2208     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2209     // Round to nearest, 64-bit mode, exceptions masked
  2210     StubRoutines::_mxcsr_std           = 0x1F80;
  2211     // Note: the following two constants are 80-bit values
  2212     //       layout is critical for correct loading by FPU.
  2213     // Bias for strict fp multiply/divide
  2214     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2215     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2216     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2217     // Un-Bias for strict fp multiply/divide
  2218     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2219     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2220     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2223   //---------------------------------------------------------------------------
  2224   // Initialization
  2226   void generate_initial() {
  2227     // Generates all stubs and initializes the entry points
  2229     //------------------------------------------------------------------------------------------------------------------------
  2230     // entry points that exist in all platforms
  2231     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2232     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2233     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2235     StubRoutines::_call_stub_entry              =
  2236       generate_call_stub(StubRoutines::_call_stub_return_address);
  2237     // is referenced by megamorphic call
  2238     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2240     // These are currently used by Solaris/Intel
  2241     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2243     StubRoutines::_handler_for_unsafe_access_entry =
  2244       generate_handler_for_unsafe_access();
  2246     // platform dependent
  2247     create_control_words();
  2249     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2250     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2251     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2252                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2253     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2254                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2258   void generate_all() {
  2259     // Generates all stubs and initializes the entry points
  2261     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2262     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2263     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2264     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2265     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2266     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2267     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2268     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2270     //------------------------------------------------------------------------------------------------------------------------
  2271     // entry points that are platform specific
  2273     // support for verify_oop (must happen after universe_init)
  2274     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2276     // arraycopy stubs used by compilers
  2277     generate_arraycopy_stubs();
  2279     generate_math_stubs();
  2283  public:
  2284   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2285     if (all) {
  2286       generate_all();
  2287     } else {
  2288       generate_initial();
  2291 }; // end class declaration
  2294 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2295   StubGenerator g(code, all);

mercurial