src/share/vm/opto/matcher.hpp

Tue, 25 Mar 2014 17:07:36 -0700

author
kvn
date
Tue, 25 Mar 2014 17:07:36 -0700
changeset 6518
62c54fcc0a35
parent 6507
752ba2e5f6d0
parent 6378
8a8ff6b577ed
child 6876
710a3c8b516e
child 9333
2fccf735a116
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_MATCHER_HPP
    26 #define SHARE_VM_OPTO_MATCHER_HPP
    28 #include "libadt/vectset.hpp"
    29 #include "memory/resourceArea.hpp"
    30 #include "opto/node.hpp"
    31 #include "opto/phaseX.hpp"
    32 #include "opto/regmask.hpp"
    34 class Compile;
    35 class Node;
    36 class MachNode;
    37 class MachTypeNode;
    38 class MachOper;
    40 //---------------------------Matcher-------------------------------------------
    41 class Matcher : public PhaseTransform {
    42   friend class VMStructs;
    43   // Private arena of State objects
    44   ResourceArea _states_arena;
    46   VectorSet   _visited;         // Visit bits
    48   // Used to control the Label pass
    49   VectorSet   _shared;          // Shared Ideal Node
    50   VectorSet   _dontcare;        // Nothing the matcher cares about
    52   // Private methods which perform the actual matching and reduction
    53   // Walks the label tree, generating machine nodes
    54   MachNode *ReduceInst( State *s, int rule, Node *&mem);
    55   void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
    56   uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
    57   void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
    59   // If this node already matched using "rule", return the MachNode for it.
    60   MachNode* find_shared_node(Node* n, uint rule);
    62   // Convert a dense opcode number to an expanded rule number
    63   const int *_reduceOp;
    64   const int *_leftOp;
    65   const int *_rightOp;
    67   // Map dense opcode number to info on when rule is swallowed constant.
    68   const bool *_swallowed;
    70   // Map dense rule number to determine if this is an instruction chain rule
    71   const uint _begin_inst_chain_rule;
    72   const uint _end_inst_chain_rule;
    74   // We want to clone constants and possible CmpI-variants.
    75   // If we do not clone CmpI, then we can have many instances of
    76   // condition codes alive at once.  This is OK on some chips and
    77   // bad on others.  Hence the machine-dependent table lookup.
    78   const char *_must_clone;
    80   // Find shared Nodes, or Nodes that otherwise are Matcher roots
    81   void find_shared( Node *n );
    82 #ifdef X86
    83   bool is_bmi_pattern(Node *n, Node *m);
    84 #endif
    86   // Debug and profile information for nodes in old space:
    87   GrowableArray<Node_Notes*>* _old_node_note_array;
    89   // Node labeling iterator for instruction selection
    90   Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
    92   Node *transform( Node *dummy );
    94   Node_List _projection_list;        // For Machine nodes killing many values
    96   Node_Array _shared_nodes;
    98   debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
    99   debug_only(Node_Array _new2old_map;)   // Maps machine nodes back to ideal
   101   // Accessors for the inherited field PhaseTransform::_nodes:
   102   void   grow_new_node_array(uint idx_limit) {
   103     _nodes.map(idx_limit-1, NULL);
   104   }
   105   bool    has_new_node(const Node* n) const {
   106     return _nodes.at(n->_idx) != NULL;
   107   }
   108   Node*       new_node(const Node* n) const {
   109     assert(has_new_node(n), "set before get");
   110     return _nodes.at(n->_idx);
   111   }
   112   void    set_new_node(const Node* n, Node *nn) {
   113     assert(!has_new_node(n), "set only once");
   114     _nodes.map(n->_idx, nn);
   115   }
   117 #ifdef ASSERT
   118   // Make sure only new nodes are reachable from this node
   119   void verify_new_nodes_only(Node* root);
   121   Node* _mem_node;   // Ideal memory node consumed by mach node
   122 #endif
   124   // Mach node for ConP #NULL
   125   MachNode* _mach_null;
   127 public:
   128   int LabelRootDepth;
   129   // Convert ideal machine register to a register mask for spill-loads
   130   static const RegMask *idealreg2regmask[];
   131   RegMask *idealreg2spillmask  [_last_machine_leaf];
   132   RegMask *idealreg2debugmask  [_last_machine_leaf];
   133   RegMask *idealreg2mhdebugmask[_last_machine_leaf];
   134   void init_spill_mask( Node *ret );
   135   // Convert machine register number to register mask
   136   static uint mreg2regmask_max;
   137   static RegMask mreg2regmask[];
   138   static RegMask STACK_ONLY_mask;
   140   MachNode* mach_null() const { return _mach_null; }
   142   bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
   143   void   set_shared( Node *n ) {  _shared.set(n->_idx); }
   144   bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
   145   void  set_visited( Node *n ) { _visited.set(n->_idx); }
   146   bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
   147   void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
   149   // Mode bit to tell DFA and expand rules whether we are running after
   150   // (or during) register selection.  Usually, the matcher runs before,
   151   // but it will also get called to generate post-allocation spill code.
   152   // In this situation, it is a deadly error to attempt to allocate more
   153   // temporary registers.
   154   bool _allocation_started;
   156   // Machine register names
   157   static const char *regName[];
   158   // Machine register encodings
   159   static const unsigned char _regEncode[];
   160   // Machine Node names
   161   const char **_ruleName;
   162   // Rules that are cheaper to rematerialize than to spill
   163   static const uint _begin_rematerialize;
   164   static const uint _end_rematerialize;
   166   // An array of chars, from 0 to _last_Mach_Reg.
   167   // No Save       = 'N' (for register windows)
   168   // Save on Entry = 'E'
   169   // Save on Call  = 'C'
   170   // Always Save   = 'A' (same as SOE + SOC)
   171   const char *_register_save_policy;
   172   const char *_c_reg_save_policy;
   173   // Convert a machine register to a machine register type, so-as to
   174   // properly match spill code.
   175   const int *_register_save_type;
   176   // Maps from machine register to boolean; true if machine register can
   177   // be holding a call argument in some signature.
   178   static bool can_be_java_arg( int reg );
   179   // Maps from machine register to boolean; true if machine register holds
   180   // a spillable argument.
   181   static bool is_spillable_arg( int reg );
   183   // List of IfFalse or IfTrue Nodes that indicate a taken null test.
   184   // List is valid in the post-matching space.
   185   Node_List _null_check_tests;
   186   void collect_null_checks( Node *proj, Node *orig_proj );
   187   void validate_null_checks( );
   189   Matcher();
   191   // Get a projection node at position pos
   192   Node* get_projection(uint pos) {
   193     return _projection_list[pos];
   194   }
   196   // Push a projection node onto the projection list
   197   void push_projection(Node* node) {
   198     _projection_list.push(node);
   199   }
   201   Node* pop_projection() {
   202     return _projection_list.pop();
   203   }
   205   // Number of nodes in the projection list
   206   uint number_of_projections() const {
   207     return _projection_list.size();
   208   }
   210   // Select instructions for entire method
   211   void match();
   213   // Helper for match
   214   OptoReg::Name warp_incoming_stk_arg( VMReg reg );
   216   // Transform, then walk.  Does implicit DCE while walking.
   217   // Name changed from "transform" to avoid it being virtual.
   218   Node *xform( Node *old_space_node, int Nodes );
   220   // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
   221   MachNode *match_tree( const Node *n );
   222   MachNode *match_sfpt( SafePointNode *sfpt );
   223   // Helper for match_sfpt
   224   OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
   226   // Initialize first stack mask and related masks.
   227   void init_first_stack_mask();
   229   // If we should save-on-entry this register
   230   bool is_save_on_entry( int reg );
   232   // Fixup the save-on-entry registers
   233   void Fixup_Save_On_Entry( );
   235   // --- Frame handling ---
   237   // Register number of the stack slot corresponding to the incoming SP.
   238   // Per the Big Picture in the AD file, it is:
   239   //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
   240   OptoReg::Name _old_SP;
   242   // Register number of the stack slot corresponding to the highest incoming
   243   // argument on the stack.  Per the Big Picture in the AD file, it is:
   244   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   245   OptoReg::Name _in_arg_limit;
   247   // Register number of the stack slot corresponding to the new SP.
   248   // Per the Big Picture in the AD file, it is:
   249   //   _in_arg_limit + pad0
   250   OptoReg::Name _new_SP;
   252   // Register number of the stack slot corresponding to the highest outgoing
   253   // argument on the stack.  Per the Big Picture in the AD file, it is:
   254   //   _new_SP + max outgoing arguments of all calls
   255   OptoReg::Name _out_arg_limit;
   257   OptoRegPair *_parm_regs;        // Array of machine registers per argument
   258   RegMask *_calling_convention_mask; // Array of RegMasks per argument
   260   // Does matcher have a match rule for this ideal node?
   261   static const bool has_match_rule(int opcode);
   262   static const bool _hasMatchRule[_last_opcode];
   264   // Does matcher have a match rule for this ideal node and is the
   265   // predicate (if there is one) true?
   266   // NOTE: If this function is used more commonly in the future, ADLC
   267   // should generate this one.
   268   static const bool match_rule_supported(int opcode);
   270   // Used to determine if we have fast l2f conversion
   271   // USII has it, USIII doesn't
   272   static const bool convL2FSupported(void);
   274   // Vector width in bytes
   275   static const int vector_width_in_bytes(BasicType bt);
   277   // Limits on vector size (number of elements).
   278   static const int max_vector_size(const BasicType bt);
   279   static const int min_vector_size(const BasicType bt);
   280   static const bool vector_size_supported(const BasicType bt, int size) {
   281     return (Matcher::max_vector_size(bt) >= size &&
   282             Matcher::min_vector_size(bt) <= size);
   283   }
   285   // Vector ideal reg
   286   static const int vector_ideal_reg(int len);
   287   static const int vector_shift_count_ideal_reg(int len);
   289   // CPU supports misaligned vectors store/load.
   290   static const bool misaligned_vectors_ok();
   292   // Should original key array reference be passed to AES stubs
   293   static const bool pass_original_key_for_aes();
   295   // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
   296   // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
   297   // Depends on the details of 64-bit constant generation on the CPU.
   298   static const bool isSimpleConstant64(jlong con);
   300   // These calls are all generated by the ADLC
   302   // TRUE - grows up, FALSE - grows down (Intel)
   303   virtual bool stack_direction() const;
   305   // Java-Java calling convention
   306   // (what you use when Java calls Java)
   308   // Alignment of stack in bytes, standard Intel word alignment is 4.
   309   // Sparc probably wants at least double-word (8).
   310   static uint stack_alignment_in_bytes();
   311   // Alignment of stack, measured in stack slots.
   312   // The size of stack slots is defined by VMRegImpl::stack_slot_size.
   313   static uint stack_alignment_in_slots() {
   314     return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
   315   }
   317   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
   318   // pointer.  Registers can include stack-slots and regular registers.
   319   static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
   321   // Convert a sig into a calling convention register layout
   322   // and find interesting things about it.
   323   static OptoReg::Name  find_receiver( bool is_outgoing );
   324   // Return address register.  On Intel it is a stack-slot.  On PowerPC
   325   // it is the Link register.  On Sparc it is r31?
   326   virtual OptoReg::Name return_addr() const;
   327   RegMask              _return_addr_mask;
   328   // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
   329   static OptoRegPair   return_value(int ideal_reg, bool is_outgoing);
   330   static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
   331   RegMask                     _return_value_mask;
   332   // Inline Cache Register
   333   static OptoReg::Name  inline_cache_reg();
   334   static int            inline_cache_reg_encode();
   336   // Register for DIVI projection of divmodI
   337   static RegMask divI_proj_mask();
   338   // Register for MODI projection of divmodI
   339   static RegMask modI_proj_mask();
   341   // Register for DIVL projection of divmodL
   342   static RegMask divL_proj_mask();
   343   // Register for MODL projection of divmodL
   344   static RegMask modL_proj_mask();
   346   // Use hardware DIV instruction when it is faster than
   347   // a code which use multiply for division by constant.
   348   static bool use_asm_for_ldiv_by_con( jlong divisor );
   350   static const RegMask method_handle_invoke_SP_save_mask();
   352   // Java-Interpreter calling convention
   353   // (what you use when calling between compiled-Java and Interpreted-Java
   355   // Number of callee-save + always-save registers
   356   // Ignores frame pointer and "special" registers
   357   static int  number_of_saved_registers();
   359   // The Method-klass-holder may be passed in the inline_cache_reg
   360   // and then expanded into the inline_cache_reg and a method_oop register
   362   static OptoReg::Name  interpreter_method_oop_reg();
   363   static int            interpreter_method_oop_reg_encode();
   365   static OptoReg::Name  compiler_method_oop_reg();
   366   static const RegMask &compiler_method_oop_reg_mask();
   367   static int            compiler_method_oop_reg_encode();
   369   // Interpreter's Frame Pointer Register
   370   static OptoReg::Name  interpreter_frame_pointer_reg();
   372   // Java-Native calling convention
   373   // (what you use when intercalling between Java and C++ code)
   375   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
   376   // pointer.  Registers can include stack-slots and regular registers.
   377   static void c_calling_convention( BasicType*, VMRegPair *, uint );
   378   // Frame pointer. The frame pointer is kept at the base of the stack
   379   // and so is probably the stack pointer for most machines.  On Intel
   380   // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
   381   OptoReg::Name  c_frame_pointer() const;
   382   static RegMask c_frame_ptr_mask;
   384   // !!!!! Special stuff for building ScopeDescs
   385   virtual int      regnum_to_fpu_offset(int regnum);
   387   // Is this branch offset small enough to be addressed by a short branch?
   388   bool is_short_branch_offset(int rule, int br_size, int offset);
   390   // Optional scaling for the parameter to the ClearArray/CopyArray node.
   391   static const bool init_array_count_is_in_bytes;
   393   // Threshold small size (in bytes) for a ClearArray/CopyArray node.
   394   // Anything this size or smaller may get converted to discrete scalar stores.
   395   static const int init_array_short_size;
   397   // Some hardware needs 2 CMOV's for longs.
   398   static const int long_cmove_cost();
   400   // Some hardware have expensive CMOV for float and double.
   401   static const int float_cmove_cost();
   403   // Should the Matcher clone shifts on addressing modes, expecting them to
   404   // be subsumed into complex addressing expressions or compute them into
   405   // registers?  True for Intel but false for most RISCs
   406   static const bool clone_shift_expressions;
   408   static bool narrow_oop_use_complex_address();
   409   static bool narrow_klass_use_complex_address();
   411   // Generate implicit null check for narrow oops if it can fold
   412   // into address expression (x64).
   413   //
   414   // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
   415   // NullCheck narrow_oop_reg
   416   //
   417   // When narrow oops can't fold into address expression (Sparc) and
   418   // base is not null use decode_not_null and normal implicit null check.
   419   // Note, decode_not_null node can be used here since it is referenced
   420   // only on non null path but it requires special handling, see
   421   // collect_null_checks():
   422   //
   423   // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
   424   // [oop_reg + offset]
   425   // NullCheck oop_reg
   426   //
   427   // With Zero base and when narrow oops can not fold into address
   428   // expression use normal implicit null check since only shift
   429   // is needed to decode narrow oop.
   430   //
   431   // decode narrow_oop_reg, oop_reg // only 'shift'
   432   // [oop_reg + offset]
   433   // NullCheck oop_reg
   434   //
   435   inline static bool gen_narrow_oop_implicit_null_checks() {
   436     return Universe::narrow_oop_use_implicit_null_checks() &&
   437            (narrow_oop_use_complex_address() ||
   438             Universe::narrow_oop_base() != NULL);
   439   }
   441   // Is it better to copy float constants, or load them directly from memory?
   442   // Intel can load a float constant from a direct address, requiring no
   443   // extra registers.  Most RISCs will have to materialize an address into a
   444   // register first, so they may as well materialize the constant immediately.
   445   static const bool rematerialize_float_constants;
   447   // If CPU can load and store mis-aligned doubles directly then no fixup is
   448   // needed.  Else we split the double into 2 integer pieces and move it
   449   // piece-by-piece.  Only happens when passing doubles into C code or when
   450   // calling i2c adapters as the Java calling convention forces doubles to be
   451   // aligned.
   452   static const bool misaligned_doubles_ok;
   454   // Does the CPU require postalloc expand (see block.cpp for description of
   455   // postalloc expand)?
   456   static const bool require_postalloc_expand;
   458   // Perform a platform dependent implicit null fixup.  This is needed
   459   // on windows95 to take care of some unusual register constraints.
   460   void pd_implicit_null_fixup(MachNode *load, uint idx);
   462   // Advertise here if the CPU requires explicit rounding operations
   463   // to implement the UseStrictFP mode.
   464   static const bool strict_fp_requires_explicit_rounding;
   466   // Are floats conerted to double when stored to stack during deoptimization?
   467   static bool float_in_double();
   468   // Do ints take an entire long register or just half?
   469   static const bool int_in_long;
   471   // Do the processor's shift instructions only use the low 5/6 bits
   472   // of the count for 32/64 bit ints? If not we need to do the masking
   473   // ourselves.
   474   static const bool need_masked_shift_count;
   476   // This routine is run whenever a graph fails to match.
   477   // If it returns, the compiler should bailout to interpreter without error.
   478   // In non-product mode, SoftMatchFailure is false to detect non-canonical
   479   // graphs.  Print a message and exit.
   480   static void soft_match_failure() {
   481     if( SoftMatchFailure ) return;
   482     else { fatal("SoftMatchFailure is not allowed except in product"); }
   483   }
   485   // Check for a following volatile memory barrier without an
   486   // intervening load and thus we don't need a barrier here.  We
   487   // retain the Node to act as a compiler ordering barrier.
   488   static bool post_store_load_barrier(const Node* mb);
   490   // Does n lead to an uncommon trap that can cause deoptimization?
   491   static bool branches_to_uncommon_trap(const Node *n);
   493 #ifdef ASSERT
   494   void dump_old2new_map();      // machine-independent to machine-dependent
   496   Node* find_old_node(Node* new_node) {
   497     return _new2old_map[new_node->_idx];
   498   }
   499 #endif
   500 };
   502 #endif // SHARE_VM_OPTO_MATCHER_HPP

mercurial