src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Wed, 30 Sep 2009 14:50:51 -0400

author
tonyp
date
Wed, 30 Sep 2009 14:50:51 -0400
changeset 1479
6270f80a7331
parent 1377
2c79770d1f6e
child 1546
44f61c24ddab
permissions
-rw-r--r--

6890137: G1: revamp reachable object dump
Summary: Revamp the reachable object dump debugging facility.
Reviewed-by: jmasa, apetrusenko

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A G1CollectorPolicy makes policy decisions that determine the
    26 // characteristics of the collector.  Examples include:
    27 //   * choice of collection set.
    28 //   * when to collect.
    30 class HeapRegion;
    31 class CollectionSetChooser;
    33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    34 // over and over again and introducing subtle problems through small typos and
    35 // cutting and pasting mistakes. The macros below introduces a number
    36 // sequnce into the following two classes and the methods that access it.
    38 #define define_num_seq(name)                                                  \
    39 private:                                                                      \
    40   NumberSeq _all_##name##_times_ms;                                           \
    41 public:                                                                       \
    42   void record_##name##_time_ms(double ms) {                                   \
    43     _all_##name##_times_ms.add(ms);                                           \
    44   }                                                                           \
    45   NumberSeq* get_##name##_seq() {                                             \
    46     return &_all_##name##_times_ms;                                           \
    47   }
    49 class MainBodySummary;
    51 class PauseSummary: public CHeapObj {
    52   define_num_seq(total)
    53     define_num_seq(other)
    55 public:
    56   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    57 };
    59 class MainBodySummary: public CHeapObj {
    60   define_num_seq(satb_drain) // optional
    61   define_num_seq(parallel) // parallel only
    62     define_num_seq(ext_root_scan)
    63     define_num_seq(mark_stack_scan)
    64     define_num_seq(scan_only)
    65     define_num_seq(update_rs)
    66     define_num_seq(scan_rs)
    67     define_num_seq(scan_new_refs) // Only for temp use; added to
    68                                   // in parallel case.
    69     define_num_seq(obj_copy)
    70     define_num_seq(termination) // parallel only
    71     define_num_seq(parallel_other) // parallel only
    72   define_num_seq(mark_closure)
    73   define_num_seq(clear_ct)  // parallel only
    74 };
    76 class Summary: public PauseSummary,
    77                public MainBodySummary {
    78 public:
    79   virtual MainBodySummary*    main_body_summary()    { return this; }
    80 };
    82 class AbandonedSummary: public PauseSummary {
    83 };
    85 class G1CollectorPolicy: public CollectorPolicy {
    86 protected:
    87   // The number of pauses during the execution.
    88   long _n_pauses;
    90   // either equal to the number of parallel threads, if ParallelGCThreads
    91   // has been set, or 1 otherwise
    92   int _parallel_gc_threads;
    94   enum SomePrivateConstants {
    95     NumPrevPausesForHeuristics = 10
    96   };
    98   G1MMUTracker* _mmu_tracker;
   100   void initialize_flags();
   102   void initialize_all() {
   103     initialize_flags();
   104     initialize_size_info();
   105     initialize_perm_generation(PermGen::MarkSweepCompact);
   106   }
   108   virtual size_t default_init_heap_size() {
   109     // Pick some reasonable default.
   110     return 8*M;
   111   }
   113   double _cur_collection_start_sec;
   114   size_t _cur_collection_pause_used_at_start_bytes;
   115   size_t _cur_collection_pause_used_regions_at_start;
   116   size_t _prev_collection_pause_used_at_end_bytes;
   117   double _cur_collection_par_time_ms;
   118   double _cur_satb_drain_time_ms;
   119   double _cur_clear_ct_time_ms;
   120   bool   _satb_drain_time_set;
   122 #ifndef PRODUCT
   123   // Card Table Count Cache stats
   124   double _min_clear_cc_time_ms;         // min
   125   double _max_clear_cc_time_ms;         // max
   126   double _cur_clear_cc_time_ms;         // clearing time during current pause
   127   double _cum_clear_cc_time_ms;         // cummulative clearing time
   128   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   129 #endif
   131   double _cur_CH_strong_roots_end_sec;
   132   double _cur_CH_strong_roots_dur_ms;
   133   double _cur_G1_strong_roots_end_sec;
   134   double _cur_G1_strong_roots_dur_ms;
   136   // Statistics for recent GC pauses.  See below for how indexed.
   137   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   138   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   139   TruncatedSeq* _recent_evac_times_ms;
   140   // These exclude marking times.
   141   TruncatedSeq* _recent_pause_times_ms;
   142   TruncatedSeq* _recent_gc_times_ms;
   144   TruncatedSeq* _recent_CS_bytes_used_before;
   145   TruncatedSeq* _recent_CS_bytes_surviving;
   147   TruncatedSeq* _recent_rs_sizes;
   149   TruncatedSeq* _concurrent_mark_init_times_ms;
   150   TruncatedSeq* _concurrent_mark_remark_times_ms;
   151   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   153   Summary*           _summary;
   154   AbandonedSummary*  _abandoned_summary;
   156   NumberSeq* _all_pause_times_ms;
   157   NumberSeq* _all_full_gc_times_ms;
   158   double _stop_world_start;
   159   NumberSeq* _all_stop_world_times_ms;
   160   NumberSeq* _all_yield_times_ms;
   162   size_t     _region_num_young;
   163   size_t     _region_num_tenured;
   164   size_t     _prev_region_num_young;
   165   size_t     _prev_region_num_tenured;
   167   NumberSeq* _all_mod_union_times_ms;
   169   int        _aux_num;
   170   NumberSeq* _all_aux_times_ms;
   171   double*    _cur_aux_start_times_ms;
   172   double*    _cur_aux_times_ms;
   173   bool*      _cur_aux_times_set;
   175   double* _par_last_ext_root_scan_times_ms;
   176   double* _par_last_mark_stack_scan_times_ms;
   177   double* _par_last_scan_only_times_ms;
   178   double* _par_last_scan_only_regions_scanned;
   179   double* _par_last_update_rs_start_times_ms;
   180   double* _par_last_update_rs_times_ms;
   181   double* _par_last_update_rs_processed_buffers;
   182   double* _par_last_scan_rs_start_times_ms;
   183   double* _par_last_scan_rs_times_ms;
   184   double* _par_last_scan_new_refs_times_ms;
   185   double* _par_last_obj_copy_times_ms;
   186   double* _par_last_termination_times_ms;
   188   // indicates that we are in young GC mode
   189   bool _in_young_gc_mode;
   191   // indicates whether we are in full young or partially young GC mode
   192   bool _full_young_gcs;
   194   // if true, then it tries to dynamically adjust the length of the
   195   // young list
   196   bool _adaptive_young_list_length;
   197   size_t _young_list_min_length;
   198   size_t _young_list_target_length;
   199   size_t _young_list_so_prefix_length;
   200   size_t _young_list_fixed_length;
   202   size_t _young_cset_length;
   203   bool   _last_young_gc_full;
   205   double _target_pause_time_ms;
   207   unsigned              _full_young_pause_num;
   208   unsigned              _partial_young_pause_num;
   210   bool                  _during_marking;
   211   bool                  _in_marking_window;
   212   bool                  _in_marking_window_im;
   214   SurvRateGroup*        _short_lived_surv_rate_group;
   215   SurvRateGroup*        _survivor_surv_rate_group;
   216   // add here any more surv rate groups
   218   bool during_marking() {
   219     return _during_marking;
   220   }
   222   // <NEW PREDICTION>
   224 private:
   225   enum PredictionConstants {
   226     TruncatedSeqLength = 10
   227   };
   229   TruncatedSeq* _alloc_rate_ms_seq;
   230   double        _prev_collection_pause_end_ms;
   232   TruncatedSeq* _pending_card_diff_seq;
   233   TruncatedSeq* _rs_length_diff_seq;
   234   TruncatedSeq* _cost_per_card_ms_seq;
   235   TruncatedSeq* _cost_per_scan_only_region_ms_seq;
   236   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   237   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   238   TruncatedSeq* _cost_per_entry_ms_seq;
   239   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   240   TruncatedSeq* _cost_per_byte_ms_seq;
   241   TruncatedSeq* _constant_other_time_ms_seq;
   242   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   243   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   245   TruncatedSeq* _pending_cards_seq;
   246   TruncatedSeq* _scanned_cards_seq;
   247   TruncatedSeq* _rs_lengths_seq;
   249   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   250   TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
   252   TruncatedSeq* _young_gc_eff_seq;
   254   TruncatedSeq* _max_conc_overhead_seq;
   256   size_t _recorded_young_regions;
   257   size_t _recorded_scan_only_regions;
   258   size_t _recorded_non_young_regions;
   259   size_t _recorded_region_num;
   261   size_t _free_regions_at_end_of_collection;
   262   size_t _scan_only_regions_at_end_of_collection;
   264   size_t _recorded_rs_lengths;
   265   size_t _max_rs_lengths;
   267   size_t _recorded_marked_bytes;
   268   size_t _recorded_young_bytes;
   270   size_t _predicted_pending_cards;
   271   size_t _predicted_cards_scanned;
   272   size_t _predicted_rs_lengths;
   273   size_t _predicted_bytes_to_copy;
   275   double _predicted_survival_ratio;
   276   double _predicted_rs_update_time_ms;
   277   double _predicted_rs_scan_time_ms;
   278   double _predicted_scan_only_scan_time_ms;
   279   double _predicted_object_copy_time_ms;
   280   double _predicted_constant_other_time_ms;
   281   double _predicted_young_other_time_ms;
   282   double _predicted_non_young_other_time_ms;
   283   double _predicted_pause_time_ms;
   285   double _vtime_diff_ms;
   287   double _recorded_young_free_cset_time_ms;
   288   double _recorded_non_young_free_cset_time_ms;
   290   double _sigma;
   291   double _expensive_region_limit_ms;
   293   size_t _rs_lengths_prediction;
   295   size_t _known_garbage_bytes;
   296   double _known_garbage_ratio;
   298   double sigma() {
   299     return _sigma;
   300   }
   302   // A function that prevents us putting too much stock in small sample
   303   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   304   // of samples.  5 or more samples yields one; fewer scales linearly from
   305   // 2.0 at 1 sample to 1.0 at 5.
   306   double confidence_factor(int samples) {
   307     if (samples > 4) return 1.0;
   308     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   309   }
   311   double get_new_neg_prediction(TruncatedSeq* seq) {
   312     return seq->davg() - sigma() * seq->dsd();
   313   }
   315 #ifndef PRODUCT
   316   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   317 #endif // PRODUCT
   319 protected:
   320   double _pause_time_target_ms;
   321   double _recorded_young_cset_choice_time_ms;
   322   double _recorded_non_young_cset_choice_time_ms;
   323   bool   _within_target;
   324   size_t _pending_cards;
   325   size_t _max_pending_cards;
   327 public:
   329   void set_region_short_lived(HeapRegion* hr) {
   330     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   331   }
   333   void set_region_survivors(HeapRegion* hr) {
   334     hr->install_surv_rate_group(_survivor_surv_rate_group);
   335   }
   337 #ifndef PRODUCT
   338   bool verify_young_ages();
   339 #endif // PRODUCT
   341   void tag_scan_only(size_t short_lived_scan_only_length);
   343   double get_new_prediction(TruncatedSeq* seq) {
   344     return MAX2(seq->davg() + sigma() * seq->dsd(),
   345                 seq->davg() * confidence_factor(seq->num()));
   346   }
   348   size_t young_cset_length() {
   349     return _young_cset_length;
   350   }
   352   void record_max_rs_lengths(size_t rs_lengths) {
   353     _max_rs_lengths = rs_lengths;
   354   }
   356   size_t predict_pending_card_diff() {
   357     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   358     if (prediction < 0.00001)
   359       return 0;
   360     else
   361       return (size_t) prediction;
   362   }
   364   size_t predict_pending_cards() {
   365     size_t max_pending_card_num = _g1->max_pending_card_num();
   366     size_t diff = predict_pending_card_diff();
   367     size_t prediction;
   368     if (diff > max_pending_card_num)
   369       prediction = max_pending_card_num;
   370     else
   371       prediction = max_pending_card_num - diff;
   373     return prediction;
   374   }
   376   size_t predict_rs_length_diff() {
   377     return (size_t) get_new_prediction(_rs_length_diff_seq);
   378   }
   380   double predict_alloc_rate_ms() {
   381     return get_new_prediction(_alloc_rate_ms_seq);
   382   }
   384   double predict_cost_per_card_ms() {
   385     return get_new_prediction(_cost_per_card_ms_seq);
   386   }
   388   double predict_rs_update_time_ms(size_t pending_cards) {
   389     return (double) pending_cards * predict_cost_per_card_ms();
   390   }
   392   double predict_fully_young_cards_per_entry_ratio() {
   393     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   394   }
   396   double predict_partially_young_cards_per_entry_ratio() {
   397     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   398       return predict_fully_young_cards_per_entry_ratio();
   399     else
   400       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   401   }
   403   size_t predict_young_card_num(size_t rs_length) {
   404     return (size_t) ((double) rs_length *
   405                      predict_fully_young_cards_per_entry_ratio());
   406   }
   408   size_t predict_non_young_card_num(size_t rs_length) {
   409     return (size_t) ((double) rs_length *
   410                      predict_partially_young_cards_per_entry_ratio());
   411   }
   413   double predict_rs_scan_time_ms(size_t card_num) {
   414     if (full_young_gcs())
   415       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   416     else
   417       return predict_partially_young_rs_scan_time_ms(card_num);
   418   }
   420   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   421     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   422       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   423     else
   424       return (double) card_num *
   425         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   426   }
   428   double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
   429     if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
   430       return 1.5 * (double) scan_only_region_num *
   431         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   432     else
   433       return (double) scan_only_region_num *
   434         get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
   435   }
   437   double predict_scan_only_time_ms(size_t scan_only_region_num) {
   438     if (_in_marking_window_im)
   439       return predict_scan_only_time_ms_during_cm(scan_only_region_num);
   440     else
   441       return (double) scan_only_region_num *
   442         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   443   }
   445   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   446     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   447       return 1.1 * (double) bytes_to_copy *
   448         get_new_prediction(_cost_per_byte_ms_seq);
   449     else
   450       return (double) bytes_to_copy *
   451         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   452   }
   454   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   455     if (_in_marking_window && !_in_marking_window_im)
   456       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   457     else
   458       return (double) bytes_to_copy *
   459         get_new_prediction(_cost_per_byte_ms_seq);
   460   }
   462   double predict_constant_other_time_ms() {
   463     return get_new_prediction(_constant_other_time_ms_seq);
   464   }
   466   double predict_young_other_time_ms(size_t young_num) {
   467     return
   468       (double) young_num *
   469       get_new_prediction(_young_other_cost_per_region_ms_seq);
   470   }
   472   double predict_non_young_other_time_ms(size_t non_young_num) {
   473     return
   474       (double) non_young_num *
   475       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   476   }
   478   void check_if_region_is_too_expensive(double predicted_time_ms);
   480   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   481   double predict_base_elapsed_time_ms(size_t pending_cards);
   482   double predict_base_elapsed_time_ms(size_t pending_cards,
   483                                       size_t scanned_cards);
   484   size_t predict_bytes_to_copy(HeapRegion* hr);
   485   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   487   // for use by: calculate_optimal_so_length(length)
   488   void predict_gc_eff(size_t young_region_num,
   489                       size_t so_length,
   490                       double base_time_ms,
   491                       double *gc_eff,
   492                       double *pause_time_ms);
   494   // for use by: calculate_young_list_target_config(rs_length)
   495   bool predict_gc_eff(size_t young_region_num,
   496                       size_t so_length,
   497                       double base_time_with_so_ms,
   498                       size_t init_free_regions,
   499                       double target_pause_time_ms,
   500                       double* gc_eff);
   502   void start_recording_regions();
   503   void record_cset_region(HeapRegion* hr, bool young);
   504   void record_scan_only_regions(size_t scan_only_length);
   505   void end_recording_regions();
   507   void record_vtime_diff_ms(double vtime_diff_ms) {
   508     _vtime_diff_ms = vtime_diff_ms;
   509   }
   511   void record_young_free_cset_time_ms(double time_ms) {
   512     _recorded_young_free_cset_time_ms = time_ms;
   513   }
   515   void record_non_young_free_cset_time_ms(double time_ms) {
   516     _recorded_non_young_free_cset_time_ms = time_ms;
   517   }
   519   double predict_young_gc_eff() {
   520     return get_new_neg_prediction(_young_gc_eff_seq);
   521   }
   523   double predict_survivor_regions_evac_time();
   525   // </NEW PREDICTION>
   527 public:
   528   void cset_regions_freed() {
   529     bool propagate = _last_young_gc_full && !_in_marking_window;
   530     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   531     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   532     // also call it on any more surv rate groups
   533   }
   535   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   536     _known_garbage_bytes = known_garbage_bytes;
   537     size_t heap_bytes = _g1->capacity();
   538     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   539   }
   541   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   542     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   544     _known_garbage_bytes -= known_garbage_bytes;
   545     size_t heap_bytes = _g1->capacity();
   546     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   547   }
   549   G1MMUTracker* mmu_tracker() {
   550     return _mmu_tracker;
   551   }
   553   double predict_init_time_ms() {
   554     return get_new_prediction(_concurrent_mark_init_times_ms);
   555   }
   557   double predict_remark_time_ms() {
   558     return get_new_prediction(_concurrent_mark_remark_times_ms);
   559   }
   561   double predict_cleanup_time_ms() {
   562     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   563   }
   565   // Returns an estimate of the survival rate of the region at yg-age
   566   // "yg_age".
   567   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   568     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   569     if (seq->num() == 0)
   570       gclog_or_tty->print("BARF! age is %d", age);
   571     guarantee( seq->num() > 0, "invariant" );
   572     double pred = get_new_prediction(seq);
   573     if (pred > 1.0)
   574       pred = 1.0;
   575     return pred;
   576   }
   578   double predict_yg_surv_rate(int age) {
   579     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   580   }
   582   double accum_yg_surv_rate_pred(int age) {
   583     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   584   }
   586 protected:
   587   void print_stats (int level, const char* str, double value);
   588   void print_stats (int level, const char* str, int value);
   589   void print_par_stats (int level, const char* str, double* data) {
   590     print_par_stats(level, str, data, true);
   591   }
   592   void print_par_stats (int level, const char* str, double* data, bool summary);
   593   void print_par_buffers (int level, const char* str, double* data, bool summary);
   595   void check_other_times(int level,
   596                          NumberSeq* other_times_ms,
   597                          NumberSeq* calc_other_times_ms) const;
   599   void print_summary (PauseSummary* stats) const;
   600   void print_abandoned_summary(PauseSummary* summary) const;
   602   void print_summary (int level, const char* str, NumberSeq* seq) const;
   603   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   605   double avg_value (double* data);
   606   double max_value (double* data);
   607   double sum_of_values (double* data);
   608   double max_sum (double* data1, double* data2);
   610   int _last_satb_drain_processed_buffers;
   611   int _last_update_rs_processed_buffers;
   612   double _last_pause_time_ms;
   614   size_t _bytes_in_to_space_before_gc;
   615   size_t _bytes_in_to_space_after_gc;
   616   size_t bytes_in_to_space_during_gc() {
   617     return
   618       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   619   }
   620   size_t _bytes_in_collection_set_before_gc;
   621   // Used to count used bytes in CS.
   622   friend class CountCSClosure;
   624   // Statistics kept per GC stoppage, pause or full.
   625   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   627   // We track markings.
   628   int _num_markings;
   629   double _mark_thread_startup_sec;       // Time at startup of marking thread
   631   // Add a new GC of the given duration and end time to the record.
   632   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   634   // The head of the list (via "next_in_collection_set()") representing the
   635   // current collection set.
   636   HeapRegion* _collection_set;
   637   size_t _collection_set_size;
   638   size_t _collection_set_bytes_used_before;
   640   // Info about marking.
   641   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   643   // The number of collection pauses at the end of the last mark.
   644   size_t _n_pauses_at_mark_end;
   646   // Stash a pointer to the g1 heap.
   647   G1CollectedHeap* _g1;
   649   // The average time in ms per collection pause, averaged over recent pauses.
   650   double recent_avg_time_for_pauses_ms();
   652   // The average time in ms for processing CollectedHeap strong roots, per
   653   // collection pause, averaged over recent pauses.
   654   double recent_avg_time_for_CH_strong_ms();
   656   // The average time in ms for processing the G1 remembered set, per
   657   // pause, averaged over recent pauses.
   658   double recent_avg_time_for_G1_strong_ms();
   660   // The average time in ms for "evacuating followers", per pause, averaged
   661   // over recent pauses.
   662   double recent_avg_time_for_evac_ms();
   664   // The number of "recent" GCs recorded in the number sequences
   665   int number_of_recent_gcs();
   667   // The average survival ratio, computed by the total number of bytes
   668   // suriviving / total number of bytes before collection over the last
   669   // several recent pauses.
   670   double recent_avg_survival_fraction();
   671   // The survival fraction of the most recent pause; if there have been no
   672   // pauses, returns 1.0.
   673   double last_survival_fraction();
   675   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   676   // one that may be higher than "recent_avg_survival_fraction".
   677   // This is conservative in several ways:
   678   //   If there have been few pauses, it will assume a potential high
   679   //     variance, and err on the side of caution.
   680   //   It puts a lower bound (currently 0.1) on the value it will return.
   681   //   To try to detect phase changes, if the most recent pause ("latest") has a
   682   //     higher-than average ("avg") survival rate, it returns that rate.
   683   // "work" version is a utility function; young is restricted to young regions.
   684   double conservative_avg_survival_fraction_work(double avg,
   685                                                  double latest);
   687   // The arguments are the two sequences that keep track of the number of bytes
   688   //   surviving and the total number of bytes before collection, resp.,
   689   //   over the last evereal recent pauses
   690   // Returns the survival rate for the category in the most recent pause.
   691   // If there have been no pauses, returns 1.0.
   692   double last_survival_fraction_work(TruncatedSeq* surviving,
   693                                      TruncatedSeq* before);
   695   // The arguments are the two sequences that keep track of the number of bytes
   696   //   surviving and the total number of bytes before collection, resp.,
   697   //   over the last several recent pauses
   698   // Returns the average survival ration over the last several recent pauses
   699   // If there have been no pauses, return 1.0
   700   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   701                                            TruncatedSeq* before);
   703   double conservative_avg_survival_fraction() {
   704     double avg = recent_avg_survival_fraction();
   705     double latest = last_survival_fraction();
   706     return conservative_avg_survival_fraction_work(avg, latest);
   707   }
   709   // The ratio of gc time to elapsed time, computed over recent pauses.
   710   double _recent_avg_pause_time_ratio;
   712   double recent_avg_pause_time_ratio() {
   713     return _recent_avg_pause_time_ratio;
   714   }
   716   // Number of pauses between concurrent marking.
   717   size_t _pauses_btwn_concurrent_mark;
   719   size_t _n_marks_since_last_pause;
   721   // True iff CM has been initiated.
   722   bool _conc_mark_initiated;
   724   // True iff CM should be initiated
   725   bool _should_initiate_conc_mark;
   726   bool _should_revert_to_full_young_gcs;
   727   bool _last_full_young_gc;
   729   // This set of variables tracks the collector efficiency, in order to
   730   // determine whether we should initiate a new marking.
   731   double _cur_mark_stop_world_time_ms;
   732   double _mark_init_start_sec;
   733   double _mark_remark_start_sec;
   734   double _mark_cleanup_start_sec;
   735   double _mark_closure_time_ms;
   737   void   calculate_young_list_min_length();
   738   void   calculate_young_list_target_config();
   739   void   calculate_young_list_target_config(size_t rs_lengths);
   740   size_t calculate_optimal_so_length(size_t young_list_length);
   742 public:
   744   G1CollectorPolicy();
   746   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   748   virtual CollectorPolicy::Name kind() {
   749     return CollectorPolicy::G1CollectorPolicyKind;
   750   }
   752   void check_prediction_validity();
   754   size_t bytes_in_collection_set() {
   755     return _bytes_in_collection_set_before_gc;
   756   }
   758   size_t bytes_in_to_space() {
   759     return bytes_in_to_space_during_gc();
   760   }
   762   unsigned calc_gc_alloc_time_stamp() {
   763     return _all_pause_times_ms->num() + 1;
   764   }
   766 protected:
   768   // Count the number of bytes used in the CS.
   769   void count_CS_bytes_used();
   771   // Together these do the base cleanup-recording work.  Subclasses might
   772   // want to put something between them.
   773   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   774                                                 size_t max_live_bytes);
   775   void record_concurrent_mark_cleanup_end_work2();
   777 public:
   779   virtual void init();
   781   // Create jstat counters for the policy.
   782   virtual void initialize_gc_policy_counters();
   784   virtual HeapWord* mem_allocate_work(size_t size,
   785                                       bool is_tlab,
   786                                       bool* gc_overhead_limit_was_exceeded);
   788   // This method controls how a collector handles one or more
   789   // of its generations being fully allocated.
   790   virtual HeapWord* satisfy_failed_allocation(size_t size,
   791                                               bool is_tlab);
   793   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   795   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   797   // The number of collection pauses so far.
   798   long n_pauses() const { return _n_pauses; }
   800   // Update the heuristic info to record a collection pause of the given
   801   // start time, where the given number of bytes were used at the start.
   802   // This may involve changing the desired size of a collection set.
   804   virtual void record_stop_world_start();
   806   virtual void record_collection_pause_start(double start_time_sec,
   807                                              size_t start_used);
   809   // Must currently be called while the world is stopped.
   810   virtual void record_concurrent_mark_init_start();
   811   virtual void record_concurrent_mark_init_end();
   812   void record_concurrent_mark_init_end_pre(double
   813                                            mark_init_elapsed_time_ms);
   815   void record_mark_closure_time(double mark_closure_time_ms);
   817   virtual void record_concurrent_mark_remark_start();
   818   virtual void record_concurrent_mark_remark_end();
   820   virtual void record_concurrent_mark_cleanup_start();
   821   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   822                                                   size_t max_live_bytes);
   823   virtual void record_concurrent_mark_cleanup_completed();
   825   virtual void record_concurrent_pause();
   826   virtual void record_concurrent_pause_end();
   828   virtual void record_collection_pause_end_CH_strong_roots();
   829   virtual void record_collection_pause_end_G1_strong_roots();
   831   virtual void record_collection_pause_end(bool abandoned);
   833   // Record the fact that a full collection occurred.
   834   virtual void record_full_collection_start();
   835   virtual void record_full_collection_end();
   837   void record_ext_root_scan_time(int worker_i, double ms) {
   838     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   839   }
   841   void record_mark_stack_scan_time(int worker_i, double ms) {
   842     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   843   }
   845   void record_scan_only_time(int worker_i, double ms, int n) {
   846     _par_last_scan_only_times_ms[worker_i] = ms;
   847     _par_last_scan_only_regions_scanned[worker_i] = (double) n;
   848   }
   850   void record_satb_drain_time(double ms) {
   851     _cur_satb_drain_time_ms = ms;
   852     _satb_drain_time_set    = true;
   853   }
   855   void record_satb_drain_processed_buffers (int processed_buffers) {
   856     _last_satb_drain_processed_buffers = processed_buffers;
   857   }
   859   void record_mod_union_time(double ms) {
   860     _all_mod_union_times_ms->add(ms);
   861   }
   863   void record_update_rs_start_time(int thread, double ms) {
   864     _par_last_update_rs_start_times_ms[thread] = ms;
   865   }
   867   void record_update_rs_time(int thread, double ms) {
   868     _par_last_update_rs_times_ms[thread] = ms;
   869   }
   871   void record_update_rs_processed_buffers (int thread,
   872                                            double processed_buffers) {
   873     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   874   }
   876   void record_scan_rs_start_time(int thread, double ms) {
   877     _par_last_scan_rs_start_times_ms[thread] = ms;
   878   }
   880   void record_scan_rs_time(int thread, double ms) {
   881     _par_last_scan_rs_times_ms[thread] = ms;
   882   }
   884   void record_scan_new_refs_time(int thread, double ms) {
   885     _par_last_scan_new_refs_times_ms[thread] = ms;
   886   }
   888   double get_scan_new_refs_time(int thread) {
   889     return _par_last_scan_new_refs_times_ms[thread];
   890   }
   892   void reset_obj_copy_time(int thread) {
   893     _par_last_obj_copy_times_ms[thread] = 0.0;
   894   }
   896   void reset_obj_copy_time() {
   897     reset_obj_copy_time(0);
   898   }
   900   void record_obj_copy_time(int thread, double ms) {
   901     _par_last_obj_copy_times_ms[thread] += ms;
   902   }
   904   void record_obj_copy_time(double ms) {
   905     record_obj_copy_time(0, ms);
   906   }
   908   void record_termination_time(int thread, double ms) {
   909     _par_last_termination_times_ms[thread] = ms;
   910   }
   912   void record_termination_time(double ms) {
   913     record_termination_time(0, ms);
   914   }
   916   void record_pause_time_ms(double ms) {
   917     _last_pause_time_ms = ms;
   918   }
   920   void record_clear_ct_time(double ms) {
   921     _cur_clear_ct_time_ms = ms;
   922   }
   924   void record_par_time(double ms) {
   925     _cur_collection_par_time_ms = ms;
   926   }
   928   void record_aux_start_time(int i) {
   929     guarantee(i < _aux_num, "should be within range");
   930     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   931   }
   933   void record_aux_end_time(int i) {
   934     guarantee(i < _aux_num, "should be within range");
   935     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   936     _cur_aux_times_set[i] = true;
   937     _cur_aux_times_ms[i] += ms;
   938   }
   940 #ifndef PRODUCT
   941   void record_cc_clear_time(double ms) {
   942     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   943       _min_clear_cc_time_ms = ms;
   944     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   945       _max_clear_cc_time_ms = ms;
   946     _cur_clear_cc_time_ms = ms;
   947     _cum_clear_cc_time_ms += ms;
   948     _num_cc_clears++;
   949   }
   950 #endif
   952   // Record the fact that "bytes" bytes allocated in a region.
   953   void record_before_bytes(size_t bytes);
   954   void record_after_bytes(size_t bytes);
   956   // Returns "true" if this is a good time to do a collection pause.
   957   // The "word_size" argument, if non-zero, indicates the size of an
   958   // allocation request that is prompting this query.
   959   virtual bool should_do_collection_pause(size_t word_size) = 0;
   961   // Choose a new collection set.  Marks the chosen regions as being
   962   // "in_collection_set", and links them together.  The head and number of
   963   // the collection set are available via access methods.
   964   virtual void choose_collection_set() = 0;
   966   void clear_collection_set() { _collection_set = NULL; }
   968   // The head of the list (via "next_in_collection_set()") representing the
   969   // current collection set.
   970   HeapRegion* collection_set() { return _collection_set; }
   972   // The number of elements in the current collection set.
   973   size_t collection_set_size() { return _collection_set_size; }
   975   // Add "hr" to the CS.
   976   void add_to_collection_set(HeapRegion* hr);
   978   bool should_initiate_conc_mark()      { return _should_initiate_conc_mark; }
   979   void set_should_initiate_conc_mark()  { _should_initiate_conc_mark = true; }
   980   void unset_should_initiate_conc_mark(){ _should_initiate_conc_mark = false; }
   982   // If an expansion would be appropriate, because recent GC overhead had
   983   // exceeded the desired limit, return an amount to expand by.
   984   virtual size_t expansion_amount();
   986   // note start of mark thread
   987   void note_start_of_mark_thread();
   989   // The marked bytes of the "r" has changed; reclassify it's desirability
   990   // for marking.  Also asserts that "r" is eligible for a CS.
   991   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
   993 #ifndef PRODUCT
   994   // Check any appropriate marked bytes info, asserting false if
   995   // something's wrong, else returning "true".
   996   virtual bool assertMarkedBytesDataOK() = 0;
   997 #endif
   999   // Print tracing information.
  1000   void print_tracing_info() const;
  1002   // Print stats on young survival ratio
  1003   void print_yg_surv_rate_info() const;
  1005   void finished_recalculating_age_indexes(bool is_survivors) {
  1006     if (is_survivors) {
  1007       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1008     } else {
  1009       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1011     // do that for any other surv rate groups
  1014   bool should_add_next_region_to_young_list();
  1016   bool in_young_gc_mode() {
  1017     return _in_young_gc_mode;
  1019   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1020     _in_young_gc_mode = in_young_gc_mode;
  1023   bool full_young_gcs() {
  1024     return _full_young_gcs;
  1026   void set_full_young_gcs(bool full_young_gcs) {
  1027     _full_young_gcs = full_young_gcs;
  1030   bool adaptive_young_list_length() {
  1031     return _adaptive_young_list_length;
  1033   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1034     _adaptive_young_list_length = adaptive_young_list_length;
  1037   inline double get_gc_eff_factor() {
  1038     double ratio = _known_garbage_ratio;
  1040     double square = ratio * ratio;
  1041     // square = square * square;
  1042     double ret = square * 9.0 + 1.0;
  1043 #if 0
  1044     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1045 #endif // 0
  1046     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1047     return ret;
  1050   //
  1051   // Survivor regions policy.
  1052   //
  1053 protected:
  1055   // Current tenuring threshold, set to 0 if the collector reaches the
  1056   // maximum amount of suvivors regions.
  1057   int _tenuring_threshold;
  1059   // The limit on the number of regions allocated for survivors.
  1060   size_t _max_survivor_regions;
  1062   // The amount of survor regions after a collection.
  1063   size_t _recorded_survivor_regions;
  1064   // List of survivor regions.
  1065   HeapRegion* _recorded_survivor_head;
  1066   HeapRegion* _recorded_survivor_tail;
  1068   ageTable _survivors_age_table;
  1070 public:
  1072   inline GCAllocPurpose
  1073     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1074       if (age < _tenuring_threshold && src_region->is_young()) {
  1075         return GCAllocForSurvived;
  1076       } else {
  1077         return GCAllocForTenured;
  1081   inline bool track_object_age(GCAllocPurpose purpose) {
  1082     return purpose == GCAllocForSurvived;
  1085   inline GCAllocPurpose alternative_purpose(int purpose) {
  1086     return GCAllocForTenured;
  1089   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1091   size_t max_regions(int purpose);
  1093   // The limit on regions for a particular purpose is reached.
  1094   void note_alloc_region_limit_reached(int purpose) {
  1095     if (purpose == GCAllocForSurvived) {
  1096       _tenuring_threshold = 0;
  1100   void note_start_adding_survivor_regions() {
  1101     _survivor_surv_rate_group->start_adding_regions();
  1104   void note_stop_adding_survivor_regions() {
  1105     _survivor_surv_rate_group->stop_adding_regions();
  1108   void record_survivor_regions(size_t      regions,
  1109                                HeapRegion* head,
  1110                                HeapRegion* tail) {
  1111     _recorded_survivor_regions = regions;
  1112     _recorded_survivor_head    = head;
  1113     _recorded_survivor_tail    = tail;
  1116   size_t recorded_survivor_regions() {
  1117     return _recorded_survivor_regions;
  1120   void record_thread_age_table(ageTable* age_table)
  1122     _survivors_age_table.merge_par(age_table);
  1125   // Calculates survivor space parameters.
  1126   void calculate_survivors_policy();
  1128 };
  1130 // This encapsulates a particular strategy for a g1 Collector.
  1131 //
  1132 //      Start a concurrent mark when our heap size is n bytes
  1133 //            greater then our heap size was at the last concurrent
  1134 //            mark.  Where n is a function of the CMSTriggerRatio
  1135 //            and the MinHeapFreeRatio.
  1136 //
  1137 //      Start a g1 collection pause when we have allocated the
  1138 //            average number of bytes currently being freed in
  1139 //            a collection, but only if it is at least one region
  1140 //            full
  1141 //
  1142 //      Resize Heap based on desired
  1143 //      allocation space, where desired allocation space is
  1144 //      a function of survival rate and desired future to size.
  1145 //
  1146 //      Choose collection set by first picking all older regions
  1147 //      which have a survival rate which beats our projected young
  1148 //      survival rate.  Then fill out the number of needed regions
  1149 //      with young regions.
  1151 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1152   CollectionSetChooser* _collectionSetChooser;
  1153   // If the estimated is less then desirable, resize if possible.
  1154   void expand_if_possible(size_t numRegions);
  1156   virtual void choose_collection_set();
  1157   virtual void record_collection_pause_start(double start_time_sec,
  1158                                              size_t start_used);
  1159   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1160                                                   size_t max_live_bytes);
  1161   virtual void record_full_collection_end();
  1163 public:
  1164   G1CollectorPolicy_BestRegionsFirst() {
  1165     _collectionSetChooser = new CollectionSetChooser();
  1167   void record_collection_pause_end(bool abandoned);
  1168   bool should_do_collection_pause(size_t word_size);
  1169   // This is not needed any more, after the CSet choosing code was
  1170   // changed to use the pause prediction work. But let's leave the
  1171   // hook in just in case.
  1172   void note_change_in_marked_bytes(HeapRegion* r) { }
  1173 #ifndef PRODUCT
  1174   bool assertMarkedBytesDataOK();
  1175 #endif
  1176 };
  1178 // This should move to some place more general...
  1180 // If we have "n" measurements, and we've kept track of their "sum" and the
  1181 // "sum_of_squares" of the measurements, this returns the variance of the
  1182 // sequence.
  1183 inline double variance(int n, double sum_of_squares, double sum) {
  1184   double n_d = (double)n;
  1185   double avg = sum/n_d;
  1186   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1189 // Local Variables: ***
  1190 // c-indentation-style: gnu ***
  1191 // End: ***

mercurial