src/share/vm/opto/macro.cpp

Sat, 04 Jun 2011 10:36:22 -0700

author
kvn
date
Sat, 04 Jun 2011 10:36:22 -0700
changeset 2951
642c68c75db9
parent 2877
bad7ecd0b6ed
child 2985
e3cbc9ddd434
permissions
-rw-r--r--

7050280: assert(u->as_Unlock()->is_eliminated()) failed: sanity
Summary: Mark all associated (same box and obj) lock and unlock nodes for elimination if some of them marked already.
Reviewed-by: iveresov, never

     1 /*
     2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "libadt/vectset.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/compile.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/locknode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/macro.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/node.hpp"
    38 #include "opto/phaseX.hpp"
    39 #include "opto/rootnode.hpp"
    40 #include "opto/runtime.hpp"
    41 #include "opto/subnode.hpp"
    42 #include "opto/type.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    46 //
    47 // Replace any references to "oldref" in inputs to "use" with "newref".
    48 // Returns the number of replacements made.
    49 //
    50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    51   int nreplacements = 0;
    52   uint req = use->req();
    53   for (uint j = 0; j < use->len(); j++) {
    54     Node *uin = use->in(j);
    55     if (uin == oldref) {
    56       if (j < req)
    57         use->set_req(j, newref);
    58       else
    59         use->set_prec(j, newref);
    60       nreplacements++;
    61     } else if (j >= req && uin == NULL) {
    62       break;
    63     }
    64   }
    65   return nreplacements;
    66 }
    68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    69   // Copy debug information and adjust JVMState information
    70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    71   uint new_dbg_start = newcall->tf()->domain()->cnt();
    72   int jvms_adj  = new_dbg_start - old_dbg_start;
    73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    75   Dict* sosn_map = new Dict(cmpkey,hashkey);
    76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    77     Node* old_in = oldcall->in(i);
    78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    81       uint old_unique = C->unique();
    82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    83       if (old_unique != C->unique()) {
    84         new_in->set_req(0, newcall->in(0)); // reset control edge
    85         new_in = transform_later(new_in); // Register new node.
    86       }
    87       old_in = new_in;
    88     }
    89     newcall->add_req(old_in);
    90   }
    92   newcall->set_jvms(oldcall->jvms());
    93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    94     jvms->set_map(newcall);
    95     jvms->set_locoff(jvms->locoff()+jvms_adj);
    96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    97     jvms->set_monoff(jvms->monoff()+jvms_adj);
    98     jvms->set_scloff(jvms->scloff()+jvms_adj);
    99     jvms->set_endoff(jvms->endoff()+jvms_adj);
   100   }
   101 }
   103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
   104   Node* cmp;
   105   if (mask != 0) {
   106     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
   107     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
   108   } else {
   109     cmp = word;
   110   }
   111   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
   112   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   113   transform_later(iff);
   115   // Fast path taken.
   116   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
   118   // Fast path not-taken, i.e. slow path
   119   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
   121   if (return_fast_path) {
   122     region->init_req(edge, slow_taken); // Capture slow-control
   123     return fast_taken;
   124   } else {
   125     region->init_req(edge, fast_taken); // Capture fast-control
   126     return slow_taken;
   127   }
   128 }
   130 //--------------------copy_predefined_input_for_runtime_call--------------------
   131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   132   // Set fixed predefined input arguments
   133   call->init_req( TypeFunc::Control, ctrl );
   134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   138 }
   140 //------------------------------make_slow_call---------------------------------
   141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   143   // Slow-path call
   144   int size = slow_call_type->domain()->cnt();
   145  CallNode *call = leaf_name
   146    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   147    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   149   // Slow path call has no side-effects, uses few values
   150   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   151   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   152   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   153   copy_call_debug_info(oldcall, call);
   154   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   155   _igvn.replace_node(oldcall, call);
   156   transform_later(call);
   158   return call;
   159 }
   161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   162   _fallthroughproj = NULL;
   163   _fallthroughcatchproj = NULL;
   164   _ioproj_fallthrough = NULL;
   165   _ioproj_catchall = NULL;
   166   _catchallcatchproj = NULL;
   167   _memproj_fallthrough = NULL;
   168   _memproj_catchall = NULL;
   169   _resproj = NULL;
   170   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   171     ProjNode *pn = call->fast_out(i)->as_Proj();
   172     switch (pn->_con) {
   173       case TypeFunc::Control:
   174       {
   175         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   176         _fallthroughproj = pn;
   177         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   178         const Node *cn = pn->fast_out(j);
   179         if (cn->is_Catch()) {
   180           ProjNode *cpn = NULL;
   181           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   182             cpn = cn->fast_out(k)->as_Proj();
   183             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   184             if (cpn->_con == CatchProjNode::fall_through_index)
   185               _fallthroughcatchproj = cpn;
   186             else {
   187               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   188               _catchallcatchproj = cpn;
   189             }
   190           }
   191         }
   192         break;
   193       }
   194       case TypeFunc::I_O:
   195         if (pn->_is_io_use)
   196           _ioproj_catchall = pn;
   197         else
   198           _ioproj_fallthrough = pn;
   199         break;
   200       case TypeFunc::Memory:
   201         if (pn->_is_io_use)
   202           _memproj_catchall = pn;
   203         else
   204           _memproj_fallthrough = pn;
   205         break;
   206       case TypeFunc::Parms:
   207         _resproj = pn;
   208         break;
   209       default:
   210         assert(false, "unexpected projection from allocation node.");
   211     }
   212   }
   214 }
   216 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   218   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   219   if (!UseG1GC) {
   220     // vanilla/CMS post barrier
   221     Node *shift = p2x->unique_out();
   222     Node *addp = shift->unique_out();
   223     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   224       Node *mem = addp->last_out(j);
   225       if (UseCondCardMark && mem->is_Load()) {
   226         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
   227         // The load is checking if the card has been written so
   228         // replace it with zero to fold the test.
   229         _igvn.replace_node(mem, intcon(0));
   230         continue;
   231       }
   232       assert(mem->is_Store(), "store required");
   233       _igvn.replace_node(mem, mem->in(MemNode::Memory));
   234     }
   235   } else {
   236     // G1 pre/post barriers
   237     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
   238     // It could be only one user, URShift node, in Object.clone() instrinsic
   239     // but the new allocation is passed to arraycopy stub and it could not
   240     // be scalar replaced. So we don't check the case.
   242     // Remove G1 post barrier.
   244     // Search for CastP2X->Xor->URShift->Cmp path which
   245     // checks if the store done to a different from the value's region.
   246     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   247     Node* xorx = NULL;
   248     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   249       Node* u = p2x->fast_out(i);
   250       if (u->Opcode() == Op_XorX) {
   251         xorx = u;
   252         break;
   253       }
   254     }
   255     assert(xorx != NULL, "missing G1 post barrier");
   256     Node* shift = xorx->unique_out();
   257     Node* cmpx = shift->unique_out();
   258     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   259     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   260     "missing region check in G1 post barrier");
   261     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   263     // Remove G1 pre barrier.
   265     // Search "if (marking != 0)" check and set it to "false".
   266     Node* this_region = p2x->in(0);
   267     assert(this_region != NULL, "");
   268     // There is no G1 pre barrier if previous stored value is NULL
   269     // (for example, after initialization).
   270     if (this_region->is_Region() && this_region->req() == 3) {
   271       int ind = 1;
   272       if (!this_region->in(ind)->is_IfFalse()) {
   273         ind = 2;
   274       }
   275       if (this_region->in(ind)->is_IfFalse()) {
   276         Node* bol = this_region->in(ind)->in(0)->in(1);
   277         assert(bol->is_Bool(), "");
   278         cmpx = bol->in(1);
   279         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   280             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   281             cmpx->in(1)->is_Load()) {
   282           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   283           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   284                                               PtrQueue::byte_offset_of_active());
   285           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   286               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   287               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   288             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   289           }
   290         }
   291       }
   292     }
   293     // Now CastP2X can be removed since it is used only on dead path
   294     // which currently still alive until igvn optimize it.
   295     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
   296     _igvn.replace_node(p2x, top());
   297   }
   298 }
   300 // Search for a memory operation for the specified memory slice.
   301 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   302   Node *orig_mem = mem;
   303   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   304   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   305   while (true) {
   306     if (mem == alloc_mem || mem == start_mem ) {
   307       return mem;  // hit one of our sentinels
   308     } else if (mem->is_MergeMem()) {
   309       mem = mem->as_MergeMem()->memory_at(alias_idx);
   310     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   311       Node *in = mem->in(0);
   312       // we can safely skip over safepoints, calls, locks and membars because we
   313       // already know that the object is safe to eliminate.
   314       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   315         return in;
   316       } else if (in->is_Call()) {
   317         CallNode *call = in->as_Call();
   318         if (!call->may_modify(tinst, phase)) {
   319           mem = call->in(TypeFunc::Memory);
   320         }
   321         mem = in->in(TypeFunc::Memory);
   322       } else if (in->is_MemBar()) {
   323         mem = in->in(TypeFunc::Memory);
   324       } else {
   325         assert(false, "unexpected projection");
   326       }
   327     } else if (mem->is_Store()) {
   328       const TypePtr* atype = mem->as_Store()->adr_type();
   329       int adr_idx = Compile::current()->get_alias_index(atype);
   330       if (adr_idx == alias_idx) {
   331         assert(atype->isa_oopptr(), "address type must be oopptr");
   332         int adr_offset = atype->offset();
   333         uint adr_iid = atype->is_oopptr()->instance_id();
   334         // Array elements references have the same alias_idx
   335         // but different offset and different instance_id.
   336         if (adr_offset == offset && adr_iid == alloc->_idx)
   337           return mem;
   338       } else {
   339         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   340       }
   341       mem = mem->in(MemNode::Memory);
   342     } else if (mem->is_ClearArray()) {
   343       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   344         // Can not bypass initialization of the instance
   345         // we are looking.
   346         debug_only(intptr_t offset;)
   347         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   348         InitializeNode* init = alloc->as_Allocate()->initialization();
   349         // We are looking for stored value, return Initialize node
   350         // or memory edge from Allocate node.
   351         if (init != NULL)
   352           return init;
   353         else
   354           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   355       }
   356       // Otherwise skip it (the call updated 'mem' value).
   357     } else if (mem->Opcode() == Op_SCMemProj) {
   358       assert(mem->in(0)->is_LoadStore(), "sanity");
   359       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
   360       int adr_idx = Compile::current()->get_alias_index(atype);
   361       if (adr_idx == alias_idx) {
   362         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   363         return NULL;
   364       }
   365       mem = mem->in(0)->in(MemNode::Memory);
   366     } else {
   367       return mem;
   368     }
   369     assert(mem != orig_mem, "dead memory loop");
   370   }
   371 }
   373 //
   374 // Given a Memory Phi, compute a value Phi containing the values from stores
   375 // on the input paths.
   376 // Note: this function is recursive, its depth is limied by the "level" argument
   377 // Returns the computed Phi, or NULL if it cannot compute it.
   378 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   379   assert(mem->is_Phi(), "sanity");
   380   int alias_idx = C->get_alias_index(adr_t);
   381   int offset = adr_t->offset();
   382   int instance_id = adr_t->instance_id();
   384   // Check if an appropriate value phi already exists.
   385   Node* region = mem->in(0);
   386   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   387     Node* phi = region->fast_out(k);
   388     if (phi->is_Phi() && phi != mem &&
   389         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   390       return phi;
   391     }
   392   }
   393   // Check if an appropriate new value phi already exists.
   394   Node* new_phi = NULL;
   395   uint size = value_phis->size();
   396   for (uint i=0; i < size; i++) {
   397     if ( mem->_idx == value_phis->index_at(i) ) {
   398       return value_phis->node_at(i);
   399     }
   400   }
   402   if (level <= 0) {
   403     return NULL; // Give up: phi tree too deep
   404   }
   405   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   406   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   408   uint length = mem->req();
   409   GrowableArray <Node *> values(length, length, NULL);
   411   // create a new Phi for the value
   412   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   413   transform_later(phi);
   414   value_phis->push(phi, mem->_idx);
   416   for (uint j = 1; j < length; j++) {
   417     Node *in = mem->in(j);
   418     if (in == NULL || in->is_top()) {
   419       values.at_put(j, in);
   420     } else  {
   421       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   422       if (val == start_mem || val == alloc_mem) {
   423         // hit a sentinel, return appropriate 0 value
   424         values.at_put(j, _igvn.zerocon(ft));
   425         continue;
   426       }
   427       if (val->is_Initialize()) {
   428         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   429       }
   430       if (val == NULL) {
   431         return NULL;  // can't find a value on this path
   432       }
   433       if (val == mem) {
   434         values.at_put(j, mem);
   435       } else if (val->is_Store()) {
   436         values.at_put(j, val->in(MemNode::ValueIn));
   437       } else if(val->is_Proj() && val->in(0) == alloc) {
   438         values.at_put(j, _igvn.zerocon(ft));
   439       } else if (val->is_Phi()) {
   440         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   441         if (val == NULL) {
   442           return NULL;
   443         }
   444         values.at_put(j, val);
   445       } else if (val->Opcode() == Op_SCMemProj) {
   446         assert(val->in(0)->is_LoadStore(), "sanity");
   447         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   448         return NULL;
   449       } else {
   450 #ifdef ASSERT
   451         val->dump();
   452         assert(false, "unknown node on this path");
   453 #endif
   454         return NULL;  // unknown node on this path
   455       }
   456     }
   457   }
   458   // Set Phi's inputs
   459   for (uint j = 1; j < length; j++) {
   460     if (values.at(j) == mem) {
   461       phi->init_req(j, phi);
   462     } else {
   463       phi->init_req(j, values.at(j));
   464     }
   465   }
   466   return phi;
   467 }
   469 // Search the last value stored into the object's field.
   470 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   471   assert(adr_t->is_known_instance_field(), "instance required");
   472   int instance_id = adr_t->instance_id();
   473   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   475   int alias_idx = C->get_alias_index(adr_t);
   476   int offset = adr_t->offset();
   477   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   478   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   479   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   480   Arena *a = Thread::current()->resource_area();
   481   VectorSet visited(a);
   484   bool done = sfpt_mem == alloc_mem;
   485   Node *mem = sfpt_mem;
   486   while (!done) {
   487     if (visited.test_set(mem->_idx)) {
   488       return NULL;  // found a loop, give up
   489     }
   490     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   491     if (mem == start_mem || mem == alloc_mem) {
   492       done = true;  // hit a sentinel, return appropriate 0 value
   493     } else if (mem->is_Initialize()) {
   494       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   495       if (mem == NULL) {
   496         done = true; // Something go wrong.
   497       } else if (mem->is_Store()) {
   498         const TypePtr* atype = mem->as_Store()->adr_type();
   499         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   500         done = true;
   501       }
   502     } else if (mem->is_Store()) {
   503       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   504       assert(atype != NULL, "address type must be oopptr");
   505       assert(C->get_alias_index(atype) == alias_idx &&
   506              atype->is_known_instance_field() && atype->offset() == offset &&
   507              atype->instance_id() == instance_id, "store is correct memory slice");
   508       done = true;
   509     } else if (mem->is_Phi()) {
   510       // try to find a phi's unique input
   511       Node *unique_input = NULL;
   512       Node *top = C->top();
   513       for (uint i = 1; i < mem->req(); i++) {
   514         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   515         if (n == NULL || n == top || n == mem) {
   516           continue;
   517         } else if (unique_input == NULL) {
   518           unique_input = n;
   519         } else if (unique_input != n) {
   520           unique_input = top;
   521           break;
   522         }
   523       }
   524       if (unique_input != NULL && unique_input != top) {
   525         mem = unique_input;
   526       } else {
   527         done = true;
   528       }
   529     } else {
   530       assert(false, "unexpected node");
   531     }
   532   }
   533   if (mem != NULL) {
   534     if (mem == start_mem || mem == alloc_mem) {
   535       // hit a sentinel, return appropriate 0 value
   536       return _igvn.zerocon(ft);
   537     } else if (mem->is_Store()) {
   538       return mem->in(MemNode::ValueIn);
   539     } else if (mem->is_Phi()) {
   540       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   541       Node_Stack value_phis(a, 8);
   542       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   543       if (phi != NULL) {
   544         return phi;
   545       } else {
   546         // Kill all new Phis
   547         while(value_phis.is_nonempty()) {
   548           Node* n = value_phis.node();
   549           _igvn.replace_node(n, C->top());
   550           value_phis.pop();
   551         }
   552       }
   553     }
   554   }
   555   // Something go wrong.
   556   return NULL;
   557 }
   559 // Check the possibility of scalar replacement.
   560 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   561   //  Scan the uses of the allocation to check for anything that would
   562   //  prevent us from eliminating it.
   563   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   564   DEBUG_ONLY( Node* disq_node = NULL; )
   565   bool  can_eliminate = true;
   567   Node* res = alloc->result_cast();
   568   const TypeOopPtr* res_type = NULL;
   569   if (res == NULL) {
   570     // All users were eliminated.
   571   } else if (!res->is_CheckCastPP()) {
   572     alloc->_is_scalar_replaceable = false;  // don't try again
   573     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   574     can_eliminate = false;
   575   } else {
   576     res_type = _igvn.type(res)->isa_oopptr();
   577     if (res_type == NULL) {
   578       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   579       can_eliminate = false;
   580     } else if (res_type->isa_aryptr()) {
   581       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   582       if (length < 0) {
   583         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   584         can_eliminate = false;
   585       }
   586     }
   587   }
   589   if (can_eliminate && res != NULL) {
   590     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   591                                j < jmax && can_eliminate; j++) {
   592       Node* use = res->fast_out(j);
   594       if (use->is_AddP()) {
   595         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   596         int offset = addp_type->offset();
   598         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   599           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   600           can_eliminate = false;
   601           break;
   602         }
   603         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   604                                    k < kmax && can_eliminate; k++) {
   605           Node* n = use->fast_out(k);
   606           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   607             DEBUG_ONLY(disq_node = n;)
   608             if (n->is_Load() || n->is_LoadStore()) {
   609               NOT_PRODUCT(fail_eliminate = "Field load";)
   610             } else {
   611               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   612             }
   613             can_eliminate = false;
   614           }
   615         }
   616       } else if (use->is_SafePoint()) {
   617         SafePointNode* sfpt = use->as_SafePoint();
   618         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   619           // Object is passed as argument.
   620           DEBUG_ONLY(disq_node = use;)
   621           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   622           can_eliminate = false;
   623         }
   624         Node* sfptMem = sfpt->memory();
   625         if (sfptMem == NULL || sfptMem->is_top()) {
   626           DEBUG_ONLY(disq_node = use;)
   627           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   628           can_eliminate = false;
   629         } else {
   630           safepoints.append_if_missing(sfpt);
   631         }
   632       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   633         if (use->is_Phi()) {
   634           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   635             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   636           } else {
   637             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   638           }
   639           DEBUG_ONLY(disq_node = use;)
   640         } else {
   641           if (use->Opcode() == Op_Return) {
   642             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   643           }else {
   644             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   645           }
   646           DEBUG_ONLY(disq_node = use;)
   647         }
   648         can_eliminate = false;
   649       }
   650     }
   651   }
   653 #ifndef PRODUCT
   654   if (PrintEliminateAllocations) {
   655     if (can_eliminate) {
   656       tty->print("Scalar ");
   657       if (res == NULL)
   658         alloc->dump();
   659       else
   660         res->dump();
   661     } else {
   662       tty->print("NotScalar (%s)", fail_eliminate);
   663       if (res == NULL)
   664         alloc->dump();
   665       else
   666         res->dump();
   667 #ifdef ASSERT
   668       if (disq_node != NULL) {
   669           tty->print("  >>>> ");
   670           disq_node->dump();
   671       }
   672 #endif /*ASSERT*/
   673     }
   674   }
   675 #endif
   676   return can_eliminate;
   677 }
   679 // Do scalar replacement.
   680 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   681   GrowableArray <SafePointNode *> safepoints_done;
   683   ciKlass* klass = NULL;
   684   ciInstanceKlass* iklass = NULL;
   685   int nfields = 0;
   686   int array_base;
   687   int element_size;
   688   BasicType basic_elem_type;
   689   ciType* elem_type;
   691   Node* res = alloc->result_cast();
   692   const TypeOopPtr* res_type = NULL;
   693   if (res != NULL) { // Could be NULL when there are no users
   694     res_type = _igvn.type(res)->isa_oopptr();
   695   }
   697   if (res != NULL) {
   698     klass = res_type->klass();
   699     if (res_type->isa_instptr()) {
   700       // find the fields of the class which will be needed for safepoint debug information
   701       assert(klass->is_instance_klass(), "must be an instance klass.");
   702       iklass = klass->as_instance_klass();
   703       nfields = iklass->nof_nonstatic_fields();
   704     } else {
   705       // find the array's elements which will be needed for safepoint debug information
   706       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   707       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   708       elem_type = klass->as_array_klass()->element_type();
   709       basic_elem_type = elem_type->basic_type();
   710       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   711       element_size = type2aelembytes(basic_elem_type);
   712     }
   713   }
   714   //
   715   // Process the safepoint uses
   716   //
   717   while (safepoints.length() > 0) {
   718     SafePointNode* sfpt = safepoints.pop();
   719     Node* mem = sfpt->memory();
   720     uint first_ind = sfpt->req();
   721     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
   722 #ifdef ASSERT
   723                                                  alloc,
   724 #endif
   725                                                  first_ind, nfields);
   726     sobj->init_req(0, sfpt->in(TypeFunc::Control));
   727     transform_later(sobj);
   729     // Scan object's fields adding an input to the safepoint for each field.
   730     for (int j = 0; j < nfields; j++) {
   731       intptr_t offset;
   732       ciField* field = NULL;
   733       if (iklass != NULL) {
   734         field = iklass->nonstatic_field_at(j);
   735         offset = field->offset();
   736         elem_type = field->type();
   737         basic_elem_type = field->layout_type();
   738       } else {
   739         offset = array_base + j * (intptr_t)element_size;
   740       }
   742       const Type *field_type;
   743       // The next code is taken from Parse::do_get_xxx().
   744       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   745         if (!elem_type->is_loaded()) {
   746           field_type = TypeInstPtr::BOTTOM;
   747         } else if (field != NULL && field->is_constant() && field->is_static()) {
   748           // This can happen if the constant oop is non-perm.
   749           ciObject* con = field->constant_value().as_object();
   750           // Do not "join" in the previous type; it doesn't add value,
   751           // and may yield a vacuous result if the field is of interface type.
   752           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   753           assert(field_type != NULL, "field singleton type must be consistent");
   754         } else {
   755           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   756         }
   757         if (UseCompressedOops) {
   758           field_type = field_type->make_narrowoop();
   759           basic_elem_type = T_NARROWOOP;
   760         }
   761       } else {
   762         field_type = Type::get_const_basic_type(basic_elem_type);
   763       }
   765       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   767       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   768       if (field_val == NULL) {
   769         // we weren't able to find a value for this field,
   770         // give up on eliminating this allocation
   771         alloc->_is_scalar_replaceable = false;  // don't try again
   772         // remove any extra entries we added to the safepoint
   773         uint last = sfpt->req() - 1;
   774         for (int k = 0;  k < j; k++) {
   775           sfpt->del_req(last--);
   776         }
   777         // rollback processed safepoints
   778         while (safepoints_done.length() > 0) {
   779           SafePointNode* sfpt_done = safepoints_done.pop();
   780           // remove any extra entries we added to the safepoint
   781           last = sfpt_done->req() - 1;
   782           for (int k = 0;  k < nfields; k++) {
   783             sfpt_done->del_req(last--);
   784           }
   785           JVMState *jvms = sfpt_done->jvms();
   786           jvms->set_endoff(sfpt_done->req());
   787           // Now make a pass over the debug information replacing any references
   788           // to SafePointScalarObjectNode with the allocated object.
   789           int start = jvms->debug_start();
   790           int end   = jvms->debug_end();
   791           for (int i = start; i < end; i++) {
   792             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   793               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   794               if (scobj->first_index() == sfpt_done->req() &&
   795                   scobj->n_fields() == (uint)nfields) {
   796                 assert(scobj->alloc() == alloc, "sanity");
   797                 sfpt_done->set_req(i, res);
   798               }
   799             }
   800           }
   801         }
   802 #ifndef PRODUCT
   803         if (PrintEliminateAllocations) {
   804           if (field != NULL) {
   805             tty->print("=== At SafePoint node %d can't find value of Field: ",
   806                        sfpt->_idx);
   807             field->print();
   808             int field_idx = C->get_alias_index(field_addr_type);
   809             tty->print(" (alias_idx=%d)", field_idx);
   810           } else { // Array's element
   811             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   812                        sfpt->_idx, j);
   813           }
   814           tty->print(", which prevents elimination of: ");
   815           if (res == NULL)
   816             alloc->dump();
   817           else
   818             res->dump();
   819         }
   820 #endif
   821         return false;
   822       }
   823       if (UseCompressedOops && field_type->isa_narrowoop()) {
   824         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   825         // to be able scalar replace the allocation.
   826         if (field_val->is_EncodeP()) {
   827           field_val = field_val->in(1);
   828         } else {
   829           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
   830         }
   831       }
   832       sfpt->add_req(field_val);
   833     }
   834     JVMState *jvms = sfpt->jvms();
   835     jvms->set_endoff(sfpt->req());
   836     // Now make a pass over the debug information replacing any references
   837     // to the allocated object with "sobj"
   838     int start = jvms->debug_start();
   839     int end   = jvms->debug_end();
   840     for (int i = start; i < end; i++) {
   841       if (sfpt->in(i) == res) {
   842         sfpt->set_req(i, sobj);
   843       }
   844     }
   845     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   846   }
   847   return true;
   848 }
   850 // Process users of eliminated allocation.
   851 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
   852   Node* res = alloc->result_cast();
   853   if (res != NULL) {
   854     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   855       Node *use = res->last_out(j);
   856       uint oc1 = res->outcnt();
   858       if (use->is_AddP()) {
   859         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   860           Node *n = use->last_out(k);
   861           uint oc2 = use->outcnt();
   862           if (n->is_Store()) {
   863 #ifdef ASSERT
   864             // Verify that there is no dependent MemBarVolatile nodes,
   865             // they should be removed during IGVN, see MemBarNode::Ideal().
   866             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   867                                        p < pmax; p++) {
   868               Node* mb = n->fast_out(p);
   869               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   870                      mb->req() <= MemBarNode::Precedent ||
   871                      mb->in(MemBarNode::Precedent) != n,
   872                      "MemBarVolatile should be eliminated for non-escaping object");
   873             }
   874 #endif
   875             _igvn.replace_node(n, n->in(MemNode::Memory));
   876           } else {
   877             eliminate_card_mark(n);
   878           }
   879           k -= (oc2 - use->outcnt());
   880         }
   881       } else {
   882         eliminate_card_mark(use);
   883       }
   884       j -= (oc1 - res->outcnt());
   885     }
   886     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   887     _igvn.remove_dead_node(res);
   888   }
   890   //
   891   // Process other users of allocation's projections
   892   //
   893   if (_resproj != NULL && _resproj->outcnt() != 0) {
   894     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   895       Node *use = _resproj->last_out(j);
   896       uint oc1 = _resproj->outcnt();
   897       if (use->is_Initialize()) {
   898         // Eliminate Initialize node.
   899         InitializeNode *init = use->as_Initialize();
   900         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   901         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   902         if (ctrl_proj != NULL) {
   903            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   904           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   905         }
   906         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   907         if (mem_proj != NULL) {
   908           Node *mem = init->in(TypeFunc::Memory);
   909 #ifdef ASSERT
   910           if (mem->is_MergeMem()) {
   911             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   912           } else {
   913             assert(mem == _memproj_fallthrough, "allocation memory projection");
   914           }
   915 #endif
   916           _igvn.replace_node(mem_proj, mem);
   917         }
   918       } else if (use->is_AddP()) {
   919         // raw memory addresses used only by the initialization
   920         _igvn.replace_node(use, C->top());
   921       } else  {
   922         assert(false, "only Initialize or AddP expected");
   923       }
   924       j -= (oc1 - _resproj->outcnt());
   925     }
   926   }
   927   if (_fallthroughcatchproj != NULL) {
   928     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   929   }
   930   if (_memproj_fallthrough != NULL) {
   931     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   932   }
   933   if (_memproj_catchall != NULL) {
   934     _igvn.replace_node(_memproj_catchall, C->top());
   935   }
   936   if (_ioproj_fallthrough != NULL) {
   937     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   938   }
   939   if (_ioproj_catchall != NULL) {
   940     _igvn.replace_node(_ioproj_catchall, C->top());
   941   }
   942   if (_catchallcatchproj != NULL) {
   943     _igvn.replace_node(_catchallcatchproj, C->top());
   944   }
   945 }
   947 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   949   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
   950     return false;
   951   }
   953   extract_call_projections(alloc);
   955   GrowableArray <SafePointNode *> safepoints;
   956   if (!can_eliminate_allocation(alloc, safepoints)) {
   957     return false;
   958   }
   960   if (!scalar_replacement(alloc, safepoints)) {
   961     return false;
   962   }
   964   CompileLog* log = C->log();
   965   if (log != NULL) {
   966     Node* klass = alloc->in(AllocateNode::KlassNode);
   967     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   968     log->head("eliminate_allocation type='%d'",
   969               log->identify(tklass->klass()));
   970     JVMState* p = alloc->jvms();
   971     while (p != NULL) {
   972       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   973       p = p->caller();
   974     }
   975     log->tail("eliminate_allocation");
   976   }
   978   process_users_of_allocation(alloc);
   980 #ifndef PRODUCT
   981   if (PrintEliminateAllocations) {
   982     if (alloc->is_AllocateArray())
   983       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
   984     else
   985       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
   986   }
   987 #endif
   989   return true;
   990 }
   993 //---------------------------set_eden_pointers-------------------------
   994 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   995   if (UseTLAB) {                // Private allocation: load from TLS
   996     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   997     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
   998     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
   999     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
  1000     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
  1001   } else {                      // Shared allocation: load from globals
  1002     CollectedHeap* ch = Universe::heap();
  1003     address top_adr = (address)ch->top_addr();
  1004     address end_adr = (address)ch->end_addr();
  1005     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
  1006     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  1011 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  1012   Node* adr = basic_plus_adr(base, offset);
  1013   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
  1014   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
  1015   transform_later(value);
  1016   return value;
  1020 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  1021   Node* adr = basic_plus_adr(base, offset);
  1022   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
  1023   transform_later(mem);
  1024   return mem;
  1027 //=============================================================================
  1028 //
  1029 //                              A L L O C A T I O N
  1030 //
  1031 // Allocation attempts to be fast in the case of frequent small objects.
  1032 // It breaks down like this:
  1033 //
  1034 // 1) Size in doublewords is computed.  This is a constant for objects and
  1035 // variable for most arrays.  Doubleword units are used to avoid size
  1036 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1037 // rounding.
  1038 //
  1039 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1040 // the slow path into the VM.  The slow path can throw any required
  1041 // exceptions, and does all the special checks for very large arrays.  The
  1042 // size test can constant-fold away for objects.  For objects with
  1043 // finalizers it constant-folds the otherway: you always go slow with
  1044 // finalizers.
  1045 //
  1046 // 3) If NOT using TLABs, this is the contended loop-back point.
  1047 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1048 //
  1049 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1050 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1051 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1052 // enough that there's always space between the eden max and 4Gig (old space is
  1053 // there so it's quite large) and large enough that the cost of entering the VM
  1054 // is dwarfed by the cost to initialize the space.
  1055 //
  1056 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1057 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1058 // adjusted heap top back down; there is no contention.
  1059 //
  1060 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1061 // fields.
  1062 //
  1063 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1064 // oop flavor.
  1065 //
  1066 //=============================================================================
  1067 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1068 // Allocations bigger than this always go the slow route.
  1069 // This value must be small enough that allocation attempts that need to
  1070 // trigger exceptions go the slow route.  Also, it must be small enough so
  1071 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1072 //=============================================================================j//
  1073 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1074 // The allocator will coalesce int->oop copies away.  See comment in
  1075 // coalesce.cpp about how this works.  It depends critically on the exact
  1076 // code shape produced here, so if you are changing this code shape
  1077 // make sure the GC info for the heap-top is correct in and around the
  1078 // slow-path call.
  1079 //
  1081 void PhaseMacroExpand::expand_allocate_common(
  1082             AllocateNode* alloc, // allocation node to be expanded
  1083             Node* length,  // array length for an array allocation
  1084             const TypeFunc* slow_call_type, // Type of slow call
  1085             address slow_call_address  // Address of slow call
  1089   Node* ctrl = alloc->in(TypeFunc::Control);
  1090   Node* mem  = alloc->in(TypeFunc::Memory);
  1091   Node* i_o  = alloc->in(TypeFunc::I_O);
  1092   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1093   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1094   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1096   assert(ctrl != NULL, "must have control");
  1097   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1098   // they will not be used if "always_slow" is set
  1099   enum { slow_result_path = 1, fast_result_path = 2 };
  1100   Node *result_region;
  1101   Node *result_phi_rawmem;
  1102   Node *result_phi_rawoop;
  1103   Node *result_phi_i_o;
  1105   // The initial slow comparison is a size check, the comparison
  1106   // we want to do is a BoolTest::gt
  1107   bool always_slow = false;
  1108   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1109   if (tv >= 0) {
  1110     always_slow = (tv == 1);
  1111     initial_slow_test = NULL;
  1112   } else {
  1113     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1116   if (C->env()->dtrace_alloc_probes() ||
  1117       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1118                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1119     // Force slow-path allocation
  1120     always_slow = true;
  1121     initial_slow_test = NULL;
  1125   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1126   Node *slow_region = NULL;
  1127   Node *toobig_false = ctrl;
  1129   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1130   // generate the initial test if necessary
  1131   if (initial_slow_test != NULL ) {
  1132     slow_region = new (C, 3) RegionNode(3);
  1134     // Now make the initial failure test.  Usually a too-big test but
  1135     // might be a TRUE for finalizers or a fancy class check for
  1136     // newInstance0.
  1137     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1138     transform_later(toobig_iff);
  1139     // Plug the failing-too-big test into the slow-path region
  1140     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
  1141     transform_later(toobig_true);
  1142     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1143     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
  1144     transform_later(toobig_false);
  1145   } else {         // No initial test, just fall into next case
  1146     toobig_false = ctrl;
  1147     debug_only(slow_region = NodeSentinel);
  1150   Node *slow_mem = mem;  // save the current memory state for slow path
  1151   // generate the fast allocation code unless we know that the initial test will always go slow
  1152   if (!always_slow) {
  1153     // Fast path modifies only raw memory.
  1154     if (mem->is_MergeMem()) {
  1155       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1158     Node* eden_top_adr;
  1159     Node* eden_end_adr;
  1161     set_eden_pointers(eden_top_adr, eden_end_adr);
  1163     // Load Eden::end.  Loop invariant and hoisted.
  1164     //
  1165     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1166     //       a TLAB to work around a bug where these values were being moved across
  1167     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1168     //       map, but they can be changed by a GC.   The proper way to fix this would
  1169     //       be to set the raw memory state when generating a  SafepointNode.  However
  1170     //       this will require extensive changes to the loop optimization in order to
  1171     //       prevent a degradation of the optimization.
  1172     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1173     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1175     // allocate the Region and Phi nodes for the result
  1176     result_region = new (C, 3) RegionNode(3);
  1177     result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1178     result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
  1179     result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
  1181     // We need a Region for the loop-back contended case.
  1182     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1183     Node *contended_region;
  1184     Node *contended_phi_rawmem;
  1185     if (UseTLAB) {
  1186       contended_region = toobig_false;
  1187       contended_phi_rawmem = mem;
  1188     } else {
  1189       contended_region = new (C, 3) RegionNode(3);
  1190       contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1191       // Now handle the passing-too-big test.  We fall into the contended
  1192       // loop-back merge point.
  1193       contended_region    ->init_req(fall_in_path, toobig_false);
  1194       contended_phi_rawmem->init_req(fall_in_path, mem);
  1195       transform_later(contended_region);
  1196       transform_later(contended_phi_rawmem);
  1199     // Load(-locked) the heap top.
  1200     // See note above concerning the control input when using a TLAB
  1201     Node *old_eden_top = UseTLAB
  1202       ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
  1203       : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
  1205     transform_later(old_eden_top);
  1206     // Add to heap top to get a new heap top
  1207     Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
  1208     transform_later(new_eden_top);
  1209     // Check for needing a GC; compare against heap end
  1210     Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
  1211     transform_later(needgc_cmp);
  1212     Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
  1213     transform_later(needgc_bol);
  1214     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
  1215     transform_later(needgc_iff);
  1217     // Plug the failing-heap-space-need-gc test into the slow-path region
  1218     Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
  1219     transform_later(needgc_true);
  1220     if (initial_slow_test) {
  1221       slow_region->init_req(need_gc_path, needgc_true);
  1222       // This completes all paths into the slow merge point
  1223       transform_later(slow_region);
  1224     } else {                      // No initial slow path needed!
  1225       // Just fall from the need-GC path straight into the VM call.
  1226       slow_region = needgc_true;
  1228     // No need for a GC.  Setup for the Store-Conditional
  1229     Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
  1230     transform_later(needgc_false);
  1232     // Grab regular I/O before optional prefetch may change it.
  1233     // Slow-path does no I/O so just set it to the original I/O.
  1234     result_phi_i_o->init_req(slow_result_path, i_o);
  1236     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1237                               old_eden_top, new_eden_top, length);
  1239     // Name successful fast-path variables
  1240     Node* fast_oop = old_eden_top;
  1241     Node* fast_oop_ctrl;
  1242     Node* fast_oop_rawmem;
  1244     // Store (-conditional) the modified eden top back down.
  1245     // StorePConditional produces flags for a test PLUS a modified raw
  1246     // memory state.
  1247     if (UseTLAB) {
  1248       Node* store_eden_top =
  1249         new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1250                               TypeRawPtr::BOTTOM, new_eden_top);
  1251       transform_later(store_eden_top);
  1252       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1253       fast_oop_rawmem = store_eden_top;
  1254     } else {
  1255       Node* store_eden_top =
  1256         new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1257                                          new_eden_top, fast_oop/*old_eden_top*/);
  1258       transform_later(store_eden_top);
  1259       Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
  1260       transform_later(contention_check);
  1261       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
  1262       transform_later(store_eden_top);
  1264       // If not using TLABs, check to see if there was contention.
  1265       IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
  1266       transform_later(contention_iff);
  1267       Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
  1268       transform_later(contention_true);
  1269       // If contention, loopback and try again.
  1270       contended_region->init_req(contended_loopback_path, contention_true);
  1271       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
  1273       // Fast-path succeeded with no contention!
  1274       Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
  1275       transform_later(contention_false);
  1276       fast_oop_ctrl = contention_false;
  1278       // Bump total allocated bytes for this thread
  1279       Node* thread = new (C, 1) ThreadLocalNode();
  1280       transform_later(thread);
  1281       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
  1282                                              in_bytes(JavaThread::allocated_bytes_offset()));
  1283       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1284                                     0, TypeLong::LONG, T_LONG);
  1285 #ifdef _LP64
  1286       Node* alloc_size = size_in_bytes;
  1287 #else
  1288       Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
  1289       transform_later(alloc_size);
  1290 #endif
  1291       Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
  1292       transform_later(new_alloc_bytes);
  1293       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1294                                    0, new_alloc_bytes, T_LONG);
  1297     fast_oop_rawmem = initialize_object(alloc,
  1298                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1299                                         klass_node, length, size_in_bytes);
  1301     if (C->env()->dtrace_extended_probes()) {
  1302       // Slow-path call
  1303       int size = TypeFunc::Parms + 2;
  1304       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1305                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1306                                                       "dtrace_object_alloc",
  1307                                                       TypeRawPtr::BOTTOM);
  1309       // Get base of thread-local storage area
  1310       Node* thread = new (C, 1) ThreadLocalNode();
  1311       transform_later(thread);
  1313       call->init_req(TypeFunc::Parms+0, thread);
  1314       call->init_req(TypeFunc::Parms+1, fast_oop);
  1315       call->init_req(TypeFunc::Control, fast_oop_ctrl);
  1316       call->init_req(TypeFunc::I_O    , top()); // does no i/o
  1317       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
  1318       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
  1319       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
  1320       transform_later(call);
  1321       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  1322       transform_later(fast_oop_ctrl);
  1323       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  1324       transform_later(fast_oop_rawmem);
  1327     // Plug in the successful fast-path into the result merge point
  1328     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
  1329     result_phi_rawoop->init_req(fast_result_path, fast_oop);
  1330     result_phi_i_o   ->init_req(fast_result_path, i_o);
  1331     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
  1332   } else {
  1333     slow_region = ctrl;
  1336   // Generate slow-path call
  1337   CallNode *call = new (C, slow_call_type->domain()->cnt())
  1338     CallStaticJavaNode(slow_call_type, slow_call_address,
  1339                        OptoRuntime::stub_name(slow_call_address),
  1340                        alloc->jvms()->bci(),
  1341                        TypePtr::BOTTOM);
  1342   call->init_req( TypeFunc::Control, slow_region );
  1343   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1344   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1345   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1346   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1348   call->init_req(TypeFunc::Parms+0, klass_node);
  1349   if (length != NULL) {
  1350     call->init_req(TypeFunc::Parms+1, length);
  1353   // Copy debug information and adjust JVMState information, then replace
  1354   // allocate node with the call
  1355   copy_call_debug_info((CallNode *) alloc,  call);
  1356   if (!always_slow) {
  1357     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1359   _igvn.replace_node(alloc, call);
  1360   transform_later(call);
  1362   // Identify the output projections from the allocate node and
  1363   // adjust any references to them.
  1364   // The control and io projections look like:
  1365   //
  1366   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1367   //  Allocate                   Catch
  1368   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1369   //
  1370   //  We are interested in the CatchProj nodes.
  1371   //
  1372   extract_call_projections(call);
  1374   // An allocate node has separate memory projections for the uses on the control and i_o paths
  1375   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
  1376   if (!always_slow && _memproj_fallthrough != NULL) {
  1377     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1378       Node *use = _memproj_fallthrough->fast_out(i);
  1379       _igvn.hash_delete(use);
  1380       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1381       _igvn._worklist.push(use);
  1382       // back up iterator
  1383       --i;
  1386   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
  1387   // we end up with a call that has only 1 memory projection
  1388   if (_memproj_catchall != NULL ) {
  1389     if (_memproj_fallthrough == NULL) {
  1390       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
  1391       transform_later(_memproj_fallthrough);
  1393     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1394       Node *use = _memproj_catchall->fast_out(i);
  1395       _igvn.hash_delete(use);
  1396       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1397       _igvn._worklist.push(use);
  1398       // back up iterator
  1399       --i;
  1403   // An allocate node has separate i_o projections for the uses on the control and i_o paths
  1404   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
  1405   if (_ioproj_fallthrough == NULL) {
  1406     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
  1407     transform_later(_ioproj_fallthrough);
  1408   } else if (!always_slow) {
  1409     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1410       Node *use = _ioproj_fallthrough->fast_out(i);
  1412       _igvn.hash_delete(use);
  1413       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1414       _igvn._worklist.push(use);
  1415       // back up iterator
  1416       --i;
  1419   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
  1420   // we end up with a call that has only 1 control projection
  1421   if (_ioproj_catchall != NULL ) {
  1422     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1423       Node *use = _ioproj_catchall->fast_out(i);
  1424       _igvn.hash_delete(use);
  1425       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1426       _igvn._worklist.push(use);
  1427       // back up iterator
  1428       --i;
  1432   // if we generated only a slow call, we are done
  1433   if (always_slow)
  1434     return;
  1437   if (_fallthroughcatchproj != NULL) {
  1438     ctrl = _fallthroughcatchproj->clone();
  1439     transform_later(ctrl);
  1440     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1441   } else {
  1442     ctrl = top();
  1444   Node *slow_result;
  1445   if (_resproj == NULL) {
  1446     // no uses of the allocation result
  1447     slow_result = top();
  1448   } else {
  1449     slow_result = _resproj->clone();
  1450     transform_later(slow_result);
  1451     _igvn.replace_node(_resproj, result_phi_rawoop);
  1454   // Plug slow-path into result merge point
  1455   result_region    ->init_req( slow_result_path, ctrl );
  1456   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1457   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1458   transform_later(result_region);
  1459   transform_later(result_phi_rawoop);
  1460   transform_later(result_phi_rawmem);
  1461   transform_later(result_phi_i_o);
  1462   // This completes all paths into the result merge point
  1466 // Helper for PhaseMacroExpand::expand_allocate_common.
  1467 // Initializes the newly-allocated storage.
  1468 Node*
  1469 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1470                                     Node* control, Node* rawmem, Node* object,
  1471                                     Node* klass_node, Node* length,
  1472                                     Node* size_in_bytes) {
  1473   InitializeNode* init = alloc->initialization();
  1474   // Store the klass & mark bits
  1475   Node* mark_node = NULL;
  1476   // For now only enable fast locking for non-array types
  1477   if (UseBiasedLocking && (length == NULL)) {
  1478     mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
  1479   } else {
  1480     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1482   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1484   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  1485   int header_size = alloc->minimum_header_size();  // conservatively small
  1487   // Array length
  1488   if (length != NULL) {         // Arrays need length field
  1489     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1490     // conservatively small header size:
  1491     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1492     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1493     if (k->is_array_klass())    // we know the exact header size in most cases:
  1494       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1497   // Clear the object body, if necessary.
  1498   if (init == NULL) {
  1499     // The init has somehow disappeared; be cautious and clear everything.
  1500     //
  1501     // This can happen if a node is allocated but an uncommon trap occurs
  1502     // immediately.  In this case, the Initialize gets associated with the
  1503     // trap, and may be placed in a different (outer) loop, if the Allocate
  1504     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1505     // there can be two Allocates to one Initialize.  The answer in all these
  1506     // edge cases is safety first.  It is always safe to clear immediately
  1507     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1508     if (!ZeroTLAB)
  1509       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1510                                             header_size, size_in_bytes,
  1511                                             &_igvn);
  1512   } else {
  1513     if (!init->is_complete()) {
  1514       // Try to win by zeroing only what the init does not store.
  1515       // We can also try to do some peephole optimizations,
  1516       // such as combining some adjacent subword stores.
  1517       rawmem = init->complete_stores(control, rawmem, object,
  1518                                      header_size, size_in_bytes, &_igvn);
  1520     // We have no more use for this link, since the AllocateNode goes away:
  1521     init->set_req(InitializeNode::RawAddress, top());
  1522     // (If we keep the link, it just confuses the register allocator,
  1523     // who thinks he sees a real use of the address by the membar.)
  1526   return rawmem;
  1529 // Generate prefetch instructions for next allocations.
  1530 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1531                                         Node*& contended_phi_rawmem,
  1532                                         Node* old_eden_top, Node* new_eden_top,
  1533                                         Node* length) {
  1534    enum { fall_in_path = 1, pf_path = 2 };
  1535    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1536       // Generate prefetch allocation with watermark check.
  1537       // As an allocation hits the watermark, we will prefetch starting
  1538       // at a "distance" away from watermark.
  1540       Node *pf_region = new (C, 3) RegionNode(3);
  1541       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1542                                                 TypeRawPtr::BOTTOM );
  1543       // I/O is used for Prefetch
  1544       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
  1546       Node *thread = new (C, 1) ThreadLocalNode();
  1547       transform_later(thread);
  1549       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
  1550                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1551       transform_later(eden_pf_adr);
  1553       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
  1554                                    contended_phi_rawmem, eden_pf_adr,
  1555                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1556       transform_later(old_pf_wm);
  1558       // check against new_eden_top
  1559       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
  1560       transform_later(need_pf_cmp);
  1561       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
  1562       transform_later(need_pf_bol);
  1563       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
  1564                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1565       transform_later(need_pf_iff);
  1567       // true node, add prefetchdistance
  1568       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
  1569       transform_later(need_pf_true);
  1571       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
  1572       transform_later(need_pf_false);
  1574       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
  1575                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1576       transform_later(new_pf_wmt );
  1577       new_pf_wmt->set_req(0, need_pf_true);
  1579       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
  1580                                        contended_phi_rawmem, eden_pf_adr,
  1581                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1582       transform_later(store_new_wmt);
  1584       // adding prefetches
  1585       pf_phi_abio->init_req( fall_in_path, i_o );
  1587       Node *prefetch_adr;
  1588       Node *prefetch;
  1589       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1590       uint step_size = AllocatePrefetchStepSize;
  1591       uint distance = 0;
  1593       for ( uint i = 0; i < lines; i++ ) {
  1594         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
  1595                                             _igvn.MakeConX(distance) );
  1596         transform_later(prefetch_adr);
  1597         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1598         transform_later(prefetch);
  1599         distance += step_size;
  1600         i_o = prefetch;
  1602       pf_phi_abio->set_req( pf_path, i_o );
  1604       pf_region->init_req( fall_in_path, need_pf_false );
  1605       pf_region->init_req( pf_path, need_pf_true );
  1607       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1608       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1610       transform_later(pf_region);
  1611       transform_later(pf_phi_rawmem);
  1612       transform_later(pf_phi_abio);
  1614       needgc_false = pf_region;
  1615       contended_phi_rawmem = pf_phi_rawmem;
  1616       i_o = pf_phi_abio;
  1617    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1618       // Insert a prefetch for each allocation only on the fast-path
  1619       Node *pf_region = new (C, 3) RegionNode(3);
  1620       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1621                                                 TypeRawPtr::BOTTOM );
  1623       // Generate several prefetch instructions only for arrays.
  1624       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1625       uint step_size = AllocatePrefetchStepSize;
  1626       uint distance = AllocatePrefetchDistance;
  1628       // Next cache address.
  1629       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
  1630                                             _igvn.MakeConX(distance));
  1631       transform_later(cache_adr);
  1632       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
  1633       transform_later(cache_adr);
  1634       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1635       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
  1636       transform_later(cache_adr);
  1637       cache_adr = new (C, 2) CastX2PNode(cache_adr);
  1638       transform_later(cache_adr);
  1640       // Prefetch
  1641       Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
  1642       prefetch->set_req(0, needgc_false);
  1643       transform_later(prefetch);
  1644       contended_phi_rawmem = prefetch;
  1645       Node *prefetch_adr;
  1646       distance = step_size;
  1647       for ( uint i = 1; i < lines; i++ ) {
  1648         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
  1649                                             _igvn.MakeConX(distance) );
  1650         transform_later(prefetch_adr);
  1651         prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
  1652         transform_later(prefetch);
  1653         distance += step_size;
  1654         contended_phi_rawmem = prefetch;
  1656    } else if( AllocatePrefetchStyle > 0 ) {
  1657       // Insert a prefetch for each allocation only on the fast-path
  1658       Node *prefetch_adr;
  1659       Node *prefetch;
  1660       // Generate several prefetch instructions only for arrays.
  1661       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1662       uint step_size = AllocatePrefetchStepSize;
  1663       uint distance = AllocatePrefetchDistance;
  1664       for ( uint i = 0; i < lines; i++ ) {
  1665         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
  1666                                             _igvn.MakeConX(distance) );
  1667         transform_later(prefetch_adr);
  1668         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1669         // Do not let it float too high, since if eden_top == eden_end,
  1670         // both might be null.
  1671         if( i == 0 ) { // Set control for first prefetch, next follows it
  1672           prefetch->init_req(0, needgc_false);
  1674         transform_later(prefetch);
  1675         distance += step_size;
  1676         i_o = prefetch;
  1679    return i_o;
  1683 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1684   expand_allocate_common(alloc, NULL,
  1685                          OptoRuntime::new_instance_Type(),
  1686                          OptoRuntime::new_instance_Java());
  1689 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1690   Node* length = alloc->in(AllocateNode::ALength);
  1691   expand_allocate_common(alloc, length,
  1692                          OptoRuntime::new_array_Type(),
  1693                          OptoRuntime::new_array_Java());
  1696 //-----------------------mark_eliminated_locking_nodes-----------------------
  1697 // During EA obj may point to several objects but after few ideal graph
  1698 // transformations (CCP) it may point to only one non escaping object
  1699 // (but still using phi), corresponding locks and unlocks will be marked
  1700 // for elimination. Later obj could be replaced with a new node (new phi)
  1701 // and which does not have escape information. And later after some graph
  1702 // reshape other locks and unlocks (which were not marked for elimination
  1703 // before) are connected to this new obj (phi) but they still will not be
  1704 // marked for elimination since new obj has no escape information.
  1705 // Mark all associated (same box and obj) lock and unlock nodes for
  1706 // elimination if some of them marked already.
  1707 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
  1708   if (!alock->is_eliminated()) {
  1709     return;
  1711   if (!alock->is_coarsened()) { // Eliminated by EA
  1712       // Create new "eliminated" BoxLock node and use it
  1713       // in monitor debug info for the same object.
  1714       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1715       Node* obj = alock->obj_node();
  1716       if (!oldbox->is_eliminated()) {
  1717         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1718         // Note: BoxLock node is marked eliminated only here
  1719         // and it is used to indicate that all associated lock
  1720         // and unlock nodes are marked for elimination.
  1721         newbox->set_eliminated();
  1722         transform_later(newbox);
  1723         // Replace old box node with new box for all users
  1724         // of the same object.
  1725         for (uint i = 0; i < oldbox->outcnt();) {
  1727           bool next_edge = true;
  1728           Node* u = oldbox->raw_out(i);
  1729           if (u->is_AbstractLock() &&
  1730               u->as_AbstractLock()->obj_node() == obj &&
  1731               u->as_AbstractLock()->box_node() == oldbox) {
  1732             // Mark all associated locks and unlocks.
  1733             u->as_AbstractLock()->set_eliminated();
  1734             _igvn.hash_delete(u);
  1735             u->set_req(TypeFunc::Parms + 1, newbox);
  1736             next_edge = false;
  1738           // Replace old box in monitor debug info.
  1739           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1740             SafePointNode* sfn = u->as_SafePoint();
  1741             JVMState* youngest_jvms = sfn->jvms();
  1742             int max_depth = youngest_jvms->depth();
  1743             for (int depth = 1; depth <= max_depth; depth++) {
  1744               JVMState* jvms = youngest_jvms->of_depth(depth);
  1745               int num_mon  = jvms->nof_monitors();
  1746               // Loop over monitors
  1747               for (int idx = 0; idx < num_mon; idx++) {
  1748                 Node* obj_node = sfn->monitor_obj(jvms, idx);
  1749                 Node* box_node = sfn->monitor_box(jvms, idx);
  1750                 if (box_node == oldbox && obj_node == obj) {
  1751                   int j = jvms->monitor_box_offset(idx);
  1752                   _igvn.hash_delete(u);
  1753                   u->set_req(j, newbox);
  1754                   next_edge = false;
  1756               } // for (int idx = 0;
  1757             } // for (int depth = 1;
  1758           } // if (u->is_SafePoint()
  1759           if (next_edge) i++;
  1760         } // for (uint i = 0; i < oldbox->outcnt();)
  1761       } // if (!oldbox->is_eliminated())
  1762   } // if (!alock->is_coarsened())
  1765 // we have determined that this lock/unlock can be eliminated, we simply
  1766 // eliminate the node without expanding it.
  1767 //
  1768 // Note:  The membar's associated with the lock/unlock are currently not
  1769 //        eliminated.  This should be investigated as a future enhancement.
  1770 //
  1771 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  1773   if (!alock->is_eliminated()) {
  1774     return false;
  1776 #ifdef ASSERT
  1777   if (alock->is_Lock() && !alock->is_coarsened()) {
  1778     // Check that new "eliminated" BoxLock node is created.
  1779     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1780     assert(oldbox->is_eliminated(), "should be done already");
  1782 #endif
  1783   CompileLog* log = C->log();
  1784   if (log != NULL) {
  1785     log->head("eliminate_lock lock='%d'",
  1786               alock->is_Lock());
  1787     JVMState* p = alock->jvms();
  1788     while (p != NULL) {
  1789       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1790       p = p->caller();
  1792     log->tail("eliminate_lock");
  1795   #ifndef PRODUCT
  1796   if (PrintEliminateLocks) {
  1797     if (alock->is_Lock()) {
  1798       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
  1799     } else {
  1800       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
  1803   #endif
  1805   Node* mem  = alock->in(TypeFunc::Memory);
  1806   Node* ctrl = alock->in(TypeFunc::Control);
  1808   extract_call_projections(alock);
  1809   // There are 2 projections from the lock.  The lock node will
  1810   // be deleted when its last use is subsumed below.
  1811   assert(alock->outcnt() == 2 &&
  1812          _fallthroughproj != NULL &&
  1813          _memproj_fallthrough != NULL,
  1814          "Unexpected projections from Lock/Unlock");
  1816   Node* fallthroughproj = _fallthroughproj;
  1817   Node* memproj_fallthrough = _memproj_fallthrough;
  1819   // The memory projection from a lock/unlock is RawMem
  1820   // The input to a Lock is merged memory, so extract its RawMem input
  1821   // (unless the MergeMem has been optimized away.)
  1822   if (alock->is_Lock()) {
  1823     // Seach for MemBarAcquire node and delete it also.
  1824     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  1825     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
  1826     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  1827     Node* memproj = membar->proj_out(TypeFunc::Memory);
  1828     _igvn.replace_node(ctrlproj, fallthroughproj);
  1829     _igvn.replace_node(memproj, memproj_fallthrough);
  1831     // Delete FastLock node also if this Lock node is unique user
  1832     // (a loop peeling may clone a Lock node).
  1833     Node* flock = alock->as_Lock()->fastlock_node();
  1834     if (flock->outcnt() == 1) {
  1835       assert(flock->unique_out() == alock, "sanity");
  1836       _igvn.replace_node(flock, top());
  1840   // Seach for MemBarRelease node and delete it also.
  1841   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  1842       ctrl->in(0)->is_MemBar()) {
  1843     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  1844     assert(membar->Opcode() == Op_MemBarRelease &&
  1845            mem->is_Proj() && membar == mem->in(0), "");
  1846     _igvn.replace_node(fallthroughproj, ctrl);
  1847     _igvn.replace_node(memproj_fallthrough, mem);
  1848     fallthroughproj = ctrl;
  1849     memproj_fallthrough = mem;
  1850     ctrl = membar->in(TypeFunc::Control);
  1851     mem  = membar->in(TypeFunc::Memory);
  1854   _igvn.replace_node(fallthroughproj, ctrl);
  1855   _igvn.replace_node(memproj_fallthrough, mem);
  1856   return true;
  1860 //------------------------------expand_lock_node----------------------
  1861 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  1863   Node* ctrl = lock->in(TypeFunc::Control);
  1864   Node* mem = lock->in(TypeFunc::Memory);
  1865   Node* obj = lock->obj_node();
  1866   Node* box = lock->box_node();
  1867   Node* flock = lock->fastlock_node();
  1869   // Make the merge point
  1870   Node *region;
  1871   Node *mem_phi;
  1872   Node *slow_path;
  1874   if (UseOptoBiasInlining) {
  1875     /*
  1876      *  See the full description in MacroAssembler::biased_locking_enter().
  1878      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  1879      *    // The object is biased.
  1880      *    proto_node = klass->prototype_header;
  1881      *    o_node = thread | proto_node;
  1882      *    x_node = o_node ^ mark_word;
  1883      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  1884      *      // Done.
  1885      *    } else {
  1886      *      if( (x_node & biased_lock_mask) != 0 ) {
  1887      *        // The klass's prototype header is no longer biased.
  1888      *        cas(&mark_word, mark_word, proto_node)
  1889      *        goto cas_lock;
  1890      *      } else {
  1891      *        // The klass's prototype header is still biased.
  1892      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  1893      *          old = mark_word;
  1894      *          new = o_node;
  1895      *        } else {
  1896      *          // Different thread or anonymous biased.
  1897      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  1898      *          new = thread | old;
  1899      *        }
  1900      *        // Try to rebias.
  1901      *        if( cas(&mark_word, old, new) == 0 ) {
  1902      *          // Done.
  1903      *        } else {
  1904      *          goto slow_path; // Failed.
  1905      *        }
  1906      *      }
  1907      *    }
  1908      *  } else {
  1909      *    // The object is not biased.
  1910      *    cas_lock:
  1911      *    if( FastLock(obj) == 0 ) {
  1912      *      // Done.
  1913      *    } else {
  1914      *      slow_path:
  1915      *      OptoRuntime::complete_monitor_locking_Java(obj);
  1916      *    }
  1917      *  }
  1918      */
  1920     region  = new (C, 5) RegionNode(5);
  1921     // create a Phi for the memory state
  1922     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1924     Node* fast_lock_region  = new (C, 3) RegionNode(3);
  1925     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1927     // First, check mark word for the biased lock pattern.
  1928     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  1930     // Get fast path - mark word has the biased lock pattern.
  1931     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  1932                          markOopDesc::biased_lock_mask_in_place,
  1933                          markOopDesc::biased_lock_pattern, true);
  1934     // fast_lock_region->in(1) is set to slow path.
  1935     fast_lock_mem_phi->init_req(1, mem);
  1937     // Now check that the lock is biased to the current thread and has
  1938     // the same epoch and bias as Klass::_prototype_header.
  1940     // Special-case a fresh allocation to avoid building nodes:
  1941     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  1942     if (klass_node == NULL) {
  1943       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1944       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  1945 #ifdef _LP64
  1946       if (UseCompressedOops && klass_node->is_DecodeN()) {
  1947         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  1948         klass_node->in(1)->init_req(0, ctrl);
  1949       } else
  1950 #endif
  1951       klass_node->init_req(0, ctrl);
  1953     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
  1955     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
  1956     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1957     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
  1958     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
  1960     // Get slow path - mark word does NOT match the value.
  1961     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  1962                                       (~markOopDesc::age_mask_in_place), 0);
  1963     // region->in(3) is set to fast path - the object is biased to the current thread.
  1964     mem_phi->init_req(3, mem);
  1967     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  1970     // First, check biased pattern.
  1971     // Get fast path - _prototype_header has the same biased lock pattern.
  1972     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  1973                           markOopDesc::biased_lock_mask_in_place, 0, true);
  1975     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  1976     // fast_lock_region->in(2) - the prototype header is no longer biased
  1977     // and we have to revoke the bias on this object.
  1978     // We are going to try to reset the mark of this object to the prototype
  1979     // value and fall through to the CAS-based locking scheme.
  1980     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  1981     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  1982                                                  proto_node, mark_node);
  1983     transform_later(cas);
  1984     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1985     fast_lock_mem_phi->init_req(2, proj);
  1988     // Second, check epoch bits.
  1989     Node* rebiased_region  = new (C, 3) RegionNode(3);
  1990     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1991     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1993     // Get slow path - mark word does NOT match epoch bits.
  1994     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  1995                                       markOopDesc::epoch_mask_in_place, 0);
  1996     // The epoch of the current bias is not valid, attempt to rebias the object
  1997     // toward the current thread.
  1998     rebiased_region->init_req(2, epoch_ctrl);
  1999     old_phi->init_req(2, mark_node);
  2000     new_phi->init_req(2, o_node);
  2002     // rebiased_region->in(1) is set to fast path.
  2003     // The epoch of the current bias is still valid but we know
  2004     // nothing about the owner; it might be set or it might be clear.
  2005     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  2006                              markOopDesc::age_mask_in_place |
  2007                              markOopDesc::epoch_mask_in_place);
  2008     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
  2009     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  2010     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
  2011     old_phi->init_req(1, old);
  2012     new_phi->init_req(1, new_mark);
  2014     transform_later(rebiased_region);
  2015     transform_later(old_phi);
  2016     transform_later(new_phi);
  2018     // Try to acquire the bias of the object using an atomic operation.
  2019     // If this fails we will go in to the runtime to revoke the object's bias.
  2020     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
  2021                                            new_phi, old_phi);
  2022     transform_later(cas);
  2023     proj = transform_later( new (C, 1) SCMemProjNode(cas));
  2025     // Get slow path - Failed to CAS.
  2026     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  2027     mem_phi->init_req(4, proj);
  2028     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  2030     // Failed to CAS.
  2031     slow_path  = new (C, 3) RegionNode(3);
  2032     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  2034     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  2035     slow_mem->init_req(1, proj);
  2037     // Call CAS-based locking scheme (FastLock node).
  2039     transform_later(fast_lock_region);
  2040     transform_later(fast_lock_mem_phi);
  2042     // Get slow path - FastLock failed to lock the object.
  2043     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  2044     mem_phi->init_req(2, fast_lock_mem_phi);
  2045     // region->in(2) is set to fast path - the object is locked to the current thread.
  2047     slow_path->init_req(2, ctrl); // Capture slow-control
  2048     slow_mem->init_req(2, fast_lock_mem_phi);
  2050     transform_later(slow_path);
  2051     transform_later(slow_mem);
  2052     // Reset lock's memory edge.
  2053     lock->set_req(TypeFunc::Memory, slow_mem);
  2055   } else {
  2056     region  = new (C, 3) RegionNode(3);
  2057     // create a Phi for the memory state
  2058     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2060     // Optimize test; set region slot 2
  2061     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  2062     mem_phi->init_req(2, mem);
  2065   // Make slow path call
  2066   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2068   extract_call_projections(call);
  2070   // Slow path can only throw asynchronous exceptions, which are always
  2071   // de-opted.  So the compiler thinks the slow-call can never throw an
  2072   // exception.  If it DOES throw an exception we would need the debug
  2073   // info removed first (since if it throws there is no monitor).
  2074   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2075            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2077   // Capture slow path
  2078   // disconnect fall-through projection from call and create a new one
  2079   // hook up users of fall-through projection to region
  2080   Node *slow_ctrl = _fallthroughproj->clone();
  2081   transform_later(slow_ctrl);
  2082   _igvn.hash_delete(_fallthroughproj);
  2083   _fallthroughproj->disconnect_inputs(NULL);
  2084   region->init_req(1, slow_ctrl);
  2085   // region inputs are now complete
  2086   transform_later(region);
  2087   _igvn.replace_node(_fallthroughproj, region);
  2089   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2090   mem_phi->init_req(1, memproj );
  2091   transform_later(mem_phi);
  2092   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2095 //------------------------------expand_unlock_node----------------------
  2096 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2098   Node* ctrl = unlock->in(TypeFunc::Control);
  2099   Node* mem = unlock->in(TypeFunc::Memory);
  2100   Node* obj = unlock->obj_node();
  2101   Node* box = unlock->box_node();
  2103   // No need for a null check on unlock
  2105   // Make the merge point
  2106   Node *region;
  2107   Node *mem_phi;
  2109   if (UseOptoBiasInlining) {
  2110     // Check for biased locking unlock case, which is a no-op.
  2111     // See the full description in MacroAssembler::biased_locking_exit().
  2112     region  = new (C, 4) RegionNode(4);
  2113     // create a Phi for the memory state
  2114     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2115     mem_phi->init_req(3, mem);
  2117     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2118     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2119                          markOopDesc::biased_lock_mask_in_place,
  2120                          markOopDesc::biased_lock_pattern);
  2121   } else {
  2122     region  = new (C, 3) RegionNode(3);
  2123     // create a Phi for the memory state
  2124     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2127   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  2128   funlock = transform_later( funlock )->as_FastUnlock();
  2129   // Optimize test; set region slot 2
  2130   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2132   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2134   extract_call_projections(call);
  2136   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2137            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2139   // No exceptions for unlocking
  2140   // Capture slow path
  2141   // disconnect fall-through projection from call and create a new one
  2142   // hook up users of fall-through projection to region
  2143   Node *slow_ctrl = _fallthroughproj->clone();
  2144   transform_later(slow_ctrl);
  2145   _igvn.hash_delete(_fallthroughproj);
  2146   _fallthroughproj->disconnect_inputs(NULL);
  2147   region->init_req(1, slow_ctrl);
  2148   // region inputs are now complete
  2149   transform_later(region);
  2150   _igvn.replace_node(_fallthroughproj, region);
  2152   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2153   mem_phi->init_req(1, memproj );
  2154   mem_phi->init_req(2, mem);
  2155   transform_later(mem_phi);
  2156   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2159 //------------------------------expand_macro_nodes----------------------
  2160 //  Returns true if a failure occurred.
  2161 bool PhaseMacroExpand::expand_macro_nodes() {
  2162   if (C->macro_count() == 0)
  2163     return false;
  2164   // First, attempt to eliminate locks
  2165   int cnt = C->macro_count();
  2166   for (int i=0; i < cnt; i++) {
  2167     Node *n = C->macro_node(i);
  2168     if (n->is_AbstractLock()) { // Lock and Unlock nodes
  2169       // Before elimination mark all associated (same box and obj)
  2170       // lock and unlock nodes.
  2171       mark_eliminated_locking_nodes(n->as_AbstractLock());
  2174   bool progress = true;
  2175   while (progress) {
  2176     progress = false;
  2177     for (int i = C->macro_count(); i > 0; i--) {
  2178       Node * n = C->macro_node(i-1);
  2179       bool success = false;
  2180       debug_only(int old_macro_count = C->macro_count(););
  2181       if (n->is_AbstractLock()) {
  2182         success = eliminate_locking_node(n->as_AbstractLock());
  2183       } else if (n->Opcode() == Op_LoopLimit) {
  2184         // Remove it from macro list and put on IGVN worklist to optimize.
  2185         C->remove_macro_node(n);
  2186         _igvn._worklist.push(n);
  2187         success = true;
  2188       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2189         _igvn.replace_node(n, n->in(1));
  2190         success = true;
  2192       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2193       progress = progress || success;
  2196   // Next, attempt to eliminate allocations
  2197   progress = true;
  2198   while (progress) {
  2199     progress = false;
  2200     for (int i = C->macro_count(); i > 0; i--) {
  2201       Node * n = C->macro_node(i-1);
  2202       bool success = false;
  2203       debug_only(int old_macro_count = C->macro_count(););
  2204       switch (n->class_id()) {
  2205       case Node::Class_Allocate:
  2206       case Node::Class_AllocateArray:
  2207         success = eliminate_allocate_node(n->as_Allocate());
  2208         break;
  2209       case Node::Class_Lock:
  2210       case Node::Class_Unlock:
  2211         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2212         break;
  2213       default:
  2214         assert(false, "unknown node type in macro list");
  2216       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2217       progress = progress || success;
  2220   // Make sure expansion will not cause node limit to be exceeded.
  2221   // Worst case is a macro node gets expanded into about 50 nodes.
  2222   // Allow 50% more for optimization.
  2223   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2224     return true;
  2226   // expand "macro" nodes
  2227   // nodes are removed from the macro list as they are processed
  2228   while (C->macro_count() > 0) {
  2229     int macro_count = C->macro_count();
  2230     Node * n = C->macro_node(macro_count-1);
  2231     assert(n->is_macro(), "only macro nodes expected here");
  2232     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2233       // node is unreachable, so don't try to expand it
  2234       C->remove_macro_node(n);
  2235       continue;
  2237     switch (n->class_id()) {
  2238     case Node::Class_Allocate:
  2239       expand_allocate(n->as_Allocate());
  2240       break;
  2241     case Node::Class_AllocateArray:
  2242       expand_allocate_array(n->as_AllocateArray());
  2243       break;
  2244     case Node::Class_Lock:
  2245       expand_lock_node(n->as_Lock());
  2246       break;
  2247     case Node::Class_Unlock:
  2248       expand_unlock_node(n->as_Unlock());
  2249       break;
  2250     default:
  2251       assert(false, "unknown node type in macro list");
  2253     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2254     if (C->failing())  return true;
  2257   _igvn.set_delay_transform(false);
  2258   _igvn.optimize();
  2259   return false;

mercurial