src/share/vm/runtime/sharedRuntimeTrans.cpp

Thu, 22 May 2014 11:36:23 -0400

author
lfoltan
date
Thu, 22 May 2014 11:36:23 -0400
changeset 7000
631c3a4ea10c
parent 6461
bdd155477289
child 7002
a073be2ce5c2
permissions
-rw-r--r--

8043301: Duplicate definitions in vm/runtime/sharedRuntimeTrans.cpp versus math.h in VS2013
Summary: Factor out definitions of copysignA and scalbnA into new file sharedRuntimeMath.hpp
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "prims/jni.h"
    27 #include "runtime/interfaceSupport.hpp"
    28 #include "runtime/sharedRuntime.hpp"
    30 // This file contains copies of the fdlibm routines used by
    31 // StrictMath. It turns out that it is almost always required to use
    32 // these runtime routines; the Intel CPU doesn't meet the Java
    33 // specification for sin/cos outside a certain limited argument range,
    34 // and the SPARC CPU doesn't appear to have sin/cos instructions. It
    35 // also turns out that avoiding the indirect call through function
    36 // pointer out to libjava.so in SharedRuntime speeds these routines up
    37 // by roughly 15% on both Win32/x86 and Solaris/SPARC.
    39 // Enabling optimizations in this file causes incorrect code to be
    40 // generated; can not figure out how to turn down optimization for one
    41 // file in the IDE on Windows
    42 #ifdef WIN32
    43 # pragma optimize ( "", off )
    44 #endif
    46 #include "runtime/sharedRuntimeMath.hpp"
    48 /* __ieee754_log(x)
    49  * Return the logrithm of x
    50  *
    51  * Method :
    52  *   1. Argument Reduction: find k and f such that
    53  *                    x = 2^k * (1+f),
    54  *       where  sqrt(2)/2 < 1+f < sqrt(2) .
    55  *
    56  *   2. Approximation of log(1+f).
    57  *    Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
    58  *             = 2s + 2/3 s**3 + 2/5 s**5 + .....,
    59  *             = 2s + s*R
    60  *      We use a special Reme algorithm on [0,0.1716] to generate
    61  *    a polynomial of degree 14 to approximate R The maximum error
    62  *    of this polynomial approximation is bounded by 2**-58.45. In
    63  *    other words,
    64  *                    2      4      6      8      10      12      14
    65  *        R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
    66  *    (the values of Lg1 to Lg7 are listed in the program)
    67  *    and
    68  *        |      2          14          |     -58.45
    69  *        | Lg1*s +...+Lg7*s    -  R(z) | <= 2
    70  *        |                             |
    71  *    Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
    72  *    In order to guarantee error in log below 1ulp, we compute log
    73  *    by
    74  *            log(1+f) = f - s*(f - R)        (if f is not too large)
    75  *            log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
    76  *
    77  *    3. Finally,  log(x) = k*ln2 + log(1+f).
    78  *                        = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
    79  *       Here ln2 is split into two floating point number:
    80  *                    ln2_hi + ln2_lo,
    81  *       where n*ln2_hi is always exact for |n| < 2000.
    82  *
    83  * Special cases:
    84  *    log(x) is NaN with signal if x < 0 (including -INF) ;
    85  *    log(+INF) is +INF; log(0) is -INF with signal;
    86  *    log(NaN) is that NaN with no signal.
    87  *
    88  * Accuracy:
    89  *    according to an error analysis, the error is always less than
    90  *    1 ulp (unit in the last place).
    91  *
    92  * Constants:
    93  * The hexadecimal values are the intended ones for the following
    94  * constants. The decimal values may be used, provided that the
    95  * compiler will convert from decimal to binary accurately enough
    96  * to produce the hexadecimal values shown.
    97  */
    99 static const double
   100 ln2_hi  =  6.93147180369123816490e-01,        /* 3fe62e42 fee00000 */
   101   ln2_lo  =  1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */
   102   Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
   103   Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
   104   Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
   105   Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
   106   Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
   107   Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
   108   Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
   110 static double zero = 0.0;
   112 static double __ieee754_log(double x) {
   113   double hfsq,f,s,z,R,w,t1,t2,dk;
   114   int k,hx,i,j;
   115   unsigned lx;
   117   hx = __HI(x);               /* high word of x */
   118   lx = __LO(x);               /* low  word of x */
   120   k=0;
   121   if (hx < 0x00100000) {                   /* x < 2**-1022  */
   122     if (((hx&0x7fffffff)|lx)==0)
   123       return -two54/zero;             /* log(+-0)=-inf */
   124     if (hx<0) return (x-x)/zero;   /* log(-#) = NaN */
   125     k -= 54; x *= two54; /* subnormal number, scale up x */
   126     hx = __HI(x);             /* high word of x */
   127   }
   128   if (hx >= 0x7ff00000) return x+x;
   129   k += (hx>>20)-1023;
   130   hx &= 0x000fffff;
   131   i = (hx+0x95f64)&0x100000;
   132   __HI(x) = hx|(i^0x3ff00000);        /* normalize x or x/2 */
   133   k += (i>>20);
   134   f = x-1.0;
   135   if((0x000fffff&(2+hx))<3) {  /* |f| < 2**-20 */
   136     if(f==zero) {
   137       if (k==0) return zero;
   138       else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
   139     }
   140     R = f*f*(0.5-0.33333333333333333*f);
   141     if(k==0) return f-R; else {dk=(double)k;
   142     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
   143   }
   144   s = f/(2.0+f);
   145   dk = (double)k;
   146   z = s*s;
   147   i = hx-0x6147a;
   148   w = z*z;
   149   j = 0x6b851-hx;
   150   t1= w*(Lg2+w*(Lg4+w*Lg6));
   151   t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
   152   i |= j;
   153   R = t2+t1;
   154   if(i>0) {
   155     hfsq=0.5*f*f;
   156     if(k==0) return f-(hfsq-s*(hfsq+R)); else
   157       return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
   158   } else {
   159     if(k==0) return f-s*(f-R); else
   160       return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
   161   }
   162 }
   164 JRT_LEAF(jdouble, SharedRuntime::dlog(jdouble x))
   165   return __ieee754_log(x);
   166 JRT_END
   168 /* __ieee754_log10(x)
   169  * Return the base 10 logarithm of x
   170  *
   171  * Method :
   172  *    Let log10_2hi = leading 40 bits of log10(2) and
   173  *        log10_2lo = log10(2) - log10_2hi,
   174  *        ivln10   = 1/log(10) rounded.
   175  *    Then
   176  *            n = ilogb(x),
   177  *            if(n<0)  n = n+1;
   178  *            x = scalbn(x,-n);
   179  *            log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
   180  *
   181  * Note 1:
   182  *    To guarantee log10(10**n)=n, where 10**n is normal, the rounding
   183  *    mode must set to Round-to-Nearest.
   184  * Note 2:
   185  *    [1/log(10)] rounded to 53 bits has error  .198   ulps;
   186  *    log10 is monotonic at all binary break points.
   187  *
   188  * Special cases:
   189  *    log10(x) is NaN with signal if x < 0;
   190  *    log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
   191  *    log10(NaN) is that NaN with no signal;
   192  *    log10(10**N) = N  for N=0,1,...,22.
   193  *
   194  * Constants:
   195  * The hexadecimal values are the intended ones for the following constants.
   196  * The decimal values may be used, provided that the compiler will convert
   197  * from decimal to binary accurately enough to produce the hexadecimal values
   198  * shown.
   199  */
   201 static const double
   202 ivln10     =  4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
   203   log10_2hi  =  3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
   204   log10_2lo  =  3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
   206 static double __ieee754_log10(double x) {
   207   double y,z;
   208   int i,k,hx;
   209   unsigned lx;
   211   hx = __HI(x);       /* high word of x */
   212   lx = __LO(x);       /* low word of x */
   214   k=0;
   215   if (hx < 0x00100000) {                  /* x < 2**-1022  */
   216     if (((hx&0x7fffffff)|lx)==0)
   217       return -two54/zero;             /* log(+-0)=-inf */
   218     if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
   219     k -= 54; x *= two54; /* subnormal number, scale up x */
   220     hx = __HI(x);                /* high word of x */
   221   }
   222   if (hx >= 0x7ff00000) return x+x;
   223   k += (hx>>20)-1023;
   224   i  = ((unsigned)k&0x80000000)>>31;
   225   hx = (hx&0x000fffff)|((0x3ff-i)<<20);
   226   y  = (double)(k+i);
   227   __HI(x) = hx;
   228   z  = y*log10_2lo + ivln10*__ieee754_log(x);
   229   return  z+y*log10_2hi;
   230 }
   232 JRT_LEAF(jdouble, SharedRuntime::dlog10(jdouble x))
   233   return __ieee754_log10(x);
   234 JRT_END
   237 /* __ieee754_exp(x)
   238  * Returns the exponential of x.
   239  *
   240  * Method
   241  *   1. Argument reduction:
   242  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
   243  *      Given x, find r and integer k such that
   244  *
   245  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
   246  *
   247  *      Here r will be represented as r = hi-lo for better
   248  *      accuracy.
   249  *
   250  *   2. Approximation of exp(r) by a special rational function on
   251  *      the interval [0,0.34658]:
   252  *      Write
   253  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
   254  *      We use a special Reme algorithm on [0,0.34658] to generate
   255  *      a polynomial of degree 5 to approximate R. The maximum error
   256  *      of this polynomial approximation is bounded by 2**-59. In
   257  *      other words,
   258  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
   259  *      (where z=r*r, and the values of P1 to P5 are listed below)
   260  *      and
   261  *          |                  5          |     -59
   262  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
   263  *          |                             |
   264  *      The computation of exp(r) thus becomes
   265  *                             2*r
   266  *              exp(r) = 1 + -------
   267  *                            R - r
   268  *                                 r*R1(r)
   269  *                     = 1 + r + ----------- (for better accuracy)
   270  *                                2 - R1(r)
   271  *      where
   272  *                               2       4             10
   273  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
   274  *
   275  *   3. Scale back to obtain exp(x):
   276  *      From step 1, we have
   277  *         exp(x) = 2^k * exp(r)
   278  *
   279  * Special cases:
   280  *      exp(INF) is INF, exp(NaN) is NaN;
   281  *      exp(-INF) is 0, and
   282  *      for finite argument, only exp(0)=1 is exact.
   283  *
   284  * Accuracy:
   285  *      according to an error analysis, the error is always less than
   286  *      1 ulp (unit in the last place).
   287  *
   288  * Misc. info.
   289  *      For IEEE double
   290  *          if x >  7.09782712893383973096e+02 then exp(x) overflow
   291  *          if x < -7.45133219101941108420e+02 then exp(x) underflow
   292  *
   293  * Constants:
   294  * The hexadecimal values are the intended ones for the following
   295  * constants. The decimal values may be used, provided that the
   296  * compiler will convert from decimal to binary accurately enough
   297  * to produce the hexadecimal values shown.
   298  */
   300 static const double
   301 one     = 1.0,
   302   halF[2]       = {0.5,-0.5,},
   303   twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
   304     o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
   305     u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
   306     ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
   307                   -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
   308     ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
   309                   -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
   310       invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
   311         P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
   312         P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
   313         P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
   314         P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
   315         P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
   317 static double __ieee754_exp(double x) {
   318   double y,hi=0,lo=0,c,t;
   319   int k=0,xsb;
   320   unsigned hx;
   322   hx  = __HI(x);        /* high word of x */
   323   xsb = (hx>>31)&1;             /* sign bit of x */
   324   hx &= 0x7fffffff;             /* high word of |x| */
   326   /* filter out non-finite argument */
   327   if(hx >= 0x40862E42) {                        /* if |x|>=709.78... */
   328     if(hx>=0x7ff00000) {
   329       if(((hx&0xfffff)|__LO(x))!=0)
   330         return x+x;             /* NaN */
   331       else return (xsb==0)? x:0.0;      /* exp(+-inf)={inf,0} */
   332     }
   333     if(x > o_threshold) return hugeX*hugeX; /* overflow */
   334     if(x < u_threshold) return twom1000*twom1000; /* underflow */
   335   }
   337   /* argument reduction */
   338   if(hx > 0x3fd62e42) {         /* if  |x| > 0.5 ln2 */
   339     if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
   340       hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
   341     } else {
   342       k  = (int)(invln2*x+halF[xsb]);
   343       t  = k;
   344       hi = x - t*ln2HI[0];      /* t*ln2HI is exact here */
   345       lo = t*ln2LO[0];
   346     }
   347     x  = hi - lo;
   348   }
   349   else if(hx < 0x3e300000)  {   /* when |x|<2**-28 */
   350     if(hugeX+x>one) return one+x;/* trigger inexact */
   351   }
   352   else k = 0;
   354   /* x is now in primary range */
   355   t  = x*x;
   356   c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
   357   if(k==0)      return one-((x*c)/(c-2.0)-x);
   358   else          y = one-((lo-(x*c)/(2.0-c))-hi);
   359   if(k >= -1021) {
   360     __HI(y) += (k<<20); /* add k to y's exponent */
   361     return y;
   362   } else {
   363     __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
   364     return y*twom1000;
   365   }
   366 }
   368 JRT_LEAF(jdouble, SharedRuntime::dexp(jdouble x))
   369   return __ieee754_exp(x);
   370 JRT_END
   372 /* __ieee754_pow(x,y) return x**y
   373  *
   374  *                    n
   375  * Method:  Let x =  2   * (1+f)
   376  *      1. Compute and return log2(x) in two pieces:
   377  *              log2(x) = w1 + w2,
   378  *         where w1 has 53-24 = 29 bit trailing zeros.
   379  *      2. Perform y*log2(x) = n+y' by simulating muti-precision
   380  *         arithmetic, where |y'|<=0.5.
   381  *      3. Return x**y = 2**n*exp(y'*log2)
   382  *
   383  * Special cases:
   384  *      1.  (anything) ** 0  is 1
   385  *      2.  (anything) ** 1  is itself
   386  *      3.  (anything) ** NAN is NAN
   387  *      4.  NAN ** (anything except 0) is NAN
   388  *      5.  +-(|x| > 1) **  +INF is +INF
   389  *      6.  +-(|x| > 1) **  -INF is +0
   390  *      7.  +-(|x| < 1) **  +INF is +0
   391  *      8.  +-(|x| < 1) **  -INF is +INF
   392  *      9.  +-1         ** +-INF is NAN
   393  *      10. +0 ** (+anything except 0, NAN)               is +0
   394  *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
   395  *      12. +0 ** (-anything except 0, NAN)               is +INF
   396  *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
   397  *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
   398  *      15. +INF ** (+anything except 0,NAN) is +INF
   399  *      16. +INF ** (-anything except 0,NAN) is +0
   400  *      17. -INF ** (anything)  = -0 ** (-anything)
   401  *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
   402  *      19. (-anything except 0 and inf) ** (non-integer) is NAN
   403  *
   404  * Accuracy:
   405  *      pow(x,y) returns x**y nearly rounded. In particular
   406  *                      pow(integer,integer)
   407  *      always returns the correct integer provided it is
   408  *      representable.
   409  *
   410  * Constants :
   411  * The hexadecimal values are the intended ones for the following
   412  * constants. The decimal values may be used, provided that the
   413  * compiler will convert from decimal to binary accurately enough
   414  * to produce the hexadecimal values shown.
   415  */
   417 static const double
   418 bp[] = {1.0, 1.5,},
   419   dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
   420     dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
   421       zeroX    =  0.0,
   422         two     =  2.0,
   423         two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
   424         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
   425         L1X  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
   426         L2X  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
   427         L3X  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
   428         L4X  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
   429         L5X  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
   430         L6X  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
   431         lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
   432         lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
   433         lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
   434         ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
   435         cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
   436         cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
   437         cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
   438         ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
   439         ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
   440         ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
   442 double __ieee754_pow(double x, double y) {
   443   double z,ax,z_h,z_l,p_h,p_l;
   444   double y1,t1,t2,r,s,t,u,v,w;
   445   int i0,i1,i,j,k,yisint,n;
   446   int hx,hy,ix,iy;
   447   unsigned lx,ly;
   449   i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
   450   hx = __HI(x); lx = __LO(x);
   451   hy = __HI(y); ly = __LO(y);
   452   ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
   454   /* y==zero: x**0 = 1 */
   455   if((iy|ly)==0) return one;
   457   /* +-NaN return x+y */
   458   if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
   459      iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
   460     return x+y;
   462   /* determine if y is an odd int when x < 0
   463    * yisint = 0 ... y is not an integer
   464    * yisint = 1 ... y is an odd int
   465    * yisint = 2 ... y is an even int
   466    */
   467   yisint  = 0;
   468   if(hx<0) {
   469     if(iy>=0x43400000) yisint = 2; /* even integer y */
   470     else if(iy>=0x3ff00000) {
   471       k = (iy>>20)-0x3ff;          /* exponent */
   472       if(k>20) {
   473         j = ly>>(52-k);
   474         if((unsigned)(j<<(52-k))==ly) yisint = 2-(j&1);
   475       } else if(ly==0) {
   476         j = iy>>(20-k);
   477         if((j<<(20-k))==iy) yisint = 2-(j&1);
   478       }
   479     }
   480   }
   482   /* special value of y */
   483   if(ly==0) {
   484     if (iy==0x7ff00000) {       /* y is +-inf */
   485       if(((ix-0x3ff00000)|lx)==0)
   486         return  y - y;  /* inf**+-1 is NaN */
   487       else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
   488         return (hy>=0)? y: zeroX;
   489       else                      /* (|x|<1)**-,+inf = inf,0 */
   490         return (hy<0)?-y: zeroX;
   491     }
   492     if(iy==0x3ff00000) {        /* y is  +-1 */
   493       if(hy<0) return one/x; else return x;
   494     }
   495     if(hy==0x40000000) return x*x; /* y is  2 */
   496     if(hy==0x3fe00000) {        /* y is  0.5 */
   497       if(hx>=0) /* x >= +0 */
   498         return sqrt(x);
   499     }
   500   }
   502   ax   = fabsd(x);
   503   /* special value of x */
   504   if(lx==0) {
   505     if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
   506       z = ax;                   /*x is +-0,+-inf,+-1*/
   507       if(hy<0) z = one/z;       /* z = (1/|x|) */
   508       if(hx<0) {
   509         if(((ix-0x3ff00000)|yisint)==0) {
   510 #ifdef CAN_USE_NAN_DEFINE
   511           z = NAN;
   512 #else
   513           z = (z-z)/(z-z); /* (-1)**non-int is NaN */
   514 #endif
   515         } else if(yisint==1)
   516           z = -1.0*z;           /* (x<0)**odd = -(|x|**odd) */
   517       }
   518       return z;
   519     }
   520   }
   522   n = (hx>>31)+1;
   524   /* (x<0)**(non-int) is NaN */
   525   if((n|yisint)==0)
   526 #ifdef CAN_USE_NAN_DEFINE
   527     return NAN;
   528 #else
   529     return (x-x)/(x-x);
   530 #endif
   532   s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
   533   if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
   535   /* |y| is huge */
   536   if(iy>0x41e00000) { /* if |y| > 2**31 */
   537     if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
   538       if(ix<=0x3fefffff) return (hy<0)? hugeX*hugeX:tiny*tiny;
   539       if(ix>=0x3ff00000) return (hy>0)? hugeX*hugeX:tiny*tiny;
   540     }
   541     /* over/underflow if x is not close to one */
   542     if(ix<0x3fefffff) return (hy<0)? s*hugeX*hugeX:s*tiny*tiny;
   543     if(ix>0x3ff00000) return (hy>0)? s*hugeX*hugeX:s*tiny*tiny;
   544     /* now |1-x| is tiny <= 2**-20, suffice to compute
   545        log(x) by x-x^2/2+x^3/3-x^4/4 */
   546     t = ax-one;         /* t has 20 trailing zeros */
   547     w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
   548     u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
   549     v = t*ivln2_l-w*ivln2;
   550     t1 = u+v;
   551     __LO(t1) = 0;
   552     t2 = v-(t1-u);
   553   } else {
   554     double ss,s2,s_h,s_l,t_h,t_l;
   555     n = 0;
   556     /* take care subnormal number */
   557     if(ix<0x00100000)
   558       {ax *= two53; n -= 53; ix = __HI(ax); }
   559     n  += ((ix)>>20)-0x3ff;
   560     j  = ix&0x000fffff;
   561     /* determine interval */
   562     ix = j|0x3ff00000;          /* normalize ix */
   563     if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
   564     else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
   565     else {k=0;n+=1;ix -= 0x00100000;}
   566     __HI(ax) = ix;
   568     /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
   569     u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
   570     v = one/(ax+bp[k]);
   571     ss = u*v;
   572     s_h = ss;
   573     __LO(s_h) = 0;
   574     /* t_h=ax+bp[k] High */
   575     t_h = zeroX;
   576     __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
   577     t_l = ax - (t_h-bp[k]);
   578     s_l = v*((u-s_h*t_h)-s_h*t_l);
   579     /* compute log(ax) */
   580     s2 = ss*ss;
   581     r = s2*s2*(L1X+s2*(L2X+s2*(L3X+s2*(L4X+s2*(L5X+s2*L6X)))));
   582     r += s_l*(s_h+ss);
   583     s2  = s_h*s_h;
   584     t_h = 3.0+s2+r;
   585     __LO(t_h) = 0;
   586     t_l = r-((t_h-3.0)-s2);
   587     /* u+v = ss*(1+...) */
   588     u = s_h*t_h;
   589     v = s_l*t_h+t_l*ss;
   590     /* 2/(3log2)*(ss+...) */
   591     p_h = u+v;
   592     __LO(p_h) = 0;
   593     p_l = v-(p_h-u);
   594     z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
   595     z_l = cp_l*p_h+p_l*cp+dp_l[k];
   596     /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
   597     t = (double)n;
   598     t1 = (((z_h+z_l)+dp_h[k])+t);
   599     __LO(t1) = 0;
   600     t2 = z_l-(((t1-t)-dp_h[k])-z_h);
   601   }
   603   /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
   604   y1  = y;
   605   __LO(y1) = 0;
   606   p_l = (y-y1)*t1+y*t2;
   607   p_h = y1*t1;
   608   z = p_l+p_h;
   609   j = __HI(z);
   610   i = __LO(z);
   611   if (j>=0x40900000) {                          /* z >= 1024 */
   612     if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
   613       return s*hugeX*hugeX;                     /* overflow */
   614     else {
   615       if(p_l+ovt>z-p_h) return s*hugeX*hugeX;   /* overflow */
   616     }
   617   } else if((j&0x7fffffff)>=0x4090cc00 ) {      /* z <= -1075 */
   618     if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
   619       return s*tiny*tiny;               /* underflow */
   620     else {
   621       if(p_l<=z-p_h) return s*tiny*tiny;        /* underflow */
   622     }
   623   }
   624   /*
   625    * compute 2**(p_h+p_l)
   626    */
   627   i = j&0x7fffffff;
   628   k = (i>>20)-0x3ff;
   629   n = 0;
   630   if(i>0x3fe00000) {            /* if |z| > 0.5, set n = [z+0.5] */
   631     n = j+(0x00100000>>(k+1));
   632     k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
   633     t = zeroX;
   634     __HI(t) = (n&~(0x000fffff>>k));
   635     n = ((n&0x000fffff)|0x00100000)>>(20-k);
   636     if(j<0) n = -n;
   637     p_h -= t;
   638   }
   639   t = p_l+p_h;
   640   __LO(t) = 0;
   641   u = t*lg2_h;
   642   v = (p_l-(t-p_h))*lg2+t*lg2_l;
   643   z = u+v;
   644   w = v-(z-u);
   645   t  = z*z;
   646   t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
   647   r  = (z*t1)/(t1-two)-(w+z*w);
   648   z  = one-(r-z);
   649   j  = __HI(z);
   650   j += (n<<20);
   651   if((j>>20)<=0) z = scalbnA(z,n);       /* subnormal output */
   652   else __HI(z) += (n<<20);
   653   return s*z;
   654 }
   657 JRT_LEAF(jdouble, SharedRuntime::dpow(jdouble x, jdouble y))
   658   return __ieee754_pow(x, y);
   659 JRT_END
   661 #ifdef WIN32
   662 # pragma optimize ( "", on )
   663 #endif

mercurial