src/share/vm/opto/library_call.cpp

Tue, 01 Mar 2016 12:50:37 +0530

author
csahu
date
Tue, 01 Mar 2016 12:50:37 +0530
changeset 8316
626f594dffa6
parent 8307
daaf806995b3
child 8318
ea7ac121a5d3
permissions
-rw-r--r--

8139040: Fix initializations before ShouldNotReachHere() etc. and enable -Wuninitialized on linux.
Reviewed-by: stuefe, coleenp, roland

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/connode.hpp"
    35 #include "opto/idealKit.hpp"
    36 #include "opto/mathexactnode.hpp"
    37 #include "opto/mulnode.hpp"
    38 #include "opto/parse.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "opto/subnode.hpp"
    41 #include "prims/nativeLookup.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "trace/traceMacros.hpp"
    45 class LibraryIntrinsic : public InlineCallGenerator {
    46   // Extend the set of intrinsics known to the runtime:
    47  public:
    48  private:
    49   bool             _is_virtual;
    50   bool             _does_virtual_dispatch;
    51   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
    52   int8_t           _last_predicate; // Last generated predicate
    53   vmIntrinsics::ID _intrinsic_id;
    55  public:
    56   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
    57     : InlineCallGenerator(m),
    58       _is_virtual(is_virtual),
    59       _does_virtual_dispatch(does_virtual_dispatch),
    60       _predicates_count((int8_t)predicates_count),
    61       _last_predicate((int8_t)-1),
    62       _intrinsic_id(id)
    63   {
    64   }
    65   virtual bool is_intrinsic() const { return true; }
    66   virtual bool is_virtual()   const { return _is_virtual; }
    67   virtual bool is_predicated() const { return _predicates_count > 0; }
    68   virtual int  predicates_count() const { return _predicates_count; }
    69   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    70   virtual JVMState* generate(JVMState* jvms);
    71   virtual Node* generate_predicate(JVMState* jvms, int predicate);
    72   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    73 };
    76 // Local helper class for LibraryIntrinsic:
    77 class LibraryCallKit : public GraphKit {
    78  private:
    79   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    80   Node*             _result;        // the result node, if any
    81   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    83   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    85  public:
    86   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    87     : GraphKit(jvms),
    88       _intrinsic(intrinsic),
    89       _result(NULL)
    90   {
    91     // Check if this is a root compile.  In that case we don't have a caller.
    92     if (!jvms->has_method()) {
    93       _reexecute_sp = sp();
    94     } else {
    95       // Find out how many arguments the interpreter needs when deoptimizing
    96       // and save the stack pointer value so it can used by uncommon_trap.
    97       // We find the argument count by looking at the declared signature.
    98       bool ignored_will_link;
    99       ciSignature* declared_signature = NULL;
   100       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
   101       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
   102       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
   103     }
   104   }
   106   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   108   ciMethod*         caller()    const    { return jvms()->method(); }
   109   int               bci()       const    { return jvms()->bci(); }
   110   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   111   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   112   ciMethod*         callee()    const    { return _intrinsic->method(); }
   114   bool  try_to_inline(int predicate);
   115   Node* try_to_predicate(int predicate);
   117   void push_result() {
   118     // Push the result onto the stack.
   119     if (!stopped() && result() != NULL) {
   120       BasicType bt = result()->bottom_type()->basic_type();
   121       push_node(bt, result());
   122     }
   123   }
   125  private:
   126   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   127     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   128   }
   130   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   131   void  set_result(RegionNode* region, PhiNode* value);
   132   Node*     result() { return _result; }
   134   virtual int reexecute_sp() { return _reexecute_sp; }
   136   // Helper functions to inline natives
   137   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   138   Node* generate_slow_guard(Node* test, RegionNode* region);
   139   Node* generate_fair_guard(Node* test, RegionNode* region);
   140   Node* generate_negative_guard(Node* index, RegionNode* region,
   141                                 // resulting CastII of index:
   142                                 Node* *pos_index = NULL);
   143   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   144                                    // resulting CastII of index:
   145                                    Node* *pos_index = NULL);
   146   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   147                              Node* array_length,
   148                              RegionNode* region);
   149   Node* generate_current_thread(Node* &tls_output);
   150   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   151                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   152   Node* load_mirror_from_klass(Node* klass);
   153   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   154                                       RegionNode* region, int null_path,
   155                                       int offset);
   156   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   157                                RegionNode* region, int null_path) {
   158     int offset = java_lang_Class::klass_offset_in_bytes();
   159     return load_klass_from_mirror_common(mirror, never_see_null,
   160                                          region, null_path,
   161                                          offset);
   162   }
   163   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   164                                      RegionNode* region, int null_path) {
   165     int offset = java_lang_Class::array_klass_offset_in_bytes();
   166     return load_klass_from_mirror_common(mirror, never_see_null,
   167                                          region, null_path,
   168                                          offset);
   169   }
   170   Node* generate_access_flags_guard(Node* kls,
   171                                     int modifier_mask, int modifier_bits,
   172                                     RegionNode* region);
   173   Node* generate_interface_guard(Node* kls, RegionNode* region);
   174   Node* generate_array_guard(Node* kls, RegionNode* region) {
   175     return generate_array_guard_common(kls, region, false, false);
   176   }
   177   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   178     return generate_array_guard_common(kls, region, false, true);
   179   }
   180   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   181     return generate_array_guard_common(kls, region, true, false);
   182   }
   183   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   184     return generate_array_guard_common(kls, region, true, true);
   185   }
   186   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   187                                     bool obj_array, bool not_array);
   188   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   189   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   190                                      bool is_virtual = false, bool is_static = false);
   191   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   192     return generate_method_call(method_id, false, true);
   193   }
   194   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   195     return generate_method_call(method_id, true, false);
   196   }
   197   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   199   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   200   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   201   bool inline_string_compareTo();
   202   bool inline_string_indexOf();
   203   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   204   bool inline_string_equals();
   205   Node* round_double_node(Node* n);
   206   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   207   bool inline_math_native(vmIntrinsics::ID id);
   208   bool inline_trig(vmIntrinsics::ID id);
   209   bool inline_math(vmIntrinsics::ID id);
   210   template <typename OverflowOp>
   211   bool inline_math_overflow(Node* arg1, Node* arg2);
   212   void inline_math_mathExact(Node* math, Node* test);
   213   bool inline_math_addExactI(bool is_increment);
   214   bool inline_math_addExactL(bool is_increment);
   215   bool inline_math_multiplyExactI();
   216   bool inline_math_multiplyExactL();
   217   bool inline_math_negateExactI();
   218   bool inline_math_negateExactL();
   219   bool inline_math_subtractExactI(bool is_decrement);
   220   bool inline_math_subtractExactL(bool is_decrement);
   221   bool inline_exp();
   222   bool inline_pow();
   223   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   224   bool inline_min_max(vmIntrinsics::ID id);
   225   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   226   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   227   int classify_unsafe_addr(Node* &base, Node* &offset);
   228   Node* make_unsafe_address(Node* base, Node* offset);
   229   // Helper for inline_unsafe_access.
   230   // Generates the guards that check whether the result of
   231   // Unsafe.getObject should be recorded in an SATB log buffer.
   232   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   233   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   234   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   235   static bool klass_needs_init_guard(Node* kls);
   236   bool inline_unsafe_allocate();
   237   bool inline_unsafe_copyMemory();
   238   bool inline_native_currentThread();
   239 #ifdef TRACE_HAVE_INTRINSICS
   240   bool inline_native_classID();
   241   bool inline_native_threadID();
   242 #endif
   243   bool inline_native_time_funcs(address method, const char* funcName);
   244   bool inline_native_isInterrupted();
   245   bool inline_native_Class_query(vmIntrinsics::ID id);
   246   bool inline_native_subtype_check();
   248   bool inline_native_newArray();
   249   bool inline_native_getLength();
   250   bool inline_array_copyOf(bool is_copyOfRange);
   251   bool inline_array_equals();
   252   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   253   bool inline_native_clone(bool is_virtual);
   254   bool inline_native_Reflection_getCallerClass();
   255   // Helper function for inlining native object hash method
   256   bool inline_native_hashcode(bool is_virtual, bool is_static);
   257   bool inline_native_getClass();
   259   // Helper functions for inlining arraycopy
   260   bool inline_arraycopy();
   261   void generate_arraycopy(const TypePtr* adr_type,
   262                           BasicType basic_elem_type,
   263                           Node* src,  Node* src_offset,
   264                           Node* dest, Node* dest_offset,
   265                           Node* copy_length,
   266                           bool disjoint_bases = false,
   267                           bool length_never_negative = false,
   268                           RegionNode* slow_region = NULL);
   269   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   270                                                 RegionNode* slow_region);
   271   void generate_clear_array(const TypePtr* adr_type,
   272                             Node* dest,
   273                             BasicType basic_elem_type,
   274                             Node* slice_off,
   275                             Node* slice_len,
   276                             Node* slice_end);
   277   bool generate_block_arraycopy(const TypePtr* adr_type,
   278                                 BasicType basic_elem_type,
   279                                 AllocateNode* alloc,
   280                                 Node* src,  Node* src_offset,
   281                                 Node* dest, Node* dest_offset,
   282                                 Node* dest_size, bool dest_uninitialized);
   283   void generate_slow_arraycopy(const TypePtr* adr_type,
   284                                Node* src,  Node* src_offset,
   285                                Node* dest, Node* dest_offset,
   286                                Node* copy_length, bool dest_uninitialized);
   287   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   288                                      Node* dest_elem_klass,
   289                                      Node* src,  Node* src_offset,
   290                                      Node* dest, Node* dest_offset,
   291                                      Node* copy_length, bool dest_uninitialized);
   292   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   293                                    Node* src,  Node* src_offset,
   294                                    Node* dest, Node* dest_offset,
   295                                    Node* copy_length, bool dest_uninitialized);
   296   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   297                                     BasicType basic_elem_type,
   298                                     bool disjoint_bases,
   299                                     Node* src,  Node* src_offset,
   300                                     Node* dest, Node* dest_offset,
   301                                     Node* copy_length, bool dest_uninitialized);
   302   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   303   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   304   bool inline_unsafe_ordered_store(BasicType type);
   305   bool inline_unsafe_fence(vmIntrinsics::ID id);
   306   bool inline_fp_conversions(vmIntrinsics::ID id);
   307   bool inline_number_methods(vmIntrinsics::ID id);
   308   bool inline_reference_get();
   309   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   310   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   311   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   312   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   313   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   314   bool inline_sha_implCompress(vmIntrinsics::ID id);
   315   bool inline_digestBase_implCompressMB(int predicate);
   316   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
   317                                  bool long_state, address stubAddr, const char *stubName,
   318                                  Node* src_start, Node* ofs, Node* limit);
   319   Node* get_state_from_sha_object(Node *sha_object);
   320   Node* get_state_from_sha5_object(Node *sha_object);
   321   Node* inline_digestBase_implCompressMB_predicate(int predicate);
   322   bool inline_encodeISOArray();
   323   bool inline_updateCRC32();
   324   bool inline_updateBytesCRC32();
   325   bool inline_updateByteBufferCRC32();
   326   bool inline_multiplyToLen();
   327   bool inline_squareToLen();
   328   bool inline_mulAdd();
   330   bool inline_profileBoolean();
   331 };
   334 //---------------------------make_vm_intrinsic----------------------------
   335 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   336   vmIntrinsics::ID id = m->intrinsic_id();
   337   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   339   ccstr disable_intr = NULL;
   341   if ((DisableIntrinsic[0] != '\0'
   342        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
   343       (method_has_option_value("DisableIntrinsic", disable_intr)
   344        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
   345     // disabled by a user request on the command line:
   346     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   347     return NULL;
   348   }
   350   if (!m->is_loaded()) {
   351     // do not attempt to inline unloaded methods
   352     return NULL;
   353   }
   355   // Only a few intrinsics implement a virtual dispatch.
   356   // They are expensive calls which are also frequently overridden.
   357   if (is_virtual) {
   358     switch (id) {
   359     case vmIntrinsics::_hashCode:
   360     case vmIntrinsics::_clone:
   361       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   362       break;
   363     default:
   364       return NULL;
   365     }
   366   }
   368   // -XX:-InlineNatives disables nearly all intrinsics:
   369   if (!InlineNatives) {
   370     switch (id) {
   371     case vmIntrinsics::_indexOf:
   372     case vmIntrinsics::_compareTo:
   373     case vmIntrinsics::_equals:
   374     case vmIntrinsics::_equalsC:
   375     case vmIntrinsics::_getAndAddInt:
   376     case vmIntrinsics::_getAndAddLong:
   377     case vmIntrinsics::_getAndSetInt:
   378     case vmIntrinsics::_getAndSetLong:
   379     case vmIntrinsics::_getAndSetObject:
   380     case vmIntrinsics::_loadFence:
   381     case vmIntrinsics::_storeFence:
   382     case vmIntrinsics::_fullFence:
   383       break;  // InlineNatives does not control String.compareTo
   384     case vmIntrinsics::_Reference_get:
   385       break;  // InlineNatives does not control Reference.get
   386     default:
   387       return NULL;
   388     }
   389   }
   391   int predicates = 0;
   392   bool does_virtual_dispatch = false;
   394   switch (id) {
   395   case vmIntrinsics::_compareTo:
   396     if (!SpecialStringCompareTo)  return NULL;
   397     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   398     break;
   399   case vmIntrinsics::_indexOf:
   400     if (!SpecialStringIndexOf)  return NULL;
   401     break;
   402   case vmIntrinsics::_equals:
   403     if (!SpecialStringEquals)  return NULL;
   404     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   405     break;
   406   case vmIntrinsics::_equalsC:
   407     if (!SpecialArraysEquals)  return NULL;
   408     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   409     break;
   410   case vmIntrinsics::_arraycopy:
   411     if (!InlineArrayCopy)  return NULL;
   412     break;
   413   case vmIntrinsics::_copyMemory:
   414     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   415     if (!InlineArrayCopy)  return NULL;
   416     break;
   417   case vmIntrinsics::_hashCode:
   418     if (!InlineObjectHash)  return NULL;
   419     does_virtual_dispatch = true;
   420     break;
   421   case vmIntrinsics::_clone:
   422     does_virtual_dispatch = true;
   423   case vmIntrinsics::_copyOf:
   424   case vmIntrinsics::_copyOfRange:
   425     if (!InlineObjectCopy)  return NULL;
   426     // These also use the arraycopy intrinsic mechanism:
   427     if (!InlineArrayCopy)  return NULL;
   428     break;
   429   case vmIntrinsics::_encodeISOArray:
   430     if (!SpecialEncodeISOArray)  return NULL;
   431     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   432     break;
   433   case vmIntrinsics::_checkIndex:
   434     // We do not intrinsify this.  The optimizer does fine with it.
   435     return NULL;
   437   case vmIntrinsics::_getCallerClass:
   438     if (!UseNewReflection)  return NULL;
   439     if (!InlineReflectionGetCallerClass)  return NULL;
   440     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   441     break;
   443   case vmIntrinsics::_bitCount_i:
   444     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   445     break;
   447   case vmIntrinsics::_bitCount_l:
   448     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   449     break;
   451   case vmIntrinsics::_numberOfLeadingZeros_i:
   452     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   453     break;
   455   case vmIntrinsics::_numberOfLeadingZeros_l:
   456     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   457     break;
   459   case vmIntrinsics::_numberOfTrailingZeros_i:
   460     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   461     break;
   463   case vmIntrinsics::_numberOfTrailingZeros_l:
   464     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   465     break;
   467   case vmIntrinsics::_reverseBytes_c:
   468     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   469     break;
   470   case vmIntrinsics::_reverseBytes_s:
   471     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   472     break;
   473   case vmIntrinsics::_reverseBytes_i:
   474     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   475     break;
   476   case vmIntrinsics::_reverseBytes_l:
   477     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   478     break;
   480   case vmIntrinsics::_Reference_get:
   481     // Use the intrinsic version of Reference.get() so that the value in
   482     // the referent field can be registered by the G1 pre-barrier code.
   483     // Also add memory barrier to prevent commoning reads from this field
   484     // across safepoint since GC can change it value.
   485     break;
   487   case vmIntrinsics::_compareAndSwapObject:
   488 #ifdef _LP64
   489     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   490 #endif
   491     break;
   493   case vmIntrinsics::_compareAndSwapLong:
   494     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   495     break;
   497   case vmIntrinsics::_getAndAddInt:
   498     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   499     break;
   501   case vmIntrinsics::_getAndAddLong:
   502     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   503     break;
   505   case vmIntrinsics::_getAndSetInt:
   506     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   507     break;
   509   case vmIntrinsics::_getAndSetLong:
   510     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   511     break;
   513   case vmIntrinsics::_getAndSetObject:
   514 #ifdef _LP64
   515     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   516     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   517     break;
   518 #else
   519     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   520     break;
   521 #endif
   523   case vmIntrinsics::_aescrypt_encryptBlock:
   524   case vmIntrinsics::_aescrypt_decryptBlock:
   525     if (!UseAESIntrinsics) return NULL;
   526     break;
   528   case vmIntrinsics::_multiplyToLen:
   529     if (!UseMultiplyToLenIntrinsic) return NULL;
   530     break;
   532   case vmIntrinsics::_squareToLen:
   533     if (!UseSquareToLenIntrinsic) return NULL;
   534     break;
   536   case vmIntrinsics::_mulAdd:
   537     if (!UseMulAddIntrinsic) return NULL;
   538     break;
   540   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   541   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   542     if (!UseAESIntrinsics) return NULL;
   543     // these two require the predicated logic
   544     predicates = 1;
   545     break;
   547   case vmIntrinsics::_sha_implCompress:
   548     if (!UseSHA1Intrinsics) return NULL;
   549     break;
   551   case vmIntrinsics::_sha2_implCompress:
   552     if (!UseSHA256Intrinsics) return NULL;
   553     break;
   555   case vmIntrinsics::_sha5_implCompress:
   556     if (!UseSHA512Intrinsics) return NULL;
   557     break;
   559   case vmIntrinsics::_digestBase_implCompressMB:
   560     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
   561     predicates = 3;
   562     break;
   564   case vmIntrinsics::_updateCRC32:
   565   case vmIntrinsics::_updateBytesCRC32:
   566   case vmIntrinsics::_updateByteBufferCRC32:
   567     if (!UseCRC32Intrinsics) return NULL;
   568     break;
   570   case vmIntrinsics::_incrementExactI:
   571   case vmIntrinsics::_addExactI:
   572     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
   573     break;
   574   case vmIntrinsics::_incrementExactL:
   575   case vmIntrinsics::_addExactL:
   576     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
   577     break;
   578   case vmIntrinsics::_decrementExactI:
   579   case vmIntrinsics::_subtractExactI:
   580     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   581     break;
   582   case vmIntrinsics::_decrementExactL:
   583   case vmIntrinsics::_subtractExactL:
   584     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   585     break;
   586   case vmIntrinsics::_negateExactI:
   587     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   588     break;
   589   case vmIntrinsics::_negateExactL:
   590     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   591     break;
   592   case vmIntrinsics::_multiplyExactI:
   593     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
   594     break;
   595   case vmIntrinsics::_multiplyExactL:
   596     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
   597     break;
   599  default:
   600     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   601     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   602     break;
   603   }
   605   // -XX:-InlineClassNatives disables natives from the Class class.
   606   // The flag applies to all reflective calls, notably Array.newArray
   607   // (visible to Java programmers as Array.newInstance).
   608   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   609       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   610     if (!InlineClassNatives)  return NULL;
   611   }
   613   // -XX:-InlineThreadNatives disables natives from the Thread class.
   614   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   615     if (!InlineThreadNatives)  return NULL;
   616   }
   618   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   619   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   620       m->holder()->name() == ciSymbol::java_lang_Float() ||
   621       m->holder()->name() == ciSymbol::java_lang_Double()) {
   622     if (!InlineMathNatives)  return NULL;
   623   }
   625   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   626   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   627     if (!InlineUnsafeOps)  return NULL;
   628   }
   630   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
   631 }
   633 //----------------------register_library_intrinsics-----------------------
   634 // Initialize this file's data structures, for each Compile instance.
   635 void Compile::register_library_intrinsics() {
   636   // Nothing to do here.
   637 }
   639 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   640   LibraryCallKit kit(jvms, this);
   641   Compile* C = kit.C;
   642   int nodes = C->unique();
   643 #ifndef PRODUCT
   644   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   645     char buf[1000];
   646     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   647     tty->print_cr("Intrinsic %s", str);
   648   }
   649 #endif
   650   ciMethod* callee = kit.callee();
   651   const int bci    = kit.bci();
   653   // Try to inline the intrinsic.
   654   if (kit.try_to_inline(_last_predicate)) {
   655     if (C->print_intrinsics() || C->print_inlining()) {
   656       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   657     }
   658     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   659     if (C->log()) {
   660       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   661                      vmIntrinsics::name_at(intrinsic_id()),
   662                      (is_virtual() ? " virtual='1'" : ""),
   663                      C->unique() - nodes);
   664     }
   665     // Push the result from the inlined method onto the stack.
   666     kit.push_result();
   667     return kit.transfer_exceptions_into_jvms();
   668   }
   670   // The intrinsic bailed out
   671   if (C->print_intrinsics() || C->print_inlining()) {
   672     if (jvms->has_method()) {
   673       // Not a root compile.
   674       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   675       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   676     } else {
   677       // Root compile
   678       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   679                vmIntrinsics::name_at(intrinsic_id()),
   680                (is_virtual() ? " (virtual)" : ""), bci);
   681     }
   682   }
   683   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   684   return NULL;
   685 }
   687 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
   688   LibraryCallKit kit(jvms, this);
   689   Compile* C = kit.C;
   690   int nodes = C->unique();
   691   _last_predicate = predicate;
   692 #ifndef PRODUCT
   693   assert(is_predicated() && predicate < predicates_count(), "sanity");
   694   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   695     char buf[1000];
   696     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   697     tty->print_cr("Predicate for intrinsic %s", str);
   698   }
   699 #endif
   700   ciMethod* callee = kit.callee();
   701   const int bci    = kit.bci();
   703   Node* slow_ctl = kit.try_to_predicate(predicate);
   704   if (!kit.failing()) {
   705     if (C->print_intrinsics() || C->print_inlining()) {
   706       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
   707     }
   708     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   709     if (C->log()) {
   710       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   711                      vmIntrinsics::name_at(intrinsic_id()),
   712                      (is_virtual() ? " virtual='1'" : ""),
   713                      C->unique() - nodes);
   714     }
   715     return slow_ctl; // Could be NULL if the check folds.
   716   }
   718   // The intrinsic bailed out
   719   if (C->print_intrinsics() || C->print_inlining()) {
   720     if (jvms->has_method()) {
   721       // Not a root compile.
   722       const char* msg = "failed to generate predicate for intrinsic";
   723       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   724     } else {
   725       // Root compile
   726       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   727                                         vmIntrinsics::name_at(intrinsic_id()),
   728                                         (is_virtual() ? " (virtual)" : ""), bci);
   729     }
   730   }
   731   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   732   return NULL;
   733 }
   735 bool LibraryCallKit::try_to_inline(int predicate) {
   736   // Handle symbolic names for otherwise undistinguished boolean switches:
   737   const bool is_store       = true;
   738   const bool is_native_ptr  = true;
   739   const bool is_static      = true;
   740   const bool is_volatile    = true;
   742   if (!jvms()->has_method()) {
   743     // Root JVMState has a null method.
   744     assert(map()->memory()->Opcode() == Op_Parm, "");
   745     // Insert the memory aliasing node
   746     set_all_memory(reset_memory());
   747   }
   748   assert(merged_memory(), "");
   751   switch (intrinsic_id()) {
   752   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   753   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   754   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   756   case vmIntrinsics::_dsin:
   757   case vmIntrinsics::_dcos:
   758   case vmIntrinsics::_dtan:
   759   case vmIntrinsics::_dabs:
   760   case vmIntrinsics::_datan2:
   761   case vmIntrinsics::_dsqrt:
   762   case vmIntrinsics::_dexp:
   763   case vmIntrinsics::_dlog:
   764   case vmIntrinsics::_dlog10:
   765   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   767   case vmIntrinsics::_min:
   768   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   770   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   771   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   772   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   773   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   774   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   775   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   776   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   777   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   778   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   779   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   780   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   781   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   783   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   785   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   786   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   787   case vmIntrinsics::_equals:                   return inline_string_equals();
   789   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   790   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   791   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   792   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   793   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   794   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   795   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   796   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   797   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   799   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   800   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   801   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   802   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   803   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   804   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   805   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   806   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   807   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   809   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   810   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   811   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   812   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   813   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   814   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   815   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   816   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   818   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   819   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   820   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   821   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   822   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   823   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   824   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   825   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   827   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   828   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   829   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   830   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   831   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   832   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   833   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   834   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   835   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   837   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   838   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   839   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   840   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   841   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   842   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   843   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   844   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   845   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   847   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   848   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   849   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   850   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   852   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   853   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   854   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   856   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   857   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   858   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   860   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   861   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   862   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   863   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   864   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   866   case vmIntrinsics::_loadFence:
   867   case vmIntrinsics::_storeFence:
   868   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   870   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   871   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   873 #ifdef TRACE_HAVE_INTRINSICS
   874   case vmIntrinsics::_classID:                  return inline_native_classID();
   875   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   876   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   877 #endif
   878   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   879   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   880   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   881   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   882   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   883   case vmIntrinsics::_getLength:                return inline_native_getLength();
   884   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   885   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   886   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   887   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   889   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   891   case vmIntrinsics::_isInstance:
   892   case vmIntrinsics::_getModifiers:
   893   case vmIntrinsics::_isInterface:
   894   case vmIntrinsics::_isArray:
   895   case vmIntrinsics::_isPrimitive:
   896   case vmIntrinsics::_getSuperclass:
   897   case vmIntrinsics::_getComponentType:
   898   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   900   case vmIntrinsics::_floatToRawIntBits:
   901   case vmIntrinsics::_floatToIntBits:
   902   case vmIntrinsics::_intBitsToFloat:
   903   case vmIntrinsics::_doubleToRawLongBits:
   904   case vmIntrinsics::_doubleToLongBits:
   905   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   907   case vmIntrinsics::_numberOfLeadingZeros_i:
   908   case vmIntrinsics::_numberOfLeadingZeros_l:
   909   case vmIntrinsics::_numberOfTrailingZeros_i:
   910   case vmIntrinsics::_numberOfTrailingZeros_l:
   911   case vmIntrinsics::_bitCount_i:
   912   case vmIntrinsics::_bitCount_l:
   913   case vmIntrinsics::_reverseBytes_i:
   914   case vmIntrinsics::_reverseBytes_l:
   915   case vmIntrinsics::_reverseBytes_s:
   916   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   918   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   920   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   922   case vmIntrinsics::_aescrypt_encryptBlock:
   923   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   925   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   926   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   927     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   929   case vmIntrinsics::_sha_implCompress:
   930   case vmIntrinsics::_sha2_implCompress:
   931   case vmIntrinsics::_sha5_implCompress:
   932     return inline_sha_implCompress(intrinsic_id());
   934   case vmIntrinsics::_digestBase_implCompressMB:
   935     return inline_digestBase_implCompressMB(predicate);
   937   case vmIntrinsics::_multiplyToLen:
   938     return inline_multiplyToLen();
   940   case vmIntrinsics::_squareToLen:
   941     return inline_squareToLen();
   943   case vmIntrinsics::_mulAdd:
   944     return inline_mulAdd();
   946   case vmIntrinsics::_encodeISOArray:
   947     return inline_encodeISOArray();
   949   case vmIntrinsics::_updateCRC32:
   950     return inline_updateCRC32();
   951   case vmIntrinsics::_updateBytesCRC32:
   952     return inline_updateBytesCRC32();
   953   case vmIntrinsics::_updateByteBufferCRC32:
   954     return inline_updateByteBufferCRC32();
   956   case vmIntrinsics::_profileBoolean:
   957     return inline_profileBoolean();
   959   default:
   960     // If you get here, it may be that someone has added a new intrinsic
   961     // to the list in vmSymbols.hpp without implementing it here.
   962 #ifndef PRODUCT
   963     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   964       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   965                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   966     }
   967 #endif
   968     return false;
   969   }
   970 }
   972 Node* LibraryCallKit::try_to_predicate(int predicate) {
   973   if (!jvms()->has_method()) {
   974     // Root JVMState has a null method.
   975     assert(map()->memory()->Opcode() == Op_Parm, "");
   976     // Insert the memory aliasing node
   977     set_all_memory(reset_memory());
   978   }
   979   assert(merged_memory(), "");
   981   switch (intrinsic_id()) {
   982   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   983     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   984   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   985     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   986   case vmIntrinsics::_digestBase_implCompressMB:
   987     return inline_digestBase_implCompressMB_predicate(predicate);
   989   default:
   990     // If you get here, it may be that someone has added a new intrinsic
   991     // to the list in vmSymbols.hpp without implementing it here.
   992 #ifndef PRODUCT
   993     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   994       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   995                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   996     }
   997 #endif
   998     Node* slow_ctl = control();
   999     set_control(top()); // No fast path instrinsic
  1000     return slow_ctl;
  1004 //------------------------------set_result-------------------------------
  1005 // Helper function for finishing intrinsics.
  1006 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
  1007   record_for_igvn(region);
  1008   set_control(_gvn.transform(region));
  1009   set_result( _gvn.transform(value));
  1010   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
  1013 //------------------------------generate_guard---------------------------
  1014 // Helper function for generating guarded fast-slow graph structures.
  1015 // The given 'test', if true, guards a slow path.  If the test fails
  1016 // then a fast path can be taken.  (We generally hope it fails.)
  1017 // In all cases, GraphKit::control() is updated to the fast path.
  1018 // The returned value represents the control for the slow path.
  1019 // The return value is never 'top'; it is either a valid control
  1020 // or NULL if it is obvious that the slow path can never be taken.
  1021 // Also, if region and the slow control are not NULL, the slow edge
  1022 // is appended to the region.
  1023 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
  1024   if (stopped()) {
  1025     // Already short circuited.
  1026     return NULL;
  1029   // Build an if node and its projections.
  1030   // If test is true we take the slow path, which we assume is uncommon.
  1031   if (_gvn.type(test) == TypeInt::ZERO) {
  1032     // The slow branch is never taken.  No need to build this guard.
  1033     return NULL;
  1036   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
  1038   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
  1039   if (if_slow == top()) {
  1040     // The slow branch is never taken.  No need to build this guard.
  1041     return NULL;
  1044   if (region != NULL)
  1045     region->add_req(if_slow);
  1047   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
  1048   set_control(if_fast);
  1050   return if_slow;
  1053 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
  1054   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
  1056 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
  1057   return generate_guard(test, region, PROB_FAIR);
  1060 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
  1061                                                      Node* *pos_index) {
  1062   if (stopped())
  1063     return NULL;                // already stopped
  1064   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
  1065     return NULL;                // index is already adequately typed
  1066   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1067   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1068   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
  1069   if (is_neg != NULL && pos_index != NULL) {
  1070     // Emulate effect of Parse::adjust_map_after_if.
  1071     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
  1072     ccast->set_req(0, control());
  1073     (*pos_index) = _gvn.transform(ccast);
  1075   return is_neg;
  1078 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1079                                                         Node* *pos_index) {
  1080   if (stopped())
  1081     return NULL;                // already stopped
  1082   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1083     return NULL;                // index is already adequately typed
  1084   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1085   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1086   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1087   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1088   if (is_notp != NULL && pos_index != NULL) {
  1089     // Emulate effect of Parse::adjust_map_after_if.
  1090     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1091     ccast->set_req(0, control());
  1092     (*pos_index) = _gvn.transform(ccast);
  1094   return is_notp;
  1097 // Make sure that 'position' is a valid limit index, in [0..length].
  1098 // There are two equivalent plans for checking this:
  1099 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1100 //   B. offset  <=  (arrayLength - copyLength)
  1101 // We require that all of the values above, except for the sum and
  1102 // difference, are already known to be non-negative.
  1103 // Plan A is robust in the face of overflow, if offset and copyLength
  1104 // are both hugely positive.
  1105 //
  1106 // Plan B is less direct and intuitive, but it does not overflow at
  1107 // all, since the difference of two non-negatives is always
  1108 // representable.  Whenever Java methods must perform the equivalent
  1109 // check they generally use Plan B instead of Plan A.
  1110 // For the moment we use Plan A.
  1111 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1112                                                   Node* subseq_length,
  1113                                                   Node* array_length,
  1114                                                   RegionNode* region) {
  1115   if (stopped())
  1116     return NULL;                // already stopped
  1117   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1118   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1119     return NULL;                // common case of whole-array copy
  1120   Node* last = subseq_length;
  1121   if (!zero_offset)             // last += offset
  1122     last = _gvn.transform(new (C) AddINode(last, offset));
  1123   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1124   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1125   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1126   return is_over;
  1130 //--------------------------generate_current_thread--------------------
  1131 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1132   ciKlass*    thread_klass = env()->Thread_klass();
  1133   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1134   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1135   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1136   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
  1137   tls_output = thread;
  1138   return threadObj;
  1142 //------------------------------make_string_method_node------------------------
  1143 // Helper method for String intrinsic functions. This version is called
  1144 // with str1 and str2 pointing to String object nodes.
  1145 //
  1146 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1147   Node* no_ctrl = NULL;
  1149   // Get start addr of string
  1150   Node* str1_value   = load_String_value(no_ctrl, str1);
  1151   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1152   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1154   // Get length of string 1
  1155   Node* str1_len  = load_String_length(no_ctrl, str1);
  1157   Node* str2_value   = load_String_value(no_ctrl, str2);
  1158   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1159   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1161   Node* str2_len = NULL;
  1162   Node* result = NULL;
  1164   switch (opcode) {
  1165   case Op_StrIndexOf:
  1166     // Get length of string 2
  1167     str2_len = load_String_length(no_ctrl, str2);
  1169     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1170                                  str1_start, str1_len, str2_start, str2_len);
  1171     break;
  1172   case Op_StrComp:
  1173     // Get length of string 2
  1174     str2_len = load_String_length(no_ctrl, str2);
  1176     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1177                                  str1_start, str1_len, str2_start, str2_len);
  1178     break;
  1179   case Op_StrEquals:
  1180     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1181                                str1_start, str2_start, str1_len);
  1182     break;
  1183   default:
  1184     ShouldNotReachHere();
  1185     return NULL;
  1188   // All these intrinsics have checks.
  1189   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1191   return _gvn.transform(result);
  1194 // Helper method for String intrinsic functions. This version is called
  1195 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1196 // to Int nodes containing the lenghts of str1 and str2.
  1197 //
  1198 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1199   Node* result = NULL;
  1200   switch (opcode) {
  1201   case Op_StrIndexOf:
  1202     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1203                                  str1_start, cnt1, str2_start, cnt2);
  1204     break;
  1205   case Op_StrComp:
  1206     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1207                                  str1_start, cnt1, str2_start, cnt2);
  1208     break;
  1209   case Op_StrEquals:
  1210     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1211                                  str1_start, str2_start, cnt1);
  1212     break;
  1213   default:
  1214     ShouldNotReachHere();
  1215     return NULL;
  1218   // All these intrinsics have checks.
  1219   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1221   return _gvn.transform(result);
  1224 //------------------------------inline_string_compareTo------------------------
  1225 // public int java.lang.String.compareTo(String anotherString);
  1226 bool LibraryCallKit::inline_string_compareTo() {
  1227   Node* receiver = null_check(argument(0));
  1228   Node* arg      = null_check(argument(1));
  1229   if (stopped()) {
  1230     return true;
  1232   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1233   return true;
  1236 //------------------------------inline_string_equals------------------------
  1237 bool LibraryCallKit::inline_string_equals() {
  1238   Node* receiver = null_check_receiver();
  1239   // NOTE: Do not null check argument for String.equals() because spec
  1240   // allows to specify NULL as argument.
  1241   Node* argument = this->argument(1);
  1242   if (stopped()) {
  1243     return true;
  1246   // paths (plus control) merge
  1247   RegionNode* region = new (C) RegionNode(5);
  1248   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1250   // does source == target string?
  1251   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1252   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1254   Node* if_eq = generate_slow_guard(bol, NULL);
  1255   if (if_eq != NULL) {
  1256     // receiver == argument
  1257     phi->init_req(2, intcon(1));
  1258     region->init_req(2, if_eq);
  1261   // get String klass for instanceOf
  1262   ciInstanceKlass* klass = env()->String_klass();
  1264   if (!stopped()) {
  1265     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1266     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1267     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1269     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1270     //instanceOf == true, fallthrough
  1272     if (inst_false != NULL) {
  1273       phi->init_req(3, intcon(0));
  1274       region->init_req(3, inst_false);
  1278   if (!stopped()) {
  1279     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1281     // Properly cast the argument to String
  1282     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1283     // This path is taken only when argument's type is String:NotNull.
  1284     argument = cast_not_null(argument, false);
  1286     Node* no_ctrl = NULL;
  1288     // Get start addr of receiver
  1289     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1290     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1291     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1293     // Get length of receiver
  1294     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1296     // Get start addr of argument
  1297     Node* argument_val    = load_String_value(no_ctrl, argument);
  1298     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1299     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1301     // Get length of argument
  1302     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1304     // Check for receiver count != argument count
  1305     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1306     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1307     Node* if_ne = generate_slow_guard(bol, NULL);
  1308     if (if_ne != NULL) {
  1309       phi->init_req(4, intcon(0));
  1310       region->init_req(4, if_ne);
  1313     // Check for count == 0 is done by assembler code for StrEquals.
  1315     if (!stopped()) {
  1316       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1317       phi->init_req(1, equals);
  1318       region->init_req(1, control());
  1322   // post merge
  1323   set_control(_gvn.transform(region));
  1324   record_for_igvn(region);
  1326   set_result(_gvn.transform(phi));
  1327   return true;
  1330 //------------------------------inline_array_equals----------------------------
  1331 bool LibraryCallKit::inline_array_equals() {
  1332   Node* arg1 = argument(0);
  1333   Node* arg2 = argument(1);
  1334   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1335   return true;
  1338 // Java version of String.indexOf(constant string)
  1339 // class StringDecl {
  1340 //   StringDecl(char[] ca) {
  1341 //     offset = 0;
  1342 //     count = ca.length;
  1343 //     value = ca;
  1344 //   }
  1345 //   int offset;
  1346 //   int count;
  1347 //   char[] value;
  1348 // }
  1349 //
  1350 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1351 //                             int targetOffset, int cache_i, int md2) {
  1352 //   int cache = cache_i;
  1353 //   int sourceOffset = string_object.offset;
  1354 //   int sourceCount = string_object.count;
  1355 //   int targetCount = target_object.length;
  1356 //
  1357 //   int targetCountLess1 = targetCount - 1;
  1358 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1359 //
  1360 //   char[] source = string_object.value;
  1361 //   char[] target = target_object;
  1362 //   int lastChar = target[targetCountLess1];
  1363 //
  1364 //  outer_loop:
  1365 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1366 //     int src = source[i + targetCountLess1];
  1367 //     if (src == lastChar) {
  1368 //       // With random strings and a 4-character alphabet,
  1369 //       // reverse matching at this point sets up 0.8% fewer
  1370 //       // frames, but (paradoxically) makes 0.3% more probes.
  1371 //       // Since those probes are nearer the lastChar probe,
  1372 //       // there is may be a net D$ win with reverse matching.
  1373 //       // But, reversing loop inhibits unroll of inner loop
  1374 //       // for unknown reason.  So, does running outer loop from
  1375 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1376 //       for (int j = 0; j < targetCountLess1; j++) {
  1377 //         if (target[targetOffset + j] != source[i+j]) {
  1378 //           if ((cache & (1 << source[i+j])) == 0) {
  1379 //             if (md2 < j+1) {
  1380 //               i += j+1;
  1381 //               continue outer_loop;
  1382 //             }
  1383 //           }
  1384 //           i += md2;
  1385 //           continue outer_loop;
  1386 //         }
  1387 //       }
  1388 //       return i - sourceOffset;
  1389 //     }
  1390 //     if ((cache & (1 << src)) == 0) {
  1391 //       i += targetCountLess1;
  1392 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1393 //     i++;
  1394 //   }
  1395 //   return -1;
  1396 // }
  1398 //------------------------------string_indexOf------------------------
  1399 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1400                                      jint cache_i, jint md2_i) {
  1402   Node* no_ctrl  = NULL;
  1403   float likely   = PROB_LIKELY(0.9);
  1404   float unlikely = PROB_UNLIKELY(0.9);
  1406   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1408   Node* source        = load_String_value(no_ctrl, string_object);
  1409   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1410   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1412   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1413   jint target_length = target_array->length();
  1414   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1415   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1417   // String.value field is known to be @Stable.
  1418   if (UseImplicitStableValues) {
  1419     target = cast_array_to_stable(target, target_type);
  1422   IdealKit kit(this, false, true);
  1423 #define __ kit.
  1424   Node* zero             = __ ConI(0);
  1425   Node* one              = __ ConI(1);
  1426   Node* cache            = __ ConI(cache_i);
  1427   Node* md2              = __ ConI(md2_i);
  1428   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1429   Node* targetCount      = __ ConI(target_length);
  1430   Node* targetCountLess1 = __ ConI(target_length - 1);
  1431   Node* targetOffset     = __ ConI(targetOffset_i);
  1432   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1434   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1435   Node* outer_loop = __ make_label(2 /* goto */);
  1436   Node* return_    = __ make_label(1);
  1438   __ set(rtn,__ ConI(-1));
  1439   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1440        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1441        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1442        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1443        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1444          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1445               Node* tpj = __ AddI(targetOffset, __ value(j));
  1446               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1447               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1448               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1449               __ if_then(targ, BoolTest::ne, src2); {
  1450                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1451                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1452                     __ increment(i, __ AddI(__ value(j), one));
  1453                     __ goto_(outer_loop);
  1454                   } __ end_if(); __ dead(j);
  1455                 }__ end_if(); __ dead(j);
  1456                 __ increment(i, md2);
  1457                 __ goto_(outer_loop);
  1458               }__ end_if();
  1459               __ increment(j, one);
  1460          }__ end_loop(); __ dead(j);
  1461          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1462          __ goto_(return_);
  1463        }__ end_if();
  1464        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1465          __ increment(i, targetCountLess1);
  1466        }__ end_if();
  1467        __ increment(i, one);
  1468        __ bind(outer_loop);
  1469   }__ end_loop(); __ dead(i);
  1470   __ bind(return_);
  1472   // Final sync IdealKit and GraphKit.
  1473   final_sync(kit);
  1474   Node* result = __ value(rtn);
  1475 #undef __
  1476   C->set_has_loops(true);
  1477   return result;
  1480 //------------------------------inline_string_indexOf------------------------
  1481 bool LibraryCallKit::inline_string_indexOf() {
  1482   Node* receiver = argument(0);
  1483   Node* arg      = argument(1);
  1485   Node* result;
  1486   // Disable the use of pcmpestri until it can be guaranteed that
  1487   // the load doesn't cross into the uncommited space.
  1488   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1489       UseSSE42Intrinsics) {
  1490     // Generate SSE4.2 version of indexOf
  1491     // We currently only have match rules that use SSE4.2
  1493     receiver = null_check(receiver);
  1494     arg      = null_check(arg);
  1495     if (stopped()) {
  1496       return true;
  1499     ciInstanceKlass* str_klass = env()->String_klass();
  1500     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1502     // Make the merge point
  1503     RegionNode* result_rgn = new (C) RegionNode(4);
  1504     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1505     Node* no_ctrl  = NULL;
  1507     // Get start addr of source string
  1508     Node* source = load_String_value(no_ctrl, receiver);
  1509     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1510     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1512     // Get length of source string
  1513     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1515     // Get start addr of substring
  1516     Node* substr = load_String_value(no_ctrl, arg);
  1517     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1518     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1520     // Get length of source string
  1521     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1523     // Check for substr count > string count
  1524     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1525     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1526     Node* if_gt = generate_slow_guard(bol, NULL);
  1527     if (if_gt != NULL) {
  1528       result_phi->init_req(2, intcon(-1));
  1529       result_rgn->init_req(2, if_gt);
  1532     if (!stopped()) {
  1533       // Check for substr count == 0
  1534       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1535       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1536       Node* if_zero = generate_slow_guard(bol, NULL);
  1537       if (if_zero != NULL) {
  1538         result_phi->init_req(3, intcon(0));
  1539         result_rgn->init_req(3, if_zero);
  1543     if (!stopped()) {
  1544       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1545       result_phi->init_req(1, result);
  1546       result_rgn->init_req(1, control());
  1548     set_control(_gvn.transform(result_rgn));
  1549     record_for_igvn(result_rgn);
  1550     result = _gvn.transform(result_phi);
  1552   } else { // Use LibraryCallKit::string_indexOf
  1553     // don't intrinsify if argument isn't a constant string.
  1554     if (!arg->is_Con()) {
  1555      return false;
  1557     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1558     if (str_type == NULL) {
  1559       return false;
  1561     ciInstanceKlass* klass = env()->String_klass();
  1562     ciObject* str_const = str_type->const_oop();
  1563     if (str_const == NULL || str_const->klass() != klass) {
  1564       return false;
  1566     ciInstance* str = str_const->as_instance();
  1567     assert(str != NULL, "must be instance");
  1569     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1570     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1572     int o;
  1573     int c;
  1574     if (java_lang_String::has_offset_field()) {
  1575       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1576       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1577     } else {
  1578       o = 0;
  1579       c = pat->length();
  1582     // constant strings have no offset and count == length which
  1583     // simplifies the resulting code somewhat so lets optimize for that.
  1584     if (o != 0 || c != pat->length()) {
  1585      return false;
  1588     receiver = null_check(receiver, T_OBJECT);
  1589     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1590     if (stopped()) {
  1591       return true;
  1594     // The null string as a pattern always returns 0 (match at beginning of string)
  1595     if (c == 0) {
  1596       set_result(intcon(0));
  1597       return true;
  1600     // Generate default indexOf
  1601     jchar lastChar = pat->char_at(o + (c - 1));
  1602     int cache = 0;
  1603     int i;
  1604     for (i = 0; i < c - 1; i++) {
  1605       assert(i < pat->length(), "out of range");
  1606       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1609     int md2 = c;
  1610     for (i = 0; i < c - 1; i++) {
  1611       assert(i < pat->length(), "out of range");
  1612       if (pat->char_at(o + i) == lastChar) {
  1613         md2 = (c - 1) - i;
  1617     result = string_indexOf(receiver, pat, o, cache, md2);
  1619   set_result(result);
  1620   return true;
  1623 //--------------------------round_double_node--------------------------------
  1624 // Round a double node if necessary.
  1625 Node* LibraryCallKit::round_double_node(Node* n) {
  1626   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1627     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1628   return n;
  1631 //------------------------------inline_math-----------------------------------
  1632 // public static double Math.abs(double)
  1633 // public static double Math.sqrt(double)
  1634 // public static double Math.log(double)
  1635 // public static double Math.log10(double)
  1636 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1637   Node* arg = round_double_node(argument(0));
  1638   Node* n = NULL;
  1639   switch (id) {
  1640   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1641   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1642   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1643   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1644   default:  fatal_unexpected_iid(id);  break;
  1646   set_result(_gvn.transform(n));
  1647   return true;
  1650 //------------------------------inline_trig----------------------------------
  1651 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1652 // argument reduction which will turn into a fast/slow diamond.
  1653 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1654   Node* arg = round_double_node(argument(0));
  1655   Node* n = NULL;
  1657   switch (id) {
  1658   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1659   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1660   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1661   default:  fatal_unexpected_iid(id);  break;
  1663   n = _gvn.transform(n);
  1665   // Rounding required?  Check for argument reduction!
  1666   if (Matcher::strict_fp_requires_explicit_rounding) {
  1667     static const double     pi_4 =  0.7853981633974483;
  1668     static const double neg_pi_4 = -0.7853981633974483;
  1669     // pi/2 in 80-bit extended precision
  1670     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1671     // -pi/2 in 80-bit extended precision
  1672     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1673     // Cutoff value for using this argument reduction technique
  1674     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1675     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1677     // Pseudocode for sin:
  1678     // if (x <= Math.PI / 4.0) {
  1679     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1680     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1681     // } else {
  1682     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1683     // }
  1684     // return StrictMath.sin(x);
  1686     // Pseudocode for cos:
  1687     // if (x <= Math.PI / 4.0) {
  1688     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1689     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1690     // } else {
  1691     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1692     // }
  1693     // return StrictMath.cos(x);
  1695     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1696     // requires a special machine instruction to load it.  Instead we'll try
  1697     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1698     // probably do the math inside the SIN encoding.
  1700     // Make the merge point
  1701     RegionNode* r = new (C) RegionNode(3);
  1702     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1704     // Flatten arg so we need only 1 test
  1705     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1706     // Node for PI/4 constant
  1707     Node *pi4 = makecon(TypeD::make(pi_4));
  1708     // Check PI/4 : abs(arg)
  1709     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1710     // Check: If PI/4 < abs(arg) then go slow
  1711     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1712     // Branch either way
  1713     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1714     set_control(opt_iff(r,iff));
  1716     // Set fast path result
  1717     phi->init_req(2, n);
  1719     // Slow path - non-blocking leaf call
  1720     Node* call = NULL;
  1721     switch (id) {
  1722     case vmIntrinsics::_dsin:
  1723       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1724                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1725                                "Sin", NULL, arg, top());
  1726       break;
  1727     case vmIntrinsics::_dcos:
  1728       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1729                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1730                                "Cos", NULL, arg, top());
  1731       break;
  1732     case vmIntrinsics::_dtan:
  1733       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1734                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1735                                "Tan", NULL, arg, top());
  1736       break;
  1738     assert(control()->in(0) == call, "");
  1739     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1740     r->init_req(1, control());
  1741     phi->init_req(1, slow_result);
  1743     // Post-merge
  1744     set_control(_gvn.transform(r));
  1745     record_for_igvn(r);
  1746     n = _gvn.transform(phi);
  1748     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1750   set_result(n);
  1751   return true;
  1754 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1755   //-------------------
  1756   //result=(result.isNaN())? funcAddr():result;
  1757   // Check: If isNaN() by checking result!=result? then either trap
  1758   // or go to runtime
  1759   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1760   // Build the boolean node
  1761   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1763   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1764     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1765       // The pow or exp intrinsic returned a NaN, which requires a call
  1766       // to the runtime.  Recompile with the runtime call.
  1767       uncommon_trap(Deoptimization::Reason_intrinsic,
  1768                     Deoptimization::Action_make_not_entrant);
  1770     return result;
  1771   } else {
  1772     // If this inlining ever returned NaN in the past, we compile a call
  1773     // to the runtime to properly handle corner cases
  1775     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1776     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1777     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1779     if (!if_slow->is_top()) {
  1780       RegionNode* result_region = new (C) RegionNode(3);
  1781       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1783       result_region->init_req(1, if_fast);
  1784       result_val->init_req(1, result);
  1786       set_control(if_slow);
  1788       const TypePtr* no_memory_effects = NULL;
  1789       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1790                                    no_memory_effects,
  1791                                    x, top(), y, y ? top() : NULL);
  1792       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1793 #ifdef ASSERT
  1794       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1795       assert(value_top == top(), "second value must be top");
  1796 #endif
  1798       result_region->init_req(2, control());
  1799       result_val->init_req(2, value);
  1800       set_control(_gvn.transform(result_region));
  1801       return _gvn.transform(result_val);
  1802     } else {
  1803       return result;
  1808 //------------------------------inline_exp-------------------------------------
  1809 // Inline exp instructions, if possible.  The Intel hardware only misses
  1810 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1811 bool LibraryCallKit::inline_exp() {
  1812   Node* arg = round_double_node(argument(0));
  1813   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1815   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1816   set_result(n);
  1818   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1819   return true;
  1822 //------------------------------inline_pow-------------------------------------
  1823 // Inline power instructions, if possible.
  1824 bool LibraryCallKit::inline_pow() {
  1825   // Pseudocode for pow
  1826   // if (y == 2) {
  1827   //   return x * x;
  1828   // } else {
  1829   //   if (x <= 0.0) {
  1830   //     long longy = (long)y;
  1831   //     if ((double)longy == y) { // if y is long
  1832   //       if (y + 1 == y) longy = 0; // huge number: even
  1833   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1834   //     } else {
  1835   //       result = NaN;
  1836   //     }
  1837   //   } else {
  1838   //     result = DPow(x,y);
  1839   //   }
  1840   //   if (result != result)?  {
  1841   //     result = uncommon_trap() or runtime_call();
  1842   //   }
  1843   //   return result;
  1844   // }
  1846   Node* x = round_double_node(argument(0));
  1847   Node* y = round_double_node(argument(2));
  1849   Node* result = NULL;
  1851   Node*   const_two_node = makecon(TypeD::make(2.0));
  1852   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
  1853   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
  1854   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1855   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
  1856   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
  1858   RegionNode* region_node = new (C) RegionNode(3);
  1859   region_node->init_req(1, if_true);
  1861   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
  1862   // special case for x^y where y == 2, we can convert it to x * x
  1863   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
  1865   // set control to if_false since we will now process the false branch
  1866   set_control(if_false);
  1868   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1869     // Short form: skip the fancy tests and just check for NaN result.
  1870     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1871   } else {
  1872     // If this inlining ever returned NaN in the past, include all
  1873     // checks + call to the runtime.
  1875     // Set the merge point for If node with condition of (x <= 0.0)
  1876     // There are four possible paths to region node and phi node
  1877     RegionNode *r = new (C) RegionNode(4);
  1878     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1880     // Build the first if node: if (x <= 0.0)
  1881     // Node for 0 constant
  1882     Node *zeronode = makecon(TypeD::ZERO);
  1883     // Check x:0
  1884     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1885     // Check: If (x<=0) then go complex path
  1886     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1887     // Branch either way
  1888     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1889     // Fast path taken; set region slot 3
  1890     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1891     r->init_req(3,fast_taken); // Capture fast-control
  1893     // Fast path not-taken, i.e. slow path
  1894     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1896     // Set fast path result
  1897     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1898     phi->init_req(3, fast_result);
  1900     // Complex path
  1901     // Build the second if node (if y is long)
  1902     // Node for (long)y
  1903     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1904     // Node for (double)((long) y)
  1905     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1906     // Check (double)((long) y) : y
  1907     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1908     // Check if (y isn't long) then go to slow path
  1910     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1911     // Branch either way
  1912     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1913     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1915     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1917     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1918     // Node for constant 1
  1919     Node *conone = longcon(1);
  1920     // 1& (long)y
  1921     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1923     // A huge number is always even. Detect a huge number by checking
  1924     // if y + 1 == y and set integer to be tested for parity to 0.
  1925     // Required for corner case:
  1926     // (long)9.223372036854776E18 = max_jlong
  1927     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1928     // max_jlong is odd but 9.223372036854776E18 is even
  1929     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1930     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1931     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1932     Node* correctedsign = NULL;
  1933     if (ConditionalMoveLimit != 0) {
  1934       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1935     } else {
  1936       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1937       RegionNode *r = new (C) RegionNode(3);
  1938       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1939       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1940       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1941       phi->init_req(1, signnode);
  1942       phi->init_req(2, longcon(0));
  1943       correctedsign = _gvn.transform(phi);
  1944       ylong_path = _gvn.transform(r);
  1945       record_for_igvn(r);
  1948     // zero node
  1949     Node *conzero = longcon(0);
  1950     // Check (1&(long)y)==0?
  1951     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1952     // Check if (1&(long)y)!=0?, if so the result is negative
  1953     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1954     // abs(x)
  1955     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1956     // abs(x)^y
  1957     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1958     // -abs(x)^y
  1959     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1960     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1961     Node *signresult = NULL;
  1962     if (ConditionalMoveLimit != 0) {
  1963       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1964     } else {
  1965       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1966       RegionNode *r = new (C) RegionNode(3);
  1967       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1968       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1969       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1970       phi->init_req(1, absxpowy);
  1971       phi->init_req(2, negabsxpowy);
  1972       signresult = _gvn.transform(phi);
  1973       ylong_path = _gvn.transform(r);
  1974       record_for_igvn(r);
  1976     // Set complex path fast result
  1977     r->init_req(2, ylong_path);
  1978     phi->init_req(2, signresult);
  1980     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1981     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1982     r->init_req(1,slow_path);
  1983     phi->init_req(1,slow_result);
  1985     // Post merge
  1986     set_control(_gvn.transform(r));
  1987     record_for_igvn(r);
  1988     result = _gvn.transform(phi);
  1991   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1993   // control from finish_pow_exp is now input to the region node
  1994   region_node->set_req(2, control());
  1995   // the result from finish_pow_exp is now input to the phi node
  1996   phi_node->init_req(2, result);
  1997   set_control(_gvn.transform(region_node));
  1998   record_for_igvn(region_node);
  1999   set_result(_gvn.transform(phi_node));
  2001   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2002   return true;
  2005 //------------------------------runtime_math-----------------------------
  2006 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  2007   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  2008          "must be (DD)D or (D)D type");
  2010   // Inputs
  2011   Node* a = round_double_node(argument(0));
  2012   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  2014   const TypePtr* no_memory_effects = NULL;
  2015   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  2016                                  no_memory_effects,
  2017                                  a, top(), b, b ? top() : NULL);
  2018   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  2019 #ifdef ASSERT
  2020   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  2021   assert(value_top == top(), "second value must be top");
  2022 #endif
  2024   set_result(value);
  2025   return true;
  2028 //------------------------------inline_math_native-----------------------------
  2029 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  2030 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  2031   switch (id) {
  2032     // These intrinsics are not properly supported on all hardware
  2033   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  2034     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  2035   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  2036     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  2037   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  2038     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  2040   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  2041     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  2042   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  2043     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  2045     // These intrinsics are supported on all hardware
  2046   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
  2047   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  2049   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  2050     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  2051   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  2052     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  2053 #undef FN_PTR
  2055    // These intrinsics are not yet correctly implemented
  2056   case vmIntrinsics::_datan2:
  2057     return false;
  2059   default:
  2060     fatal_unexpected_iid(id);
  2061     return false;
  2065 static bool is_simple_name(Node* n) {
  2066   return (n->req() == 1         // constant
  2067           || (n->is_Type() && n->as_Type()->type()->singleton())
  2068           || n->is_Proj()       // parameter or return value
  2069           || n->is_Phi()        // local of some sort
  2070           );
  2073 //----------------------------inline_min_max-----------------------------------
  2074 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  2075   set_result(generate_min_max(id, argument(0), argument(1)));
  2076   return true;
  2079 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
  2080   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
  2081   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2082   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  2083   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  2086     PreserveJVMState pjvms(this);
  2087     PreserveReexecuteState preexecs(this);
  2088     jvms()->set_should_reexecute(true);
  2090     set_control(slow_path);
  2091     set_i_o(i_o());
  2093     uncommon_trap(Deoptimization::Reason_intrinsic,
  2094                   Deoptimization::Action_none);
  2097   set_control(fast_path);
  2098   set_result(math);
  2101 template <typename OverflowOp>
  2102 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
  2103   typedef typename OverflowOp::MathOp MathOp;
  2105   MathOp* mathOp = new(C) MathOp(arg1, arg2);
  2106   Node* operation = _gvn.transform( mathOp );
  2107   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
  2108   inline_math_mathExact(operation, ofcheck);
  2109   return true;
  2112 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2113   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
  2116 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2117   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
  2120 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2121   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
  2124 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2125   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
  2128 bool LibraryCallKit::inline_math_negateExactI() {
  2129   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
  2132 bool LibraryCallKit::inline_math_negateExactL() {
  2133   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
  2136 bool LibraryCallKit::inline_math_multiplyExactI() {
  2137   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
  2140 bool LibraryCallKit::inline_math_multiplyExactL() {
  2141   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
  2144 Node*
  2145 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2146   // These are the candidate return value:
  2147   Node* xvalue = x0;
  2148   Node* yvalue = y0;
  2150   if (xvalue == yvalue) {
  2151     return xvalue;
  2154   bool want_max = (id == vmIntrinsics::_max);
  2156   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2157   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2158   if (txvalue == NULL || tyvalue == NULL)  return top();
  2159   // This is not really necessary, but it is consistent with a
  2160   // hypothetical MaxINode::Value method:
  2161   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2163   // %%% This folding logic should (ideally) be in a different place.
  2164   // Some should be inside IfNode, and there to be a more reliable
  2165   // transformation of ?: style patterns into cmoves.  We also want
  2166   // more powerful optimizations around cmove and min/max.
  2168   // Try to find a dominating comparison of these guys.
  2169   // It can simplify the index computation for Arrays.copyOf
  2170   // and similar uses of System.arraycopy.
  2171   // First, compute the normalized version of CmpI(x, y).
  2172   int   cmp_op = Op_CmpI;
  2173   Node* xkey = xvalue;
  2174   Node* ykey = yvalue;
  2175   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2176   if (ideal_cmpxy->is_Cmp()) {
  2177     // E.g., if we have CmpI(length - offset, count),
  2178     // it might idealize to CmpI(length, count + offset)
  2179     cmp_op = ideal_cmpxy->Opcode();
  2180     xkey = ideal_cmpxy->in(1);
  2181     ykey = ideal_cmpxy->in(2);
  2184   // Start by locating any relevant comparisons.
  2185   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2186   Node* cmpxy = NULL;
  2187   Node* cmpyx = NULL;
  2188   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2189     Node* cmp = start_from->fast_out(k);
  2190     if (cmp->outcnt() > 0 &&            // must have prior uses
  2191         cmp->in(0) == NULL &&           // must be context-independent
  2192         cmp->Opcode() == cmp_op) {      // right kind of compare
  2193       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2194       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2198   const int NCMPS = 2;
  2199   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2200   int cmpn;
  2201   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2202     if (cmps[cmpn] != NULL)  break;     // find a result
  2204   if (cmpn < NCMPS) {
  2205     // Look for a dominating test that tells us the min and max.
  2206     int depth = 0;                // Limit search depth for speed
  2207     Node* dom = control();
  2208     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2209       if (++depth >= 100)  break;
  2210       Node* ifproj = dom;
  2211       if (!ifproj->is_Proj())  continue;
  2212       Node* iff = ifproj->in(0);
  2213       if (!iff->is_If())  continue;
  2214       Node* bol = iff->in(1);
  2215       if (!bol->is_Bool())  continue;
  2216       Node* cmp = bol->in(1);
  2217       if (cmp == NULL)  continue;
  2218       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2219         if (cmps[cmpn] == cmp)  break;
  2220       if (cmpn == NCMPS)  continue;
  2221       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2222       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2223       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2224       // At this point, we know that 'x btest y' is true.
  2225       switch (btest) {
  2226       case BoolTest::eq:
  2227         // They are proven equal, so we can collapse the min/max.
  2228         // Either value is the answer.  Choose the simpler.
  2229         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2230           return yvalue;
  2231         return xvalue;
  2232       case BoolTest::lt:          // x < y
  2233       case BoolTest::le:          // x <= y
  2234         return (want_max ? yvalue : xvalue);
  2235       case BoolTest::gt:          // x > y
  2236       case BoolTest::ge:          // x >= y
  2237         return (want_max ? xvalue : yvalue);
  2242   // We failed to find a dominating test.
  2243   // Let's pick a test that might GVN with prior tests.
  2244   Node*          best_bol   = NULL;
  2245   BoolTest::mask best_btest = BoolTest::illegal;
  2246   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2247     Node* cmp = cmps[cmpn];
  2248     if (cmp == NULL)  continue;
  2249     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2250       Node* bol = cmp->fast_out(j);
  2251       if (!bol->is_Bool())  continue;
  2252       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2253       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2254       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2255       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2256         best_bol   = bol->as_Bool();
  2257         best_btest = btest;
  2262   Node* answer_if_true  = NULL;
  2263   Node* answer_if_false = NULL;
  2264   switch (best_btest) {
  2265   default:
  2266     if (cmpxy == NULL)
  2267       cmpxy = ideal_cmpxy;
  2268     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2269     // and fall through:
  2270   case BoolTest::lt:          // x < y
  2271   case BoolTest::le:          // x <= y
  2272     answer_if_true  = (want_max ? yvalue : xvalue);
  2273     answer_if_false = (want_max ? xvalue : yvalue);
  2274     break;
  2275   case BoolTest::gt:          // x > y
  2276   case BoolTest::ge:          // x >= y
  2277     answer_if_true  = (want_max ? xvalue : yvalue);
  2278     answer_if_false = (want_max ? yvalue : xvalue);
  2279     break;
  2282   jint hi, lo;
  2283   if (want_max) {
  2284     // We can sharpen the minimum.
  2285     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2286     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2287   } else {
  2288     // We can sharpen the maximum.
  2289     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2290     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2293   // Use a flow-free graph structure, to avoid creating excess control edges
  2294   // which could hinder other optimizations.
  2295   // Since Math.min/max is often used with arraycopy, we want
  2296   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2297   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2298                                answer_if_false, answer_if_true,
  2299                                TypeInt::make(lo, hi, widen));
  2301   return _gvn.transform(cmov);
  2303   /*
  2304   // This is not as desirable as it may seem, since Min and Max
  2305   // nodes do not have a full set of optimizations.
  2306   // And they would interfere, anyway, with 'if' optimizations
  2307   // and with CMoveI canonical forms.
  2308   switch (id) {
  2309   case vmIntrinsics::_min:
  2310     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2311   case vmIntrinsics::_max:
  2312     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2313   default:
  2314     ShouldNotReachHere();
  2316   */
  2319 inline int
  2320 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2321   const TypePtr* base_type = TypePtr::NULL_PTR;
  2322   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2323   if (base_type == NULL) {
  2324     // Unknown type.
  2325     return Type::AnyPtr;
  2326   } else if (base_type == TypePtr::NULL_PTR) {
  2327     // Since this is a NULL+long form, we have to switch to a rawptr.
  2328     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2329     offset = MakeConX(0);
  2330     return Type::RawPtr;
  2331   } else if (base_type->base() == Type::RawPtr) {
  2332     return Type::RawPtr;
  2333   } else if (base_type->isa_oopptr()) {
  2334     // Base is never null => always a heap address.
  2335     if (base_type->ptr() == TypePtr::NotNull) {
  2336       return Type::OopPtr;
  2338     // Offset is small => always a heap address.
  2339     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2340     if (offset_type != NULL &&
  2341         base_type->offset() == 0 &&     // (should always be?)
  2342         offset_type->_lo >= 0 &&
  2343         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2344       return Type::OopPtr;
  2346     // Otherwise, it might either be oop+off or NULL+addr.
  2347     return Type::AnyPtr;
  2348   } else {
  2349     // No information:
  2350     return Type::AnyPtr;
  2354 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2355   int kind = classify_unsafe_addr(base, offset);
  2356   if (kind == Type::RawPtr) {
  2357     return basic_plus_adr(top(), base, offset);
  2358   } else {
  2359     return basic_plus_adr(base, offset);
  2363 //--------------------------inline_number_methods-----------------------------
  2364 // inline int     Integer.numberOfLeadingZeros(int)
  2365 // inline int        Long.numberOfLeadingZeros(long)
  2366 //
  2367 // inline int     Integer.numberOfTrailingZeros(int)
  2368 // inline int        Long.numberOfTrailingZeros(long)
  2369 //
  2370 // inline int     Integer.bitCount(int)
  2371 // inline int        Long.bitCount(long)
  2372 //
  2373 // inline char  Character.reverseBytes(char)
  2374 // inline short     Short.reverseBytes(short)
  2375 // inline int     Integer.reverseBytes(int)
  2376 // inline long       Long.reverseBytes(long)
  2377 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2378   Node* arg = argument(0);
  2379   Node* n = NULL;
  2380   switch (id) {
  2381   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2382   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2383   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2384   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2385   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2386   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2387   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2388   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2389   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2390   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2391   default:  fatal_unexpected_iid(id);  break;
  2393   set_result(_gvn.transform(n));
  2394   return true;
  2397 //----------------------------inline_unsafe_access----------------------------
  2399 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2401 // Helper that guards and inserts a pre-barrier.
  2402 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2403                                         Node* pre_val, bool need_mem_bar) {
  2404   // We could be accessing the referent field of a reference object. If so, when G1
  2405   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2406   // This routine performs some compile time filters and generates suitable
  2407   // runtime filters that guard the pre-barrier code.
  2408   // Also add memory barrier for non volatile load from the referent field
  2409   // to prevent commoning of loads across safepoint.
  2410   if (!UseG1GC && !need_mem_bar)
  2411     return;
  2413   // Some compile time checks.
  2415   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2416   const TypeX* otype = offset->find_intptr_t_type();
  2417   if (otype != NULL && otype->is_con() &&
  2418       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2419     // Constant offset but not the reference_offset so just return
  2420     return;
  2423   // We only need to generate the runtime guards for instances.
  2424   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2425   if (btype != NULL) {
  2426     if (btype->isa_aryptr()) {
  2427       // Array type so nothing to do
  2428       return;
  2431     const TypeInstPtr* itype = btype->isa_instptr();
  2432     if (itype != NULL) {
  2433       // Can the klass of base_oop be statically determined to be
  2434       // _not_ a sub-class of Reference and _not_ Object?
  2435       ciKlass* klass = itype->klass();
  2436       if ( klass->is_loaded() &&
  2437           !klass->is_subtype_of(env()->Reference_klass()) &&
  2438           !env()->Object_klass()->is_subtype_of(klass)) {
  2439         return;
  2444   // The compile time filters did not reject base_oop/offset so
  2445   // we need to generate the following runtime filters
  2446   //
  2447   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2448   //   if (instance_of(base, java.lang.ref.Reference)) {
  2449   //     pre_barrier(_, pre_val, ...);
  2450   //   }
  2451   // }
  2453   float likely   = PROB_LIKELY(  0.999);
  2454   float unlikely = PROB_UNLIKELY(0.999);
  2456   IdealKit ideal(this);
  2457 #define __ ideal.
  2459   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2461   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2462       // Update graphKit memory and control from IdealKit.
  2463       sync_kit(ideal);
  2465       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2466       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2468       // Update IdealKit memory and control from graphKit.
  2469       __ sync_kit(this);
  2471       Node* one = __ ConI(1);
  2472       // is_instof == 0 if base_oop == NULL
  2473       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2475         // Update graphKit from IdeakKit.
  2476         sync_kit(ideal);
  2478         // Use the pre-barrier to record the value in the referent field
  2479         pre_barrier(false /* do_load */,
  2480                     __ ctrl(),
  2481                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2482                     pre_val /* pre_val */,
  2483                     T_OBJECT);
  2484         if (need_mem_bar) {
  2485           // Add memory barrier to prevent commoning reads from this field
  2486           // across safepoint since GC can change its value.
  2487           insert_mem_bar(Op_MemBarCPUOrder);
  2489         // Update IdealKit from graphKit.
  2490         __ sync_kit(this);
  2492       } __ end_if(); // _ref_type != ref_none
  2493   } __ end_if(); // offset == referent_offset
  2495   // Final sync IdealKit and GraphKit.
  2496   final_sync(ideal);
  2497 #undef __
  2501 // Interpret Unsafe.fieldOffset cookies correctly:
  2502 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2504 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2505   // Attempt to infer a sharper value type from the offset and base type.
  2506   ciKlass* sharpened_klass = NULL;
  2508   // See if it is an instance field, with an object type.
  2509   if (alias_type->field() != NULL) {
  2510     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2511     if (alias_type->field()->type()->is_klass()) {
  2512       sharpened_klass = alias_type->field()->type()->as_klass();
  2516   // See if it is a narrow oop array.
  2517   if (adr_type->isa_aryptr()) {
  2518     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2519       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2520       if (elem_type != NULL) {
  2521         sharpened_klass = elem_type->klass();
  2526   // The sharpened class might be unloaded if there is no class loader
  2527   // contraint in place.
  2528   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2529     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2531 #ifndef PRODUCT
  2532     if (C->print_intrinsics() || C->print_inlining()) {
  2533       tty->print("  from base type: ");  adr_type->dump();
  2534       tty->print("  sharpened value: ");  tjp->dump();
  2536 #endif
  2537     // Sharpen the value type.
  2538     return tjp;
  2540   return NULL;
  2543 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2544   if (callee()->is_static())  return false;  // caller must have the capability!
  2546 #ifndef PRODUCT
  2548     ResourceMark rm;
  2549     // Check the signatures.
  2550     ciSignature* sig = callee()->signature();
  2551 #ifdef ASSERT
  2552     if (!is_store) {
  2553       // Object getObject(Object base, int/long offset), etc.
  2554       BasicType rtype = sig->return_type()->basic_type();
  2555       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2556           rtype = T_ADDRESS;  // it is really a C void*
  2557       assert(rtype == type, "getter must return the expected value");
  2558       if (!is_native_ptr) {
  2559         assert(sig->count() == 2, "oop getter has 2 arguments");
  2560         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2561         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2562       } else {
  2563         assert(sig->count() == 1, "native getter has 1 argument");
  2564         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2566     } else {
  2567       // void putObject(Object base, int/long offset, Object x), etc.
  2568       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2569       if (!is_native_ptr) {
  2570         assert(sig->count() == 3, "oop putter has 3 arguments");
  2571         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2572         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2573       } else {
  2574         assert(sig->count() == 2, "native putter has 2 arguments");
  2575         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2577       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2578       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2579         vtype = T_ADDRESS;  // it is really a C void*
  2580       assert(vtype == type, "putter must accept the expected value");
  2582 #endif // ASSERT
  2584 #endif //PRODUCT
  2586   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2588   Node* receiver = argument(0);  // type: oop
  2590   // Build address expression.  See the code in inline_unsafe_prefetch.
  2591   Node* adr;
  2592   Node* heap_base_oop = top();
  2593   Node* offset = top();
  2594   Node* val;
  2596   if (!is_native_ptr) {
  2597     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2598     Node* base = argument(1);  // type: oop
  2599     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2600     offset = argument(2);  // type: long
  2601     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2602     // to be plain byte offsets, which are also the same as those accepted
  2603     // by oopDesc::field_base.
  2604     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2605            "fieldOffset must be byte-scaled");
  2606     // 32-bit machines ignore the high half!
  2607     offset = ConvL2X(offset);
  2608     adr = make_unsafe_address(base, offset);
  2609     heap_base_oop = base;
  2610     val = is_store ? argument(4) : NULL;
  2611   } else {
  2612     Node* ptr = argument(1);  // type: long
  2613     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2614     adr = make_unsafe_address(NULL, ptr);
  2615     val = is_store ? argument(3) : NULL;
  2618   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2620   // First guess at the value type.
  2621   const Type *value_type = Type::get_const_basic_type(type);
  2623   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2624   // there was not enough information to nail it down.
  2625   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2626   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2628   // We will need memory barriers unless we can determine a unique
  2629   // alias category for this reference.  (Note:  If for some reason
  2630   // the barriers get omitted and the unsafe reference begins to "pollute"
  2631   // the alias analysis of the rest of the graph, either Compile::can_alias
  2632   // or Compile::must_alias will throw a diagnostic assert.)
  2633   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2635   // If we are reading the value of the referent field of a Reference
  2636   // object (either by using Unsafe directly or through reflection)
  2637   // then, if G1 is enabled, we need to record the referent in an
  2638   // SATB log buffer using the pre-barrier mechanism.
  2639   // Also we need to add memory barrier to prevent commoning reads
  2640   // from this field across safepoint since GC can change its value.
  2641   bool need_read_barrier = !is_native_ptr && !is_store &&
  2642                            offset != top() && heap_base_oop != top();
  2644   if (!is_store && type == T_OBJECT) {
  2645     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2646     if (tjp != NULL) {
  2647       value_type = tjp;
  2651   receiver = null_check(receiver);
  2652   if (stopped()) {
  2653     return true;
  2655   // Heap pointers get a null-check from the interpreter,
  2656   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2657   // and it is not possible to fully distinguish unintended nulls
  2658   // from intended ones in this API.
  2660   if (is_volatile) {
  2661     // We need to emit leading and trailing CPU membars (see below) in
  2662     // addition to memory membars when is_volatile. This is a little
  2663     // too strong, but avoids the need to insert per-alias-type
  2664     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2665     // we cannot do effectively here because we probably only have a
  2666     // rough approximation of type.
  2667     need_mem_bar = true;
  2668     // For Stores, place a memory ordering barrier now.
  2669     if (is_store) {
  2670       insert_mem_bar(Op_MemBarRelease);
  2671     } else {
  2672       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2673         insert_mem_bar(Op_MemBarVolatile);
  2678   // Memory barrier to prevent normal and 'unsafe' accesses from
  2679   // bypassing each other.  Happens after null checks, so the
  2680   // exception paths do not take memory state from the memory barrier,
  2681   // so there's no problems making a strong assert about mixing users
  2682   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2683   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2684   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2686   if (!is_store) {
  2687     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
  2688     // To be valid, unsafe loads may depend on other conditions than
  2689     // the one that guards them: pin the Load node
  2690     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
  2691     // load value
  2692     switch (type) {
  2693     case T_BOOLEAN:
  2694     case T_CHAR:
  2695     case T_BYTE:
  2696     case T_SHORT:
  2697     case T_INT:
  2698     case T_LONG:
  2699     case T_FLOAT:
  2700     case T_DOUBLE:
  2701       break;
  2702     case T_OBJECT:
  2703       if (need_read_barrier) {
  2704         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2706       break;
  2707     case T_ADDRESS:
  2708       // Cast to an int type.
  2709       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2710       p = ConvX2UL(p);
  2711       break;
  2712     default:
  2713       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2714       break;
  2716     // The load node has the control of the preceding MemBarCPUOrder.  All
  2717     // following nodes will have the control of the MemBarCPUOrder inserted at
  2718     // the end of this method.  So, pushing the load onto the stack at a later
  2719     // point is fine.
  2720     set_result(p);
  2721   } else {
  2722     // place effect of store into memory
  2723     switch (type) {
  2724     case T_DOUBLE:
  2725       val = dstore_rounding(val);
  2726       break;
  2727     case T_ADDRESS:
  2728       // Repackage the long as a pointer.
  2729       val = ConvL2X(val);
  2730       val = _gvn.transform(new (C) CastX2PNode(val));
  2731       break;
  2734     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
  2735     if (type != T_OBJECT ) {
  2736       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
  2737     } else {
  2738       // Possibly an oop being stored to Java heap or native memory
  2739       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2740         // oop to Java heap.
  2741         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2742       } else {
  2743         // We can't tell at compile time if we are storing in the Java heap or outside
  2744         // of it. So we need to emit code to conditionally do the proper type of
  2745         // store.
  2747         IdealKit ideal(this);
  2748 #define __ ideal.
  2749         // QQQ who knows what probability is here??
  2750         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2751           // Sync IdealKit and graphKit.
  2752           sync_kit(ideal);
  2753           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
  2754           // Update IdealKit memory.
  2755           __ sync_kit(this);
  2756         } __ else_(); {
  2757           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
  2758         } __ end_if();
  2759         // Final sync IdealKit and GraphKit.
  2760         final_sync(ideal);
  2761 #undef __
  2766   if (is_volatile) {
  2767     if (!is_store) {
  2768       insert_mem_bar(Op_MemBarAcquire);
  2769     } else {
  2770       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
  2771         insert_mem_bar(Op_MemBarVolatile);
  2776   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2778   return true;
  2781 //----------------------------inline_unsafe_prefetch----------------------------
  2783 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2784 #ifndef PRODUCT
  2786     ResourceMark rm;
  2787     // Check the signatures.
  2788     ciSignature* sig = callee()->signature();
  2789 #ifdef ASSERT
  2790     // Object getObject(Object base, int/long offset), etc.
  2791     BasicType rtype = sig->return_type()->basic_type();
  2792     if (!is_native_ptr) {
  2793       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2794       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2795       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2796     } else {
  2797       assert(sig->count() == 1, "native prefetch has 1 argument");
  2798       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2800 #endif // ASSERT
  2802 #endif // !PRODUCT
  2804   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2806   const int idx = is_static ? 0 : 1;
  2807   if (!is_static) {
  2808     null_check_receiver();
  2809     if (stopped()) {
  2810       return true;
  2814   // Build address expression.  See the code in inline_unsafe_access.
  2815   Node *adr;
  2816   if (!is_native_ptr) {
  2817     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2818     Node* base   = argument(idx + 0);  // type: oop
  2819     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2820     Node* offset = argument(idx + 1);  // type: long
  2821     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2822     // to be plain byte offsets, which are also the same as those accepted
  2823     // by oopDesc::field_base.
  2824     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2825            "fieldOffset must be byte-scaled");
  2826     // 32-bit machines ignore the high half!
  2827     offset = ConvL2X(offset);
  2828     adr = make_unsafe_address(base, offset);
  2829   } else {
  2830     Node* ptr = argument(idx + 0);  // type: long
  2831     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2832     adr = make_unsafe_address(NULL, ptr);
  2835   // Generate the read or write prefetch
  2836   Node *prefetch;
  2837   if (is_store) {
  2838     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2839   } else {
  2840     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2842   prefetch->init_req(0, control());
  2843   set_i_o(_gvn.transform(prefetch));
  2845   return true;
  2848 //----------------------------inline_unsafe_load_store----------------------------
  2849 // This method serves a couple of different customers (depending on LoadStoreKind):
  2850 //
  2851 // LS_cmpxchg:
  2852 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2853 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2854 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2855 //
  2856 // LS_xadd:
  2857 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2858 //   public long getAndAddLong(Object o, long offset, long delta)
  2859 //
  2860 // LS_xchg:
  2861 //   int    getAndSet(Object o, long offset, int    newValue)
  2862 //   long   getAndSet(Object o, long offset, long   newValue)
  2863 //   Object getAndSet(Object o, long offset, Object newValue)
  2864 //
  2865 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2866   // This basic scheme here is the same as inline_unsafe_access, but
  2867   // differs in enough details that combining them would make the code
  2868   // overly confusing.  (This is a true fact! I originally combined
  2869   // them, but even I was confused by it!) As much code/comments as
  2870   // possible are retained from inline_unsafe_access though to make
  2871   // the correspondences clearer. - dl
  2873   if (callee()->is_static())  return false;  // caller must have the capability!
  2875 #ifndef PRODUCT
  2876   BasicType rtype;
  2878     ResourceMark rm;
  2879     // Check the signatures.
  2880     ciSignature* sig = callee()->signature();
  2881     rtype = sig->return_type()->basic_type();
  2882     if (kind == LS_xadd || kind == LS_xchg) {
  2883       // Check the signatures.
  2884 #ifdef ASSERT
  2885       assert(rtype == type, "get and set must return the expected type");
  2886       assert(sig->count() == 3, "get and set has 3 arguments");
  2887       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2888       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2889       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2890 #endif // ASSERT
  2891     } else if (kind == LS_cmpxchg) {
  2892       // Check the signatures.
  2893 #ifdef ASSERT
  2894       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2895       assert(sig->count() == 4, "CAS has 4 arguments");
  2896       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2897       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2898 #endif // ASSERT
  2899     } else {
  2900       ShouldNotReachHere();
  2903 #endif //PRODUCT
  2905   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2907   // Get arguments:
  2908   Node* receiver = NULL;
  2909   Node* base     = NULL;
  2910   Node* offset   = NULL;
  2911   Node* oldval   = NULL;
  2912   Node* newval   = NULL;
  2913   if (kind == LS_cmpxchg) {
  2914     const bool two_slot_type = type2size[type] == 2;
  2915     receiver = argument(0);  // type: oop
  2916     base     = argument(1);  // type: oop
  2917     offset   = argument(2);  // type: long
  2918     oldval   = argument(4);  // type: oop, int, or long
  2919     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2920   } else if (kind == LS_xadd || kind == LS_xchg){
  2921     receiver = argument(0);  // type: oop
  2922     base     = argument(1);  // type: oop
  2923     offset   = argument(2);  // type: long
  2924     oldval   = NULL;
  2925     newval   = argument(4);  // type: oop, int, or long
  2928   // Null check receiver.
  2929   receiver = null_check(receiver);
  2930   if (stopped()) {
  2931     return true;
  2934   // Build field offset expression.
  2935   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2936   // to be plain byte offsets, which are also the same as those accepted
  2937   // by oopDesc::field_base.
  2938   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2939   // 32-bit machines ignore the high half of long offsets
  2940   offset = ConvL2X(offset);
  2941   Node* adr = make_unsafe_address(base, offset);
  2942   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2944   // For CAS, unlike inline_unsafe_access, there seems no point in
  2945   // trying to refine types. Just use the coarse types here.
  2946   const Type *value_type = Type::get_const_basic_type(type);
  2947   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2948   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2950   if (kind == LS_xchg && type == T_OBJECT) {
  2951     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2952     if (tjp != NULL) {
  2953       value_type = tjp;
  2957   int alias_idx = C->get_alias_index(adr_type);
  2959   // Memory-model-wise, a LoadStore acts like a little synchronized
  2960   // block, so needs barriers on each side.  These don't translate
  2961   // into actual barriers on most machines, but we still need rest of
  2962   // compiler to respect ordering.
  2964   insert_mem_bar(Op_MemBarRelease);
  2965   insert_mem_bar(Op_MemBarCPUOrder);
  2967   // 4984716: MemBars must be inserted before this
  2968   //          memory node in order to avoid a false
  2969   //          dependency which will confuse the scheduler.
  2970   Node *mem = memory(alias_idx);
  2972   // For now, we handle only those cases that actually exist: ints,
  2973   // longs, and Object. Adding others should be straightforward.
  2974   Node* load_store = NULL;
  2975   switch(type) {
  2976   case T_INT:
  2977     if (kind == LS_xadd) {
  2978       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2979     } else if (kind == LS_xchg) {
  2980       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2981     } else if (kind == LS_cmpxchg) {
  2982       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2983     } else {
  2984       ShouldNotReachHere();
  2986     break;
  2987   case T_LONG:
  2988     if (kind == LS_xadd) {
  2989       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2990     } else if (kind == LS_xchg) {
  2991       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2992     } else if (kind == LS_cmpxchg) {
  2993       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2994     } else {
  2995       ShouldNotReachHere();
  2997     break;
  2998   case T_OBJECT:
  2999     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  3000     // could be delayed during Parse (for example, in adjust_map_after_if()).
  3001     // Execute transformation here to avoid barrier generation in such case.
  3002     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  3003       newval = _gvn.makecon(TypePtr::NULL_PTR);
  3005     // Reference stores need a store barrier.
  3006     if (kind == LS_xchg) {
  3007       // If pre-barrier must execute before the oop store, old value will require do_load here.
  3008       if (!can_move_pre_barrier()) {
  3009         pre_barrier(true /* do_load*/,
  3010                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  3011                     NULL /* pre_val*/,
  3012                     T_OBJECT);
  3013       } // Else move pre_barrier to use load_store value, see below.
  3014     } else if (kind == LS_cmpxchg) {
  3015       // Same as for newval above:
  3016       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  3017         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  3019       // The only known value which might get overwritten is oldval.
  3020       pre_barrier(false /* do_load */,
  3021                   control(), NULL, NULL, max_juint, NULL, NULL,
  3022                   oldval /* pre_val */,
  3023                   T_OBJECT);
  3024     } else {
  3025       ShouldNotReachHere();
  3028 #ifdef _LP64
  3029     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3030       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  3031       if (kind == LS_xchg) {
  3032         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  3033                                                            newval_enc, adr_type, value_type->make_narrowoop()));
  3034       } else {
  3035         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3036         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  3037         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  3038                                                                 newval_enc, oldval_enc));
  3040     } else
  3041 #endif
  3043       if (kind == LS_xchg) {
  3044         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  3045       } else {
  3046         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  3047         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  3050     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  3051     break;
  3052   default:
  3053     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  3054     break;
  3057   // SCMemProjNodes represent the memory state of a LoadStore. Their
  3058   // main role is to prevent LoadStore nodes from being optimized away
  3059   // when their results aren't used.
  3060   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  3061   set_memory(proj, alias_idx);
  3063   if (type == T_OBJECT && kind == LS_xchg) {
  3064 #ifdef _LP64
  3065     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  3066       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  3068 #endif
  3069     if (can_move_pre_barrier()) {
  3070       // Don't need to load pre_val. The old value is returned by load_store.
  3071       // The pre_barrier can execute after the xchg as long as no safepoint
  3072       // gets inserted between them.
  3073       pre_barrier(false /* do_load */,
  3074                   control(), NULL, NULL, max_juint, NULL, NULL,
  3075                   load_store /* pre_val */,
  3076                   T_OBJECT);
  3080   // Add the trailing membar surrounding the access
  3081   insert_mem_bar(Op_MemBarCPUOrder);
  3082   insert_mem_bar(Op_MemBarAcquire);
  3084   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  3085   set_result(load_store);
  3086   return true;
  3089 //----------------------------inline_unsafe_ordered_store----------------------
  3090 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  3091 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  3092 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  3093 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  3094   // This is another variant of inline_unsafe_access, differing in
  3095   // that it always issues store-store ("release") barrier and ensures
  3096   // store-atomicity (which only matters for "long").
  3098   if (callee()->is_static())  return false;  // caller must have the capability!
  3100 #ifndef PRODUCT
  3102     ResourceMark rm;
  3103     // Check the signatures.
  3104     ciSignature* sig = callee()->signature();
  3105 #ifdef ASSERT
  3106     BasicType rtype = sig->return_type()->basic_type();
  3107     assert(rtype == T_VOID, "must return void");
  3108     assert(sig->count() == 3, "has 3 arguments");
  3109     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  3110     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  3111 #endif // ASSERT
  3113 #endif //PRODUCT
  3115   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3117   // Get arguments:
  3118   Node* receiver = argument(0);  // type: oop
  3119   Node* base     = argument(1);  // type: oop
  3120   Node* offset   = argument(2);  // type: long
  3121   Node* val      = argument(4);  // type: oop, int, or long
  3123   // Null check receiver.
  3124   receiver = null_check(receiver);
  3125   if (stopped()) {
  3126     return true;
  3129   // Build field offset expression.
  3130   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3131   // 32-bit machines ignore the high half of long offsets
  3132   offset = ConvL2X(offset);
  3133   Node* adr = make_unsafe_address(base, offset);
  3134   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3135   const Type *value_type = Type::get_const_basic_type(type);
  3136   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3138   insert_mem_bar(Op_MemBarRelease);
  3139   insert_mem_bar(Op_MemBarCPUOrder);
  3140   // Ensure that the store is atomic for longs:
  3141   const bool require_atomic_access = true;
  3142   Node* store;
  3143   if (type == T_OBJECT) // reference stores need a store barrier.
  3144     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
  3145   else {
  3146     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
  3148   insert_mem_bar(Op_MemBarCPUOrder);
  3149   return true;
  3152 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3153   // Regardless of form, don't allow previous ld/st to move down,
  3154   // then issue acquire, release, or volatile mem_bar.
  3155   insert_mem_bar(Op_MemBarCPUOrder);
  3156   switch(id) {
  3157     case vmIntrinsics::_loadFence:
  3158       insert_mem_bar(Op_LoadFence);
  3159       return true;
  3160     case vmIntrinsics::_storeFence:
  3161       insert_mem_bar(Op_StoreFence);
  3162       return true;
  3163     case vmIntrinsics::_fullFence:
  3164       insert_mem_bar(Op_MemBarVolatile);
  3165       return true;
  3166     default:
  3167       fatal_unexpected_iid(id);
  3168       return false;
  3172 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3173   if (!kls->is_Con()) {
  3174     return true;
  3176   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3177   if (klsptr == NULL) {
  3178     return true;
  3180   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3181   // don't need a guard for a klass that is already initialized
  3182   return !ik->is_initialized();
  3185 //----------------------------inline_unsafe_allocate---------------------------
  3186 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3187 bool LibraryCallKit::inline_unsafe_allocate() {
  3188   if (callee()->is_static())  return false;  // caller must have the capability!
  3190   null_check_receiver();  // null-check, then ignore
  3191   Node* cls = null_check(argument(1));
  3192   if (stopped())  return true;
  3194   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3195   kls = null_check(kls);
  3196   if (stopped())  return true;  // argument was like int.class
  3198   Node* test = NULL;
  3199   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3200     // Note:  The argument might still be an illegal value like
  3201     // Serializable.class or Object[].class.   The runtime will handle it.
  3202     // But we must make an explicit check for initialization.
  3203     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3204     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3205     // can generate code to load it as unsigned byte.
  3206     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
  3207     Node* bits = intcon(InstanceKlass::fully_initialized);
  3208     test = _gvn.transform(new (C) SubINode(inst, bits));
  3209     // The 'test' is non-zero if we need to take a slow path.
  3212   Node* obj = new_instance(kls, test);
  3213   set_result(obj);
  3214   return true;
  3217 #ifdef TRACE_HAVE_INTRINSICS
  3218 /*
  3219  * oop -> myklass
  3220  * myklass->trace_id |= USED
  3221  * return myklass->trace_id & ~0x3
  3222  */
  3223 bool LibraryCallKit::inline_native_classID() {
  3224   null_check_receiver();  // null-check, then ignore
  3225   Node* cls = null_check(argument(1), T_OBJECT);
  3226   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3227   kls = null_check(kls, T_OBJECT);
  3228   ByteSize offset = TRACE_ID_OFFSET;
  3229   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3230   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
  3231   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3232   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3233   Node* clsused = longcon(0x01l); // set the class bit
  3234   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3236   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3237   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
  3238   set_result(andl);
  3239   return true;
  3242 bool LibraryCallKit::inline_native_threadID() {
  3243   Node* tls_ptr = NULL;
  3244   Node* cur_thr = generate_current_thread(tls_ptr);
  3245   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3246   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3247   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3249   Node* threadid = NULL;
  3250   size_t thread_id_size = OSThread::thread_id_size();
  3251   if (thread_id_size == (size_t) BytesPerLong) {
  3252     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
  3253   } else if (thread_id_size == (size_t) BytesPerInt) {
  3254     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
  3255   } else {
  3256     ShouldNotReachHere();
  3258   set_result(threadid);
  3259   return true;
  3261 #endif
  3263 //------------------------inline_native_time_funcs--------------
  3264 // inline code for System.currentTimeMillis() and System.nanoTime()
  3265 // these have the same type and signature
  3266 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3267   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3268   const TypePtr* no_memory_effects = NULL;
  3269   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3270   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3271 #ifdef ASSERT
  3272   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3273   assert(value_top == top(), "second value must be top");
  3274 #endif
  3275   set_result(value);
  3276   return true;
  3279 //------------------------inline_native_currentThread------------------
  3280 bool LibraryCallKit::inline_native_currentThread() {
  3281   Node* junk = NULL;
  3282   set_result(generate_current_thread(junk));
  3283   return true;
  3286 //------------------------inline_native_isInterrupted------------------
  3287 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3288 bool LibraryCallKit::inline_native_isInterrupted() {
  3289   // Add a fast path to t.isInterrupted(clear_int):
  3290   //   (t == Thread.current() &&
  3291   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
  3292   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3293   // So, in the common case that the interrupt bit is false,
  3294   // we avoid making a call into the VM.  Even if the interrupt bit
  3295   // is true, if the clear_int argument is false, we avoid the VM call.
  3296   // However, if the receiver is not currentThread, we must call the VM,
  3297   // because there must be some locking done around the operation.
  3299   // We only go to the fast case code if we pass two guards.
  3300   // Paths which do not pass are accumulated in the slow_region.
  3302   enum {
  3303     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3304     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3305     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3306     PATH_LIMIT
  3307   };
  3309   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3310   // out of the function.
  3311   insert_mem_bar(Op_MemBarCPUOrder);
  3313   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3314   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3316   RegionNode* slow_region = new (C) RegionNode(1);
  3317   record_for_igvn(slow_region);
  3319   // (a) Receiving thread must be the current thread.
  3320   Node* rec_thr = argument(0);
  3321   Node* tls_ptr = NULL;
  3322   Node* cur_thr = generate_current_thread(tls_ptr);
  3323   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3324   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3326   generate_slow_guard(bol_thr, slow_region);
  3328   // (b) Interrupt bit on TLS must be false.
  3329   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3330   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3331   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3333   // Set the control input on the field _interrupted read to prevent it floating up.
  3334   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
  3335   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3336   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3338   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3340   // First fast path:  if (!TLS._interrupted) return false;
  3341   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3342   result_rgn->init_req(no_int_result_path, false_bit);
  3343   result_val->init_req(no_int_result_path, intcon(0));
  3345   // drop through to next case
  3346   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3348 #ifndef TARGET_OS_FAMILY_windows
  3349   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3350   Node* clr_arg = argument(1);
  3351   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3352   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3353   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3355   // Second fast path:  ... else if (!clear_int) return true;
  3356   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3357   result_rgn->init_req(no_clear_result_path, false_arg);
  3358   result_val->init_req(no_clear_result_path, intcon(1));
  3360   // drop through to next case
  3361   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3362 #else
  3363   // To return true on Windows you must read the _interrupted field
  3364   // and check the the event state i.e. take the slow path.
  3365 #endif // TARGET_OS_FAMILY_windows
  3367   // (d) Otherwise, go to the slow path.
  3368   slow_region->add_req(control());
  3369   set_control( _gvn.transform(slow_region));
  3371   if (stopped()) {
  3372     // There is no slow path.
  3373     result_rgn->init_req(slow_result_path, top());
  3374     result_val->init_req(slow_result_path, top());
  3375   } else {
  3376     // non-virtual because it is a private non-static
  3377     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3379     Node* slow_val = set_results_for_java_call(slow_call);
  3380     // this->control() comes from set_results_for_java_call
  3382     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3383     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3385     // These two phis are pre-filled with copies of of the fast IO and Memory
  3386     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3387     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3389     result_rgn->init_req(slow_result_path, control());
  3390     result_io ->init_req(slow_result_path, i_o());
  3391     result_mem->init_req(slow_result_path, reset_memory());
  3392     result_val->init_req(slow_result_path, slow_val);
  3394     set_all_memory(_gvn.transform(result_mem));
  3395     set_i_o(       _gvn.transform(result_io));
  3398   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3399   set_result(result_rgn, result_val);
  3400   return true;
  3403 //---------------------------load_mirror_from_klass----------------------------
  3404 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3405 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3406   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3407   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3410 //-----------------------load_klass_from_mirror_common-------------------------
  3411 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3412 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3413 // and branch to the given path on the region.
  3414 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3415 // compile for the non-null case.
  3416 // If the region is NULL, force never_see_null = true.
  3417 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3418                                                     bool never_see_null,
  3419                                                     RegionNode* region,
  3420                                                     int null_path,
  3421                                                     int offset) {
  3422   if (region == NULL)  never_see_null = true;
  3423   Node* p = basic_plus_adr(mirror, offset);
  3424   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3425   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3426   Node* null_ctl = top();
  3427   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3428   if (region != NULL) {
  3429     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3430     region->init_req(null_path, null_ctl);
  3431   } else {
  3432     assert(null_ctl == top(), "no loose ends");
  3434   return kls;
  3437 //--------------------(inline_native_Class_query helpers)---------------------
  3438 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3439 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3440 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3441   // Branch around if the given klass has the given modifier bit set.
  3442   // Like generate_guard, adds a new path onto the region.
  3443   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3444   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
  3445   Node* mask = intcon(modifier_mask);
  3446   Node* bits = intcon(modifier_bits);
  3447   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3448   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3449   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3450   return generate_fair_guard(bol, region);
  3452 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3453   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3456 //-------------------------inline_native_Class_query-------------------
  3457 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3458   const Type* return_type = TypeInt::BOOL;
  3459   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3460   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3461   bool expect_prim = false;     // most of these guys expect to work on refs
  3463   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3465   Node* mirror = argument(0);
  3466   Node* obj    = top();
  3468   switch (id) {
  3469   case vmIntrinsics::_isInstance:
  3470     // nothing is an instance of a primitive type
  3471     prim_return_value = intcon(0);
  3472     obj = argument(1);
  3473     break;
  3474   case vmIntrinsics::_getModifiers:
  3475     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3476     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3477     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3478     break;
  3479   case vmIntrinsics::_isInterface:
  3480     prim_return_value = intcon(0);
  3481     break;
  3482   case vmIntrinsics::_isArray:
  3483     prim_return_value = intcon(0);
  3484     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3485     break;
  3486   case vmIntrinsics::_isPrimitive:
  3487     prim_return_value = intcon(1);
  3488     expect_prim = true;  // obviously
  3489     break;
  3490   case vmIntrinsics::_getSuperclass:
  3491     prim_return_value = null();
  3492     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3493     break;
  3494   case vmIntrinsics::_getComponentType:
  3495     prim_return_value = null();
  3496     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3497     break;
  3498   case vmIntrinsics::_getClassAccessFlags:
  3499     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3500     return_type = TypeInt::INT;  // not bool!  6297094
  3501     break;
  3502   default:
  3503     fatal_unexpected_iid(id);
  3504     break;
  3507   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3508   if (mirror_con == NULL)  return false;  // cannot happen?
  3510 #ifndef PRODUCT
  3511   if (C->print_intrinsics() || C->print_inlining()) {
  3512     ciType* k = mirror_con->java_mirror_type();
  3513     if (k) {
  3514       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3515       k->print_name();
  3516       tty->cr();
  3519 #endif
  3521   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3522   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3523   record_for_igvn(region);
  3524   PhiNode* phi = new (C) PhiNode(region, return_type);
  3526   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3527   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3528   // if it is. See bug 4774291.
  3530   // For Reflection.getClassAccessFlags(), the null check occurs in
  3531   // the wrong place; see inline_unsafe_access(), above, for a similar
  3532   // situation.
  3533   mirror = null_check(mirror);
  3534   // If mirror or obj is dead, only null-path is taken.
  3535   if (stopped())  return true;
  3537   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3539   // Now load the mirror's klass metaobject, and null-check it.
  3540   // Side-effects region with the control path if the klass is null.
  3541   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3542   // If kls is null, we have a primitive mirror.
  3543   phi->init_req(_prim_path, prim_return_value);
  3544   if (stopped()) { set_result(region, phi); return true; }
  3545   bool safe_for_replace = (region->in(_prim_path) == top());
  3547   Node* p;  // handy temp
  3548   Node* null_ctl;
  3550   // Now that we have the non-null klass, we can perform the real query.
  3551   // For constant classes, the query will constant-fold in LoadNode::Value.
  3552   Node* query_value = top();
  3553   switch (id) {
  3554   case vmIntrinsics::_isInstance:
  3555     // nothing is an instance of a primitive type
  3556     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3557     break;
  3559   case vmIntrinsics::_getModifiers:
  3560     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3561     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3562     break;
  3564   case vmIntrinsics::_isInterface:
  3565     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3566     if (generate_interface_guard(kls, region) != NULL)
  3567       // A guard was added.  If the guard is taken, it was an interface.
  3568       phi->add_req(intcon(1));
  3569     // If we fall through, it's a plain class.
  3570     query_value = intcon(0);
  3571     break;
  3573   case vmIntrinsics::_isArray:
  3574     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3575     if (generate_array_guard(kls, region) != NULL)
  3576       // A guard was added.  If the guard is taken, it was an array.
  3577       phi->add_req(intcon(1));
  3578     // If we fall through, it's a plain class.
  3579     query_value = intcon(0);
  3580     break;
  3582   case vmIntrinsics::_isPrimitive:
  3583     query_value = intcon(0); // "normal" path produces false
  3584     break;
  3586   case vmIntrinsics::_getSuperclass:
  3587     // The rules here are somewhat unfortunate, but we can still do better
  3588     // with random logic than with a JNI call.
  3589     // Interfaces store null or Object as _super, but must report null.
  3590     // Arrays store an intermediate super as _super, but must report Object.
  3591     // Other types can report the actual _super.
  3592     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3593     if (generate_interface_guard(kls, region) != NULL)
  3594       // A guard was added.  If the guard is taken, it was an interface.
  3595       phi->add_req(null());
  3596     if (generate_array_guard(kls, region) != NULL)
  3597       // A guard was added.  If the guard is taken, it was an array.
  3598       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3599     // If we fall through, it's a plain class.  Get its _super.
  3600     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3601     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3602     null_ctl = top();
  3603     kls = null_check_oop(kls, &null_ctl);
  3604     if (null_ctl != top()) {
  3605       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3606       region->add_req(null_ctl);
  3607       phi   ->add_req(null());
  3609     if (!stopped()) {
  3610       query_value = load_mirror_from_klass(kls);
  3612     break;
  3614   case vmIntrinsics::_getComponentType:
  3615     if (generate_array_guard(kls, region) != NULL) {
  3616       // Be sure to pin the oop load to the guard edge just created:
  3617       Node* is_array_ctrl = region->in(region->req()-1);
  3618       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3619       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
  3620       phi->add_req(cmo);
  3622     query_value = null();  // non-array case is null
  3623     break;
  3625   case vmIntrinsics::_getClassAccessFlags:
  3626     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3627     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
  3628     break;
  3630   default:
  3631     fatal_unexpected_iid(id);
  3632     break;
  3635   // Fall-through is the normal case of a query to a real class.
  3636   phi->init_req(1, query_value);
  3637   region->init_req(1, control());
  3639   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3640   set_result(region, phi);
  3641   return true;
  3644 //--------------------------inline_native_subtype_check------------------------
  3645 // This intrinsic takes the JNI calls out of the heart of
  3646 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3647 bool LibraryCallKit::inline_native_subtype_check() {
  3648   // Pull both arguments off the stack.
  3649   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3650   args[0] = argument(0);
  3651   args[1] = argument(1);
  3652   Node* klasses[2];             // corresponding Klasses: superk, subk
  3653   klasses[0] = klasses[1] = top();
  3655   enum {
  3656     // A full decision tree on {superc is prim, subc is prim}:
  3657     _prim_0_path = 1,           // {P,N} => false
  3658                                 // {P,P} & superc!=subc => false
  3659     _prim_same_path,            // {P,P} & superc==subc => true
  3660     _prim_1_path,               // {N,P} => false
  3661     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3662     _both_ref_path,             // {N,N} & subtype check loses => false
  3663     PATH_LIMIT
  3664   };
  3666   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3667   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3668   record_for_igvn(region);
  3670   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3671   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3672   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3674   // First null-check both mirrors and load each mirror's klass metaobject.
  3675   int which_arg;
  3676   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3677     Node* arg = args[which_arg];
  3678     arg = null_check(arg);
  3679     if (stopped())  break;
  3680     args[which_arg] = arg;
  3682     Node* p = basic_plus_adr(arg, class_klass_offset);
  3683     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
  3684     klasses[which_arg] = _gvn.transform(kls);
  3687   // Having loaded both klasses, test each for null.
  3688   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3689   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3690     Node* kls = klasses[which_arg];
  3691     Node* null_ctl = top();
  3692     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3693     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3694     region->init_req(prim_path, null_ctl);
  3695     if (stopped())  break;
  3696     klasses[which_arg] = kls;
  3699   if (!stopped()) {
  3700     // now we have two reference types, in klasses[0..1]
  3701     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3702     Node* superk = klasses[0];  // the receiver
  3703     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3704     // now we have a successful reference subtype check
  3705     region->set_req(_ref_subtype_path, control());
  3708   // If both operands are primitive (both klasses null), then
  3709   // we must return true when they are identical primitives.
  3710   // It is convenient to test this after the first null klass check.
  3711   set_control(region->in(_prim_0_path)); // go back to first null check
  3712   if (!stopped()) {
  3713     // Since superc is primitive, make a guard for the superc==subc case.
  3714     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3715     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3716     generate_guard(bol_eq, region, PROB_FAIR);
  3717     if (region->req() == PATH_LIMIT+1) {
  3718       // A guard was added.  If the added guard is taken, superc==subc.
  3719       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3720       region->del_req(PATH_LIMIT);
  3722     region->set_req(_prim_0_path, control()); // Not equal after all.
  3725   // these are the only paths that produce 'true':
  3726   phi->set_req(_prim_same_path,   intcon(1));
  3727   phi->set_req(_ref_subtype_path, intcon(1));
  3729   // pull together the cases:
  3730   assert(region->req() == PATH_LIMIT, "sane region");
  3731   for (uint i = 1; i < region->req(); i++) {
  3732     Node* ctl = region->in(i);
  3733     if (ctl == NULL || ctl == top()) {
  3734       region->set_req(i, top());
  3735       phi   ->set_req(i, top());
  3736     } else if (phi->in(i) == NULL) {
  3737       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3741   set_control(_gvn.transform(region));
  3742   set_result(_gvn.transform(phi));
  3743   return true;
  3746 //---------------------generate_array_guard_common------------------------
  3747 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3748                                                   bool obj_array, bool not_array) {
  3749   // If obj_array/non_array==false/false:
  3750   // Branch around if the given klass is in fact an array (either obj or prim).
  3751   // If obj_array/non_array==false/true:
  3752   // Branch around if the given klass is not an array klass of any kind.
  3753   // If obj_array/non_array==true/true:
  3754   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3755   // If obj_array/non_array==true/false:
  3756   // Branch around if the kls is an oop array (Object[] or subtype)
  3757   //
  3758   // Like generate_guard, adds a new path onto the region.
  3759   jint  layout_con = 0;
  3760   Node* layout_val = get_layout_helper(kls, layout_con);
  3761   if (layout_val == NULL) {
  3762     bool query = (obj_array
  3763                   ? Klass::layout_helper_is_objArray(layout_con)
  3764                   : Klass::layout_helper_is_array(layout_con));
  3765     if (query == not_array) {
  3766       return NULL;                       // never a branch
  3767     } else {                             // always a branch
  3768       Node* always_branch = control();
  3769       if (region != NULL)
  3770         region->add_req(always_branch);
  3771       set_control(top());
  3772       return always_branch;
  3775   // Now test the correct condition.
  3776   jint  nval = (obj_array
  3777                 ? ((jint)Klass::_lh_array_tag_type_value
  3778                    <<    Klass::_lh_array_tag_shift)
  3779                 : Klass::_lh_neutral_value);
  3780   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3781   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3782   // invert the test if we are looking for a non-array
  3783   if (not_array)  btest = BoolTest(btest).negate();
  3784   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3785   return generate_fair_guard(bol, region);
  3789 //-----------------------inline_native_newArray--------------------------
  3790 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3791 bool LibraryCallKit::inline_native_newArray() {
  3792   Node* mirror    = argument(0);
  3793   Node* count_val = argument(1);
  3795   mirror = null_check(mirror);
  3796   // If mirror or obj is dead, only null-path is taken.
  3797   if (stopped())  return true;
  3799   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3800   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3801   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3802                                           TypeInstPtr::NOTNULL);
  3803   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3804   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3805                                           TypePtr::BOTTOM);
  3807   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3808   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3809                                                   result_reg, _slow_path);
  3810   Node* normal_ctl   = control();
  3811   Node* no_array_ctl = result_reg->in(_slow_path);
  3813   // Generate code for the slow case.  We make a call to newArray().
  3814   set_control(no_array_ctl);
  3815   if (!stopped()) {
  3816     // Either the input type is void.class, or else the
  3817     // array klass has not yet been cached.  Either the
  3818     // ensuing call will throw an exception, or else it
  3819     // will cache the array klass for next time.
  3820     PreserveJVMState pjvms(this);
  3821     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3822     Node* slow_result = set_results_for_java_call(slow_call);
  3823     // this->control() comes from set_results_for_java_call
  3824     result_reg->set_req(_slow_path, control());
  3825     result_val->set_req(_slow_path, slow_result);
  3826     result_io ->set_req(_slow_path, i_o());
  3827     result_mem->set_req(_slow_path, reset_memory());
  3830   set_control(normal_ctl);
  3831   if (!stopped()) {
  3832     // Normal case:  The array type has been cached in the java.lang.Class.
  3833     // The following call works fine even if the array type is polymorphic.
  3834     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3835     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3836     result_reg->init_req(_normal_path, control());
  3837     result_val->init_req(_normal_path, obj);
  3838     result_io ->init_req(_normal_path, i_o());
  3839     result_mem->init_req(_normal_path, reset_memory());
  3842   // Return the combined state.
  3843   set_i_o(        _gvn.transform(result_io)  );
  3844   set_all_memory( _gvn.transform(result_mem));
  3846   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3847   set_result(result_reg, result_val);
  3848   return true;
  3851 //----------------------inline_native_getLength--------------------------
  3852 // public static native int java.lang.reflect.Array.getLength(Object array);
  3853 bool LibraryCallKit::inline_native_getLength() {
  3854   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3856   Node* array = null_check(argument(0));
  3857   // If array is dead, only null-path is taken.
  3858   if (stopped())  return true;
  3860   // Deoptimize if it is a non-array.
  3861   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3863   if (non_array != NULL) {
  3864     PreserveJVMState pjvms(this);
  3865     set_control(non_array);
  3866     uncommon_trap(Deoptimization::Reason_intrinsic,
  3867                   Deoptimization::Action_maybe_recompile);
  3870   // If control is dead, only non-array-path is taken.
  3871   if (stopped())  return true;
  3873   // The works fine even if the array type is polymorphic.
  3874   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3875   Node* result = load_array_length(array);
  3877   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3878   set_result(result);
  3879   return true;
  3882 //------------------------inline_array_copyOf----------------------------
  3883 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3884 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3885 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3886   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3888   // Get the arguments.
  3889   Node* original          = argument(0);
  3890   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3891   Node* end               = is_copyOfRange? argument(2): argument(1);
  3892   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3894   Node* newcopy = NULL;
  3896   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3897   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3898   { PreserveReexecuteState preexecs(this);
  3899     jvms()->set_should_reexecute(true);
  3901     array_type_mirror = null_check(array_type_mirror);
  3902     original          = null_check(original);
  3904     // Check if a null path was taken unconditionally.
  3905     if (stopped())  return true;
  3907     Node* orig_length = load_array_length(original);
  3909     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3910     klass_node = null_check(klass_node);
  3912     RegionNode* bailout = new (C) RegionNode(1);
  3913     record_for_igvn(bailout);
  3915     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3916     // Bail out if that is so.
  3917     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3918     if (not_objArray != NULL) {
  3919       // Improve the klass node's type from the new optimistic assumption:
  3920       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3921       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3922       Node* cast = new (C) CastPPNode(klass_node, akls);
  3923       cast->init_req(0, control());
  3924       klass_node = _gvn.transform(cast);
  3927     // Bail out if either start or end is negative.
  3928     generate_negative_guard(start, bailout, &start);
  3929     generate_negative_guard(end,   bailout, &end);
  3931     Node* length = end;
  3932     if (_gvn.type(start) != TypeInt::ZERO) {
  3933       length = _gvn.transform(new (C) SubINode(end, start));
  3936     // Bail out if length is negative.
  3937     // Without this the new_array would throw
  3938     // NegativeArraySizeException but IllegalArgumentException is what
  3939     // should be thrown
  3940     generate_negative_guard(length, bailout, &length);
  3942     if (bailout->req() > 1) {
  3943       PreserveJVMState pjvms(this);
  3944       set_control(_gvn.transform(bailout));
  3945       uncommon_trap(Deoptimization::Reason_intrinsic,
  3946                     Deoptimization::Action_maybe_recompile);
  3949     if (!stopped()) {
  3950       // How many elements will we copy from the original?
  3951       // The answer is MinI(orig_length - start, length).
  3952       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3953       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3955       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3957       // Generate a direct call to the right arraycopy function(s).
  3958       // We know the copy is disjoint but we might not know if the
  3959       // oop stores need checking.
  3960       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3961       // This will fail a store-check if x contains any non-nulls.
  3962       bool disjoint_bases = true;
  3963       // if start > orig_length then the length of the copy may be
  3964       // negative.
  3965       bool length_never_negative = !is_copyOfRange;
  3966       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3967                          original, start, newcopy, intcon(0), moved,
  3968                          disjoint_bases, length_never_negative);
  3970   } // original reexecute is set back here
  3972   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3973   if (!stopped()) {
  3974     set_result(newcopy);
  3976   return true;
  3980 //----------------------generate_virtual_guard---------------------------
  3981 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3982 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3983                                              RegionNode* slow_region) {
  3984   ciMethod* method = callee();
  3985   int vtable_index = method->vtable_index();
  3986   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3987          err_msg_res("bad index %d", vtable_index));
  3988   // Get the Method* out of the appropriate vtable entry.
  3989   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3990                      vtable_index*vtableEntry::size()) * wordSize +
  3991                      vtableEntry::method_offset_in_bytes();
  3992   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3993   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
  3995   // Compare the target method with the expected method (e.g., Object.hashCode).
  3996   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3998   Node* native_call = makecon(native_call_addr);
  3999   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  4000   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  4002   return generate_slow_guard(test_native, slow_region);
  4005 //-----------------------generate_method_call----------------------------
  4006 // Use generate_method_call to make a slow-call to the real
  4007 // method if the fast path fails.  An alternative would be to
  4008 // use a stub like OptoRuntime::slow_arraycopy_Java.
  4009 // This only works for expanding the current library call,
  4010 // not another intrinsic.  (E.g., don't use this for making an
  4011 // arraycopy call inside of the copyOf intrinsic.)
  4012 CallJavaNode*
  4013 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  4014   // When compiling the intrinsic method itself, do not use this technique.
  4015   guarantee(callee() != C->method(), "cannot make slow-call to self");
  4017   ciMethod* method = callee();
  4018   // ensure the JVMS we have will be correct for this call
  4019   guarantee(method_id == method->intrinsic_id(), "must match");
  4021   const TypeFunc* tf = TypeFunc::make(method);
  4022   CallJavaNode* slow_call;
  4023   if (is_static) {
  4024     assert(!is_virtual, "");
  4025     slow_call = new(C) CallStaticJavaNode(C, tf,
  4026                            SharedRuntime::get_resolve_static_call_stub(),
  4027                            method, bci());
  4028   } else if (is_virtual) {
  4029     null_check_receiver();
  4030     int vtable_index = Method::invalid_vtable_index;
  4031     if (UseInlineCaches) {
  4032       // Suppress the vtable call
  4033     } else {
  4034       // hashCode and clone are not a miranda methods,
  4035       // so the vtable index is fixed.
  4036       // No need to use the linkResolver to get it.
  4037        vtable_index = method->vtable_index();
  4038        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  4039               err_msg_res("bad index %d", vtable_index));
  4041     slow_call = new(C) CallDynamicJavaNode(tf,
  4042                           SharedRuntime::get_resolve_virtual_call_stub(),
  4043                           method, vtable_index, bci());
  4044   } else {  // neither virtual nor static:  opt_virtual
  4045     null_check_receiver();
  4046     slow_call = new(C) CallStaticJavaNode(C, tf,
  4047                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  4048                                 method, bci());
  4049     slow_call->set_optimized_virtual(true);
  4051   set_arguments_for_java_call(slow_call);
  4052   set_edges_for_java_call(slow_call);
  4053   return slow_call;
  4057 /**
  4058  * Build special case code for calls to hashCode on an object. This call may
  4059  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
  4060  * slightly different code.
  4061  */
  4062 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  4063   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  4064   assert(!(is_virtual && is_static), "either virtual, special, or static");
  4066   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  4068   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4069   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
  4070   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  4071   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
  4072   Node* obj = NULL;
  4073   if (!is_static) {
  4074     // Check for hashing null object
  4075     obj = null_check_receiver();
  4076     if (stopped())  return true;        // unconditionally null
  4077     result_reg->init_req(_null_path, top());
  4078     result_val->init_req(_null_path, top());
  4079   } else {
  4080     // Do a null check, and return zero if null.
  4081     // System.identityHashCode(null) == 0
  4082     obj = argument(0);
  4083     Node* null_ctl = top();
  4084     obj = null_check_oop(obj, &null_ctl);
  4085     result_reg->init_req(_null_path, null_ctl);
  4086     result_val->init_req(_null_path, _gvn.intcon(0));
  4089   // Unconditionally null?  Then return right away.
  4090   if (stopped()) {
  4091     set_control( result_reg->in(_null_path));
  4092     if (!stopped())
  4093       set_result(result_val->in(_null_path));
  4094     return true;
  4097   // We only go to the fast case code if we pass a number of guards.  The
  4098   // paths which do not pass are accumulated in the slow_region.
  4099   RegionNode* slow_region = new (C) RegionNode(1);
  4100   record_for_igvn(slow_region);
  4102   // If this is a virtual call, we generate a funny guard.  We pull out
  4103   // the vtable entry corresponding to hashCode() from the target object.
  4104   // If the target method which we are calling happens to be the native
  4105   // Object hashCode() method, we pass the guard.  We do not need this
  4106   // guard for non-virtual calls -- the caller is known to be the native
  4107   // Object hashCode().
  4108   if (is_virtual) {
  4109     // After null check, get the object's klass.
  4110     Node* obj_klass = load_object_klass(obj);
  4111     generate_virtual_guard(obj_klass, slow_region);
  4114   // Get the header out of the object, use LoadMarkNode when available
  4115   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4116   // The control of the load must be NULL. Otherwise, the load can move before
  4117   // the null check after castPP removal.
  4118   Node* no_ctrl = NULL;
  4119   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
  4121   // Test the header to see if it is unlocked.
  4122   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4123   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4124   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4125   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4126   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4128   generate_slow_guard(test_unlocked, slow_region);
  4130   // Get the hash value and check to see that it has been properly assigned.
  4131   // We depend on hash_mask being at most 32 bits and avoid the use of
  4132   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4133   // vm: see markOop.hpp.
  4134   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4135   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4136   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4137   // This hack lets the hash bits live anywhere in the mark object now, as long
  4138   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4139   // Java spec says that HashCode is an int so there's no point in capturing
  4140   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4141   hshifted_header      = ConvX2I(hshifted_header);
  4142   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4144   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4145   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4146   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4148   generate_slow_guard(test_assigned, slow_region);
  4150   Node* init_mem = reset_memory();
  4151   // fill in the rest of the null path:
  4152   result_io ->init_req(_null_path, i_o());
  4153   result_mem->init_req(_null_path, init_mem);
  4155   result_val->init_req(_fast_path, hash_val);
  4156   result_reg->init_req(_fast_path, control());
  4157   result_io ->init_req(_fast_path, i_o());
  4158   result_mem->init_req(_fast_path, init_mem);
  4160   // Generate code for the slow case.  We make a call to hashCode().
  4161   set_control(_gvn.transform(slow_region));
  4162   if (!stopped()) {
  4163     // No need for PreserveJVMState, because we're using up the present state.
  4164     set_all_memory(init_mem);
  4165     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4166     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4167     Node* slow_result = set_results_for_java_call(slow_call);
  4168     // this->control() comes from set_results_for_java_call
  4169     result_reg->init_req(_slow_path, control());
  4170     result_val->init_req(_slow_path, slow_result);
  4171     result_io  ->set_req(_slow_path, i_o());
  4172     result_mem ->set_req(_slow_path, reset_memory());
  4175   // Return the combined state.
  4176   set_i_o(        _gvn.transform(result_io)  );
  4177   set_all_memory( _gvn.transform(result_mem));
  4179   set_result(result_reg, result_val);
  4180   return true;
  4183 //---------------------------inline_native_getClass----------------------------
  4184 // public final native Class<?> java.lang.Object.getClass();
  4185 //
  4186 // Build special case code for calls to getClass on an object.
  4187 bool LibraryCallKit::inline_native_getClass() {
  4188   Node* obj = null_check_receiver();
  4189   if (stopped())  return true;
  4190   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4191   return true;
  4194 //-----------------inline_native_Reflection_getCallerClass---------------------
  4195 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4196 //
  4197 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4198 //
  4199 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4200 // in that it must skip particular security frames and checks for
  4201 // caller sensitive methods.
  4202 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4203 #ifndef PRODUCT
  4204   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4205     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4207 #endif
  4209   if (!jvms()->has_method()) {
  4210 #ifndef PRODUCT
  4211     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4212       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4214 #endif
  4215     return false;
  4218   // Walk back up the JVM state to find the caller at the required
  4219   // depth.
  4220   JVMState* caller_jvms = jvms();
  4222   // Cf. JVM_GetCallerClass
  4223   // NOTE: Start the loop at depth 1 because the current JVM state does
  4224   // not include the Reflection.getCallerClass() frame.
  4225   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4226     ciMethod* m = caller_jvms->method();
  4227     switch (n) {
  4228     case 0:
  4229       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4230       break;
  4231     case 1:
  4232       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4233       if (!m->caller_sensitive()) {
  4234 #ifndef PRODUCT
  4235         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4236           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4238 #endif
  4239         return false;  // bail-out; let JVM_GetCallerClass do the work
  4241       break;
  4242     default:
  4243       if (!m->is_ignored_by_security_stack_walk()) {
  4244         // We have reached the desired frame; return the holder class.
  4245         // Acquire method holder as java.lang.Class and push as constant.
  4246         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4247         ciInstance* caller_mirror = caller_klass->java_mirror();
  4248         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4250 #ifndef PRODUCT
  4251         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4252           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4253           tty->print_cr("  JVM state at this point:");
  4254           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4255             ciMethod* m = jvms()->of_depth(i)->method();
  4256             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4259 #endif
  4260         return true;
  4262       break;
  4266 #ifndef PRODUCT
  4267   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4268     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4269     tty->print_cr("  JVM state at this point:");
  4270     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4271       ciMethod* m = jvms()->of_depth(i)->method();
  4272       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4275 #endif
  4277   return false;  // bail-out; let JVM_GetCallerClass do the work
  4280 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4281   Node* arg = argument(0);
  4282   Node* result = NULL;
  4284   switch (id) {
  4285   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4286   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4287   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4288   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4290   case vmIntrinsics::_doubleToLongBits: {
  4291     // two paths (plus control) merge in a wood
  4292     RegionNode *r = new (C) RegionNode(3);
  4293     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4295     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4296     // Build the boolean node
  4297     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4299     // Branch either way.
  4300     // NaN case is less traveled, which makes all the difference.
  4301     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4302     Node *opt_isnan = _gvn.transform(ifisnan);
  4303     assert( opt_isnan->is_If(), "Expect an IfNode");
  4304     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4305     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4307     set_control(iftrue);
  4309     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4310     Node *slow_result = longcon(nan_bits); // return NaN
  4311     phi->init_req(1, _gvn.transform( slow_result ));
  4312     r->init_req(1, iftrue);
  4314     // Else fall through
  4315     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4316     set_control(iffalse);
  4318     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4319     r->init_req(2, iffalse);
  4321     // Post merge
  4322     set_control(_gvn.transform(r));
  4323     record_for_igvn(r);
  4325     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4326     result = phi;
  4327     assert(result->bottom_type()->isa_long(), "must be");
  4328     break;
  4331   case vmIntrinsics::_floatToIntBits: {
  4332     // two paths (plus control) merge in a wood
  4333     RegionNode *r = new (C) RegionNode(3);
  4334     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4336     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4337     // Build the boolean node
  4338     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4340     // Branch either way.
  4341     // NaN case is less traveled, which makes all the difference.
  4342     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4343     Node *opt_isnan = _gvn.transform(ifisnan);
  4344     assert( opt_isnan->is_If(), "Expect an IfNode");
  4345     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4346     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4348     set_control(iftrue);
  4350     static const jint nan_bits = 0x7fc00000;
  4351     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4352     phi->init_req(1, _gvn.transform( slow_result ));
  4353     r->init_req(1, iftrue);
  4355     // Else fall through
  4356     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4357     set_control(iffalse);
  4359     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4360     r->init_req(2, iffalse);
  4362     // Post merge
  4363     set_control(_gvn.transform(r));
  4364     record_for_igvn(r);
  4366     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4367     result = phi;
  4368     assert(result->bottom_type()->isa_int(), "must be");
  4369     break;
  4372   default:
  4373     fatal_unexpected_iid(id);
  4374     break;
  4376   set_result(_gvn.transform(result));
  4377   return true;
  4380 #ifdef _LP64
  4381 #define XTOP ,top() /*additional argument*/
  4382 #else  //_LP64
  4383 #define XTOP        /*no additional argument*/
  4384 #endif //_LP64
  4386 //----------------------inline_unsafe_copyMemory-------------------------
  4387 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4388 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4389   if (callee()->is_static())  return false;  // caller must have the capability!
  4390   null_check_receiver();  // null-check receiver
  4391   if (stopped())  return true;
  4393   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4395   Node* src_ptr =         argument(1);   // type: oop
  4396   Node* src_off = ConvL2X(argument(2));  // type: long
  4397   Node* dst_ptr =         argument(4);   // type: oop
  4398   Node* dst_off = ConvL2X(argument(5));  // type: long
  4399   Node* size    = ConvL2X(argument(7));  // type: long
  4401   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4402          "fieldOffset must be byte-scaled");
  4404   Node* src = make_unsafe_address(src_ptr, src_off);
  4405   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4407   // Conservatively insert a memory barrier on all memory slices.
  4408   // Do not let writes of the copy source or destination float below the copy.
  4409   insert_mem_bar(Op_MemBarCPUOrder);
  4411   // Call it.  Note that the length argument is not scaled.
  4412   make_runtime_call(RC_LEAF|RC_NO_FP,
  4413                     OptoRuntime::fast_arraycopy_Type(),
  4414                     StubRoutines::unsafe_arraycopy(),
  4415                     "unsafe_arraycopy",
  4416                     TypeRawPtr::BOTTOM,
  4417                     src, dst, size XTOP);
  4419   // Do not let reads of the copy destination float above the copy.
  4420   insert_mem_bar(Op_MemBarCPUOrder);
  4422   return true;
  4425 //------------------------clone_coping-----------------------------------
  4426 // Helper function for inline_native_clone.
  4427 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4428   assert(obj_size != NULL, "");
  4429   Node* raw_obj = alloc_obj->in(1);
  4430   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4432   AllocateNode* alloc = NULL;
  4433   if (ReduceBulkZeroing) {
  4434     // We will be completely responsible for initializing this object -
  4435     // mark Initialize node as complete.
  4436     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4437     // The object was just allocated - there should be no any stores!
  4438     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4439     // Mark as complete_with_arraycopy so that on AllocateNode
  4440     // expansion, we know this AllocateNode is initialized by an array
  4441     // copy and a StoreStore barrier exists after the array copy.
  4442     alloc->initialization()->set_complete_with_arraycopy();
  4445   // Copy the fastest available way.
  4446   // TODO: generate fields copies for small objects instead.
  4447   Node* src  = obj;
  4448   Node* dest = alloc_obj;
  4449   Node* size = _gvn.transform(obj_size);
  4451   // Exclude the header but include array length to copy by 8 bytes words.
  4452   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4453   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4454                             instanceOopDesc::base_offset_in_bytes();
  4455   // base_off:
  4456   // 8  - 32-bit VM
  4457   // 12 - 64-bit VM, compressed klass
  4458   // 16 - 64-bit VM, normal klass
  4459   if (base_off % BytesPerLong != 0) {
  4460     assert(UseCompressedClassPointers, "");
  4461     if (is_array) {
  4462       // Exclude length to copy by 8 bytes words.
  4463       base_off += sizeof(int);
  4464     } else {
  4465       // Include klass to copy by 8 bytes words.
  4466       base_off = instanceOopDesc::klass_offset_in_bytes();
  4468     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4470   src  = basic_plus_adr(src,  base_off);
  4471   dest = basic_plus_adr(dest, base_off);
  4473   // Compute the length also, if needed:
  4474   Node* countx = size;
  4475   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4476   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4478   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4479   bool disjoint_bases = true;
  4480   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4481                                src, NULL, dest, NULL, countx,
  4482                                /*dest_uninitialized*/true);
  4484   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4485   if (card_mark) {
  4486     assert(!is_array, "");
  4487     // Put in store barrier for any and all oops we are sticking
  4488     // into this object.  (We could avoid this if we could prove
  4489     // that the object type contains no oop fields at all.)
  4490     Node* no_particular_value = NULL;
  4491     Node* no_particular_field = NULL;
  4492     int raw_adr_idx = Compile::AliasIdxRaw;
  4493     post_barrier(control(),
  4494                  memory(raw_adr_type),
  4495                  alloc_obj,
  4496                  no_particular_field,
  4497                  raw_adr_idx,
  4498                  no_particular_value,
  4499                  T_OBJECT,
  4500                  false);
  4503   // Do not let reads from the cloned object float above the arraycopy.
  4504   if (alloc != NULL) {
  4505     // Do not let stores that initialize this object be reordered with
  4506     // a subsequent store that would make this object accessible by
  4507     // other threads.
  4508     // Record what AllocateNode this StoreStore protects so that
  4509     // escape analysis can go from the MemBarStoreStoreNode to the
  4510     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4511     // based on the escape status of the AllocateNode.
  4512     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4513   } else {
  4514     insert_mem_bar(Op_MemBarCPUOrder);
  4518 //------------------------inline_native_clone----------------------------
  4519 // protected native Object java.lang.Object.clone();
  4520 //
  4521 // Here are the simple edge cases:
  4522 //  null receiver => normal trap
  4523 //  virtual and clone was overridden => slow path to out-of-line clone
  4524 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4525 //
  4526 // The general case has two steps, allocation and copying.
  4527 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4528 //
  4529 // Copying also has two cases, oop arrays and everything else.
  4530 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4531 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4532 //
  4533 // These steps fold up nicely if and when the cloned object's klass
  4534 // can be sharply typed as an object array, a type array, or an instance.
  4535 //
  4536 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4537   PhiNode* result_val;
  4539   // Set the reexecute bit for the interpreter to reexecute
  4540   // the bytecode that invokes Object.clone if deoptimization happens.
  4541   { PreserveReexecuteState preexecs(this);
  4542     jvms()->set_should_reexecute(true);
  4544     Node* obj = null_check_receiver();
  4545     if (stopped())  return true;
  4547     Node* obj_klass = load_object_klass(obj);
  4548     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4549     const TypeOopPtr*   toop   = ((tklass != NULL)
  4550                                 ? tklass->as_instance_type()
  4551                                 : TypeInstPtr::NOTNULL);
  4553     // Conservatively insert a memory barrier on all memory slices.
  4554     // Do not let writes into the original float below the clone.
  4555     insert_mem_bar(Op_MemBarCPUOrder);
  4557     // paths into result_reg:
  4558     enum {
  4559       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4560       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4561       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4562       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4563       PATH_LIMIT
  4564     };
  4565     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4566     result_val             = new(C) PhiNode(result_reg,
  4567                                             TypeInstPtr::NOTNULL);
  4568     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4569     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4570                                             TypePtr::BOTTOM);
  4571     record_for_igvn(result_reg);
  4573     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4574     int raw_adr_idx = Compile::AliasIdxRaw;
  4576     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4577     if (array_ctl != NULL) {
  4578       // It's an array.
  4579       PreserveJVMState pjvms(this);
  4580       set_control(array_ctl);
  4581       Node* obj_length = load_array_length(obj);
  4582       Node* obj_size  = NULL;
  4583       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4585       if (!use_ReduceInitialCardMarks()) {
  4586         // If it is an oop array, it requires very special treatment,
  4587         // because card marking is required on each card of the array.
  4588         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4589         if (is_obja != NULL) {
  4590           PreserveJVMState pjvms2(this);
  4591           set_control(is_obja);
  4592           // Generate a direct call to the right arraycopy function(s).
  4593           bool disjoint_bases = true;
  4594           bool length_never_negative = true;
  4595           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4596                              obj, intcon(0), alloc_obj, intcon(0),
  4597                              obj_length,
  4598                              disjoint_bases, length_never_negative);
  4599           result_reg->init_req(_objArray_path, control());
  4600           result_val->init_req(_objArray_path, alloc_obj);
  4601           result_i_o ->set_req(_objArray_path, i_o());
  4602           result_mem ->set_req(_objArray_path, reset_memory());
  4605       // Otherwise, there are no card marks to worry about.
  4606       // (We can dispense with card marks if we know the allocation
  4607       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4608       //  causes the non-eden paths to take compensating steps to
  4609       //  simulate a fresh allocation, so that no further
  4610       //  card marks are required in compiled code to initialize
  4611       //  the object.)
  4613       if (!stopped()) {
  4614         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4616         // Present the results of the copy.
  4617         result_reg->init_req(_array_path, control());
  4618         result_val->init_req(_array_path, alloc_obj);
  4619         result_i_o ->set_req(_array_path, i_o());
  4620         result_mem ->set_req(_array_path, reset_memory());
  4624     // We only go to the instance fast case code if we pass a number of guards.
  4625     // The paths which do not pass are accumulated in the slow_region.
  4626     RegionNode* slow_region = new (C) RegionNode(1);
  4627     record_for_igvn(slow_region);
  4628     if (!stopped()) {
  4629       // It's an instance (we did array above).  Make the slow-path tests.
  4630       // If this is a virtual call, we generate a funny guard.  We grab
  4631       // the vtable entry corresponding to clone() from the target object.
  4632       // If the target method which we are calling happens to be the
  4633       // Object clone() method, we pass the guard.  We do not need this
  4634       // guard for non-virtual calls; the caller is known to be the native
  4635       // Object clone().
  4636       if (is_virtual) {
  4637         generate_virtual_guard(obj_klass, slow_region);
  4640       // The object must be cloneable and must not have a finalizer.
  4641       // Both of these conditions may be checked in a single test.
  4642       // We could optimize the cloneable test further, but we don't care.
  4643       generate_access_flags_guard(obj_klass,
  4644                                   // Test both conditions:
  4645                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4646                                   // Must be cloneable but not finalizer:
  4647                                   JVM_ACC_IS_CLONEABLE,
  4648                                   slow_region);
  4651     if (!stopped()) {
  4652       // It's an instance, and it passed the slow-path tests.
  4653       PreserveJVMState pjvms(this);
  4654       Node* obj_size  = NULL;
  4655       // Need to deoptimize on exception from allocation since Object.clone intrinsic
  4656       // is reexecuted if deoptimization occurs and there could be problems when merging
  4657       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
  4658       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
  4660       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4662       // Present the results of the slow call.
  4663       result_reg->init_req(_instance_path, control());
  4664       result_val->init_req(_instance_path, alloc_obj);
  4665       result_i_o ->set_req(_instance_path, i_o());
  4666       result_mem ->set_req(_instance_path, reset_memory());
  4669     // Generate code for the slow case.  We make a call to clone().
  4670     set_control(_gvn.transform(slow_region));
  4671     if (!stopped()) {
  4672       PreserveJVMState pjvms(this);
  4673       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4674       Node* slow_result = set_results_for_java_call(slow_call);
  4675       // this->control() comes from set_results_for_java_call
  4676       result_reg->init_req(_slow_path, control());
  4677       result_val->init_req(_slow_path, slow_result);
  4678       result_i_o ->set_req(_slow_path, i_o());
  4679       result_mem ->set_req(_slow_path, reset_memory());
  4682     // Return the combined state.
  4683     set_control(    _gvn.transform(result_reg));
  4684     set_i_o(        _gvn.transform(result_i_o));
  4685     set_all_memory( _gvn.transform(result_mem));
  4686   } // original reexecute is set back here
  4688   set_result(_gvn.transform(result_val));
  4689   return true;
  4692 //------------------------------basictype2arraycopy----------------------------
  4693 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4694                                             Node* src_offset,
  4695                                             Node* dest_offset,
  4696                                             bool disjoint_bases,
  4697                                             const char* &name,
  4698                                             bool dest_uninitialized) {
  4699   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4700   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4702   bool aligned = false;
  4703   bool disjoint = disjoint_bases;
  4705   // if the offsets are the same, we can treat the memory regions as
  4706   // disjoint, because either the memory regions are in different arrays,
  4707   // or they are identical (which we can treat as disjoint.)  We can also
  4708   // treat a copy with a destination index  less that the source index
  4709   // as disjoint since a low->high copy will work correctly in this case.
  4710   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4711       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4712     // both indices are constants
  4713     int s_offs = src_offset_inttype->get_con();
  4714     int d_offs = dest_offset_inttype->get_con();
  4715     int element_size = type2aelembytes(t);
  4716     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4717               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4718     if (s_offs >= d_offs)  disjoint = true;
  4719   } else if (src_offset == dest_offset && src_offset != NULL) {
  4720     // This can occur if the offsets are identical non-constants.
  4721     disjoint = true;
  4724   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4728 //------------------------------inline_arraycopy-----------------------
  4729 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4730 //                                                      Object dest, int destPos,
  4731 //                                                      int length);
  4732 bool LibraryCallKit::inline_arraycopy() {
  4733   // Get the arguments.
  4734   Node* src         = argument(0);  // type: oop
  4735   Node* src_offset  = argument(1);  // type: int
  4736   Node* dest        = argument(2);  // type: oop
  4737   Node* dest_offset = argument(3);  // type: int
  4738   Node* length      = argument(4);  // type: int
  4740   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4741   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4742   // is.  The checks we choose to mandate at compile time are:
  4743   //
  4744   // (1) src and dest are arrays.
  4745   const Type* src_type  = src->Value(&_gvn);
  4746   const Type* dest_type = dest->Value(&_gvn);
  4747   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4748   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4750   // Do we have the type of src?
  4751   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4752   // Do we have the type of dest?
  4753   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4754   // Is the type for src from speculation?
  4755   bool src_spec = false;
  4756   // Is the type for dest from speculation?
  4757   bool dest_spec = false;
  4759   if (!has_src || !has_dest) {
  4760     // We don't have sufficient type information, let's see if
  4761     // speculative types can help. We need to have types for both src
  4762     // and dest so that it pays off.
  4764     // Do we already have or could we have type information for src
  4765     bool could_have_src = has_src;
  4766     // Do we already have or could we have type information for dest
  4767     bool could_have_dest = has_dest;
  4769     ciKlass* src_k = NULL;
  4770     if (!has_src) {
  4771       src_k = src_type->speculative_type();
  4772       if (src_k != NULL && src_k->is_array_klass()) {
  4773         could_have_src = true;
  4777     ciKlass* dest_k = NULL;
  4778     if (!has_dest) {
  4779       dest_k = dest_type->speculative_type();
  4780       if (dest_k != NULL && dest_k->is_array_klass()) {
  4781         could_have_dest = true;
  4785     if (could_have_src && could_have_dest) {
  4786       // This is going to pay off so emit the required guards
  4787       if (!has_src) {
  4788         src = maybe_cast_profiled_obj(src, src_k);
  4789         src_type  = _gvn.type(src);
  4790         top_src  = src_type->isa_aryptr();
  4791         has_src = (top_src != NULL && top_src->klass() != NULL);
  4792         src_spec = true;
  4794       if (!has_dest) {
  4795         dest = maybe_cast_profiled_obj(dest, dest_k);
  4796         dest_type  = _gvn.type(dest);
  4797         top_dest  = dest_type->isa_aryptr();
  4798         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4799         dest_spec = true;
  4804   if (!has_src || !has_dest) {
  4805     // Conservatively insert a memory barrier on all memory slices.
  4806     // Do not let writes into the source float below the arraycopy.
  4807     insert_mem_bar(Op_MemBarCPUOrder);
  4809     // Call StubRoutines::generic_arraycopy stub.
  4810     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4811                        src, src_offset, dest, dest_offset, length);
  4813     // Do not let reads from the destination float above the arraycopy.
  4814     // Since we cannot type the arrays, we don't know which slices
  4815     // might be affected.  We could restrict this barrier only to those
  4816     // memory slices which pertain to array elements--but don't bother.
  4817     if (!InsertMemBarAfterArraycopy)
  4818       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4819       insert_mem_bar(Op_MemBarCPUOrder);
  4820     return true;
  4823   // (2) src and dest arrays must have elements of the same BasicType
  4824   // Figure out the size and type of the elements we will be copying.
  4825   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4826   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4827   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4828   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4830   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4831     // The component types are not the same or are not recognized.  Punt.
  4832     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4833     generate_slow_arraycopy(TypePtr::BOTTOM,
  4834                             src, src_offset, dest, dest_offset, length,
  4835                             /*dest_uninitialized*/false);
  4836     return true;
  4839   if (src_elem == T_OBJECT) {
  4840     // If both arrays are object arrays then having the exact types
  4841     // for both will remove the need for a subtype check at runtime
  4842     // before the call and may make it possible to pick a faster copy
  4843     // routine (without a subtype check on every element)
  4844     // Do we have the exact type of src?
  4845     bool could_have_src = src_spec;
  4846     // Do we have the exact type of dest?
  4847     bool could_have_dest = dest_spec;
  4848     ciKlass* src_k = top_src->klass();
  4849     ciKlass* dest_k = top_dest->klass();
  4850     if (!src_spec) {
  4851       src_k = src_type->speculative_type();
  4852       if (src_k != NULL && src_k->is_array_klass()) {
  4853           could_have_src = true;
  4856     if (!dest_spec) {
  4857       dest_k = dest_type->speculative_type();
  4858       if (dest_k != NULL && dest_k->is_array_klass()) {
  4859         could_have_dest = true;
  4862     if (could_have_src && could_have_dest) {
  4863       // If we can have both exact types, emit the missing guards
  4864       if (could_have_src && !src_spec) {
  4865         src = maybe_cast_profiled_obj(src, src_k);
  4867       if (could_have_dest && !dest_spec) {
  4868         dest = maybe_cast_profiled_obj(dest, dest_k);
  4873   //---------------------------------------------------------------------------
  4874   // We will make a fast path for this call to arraycopy.
  4876   // We have the following tests left to perform:
  4877   //
  4878   // (3) src and dest must not be null.
  4879   // (4) src_offset must not be negative.
  4880   // (5) dest_offset must not be negative.
  4881   // (6) length must not be negative.
  4882   // (7) src_offset + length must not exceed length of src.
  4883   // (8) dest_offset + length must not exceed length of dest.
  4884   // (9) each element of an oop array must be assignable
  4886   RegionNode* slow_region = new (C) RegionNode(1);
  4887   record_for_igvn(slow_region);
  4889   // (3) operands must not be null
  4890   // We currently perform our null checks with the null_check routine.
  4891   // This means that the null exceptions will be reported in the caller
  4892   // rather than (correctly) reported inside of the native arraycopy call.
  4893   // This should be corrected, given time.  We do our null check with the
  4894   // stack pointer restored.
  4895   src  = null_check(src,  T_ARRAY);
  4896   dest = null_check(dest, T_ARRAY);
  4898   // (4) src_offset must not be negative.
  4899   generate_negative_guard(src_offset, slow_region);
  4901   // (5) dest_offset must not be negative.
  4902   generate_negative_guard(dest_offset, slow_region);
  4904   // (6) length must not be negative (moved to generate_arraycopy()).
  4905   // generate_negative_guard(length, slow_region);
  4907   // (7) src_offset + length must not exceed length of src.
  4908   generate_limit_guard(src_offset, length,
  4909                        load_array_length(src),
  4910                        slow_region);
  4912   // (8) dest_offset + length must not exceed length of dest.
  4913   generate_limit_guard(dest_offset, length,
  4914                        load_array_length(dest),
  4915                        slow_region);
  4917   // (9) each element of an oop array must be assignable
  4918   // The generate_arraycopy subroutine checks this.
  4920   // This is where the memory effects are placed:
  4921   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4922   generate_arraycopy(adr_type, dest_elem,
  4923                      src, src_offset, dest, dest_offset, length,
  4924                      false, false, slow_region);
  4926   return true;
  4929 //-----------------------------generate_arraycopy----------------------
  4930 // Generate an optimized call to arraycopy.
  4931 // Caller must guard against non-arrays.
  4932 // Caller must determine a common array basic-type for both arrays.
  4933 // Caller must validate offsets against array bounds.
  4934 // The slow_region has already collected guard failure paths
  4935 // (such as out of bounds length or non-conformable array types).
  4936 // The generated code has this shape, in general:
  4937 //
  4938 //     if (length == 0)  return   // via zero_path
  4939 //     slowval = -1
  4940 //     if (types unknown) {
  4941 //       slowval = call generic copy loop
  4942 //       if (slowval == 0)  return  // via checked_path
  4943 //     } else if (indexes in bounds) {
  4944 //       if ((is object array) && !(array type check)) {
  4945 //         slowval = call checked copy loop
  4946 //         if (slowval == 0)  return  // via checked_path
  4947 //       } else {
  4948 //         call bulk copy loop
  4949 //         return  // via fast_path
  4950 //       }
  4951 //     }
  4952 //     // adjust params for remaining work:
  4953 //     if (slowval != -1) {
  4954 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4955 //     }
  4956 //   slow_region:
  4957 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4958 //     return  // via slow_call_path
  4959 //
  4960 // This routine is used from several intrinsics:  System.arraycopy,
  4961 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4962 //
  4963 void
  4964 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4965                                    BasicType basic_elem_type,
  4966                                    Node* src,  Node* src_offset,
  4967                                    Node* dest, Node* dest_offset,
  4968                                    Node* copy_length,
  4969                                    bool disjoint_bases,
  4970                                    bool length_never_negative,
  4971                                    RegionNode* slow_region) {
  4973   if (slow_region == NULL) {
  4974     slow_region = new(C) RegionNode(1);
  4975     record_for_igvn(slow_region);
  4978   Node* original_dest      = dest;
  4979   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4980   bool  dest_uninitialized = false;
  4982   // See if this is the initialization of a newly-allocated array.
  4983   // If so, we will take responsibility here for initializing it to zero.
  4984   // (Note:  Because tightly_coupled_allocation performs checks on the
  4985   // out-edges of the dest, we need to avoid making derived pointers
  4986   // from it until we have checked its uses.)
  4987   if (ReduceBulkZeroing
  4988       && !ZeroTLAB              // pointless if already zeroed
  4989       && basic_elem_type != T_CONFLICT // avoid corner case
  4990       && !src->eqv_uncast(dest)
  4991       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4992           != NULL)
  4993       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4994       && alloc->maybe_set_complete(&_gvn)) {
  4995     // "You break it, you buy it."
  4996     InitializeNode* init = alloc->initialization();
  4997     assert(init->is_complete(), "we just did this");
  4998     init->set_complete_with_arraycopy();
  4999     assert(dest->is_CheckCastPP(), "sanity");
  5000     assert(dest->in(0)->in(0) == init, "dest pinned");
  5001     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  5002     // From this point on, every exit path is responsible for
  5003     // initializing any non-copied parts of the object to zero.
  5004     // Also, if this flag is set we make sure that arraycopy interacts properly
  5005     // with G1, eliding pre-barriers. See CR 6627983.
  5006     dest_uninitialized = true;
  5007   } else {
  5008     // No zeroing elimination here.
  5009     alloc             = NULL;
  5010     //original_dest   = dest;
  5011     //dest_uninitialized = false;
  5014   // Results are placed here:
  5015   enum { fast_path        = 1,  // normal void-returning assembly stub
  5016          checked_path     = 2,  // special assembly stub with cleanup
  5017          slow_call_path   = 3,  // something went wrong; call the VM
  5018          zero_path        = 4,  // bypass when length of copy is zero
  5019          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  5020          PATH_LIMIT       = 6
  5021   };
  5022   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  5023   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  5024   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  5025   record_for_igvn(result_region);
  5026   _gvn.set_type_bottom(result_i_o);
  5027   _gvn.set_type_bottom(result_memory);
  5028   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  5030   // The slow_control path:
  5031   Node* slow_control;
  5032   Node* slow_i_o = i_o();
  5033   Node* slow_mem = memory(adr_type);
  5034   debug_only(slow_control = (Node*) badAddress);
  5036   // Checked control path:
  5037   Node* checked_control = top();
  5038   Node* checked_mem     = NULL;
  5039   Node* checked_i_o     = NULL;
  5040   Node* checked_value   = NULL;
  5042   if (basic_elem_type == T_CONFLICT) {
  5043     assert(!dest_uninitialized, "");
  5044     Node* cv = generate_generic_arraycopy(adr_type,
  5045                                           src, src_offset, dest, dest_offset,
  5046                                           copy_length, dest_uninitialized);
  5047     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5048     checked_control = control();
  5049     checked_i_o     = i_o();
  5050     checked_mem     = memory(adr_type);
  5051     checked_value   = cv;
  5052     set_control(top());         // no fast path
  5055   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  5056   if (not_pos != NULL) {
  5057     PreserveJVMState pjvms(this);
  5058     set_control(not_pos);
  5060     // (6) length must not be negative.
  5061     if (!length_never_negative) {
  5062       generate_negative_guard(copy_length, slow_region);
  5065     // copy_length is 0.
  5066     if (!stopped() && dest_uninitialized) {
  5067       Node* dest_length = alloc->in(AllocateNode::ALength);
  5068       if (copy_length->eqv_uncast(dest_length)
  5069           || _gvn.find_int_con(dest_length, 1) <= 0) {
  5070         // There is no zeroing to do. No need for a secondary raw memory barrier.
  5071       } else {
  5072         // Clear the whole thing since there are no source elements to copy.
  5073         generate_clear_array(adr_type, dest, basic_elem_type,
  5074                              intcon(0), NULL,
  5075                              alloc->in(AllocateNode::AllocSize));
  5076         // Use a secondary InitializeNode as raw memory barrier.
  5077         // Currently it is needed only on this path since other
  5078         // paths have stub or runtime calls as raw memory barriers.
  5079         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  5080                                                        Compile::AliasIdxRaw,
  5081                                                        top())->as_Initialize();
  5082         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  5086     // Present the results of the fast call.
  5087     result_region->init_req(zero_path, control());
  5088     result_i_o   ->init_req(zero_path, i_o());
  5089     result_memory->init_req(zero_path, memory(adr_type));
  5092   if (!stopped() && dest_uninitialized) {
  5093     // We have to initialize the *uncopied* part of the array to zero.
  5094     // The copy destination is the slice dest[off..off+len].  The other slices
  5095     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  5096     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  5097     Node* dest_length = alloc->in(AllocateNode::ALength);
  5098     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  5099                                                           copy_length));
  5101     // If there is a head section that needs zeroing, do it now.
  5102     if (find_int_con(dest_offset, -1) != 0) {
  5103       generate_clear_array(adr_type, dest, basic_elem_type,
  5104                            intcon(0), dest_offset,
  5105                            NULL);
  5108     // Next, perform a dynamic check on the tail length.
  5109     // It is often zero, and we can win big if we prove this.
  5110     // There are two wins:  Avoid generating the ClearArray
  5111     // with its attendant messy index arithmetic, and upgrade
  5112     // the copy to a more hardware-friendly word size of 64 bits.
  5113     Node* tail_ctl = NULL;
  5114     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  5115       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  5116       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  5117       tail_ctl = generate_slow_guard(bol_lt, NULL);
  5118       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5121     // At this point, let's assume there is no tail.
  5122     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5123       // There is no tail.  Try an upgrade to a 64-bit copy.
  5124       bool didit = false;
  5125       { PreserveJVMState pjvms(this);
  5126         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5127                                          src, src_offset, dest, dest_offset,
  5128                                          dest_size, dest_uninitialized);
  5129         if (didit) {
  5130           // Present the results of the block-copying fast call.
  5131           result_region->init_req(bcopy_path, control());
  5132           result_i_o   ->init_req(bcopy_path, i_o());
  5133           result_memory->init_req(bcopy_path, memory(adr_type));
  5136       if (didit)
  5137         set_control(top());     // no regular fast path
  5140     // Clear the tail, if any.
  5141     if (tail_ctl != NULL) {
  5142       Node* notail_ctl = stopped() ? NULL : control();
  5143       set_control(tail_ctl);
  5144       if (notail_ctl == NULL) {
  5145         generate_clear_array(adr_type, dest, basic_elem_type,
  5146                              dest_tail, NULL,
  5147                              dest_size);
  5148       } else {
  5149         // Make a local merge.
  5150         Node* done_ctl = new(C) RegionNode(3);
  5151         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5152         done_ctl->init_req(1, notail_ctl);
  5153         done_mem->init_req(1, memory(adr_type));
  5154         generate_clear_array(adr_type, dest, basic_elem_type,
  5155                              dest_tail, NULL,
  5156                              dest_size);
  5157         done_ctl->init_req(2, control());
  5158         done_mem->init_req(2, memory(adr_type));
  5159         set_control( _gvn.transform(done_ctl));
  5160         set_memory(  _gvn.transform(done_mem), adr_type );
  5165   BasicType copy_type = basic_elem_type;
  5166   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5167   if (!stopped() && copy_type == T_OBJECT) {
  5168     // If src and dest have compatible element types, we can copy bits.
  5169     // Types S[] and D[] are compatible if D is a supertype of S.
  5170     //
  5171     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5172     // which performs a fast optimistic per-oop check, and backs off
  5173     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5174     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5176     // Get the Klass* for both src and dest
  5177     Node* src_klass  = load_object_klass(src);
  5178     Node* dest_klass = load_object_klass(dest);
  5180     // Generate the subtype check.
  5181     // This might fold up statically, or then again it might not.
  5182     //
  5183     // Non-static example:  Copying List<String>.elements to a new String[].
  5184     // The backing store for a List<String> is always an Object[],
  5185     // but its elements are always type String, if the generic types
  5186     // are correct at the source level.
  5187     //
  5188     // Test S[] against D[], not S against D, because (probably)
  5189     // the secondary supertype cache is less busy for S[] than S.
  5190     // This usually only matters when D is an interface.
  5191     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5192     // Plug failing path into checked_oop_disjoint_arraycopy
  5193     if (not_subtype_ctrl != top()) {
  5194       PreserveJVMState pjvms(this);
  5195       set_control(not_subtype_ctrl);
  5196       // (At this point we can assume disjoint_bases, since types differ.)
  5197       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5198       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5199       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5200       Node* dest_elem_klass = _gvn.transform(n1);
  5201       Node* cv = generate_checkcast_arraycopy(adr_type,
  5202                                               dest_elem_klass,
  5203                                               src, src_offset, dest, dest_offset,
  5204                                               ConvI2X(copy_length), dest_uninitialized);
  5205       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5206       checked_control = control();
  5207       checked_i_o     = i_o();
  5208       checked_mem     = memory(adr_type);
  5209       checked_value   = cv;
  5211     // At this point we know we do not need type checks on oop stores.
  5213     // Let's see if we need card marks:
  5214     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5215       // If we do not need card marks, copy using the jint or jlong stub.
  5216       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5217       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5218              "sizes agree");
  5222   if (!stopped()) {
  5223     // Generate the fast path, if possible.
  5224     PreserveJVMState pjvms(this);
  5225     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5226                                  src, src_offset, dest, dest_offset,
  5227                                  ConvI2X(copy_length), dest_uninitialized);
  5229     // Present the results of the fast call.
  5230     result_region->init_req(fast_path, control());
  5231     result_i_o   ->init_req(fast_path, i_o());
  5232     result_memory->init_req(fast_path, memory(adr_type));
  5235   // Here are all the slow paths up to this point, in one bundle:
  5236   slow_control = top();
  5237   if (slow_region != NULL)
  5238     slow_control = _gvn.transform(slow_region);
  5239   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5241   set_control(checked_control);
  5242   if (!stopped()) {
  5243     // Clean up after the checked call.
  5244     // The returned value is either 0 or -1^K,
  5245     // where K = number of partially transferred array elements.
  5246     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5247     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5248     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5250     // If it is 0, we are done, so transfer to the end.
  5251     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5252     result_region->init_req(checked_path, checks_done);
  5253     result_i_o   ->init_req(checked_path, checked_i_o);
  5254     result_memory->init_req(checked_path, checked_mem);
  5256     // If it is not zero, merge into the slow call.
  5257     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5258     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5259     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5260     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5261     record_for_igvn(slow_reg2);
  5262     slow_reg2  ->init_req(1, slow_control);
  5263     slow_i_o2  ->init_req(1, slow_i_o);
  5264     slow_mem2  ->init_req(1, slow_mem);
  5265     slow_reg2  ->init_req(2, control());
  5266     slow_i_o2  ->init_req(2, checked_i_o);
  5267     slow_mem2  ->init_req(2, checked_mem);
  5269     slow_control = _gvn.transform(slow_reg2);
  5270     slow_i_o     = _gvn.transform(slow_i_o2);
  5271     slow_mem     = _gvn.transform(slow_mem2);
  5273     if (alloc != NULL) {
  5274       // We'll restart from the very beginning, after zeroing the whole thing.
  5275       // This can cause double writes, but that's OK since dest is brand new.
  5276       // So we ignore the low 31 bits of the value returned from the stub.
  5277     } else {
  5278       // We must continue the copy exactly where it failed, or else
  5279       // another thread might see the wrong number of writes to dest.
  5280       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5281       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5282       slow_offset->init_req(1, intcon(0));
  5283       slow_offset->init_req(2, checked_offset);
  5284       slow_offset  = _gvn.transform(slow_offset);
  5286       // Adjust the arguments by the conditionally incoming offset.
  5287       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5288       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5289       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5291       // Tweak the node variables to adjust the code produced below:
  5292       src_offset  = src_off_plus;
  5293       dest_offset = dest_off_plus;
  5294       copy_length = length_minus;
  5298   set_control(slow_control);
  5299   if (!stopped()) {
  5300     // Generate the slow path, if needed.
  5301     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5303     set_memory(slow_mem, adr_type);
  5304     set_i_o(slow_i_o);
  5306     if (dest_uninitialized) {
  5307       generate_clear_array(adr_type, dest, basic_elem_type,
  5308                            intcon(0), NULL,
  5309                            alloc->in(AllocateNode::AllocSize));
  5312     generate_slow_arraycopy(adr_type,
  5313                             src, src_offset, dest, dest_offset,
  5314                             copy_length, /*dest_uninitialized*/false);
  5316     result_region->init_req(slow_call_path, control());
  5317     result_i_o   ->init_req(slow_call_path, i_o());
  5318     result_memory->init_req(slow_call_path, memory(adr_type));
  5321   // Remove unused edges.
  5322   for (uint i = 1; i < result_region->req(); i++) {
  5323     if (result_region->in(i) == NULL)
  5324       result_region->init_req(i, top());
  5327   // Finished; return the combined state.
  5328   set_control( _gvn.transform(result_region));
  5329   set_i_o(     _gvn.transform(result_i_o)    );
  5330   set_memory(  _gvn.transform(result_memory), adr_type );
  5332   // The memory edges above are precise in order to model effects around
  5333   // array copies accurately to allow value numbering of field loads around
  5334   // arraycopy.  Such field loads, both before and after, are common in Java
  5335   // collections and similar classes involving header/array data structures.
  5336   //
  5337   // But with low number of register or when some registers are used or killed
  5338   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5339   // The next memory barrier is added to avoid it. If the arraycopy can be
  5340   // optimized away (which it can, sometimes) then we can manually remove
  5341   // the membar also.
  5342   //
  5343   // Do not let reads from the cloned object float above the arraycopy.
  5344   if (alloc != NULL) {
  5345     // Do not let stores that initialize this object be reordered with
  5346     // a subsequent store that would make this object accessible by
  5347     // other threads.
  5348     // Record what AllocateNode this StoreStore protects so that
  5349     // escape analysis can go from the MemBarStoreStoreNode to the
  5350     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5351     // based on the escape status of the AllocateNode.
  5352     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5353   } else if (InsertMemBarAfterArraycopy)
  5354     insert_mem_bar(Op_MemBarCPUOrder);
  5358 // Helper function which determines if an arraycopy immediately follows
  5359 // an allocation, with no intervening tests or other escapes for the object.
  5360 AllocateArrayNode*
  5361 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5362                                            RegionNode* slow_region) {
  5363   if (stopped())             return NULL;  // no fast path
  5364   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5366   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5367   if (alloc == NULL)  return NULL;
  5369   Node* rawmem = memory(Compile::AliasIdxRaw);
  5370   // Is the allocation's memory state untouched?
  5371   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5372     // Bail out if there have been raw-memory effects since the allocation.
  5373     // (Example:  There might have been a call or safepoint.)
  5374     return NULL;
  5376   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5377   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5378     return NULL;
  5381   // There must be no unexpected observers of this allocation.
  5382   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5383     Node* obs = ptr->fast_out(i);
  5384     if (obs != this->map()) {
  5385       return NULL;
  5389   // This arraycopy must unconditionally follow the allocation of the ptr.
  5390   Node* alloc_ctl = ptr->in(0);
  5391   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5393   Node* ctl = control();
  5394   while (ctl != alloc_ctl) {
  5395     // There may be guards which feed into the slow_region.
  5396     // Any other control flow means that we might not get a chance
  5397     // to finish initializing the allocated object.
  5398     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5399       IfNode* iff = ctl->in(0)->as_If();
  5400       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5401       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5402       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5403         ctl = iff->in(0);       // This test feeds the known slow_region.
  5404         continue;
  5406       // One more try:  Various low-level checks bottom out in
  5407       // uncommon traps.  If the debug-info of the trap omits
  5408       // any reference to the allocation, as we've already
  5409       // observed, then there can be no objection to the trap.
  5410       bool found_trap = false;
  5411       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5412         Node* obs = not_ctl->fast_out(j);
  5413         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5414             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5415           found_trap = true; break;
  5418       if (found_trap) {
  5419         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5420         continue;
  5423     return NULL;
  5426   // If we get this far, we have an allocation which immediately
  5427   // precedes the arraycopy, and we can take over zeroing the new object.
  5428   // The arraycopy will finish the initialization, and provide
  5429   // a new control state to which we will anchor the destination pointer.
  5431   return alloc;
  5434 // Helper for initialization of arrays, creating a ClearArray.
  5435 // It writes zero bits in [start..end), within the body of an array object.
  5436 // The memory effects are all chained onto the 'adr_type' alias category.
  5437 //
  5438 // Since the object is otherwise uninitialized, we are free
  5439 // to put a little "slop" around the edges of the cleared area,
  5440 // as long as it does not go back into the array's header,
  5441 // or beyond the array end within the heap.
  5442 //
  5443 // The lower edge can be rounded down to the nearest jint and the
  5444 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5445 //
  5446 // Arguments:
  5447 //   adr_type           memory slice where writes are generated
  5448 //   dest               oop of the destination array
  5449 //   basic_elem_type    element type of the destination
  5450 //   slice_idx          array index of first element to store
  5451 //   slice_len          number of elements to store (or NULL)
  5452 //   dest_size          total size in bytes of the array object
  5453 //
  5454 // Exactly one of slice_len or dest_size must be non-NULL.
  5455 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5456 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5457 void
  5458 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5459                                      Node* dest,
  5460                                      BasicType basic_elem_type,
  5461                                      Node* slice_idx,
  5462                                      Node* slice_len,
  5463                                      Node* dest_size) {
  5464   // one or the other but not both of slice_len and dest_size:
  5465   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5466   if (slice_len == NULL)  slice_len = top();
  5467   if (dest_size == NULL)  dest_size = top();
  5469   // operate on this memory slice:
  5470   Node* mem = memory(adr_type); // memory slice to operate on
  5472   // scaling and rounding of indexes:
  5473   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5474   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5475   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5476   int bump_bit  = (-1 << scale) & BytesPerInt;
  5478   // determine constant starts and ends
  5479   const intptr_t BIG_NEG = -128;
  5480   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5481   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5482   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5483   if (slice_len_con == 0) {
  5484     return;                     // nothing to do here
  5486   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5487   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5488   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5489     assert(end_con < 0, "not two cons");
  5490     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5491                        BytesPerLong);
  5494   if (start_con >= 0 && end_con >= 0) {
  5495     // Constant start and end.  Simple.
  5496     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5497                                        start_con, end_con, &_gvn);
  5498   } else if (start_con >= 0 && dest_size != top()) {
  5499     // Constant start, pre-rounded end after the tail of the array.
  5500     Node* end = dest_size;
  5501     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5502                                        start_con, end, &_gvn);
  5503   } else if (start_con >= 0 && slice_len != top()) {
  5504     // Constant start, non-constant end.  End needs rounding up.
  5505     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5506     intptr_t end_base  = abase + (slice_idx_con << scale);
  5507     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5508     Node*    end       = ConvI2X(slice_len);
  5509     if (scale != 0)
  5510       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5511     end_base += end_round;
  5512     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5513     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5514     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5515                                        start_con, end, &_gvn);
  5516   } else if (start_con < 0 && dest_size != top()) {
  5517     // Non-constant start, pre-rounded end after the tail of the array.
  5518     // This is almost certainly a "round-to-end" operation.
  5519     Node* start = slice_idx;
  5520     start = ConvI2X(start);
  5521     if (scale != 0)
  5522       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5523     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5524     if ((bump_bit | clear_low) != 0) {
  5525       int to_clear = (bump_bit | clear_low);
  5526       // Align up mod 8, then store a jint zero unconditionally
  5527       // just before the mod-8 boundary.
  5528       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5529           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5530         bump_bit = 0;
  5531         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5532       } else {
  5533         // Bump 'start' up to (or past) the next jint boundary:
  5534         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5535         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5537       // Round bumped 'start' down to jlong boundary in body of array.
  5538       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5539       if (bump_bit != 0) {
  5540         // Store a zero to the immediately preceding jint:
  5541         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5542         Node* p1 = basic_plus_adr(dest, x1);
  5543         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
  5544         mem = _gvn.transform(mem);
  5547     Node* end = dest_size; // pre-rounded
  5548     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5549                                        start, end, &_gvn);
  5550   } else {
  5551     // Non-constant start, unrounded non-constant end.
  5552     // (Nobody zeroes a random midsection of an array using this routine.)
  5553     ShouldNotReachHere();       // fix caller
  5556   // Done.
  5557   set_memory(mem, adr_type);
  5561 bool
  5562 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5563                                          BasicType basic_elem_type,
  5564                                          AllocateNode* alloc,
  5565                                          Node* src,  Node* src_offset,
  5566                                          Node* dest, Node* dest_offset,
  5567                                          Node* dest_size, bool dest_uninitialized) {
  5568   // See if there is an advantage from block transfer.
  5569   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5570   if (scale >= LogBytesPerLong)
  5571     return false;               // it is already a block transfer
  5573   // Look at the alignment of the starting offsets.
  5574   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5576   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5577   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5578   if (src_off_con < 0 || dest_off_con < 0)
  5579     // At present, we can only understand constants.
  5580     return false;
  5582   intptr_t src_off  = abase + (src_off_con  << scale);
  5583   intptr_t dest_off = abase + (dest_off_con << scale);
  5585   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5586     // Non-aligned; too bad.
  5587     // One more chance:  Pick off an initial 32-bit word.
  5588     // This is a common case, since abase can be odd mod 8.
  5589     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5590         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5591       Node* sptr = basic_plus_adr(src,  src_off);
  5592       Node* dptr = basic_plus_adr(dest, dest_off);
  5593       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  5594       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
  5595       src_off += BytesPerInt;
  5596       dest_off += BytesPerInt;
  5597     } else {
  5598       return false;
  5601   assert(src_off % BytesPerLong == 0, "");
  5602   assert(dest_off % BytesPerLong == 0, "");
  5604   // Do this copy by giant steps.
  5605   Node* sptr  = basic_plus_adr(src,  src_off);
  5606   Node* dptr  = basic_plus_adr(dest, dest_off);
  5607   Node* countx = dest_size;
  5608   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5609   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5611   bool disjoint_bases = true;   // since alloc != NULL
  5612   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5613                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5615   return true;
  5619 // Helper function; generates code for the slow case.
  5620 // We make a call to a runtime method which emulates the native method,
  5621 // but without the native wrapper overhead.
  5622 void
  5623 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5624                                         Node* src,  Node* src_offset,
  5625                                         Node* dest, Node* dest_offset,
  5626                                         Node* copy_length, bool dest_uninitialized) {
  5627   assert(!dest_uninitialized, "Invariant");
  5628   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5629                                  OptoRuntime::slow_arraycopy_Type(),
  5630                                  OptoRuntime::slow_arraycopy_Java(),
  5631                                  "slow_arraycopy", adr_type,
  5632                                  src, src_offset, dest, dest_offset,
  5633                                  copy_length);
  5635   // Handle exceptions thrown by this fellow:
  5636   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5639 // Helper function; generates code for cases requiring runtime checks.
  5640 Node*
  5641 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5642                                              Node* dest_elem_klass,
  5643                                              Node* src,  Node* src_offset,
  5644                                              Node* dest, Node* dest_offset,
  5645                                              Node* copy_length, bool dest_uninitialized) {
  5646   if (stopped())  return NULL;
  5648   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5649   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5650     return NULL;
  5653   // Pick out the parameters required to perform a store-check
  5654   // for the target array.  This is an optimistic check.  It will
  5655   // look in each non-null element's class, at the desired klass's
  5656   // super_check_offset, for the desired klass.
  5657   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5658   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5659   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
  5660   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5661   Node* check_value  = dest_elem_klass;
  5663   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5664   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5666   // (We know the arrays are never conjoint, because their types differ.)
  5667   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5668                                  OptoRuntime::checkcast_arraycopy_Type(),
  5669                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5670                                  // five arguments, of which two are
  5671                                  // intptr_t (jlong in LP64)
  5672                                  src_start, dest_start,
  5673                                  copy_length XTOP,
  5674                                  check_offset XTOP,
  5675                                  check_value);
  5677   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5681 // Helper function; generates code for cases requiring runtime checks.
  5682 Node*
  5683 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5684                                            Node* src,  Node* src_offset,
  5685                                            Node* dest, Node* dest_offset,
  5686                                            Node* copy_length, bool dest_uninitialized) {
  5687   assert(!dest_uninitialized, "Invariant");
  5688   if (stopped())  return NULL;
  5689   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5690   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5691     return NULL;
  5694   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5695                     OptoRuntime::generic_arraycopy_Type(),
  5696                     copyfunc_addr, "generic_arraycopy", adr_type,
  5697                     src, src_offset, dest, dest_offset, copy_length);
  5699   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5702 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5703 void
  5704 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5705                                              BasicType basic_elem_type,
  5706                                              bool disjoint_bases,
  5707                                              Node* src,  Node* src_offset,
  5708                                              Node* dest, Node* dest_offset,
  5709                                              Node* copy_length, bool dest_uninitialized) {
  5710   if (stopped())  return;               // nothing to do
  5712   Node* src_start  = src;
  5713   Node* dest_start = dest;
  5714   if (src_offset != NULL || dest_offset != NULL) {
  5715     assert(src_offset != NULL && dest_offset != NULL, "");
  5716     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5717     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5720   // Figure out which arraycopy runtime method to call.
  5721   const char* copyfunc_name = "arraycopy";
  5722   address     copyfunc_addr =
  5723       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5724                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5726   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5727   make_runtime_call(RC_LEAF|RC_NO_FP,
  5728                     OptoRuntime::fast_arraycopy_Type(),
  5729                     copyfunc_addr, copyfunc_name, adr_type,
  5730                     src_start, dest_start, copy_length XTOP);
  5733 //-------------inline_encodeISOArray-----------------------------------
  5734 // encode char[] to byte[] in ISO_8859_1
  5735 bool LibraryCallKit::inline_encodeISOArray() {
  5736   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5737   // no receiver since it is static method
  5738   Node *src         = argument(0);
  5739   Node *src_offset  = argument(1);
  5740   Node *dst         = argument(2);
  5741   Node *dst_offset  = argument(3);
  5742   Node *length      = argument(4);
  5744   const Type* src_type = src->Value(&_gvn);
  5745   const Type* dst_type = dst->Value(&_gvn);
  5746   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5747   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5748   if (top_src  == NULL || top_src->klass()  == NULL ||
  5749       top_dest == NULL || top_dest->klass() == NULL) {
  5750     // failed array check
  5751     return false;
  5754   // Figure out the size and type of the elements we will be copying.
  5755   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5756   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5757   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5758     return false;
  5760   Node* src_start = array_element_address(src, src_offset, src_elem);
  5761   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5762   // 'src_start' points to src array + scaled offset
  5763   // 'dst_start' points to dst array + scaled offset
  5765   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5766   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5767   enc = _gvn.transform(enc);
  5768   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5769   set_memory(res_mem, mtype);
  5770   set_result(enc);
  5771   return true;
  5774 //-------------inline_multiplyToLen-----------------------------------
  5775 bool LibraryCallKit::inline_multiplyToLen() {
  5776   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
  5778   address stubAddr = StubRoutines::multiplyToLen();
  5779   if (stubAddr == NULL) {
  5780     return false; // Intrinsic's stub is not implemented on this platform
  5782   const char* stubName = "multiplyToLen";
  5784   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
  5786   Node* x    = argument(1);
  5787   Node* xlen = argument(2);
  5788   Node* y    = argument(3);
  5789   Node* ylen = argument(4);
  5790   Node* z    = argument(5);
  5792   const Type* x_type = x->Value(&_gvn);
  5793   const Type* y_type = y->Value(&_gvn);
  5794   const TypeAryPtr* top_x = x_type->isa_aryptr();
  5795   const TypeAryPtr* top_y = y_type->isa_aryptr();
  5796   if (top_x  == NULL || top_x->klass()  == NULL ||
  5797       top_y == NULL || top_y->klass() == NULL) {
  5798     // failed array check
  5799     return false;
  5802   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5803   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5804   if (x_elem != T_INT || y_elem != T_INT) {
  5805     return false;
  5808   // Set the original stack and the reexecute bit for the interpreter to reexecute
  5809   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
  5810   // on the return from z array allocation in runtime.
  5811   { PreserveReexecuteState preexecs(this);
  5812     jvms()->set_should_reexecute(true);
  5814     Node* x_start = array_element_address(x, intcon(0), x_elem);
  5815     Node* y_start = array_element_address(y, intcon(0), y_elem);
  5816     // 'x_start' points to x array + scaled xlen
  5817     // 'y_start' points to y array + scaled ylen
  5819     // Allocate the result array
  5820     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
  5821     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
  5822     Node* klass_node = makecon(TypeKlassPtr::make(klass));
  5824     IdealKit ideal(this);
  5826 #define __ ideal.
  5827      Node* one = __ ConI(1);
  5828      Node* zero = __ ConI(0);
  5829      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
  5830      __ set(need_alloc, zero);
  5831      __ set(z_alloc, z);
  5832      __ if_then(z, BoolTest::eq, null()); {
  5833        __ increment (need_alloc, one);
  5834      } __ else_(); {
  5835        // Update graphKit memory and control from IdealKit.
  5836        sync_kit(ideal);
  5837        Node* zlen_arg = load_array_length(z);
  5838        // Update IdealKit memory and control from graphKit.
  5839        __ sync_kit(this);
  5840        __ if_then(zlen_arg, BoolTest::lt, zlen); {
  5841          __ increment (need_alloc, one);
  5842        } __ end_if();
  5843      } __ end_if();
  5845      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
  5846        // Update graphKit memory and control from IdealKit.
  5847        sync_kit(ideal);
  5848        Node * narr = new_array(klass_node, zlen, 1);
  5849        // Update IdealKit memory and control from graphKit.
  5850        __ sync_kit(this);
  5851        __ set(z_alloc, narr);
  5852      } __ end_if();
  5854      sync_kit(ideal);
  5855      z = __ value(z_alloc);
  5856      // Can't use TypeAryPtr::INTS which uses Bottom offset.
  5857      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
  5858      // Final sync IdealKit and GraphKit.
  5859      final_sync(ideal);
  5860 #undef __
  5862     Node* z_start = array_element_address(z, intcon(0), T_INT);
  5864     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5865                                    OptoRuntime::multiplyToLen_Type(),
  5866                                    stubAddr, stubName, TypePtr::BOTTOM,
  5867                                    x_start, xlen, y_start, ylen, z_start, zlen);
  5868   } // original reexecute is set back here
  5870   C->set_has_split_ifs(true); // Has chance for split-if optimization
  5871   set_result(z);
  5872   return true;
  5875 //-------------inline_squareToLen------------------------------------
  5876 bool LibraryCallKit::inline_squareToLen() {
  5877   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
  5879   address stubAddr = StubRoutines::squareToLen();
  5880   if (stubAddr == NULL) {
  5881     return false; // Intrinsic's stub is not implemented on this platform
  5883   const char* stubName = "squareToLen";
  5885   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
  5887   Node* x    = argument(0);
  5888   Node* len  = argument(1);
  5889   Node* z    = argument(2);
  5890   Node* zlen = argument(3);
  5892   const Type* x_type = x->Value(&_gvn);
  5893   const Type* z_type = z->Value(&_gvn);
  5894   const TypeAryPtr* top_x = x_type->isa_aryptr();
  5895   const TypeAryPtr* top_z = z_type->isa_aryptr();
  5896   if (top_x  == NULL || top_x->klass()  == NULL ||
  5897       top_z  == NULL || top_z->klass()  == NULL) {
  5898     // failed array check
  5899     return false;
  5902   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5903   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5904   if (x_elem != T_INT || z_elem != T_INT) {
  5905     return false;
  5909   Node* x_start = array_element_address(x, intcon(0), x_elem);
  5910   Node* z_start = array_element_address(z, intcon(0), z_elem);
  5912   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5913                                   OptoRuntime::squareToLen_Type(),
  5914                                   stubAddr, stubName, TypePtr::BOTTOM,
  5915                                   x_start, len, z_start, zlen);
  5917   set_result(z);
  5918   return true;
  5921 //-------------inline_mulAdd------------------------------------------
  5922 bool LibraryCallKit::inline_mulAdd() {
  5923   assert(UseMulAddIntrinsic, "not implementated on this platform");
  5925   address stubAddr = StubRoutines::mulAdd();
  5926   if (stubAddr == NULL) {
  5927     return false; // Intrinsic's stub is not implemented on this platform
  5929   const char* stubName = "mulAdd";
  5931   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
  5933   Node* out      = argument(0);
  5934   Node* in       = argument(1);
  5935   Node* offset   = argument(2);
  5936   Node* len      = argument(3);
  5937   Node* k        = argument(4);
  5939   const Type* out_type = out->Value(&_gvn);
  5940   const Type* in_type = in->Value(&_gvn);
  5941   const TypeAryPtr* top_out = out_type->isa_aryptr();
  5942   const TypeAryPtr* top_in = in_type->isa_aryptr();
  5943   if (top_out  == NULL || top_out->klass()  == NULL ||
  5944       top_in == NULL || top_in->klass() == NULL) {
  5945     // failed array check
  5946     return false;
  5949   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5950   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5951   if (out_elem != T_INT || in_elem != T_INT) {
  5952     return false;
  5955   Node* outlen = load_array_length(out);
  5956   Node* new_offset = _gvn.transform(new (C) SubINode(outlen, offset));
  5957   Node* out_start = array_element_address(out, intcon(0), out_elem);
  5958   Node* in_start = array_element_address(in, intcon(0), in_elem);
  5960   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5961                                   OptoRuntime::mulAdd_Type(),
  5962                                   stubAddr, stubName, TypePtr::BOTTOM,
  5963                                   out_start,in_start, new_offset, len, k);
  5964   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5965   set_result(result);
  5966   return true;
  5970 /**
  5971  * Calculate CRC32 for byte.
  5972  * int java.util.zip.CRC32.update(int crc, int b)
  5973  */
  5974 bool LibraryCallKit::inline_updateCRC32() {
  5975   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5976   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5977   // no receiver since it is static method
  5978   Node* crc  = argument(0); // type: int
  5979   Node* b    = argument(1); // type: int
  5981   /*
  5982    *    int c = ~ crc;
  5983    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5984    *    b = b ^ (c >>> 8);
  5985    *    crc = ~b;
  5986    */
  5988   Node* M1 = intcon(-1);
  5989   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5990   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5991   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5993   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5994   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5995   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5996   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
  5998   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5999   result = _gvn.transform(new (C) XorINode(crc, result));
  6000   result = _gvn.transform(new (C) XorINode(result, M1));
  6001   set_result(result);
  6002   return true;
  6005 /**
  6006  * Calculate CRC32 for byte[] array.
  6007  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  6008  */
  6009 bool LibraryCallKit::inline_updateBytesCRC32() {
  6010   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  6011   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  6012   // no receiver since it is static method
  6013   Node* crc     = argument(0); // type: int
  6014   Node* src     = argument(1); // type: oop
  6015   Node* offset  = argument(2); // type: int
  6016   Node* length  = argument(3); // type: int
  6018   const Type* src_type = src->Value(&_gvn);
  6019   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6020   if (top_src  == NULL || top_src->klass()  == NULL) {
  6021     // failed array check
  6022     return false;
  6025   // Figure out the size and type of the elements we will be copying.
  6026   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6027   if (src_elem != T_BYTE) {
  6028     return false;
  6031   // 'src_start' points to src array + scaled offset
  6032   Node* src_start = array_element_address(src, offset, src_elem);
  6034   // We assume that range check is done by caller.
  6035   // TODO: generate range check (offset+length < src.length) in debug VM.
  6037   // Call the stub.
  6038   address stubAddr = StubRoutines::updateBytesCRC32();
  6039   const char *stubName = "updateBytesCRC32";
  6041   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  6042                                  stubAddr, stubName, TypePtr::BOTTOM,
  6043                                  crc, src_start, length);
  6044   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6045   set_result(result);
  6046   return true;
  6049 /**
  6050  * Calculate CRC32 for ByteBuffer.
  6051  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  6052  */
  6053 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  6054   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  6055   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  6056   // no receiver since it is static method
  6057   Node* crc     = argument(0); // type: int
  6058   Node* src     = argument(1); // type: long
  6059   Node* offset  = argument(3); // type: int
  6060   Node* length  = argument(4); // type: int
  6062   src = ConvL2X(src);  // adjust Java long to machine word
  6063   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  6064   offset = ConvI2X(offset);
  6066   // 'src_start' points to src array + scaled offset
  6067   Node* src_start = basic_plus_adr(top(), base, offset);
  6069   // Call the stub.
  6070   address stubAddr = StubRoutines::updateBytesCRC32();
  6071   const char *stubName = "updateBytesCRC32";
  6073   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  6074                                  stubAddr, stubName, TypePtr::BOTTOM,
  6075                                  crc, src_start, length);
  6076   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6077   set_result(result);
  6078   return true;
  6081 //----------------------------inline_reference_get----------------------------
  6082 // public T java.lang.ref.Reference.get();
  6083 bool LibraryCallKit::inline_reference_get() {
  6084   const int referent_offset = java_lang_ref_Reference::referent_offset;
  6085   guarantee(referent_offset > 0, "should have already been set");
  6087   // Get the argument:
  6088   Node* reference_obj = null_check_receiver();
  6089   if (stopped()) return true;
  6091   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  6093   ciInstanceKlass* klass = env()->Object_klass();
  6094   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  6096   Node* no_ctrl = NULL;
  6097   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
  6099   // Use the pre-barrier to record the value in the referent field
  6100   pre_barrier(false /* do_load */,
  6101               control(),
  6102               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  6103               result /* pre_val */,
  6104               T_OBJECT);
  6106   // Add memory barrier to prevent commoning reads from this field
  6107   // across safepoint since GC can change its value.
  6108   insert_mem_bar(Op_MemBarCPUOrder);
  6110   set_result(result);
  6111   return true;
  6115 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  6116                                               bool is_exact=true, bool is_static=false) {
  6118   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  6119   assert(tinst != NULL, "obj is null");
  6120   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  6121   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  6123   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  6124                                                                           ciSymbol::make(fieldTypeString),
  6125                                                                           is_static);
  6126   if (field == NULL) return (Node *) NULL;
  6127   assert (field != NULL, "undefined field");
  6129   // Next code  copied from Parse::do_get_xxx():
  6131   // Compute address and memory type.
  6132   int offset  = field->offset_in_bytes();
  6133   bool is_vol = field->is_volatile();
  6134   ciType* field_klass = field->type();
  6135   assert(field_klass->is_loaded(), "should be loaded");
  6136   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  6137   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  6138   BasicType bt = field->layout_type();
  6140   // Build the resultant type of the load
  6141   const Type *type;
  6142   if (bt == T_OBJECT) {
  6143     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  6144   } else {
  6145     type = Type::get_const_basic_type(bt);
  6148   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
  6149     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
  6151   // Build the load.
  6152   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
  6153   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
  6154   // If reference is volatile, prevent following memory ops from
  6155   // floating up past the volatile read.  Also prevents commoning
  6156   // another volatile read.
  6157   if (is_vol) {
  6158     // Memory barrier includes bogus read of value to force load BEFORE membar
  6159     insert_mem_bar(Op_MemBarAcquire, loadedField);
  6161   return loadedField;
  6165 //------------------------------inline_aescrypt_Block-----------------------
  6166 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  6167   address stubAddr = NULL;
  6168   const char *stubName;
  6169   assert(UseAES, "need AES instruction support");
  6171   switch(id) {
  6172   case vmIntrinsics::_aescrypt_encryptBlock:
  6173     stubAddr = StubRoutines::aescrypt_encryptBlock();
  6174     stubName = "aescrypt_encryptBlock";
  6175     break;
  6176   case vmIntrinsics::_aescrypt_decryptBlock:
  6177     stubAddr = StubRoutines::aescrypt_decryptBlock();
  6178     stubName = "aescrypt_decryptBlock";
  6179     break;
  6181   if (stubAddr == NULL) return false;
  6183   Node* aescrypt_object = argument(0);
  6184   Node* src             = argument(1);
  6185   Node* src_offset      = argument(2);
  6186   Node* dest            = argument(3);
  6187   Node* dest_offset     = argument(4);
  6189   // (1) src and dest are arrays.
  6190   const Type* src_type = src->Value(&_gvn);
  6191   const Type* dest_type = dest->Value(&_gvn);
  6192   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6193   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6194   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6196   // for the quick and dirty code we will skip all the checks.
  6197   // we are just trying to get the call to be generated.
  6198   Node* src_start  = src;
  6199   Node* dest_start = dest;
  6200   if (src_offset != NULL || dest_offset != NULL) {
  6201     assert(src_offset != NULL && dest_offset != NULL, "");
  6202     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6203     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6206   // now need to get the start of its expanded key array
  6207   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6208   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6209   if (k_start == NULL) return false;
  6211   if (Matcher::pass_original_key_for_aes()) {
  6212     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6213     // compatibility issues between Java key expansion and SPARC crypto instructions
  6214     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6215     if (original_k_start == NULL) return false;
  6217     // Call the stub.
  6218     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  6219                       stubAddr, stubName, TypePtr::BOTTOM,
  6220                       src_start, dest_start, k_start, original_k_start);
  6221   } else {
  6222     // Call the stub.
  6223     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  6224                       stubAddr, stubName, TypePtr::BOTTOM,
  6225                       src_start, dest_start, k_start);
  6228   return true;
  6231 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  6232 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  6233   address stubAddr = NULL;
  6234   const char *stubName = NULL;
  6236   assert(UseAES, "need AES instruction support");
  6238   switch(id) {
  6239   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  6240     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  6241     stubName = "cipherBlockChaining_encryptAESCrypt";
  6242     break;
  6243   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  6244     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  6245     stubName = "cipherBlockChaining_decryptAESCrypt";
  6246     break;
  6248   if (stubAddr == NULL) return false;
  6250   Node* cipherBlockChaining_object = argument(0);
  6251   Node* src                        = argument(1);
  6252   Node* src_offset                 = argument(2);
  6253   Node* len                        = argument(3);
  6254   Node* dest                       = argument(4);
  6255   Node* dest_offset                = argument(5);
  6257   // (1) src and dest are arrays.
  6258   const Type* src_type = src->Value(&_gvn);
  6259   const Type* dest_type = dest->Value(&_gvn);
  6260   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6261   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  6262   assert (top_src  != NULL && top_src->klass()  != NULL
  6263           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  6265   // checks are the responsibility of the caller
  6266   Node* src_start  = src;
  6267   Node* dest_start = dest;
  6268   if (src_offset != NULL || dest_offset != NULL) {
  6269     assert(src_offset != NULL && dest_offset != NULL, "");
  6270     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  6271     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  6274   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  6275   // (because of the predicated logic executed earlier).
  6276   // so we cast it here safely.
  6277   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  6279   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6280   if (embeddedCipherObj == NULL) return false;
  6282   // cast it to what we know it will be at runtime
  6283   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  6284   assert(tinst != NULL, "CBC obj is null");
  6285   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  6286   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6287   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
  6289   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6290   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  6291   const TypeOopPtr* xtype = aklass->as_instance_type();
  6292   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  6293   aescrypt_object = _gvn.transform(aescrypt_object);
  6295   // we need to get the start of the aescrypt_object's expanded key array
  6296   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  6297   if (k_start == NULL) return false;
  6299   // similarly, get the start address of the r vector
  6300   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  6301   if (objRvec == NULL) return false;
  6302   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  6304   Node* cbcCrypt;
  6305   if (Matcher::pass_original_key_for_aes()) {
  6306     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  6307     // compatibility issues between Java key expansion and SPARC crypto instructions
  6308     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  6309     if (original_k_start == NULL) return false;
  6311     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  6312     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6313                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6314                                  stubAddr, stubName, TypePtr::BOTTOM,
  6315                                  src_start, dest_start, k_start, r_start, len, original_k_start);
  6316   } else {
  6317     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  6318     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  6319                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  6320                                  stubAddr, stubName, TypePtr::BOTTOM,
  6321                                  src_start, dest_start, k_start, r_start, len);
  6324   // return cipher length (int)
  6325   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  6326   set_result(retvalue);
  6327   return true;
  6330 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6331 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6332   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6333   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6334   if (objAESCryptKey == NULL) return (Node *) NULL;
  6336   // now have the array, need to get the start address of the K array
  6337   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6338   return k_start;
  6341 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
  6342 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6343   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  6344   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6345   if (objAESCryptKey == NULL) return (Node *) NULL;
  6347   // now have the array, need to get the start address of the lastKey array
  6348   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  6349   return original_k_start;
  6352 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6353 // Return node representing slow path of predicate check.
  6354 // the pseudo code we want to emulate with this predicate is:
  6355 // for encryption:
  6356 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6357 // for decryption:
  6358 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6359 //    note cipher==plain is more conservative than the original java code but that's OK
  6360 //
  6361 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6362   // The receiver was checked for NULL already.
  6363   Node* objCBC = argument(0);
  6365   // Load embeddedCipher field of CipherBlockChaining object.
  6366   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6368   // get AESCrypt klass for instanceOf check
  6369   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6370   // will have same classloader as CipherBlockChaining object
  6371   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6372   assert(tinst != NULL, "CBCobj is null");
  6373   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6375   // we want to do an instanceof comparison against the AESCrypt class
  6376   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6377   if (!klass_AESCrypt->is_loaded()) {
  6378     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6379     Node* ctrl = control();
  6380     set_control(top()); // no regular fast path
  6381     return ctrl;
  6383   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6385   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6386   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6387   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6389   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6391   // for encryption, we are done
  6392   if (!decrypting)
  6393     return instof_false;  // even if it is NULL
  6395   // for decryption, we need to add a further check to avoid
  6396   // taking the intrinsic path when cipher and plain are the same
  6397   // see the original java code for why.
  6398   RegionNode* region = new(C) RegionNode(3);
  6399   region->init_req(1, instof_false);
  6400   Node* src = argument(1);
  6401   Node* dest = argument(4);
  6402   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6403   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6404   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6405   region->init_req(2, src_dest_conjoint);
  6407   record_for_igvn(region);
  6408   return _gvn.transform(region);
  6411 //------------------------------inline_sha_implCompress-----------------------
  6412 //
  6413 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
  6414 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
  6415 //
  6416 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
  6417 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
  6418 //
  6419 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
  6420 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
  6421 //
  6422 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
  6423   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
  6425   Node* sha_obj = argument(0);
  6426   Node* src     = argument(1); // type oop
  6427   Node* ofs     = argument(2); // type int
  6429   const Type* src_type = src->Value(&_gvn);
  6430   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6431   if (top_src  == NULL || top_src->klass()  == NULL) {
  6432     // failed array check
  6433     return false;
  6435   // Figure out the size and type of the elements we will be copying.
  6436   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6437   if (src_elem != T_BYTE) {
  6438     return false;
  6440   // 'src_start' points to src array + offset
  6441   Node* src_start = array_element_address(src, ofs, src_elem);
  6442   Node* state = NULL;
  6443   address stubAddr;
  6444   const char *stubName;
  6446   switch(id) {
  6447   case vmIntrinsics::_sha_implCompress:
  6448     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
  6449     state = get_state_from_sha_object(sha_obj);
  6450     stubAddr = StubRoutines::sha1_implCompress();
  6451     stubName = "sha1_implCompress";
  6452     break;
  6453   case vmIntrinsics::_sha2_implCompress:
  6454     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
  6455     state = get_state_from_sha_object(sha_obj);
  6456     stubAddr = StubRoutines::sha256_implCompress();
  6457     stubName = "sha256_implCompress";
  6458     break;
  6459   case vmIntrinsics::_sha5_implCompress:
  6460     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
  6461     state = get_state_from_sha5_object(sha_obj);
  6462     stubAddr = StubRoutines::sha512_implCompress();
  6463     stubName = "sha512_implCompress";
  6464     break;
  6465   default:
  6466     fatal_unexpected_iid(id);
  6467     return false;
  6469   if (state == NULL) return false;
  6471   // Call the stub.
  6472   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
  6473                                  stubAddr, stubName, TypePtr::BOTTOM,
  6474                                  src_start, state);
  6476   return true;
  6479 //------------------------------inline_digestBase_implCompressMB-----------------------
  6480 //
  6481 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
  6482 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
  6483 //
  6484 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
  6485   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6486          "need SHA1/SHA256/SHA512 instruction support");
  6487   assert((uint)predicate < 3, "sanity");
  6488   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
  6490   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
  6491   Node* src            = argument(1); // byte[] array
  6492   Node* ofs            = argument(2); // type int
  6493   Node* limit          = argument(3); // type int
  6495   const Type* src_type = src->Value(&_gvn);
  6496   const TypeAryPtr* top_src = src_type->isa_aryptr();
  6497   if (top_src  == NULL || top_src->klass()  == NULL) {
  6498     // failed array check
  6499     return false;
  6501   // Figure out the size and type of the elements we will be copying.
  6502   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  6503   if (src_elem != T_BYTE) {
  6504     return false;
  6506   // 'src_start' points to src array + offset
  6507   Node* src_start = array_element_address(src, ofs, src_elem);
  6509   const char* klass_SHA_name = NULL;
  6510   const char* stub_name = NULL;
  6511   address     stub_addr = NULL;
  6512   bool        long_state = false;
  6514   switch (predicate) {
  6515   case 0:
  6516     if (UseSHA1Intrinsics) {
  6517       klass_SHA_name = "sun/security/provider/SHA";
  6518       stub_name = "sha1_implCompressMB";
  6519       stub_addr = StubRoutines::sha1_implCompressMB();
  6521     break;
  6522   case 1:
  6523     if (UseSHA256Intrinsics) {
  6524       klass_SHA_name = "sun/security/provider/SHA2";
  6525       stub_name = "sha256_implCompressMB";
  6526       stub_addr = StubRoutines::sha256_implCompressMB();
  6528     break;
  6529   case 2:
  6530     if (UseSHA512Intrinsics) {
  6531       klass_SHA_name = "sun/security/provider/SHA5";
  6532       stub_name = "sha512_implCompressMB";
  6533       stub_addr = StubRoutines::sha512_implCompressMB();
  6534       long_state = true;
  6536     break;
  6537   default:
  6538     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6540   if (klass_SHA_name != NULL) {
  6541     // get DigestBase klass to lookup for SHA klass
  6542     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
  6543     assert(tinst != NULL, "digestBase_obj is not instance???");
  6544     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6546     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6547     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
  6548     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6549     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
  6551   return false;
  6553 //------------------------------inline_sha_implCompressMB-----------------------
  6554 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
  6555                                                bool long_state, address stubAddr, const char *stubName,
  6556                                                Node* src_start, Node* ofs, Node* limit) {
  6557   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
  6558   const TypeOopPtr* xtype = aklass->as_instance_type();
  6559   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
  6560   sha_obj = _gvn.transform(sha_obj);
  6562   Node* state;
  6563   if (long_state) {
  6564     state = get_state_from_sha5_object(sha_obj);
  6565   } else {
  6566     state = get_state_from_sha_object(sha_obj);
  6568   if (state == NULL) return false;
  6570   // Call the stub.
  6571   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  6572                                  OptoRuntime::digestBase_implCompressMB_Type(),
  6573                                  stubAddr, stubName, TypePtr::BOTTOM,
  6574                                  src_start, state, ofs, limit);
  6575   // return ofs (int)
  6576   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  6577   set_result(result);
  6579   return true;
  6582 //------------------------------get_state_from_sha_object-----------------------
  6583 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
  6584   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
  6585   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
  6586   if (sha_state == NULL) return (Node *) NULL;
  6588   // now have the array, need to get the start address of the state array
  6589   Node* state = array_element_address(sha_state, intcon(0), T_INT);
  6590   return state;
  6593 //------------------------------get_state_from_sha5_object-----------------------
  6594 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
  6595   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
  6596   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
  6597   if (sha_state == NULL) return (Node *) NULL;
  6599   // now have the array, need to get the start address of the state array
  6600   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
  6601   return state;
  6604 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
  6605 // Return node representing slow path of predicate check.
  6606 // the pseudo code we want to emulate with this predicate is:
  6607 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
  6608 //
  6609 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
  6610   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
  6611          "need SHA1/SHA256/SHA512 instruction support");
  6612   assert((uint)predicate < 3, "sanity");
  6614   // The receiver was checked for NULL already.
  6615   Node* digestBaseObj = argument(0);
  6617   // get DigestBase klass for instanceOf check
  6618   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
  6619   assert(tinst != NULL, "digestBaseObj is null");
  6620   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
  6622   const char* klass_SHA_name = NULL;
  6623   switch (predicate) {
  6624   case 0:
  6625     if (UseSHA1Intrinsics) {
  6626       // we want to do an instanceof comparison against the SHA class
  6627       klass_SHA_name = "sun/security/provider/SHA";
  6629     break;
  6630   case 1:
  6631     if (UseSHA256Intrinsics) {
  6632       // we want to do an instanceof comparison against the SHA2 class
  6633       klass_SHA_name = "sun/security/provider/SHA2";
  6635     break;
  6636   case 2:
  6637     if (UseSHA512Intrinsics) {
  6638       // we want to do an instanceof comparison against the SHA5 class
  6639       klass_SHA_name = "sun/security/provider/SHA5";
  6641     break;
  6642   default:
  6643     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
  6646   ciKlass* klass_SHA = NULL;
  6647   if (klass_SHA_name != NULL) {
  6648     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
  6650   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
  6651     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
  6652     Node* ctrl = control();
  6653     set_control(top()); // no intrinsic path
  6654     return ctrl;
  6656   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
  6658   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
  6659   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
  6660   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6661   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6663   return instof_false;  // even if it is NULL
  6666 bool LibraryCallKit::inline_profileBoolean() {
  6667   Node* counts = argument(1);
  6668   const TypeAryPtr* ary = NULL;
  6669   ciArray* aobj = NULL;
  6670   if (counts->is_Con()
  6671       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
  6672       && (aobj = ary->const_oop()->as_array()) != NULL
  6673       && (aobj->length() == 2)) {
  6674     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
  6675     jint false_cnt = aobj->element_value(0).as_int();
  6676     jint  true_cnt = aobj->element_value(1).as_int();
  6678     if (C->log() != NULL) {
  6679       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
  6680                      false_cnt, true_cnt);
  6683     if (false_cnt + true_cnt == 0) {
  6684       // According to profile, never executed.
  6685       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
  6686                           Deoptimization::Action_reinterpret);
  6687       return true;
  6690     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
  6691     // is a number of each value occurrences.
  6692     Node* result = argument(0);
  6693     if (false_cnt == 0 || true_cnt == 0) {
  6694       // According to profile, one value has been never seen.
  6695       int expected_val = (false_cnt == 0) ? 1 : 0;
  6697       Node* cmp  = _gvn.transform(new (C) CmpINode(result, intcon(expected_val)));
  6698       Node* test = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  6700       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
  6701       Node* fast_path = _gvn.transform(new (C) IfTrueNode(check));
  6702       Node* slow_path = _gvn.transform(new (C) IfFalseNode(check));
  6704       { // Slow path: uncommon trap for never seen value and then reexecute
  6705         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
  6706         // the value has been seen at least once.
  6707         PreserveJVMState pjvms(this);
  6708         PreserveReexecuteState preexecs(this);
  6709         jvms()->set_should_reexecute(true);
  6711         set_control(slow_path);
  6712         set_i_o(i_o());
  6714         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
  6715                             Deoptimization::Action_reinterpret);
  6717       // The guard for never seen value enables sharpening of the result and
  6718       // returning a constant. It allows to eliminate branches on the same value
  6719       // later on.
  6720       set_control(fast_path);
  6721       result = intcon(expected_val);
  6723     // Stop profiling.
  6724     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
  6725     // By replacing method body with profile data (represented as ProfileBooleanNode
  6726     // on IR level) we effectively disable profiling.
  6727     // It enables full speed execution once optimized code is generated.
  6728     Node* profile = _gvn.transform(new (C) ProfileBooleanNode(result, false_cnt, true_cnt));
  6729     C->record_for_igvn(profile);
  6730     set_result(profile);
  6731     return true;
  6732   } else {
  6733     // Continue profiling.
  6734     // Profile data isn't available at the moment. So, execute method's bytecode version.
  6735     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
  6736     // is compiled and counters aren't available since corresponding MethodHandle
  6737     // isn't a compile-time constant.
  6738     return false;

mercurial