src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Wed, 30 Sep 2009 14:50:51 -0400

author
tonyp
date
Wed, 30 Sep 2009 14:50:51 -0400
changeset 1479
6270f80a7331
parent 1478
fc06cd9b42c7
child 1521
89f1b9ae8991
permissions
-rw-r--r--

6890137: G1: revamp reachable object dump
Summary: Revamp the reachable object dump debugging facility.
Reviewed-by: jmasa, apetrusenko

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectorPolicy.cpp.incl"
    28 #define PREDICTIONS_VERBOSE 0
    30 // <NEW PREDICTION>
    32 // Different defaults for different number of GC threads
    33 // They were chosen by running GCOld and SPECjbb on debris with different
    34 //   numbers of GC threads and choosing them based on the results
    36 // all the same
    37 static double rs_length_diff_defaults[] = {
    38   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    39 };
    41 static double cost_per_card_ms_defaults[] = {
    42   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    43 };
    45 static double cost_per_scan_only_region_ms_defaults[] = {
    46   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    47 };
    49 // all the same
    50 static double fully_young_cards_per_entry_ratio_defaults[] = {
    51   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    52 };
    54 static double cost_per_entry_ms_defaults[] = {
    55   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    56 };
    58 static double cost_per_byte_ms_defaults[] = {
    59   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    60 };
    62 // these should be pretty consistent
    63 static double constant_other_time_ms_defaults[] = {
    64   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    65 };
    68 static double young_other_cost_per_region_ms_defaults[] = {
    69   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    70 };
    72 static double non_young_other_cost_per_region_ms_defaults[] = {
    73   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    74 };
    76 // </NEW PREDICTION>
    78 G1CollectorPolicy::G1CollectorPolicy() :
    79   _parallel_gc_threads((ParallelGCThreads > 0) ? ParallelGCThreads : 1),
    80   _n_pauses(0),
    81   _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    82   _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    83   _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    84   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    85   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
    86   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    87   _all_pause_times_ms(new NumberSeq()),
    88   _stop_world_start(0.0),
    89   _all_stop_world_times_ms(new NumberSeq()),
    90   _all_yield_times_ms(new NumberSeq()),
    92   _all_mod_union_times_ms(new NumberSeq()),
    94   _summary(new Summary()),
    95   _abandoned_summary(new AbandonedSummary()),
    97 #ifndef PRODUCT
    98   _cur_clear_ct_time_ms(0.0),
    99   _min_clear_cc_time_ms(-1.0),
   100   _max_clear_cc_time_ms(-1.0),
   101   _cur_clear_cc_time_ms(0.0),
   102   _cum_clear_cc_time_ms(0.0),
   103   _num_cc_clears(0L),
   104 #endif
   106   _region_num_young(0),
   107   _region_num_tenured(0),
   108   _prev_region_num_young(0),
   109   _prev_region_num_tenured(0),
   111   _aux_num(10),
   112   _all_aux_times_ms(new NumberSeq[_aux_num]),
   113   _cur_aux_start_times_ms(new double[_aux_num]),
   114   _cur_aux_times_ms(new double[_aux_num]),
   115   _cur_aux_times_set(new bool[_aux_num]),
   117   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   118   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   119   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   121   // <NEW PREDICTION>
   123   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   124   _prev_collection_pause_end_ms(0.0),
   125   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   126   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   127   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   128   _cost_per_scan_only_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   129   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   130   _partially_young_cards_per_entry_ratio_seq(
   131                                          new TruncatedSeq(TruncatedSeqLength)),
   132   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   133   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   134   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   135   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   136   _cost_per_scan_only_region_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   137   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   138   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   139   _non_young_other_cost_per_region_ms_seq(
   140                                          new TruncatedSeq(TruncatedSeqLength)),
   142   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   143   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   144   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   146   _pause_time_target_ms((double) MaxGCPauseMillis),
   148   // </NEW PREDICTION>
   150   _in_young_gc_mode(false),
   151   _full_young_gcs(true),
   152   _full_young_pause_num(0),
   153   _partial_young_pause_num(0),
   155   _during_marking(false),
   156   _in_marking_window(false),
   157   _in_marking_window_im(false),
   159   _known_garbage_ratio(0.0),
   160   _known_garbage_bytes(0),
   162   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   163   _target_pause_time_ms(-1.0),
   165    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
   167   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
   168   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
   170   _recent_avg_pause_time_ratio(0.0),
   171   _num_markings(0),
   172   _n_marks(0),
   173   _n_pauses_at_mark_end(0),
   175   _all_full_gc_times_ms(new NumberSeq()),
   177   // G1PausesBtwnConcMark defaults to -1
   178   // so the hack is to do the cast  QQQ FIXME
   179   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
   180   _n_marks_since_last_pause(0),
   181   _conc_mark_initiated(false),
   182   _should_initiate_conc_mark(false),
   183   _should_revert_to_full_young_gcs(false),
   184   _last_full_young_gc(false),
   186   _prev_collection_pause_used_at_end_bytes(0),
   188   _collection_set(NULL),
   189 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   190 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   191 #endif // _MSC_VER
   193   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   194                                                  G1YoungSurvRateNumRegionsSummary)),
   195   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   196                                               G1YoungSurvRateNumRegionsSummary)),
   197   // add here any more surv rate groups
   198   _recorded_survivor_regions(0),
   199   _recorded_survivor_head(NULL),
   200   _recorded_survivor_tail(NULL),
   201   _survivors_age_table(true)
   203 {
   204   // Set up the region size and associated fields. Given that the
   205   // policy is created before the heap, we have to set this up here,
   206   // so it's done as soon as possible.
   207   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   209   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   210   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   212   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   213   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
   214   _par_last_scan_only_times_ms = new double[_parallel_gc_threads];
   215   _par_last_scan_only_regions_scanned = new double[_parallel_gc_threads];
   217   _par_last_update_rs_start_times_ms = new double[_parallel_gc_threads];
   218   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   219   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   221   _par_last_scan_rs_start_times_ms = new double[_parallel_gc_threads];
   222   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   223   _par_last_scan_new_refs_times_ms = new double[_parallel_gc_threads];
   225   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   227   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   229   // start conservatively
   230   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   232   // <NEW PREDICTION>
   234   int index;
   235   if (ParallelGCThreads == 0)
   236     index = 0;
   237   else if (ParallelGCThreads > 8)
   238     index = 7;
   239   else
   240     index = ParallelGCThreads - 1;
   242   _pending_card_diff_seq->add(0.0);
   243   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   244   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   245   _cost_per_scan_only_region_ms_seq->add(
   246                                  cost_per_scan_only_region_ms_defaults[index]);
   247   _fully_young_cards_per_entry_ratio_seq->add(
   248                             fully_young_cards_per_entry_ratio_defaults[index]);
   249   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   250   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   251   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   252   _young_other_cost_per_region_ms_seq->add(
   253                                young_other_cost_per_region_ms_defaults[index]);
   254   _non_young_other_cost_per_region_ms_seq->add(
   255                            non_young_other_cost_per_region_ms_defaults[index]);
   257   // </NEW PREDICTION>
   259   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   260   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   261   guarantee(max_gc_time < time_slice,
   262             "Max GC time should not be greater than the time slice");
   263   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   264   _sigma = (double) G1ConfidencePercent / 100.0;
   266   // start conservatively (around 50ms is about right)
   267   _concurrent_mark_init_times_ms->add(0.05);
   268   _concurrent_mark_remark_times_ms->add(0.05);
   269   _concurrent_mark_cleanup_times_ms->add(0.20);
   270   _tenuring_threshold = MaxTenuringThreshold;
   272   if (G1UseSurvivorSpaces) {
   273     // if G1FixedSurvivorSpaceSize is 0 which means the size is not
   274     // fixed, then _max_survivor_regions will be calculated at
   275     // calculate_young_list_target_config during initialization
   276     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
   277   } else {
   278     _max_survivor_regions = 0;
   279   }
   281   initialize_all();
   282 }
   284 // Increment "i", mod "len"
   285 static void inc_mod(int& i, int len) {
   286   i++; if (i == len) i = 0;
   287 }
   289 void G1CollectorPolicy::initialize_flags() {
   290   set_min_alignment(HeapRegion::GrainBytes);
   291   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   292   if (SurvivorRatio < 1) {
   293     vm_exit_during_initialization("Invalid survivor ratio specified");
   294   }
   295   CollectorPolicy::initialize_flags();
   296 }
   298 void G1CollectorPolicy::init() {
   299   // Set aside an initial future to_space.
   300   _g1 = G1CollectedHeap::heap();
   301   size_t regions = Universe::heap()->capacity() / HeapRegion::GrainBytes;
   303   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   305   if (G1SteadyStateUsed < 50) {
   306     vm_exit_during_initialization("G1SteadyStateUsed must be at least 50%.");
   307   }
   309   initialize_gc_policy_counters();
   311   if (G1Gen) {
   312     _in_young_gc_mode = true;
   314     if (G1YoungGenSize == 0) {
   315       set_adaptive_young_list_length(true);
   316       _young_list_fixed_length = 0;
   317     } else {
   318       set_adaptive_young_list_length(false);
   319       _young_list_fixed_length = (G1YoungGenSize / HeapRegion::GrainBytes);
   320     }
   321      _free_regions_at_end_of_collection = _g1->free_regions();
   322      _scan_only_regions_at_end_of_collection = 0;
   323      calculate_young_list_min_length();
   324      guarantee( _young_list_min_length == 0, "invariant, not enough info" );
   325      calculate_young_list_target_config();
   326    } else {
   327      _young_list_fixed_length = 0;
   328     _in_young_gc_mode = false;
   329   }
   330 }
   332 // Create the jstat counters for the policy.
   333 void G1CollectorPolicy::initialize_gc_policy_counters()
   334 {
   335   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
   336 }
   338 void G1CollectorPolicy::calculate_young_list_min_length() {
   339   _young_list_min_length = 0;
   341   if (!adaptive_young_list_length())
   342     return;
   344   if (_alloc_rate_ms_seq->num() > 3) {
   345     double now_sec = os::elapsedTime();
   346     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   347     double alloc_rate_ms = predict_alloc_rate_ms();
   348     int min_regions = (int) ceil(alloc_rate_ms * when_ms);
   349     int current_region_num = (int) _g1->young_list_length();
   350     _young_list_min_length = min_regions + current_region_num;
   351   }
   352 }
   354 void G1CollectorPolicy::calculate_young_list_target_config() {
   355   if (adaptive_young_list_length()) {
   356     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   357     calculate_young_list_target_config(rs_lengths);
   358   } else {
   359     if (full_young_gcs())
   360       _young_list_target_length = _young_list_fixed_length;
   361     else
   362       _young_list_target_length = _young_list_fixed_length / 2;
   363     _young_list_target_length = MAX2(_young_list_target_length, (size_t)1);
   364     size_t so_length = calculate_optimal_so_length(_young_list_target_length);
   365     guarantee( so_length < _young_list_target_length, "invariant" );
   366     _young_list_so_prefix_length = so_length;
   367   }
   368   calculate_survivors_policy();
   369 }
   371 // This method calculate the optimal scan-only set for a fixed young
   372 // gen size. I couldn't work out how to reuse the more elaborate one,
   373 // i.e. calculate_young_list_target_config(rs_length), as the loops are
   374 // fundamentally different (the other one finds a config for different
   375 // S-O lengths, whereas here we need to do the opposite).
   376 size_t G1CollectorPolicy::calculate_optimal_so_length(
   377                                                     size_t young_list_length) {
   378   if (!G1UseScanOnlyPrefix)
   379     return 0;
   381   if (_all_pause_times_ms->num() < 3) {
   382     // we won't use a scan-only set at the beginning to allow the rest
   383     // of the predictors to warm up
   384     return 0;
   385   }
   387   if (_cost_per_scan_only_region_ms_seq->num() < 3) {
   388     // then, we'll only set the S-O set to 1 for a little bit of time,
   389     // to get enough information on the scanning cost
   390     return 1;
   391   }
   393   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   394   size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   395   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   396   size_t scanned_cards;
   397   if (full_young_gcs())
   398     scanned_cards = predict_young_card_num(adj_rs_lengths);
   399   else
   400     scanned_cards = predict_non_young_card_num(adj_rs_lengths);
   401   double base_time_ms = predict_base_elapsed_time_ms(pending_cards,
   402                                                      scanned_cards);
   404   size_t so_length = 0;
   405   double max_gc_eff = 0.0;
   406   for (size_t i = 0; i < young_list_length; ++i) {
   407     double gc_eff = 0.0;
   408     double pause_time_ms = 0.0;
   409     predict_gc_eff(young_list_length, i, base_time_ms,
   410                    &gc_eff, &pause_time_ms);
   411     if (gc_eff > max_gc_eff) {
   412       max_gc_eff = gc_eff;
   413       so_length = i;
   414     }
   415   }
   417   // set it to 95% of the optimal to make sure we sample the "area"
   418   // around the optimal length to get up-to-date survival rate data
   419   return so_length * 950 / 1000;
   420 }
   422 // This is a really cool piece of code! It finds the best
   423 // target configuration (young length / scan-only prefix length) so
   424 // that GC efficiency is maximized and that we also meet a pause
   425 // time. It's a triple nested loop. These loops are explained below
   426 // from the inside-out :-)
   427 //
   428 // (a) The innermost loop will try to find the optimal young length
   429 // for a fixed S-O length. It uses a binary search to speed up the
   430 // process. We assume that, for a fixed S-O length, as we add more
   431 // young regions to the CSet, the GC efficiency will only go up (I'll
   432 // skip the proof). So, using a binary search to optimize this process
   433 // makes perfect sense.
   434 //
   435 // (b) The middle loop will fix the S-O length before calling the
   436 // innermost one. It will vary it between two parameters, increasing
   437 // it by a given increment.
   438 //
   439 // (c) The outermost loop will call the middle loop three times.
   440 //   (1) The first time it will explore all possible S-O length values
   441 //   from 0 to as large as it can get, using a coarse increment (to
   442 //   quickly "home in" to where the optimal seems to be).
   443 //   (2) The second time it will explore the values around the optimal
   444 //   that was found by the first iteration using a fine increment.
   445 //   (3) Once the optimal config has been determined by the second
   446 //   iteration, we'll redo the calculation, but setting the S-O length
   447 //   to 95% of the optimal to make sure we sample the "area"
   448 //   around the optimal length to get up-to-date survival rate data
   449 //
   450 // Termination conditions for the iterations are several: the pause
   451 // time is over the limit, we do not have enough to-space, etc.
   453 void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
   454   guarantee( adaptive_young_list_length(), "pre-condition" );
   456   double start_time_sec = os::elapsedTime();
   457   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1MinReservePercent);
   458   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
   459   size_t reserve_regions =
   460     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
   462   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
   463     // we are in fully-young mode and there are free regions in the heap
   465     double survivor_regions_evac_time =
   466         predict_survivor_regions_evac_time();
   468     size_t min_so_length = 0;
   469     size_t max_so_length = 0;
   471     if (G1UseScanOnlyPrefix) {
   472       if (_all_pause_times_ms->num() < 3) {
   473         // we won't use a scan-only set at the beginning to allow the rest
   474         // of the predictors to warm up
   475         min_so_length = 0;
   476         max_so_length = 0;
   477       } else if (_cost_per_scan_only_region_ms_seq->num() < 3) {
   478         // then, we'll only set the S-O set to 1 for a little bit of time,
   479         // to get enough information on the scanning cost
   480         min_so_length = 1;
   481         max_so_length = 1;
   482       } else if (_in_marking_window || _last_full_young_gc) {
   483         // no S-O prefix during a marking phase either, as at the end
   484         // of the marking phase we'll have to use a very small young
   485         // length target to fill up the rest of the CSet with
   486         // non-young regions and, if we have lots of scan-only regions
   487         // left-over, we will not be able to add any more non-young
   488         // regions.
   489         min_so_length = 0;
   490         max_so_length = 0;
   491       } else {
   492         // this is the common case; we'll never reach the maximum, we
   493         // one of the end conditions will fire well before that
   494         // (hopefully!)
   495         min_so_length = 0;
   496         max_so_length = _free_regions_at_end_of_collection - 1;
   497       }
   498     } else {
   499       // no S-O prefix, as the switch is not set, but we still need to
   500       // do one iteration to calculate the best young target that
   501       // meets the pause time; this way we reuse the same code instead
   502       // of replicating it
   503       min_so_length = 0;
   504       max_so_length = 0;
   505     }
   507     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   508     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   509     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   510     size_t scanned_cards;
   511     if (full_young_gcs())
   512       scanned_cards = predict_young_card_num(adj_rs_lengths);
   513     else
   514       scanned_cards = predict_non_young_card_num(adj_rs_lengths);
   515     // calculate this once, so that we don't have to recalculate it in
   516     // the innermost loop
   517     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
   518                           + survivor_regions_evac_time;
   519     // the result
   520     size_t final_young_length = 0;
   521     size_t final_so_length = 0;
   522     double final_gc_eff = 0.0;
   523     // we'll also keep track of how many times we go into the inner loop
   524     // this is for profiling reasons
   525     size_t calculations = 0;
   527     // this determines which of the three iterations the outer loop is in
   528     typedef enum {
   529       pass_type_coarse,
   530       pass_type_fine,
   531       pass_type_final
   532     } pass_type_t;
   534     // range of the outer loop's iteration
   535     size_t from_so_length   = min_so_length;
   536     size_t to_so_length     = max_so_length;
   537     guarantee( from_so_length <= to_so_length, "invariant" );
   539     // this will keep the S-O length that's found by the second
   540     // iteration of the outer loop; we'll keep it just in case the third
   541     // iteration fails to find something
   542     size_t fine_so_length   = 0;
   544     // the increment step for the coarse (first) iteration
   545     size_t so_coarse_increments = 5;
   547     // the common case, we'll start with the coarse iteration
   548     pass_type_t pass = pass_type_coarse;
   549     size_t so_length_incr = so_coarse_increments;
   551     if (from_so_length == to_so_length) {
   552       // not point in doing the coarse iteration, we'll go directly into
   553       // the fine one (we essentially trying to find the optimal young
   554       // length for a fixed S-O length).
   555       so_length_incr = 1;
   556       pass = pass_type_final;
   557     } else if (to_so_length - from_so_length < 3 * so_coarse_increments) {
   558       // again, the range is too short so no point in foind the coarse
   559       // iteration either
   560       so_length_incr = 1;
   561       pass = pass_type_fine;
   562     }
   564     bool done = false;
   565     // this is the outermost loop
   566     while (!done) {
   567 #ifdef TRACE_CALC_YOUNG_CONFIG
   568       // leave this in for debugging, just in case
   569       gclog_or_tty->print_cr("searching between " SIZE_FORMAT " and " SIZE_FORMAT
   570                              ", incr " SIZE_FORMAT ", pass %s",
   571                              from_so_length, to_so_length, so_length_incr,
   572                              (pass == pass_type_coarse) ? "coarse" :
   573                              (pass == pass_type_fine) ? "fine" : "final");
   574 #endif // TRACE_CALC_YOUNG_CONFIG
   576       size_t so_length = from_so_length;
   577       size_t init_free_regions =
   578         MAX2((size_t)0,
   579              _free_regions_at_end_of_collection +
   580              _scan_only_regions_at_end_of_collection - reserve_regions);
   582       // this determines whether a configuration was found
   583       bool gc_eff_set = false;
   584       // this is the middle loop
   585       while (so_length <= to_so_length) {
   586         // base time, which excludes region-related time; again we
   587         // calculate it once to avoid recalculating it in the
   588         // innermost loop
   589         double base_time_with_so_ms =
   590                            base_time_ms + predict_scan_only_time_ms(so_length);
   591         // it's already over the pause target, go around
   592         if (base_time_with_so_ms > target_pause_time_ms)
   593           break;
   595         size_t starting_young_length = so_length+1;
   597         // we make sure that the short young length that makes sense
   598         // (one more than the S-O length) is feasible
   599         size_t min_young_length = starting_young_length;
   600         double min_gc_eff;
   601         bool min_ok;
   602         ++calculations;
   603         min_ok = predict_gc_eff(min_young_length, so_length,
   604                                 base_time_with_so_ms,
   605                                 init_free_regions, target_pause_time_ms,
   606                                 &min_gc_eff);
   608         if (min_ok) {
   609           // the shortest young length is indeed feasible; we'll know
   610           // set up the max young length and we'll do a binary search
   611           // between min_young_length and max_young_length
   612           size_t max_young_length = _free_regions_at_end_of_collection - 1;
   613           double max_gc_eff = 0.0;
   614           bool max_ok = false;
   616           // the innermost loop! (finally!)
   617           while (max_young_length > min_young_length) {
   618             // we'll make sure that min_young_length is always at a
   619             // feasible config
   620             guarantee( min_ok, "invariant" );
   622             ++calculations;
   623             max_ok = predict_gc_eff(max_young_length, so_length,
   624                                     base_time_with_so_ms,
   625                                     init_free_regions, target_pause_time_ms,
   626                                     &max_gc_eff);
   628             size_t diff = (max_young_length - min_young_length) / 2;
   629             if (max_ok) {
   630               min_young_length = max_young_length;
   631               min_gc_eff = max_gc_eff;
   632               min_ok = true;
   633             }
   634             max_young_length = min_young_length + diff;
   635           }
   637           // the innermost loop found a config
   638           guarantee( min_ok, "invariant" );
   639           if (min_gc_eff > final_gc_eff) {
   640             // it's the best config so far, so we'll keep it
   641             final_gc_eff = min_gc_eff;
   642             final_young_length = min_young_length;
   643             final_so_length = so_length;
   644             gc_eff_set = true;
   645           }
   646         }
   648         // incremental the fixed S-O length and go around
   649         so_length += so_length_incr;
   650       }
   652       // this is the end of the outermost loop and we need to decide
   653       // what to do during the next iteration
   654       if (pass == pass_type_coarse) {
   655         // we just did the coarse pass (first iteration)
   657         if (!gc_eff_set)
   658           // we didn't find a feasible config so we'll just bail out; of
   659           // course, it might be the case that we missed it; but I'd say
   660           // it's a bit unlikely
   661           done = true;
   662         else {
   663           // We did find a feasible config with optimal GC eff during
   664           // the first pass. So the second pass we'll only consider the
   665           // S-O lengths around that config with a fine increment.
   667           guarantee( so_length_incr == so_coarse_increments, "invariant" );
   668           guarantee( final_so_length >= min_so_length, "invariant" );
   670 #ifdef TRACE_CALC_YOUNG_CONFIG
   671           // leave this in for debugging, just in case
   672           gclog_or_tty->print_cr("  coarse pass: SO length " SIZE_FORMAT,
   673                                  final_so_length);
   674 #endif // TRACE_CALC_YOUNG_CONFIG
   676           from_so_length =
   677             (final_so_length - min_so_length > so_coarse_increments) ?
   678             final_so_length - so_coarse_increments + 1 : min_so_length;
   679           to_so_length =
   680             (max_so_length - final_so_length > so_coarse_increments) ?
   681             final_so_length + so_coarse_increments - 1 : max_so_length;
   683           pass = pass_type_fine;
   684           so_length_incr = 1;
   685         }
   686       } else if (pass == pass_type_fine) {
   687         // we just finished the second pass
   689         if (!gc_eff_set) {
   690           // we didn't find a feasible config (yes, it's possible;
   691           // notice that, sometimes, we go directly into the fine
   692           // iteration and skip the coarse one) so we bail out
   693           done = true;
   694         } else {
   695           // We did find a feasible config with optimal GC eff
   696           guarantee( so_length_incr == 1, "invariant" );
   698           if (final_so_length == 0) {
   699             // The config is of an empty S-O set, so we'll just bail out
   700             done = true;
   701           } else {
   702             // we'll go around once more, setting the S-O length to 95%
   703             // of the optimal
   704             size_t new_so_length = 950 * final_so_length / 1000;
   706 #ifdef TRACE_CALC_YOUNG_CONFIG
   707             // leave this in for debugging, just in case
   708             gclog_or_tty->print_cr("  fine pass: SO length " SIZE_FORMAT
   709                                    ", setting it to " SIZE_FORMAT,
   710                                     final_so_length, new_so_length);
   711 #endif // TRACE_CALC_YOUNG_CONFIG
   713             from_so_length = new_so_length;
   714             to_so_length = new_so_length;
   715             fine_so_length = final_so_length;
   717             pass = pass_type_final;
   718           }
   719         }
   720       } else if (pass == pass_type_final) {
   721         // we just finished the final (third) pass
   723         if (!gc_eff_set)
   724           // we didn't find a feasible config, so we'll just use the one
   725           // we found during the second pass, which we saved
   726           final_so_length = fine_so_length;
   728         // and we're done!
   729         done = true;
   730       } else {
   731         guarantee( false, "should never reach here" );
   732       }
   734       // we now go around the outermost loop
   735     }
   737     // we should have at least one region in the target young length
   738     _young_list_target_length =
   739         MAX2((size_t) 1, final_young_length + _recorded_survivor_regions);
   740     if (final_so_length >= final_young_length)
   741       // and we need to ensure that the S-O length is not greater than
   742       // the target young length (this is being a bit careful)
   743       final_so_length = 0;
   744     _young_list_so_prefix_length = final_so_length;
   745     guarantee( !_in_marking_window || !_last_full_young_gc ||
   746                _young_list_so_prefix_length == 0, "invariant" );
   748     // let's keep an eye of how long we spend on this calculation
   749     // right now, I assume that we'll print it when we need it; we
   750     // should really adde it to the breakdown of a pause
   751     double end_time_sec = os::elapsedTime();
   752     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
   754 #ifdef TRACE_CALC_YOUNG_CONFIG
   755     // leave this in for debugging, just in case
   756     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT
   757                            ", SO = " SIZE_FORMAT ", "
   758                            "elapsed %1.2lf ms, calcs: " SIZE_FORMAT " (%s%s) "
   759                            SIZE_FORMAT SIZE_FORMAT,
   760                            target_pause_time_ms,
   761                            _young_list_target_length - _young_list_so_prefix_length,
   762                            _young_list_so_prefix_length,
   763                            elapsed_time_ms,
   764                            calculations,
   765                            full_young_gcs() ? "full" : "partial",
   766                            should_initiate_conc_mark() ? " i-m" : "",
   767                            _in_marking_window,
   768                            _in_marking_window_im);
   769 #endif // TRACE_CALC_YOUNG_CONFIG
   771     if (_young_list_target_length < _young_list_min_length) {
   772       // bummer; this means that, if we do a pause when the optimal
   773       // config dictates, we'll violate the pause spacing target (the
   774       // min length was calculate based on the application's current
   775       // alloc rate);
   777       // so, we have to bite the bullet, and allocate the minimum
   778       // number. We'll violate our target, but we just can't meet it.
   780       size_t so_length = 0;
   781       // a note further up explains why we do not want an S-O length
   782       // during marking
   783       if (!_in_marking_window && !_last_full_young_gc)
   784         // but we can still try to see whether we can find an optimal
   785         // S-O length
   786         so_length = calculate_optimal_so_length(_young_list_min_length);
   788 #ifdef TRACE_CALC_YOUNG_CONFIG
   789       // leave this in for debugging, just in case
   790       gclog_or_tty->print_cr("adjusted target length from "
   791                              SIZE_FORMAT " to " SIZE_FORMAT
   792                              ", SO " SIZE_FORMAT,
   793                              _young_list_target_length, _young_list_min_length,
   794                              so_length);
   795 #endif // TRACE_CALC_YOUNG_CONFIG
   797       _young_list_target_length =
   798         MAX2(_young_list_min_length, (size_t)1);
   799       _young_list_so_prefix_length = so_length;
   800     }
   801   } else {
   802     // we are in a partially-young mode or we've run out of regions (due
   803     // to evacuation failure)
   805 #ifdef TRACE_CALC_YOUNG_CONFIG
   806     // leave this in for debugging, just in case
   807     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
   808                            ", SO " SIZE_FORMAT,
   809                            _young_list_min_length, 0);
   810 #endif // TRACE_CALC_YOUNG_CONFIG
   812     // we'll do the pause as soon as possible and with no S-O prefix
   813     // (see above for the reasons behind the latter)
   814     _young_list_target_length =
   815       MAX2(_young_list_min_length, (size_t) 1);
   816     _young_list_so_prefix_length = 0;
   817   }
   819   _rs_lengths_prediction = rs_lengths;
   820 }
   822 // This is used by: calculate_optimal_so_length(length). It returns
   823 // the GC eff and predicted pause time for a particular config
   824 void
   825 G1CollectorPolicy::predict_gc_eff(size_t young_length,
   826                                   size_t so_length,
   827                                   double base_time_ms,
   828                                   double* ret_gc_eff,
   829                                   double* ret_pause_time_ms) {
   830   double so_time_ms = predict_scan_only_time_ms(so_length);
   831   double accum_surv_rate_adj = 0.0;
   832   if (so_length > 0)
   833     accum_surv_rate_adj = accum_yg_surv_rate_pred((int)(so_length - 1));
   834   double accum_surv_rate =
   835     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
   836   size_t bytes_to_copy =
   837     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   838   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   839   double young_other_time_ms =
   840                        predict_young_other_time_ms(young_length - so_length);
   841   double pause_time_ms =
   842                 base_time_ms + so_time_ms + copy_time_ms + young_other_time_ms;
   843   size_t reclaimed_bytes =
   844     (young_length - so_length) * HeapRegion::GrainBytes - bytes_to_copy;
   845   double gc_eff = (double) reclaimed_bytes / pause_time_ms;
   847   *ret_gc_eff = gc_eff;
   848   *ret_pause_time_ms = pause_time_ms;
   849 }
   851 // This is used by: calculate_young_list_target_config(rs_length). It
   852 // returns the GC eff of a particular config. It returns false if that
   853 // config violates any of the end conditions of the search in the
   854 // calling method, or true upon success. The end conditions were put
   855 // here since it's called twice and it was best not to replicate them
   856 // in the caller. Also, passing the parameteres avoids having to
   857 // recalculate them in the innermost loop.
   858 bool
   859 G1CollectorPolicy::predict_gc_eff(size_t young_length,
   860                                   size_t so_length,
   861                                   double base_time_with_so_ms,
   862                                   size_t init_free_regions,
   863                                   double target_pause_time_ms,
   864                                   double* ret_gc_eff) {
   865   *ret_gc_eff = 0.0;
   867   if (young_length >= init_free_regions)
   868     // end condition 1: not enough space for the young regions
   869     return false;
   871   double accum_surv_rate_adj = 0.0;
   872   if (so_length > 0)
   873     accum_surv_rate_adj = accum_yg_surv_rate_pred((int)(so_length - 1));
   874   double accum_surv_rate =
   875     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
   876   size_t bytes_to_copy =
   877     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   878   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   879   double young_other_time_ms =
   880                        predict_young_other_time_ms(young_length - so_length);
   881   double pause_time_ms =
   882                    base_time_with_so_ms + copy_time_ms + young_other_time_ms;
   884   if (pause_time_ms > target_pause_time_ms)
   885     // end condition 2: over the target pause time
   886     return false;
   888   size_t reclaimed_bytes =
   889     (young_length - so_length) * HeapRegion::GrainBytes - bytes_to_copy;
   890   size_t free_bytes =
   891                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
   893   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
   894     // end condition 3: out of to-space (conservatively)
   895     return false;
   897   // success!
   898   double gc_eff = (double) reclaimed_bytes / pause_time_ms;
   899   *ret_gc_eff = gc_eff;
   901   return true;
   902 }
   904 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   905   double survivor_regions_evac_time = 0.0;
   906   for (HeapRegion * r = _recorded_survivor_head;
   907        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   908        r = r->get_next_young_region()) {
   909     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   910   }
   911   return survivor_regions_evac_time;
   912 }
   914 void G1CollectorPolicy::check_prediction_validity() {
   915   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   917   size_t rs_lengths = _g1->young_list_sampled_rs_lengths();
   918   if (rs_lengths > _rs_lengths_prediction) {
   919     // add 10% to avoid having to recalculate often
   920     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   921     calculate_young_list_target_config(rs_lengths_prediction);
   922   }
   923 }
   925 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   926                                                bool is_tlab,
   927                                                bool* gc_overhead_limit_was_exceeded) {
   928   guarantee(false, "Not using this policy feature yet.");
   929   return NULL;
   930 }
   932 // This method controls how a collector handles one or more
   933 // of its generations being fully allocated.
   934 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   935                                                        bool is_tlab) {
   936   guarantee(false, "Not using this policy feature yet.");
   937   return NULL;
   938 }
   941 #ifndef PRODUCT
   942 bool G1CollectorPolicy::verify_young_ages() {
   943   HeapRegion* head = _g1->young_list_first_region();
   944   return
   945     verify_young_ages(head, _short_lived_surv_rate_group);
   946   // also call verify_young_ages on any additional surv rate groups
   947 }
   949 bool
   950 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   951                                      SurvRateGroup *surv_rate_group) {
   952   guarantee( surv_rate_group != NULL, "pre-condition" );
   954   const char* name = surv_rate_group->name();
   955   bool ret = true;
   956   int prev_age = -1;
   958   for (HeapRegion* curr = head;
   959        curr != NULL;
   960        curr = curr->get_next_young_region()) {
   961     SurvRateGroup* group = curr->surv_rate_group();
   962     if (group == NULL && !curr->is_survivor()) {
   963       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   964       ret = false;
   965     }
   967     if (surv_rate_group == group) {
   968       int age = curr->age_in_surv_rate_group();
   970       if (age < 0) {
   971         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   972         ret = false;
   973       }
   975       if (age <= prev_age) {
   976         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   977                                "(%d, %d)", name, age, prev_age);
   978         ret = false;
   979       }
   980       prev_age = age;
   981     }
   982   }
   984   return ret;
   985 }
   986 #endif // PRODUCT
   988 void G1CollectorPolicy::record_full_collection_start() {
   989   _cur_collection_start_sec = os::elapsedTime();
   990   // Release the future to-space so that it is available for compaction into.
   991   _g1->set_full_collection();
   992 }
   994 void G1CollectorPolicy::record_full_collection_end() {
   995   // Consider this like a collection pause for the purposes of allocation
   996   // since last pause.
   997   double end_sec = os::elapsedTime();
   998   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   999   double full_gc_time_ms = full_gc_time_sec * 1000.0;
  1001   _all_full_gc_times_ms->add(full_gc_time_ms);
  1003   update_recent_gc_times(end_sec, full_gc_time_ms);
  1005   _g1->clear_full_collection();
  1007   // "Nuke" the heuristics that control the fully/partially young GC
  1008   // transitions and make sure we start with fully young GCs after the
  1009   // Full GC.
  1010   set_full_young_gcs(true);
  1011   _last_full_young_gc = false;
  1012   _should_revert_to_full_young_gcs = false;
  1013   _should_initiate_conc_mark = false;
  1014   _known_garbage_bytes = 0;
  1015   _known_garbage_ratio = 0.0;
  1016   _in_marking_window = false;
  1017   _in_marking_window_im = false;
  1019   _short_lived_surv_rate_group->record_scan_only_prefix(0);
  1020   _short_lived_surv_rate_group->start_adding_regions();
  1021   // also call this on any additional surv rate groups
  1023   record_survivor_regions(0, NULL, NULL);
  1025   _prev_region_num_young   = _region_num_young;
  1026   _prev_region_num_tenured = _region_num_tenured;
  1028   _free_regions_at_end_of_collection = _g1->free_regions();
  1029   _scan_only_regions_at_end_of_collection = 0;
  1030   // Reset survivors SurvRateGroup.
  1031   _survivor_surv_rate_group->reset();
  1032   calculate_young_list_min_length();
  1033   calculate_young_list_target_config();
  1036 void G1CollectorPolicy::record_before_bytes(size_t bytes) {
  1037   _bytes_in_to_space_before_gc += bytes;
  1040 void G1CollectorPolicy::record_after_bytes(size_t bytes) {
  1041   _bytes_in_to_space_after_gc += bytes;
  1044 void G1CollectorPolicy::record_stop_world_start() {
  1045   _stop_world_start = os::elapsedTime();
  1048 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
  1049                                                       size_t start_used) {
  1050   if (PrintGCDetails) {
  1051     gclog_or_tty->stamp(PrintGCTimeStamps);
  1052     gclog_or_tty->print("[GC pause");
  1053     if (in_young_gc_mode())
  1054       gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
  1057   assert(_g1->used_regions() == _g1->recalculate_used_regions(),
  1058          "sanity");
  1059   assert(_g1->used() == _g1->recalculate_used(), "sanity");
  1061   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
  1062   _all_stop_world_times_ms->add(s_w_t_ms);
  1063   _stop_world_start = 0.0;
  1065   _cur_collection_start_sec = start_time_sec;
  1066   _cur_collection_pause_used_at_start_bytes = start_used;
  1067   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  1068   _pending_cards = _g1->pending_card_num();
  1069   _max_pending_cards = _g1->max_pending_card_num();
  1071   _bytes_in_to_space_before_gc = 0;
  1072   _bytes_in_to_space_after_gc = 0;
  1073   _bytes_in_collection_set_before_gc = 0;
  1075 #ifdef DEBUG
  1076   // initialise these to something well known so that we can spot
  1077   // if they are not set properly
  1079   for (int i = 0; i < _parallel_gc_threads; ++i) {
  1080     _par_last_ext_root_scan_times_ms[i] = -666.0;
  1081     _par_last_mark_stack_scan_times_ms[i] = -666.0;
  1082     _par_last_scan_only_times_ms[i] = -666.0;
  1083     _par_last_scan_only_regions_scanned[i] = -666.0;
  1084     _par_last_update_rs_start_times_ms[i] = -666.0;
  1085     _par_last_update_rs_times_ms[i] = -666.0;
  1086     _par_last_update_rs_processed_buffers[i] = -666.0;
  1087     _par_last_scan_rs_start_times_ms[i] = -666.0;
  1088     _par_last_scan_rs_times_ms[i] = -666.0;
  1089     _par_last_scan_new_refs_times_ms[i] = -666.0;
  1090     _par_last_obj_copy_times_ms[i] = -666.0;
  1091     _par_last_termination_times_ms[i] = -666.0;
  1093 #endif
  1095   for (int i = 0; i < _aux_num; ++i) {
  1096     _cur_aux_times_ms[i] = 0.0;
  1097     _cur_aux_times_set[i] = false;
  1100   _satb_drain_time_set = false;
  1101   _last_satb_drain_processed_buffers = -1;
  1103   if (in_young_gc_mode())
  1104     _last_young_gc_full = false;
  1107   // do that for any other surv rate groups
  1108   _short_lived_surv_rate_group->stop_adding_regions();
  1109   size_t short_lived_so_length = _young_list_so_prefix_length;
  1110   _short_lived_surv_rate_group->record_scan_only_prefix(short_lived_so_length);
  1111   tag_scan_only(short_lived_so_length);
  1113   if (G1UseSurvivorSpaces) {
  1114     _survivors_age_table.clear();
  1117   assert( verify_young_ages(), "region age verification" );
  1120 void G1CollectorPolicy::tag_scan_only(size_t short_lived_scan_only_length) {
  1121   // done in a way that it can be extended for other surv rate groups too...
  1123   HeapRegion* head = _g1->young_list_first_region();
  1124   bool finished_short_lived = (short_lived_scan_only_length == 0);
  1126   if (finished_short_lived)
  1127     return;
  1129   for (HeapRegion* curr = head;
  1130        curr != NULL;
  1131        curr = curr->get_next_young_region()) {
  1132     SurvRateGroup* surv_rate_group = curr->surv_rate_group();
  1133     int age = curr->age_in_surv_rate_group();
  1135     if (surv_rate_group == _short_lived_surv_rate_group) {
  1136       if ((size_t)age < short_lived_scan_only_length)
  1137         curr->set_scan_only();
  1138       else
  1139         finished_short_lived = true;
  1143     if (finished_short_lived)
  1144       return;
  1147   guarantee( false, "we should never reach here" );
  1150 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
  1151   _mark_closure_time_ms = mark_closure_time_ms;
  1154 void G1CollectorPolicy::record_concurrent_mark_init_start() {
  1155   _mark_init_start_sec = os::elapsedTime();
  1156   guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
  1159 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
  1160                                                    mark_init_elapsed_time_ms) {
  1161   _during_marking = true;
  1162   _should_initiate_conc_mark = false;
  1163   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
  1166 void G1CollectorPolicy::record_concurrent_mark_init_end() {
  1167   double end_time_sec = os::elapsedTime();
  1168   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
  1169   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
  1170   record_concurrent_mark_init_end_pre(elapsed_time_ms);
  1172   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
  1175 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  1176   _mark_remark_start_sec = os::elapsedTime();
  1177   _during_marking = false;
  1180 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  1181   double end_time_sec = os::elapsedTime();
  1182   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  1183   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  1184   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1185   _prev_collection_pause_end_ms += elapsed_time_ms;
  1187   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
  1190 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  1191   _mark_cleanup_start_sec = os::elapsedTime();
  1194 void
  1195 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1196                                                       size_t max_live_bytes) {
  1197   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
  1198   record_concurrent_mark_cleanup_end_work2();
  1201 void
  1202 G1CollectorPolicy::
  1203 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
  1204                                          size_t max_live_bytes) {
  1205   if (_n_marks < 2) _n_marks++;
  1206   if (G1PolicyVerbose > 0)
  1207     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
  1208                            " (of " SIZE_FORMAT " MB heap).",
  1209                            max_live_bytes/M, _g1->capacity()/M);
  1212 // The important thing about this is that it includes "os::elapsedTime".
  1213 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
  1214   double end_time_sec = os::elapsedTime();
  1215   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
  1216   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1217   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1218   _prev_collection_pause_end_ms += elapsed_time_ms;
  1220   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
  1222   _num_markings++;
  1224   // We did a marking, so reset the "since_last_mark" variables.
  1225   double considerConcMarkCost = 1.0;
  1226   // If there are available processors, concurrent activity is free...
  1227   if (Threads::number_of_non_daemon_threads() * 2 <
  1228       os::active_processor_count()) {
  1229     considerConcMarkCost = 0.0;
  1231   _n_pauses_at_mark_end = _n_pauses;
  1232   _n_marks_since_last_pause++;
  1233   _conc_mark_initiated = false;
  1236 void
  1237 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
  1238   if (in_young_gc_mode()) {
  1239     _should_revert_to_full_young_gcs = false;
  1240     _last_full_young_gc = true;
  1241     _in_marking_window = false;
  1242     if (adaptive_young_list_length())
  1243       calculate_young_list_target_config();
  1247 void G1CollectorPolicy::record_concurrent_pause() {
  1248   if (_stop_world_start > 0.0) {
  1249     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
  1250     _all_yield_times_ms->add(yield_ms);
  1254 void G1CollectorPolicy::record_concurrent_pause_end() {
  1257 void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
  1258   _cur_CH_strong_roots_end_sec = os::elapsedTime();
  1259   _cur_CH_strong_roots_dur_ms =
  1260     (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
  1263 void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
  1264   _cur_G1_strong_roots_end_sec = os::elapsedTime();
  1265   _cur_G1_strong_roots_dur_ms =
  1266     (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
  1269 template<class T>
  1270 T sum_of(T* sum_arr, int start, int n, int N) {
  1271   T sum = (T)0;
  1272   for (int i = 0; i < n; i++) {
  1273     int j = (start + i) % N;
  1274     sum += sum_arr[j];
  1276   return sum;
  1279 void G1CollectorPolicy::print_par_stats (int level,
  1280                                          const char* str,
  1281                                          double* data,
  1282                                          bool summary) {
  1283   double min = data[0], max = data[0];
  1284   double total = 0.0;
  1285   int j;
  1286   for (j = 0; j < level; ++j)
  1287     gclog_or_tty->print("   ");
  1288   gclog_or_tty->print("[%s (ms):", str);
  1289   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1290     double val = data[i];
  1291     if (val < min)
  1292       min = val;
  1293     if (val > max)
  1294       max = val;
  1295     total += val;
  1296     gclog_or_tty->print("  %3.1lf", val);
  1298   if (summary) {
  1299     gclog_or_tty->print_cr("");
  1300     double avg = total / (double) ParallelGCThreads;
  1301     gclog_or_tty->print(" ");
  1302     for (j = 0; j < level; ++j)
  1303       gclog_or_tty->print("   ");
  1304     gclog_or_tty->print("Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf",
  1305                         avg, min, max);
  1307   gclog_or_tty->print_cr("]");
  1310 void G1CollectorPolicy::print_par_buffers (int level,
  1311                                          const char* str,
  1312                                          double* data,
  1313                                          bool summary) {
  1314   double min = data[0], max = data[0];
  1315   double total = 0.0;
  1316   int j;
  1317   for (j = 0; j < level; ++j)
  1318     gclog_or_tty->print("   ");
  1319   gclog_or_tty->print("[%s :", str);
  1320   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1321     double val = data[i];
  1322     if (val < min)
  1323       min = val;
  1324     if (val > max)
  1325       max = val;
  1326     total += val;
  1327     gclog_or_tty->print(" %d", (int) val);
  1329   if (summary) {
  1330     gclog_or_tty->print_cr("");
  1331     double avg = total / (double) ParallelGCThreads;
  1332     gclog_or_tty->print(" ");
  1333     for (j = 0; j < level; ++j)
  1334       gclog_or_tty->print("   ");
  1335     gclog_or_tty->print("Sum: %d, Avg: %d, Min: %d, Max: %d",
  1336                (int)total, (int)avg, (int)min, (int)max);
  1338   gclog_or_tty->print_cr("]");
  1341 void G1CollectorPolicy::print_stats (int level,
  1342                                      const char* str,
  1343                                      double value) {
  1344   for (int j = 0; j < level; ++j)
  1345     gclog_or_tty->print("   ");
  1346   gclog_or_tty->print_cr("[%s: %5.1lf ms]", str, value);
  1349 void G1CollectorPolicy::print_stats (int level,
  1350                                      const char* str,
  1351                                      int value) {
  1352   for (int j = 0; j < level; ++j)
  1353     gclog_or_tty->print("   ");
  1354   gclog_or_tty->print_cr("[%s: %d]", str, value);
  1357 double G1CollectorPolicy::avg_value (double* data) {
  1358   if (ParallelGCThreads > 0) {
  1359     double ret = 0.0;
  1360     for (uint i = 0; i < ParallelGCThreads; ++i)
  1361       ret += data[i];
  1362     return ret / (double) ParallelGCThreads;
  1363   } else {
  1364     return data[0];
  1368 double G1CollectorPolicy::max_value (double* data) {
  1369   if (ParallelGCThreads > 0) {
  1370     double ret = data[0];
  1371     for (uint i = 1; i < ParallelGCThreads; ++i)
  1372       if (data[i] > ret)
  1373         ret = data[i];
  1374     return ret;
  1375   } else {
  1376     return data[0];
  1380 double G1CollectorPolicy::sum_of_values (double* data) {
  1381   if (ParallelGCThreads > 0) {
  1382     double sum = 0.0;
  1383     for (uint i = 0; i < ParallelGCThreads; i++)
  1384       sum += data[i];
  1385     return sum;
  1386   } else {
  1387     return data[0];
  1391 double G1CollectorPolicy::max_sum (double* data1,
  1392                                    double* data2) {
  1393   double ret = data1[0] + data2[0];
  1395   if (ParallelGCThreads > 0) {
  1396     for (uint i = 1; i < ParallelGCThreads; ++i) {
  1397       double data = data1[i] + data2[i];
  1398       if (data > ret)
  1399         ret = data;
  1402   return ret;
  1405 // Anything below that is considered to be zero
  1406 #define MIN_TIMER_GRANULARITY 0.0000001
  1408 void G1CollectorPolicy::record_collection_pause_end(bool abandoned) {
  1409   double end_time_sec = os::elapsedTime();
  1410   double elapsed_ms = _last_pause_time_ms;
  1411   bool parallel = ParallelGCThreads > 0;
  1412   double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
  1413   size_t rs_size =
  1414     _cur_collection_pause_used_regions_at_start - collection_set_size();
  1415   size_t cur_used_bytes = _g1->used();
  1416   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1417   bool last_pause_included_initial_mark = false;
  1418   bool update_stats = !abandoned && !_g1->evacuation_failed();
  1420 #ifndef PRODUCT
  1421   if (G1YoungSurvRateVerbose) {
  1422     gclog_or_tty->print_cr("");
  1423     _short_lived_surv_rate_group->print();
  1424     // do that for any other surv rate groups too
  1426 #endif // PRODUCT
  1428   if (in_young_gc_mode()) {
  1429     last_pause_included_initial_mark = _should_initiate_conc_mark;
  1430     if (last_pause_included_initial_mark)
  1431       record_concurrent_mark_init_end_pre(0.0);
  1433     size_t min_used_targ =
  1434       (_g1->capacity() / 100) * (G1SteadyStateUsed - G1SteadyStateUsedDelta);
  1436     if (cur_used_bytes > min_used_targ) {
  1437       if (cur_used_bytes <= _prev_collection_pause_used_at_end_bytes) {
  1438       } else if (!_g1->mark_in_progress() && !_last_full_young_gc) {
  1439         _should_initiate_conc_mark = true;
  1443     _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  1446   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1447                           end_time_sec, false);
  1449   guarantee(_cur_collection_pause_used_regions_at_start >=
  1450             collection_set_size(),
  1451             "Negative RS size?");
  1453   // This assert is exempted when we're doing parallel collection pauses,
  1454   // because the fragmentation caused by the parallel GC allocation buffers
  1455   // can lead to more memory being used during collection than was used
  1456   // before. Best leave this out until the fragmentation problem is fixed.
  1457   // Pauses in which evacuation failed can also lead to negative
  1458   // collections, since no space is reclaimed from a region containing an
  1459   // object whose evacuation failed.
  1460   // Further, we're now always doing parallel collection.  But I'm still
  1461   // leaving this here as a placeholder for a more precise assertion later.
  1462   // (DLD, 10/05.)
  1463   assert((true || parallel) // Always using GC LABs now.
  1464          || _g1->evacuation_failed()
  1465          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1466          "Negative collection");
  1468   size_t freed_bytes =
  1469     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1470   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1471   double survival_fraction =
  1472     (double)surviving_bytes/
  1473     (double)_collection_set_bytes_used_before;
  1475   _n_pauses++;
  1477   if (update_stats) {
  1478     _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
  1479     _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
  1480     _recent_evac_times_ms->add(evac_ms);
  1481     _recent_pause_times_ms->add(elapsed_ms);
  1483     _recent_rs_sizes->add(rs_size);
  1485     // We exempt parallel collection from this check because Alloc Buffer
  1486     // fragmentation can produce negative collections.  Same with evac
  1487     // failure.
  1488     // Further, we're now always doing parallel collection.  But I'm still
  1489     // leaving this here as a placeholder for a more precise assertion later.
  1490     // (DLD, 10/05.
  1491     assert((true || parallel)
  1492            || _g1->evacuation_failed()
  1493            || surviving_bytes <= _collection_set_bytes_used_before,
  1494            "Or else negative collection!");
  1495     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
  1496     _recent_CS_bytes_surviving->add(surviving_bytes);
  1498     // this is where we update the allocation rate of the application
  1499     double app_time_ms =
  1500       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1501     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1502       // This usually happens due to the timer not having the required
  1503       // granularity. Some Linuxes are the usual culprits.
  1504       // We'll just set it to something (arbitrarily) small.
  1505       app_time_ms = 1.0;
  1507     size_t regions_allocated =
  1508       (_region_num_young - _prev_region_num_young) +
  1509       (_region_num_tenured - _prev_region_num_tenured);
  1510     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1511     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1512     _prev_region_num_young   = _region_num_young;
  1513     _prev_region_num_tenured = _region_num_tenured;
  1515     double interval_ms =
  1516       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1517     update_recent_gc_times(end_time_sec, elapsed_ms);
  1518     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1519     // using 1.01 to account for floating point inaccuracies
  1520     assert(recent_avg_pause_time_ratio() < 1.01, "All GC?");
  1523   if (G1PolicyVerbose > 1) {
  1524     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
  1527   PauseSummary* summary;
  1528   if (abandoned) {
  1529     summary = _abandoned_summary;
  1530   } else {
  1531     summary = _summary;
  1534   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1535   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  1536   double scan_only_time = avg_value(_par_last_scan_only_times_ms);
  1537   double scan_only_regions_scanned =
  1538     sum_of_values(_par_last_scan_only_regions_scanned);
  1539   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1540   double update_rs_processed_buffers =
  1541     sum_of_values(_par_last_update_rs_processed_buffers);
  1542   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1543   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1544   double termination_time = avg_value(_par_last_termination_times_ms);
  1546   double parallel_other_time = _cur_collection_par_time_ms -
  1547     (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
  1548      scan_only_time + scan_rs_time + obj_copy_time + termination_time);
  1549   if (update_stats) {
  1550     MainBodySummary* body_summary = summary->main_body_summary();
  1551     guarantee(body_summary != NULL, "should not be null!");
  1553     if (_satb_drain_time_set)
  1554       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1555     else
  1556       body_summary->record_satb_drain_time_ms(0.0);
  1557     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1558     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
  1559     body_summary->record_scan_only_time_ms(scan_only_time);
  1560     body_summary->record_update_rs_time_ms(update_rs_time);
  1561     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1562     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1563     if (parallel) {
  1564       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1565       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1566       body_summary->record_termination_time_ms(termination_time);
  1567       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1569     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1572   if (G1PolicyVerbose > 1) {
  1573     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
  1574                            "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1575                            "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1576                            "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
  1577                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
  1578                            "      |RS|: " SIZE_FORMAT,
  1579                            elapsed_ms, recent_avg_time_for_pauses_ms(),
  1580                            _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
  1581                            _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
  1582                            evac_ms, recent_avg_time_for_evac_ms(),
  1583                            scan_rs_time,
  1584                            recent_avg_time_for_pauses_ms() -
  1585                            recent_avg_time_for_G1_strong_ms(),
  1586                            rs_size);
  1588     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
  1589                            "       At end " SIZE_FORMAT "K\n"
  1590                            "       garbage      : " SIZE_FORMAT "K"
  1591                            "       of     " SIZE_FORMAT "K\n"
  1592                            "       survival     : %6.2f%%  (%6.2f%% avg)",
  1593                            _cur_collection_pause_used_at_start_bytes/K,
  1594                            _g1->used()/K, freed_bytes/K,
  1595                            _collection_set_bytes_used_before/K,
  1596                            survival_fraction*100.0,
  1597                            recent_avg_survival_fraction()*100.0);
  1598     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
  1599                            recent_avg_pause_time_ratio() * 100.0);
  1602   double other_time_ms = elapsed_ms;
  1604   if (!abandoned) {
  1605     if (_satb_drain_time_set)
  1606       other_time_ms -= _cur_satb_drain_time_ms;
  1608     if (parallel)
  1609       other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
  1610     else
  1611       other_time_ms -=
  1612         update_rs_time +
  1613         ext_root_scan_time + mark_stack_scan_time + scan_only_time +
  1614         scan_rs_time + obj_copy_time;
  1617   if (PrintGCDetails) {
  1618     gclog_or_tty->print_cr("%s%s, %1.8lf secs]",
  1619                            abandoned ? " (abandoned)" : "",
  1620                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1621                            elapsed_ms / 1000.0);
  1623     if (!abandoned) {
  1624       if (_satb_drain_time_set) {
  1625         print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
  1627       if (_last_satb_drain_processed_buffers >= 0) {
  1628         print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
  1630       if (parallel) {
  1631         print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1632         print_par_stats(2, "Update RS (Start)", _par_last_update_rs_start_times_ms, false);
  1633         print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1634         print_par_buffers(3, "Processed Buffers",
  1635                           _par_last_update_rs_processed_buffers, true);
  1636         print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1637         print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
  1638         print_par_stats(2, "Scan-Only Scanning", _par_last_scan_only_times_ms);
  1639         print_par_buffers(3, "Scan-Only Regions",
  1640                           _par_last_scan_only_regions_scanned, true);
  1641         print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1642         print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1643         print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1644         print_stats(2, "Other", parallel_other_time);
  1645         print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1646       } else {
  1647         print_stats(1, "Update RS", update_rs_time);
  1648         print_stats(2, "Processed Buffers",
  1649                     (int)update_rs_processed_buffers);
  1650         print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1651         print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
  1652         print_stats(1, "Scan-Only Scanning", scan_only_time);
  1653         print_stats(1, "Scan RS", scan_rs_time);
  1654         print_stats(1, "Object Copying", obj_copy_time);
  1657 #ifndef PRODUCT
  1658     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1659     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1660     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1661     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1662     if (_num_cc_clears > 0) {
  1663       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1665 #endif
  1666     print_stats(1, "Other", other_time_ms);
  1667     for (int i = 0; i < _aux_num; ++i) {
  1668       if (_cur_aux_times_set[i]) {
  1669         char buffer[96];
  1670         sprintf(buffer, "Aux%d", i);
  1671         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1675   if (PrintGCDetails)
  1676     gclog_or_tty->print("   [");
  1677   if (PrintGC || PrintGCDetails)
  1678     _g1->print_size_transition(gclog_or_tty,
  1679                                _cur_collection_pause_used_at_start_bytes,
  1680                                _g1->used(), _g1->capacity());
  1681   if (PrintGCDetails)
  1682     gclog_or_tty->print_cr("]");
  1684   _all_pause_times_ms->add(elapsed_ms);
  1685   if (update_stats) {
  1686     summary->record_total_time_ms(elapsed_ms);
  1687     summary->record_other_time_ms(other_time_ms);
  1689   for (int i = 0; i < _aux_num; ++i)
  1690     if (_cur_aux_times_set[i])
  1691       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1693   // Reset marks-between-pauses counter.
  1694   _n_marks_since_last_pause = 0;
  1696   // Update the efficiency-since-mark vars.
  1697   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1698   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1699     // This usually happens due to the timer not having the required
  1700     // granularity. Some Linuxes are the usual culprits.
  1701     // We'll just set it to something (arbitrarily) small.
  1702     proc_ms = 1.0;
  1704   double cur_efficiency = (double) freed_bytes / proc_ms;
  1706   bool new_in_marking_window = _in_marking_window;
  1707   bool new_in_marking_window_im = false;
  1708   if (_should_initiate_conc_mark) {
  1709     new_in_marking_window = true;
  1710     new_in_marking_window_im = true;
  1713   if (in_young_gc_mode()) {
  1714     if (_last_full_young_gc) {
  1715       set_full_young_gcs(false);
  1716       _last_full_young_gc = false;
  1719     if ( !_last_young_gc_full ) {
  1720       if ( _should_revert_to_full_young_gcs ||
  1721            _known_garbage_ratio < 0.05 ||
  1722            (adaptive_young_list_length() &&
  1723            (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
  1724         set_full_young_gcs(true);
  1727     _should_revert_to_full_young_gcs = false;
  1729     if (_last_young_gc_full && !_during_marking)
  1730       _young_gc_eff_seq->add(cur_efficiency);
  1733   _short_lived_surv_rate_group->start_adding_regions();
  1734   // do that for any other surv rate groupsx
  1736   // <NEW PREDICTION>
  1738   if (update_stats) {
  1739     double pause_time_ms = elapsed_ms;
  1741     size_t diff = 0;
  1742     if (_max_pending_cards >= _pending_cards)
  1743       diff = _max_pending_cards - _pending_cards;
  1744     _pending_card_diff_seq->add((double) diff);
  1746     double cost_per_card_ms = 0.0;
  1747     if (_pending_cards > 0) {
  1748       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1749       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1752     double cost_per_scan_only_region_ms = 0.0;
  1753     if (scan_only_regions_scanned > 0.0) {
  1754       cost_per_scan_only_region_ms =
  1755         scan_only_time / scan_only_regions_scanned;
  1756       if (_in_marking_window_im)
  1757         _cost_per_scan_only_region_ms_during_cm_seq->add(cost_per_scan_only_region_ms);
  1758       else
  1759         _cost_per_scan_only_region_ms_seq->add(cost_per_scan_only_region_ms);
  1762     size_t cards_scanned = _g1->cards_scanned();
  1764     double cost_per_entry_ms = 0.0;
  1765     if (cards_scanned > 10) {
  1766       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1767       if (_last_young_gc_full)
  1768         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1769       else
  1770         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1773     if (_max_rs_lengths > 0) {
  1774       double cards_per_entry_ratio =
  1775         (double) cards_scanned / (double) _max_rs_lengths;
  1776       if (_last_young_gc_full)
  1777         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1778       else
  1779         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1782     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1783     if (rs_length_diff >= 0)
  1784       _rs_length_diff_seq->add((double) rs_length_diff);
  1786     size_t copied_bytes = surviving_bytes;
  1787     double cost_per_byte_ms = 0.0;
  1788     if (copied_bytes > 0) {
  1789       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1790       if (_in_marking_window)
  1791         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1792       else
  1793         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1796     double all_other_time_ms = pause_time_ms -
  1797       (update_rs_time + scan_only_time + scan_rs_time + obj_copy_time +
  1798        _mark_closure_time_ms + termination_time);
  1800     double young_other_time_ms = 0.0;
  1801     if (_recorded_young_regions > 0) {
  1802       young_other_time_ms =
  1803         _recorded_young_cset_choice_time_ms +
  1804         _recorded_young_free_cset_time_ms;
  1805       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1806                                              (double) _recorded_young_regions);
  1808     double non_young_other_time_ms = 0.0;
  1809     if (_recorded_non_young_regions > 0) {
  1810       non_young_other_time_ms =
  1811         _recorded_non_young_cset_choice_time_ms +
  1812         _recorded_non_young_free_cset_time_ms;
  1814       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1815                                          (double) _recorded_non_young_regions);
  1818     double constant_other_time_ms = all_other_time_ms -
  1819       (young_other_time_ms + non_young_other_time_ms);
  1820     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1822     double survival_ratio = 0.0;
  1823     if (_bytes_in_collection_set_before_gc > 0) {
  1824       survival_ratio = (double) bytes_in_to_space_during_gc() /
  1825         (double) _bytes_in_collection_set_before_gc;
  1828     _pending_cards_seq->add((double) _pending_cards);
  1829     _scanned_cards_seq->add((double) cards_scanned);
  1830     _rs_lengths_seq->add((double) _max_rs_lengths);
  1832     double expensive_region_limit_ms =
  1833       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1834     if (expensive_region_limit_ms < 0.0) {
  1835       // this means that the other time was predicted to be longer than
  1836       // than the max pause time
  1837       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1839     _expensive_region_limit_ms = expensive_region_limit_ms;
  1841     if (PREDICTIONS_VERBOSE) {
  1842       gclog_or_tty->print_cr("");
  1843       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
  1844                     "REGIONS %d %d %d %d "
  1845                     "PENDING_CARDS %d %d "
  1846                     "CARDS_SCANNED %d %d "
  1847                     "RS_LENGTHS %d %d "
  1848                     "SCAN_ONLY_SCAN %1.6lf %1.6lf "
  1849                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
  1850                     "SURVIVAL_RATIO %1.6lf %1.6lf "
  1851                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
  1852                     "OTHER_YOUNG %1.6lf %1.6lf "
  1853                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
  1854                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
  1855                     "ELAPSED %1.6lf %1.6lf ",
  1856                     _cur_collection_start_sec,
  1857                     (!_last_young_gc_full) ? 2 :
  1858                     (last_pause_included_initial_mark) ? 1 : 0,
  1859                     _recorded_region_num,
  1860                     _recorded_young_regions,
  1861                     _recorded_scan_only_regions,
  1862                     _recorded_non_young_regions,
  1863                     _predicted_pending_cards, _pending_cards,
  1864                     _predicted_cards_scanned, cards_scanned,
  1865                     _predicted_rs_lengths, _max_rs_lengths,
  1866                     _predicted_scan_only_scan_time_ms, scan_only_time,
  1867                     _predicted_rs_update_time_ms, update_rs_time,
  1868                     _predicted_rs_scan_time_ms, scan_rs_time,
  1869                     _predicted_survival_ratio, survival_ratio,
  1870                     _predicted_object_copy_time_ms, obj_copy_time,
  1871                     _predicted_constant_other_time_ms, constant_other_time_ms,
  1872                     _predicted_young_other_time_ms, young_other_time_ms,
  1873                     _predicted_non_young_other_time_ms,
  1874                     non_young_other_time_ms,
  1875                     _vtime_diff_ms, termination_time,
  1876                     _predicted_pause_time_ms, elapsed_ms);
  1879     if (G1PolicyVerbose > 0) {
  1880       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
  1881                     _predicted_pause_time_ms,
  1882                     (_within_target) ? "within" : "outside",
  1883                     elapsed_ms);
  1888   _in_marking_window = new_in_marking_window;
  1889   _in_marking_window_im = new_in_marking_window_im;
  1890   _free_regions_at_end_of_collection = _g1->free_regions();
  1891   _scan_only_regions_at_end_of_collection = _g1->young_list_length();
  1892   calculate_young_list_min_length();
  1893   calculate_young_list_target_config();
  1895   // </NEW PREDICTION>
  1897   _target_pause_time_ms = -1.0;
  1900 // <NEW PREDICTION>
  1902 double
  1903 G1CollectorPolicy::
  1904 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1905   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1907   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1908   size_t young_num = g1h->young_list_length();
  1909   if (young_num == 0)
  1910     return 0.0;
  1912   young_num += adjustment;
  1913   size_t pending_cards = predict_pending_cards();
  1914   size_t rs_lengths = g1h->young_list_sampled_rs_lengths() +
  1915                       predict_rs_length_diff();
  1916   size_t card_num;
  1917   if (full_young_gcs())
  1918     card_num = predict_young_card_num(rs_lengths);
  1919   else
  1920     card_num = predict_non_young_card_num(rs_lengths);
  1921   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1922   double accum_yg_surv_rate =
  1923     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1925   size_t bytes_to_copy =
  1926     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1928   return
  1929     predict_rs_update_time_ms(pending_cards) +
  1930     predict_rs_scan_time_ms(card_num) +
  1931     predict_object_copy_time_ms(bytes_to_copy) +
  1932     predict_young_other_time_ms(young_num) +
  1933     predict_constant_other_time_ms();
  1936 double
  1937 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1938   size_t rs_length = predict_rs_length_diff();
  1939   size_t card_num;
  1940   if (full_young_gcs())
  1941     card_num = predict_young_card_num(rs_length);
  1942   else
  1943     card_num = predict_non_young_card_num(rs_length);
  1944   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1947 double
  1948 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1949                                                 size_t scanned_cards) {
  1950   return
  1951     predict_rs_update_time_ms(pending_cards) +
  1952     predict_rs_scan_time_ms(scanned_cards) +
  1953     predict_constant_other_time_ms();
  1956 double
  1957 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1958                                                   bool young) {
  1959   size_t rs_length = hr->rem_set()->occupied();
  1960   size_t card_num;
  1961   if (full_young_gcs())
  1962     card_num = predict_young_card_num(rs_length);
  1963   else
  1964     card_num = predict_non_young_card_num(rs_length);
  1965   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1967   double region_elapsed_time_ms =
  1968     predict_rs_scan_time_ms(card_num) +
  1969     predict_object_copy_time_ms(bytes_to_copy);
  1971   if (young)
  1972     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1973   else
  1974     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1976   return region_elapsed_time_ms;
  1979 size_t
  1980 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1981   size_t bytes_to_copy;
  1982   if (hr->is_marked())
  1983     bytes_to_copy = hr->max_live_bytes();
  1984   else {
  1985     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1986                "invariant" );
  1987     int age = hr->age_in_surv_rate_group();
  1988     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1989     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1992   return bytes_to_copy;
  1995 void
  1996 G1CollectorPolicy::start_recording_regions() {
  1997   _recorded_rs_lengths            = 0;
  1998   _recorded_scan_only_regions     = 0;
  1999   _recorded_young_regions         = 0;
  2000   _recorded_non_young_regions     = 0;
  2002 #if PREDICTIONS_VERBOSE
  2003   _predicted_rs_lengths           = 0;
  2004   _predicted_cards_scanned        = 0;
  2006   _recorded_marked_bytes          = 0;
  2007   _recorded_young_bytes           = 0;
  2008   _predicted_bytes_to_copy        = 0;
  2009 #endif // PREDICTIONS_VERBOSE
  2012 void
  2013 G1CollectorPolicy::record_cset_region(HeapRegion* hr, bool young) {
  2014   if (young) {
  2015     ++_recorded_young_regions;
  2016   } else {
  2017     ++_recorded_non_young_regions;
  2019 #if PREDICTIONS_VERBOSE
  2020   if (young) {
  2021     _recorded_young_bytes += hr->used();
  2022   } else {
  2023     _recorded_marked_bytes += hr->max_live_bytes();
  2025   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
  2026 #endif // PREDICTIONS_VERBOSE
  2028   size_t rs_length = hr->rem_set()->occupied();
  2029   _recorded_rs_lengths += rs_length;
  2032 void
  2033 G1CollectorPolicy::record_scan_only_regions(size_t scan_only_length) {
  2034   _recorded_scan_only_regions = scan_only_length;
  2037 void
  2038 G1CollectorPolicy::end_recording_regions() {
  2039 #if PREDICTIONS_VERBOSE
  2040   _predicted_pending_cards = predict_pending_cards();
  2041   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
  2042   if (full_young_gcs())
  2043     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
  2044   else
  2045     _predicted_cards_scanned +=
  2046       predict_non_young_card_num(_predicted_rs_lengths);
  2047   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
  2049   _predicted_scan_only_scan_time_ms =
  2050     predict_scan_only_time_ms(_recorded_scan_only_regions);
  2051   _predicted_rs_update_time_ms =
  2052     predict_rs_update_time_ms(_g1->pending_card_num());
  2053   _predicted_rs_scan_time_ms =
  2054     predict_rs_scan_time_ms(_predicted_cards_scanned);
  2055   _predicted_object_copy_time_ms =
  2056     predict_object_copy_time_ms(_predicted_bytes_to_copy);
  2057   _predicted_constant_other_time_ms =
  2058     predict_constant_other_time_ms();
  2059   _predicted_young_other_time_ms =
  2060     predict_young_other_time_ms(_recorded_young_regions);
  2061   _predicted_non_young_other_time_ms =
  2062     predict_non_young_other_time_ms(_recorded_non_young_regions);
  2064   _predicted_pause_time_ms =
  2065     _predicted_scan_only_scan_time_ms +
  2066     _predicted_rs_update_time_ms +
  2067     _predicted_rs_scan_time_ms +
  2068     _predicted_object_copy_time_ms +
  2069     _predicted_constant_other_time_ms +
  2070     _predicted_young_other_time_ms +
  2071     _predicted_non_young_other_time_ms;
  2072 #endif // PREDICTIONS_VERBOSE
  2075 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  2076                                                            predicted_time_ms) {
  2077   // I don't think we need to do this when in young GC mode since
  2078   // marking will be initiated next time we hit the soft limit anyway...
  2079   if (predicted_time_ms > _expensive_region_limit_ms) {
  2080     if (!in_young_gc_mode()) {
  2081         set_full_young_gcs(true);
  2082       _should_initiate_conc_mark = true;
  2083     } else
  2084       // no point in doing another partial one
  2085       _should_revert_to_full_young_gcs = true;
  2089 // </NEW PREDICTION>
  2092 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  2093                                                double elapsed_ms) {
  2094   _recent_gc_times_ms->add(elapsed_ms);
  2095   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  2096   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  2099 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
  2100   if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
  2101   else return _recent_pause_times_ms->avg();
  2104 double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
  2105   if (_recent_CH_strong_roots_times_ms->num() == 0)
  2106     return (double)MaxGCPauseMillis/3.0;
  2107   else return _recent_CH_strong_roots_times_ms->avg();
  2110 double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
  2111   if (_recent_G1_strong_roots_times_ms->num() == 0)
  2112     return (double)MaxGCPauseMillis/3.0;
  2113   else return _recent_G1_strong_roots_times_ms->avg();
  2116 double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
  2117   if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
  2118   else return _recent_evac_times_ms->avg();
  2121 int G1CollectorPolicy::number_of_recent_gcs() {
  2122   assert(_recent_CH_strong_roots_times_ms->num() ==
  2123          _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
  2124   assert(_recent_G1_strong_roots_times_ms->num() ==
  2125          _recent_evac_times_ms->num(), "Sequence out of sync");
  2126   assert(_recent_evac_times_ms->num() ==
  2127          _recent_pause_times_ms->num(), "Sequence out of sync");
  2128   assert(_recent_pause_times_ms->num() ==
  2129          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
  2130   assert(_recent_CS_bytes_used_before->num() ==
  2131          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
  2132   return _recent_pause_times_ms->num();
  2135 double G1CollectorPolicy::recent_avg_survival_fraction() {
  2136   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
  2137                                            _recent_CS_bytes_used_before);
  2140 double G1CollectorPolicy::last_survival_fraction() {
  2141   return last_survival_fraction_work(_recent_CS_bytes_surviving,
  2142                                      _recent_CS_bytes_used_before);
  2145 double
  2146 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
  2147                                                      TruncatedSeq* before) {
  2148   assert(surviving->num() == before->num(), "Sequence out of sync");
  2149   if (before->sum() > 0.0) {
  2150       double recent_survival_rate = surviving->sum() / before->sum();
  2151       // We exempt parallel collection from this check because Alloc Buffer
  2152       // fragmentation can produce negative collections.
  2153       // Further, we're now always doing parallel collection.  But I'm still
  2154       // leaving this here as a placeholder for a more precise assertion later.
  2155       // (DLD, 10/05.)
  2156       assert((true || ParallelGCThreads > 0) ||
  2157              _g1->evacuation_failed() ||
  2158              recent_survival_rate <= 1.0, "Or bad frac");
  2159       return recent_survival_rate;
  2160   } else {
  2161     return 1.0; // Be conservative.
  2165 double
  2166 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
  2167                                                TruncatedSeq* before) {
  2168   assert(surviving->num() == before->num(), "Sequence out of sync");
  2169   if (surviving->num() > 0 && before->last() > 0.0) {
  2170     double last_survival_rate = surviving->last() / before->last();
  2171     // We exempt parallel collection from this check because Alloc Buffer
  2172     // fragmentation can produce negative collections.
  2173     // Further, we're now always doing parallel collection.  But I'm still
  2174     // leaving this here as a placeholder for a more precise assertion later.
  2175     // (DLD, 10/05.)
  2176     assert((true || ParallelGCThreads > 0) ||
  2177            last_survival_rate <= 1.0, "Or bad frac");
  2178     return last_survival_rate;
  2179   } else {
  2180     return 1.0;
  2184 static const int survival_min_obs = 5;
  2185 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
  2186 static const double min_survival_rate = 0.1;
  2188 double
  2189 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
  2190                                                            double latest) {
  2191   double res = avg;
  2192   if (number_of_recent_gcs() < survival_min_obs) {
  2193     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
  2195   res = MAX2(res, latest);
  2196   res = MAX2(res, min_survival_rate);
  2197   // In the parallel case, LAB fragmentation can produce "negative
  2198   // collections"; so can evac failure.  Cap at 1.0
  2199   res = MIN2(res, 1.0);
  2200   return res;
  2203 size_t G1CollectorPolicy::expansion_amount() {
  2204   if ((int)(recent_avg_pause_time_ratio() * 100.0) > G1GCPercent) {
  2205     // We will double the existing space, or take
  2206     // G1ExpandByPercentOfAvailable % of the available expansion
  2207     // space, whichever is smaller, bounded below by a minimum
  2208     // expansion (unless that's all that's left.)
  2209     const size_t min_expand_bytes = 1*M;
  2210     size_t reserved_bytes = _g1->g1_reserved_obj_bytes();
  2211     size_t committed_bytes = _g1->capacity();
  2212     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  2213     size_t expand_bytes;
  2214     size_t expand_bytes_via_pct =
  2215       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  2216     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  2217     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  2218     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  2219     if (G1PolicyVerbose > 1) {
  2220       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
  2221                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
  2222                  "                   Answer = %d.\n",
  2223                  recent_avg_pause_time_ratio(),
  2224                  byte_size_in_proper_unit(committed_bytes),
  2225                  proper_unit_for_byte_size(committed_bytes),
  2226                  byte_size_in_proper_unit(uncommitted_bytes),
  2227                  proper_unit_for_byte_size(uncommitted_bytes),
  2228                  byte_size_in_proper_unit(expand_bytes_via_pct),
  2229                  proper_unit_for_byte_size(expand_bytes_via_pct),
  2230                  byte_size_in_proper_unit(expand_bytes),
  2231                  proper_unit_for_byte_size(expand_bytes));
  2233     return expand_bytes;
  2234   } else {
  2235     return 0;
  2239 void G1CollectorPolicy::note_start_of_mark_thread() {
  2240   _mark_thread_startup_sec = os::elapsedTime();
  2243 class CountCSClosure: public HeapRegionClosure {
  2244   G1CollectorPolicy* _g1_policy;
  2245 public:
  2246   CountCSClosure(G1CollectorPolicy* g1_policy) :
  2247     _g1_policy(g1_policy) {}
  2248   bool doHeapRegion(HeapRegion* r) {
  2249     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  2250     return false;
  2252 };
  2254 void G1CollectorPolicy::count_CS_bytes_used() {
  2255   CountCSClosure cs_closure(this);
  2256   _g1->collection_set_iterate(&cs_closure);
  2259 static void print_indent(int level) {
  2260   for (int j = 0; j < level+1; ++j)
  2261     gclog_or_tty->print("   ");
  2264 void G1CollectorPolicy::print_summary (int level,
  2265                                        const char* str,
  2266                                        NumberSeq* seq) const {
  2267   double sum = seq->sum();
  2268   print_indent(level);
  2269   gclog_or_tty->print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  2270                 str, sum / 1000.0, seq->avg());
  2273 void G1CollectorPolicy::print_summary_sd (int level,
  2274                                           const char* str,
  2275                                           NumberSeq* seq) const {
  2276   print_summary(level, str, seq);
  2277   print_indent(level + 5);
  2278   gclog_or_tty->print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2279                 seq->num(), seq->sd(), seq->maximum());
  2282 void G1CollectorPolicy::check_other_times(int level,
  2283                                         NumberSeq* other_times_ms,
  2284                                         NumberSeq* calc_other_times_ms) const {
  2285   bool should_print = false;
  2287   double max_sum = MAX2(fabs(other_times_ms->sum()),
  2288                         fabs(calc_other_times_ms->sum()));
  2289   double min_sum = MIN2(fabs(other_times_ms->sum()),
  2290                         fabs(calc_other_times_ms->sum()));
  2291   double sum_ratio = max_sum / min_sum;
  2292   if (sum_ratio > 1.1) {
  2293     should_print = true;
  2294     print_indent(level + 1);
  2295     gclog_or_tty->print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  2298   double max_avg = MAX2(fabs(other_times_ms->avg()),
  2299                         fabs(calc_other_times_ms->avg()));
  2300   double min_avg = MIN2(fabs(other_times_ms->avg()),
  2301                         fabs(calc_other_times_ms->avg()));
  2302   double avg_ratio = max_avg / min_avg;
  2303   if (avg_ratio > 1.1) {
  2304     should_print = true;
  2305     print_indent(level + 1);
  2306     gclog_or_tty->print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  2309   if (other_times_ms->sum() < -0.01) {
  2310     print_indent(level + 1);
  2311     gclog_or_tty->print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  2314   if (other_times_ms->avg() < -0.01) {
  2315     print_indent(level + 1);
  2316     gclog_or_tty->print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  2319   if (calc_other_times_ms->sum() < -0.01) {
  2320     should_print = true;
  2321     print_indent(level + 1);
  2322     gclog_or_tty->print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  2325   if (calc_other_times_ms->avg() < -0.01) {
  2326     should_print = true;
  2327     print_indent(level + 1);
  2328     gclog_or_tty->print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  2331   if (should_print)
  2332     print_summary(level, "Other(Calc)", calc_other_times_ms);
  2335 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  2336   bool parallel = ParallelGCThreads > 0;
  2337   MainBodySummary*    body_summary = summary->main_body_summary();
  2338   if (summary->get_total_seq()->num() > 0) {
  2339     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  2340     if (body_summary != NULL) {
  2341       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
  2342       if (parallel) {
  2343         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  2344         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  2345         print_summary(2, "Ext Root Scanning",
  2346                       body_summary->get_ext_root_scan_seq());
  2347         print_summary(2, "Mark Stack Scanning",
  2348                       body_summary->get_mark_stack_scan_seq());
  2349         print_summary(2, "Scan-Only Scanning",
  2350                       body_summary->get_scan_only_seq());
  2351         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  2352         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  2353         print_summary(2, "Termination", body_summary->get_termination_seq());
  2354         print_summary(2, "Other", body_summary->get_parallel_other_seq());
  2356           NumberSeq* other_parts[] = {
  2357             body_summary->get_update_rs_seq(),
  2358             body_summary->get_ext_root_scan_seq(),
  2359             body_summary->get_mark_stack_scan_seq(),
  2360             body_summary->get_scan_only_seq(),
  2361             body_summary->get_scan_rs_seq(),
  2362             body_summary->get_obj_copy_seq(),
  2363             body_summary->get_termination_seq()
  2364           };
  2365           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  2366                                         7, other_parts);
  2367           check_other_times(2, body_summary->get_parallel_other_seq(),
  2368                             &calc_other_times_ms);
  2370         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  2371         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  2372       } else {
  2373         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  2374         print_summary(1, "Ext Root Scanning",
  2375                       body_summary->get_ext_root_scan_seq());
  2376         print_summary(1, "Mark Stack Scanning",
  2377                       body_summary->get_mark_stack_scan_seq());
  2378         print_summary(1, "Scan-Only Scanning",
  2379                       body_summary->get_scan_only_seq());
  2380         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  2381         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  2384     print_summary(1, "Other", summary->get_other_seq());
  2386       NumberSeq calc_other_times_ms;
  2387       if (body_summary != NULL) {
  2388         // not abandoned
  2389         if (parallel) {
  2390           // parallel
  2391           NumberSeq* other_parts[] = {
  2392             body_summary->get_satb_drain_seq(),
  2393             body_summary->get_parallel_seq(),
  2394             body_summary->get_clear_ct_seq()
  2395           };
  2396           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2397                                           3, other_parts);
  2398         } else {
  2399           // serial
  2400           NumberSeq* other_parts[] = {
  2401             body_summary->get_satb_drain_seq(),
  2402             body_summary->get_update_rs_seq(),
  2403             body_summary->get_ext_root_scan_seq(),
  2404             body_summary->get_mark_stack_scan_seq(),
  2405             body_summary->get_scan_only_seq(),
  2406             body_summary->get_scan_rs_seq(),
  2407             body_summary->get_obj_copy_seq()
  2408           };
  2409           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2410                                           7, other_parts);
  2412       } else {
  2413         // abandoned
  2414         calc_other_times_ms = NumberSeq();
  2416       check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2418   } else {
  2419     print_indent(0);
  2420     gclog_or_tty->print_cr("none");
  2422   gclog_or_tty->print_cr("");
  2425 void
  2426 G1CollectorPolicy::print_abandoned_summary(PauseSummary* summary) const {
  2427   bool printed = false;
  2428   if (summary->get_total_seq()->num() > 0) {
  2429     printed = true;
  2430     print_summary(summary);
  2432   if (!printed) {
  2433     print_indent(0);
  2434     gclog_or_tty->print_cr("none");
  2435     gclog_or_tty->print_cr("");
  2439 void G1CollectorPolicy::print_tracing_info() const {
  2440   if (TraceGen0Time) {
  2441     gclog_or_tty->print_cr("ALL PAUSES");
  2442     print_summary_sd(0, "Total", _all_pause_times_ms);
  2443     gclog_or_tty->print_cr("");
  2444     gclog_or_tty->print_cr("");
  2445     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
  2446     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
  2447     gclog_or_tty->print_cr("");
  2449     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2450     print_summary(_summary);
  2452     gclog_or_tty->print_cr("ABANDONED PAUSES");
  2453     print_abandoned_summary(_abandoned_summary);
  2455     gclog_or_tty->print_cr("MISC");
  2456     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2457     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2458     for (int i = 0; i < _aux_num; ++i) {
  2459       if (_all_aux_times_ms[i].num() > 0) {
  2460         char buffer[96];
  2461         sprintf(buffer, "Aux%d", i);
  2462         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2466     size_t all_region_num = _region_num_young + _region_num_tenured;
  2467     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
  2468                "Tenured %8d (%6.2lf%%)",
  2469                all_region_num,
  2470                _region_num_young,
  2471                (double) _region_num_young / (double) all_region_num * 100.0,
  2472                _region_num_tenured,
  2473                (double) _region_num_tenured / (double) all_region_num * 100.0);
  2475   if (TraceGen1Time) {
  2476     if (_all_full_gc_times_ms->num() > 0) {
  2477       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2478                  _all_full_gc_times_ms->num(),
  2479                  _all_full_gc_times_ms->sum() / 1000.0);
  2480       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2481       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2482                     _all_full_gc_times_ms->sd(),
  2483                     _all_full_gc_times_ms->maximum());
  2488 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2489 #ifndef PRODUCT
  2490   _short_lived_surv_rate_group->print_surv_rate_summary();
  2491   // add this call for any other surv rate groups
  2492 #endif // PRODUCT
  2495 bool
  2496 G1CollectorPolicy::should_add_next_region_to_young_list() {
  2497   assert(in_young_gc_mode(), "should be in young GC mode");
  2498   bool ret;
  2499   size_t young_list_length = _g1->young_list_length();
  2500   size_t young_list_max_length = _young_list_target_length;
  2501   if (G1FixedEdenSize) {
  2502     young_list_max_length -= _max_survivor_regions;
  2504   if (young_list_length < young_list_max_length) {
  2505     ret = true;
  2506     ++_region_num_young;
  2507   } else {
  2508     ret = false;
  2509     ++_region_num_tenured;
  2512   return ret;
  2515 #ifndef PRODUCT
  2516 // for debugging, bit of a hack...
  2517 static char*
  2518 region_num_to_mbs(int length) {
  2519   static char buffer[64];
  2520   double bytes = (double) (length * HeapRegion::GrainBytes);
  2521   double mbs = bytes / (double) (1024 * 1024);
  2522   sprintf(buffer, "%7.2lfMB", mbs);
  2523   return buffer;
  2525 #endif // PRODUCT
  2527 size_t G1CollectorPolicy::max_regions(int purpose) {
  2528   switch (purpose) {
  2529     case GCAllocForSurvived:
  2530       return _max_survivor_regions;
  2531     case GCAllocForTenured:
  2532       return REGIONS_UNLIMITED;
  2533     default:
  2534       ShouldNotReachHere();
  2535       return REGIONS_UNLIMITED;
  2536   };
  2539 // Calculates survivor space parameters.
  2540 void G1CollectorPolicy::calculate_survivors_policy()
  2542   if (!G1UseSurvivorSpaces) {
  2543     return;
  2545   if (G1FixedSurvivorSpaceSize == 0) {
  2546     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
  2547   } else {
  2548     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
  2551   if (G1FixedTenuringThreshold) {
  2552     _tenuring_threshold = MaxTenuringThreshold;
  2553   } else {
  2554     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2555         HeapRegion::GrainWords * _max_survivor_regions);
  2559 bool
  2560 G1CollectorPolicy_BestRegionsFirst::should_do_collection_pause(size_t
  2561                                                                word_size) {
  2562   assert(_g1->regions_accounted_for(), "Region leakage!");
  2563   // Initiate a pause when we reach the steady-state "used" target.
  2564   size_t used_hard = (_g1->capacity() / 100) * G1SteadyStateUsed;
  2565   size_t used_soft =
  2566    MAX2((_g1->capacity() / 100) * (G1SteadyStateUsed - G1SteadyStateUsedDelta),
  2567         used_hard/2);
  2568   size_t used = _g1->used();
  2570   double max_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  2572   size_t young_list_length = _g1->young_list_length();
  2573   size_t young_list_max_length = _young_list_target_length;
  2574   if (G1FixedEdenSize) {
  2575     young_list_max_length -= _max_survivor_regions;
  2577   bool reached_target_length = young_list_length >= young_list_max_length;
  2579   if (in_young_gc_mode()) {
  2580     if (reached_target_length) {
  2581       assert( young_list_length > 0 && _g1->young_list_length() > 0,
  2582               "invariant" );
  2583       _target_pause_time_ms = max_pause_time_ms;
  2584       return true;
  2586   } else {
  2587     guarantee( false, "should not reach here" );
  2590   return false;
  2593 #ifndef PRODUCT
  2594 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2595   CollectionSetChooser* _chooser;
  2596 public:
  2597   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2598     _chooser(chooser) {}
  2600   bool doHeapRegion(HeapRegion* r) {
  2601     if (!r->continuesHumongous()) {
  2602       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2604     return false;
  2606 };
  2608 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
  2609   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2610   _g1->heap_region_iterate(&cl);
  2611   return true;
  2613 #endif
  2615 void
  2616 G1CollectorPolicy_BestRegionsFirst::
  2617 record_collection_pause_start(double start_time_sec, size_t start_used) {
  2618   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
  2621 class NextNonCSElemFinder: public HeapRegionClosure {
  2622   HeapRegion* _res;
  2623 public:
  2624   NextNonCSElemFinder(): _res(NULL) {}
  2625   bool doHeapRegion(HeapRegion* r) {
  2626     if (!r->in_collection_set()) {
  2627       _res = r;
  2628       return true;
  2629     } else {
  2630       return false;
  2633   HeapRegion* res() { return _res; }
  2634 };
  2636 class KnownGarbageClosure: public HeapRegionClosure {
  2637   CollectionSetChooser* _hrSorted;
  2639 public:
  2640   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2641     _hrSorted(hrSorted)
  2642   {}
  2644   bool doHeapRegion(HeapRegion* r) {
  2645     // We only include humongous regions in collection
  2646     // sets when concurrent mark shows that their contained object is
  2647     // unreachable.
  2649     // Do we have any marking information for this region?
  2650     if (r->is_marked()) {
  2651       // We don't include humongous regions in collection
  2652       // sets because we collect them immediately at the end of a marking
  2653       // cycle.  We also don't include young regions because we *must*
  2654       // include them in the next collection pause.
  2655       if (!r->isHumongous() && !r->is_young()) {
  2656         _hrSorted->addMarkedHeapRegion(r);
  2659     return false;
  2661 };
  2663 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2664   CollectionSetChooser* _hrSorted;
  2665   jint _marked_regions_added;
  2666   jint _chunk_size;
  2667   jint _cur_chunk_idx;
  2668   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2669   int _worker;
  2670   int _invokes;
  2672   void get_new_chunk() {
  2673     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2674     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2676   void add_region(HeapRegion* r) {
  2677     if (_cur_chunk_idx == _cur_chunk_end) {
  2678       get_new_chunk();
  2680     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2681     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2682     _marked_regions_added++;
  2683     _cur_chunk_idx++;
  2686 public:
  2687   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2688                            jint chunk_size,
  2689                            int worker) :
  2690     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2691     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2692     _invokes(0)
  2693   {}
  2695   bool doHeapRegion(HeapRegion* r) {
  2696     // We only include humongous regions in collection
  2697     // sets when concurrent mark shows that their contained object is
  2698     // unreachable.
  2699     _invokes++;
  2701     // Do we have any marking information for this region?
  2702     if (r->is_marked()) {
  2703       // We don't include humongous regions in collection
  2704       // sets because we collect them immediately at the end of a marking
  2705       // cycle.
  2706       // We also do not include young regions in collection sets
  2707       if (!r->isHumongous() && !r->is_young()) {
  2708         add_region(r);
  2711     return false;
  2713   jint marked_regions_added() { return _marked_regions_added; }
  2714   int invokes() { return _invokes; }
  2715 };
  2717 class ParKnownGarbageTask: public AbstractGangTask {
  2718   CollectionSetChooser* _hrSorted;
  2719   jint _chunk_size;
  2720   G1CollectedHeap* _g1;
  2721 public:
  2722   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2723     AbstractGangTask("ParKnownGarbageTask"),
  2724     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2725     _g1(G1CollectedHeap::heap())
  2726   {}
  2728   void work(int i) {
  2729     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
  2730     // Back to zero for the claim value.
  2731     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
  2732                                          HeapRegion::InitialClaimValue);
  2733     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2734     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2735     if (G1PrintParCleanupStats) {
  2736       gclog_or_tty->print("     Thread %d called %d times, added %d regions to list.\n",
  2737                  i, parKnownGarbageCl.invokes(), regions_added);
  2740 };
  2742 void
  2743 G1CollectorPolicy_BestRegionsFirst::
  2744 record_concurrent_mark_cleanup_end(size_t freed_bytes,
  2745                                    size_t max_live_bytes) {
  2746   double start;
  2747   if (G1PrintParCleanupStats) start = os::elapsedTime();
  2748   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
  2750   _collectionSetChooser->clearMarkedHeapRegions();
  2751   double clear_marked_end;
  2752   if (G1PrintParCleanupStats) {
  2753     clear_marked_end = os::elapsedTime();
  2754     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
  2755                   (clear_marked_end - start)*1000.0);
  2757   if (ParallelGCThreads > 0) {
  2758     const size_t OverpartitionFactor = 4;
  2759     const size_t MinChunkSize = 8;
  2760     const size_t ChunkSize =
  2761       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2762            MinChunkSize);
  2763     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2764                                                              ChunkSize);
  2765     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2766                                             (int) ChunkSize);
  2767     _g1->workers()->run_task(&parKnownGarbageTask);
  2769     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2770            "sanity check");
  2771   } else {
  2772     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2773     _g1->heap_region_iterate(&knownGarbagecl);
  2775   double known_garbage_end;
  2776   if (G1PrintParCleanupStats) {
  2777     known_garbage_end = os::elapsedTime();
  2778     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2779                   (known_garbage_end - clear_marked_end)*1000.0);
  2781   _collectionSetChooser->sortMarkedHeapRegions();
  2782   double sort_end;
  2783   if (G1PrintParCleanupStats) {
  2784     sort_end = os::elapsedTime();
  2785     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2786                   (sort_end - known_garbage_end)*1000.0);
  2789   record_concurrent_mark_cleanup_end_work2();
  2790   double work2_end;
  2791   if (G1PrintParCleanupStats) {
  2792     work2_end = os::elapsedTime();
  2793     gclog_or_tty->print_cr("  work2: %8.3f ms.",
  2794                   (work2_end - sort_end)*1000.0);
  2798 // Add the heap region to the collection set and return the conservative
  2799 // estimate of the number of live bytes.
  2800 void G1CollectorPolicy::
  2801 add_to_collection_set(HeapRegion* hr) {
  2802   if (G1PrintRegions) {
  2803     gclog_or_tty->print_cr("added region to cset %d:["PTR_FORMAT", "PTR_FORMAT"], "
  2804                   "top "PTR_FORMAT", young %s",
  2805                   hr->hrs_index(), hr->bottom(), hr->end(),
  2806                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2809   if (_g1->mark_in_progress())
  2810     _g1->concurrent_mark()->registerCSetRegion(hr);
  2812   assert(!hr->in_collection_set(),
  2813               "should not already be in the CSet");
  2814   hr->set_in_collection_set(true);
  2815   hr->set_next_in_collection_set(_collection_set);
  2816   _collection_set = hr;
  2817   _collection_set_size++;
  2818   _collection_set_bytes_used_before += hr->used();
  2819   _g1->register_region_with_in_cset_fast_test(hr);
  2822 void
  2823 G1CollectorPolicy_BestRegionsFirst::
  2824 choose_collection_set() {
  2825   double non_young_start_time_sec;
  2826   start_recording_regions();
  2828   guarantee(_target_pause_time_ms > -1.0,
  2829             "_target_pause_time_ms should have been set!");
  2830   assert(_collection_set == NULL, "Precondition");
  2832   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2833   double predicted_pause_time_ms = base_time_ms;
  2835   double target_time_ms = _target_pause_time_ms;
  2836   double time_remaining_ms = target_time_ms - base_time_ms;
  2838   // the 10% and 50% values are arbitrary...
  2839   if (time_remaining_ms < 0.10*target_time_ms) {
  2840     time_remaining_ms = 0.50 * target_time_ms;
  2841     _within_target = false;
  2842   } else {
  2843     _within_target = true;
  2846   // We figure out the number of bytes available for future to-space.
  2847   // For new regions without marking information, we must assume the
  2848   // worst-case of complete survival.  If we have marking information for a
  2849   // region, we can bound the amount of live data.  We can add a number of
  2850   // such regions, as long as the sum of the live data bounds does not
  2851   // exceed the available evacuation space.
  2852   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
  2854   size_t expansion_bytes =
  2855     _g1->expansion_regions() * HeapRegion::GrainBytes;
  2857   _collection_set_bytes_used_before = 0;
  2858   _collection_set_size = 0;
  2860   // Adjust for expansion and slop.
  2861   max_live_bytes = max_live_bytes + expansion_bytes;
  2863   assert(_g1->regions_accounted_for(), "Region leakage!");
  2865   HeapRegion* hr;
  2866   if (in_young_gc_mode()) {
  2867     double young_start_time_sec = os::elapsedTime();
  2869     if (G1PolicyVerbose > 0) {
  2870       gclog_or_tty->print_cr("Adding %d young regions to the CSet",
  2871                     _g1->young_list_length());
  2873     _young_cset_length  = 0;
  2874     _last_young_gc_full = full_young_gcs() ? true : false;
  2875     if (_last_young_gc_full)
  2876       ++_full_young_pause_num;
  2877     else
  2878       ++_partial_young_pause_num;
  2879     hr = _g1->pop_region_from_young_list();
  2880     while (hr != NULL) {
  2882       assert( hr->young_index_in_cset() == -1, "invariant" );
  2883       assert( hr->age_in_surv_rate_group() != -1, "invariant" );
  2884       hr->set_young_index_in_cset((int) _young_cset_length);
  2886       ++_young_cset_length;
  2887       double predicted_time_ms = predict_region_elapsed_time_ms(hr, true);
  2888       time_remaining_ms -= predicted_time_ms;
  2889       predicted_pause_time_ms += predicted_time_ms;
  2890       assert(!hr->in_collection_set(), "invariant");
  2891       add_to_collection_set(hr);
  2892       record_cset_region(hr, true);
  2893       max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
  2894       if (G1PolicyVerbose > 0) {
  2895         gclog_or_tty->print_cr("  Added [" PTR_FORMAT ", " PTR_FORMAT") to CS.",
  2896                       hr->bottom(), hr->end());
  2897         gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2898                       max_live_bytes/K);
  2900       hr = _g1->pop_region_from_young_list();
  2903     record_scan_only_regions(_g1->young_list_scan_only_length());
  2905     double young_end_time_sec = os::elapsedTime();
  2906     _recorded_young_cset_choice_time_ms =
  2907       (young_end_time_sec - young_start_time_sec) * 1000.0;
  2909     non_young_start_time_sec = os::elapsedTime();
  2911     if (_young_cset_length > 0 && _last_young_gc_full) {
  2912       // don't bother adding more regions...
  2913       goto choose_collection_set_end;
  2917   if (!in_young_gc_mode() || !full_young_gcs()) {
  2918     bool should_continue = true;
  2919     NumberSeq seq;
  2920     double avg_prediction = 100000000000000000.0; // something very large
  2921     do {
  2922       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  2923                                                       avg_prediction);
  2924       if (hr != NULL) {
  2925         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2926         time_remaining_ms -= predicted_time_ms;
  2927         predicted_pause_time_ms += predicted_time_ms;
  2928         add_to_collection_set(hr);
  2929         record_cset_region(hr, false);
  2930         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
  2931         if (G1PolicyVerbose > 0) {
  2932           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2933                         max_live_bytes/K);
  2935         seq.add(predicted_time_ms);
  2936         avg_prediction = seq.avg() + seq.sd();
  2938       should_continue =
  2939         ( hr != NULL) &&
  2940         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
  2941           : _collection_set_size < _young_list_fixed_length );
  2942     } while (should_continue);
  2944     if (!adaptive_young_list_length() &&
  2945         _collection_set_size < _young_list_fixed_length)
  2946       _should_revert_to_full_young_gcs  = true;
  2949 choose_collection_set_end:
  2950   count_CS_bytes_used();
  2952   end_recording_regions();
  2954   double non_young_end_time_sec = os::elapsedTime();
  2955   _recorded_non_young_cset_choice_time_ms =
  2956     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
  2959 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
  2960   G1CollectorPolicy::record_full_collection_end();
  2961   _collectionSetChooser->updateAfterFullCollection();
  2964 void G1CollectorPolicy_BestRegionsFirst::
  2965 expand_if_possible(size_t numRegions) {
  2966   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
  2967   _g1->expand(expansion_bytes);
  2970 void G1CollectorPolicy_BestRegionsFirst::
  2971 record_collection_pause_end(bool abandoned) {
  2972   G1CollectorPolicy::record_collection_pause_end(abandoned);
  2973   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
  2976 // Local Variables: ***
  2977 // c-indentation-style: gnu ***
  2978 // End: ***

mercurial