src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp

Fri, 29 Feb 2008 14:42:56 -0800

author
ysr
date
Fri, 29 Feb 2008 14:42:56 -0800
changeset 447
6432c3bb6240
parent 435
a61af66fc99e
child 631
d1605aabd0a1
child 698
12eea04c8b06
permissions
-rw-r--r--

6668743: CMS: Consolidate block statistics reporting code
Summary: Reduce the amount of related code replication and improve pretty printing.
Reviewed-by: jmasa

     1 /*
     2  * Copyright 2001-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_binaryTreeDictionary.cpp.incl"
    28 ////////////////////////////////////////////////////////////////////////////////
    29 // A binary tree based search structure for free blocks.
    30 // This is currently used in the Concurrent Mark&Sweep implementation.
    31 ////////////////////////////////////////////////////////////////////////////////
    33 TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
    34   // Do some assertion checking here.
    35   return (TreeChunk*) fc;
    36 }
    38 void TreeChunk::verifyTreeChunkList() const {
    39   TreeChunk* nextTC = (TreeChunk*)next();
    40   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    41     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    42               embedded_list()->right()  == NULL, "should be clear");
    43   }
    44   if (nextTC != NULL) {
    45     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    46     guarantee(nextTC->size() == size(), "wrong size");
    47     nextTC->verifyTreeChunkList();
    48   }
    49 }
    52 TreeList* TreeList::as_TreeList(TreeChunk* tc) {
    53   // This first free chunk in the list will be the tree list.
    54   assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
    55   TreeList* tl = tc->embedded_list();
    56   tc->set_list(tl);
    57 #ifdef ASSERT
    58   tl->set_protecting_lock(NULL);
    59 #endif
    60   tl->set_hint(0);
    61   tl->set_size(tc->size());
    62   tl->link_head(tc);
    63   tl->link_tail(tc);
    64   tl->set_count(1);
    65   tl->init_statistics();
    66   tl->setParent(NULL);
    67   tl->setLeft(NULL);
    68   tl->setRight(NULL);
    69   return tl;
    70 }
    71 TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
    72   TreeChunk* tc = (TreeChunk*) addr;
    73   assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
    74   assert(tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL,
    75     "Space should be clear");
    76   tc->setSize(size);
    77   tc->linkPrev(NULL);
    78   tc->linkNext(NULL);
    79   TreeList* tl = TreeList::as_TreeList(tc);
    80   return tl;
    81 }
    83 TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
    85   TreeList* retTL = this;
    86   FreeChunk* list = head();
    87   assert(!list || list != list->next(), "Chunk on list twice");
    88   assert(tc != NULL, "Chunk being removed is NULL");
    89   assert(parent() == NULL || this == parent()->left() ||
    90     this == parent()->right(), "list is inconsistent");
    91   assert(tc->isFree(), "Header is not marked correctly");
    92   assert(head() == NULL || head()->prev() == NULL, "list invariant");
    93   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
    95   FreeChunk* prevFC = tc->prev();
    96   TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
    97   assert(list != NULL, "should have at least the target chunk");
    99   // Is this the first item on the list?
   100   if (tc == list) {
   101     // The "getChunk..." functions for a TreeList will not return the
   102     // first chunk in the list unless it is the last chunk in the list
   103     // because the first chunk is also acting as the tree node.
   104     // When coalescing happens, however, the first chunk in the a tree
   105     // list can be the start of a free range.  Free ranges are removed
   106     // from the free lists so that they are not available to be
   107     // allocated when the sweeper yields (giving up the free list lock)
   108     // to allow mutator activity.  If this chunk is the first in the
   109     // list and is not the last in the list, do the work to copy the
   110     // TreeList from the first chunk to the next chunk and update all
   111     // the TreeList pointers in the chunks in the list.
   112     if (nextTC == NULL) {
   113       assert(prevFC == NULL, "Not last chunk in the list")
   114       set_tail(NULL);
   115       set_head(NULL);
   116     } else {
   117       // copy embedded list.
   118       nextTC->set_embedded_list(tc->embedded_list());
   119       retTL = nextTC->embedded_list();
   120       // Fix the pointer to the list in each chunk in the list.
   121       // This can be slow for a long list.  Consider having
   122       // an option that does not allow the first chunk on the
   123       // list to be coalesced.
   124       for (TreeChunk* curTC = nextTC; curTC != NULL;
   125           curTC = TreeChunk::as_TreeChunk(curTC->next())) {
   126         curTC->set_list(retTL);
   127       }
   128       // Fix the parent to point to the new TreeList.
   129       if (retTL->parent() != NULL) {
   130         if (this == retTL->parent()->left()) {
   131           retTL->parent()->setLeft(retTL);
   132         } else {
   133           assert(this == retTL->parent()->right(), "Parent is incorrect");
   134           retTL->parent()->setRight(retTL);
   135         }
   136       }
   137       // Fix the children's parent pointers to point to the
   138       // new list.
   139       assert(right() == retTL->right(), "Should have been copied");
   140       if (retTL->right() != NULL) {
   141         retTL->right()->setParent(retTL);
   142       }
   143       assert(left() == retTL->left(), "Should have been copied");
   144       if (retTL->left() != NULL) {
   145         retTL->left()->setParent(retTL);
   146       }
   147       retTL->link_head(nextTC);
   148       assert(nextTC->isFree(), "Should be a free chunk");
   149     }
   150   } else {
   151     if (nextTC == NULL) {
   152       // Removing chunk at tail of list
   153       link_tail(prevFC);
   154     }
   155     // Chunk is interior to the list
   156     prevFC->linkAfter(nextTC);
   157   }
   159   // Below this point the embeded TreeList being used for the
   160   // tree node may have changed. Don't use "this"
   161   // TreeList*.
   162   // chunk should still be a free chunk (bit set in _prev)
   163   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   164     "Wrong sized chunk in list");
   165   debug_only(
   166     tc->linkPrev(NULL);
   167     tc->linkNext(NULL);
   168     tc->set_list(NULL);
   169     bool prev_found = false;
   170     bool next_found = false;
   171     for (FreeChunk* curFC = retTL->head();
   172          curFC != NULL; curFC = curFC->next()) {
   173       assert(curFC != tc, "Chunk is still in list");
   174       if (curFC == prevFC) {
   175         prev_found = true;
   176       }
   177       if (curFC == nextTC) {
   178         next_found = true;
   179       }
   180     }
   181     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   182     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   183     assert(retTL->parent() == NULL ||
   184            retTL == retTL->parent()->left() ||
   185            retTL == retTL->parent()->right(),
   186            "list is inconsistent");
   187   )
   188   retTL->decrement_count();
   190   assert(tc->isFree(), "Should still be a free chunk");
   191   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   192     "list invariant");
   193   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   194     "list invariant");
   195   return retTL;
   196 }
   197 void TreeList::returnChunkAtTail(TreeChunk* chunk) {
   198   assert(chunk != NULL, "returning NULL chunk");
   199   assert(chunk->list() == this, "list should be set for chunk");
   200   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   201   // which means that the list can never be empty.
   202   assert(!verifyChunkInFreeLists(chunk), "Double entry");
   203   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   204   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   206   FreeChunk* fc = tail();
   207   fc->linkAfter(chunk);
   208   link_tail(chunk);
   210   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   211   increment_count();
   212   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
   213   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   214   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   215 }
   217 // Add this chunk at the head of the list.  "At the head of the list"
   218 // is defined to be after the chunk pointer to by head().  This is
   219 // because the TreeList is embedded in the first TreeChunk in the
   220 // list.  See the definition of TreeChunk.
   221 void TreeList::returnChunkAtHead(TreeChunk* chunk) {
   222   assert(chunk->list() == this, "list should be set for chunk");
   223   assert(head() != NULL, "The tree list is embedded in the first chunk");
   224   assert(chunk != NULL, "returning NULL chunk");
   225   assert(!verifyChunkInFreeLists(chunk), "Double entry");
   226   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   227   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   229   FreeChunk* fc = head()->next();
   230   if (fc != NULL) {
   231     chunk->linkAfter(fc);
   232   } else {
   233     assert(tail() == NULL, "List is inconsistent");
   234     link_tail(chunk);
   235   }
   236   head()->linkAfter(chunk);
   237   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   238   increment_count();
   239   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
   240   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   241   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   242 }
   244 TreeChunk* TreeList::head_as_TreeChunk() {
   245   assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
   246     "Wrong type of chunk?");
   247   return TreeChunk::as_TreeChunk(head());
   248 }
   250 TreeChunk* TreeList::first_available() {
   251   guarantee(head() != NULL, "The head of the list cannot be NULL");
   252   FreeChunk* fc = head()->next();
   253   TreeChunk* retTC;
   254   if (fc == NULL) {
   255     retTC = head_as_TreeChunk();
   256   } else {
   257     retTC = TreeChunk::as_TreeChunk(fc);
   258   }
   259   assert(retTC->list() == this, "Wrong type of chunk.");
   260   return retTC;
   261 }
   263 BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
   264   _splay(splay)
   265 {
   266   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   268   reset(mr);
   269   assert(root()->left() == NULL, "reset check failed");
   270   assert(root()->right() == NULL, "reset check failed");
   271   assert(root()->head()->next() == NULL, "reset check failed");
   272   assert(root()->head()->prev() == NULL, "reset check failed");
   273   assert(totalSize() == root()->size(), "reset check failed");
   274   assert(totalFreeBlocks() == 1, "reset check failed");
   275 }
   277 void BinaryTreeDictionary::inc_totalSize(size_t inc) {
   278   _totalSize = _totalSize + inc;
   279 }
   281 void BinaryTreeDictionary::dec_totalSize(size_t dec) {
   282   _totalSize = _totalSize - dec;
   283 }
   285 void BinaryTreeDictionary::reset(MemRegion mr) {
   286   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   287   set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
   288   set_totalSize(mr.word_size());
   289   set_totalFreeBlocks(1);
   290 }
   292 void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
   293   MemRegion mr(addr, heap_word_size(byte_size));
   294   reset(mr);
   295 }
   297 void BinaryTreeDictionary::reset() {
   298   set_root(NULL);
   299   set_totalSize(0);
   300   set_totalFreeBlocks(0);
   301 }
   303 // Get a free block of size at least size from tree, or NULL.
   304 // If a splay step is requested, the removal algorithm (only) incorporates
   305 // a splay step as follows:
   306 // . the search proceeds down the tree looking for a possible
   307 //   match. At the (closest) matching location, an appropriate splay step is applied
   308 //   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
   309 //   if available, and if it's the last chunk, the node is deleted. A deteleted
   310 //   node is replaced in place by its tree successor.
   311 TreeChunk*
   312 BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
   313 {
   314   TreeList *curTL, *prevTL;
   315   TreeChunk* retTC = NULL;
   316   assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
   317   if (FLSVerifyDictionary) {
   318     verifyTree();
   319   }
   320   // starting at the root, work downwards trying to find match.
   321   // Remember the last node of size too great or too small.
   322   for (prevTL = curTL = root(); curTL != NULL;) {
   323     if (curTL->size() == size) {        // exact match
   324       break;
   325     }
   326     prevTL = curTL;
   327     if (curTL->size() < size) {        // proceed to right sub-tree
   328       curTL = curTL->right();
   329     } else {                           // proceed to left sub-tree
   330       assert(curTL->size() > size, "size inconsistency");
   331       curTL = curTL->left();
   332     }
   333   }
   334   if (curTL == NULL) { // couldn't find exact match
   335     // try and find the next larger size by walking back up the search path
   336     for (curTL = prevTL; curTL != NULL;) {
   337       if (curTL->size() >= size) break;
   338       else curTL = curTL->parent();
   339     }
   340     assert(curTL == NULL || curTL->count() > 0,
   341       "An empty list should not be in the tree");
   342   }
   343   if (curTL != NULL) {
   344     assert(curTL->size() >= size, "size inconsistency");
   345     if (UseCMSAdaptiveFreeLists) {
   347       // A candidate chunk has been found.  If it is already under
   348       // populated, get a chunk associated with the hint for this
   349       // chunk.
   350       if (curTL->surplus() <= 0) {
   351         /* Use the hint to find a size with a surplus, and reset the hint. */
   352         TreeList* hintTL = curTL;
   353         while (hintTL->hint() != 0) {
   354           assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
   355             "hint points in the wrong direction");
   356           hintTL = findList(hintTL->hint());
   357           assert(curTL != hintTL, "Infinite loop");
   358           if (hintTL == NULL ||
   359               hintTL == curTL /* Should not happen but protect against it */ ) {
   360             // No useful hint.  Set the hint to NULL and go on.
   361             curTL->set_hint(0);
   362             break;
   363           }
   364           assert(hintTL->size() > size, "hint is inconsistent");
   365           if (hintTL->surplus() > 0) {
   366             // The hint led to a list that has a surplus.  Use it.
   367             // Set the hint for the candidate to an overpopulated
   368             // size.
   369             curTL->set_hint(hintTL->size());
   370             // Change the candidate.
   371             curTL = hintTL;
   372             break;
   373           }
   374           // The evm code reset the hint of the candidate as
   375           // at an interrim point.  Why?  Seems like this leaves
   376           // the hint pointing to a list that didn't work.
   377           // curTL->set_hint(hintTL->size());
   378         }
   379       }
   380     }
   381     // don't waste time splaying if chunk's singleton
   382     if (splay && curTL->head()->next() != NULL) {
   383       semiSplayStep(curTL);
   384     }
   385     retTC = curTL->first_available();
   386     assert((retTC != NULL) && (curTL->count() > 0),
   387       "A list in the binary tree should not be NULL");
   388     assert(retTC->size() >= size,
   389       "A chunk of the wrong size was found");
   390     removeChunkFromTree(retTC);
   391     assert(retTC->isFree(), "Header is not marked correctly");
   392   }
   394   if (FLSVerifyDictionary) {
   395     verify();
   396   }
   397   return retTC;
   398 }
   400 TreeList* BinaryTreeDictionary::findList(size_t size) const {
   401   TreeList* curTL;
   402   for (curTL = root(); curTL != NULL;) {
   403     if (curTL->size() == size) {        // exact match
   404       break;
   405     }
   407     if (curTL->size() < size) {        // proceed to right sub-tree
   408       curTL = curTL->right();
   409     } else {                           // proceed to left sub-tree
   410       assert(curTL->size() > size, "size inconsistency");
   411       curTL = curTL->left();
   412     }
   413   }
   414   return curTL;
   415 }
   418 bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
   419   size_t size = tc->size();
   420   TreeList* tl = findList(size);
   421   if (tl == NULL) {
   422     return false;
   423   } else {
   424     return tl->verifyChunkInFreeLists(tc);
   425   }
   426 }
   428 FreeChunk* BinaryTreeDictionary::findLargestDict() const {
   429   TreeList *curTL = root();
   430   if (curTL != NULL) {
   431     while(curTL->right() != NULL) curTL = curTL->right();
   432     return curTL->first_available();
   433   } else {
   434     return NULL;
   435   }
   436 }
   438 // Remove the current chunk from the tree.  If it is not the last
   439 // chunk in a list on a tree node, just unlink it.
   440 // If it is the last chunk in the list (the next link is NULL),
   441 // remove the node and repair the tree.
   442 TreeChunk*
   443 BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
   444   assert(tc != NULL, "Should not call with a NULL chunk");
   445   assert(tc->isFree(), "Header is not marked correctly");
   447   TreeList *newTL, *parentTL;
   448   TreeChunk* retTC;
   449   TreeList* tl = tc->list();
   450   debug_only(
   451     bool removing_only_chunk = false;
   452     if (tl == _root) {
   453       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   454         if (_root->count() == 1) {
   455           assert(_root->head() == tc, "Should only be this one chunk");
   456           removing_only_chunk = true;
   457         }
   458       }
   459     }
   460   )
   461   assert(tl != NULL, "List should be set");
   462   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   463          tl == tl->parent()->right(), "list is inconsistent");
   465   bool complicatedSplice = false;
   467   retTC = tc;
   468   // Removing this chunk can have the side effect of changing the node
   469   // (TreeList*) in the tree.  If the node is the root, update it.
   470   TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
   471   assert(tc->isFree(), "Chunk should still be free");
   472   assert(replacementTL->parent() == NULL ||
   473          replacementTL == replacementTL->parent()->left() ||
   474          replacementTL == replacementTL->parent()->right(),
   475          "list is inconsistent");
   476   if (tl == root()) {
   477     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   478     set_root(replacementTL);
   479   }
   480   debug_only(
   481     if (tl != replacementTL) {
   482       assert(replacementTL->head() != NULL,
   483         "If the tree list was replaced, it should not be a NULL list");
   484       TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
   485       TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
   486       assert(rhl == replacementTL, "Broken head");
   487       assert(rtl == replacementTL, "Broken tail");
   488       assert(replacementTL->size() == tc->size(),  "Broken size");
   489     }
   490   )
   492   // Does the tree need to be repaired?
   493   if (replacementTL->count() == 0) {
   494     assert(replacementTL->head() == NULL &&
   495            replacementTL->tail() == NULL, "list count is incorrect");
   496     // Find the replacement node for the (soon to be empty) node being removed.
   497     // if we have a single (or no) child, splice child in our stead
   498     if (replacementTL->left() == NULL) {
   499       // left is NULL so pick right.  right may also be NULL.
   500       newTL = replacementTL->right();
   501       debug_only(replacementTL->clearRight();)
   502     } else if (replacementTL->right() == NULL) {
   503       // right is NULL
   504       newTL = replacementTL->left();
   505       debug_only(replacementTL->clearLeft();)
   506     } else {  // we have both children, so, by patriarchal convention,
   507               // my replacement is least node in right sub-tree
   508       complicatedSplice = true;
   509       newTL = removeTreeMinimum(replacementTL->right());
   510       assert(newTL != NULL && newTL->left() == NULL &&
   511              newTL->right() == NULL, "sub-tree minimum exists");
   512     }
   513     // newTL is the replacement for the (soon to be empty) node.
   514     // newTL may be NULL.
   515     // should verify; we just cleanly excised our replacement
   516     if (FLSVerifyDictionary) {
   517       verifyTree();
   518     }
   519     // first make newTL my parent's child
   520     if ((parentTL = replacementTL->parent()) == NULL) {
   521       // newTL should be root
   522       assert(tl == root(), "Incorrectly replacing root");
   523       set_root(newTL);
   524       if (newTL != NULL) {
   525         newTL->clearParent();
   526       }
   527     } else if (parentTL->right() == replacementTL) {
   528       // replacementTL is a right child
   529       parentTL->setRight(newTL);
   530     } else {                                // replacementTL is a left child
   531       assert(parentTL->left() == replacementTL, "should be left child");
   532       parentTL->setLeft(newTL);
   533     }
   534     debug_only(replacementTL->clearParent();)
   535     if (complicatedSplice) {  // we need newTL to get replacementTL's
   536                               // two children
   537       assert(newTL != NULL &&
   538              newTL->left() == NULL && newTL->right() == NULL,
   539             "newTL should not have encumbrances from the past");
   540       // we'd like to assert as below:
   541       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   542       //       "else !complicatedSplice");
   543       // ... however, the above assertion is too strong because we aren't
   544       // guaranteed that replacementTL->right() is still NULL.
   545       // Recall that we removed
   546       // the right sub-tree minimum from replacementTL.
   547       // That may well have been its right
   548       // child! So we'll just assert half of the above:
   549       assert(replacementTL->left() != NULL, "else !complicatedSplice");
   550       newTL->setLeft(replacementTL->left());
   551       newTL->setRight(replacementTL->right());
   552       debug_only(
   553         replacementTL->clearRight();
   554         replacementTL->clearLeft();
   555       )
   556     }
   557     assert(replacementTL->right() == NULL &&
   558            replacementTL->left() == NULL &&
   559            replacementTL->parent() == NULL,
   560         "delete without encumbrances");
   561   }
   563   assert(totalSize() >= retTC->size(), "Incorrect total size");
   564   dec_totalSize(retTC->size());     // size book-keeping
   565   assert(totalFreeBlocks() > 0, "Incorrect total count");
   566   set_totalFreeBlocks(totalFreeBlocks() - 1);
   568   assert(retTC != NULL, "null chunk?");
   569   assert(retTC->prev() == NULL && retTC->next() == NULL,
   570          "should return without encumbrances");
   571   if (FLSVerifyDictionary) {
   572     verifyTree();
   573   }
   574   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   575   return TreeChunk::as_TreeChunk(retTC);
   576 }
   578 // Remove the leftmost node (lm) in the tree and return it.
   579 // If lm has a right child, link it to the left node of
   580 // the parent of lm.
   581 TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
   582   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   583   // locate the subtree minimum by walking down left branches
   584   TreeList* curTL = tl;
   585   for (; curTL->left() != NULL; curTL = curTL->left());
   586   // obviously curTL now has at most one child, a right child
   587   if (curTL != root()) {  // Should this test just be removed?
   588     TreeList* parentTL = curTL->parent();
   589     if (parentTL->left() == curTL) { // curTL is a left child
   590       parentTL->setLeft(curTL->right());
   591     } else {
   592       // If the list tl has no left child, then curTL may be
   593       // the right child of parentTL.
   594       assert(parentTL->right() == curTL, "should be a right child");
   595       parentTL->setRight(curTL->right());
   596     }
   597   } else {
   598     // The only use of this method would not pass the root of the
   599     // tree (as indicated by the assertion above that the tree list
   600     // has a parent) but the specification does not explicitly exclude the
   601     // passing of the root so accomodate it.
   602     set_root(NULL);
   603   }
   604   debug_only(
   605     curTL->clearParent();  // Test if this needs to be cleared
   606     curTL->clearRight();    // recall, above, left child is already null
   607   )
   608   // we just excised a (non-root) node, we should still verify all tree invariants
   609   if (FLSVerifyDictionary) {
   610     verifyTree();
   611   }
   612   return curTL;
   613 }
   615 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
   616 // The simplifications are the following:
   617 // . we splay only when we delete (not when we insert)
   618 // . we apply a single spay step per deletion/access
   619 // By doing such partial splaying, we reduce the amount of restructuring,
   620 // while getting a reasonably efficient search tree (we think).
   621 // [Measurements will be needed to (in)validate this expectation.]
   623 void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
   624   // apply a semi-splay step at the given node:
   625   // . if root, norting needs to be done
   626   // . if child of root, splay once
   627   // . else zig-zig or sig-zag depending on path from grandparent
   628   if (root() == tc) return;
   629   warning("*** Splaying not yet implemented; "
   630           "tree operations may be inefficient ***");
   631 }
   633 void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
   634   TreeList *curTL, *prevTL;
   635   size_t size = fc->size();
   637   assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
   638   if (FLSVerifyDictionary) {
   639     verifyTree();
   640   }
   641   // XXX: do i need to clear the FreeChunk fields, let me do it just in case
   642   // Revisit this later
   644   fc->clearNext();
   645   fc->linkPrev(NULL);
   647   // work down from the _root, looking for insertion point
   648   for (prevTL = curTL = root(); curTL != NULL;) {
   649     if (curTL->size() == size)  // exact match
   650       break;
   651     prevTL = curTL;
   652     if (curTL->size() > size) { // follow left branch
   653       curTL = curTL->left();
   654     } else {                    // follow right branch
   655       assert(curTL->size() < size, "size inconsistency");
   656       curTL = curTL->right();
   657     }
   658   }
   659   TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
   660   // This chunk is being returned to the binary try.  It's embedded
   661   // TreeList should be unused at this point.
   662   tc->initialize();
   663   if (curTL != NULL) {          // exact match
   664     tc->set_list(curTL);
   665     curTL->returnChunkAtTail(tc);
   666   } else {                     // need a new node in tree
   667     tc->clearNext();
   668     tc->linkPrev(NULL);
   669     TreeList* newTL = TreeList::as_TreeList(tc);
   670     assert(((TreeChunk*)tc)->list() == newTL,
   671       "List was not initialized correctly");
   672     if (prevTL == NULL) {      // we are the only tree node
   673       assert(root() == NULL, "control point invariant");
   674       set_root(newTL);
   675     } else {                   // insert under prevTL ...
   676       if (prevTL->size() < size) {   // am right child
   677         assert(prevTL->right() == NULL, "control point invariant");
   678         prevTL->setRight(newTL);
   679       } else {                       // am left child
   680         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   681         prevTL->setLeft(newTL);
   682       }
   683     }
   684   }
   685   assert(tc->list() != NULL, "Tree list should be set");
   687   inc_totalSize(size);
   688   // Method 'totalSizeInTree' walks through the every block in the
   689   // tree, so it can cause significant performance loss if there are
   690   // many blocks in the tree
   691   assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
   692   set_totalFreeBlocks(totalFreeBlocks() + 1);
   693   if (FLSVerifyDictionary) {
   694     verifyTree();
   695   }
   696 }
   698 size_t BinaryTreeDictionary::maxChunkSize() const {
   699   verify_par_locked();
   700   TreeList* tc = root();
   701   if (tc == NULL) return 0;
   702   for (; tc->right() != NULL; tc = tc->right());
   703   return tc->size();
   704 }
   706 size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
   707   size_t res;
   708   res = tl->count();
   709 #ifdef ASSERT
   710   size_t cnt;
   711   FreeChunk* tc = tl->head();
   712   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   713   assert(res == cnt, "The count is not being maintained correctly");
   714 #endif
   715   return res;
   716 }
   718 size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
   719   if (tl == NULL)
   720     return 0;
   721   return (tl->size() * totalListLength(tl)) +
   722          totalSizeInTree(tl->left())    +
   723          totalSizeInTree(tl->right());
   724 }
   726 double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
   727   if (tl == NULL) {
   728     return 0.0;
   729   }
   730   double size = (double)(tl->size());
   731   double curr = size * size * totalListLength(tl);
   732   curr += sum_of_squared_block_sizes(tl->left());
   733   curr += sum_of_squared_block_sizes(tl->right());
   734   return curr;
   735 }
   737 size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
   738   if (tl == NULL)
   739     return 0;
   740   return totalListLength(tl) +
   741          totalFreeBlocksInTree(tl->left()) +
   742          totalFreeBlocksInTree(tl->right());
   743 }
   745 size_t BinaryTreeDictionary::numFreeBlocks() const {
   746   assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
   747          "_totalFreeBlocks inconsistency");
   748   return totalFreeBlocks();
   749 }
   751 size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
   752   if (tl == NULL)
   753     return 0;
   754   return 1 + MAX2(treeHeightHelper(tl->left()),
   755                   treeHeightHelper(tl->right()));
   756 }
   758 size_t BinaryTreeDictionary::treeHeight() const {
   759   return treeHeightHelper(root());
   760 }
   762 size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
   763   if (tl == NULL) {
   764     return 0;
   765   }
   766   return 1 + totalNodesHelper(tl->left()) +
   767     totalNodesHelper(tl->right());
   768 }
   770 size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
   771   return totalNodesHelper(root());
   772 }
   774 void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
   775   TreeList* nd = findList(size);
   776   if (nd) {
   777     if (split) {
   778       if (birth) {
   779         nd->increment_splitBirths();
   780         nd->increment_surplus();
   781       }  else {
   782         nd->increment_splitDeaths();
   783         nd->decrement_surplus();
   784       }
   785     } else {
   786       if (birth) {
   787         nd->increment_coalBirths();
   788         nd->increment_surplus();
   789       } else {
   790         nd->increment_coalDeaths();
   791         nd->decrement_surplus();
   792       }
   793     }
   794   }
   795   // A list for this size may not be found (nd == 0) if
   796   //   This is a death where the appropriate list is now
   797   //     empty and has been removed from the list.
   798   //   This is a birth associated with a LinAB.  The chunk
   799   //     for the LinAB is not in the dictionary.
   800 }
   802 bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
   803   TreeList* list_of_size = findList(size);
   804   // None of requested size implies overpopulated.
   805   return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
   806          list_of_size->count() > list_of_size->coalDesired();
   807 }
   809 // Closures for walking the binary tree.
   810 //   do_list() walks the free list in a node applying the closure
   811 //     to each free chunk in the list
   812 //   do_tree() walks the nodes in the binary tree applying do_list()
   813 //     to each list at each node.
   815 class TreeCensusClosure : public StackObj {
   816  protected:
   817   virtual void do_list(FreeList* fl) = 0;
   818  public:
   819   virtual void do_tree(TreeList* tl) = 0;
   820 };
   822 class AscendTreeCensusClosure : public TreeCensusClosure {
   823  public:
   824   void do_tree(TreeList* tl) {
   825     if (tl != NULL) {
   826       do_tree(tl->left());
   827       do_list(tl);
   828       do_tree(tl->right());
   829     }
   830   }
   831 };
   833 class DescendTreeCensusClosure : public TreeCensusClosure {
   834  public:
   835   void do_tree(TreeList* tl) {
   836     if (tl != NULL) {
   837       do_tree(tl->right());
   838       do_list(tl);
   839       do_tree(tl->left());
   840     }
   841   }
   842 };
   844 // For each list in the tree, calculate the desired, desired
   845 // coalesce, count before sweep, and surplus before sweep.
   846 class BeginSweepClosure : public AscendTreeCensusClosure {
   847   double _percentage;
   848   float _inter_sweep_current;
   849   float _inter_sweep_estimate;
   851  public:
   852   BeginSweepClosure(double p, float inter_sweep_current,
   853                               float inter_sweep_estimate) :
   854    _percentage(p),
   855    _inter_sweep_current(inter_sweep_current),
   856    _inter_sweep_estimate(inter_sweep_estimate) { }
   858   void do_list(FreeList* fl) {
   859     double coalSurplusPercent = _percentage;
   860     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate);
   861     fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   862     fl->set_beforeSweep(fl->count());
   863     fl->set_bfrSurp(fl->surplus());
   864   }
   865 };
   867 // Used to search the tree until a condition is met.
   868 // Similar to TreeCensusClosure but searches the
   869 // tree and returns promptly when found.
   871 class TreeSearchClosure : public StackObj {
   872  protected:
   873   virtual bool do_list(FreeList* fl) = 0;
   874  public:
   875   virtual bool do_tree(TreeList* tl) = 0;
   876 };
   878 #if 0 //  Don't need this yet but here for symmetry.
   879 class AscendTreeSearchClosure : public TreeSearchClosure {
   880  public:
   881   bool do_tree(TreeList* tl) {
   882     if (tl != NULL) {
   883       if (do_tree(tl->left())) return true;
   884       if (do_list(tl)) return true;
   885       if (do_tree(tl->right())) return true;
   886     }
   887     return false;
   888   }
   889 };
   890 #endif
   892 class DescendTreeSearchClosure : public TreeSearchClosure {
   893  public:
   894   bool do_tree(TreeList* tl) {
   895     if (tl != NULL) {
   896       if (do_tree(tl->right())) return true;
   897       if (do_list(tl)) return true;
   898       if (do_tree(tl->left())) return true;
   899     }
   900     return false;
   901   }
   902 };
   904 // Searches the tree for a chunk that ends at the
   905 // specified address.
   906 class EndTreeSearchClosure : public DescendTreeSearchClosure {
   907   HeapWord* _target;
   908   FreeChunk* _found;
   910  public:
   911   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
   912   bool do_list(FreeList* fl) {
   913     FreeChunk* item = fl->head();
   914     while (item != NULL) {
   915       if (item->end() == _target) {
   916         _found = item;
   917         return true;
   918       }
   919       item = item->next();
   920     }
   921     return false;
   922   }
   923   FreeChunk* found() { return _found; }
   924 };
   926 FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
   927   EndTreeSearchClosure etsc(target);
   928   bool found_target = etsc.do_tree(root());
   929   assert(found_target || etsc.found() == NULL, "Consistency check");
   930   assert(!found_target || etsc.found() != NULL, "Consistency check");
   931   return etsc.found();
   932 }
   934 void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
   935   float inter_sweep_current, float inter_sweep_estimate) {
   936   BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
   937                                             inter_sweep_estimate);
   938   bsc.do_tree(root());
   939 }
   941 // Closures and methods for calculating total bytes returned to the
   942 // free lists in the tree.
   943 NOT_PRODUCT(
   944   class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
   945    public:
   946     void do_list(FreeList* fl) {
   947       fl->set_returnedBytes(0);
   948     }
   949   };
   951   void BinaryTreeDictionary::initializeDictReturnedBytes() {
   952     InitializeDictReturnedBytesClosure idrb;
   953     idrb.do_tree(root());
   954   }
   956   class ReturnedBytesClosure : public AscendTreeCensusClosure {
   957     size_t _dictReturnedBytes;
   958    public:
   959     ReturnedBytesClosure() { _dictReturnedBytes = 0; }
   960     void do_list(FreeList* fl) {
   961       _dictReturnedBytes += fl->returnedBytes();
   962     }
   963     size_t dictReturnedBytes() { return _dictReturnedBytes; }
   964   };
   966   size_t BinaryTreeDictionary::sumDictReturnedBytes() {
   967     ReturnedBytesClosure rbc;
   968     rbc.do_tree(root());
   970     return rbc.dictReturnedBytes();
   971   }
   973   // Count the number of entries in the tree.
   974   class treeCountClosure : public DescendTreeCensusClosure {
   975    public:
   976     uint count;
   977     treeCountClosure(uint c) { count = c; }
   978     void do_list(FreeList* fl) {
   979       count++;
   980     }
   981   };
   983   size_t BinaryTreeDictionary::totalCount() {
   984     treeCountClosure ctc(0);
   985     ctc.do_tree(root());
   986     return ctc.count;
   987   }
   988 )
   990 // Calculate surpluses for the lists in the tree.
   991 class setTreeSurplusClosure : public AscendTreeCensusClosure {
   992   double percentage;
   993  public:
   994   setTreeSurplusClosure(double v) { percentage = v; }
   995   void do_list(FreeList* fl) {
   996     double splitSurplusPercent = percentage;
   997     fl->set_surplus(fl->count() -
   998                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
   999   }
  1000 };
  1002 void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
  1003   setTreeSurplusClosure sts(splitSurplusPercent);
  1004   sts.do_tree(root());
  1007 // Set hints for the lists in the tree.
  1008 class setTreeHintsClosure : public DescendTreeCensusClosure {
  1009   size_t hint;
  1010  public:
  1011   setTreeHintsClosure(size_t v) { hint = v; }
  1012   void do_list(FreeList* fl) {
  1013     fl->set_hint(hint);
  1014     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1015       "Current hint is inconsistent");
  1016     if (fl->surplus() > 0) {
  1017       hint = fl->size();
  1020 };
  1022 void BinaryTreeDictionary::setTreeHints(void) {
  1023   setTreeHintsClosure sth(0);
  1024   sth.do_tree(root());
  1027 // Save count before previous sweep and splits and coalesces.
  1028 class clearTreeCensusClosure : public AscendTreeCensusClosure {
  1029   void do_list(FreeList* fl) {
  1030     fl->set_prevSweep(fl->count());
  1031     fl->set_coalBirths(0);
  1032     fl->set_coalDeaths(0);
  1033     fl->set_splitBirths(0);
  1034     fl->set_splitDeaths(0);
  1036 };
  1038 void BinaryTreeDictionary::clearTreeCensus(void) {
  1039   clearTreeCensusClosure ctc;
  1040   ctc.do_tree(root());
  1043 // Do reporting and post sweep clean up.
  1044 void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
  1045   // Does walking the tree 3 times hurt?
  1046   setTreeSurplus(splitSurplusPercent);
  1047   setTreeHints();
  1048   if (PrintGC && Verbose) {
  1049     reportStatistics();
  1051   clearTreeCensus();
  1054 // Print summary statistics
  1055 void BinaryTreeDictionary::reportStatistics() const {
  1056   verify_par_locked();
  1057   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1058          "------------------------------------\n");
  1059   size_t totalSize = totalChunkSize(debug_only(NULL));
  1060   size_t    freeBlocks = numFreeBlocks();
  1061   gclog_or_tty->print("Total Free Space: %d\n", totalSize);
  1062   gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
  1063   gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
  1064   if (freeBlocks > 0) {
  1065     gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
  1067   gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
  1070 // Print census information - counts, births, deaths, etc.
  1071 // for each list in the tree.  Also print some summary
  1072 // information.
  1073 class printTreeCensusClosure : public AscendTreeCensusClosure {
  1074   int _print_line;
  1075   size_t _totalFree;
  1076   FreeList _total;
  1078  public:
  1079   printTreeCensusClosure() {
  1080     _print_line = 0;
  1081     _totalFree = 0;
  1083   FreeList* total() { return &_total; }
  1084   size_t totalFree() { return _totalFree; }
  1085   void do_list(FreeList* fl) {
  1086     if (++_print_line >= 40) {
  1087       FreeList::print_labels_on(gclog_or_tty, "size");
  1088       _print_line = 0;
  1090     fl->print_on(gclog_or_tty);
  1091     _totalFree +=            fl->count()            * fl->size()        ;
  1092     total()->set_count(      total()->count()       + fl->count()      );
  1093     total()->set_bfrSurp(    total()->bfrSurp()     + fl->bfrSurp()    );
  1094     total()->set_surplus(    total()->splitDeaths() + fl->surplus()    );
  1095     total()->set_desired(    total()->desired()     + fl->desired()    );
  1096     total()->set_prevSweep(  total()->prevSweep()   + fl->prevSweep()  );
  1097     total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
  1098     total()->set_coalBirths( total()->coalBirths()  + fl->coalBirths() );
  1099     total()->set_coalDeaths( total()->coalDeaths()  + fl->coalDeaths() );
  1100     total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
  1101     total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
  1103 };
  1105 void BinaryTreeDictionary::printDictCensus(void) const {
  1107   gclog_or_tty->print("\nBinaryTree\n");
  1108   FreeList::print_labels_on(gclog_or_tty, "size");
  1109   printTreeCensusClosure ptc;
  1110   ptc.do_tree(root());
  1112   FreeList* total = ptc.total();
  1113   FreeList::print_labels_on(gclog_or_tty, " ");
  1114   total->print_on(gclog_or_tty, "TOTAL\t");
  1115   gclog_or_tty->print(
  1116               "totalFree(words): " SIZE_FORMAT_W(16)
  1117               " growth: %8.5f  deficit: %8.5f\n",
  1118               ptc.totalFree(),
  1119               (double)(total->splitBirths() + total->coalBirths()
  1120                      - total->splitDeaths() - total->coalDeaths())
  1121               /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
  1122              (double)(total->desired() - total->count())
  1123              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1126 // Verify the following tree invariants:
  1127 // . _root has no parent
  1128 // . parent and child point to each other
  1129 // . each node's key correctly related to that of its child(ren)
  1130 void BinaryTreeDictionary::verifyTree() const {
  1131   guarantee(root() == NULL || totalFreeBlocks() == 0 ||
  1132     totalSize() != 0, "_totalSize should't be 0?");
  1133   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1134   verifyTreeHelper(root());
  1137 size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
  1138   size_t ct = 0;
  1139   for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1140     ct++;
  1141     assert(curFC->prev() == NULL || curFC->prev()->isFree(),
  1142       "Chunk should be free");
  1144   return ct;
  1147 // Note: this helper is recursive rather than iterative, so use with
  1148 // caution on very deep trees; and watch out for stack overflow errors;
  1149 // In general, to be used only for debugging.
  1150 void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
  1151   if (tl == NULL)
  1152     return;
  1153   guarantee(tl->size() != 0, "A list must has a size");
  1154   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1155          "parent<-/->left");
  1156   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1157          "parent<-/->right");;
  1158   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1159          "parent !> left");
  1160   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1161          "parent !< left");
  1162   guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
  1163   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1164     "list inconsistency");
  1165   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1166     "list count is inconsistent");
  1167   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1168     "list is incorrectly constructed");
  1169   size_t count = verifyPrevFreePtrs(tl);
  1170   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1171   if (tl->head() != NULL) {
  1172     tl->head_as_TreeChunk()->verifyTreeChunkList();
  1174   verifyTreeHelper(tl->left());
  1175   verifyTreeHelper(tl->right());
  1178 void BinaryTreeDictionary::verify() const {
  1179   verifyTree();
  1180   guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");

mercurial