src/share/vm/opto/compile.cpp

Thu, 04 Apr 2019 17:56:29 +0800

author
aoqi
date
Thu, 04 Apr 2019 17:56:29 +0800
changeset 9572
624a0741915c
parent 9512
992120803410
parent 9448
73d689add964
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "asm/macroAssembler.hpp"
    33 #include "asm/macroAssembler.inline.hpp"
    34 #include "ci/ciReplay.hpp"
    35 #include "classfile/systemDictionary.hpp"
    36 #include "code/exceptionHandlerTable.hpp"
    37 #include "code/nmethod.hpp"
    38 #include "compiler/compileLog.hpp"
    39 #include "compiler/disassembler.hpp"
    40 #include "compiler/oopMap.hpp"
    41 #include "opto/addnode.hpp"
    42 #include "opto/block.hpp"
    43 #include "opto/c2compiler.hpp"
    44 #include "opto/callGenerator.hpp"
    45 #include "opto/callnode.hpp"
    46 #include "opto/cfgnode.hpp"
    47 #include "opto/chaitin.hpp"
    48 #include "opto/compile.hpp"
    49 #include "opto/connode.hpp"
    50 #include "opto/divnode.hpp"
    51 #include "opto/escape.hpp"
    52 #include "opto/idealGraphPrinter.hpp"
    53 #include "opto/loopnode.hpp"
    54 #include "opto/machnode.hpp"
    55 #include "opto/macro.hpp"
    56 #include "opto/matcher.hpp"
    57 #include "opto/mathexactnode.hpp"
    58 #include "opto/memnode.hpp"
    59 #include "opto/mulnode.hpp"
    60 #include "opto/node.hpp"
    61 #include "opto/opcodes.hpp"
    62 #include "opto/output.hpp"
    63 #include "opto/parse.hpp"
    64 #include "opto/phaseX.hpp"
    65 #include "opto/rootnode.hpp"
    66 #include "opto/runtime.hpp"
    67 #include "opto/stringopts.hpp"
    68 #include "opto/type.hpp"
    69 #include "opto/vectornode.hpp"
    70 #include "runtime/arguments.hpp"
    71 #include "runtime/signature.hpp"
    72 #include "runtime/stubRoutines.hpp"
    73 #include "runtime/timer.hpp"
    74 #include "trace/tracing.hpp"
    75 #include "utilities/copy.hpp"
    76 #if defined AD_MD_HPP
    77 # include AD_MD_HPP
    78 #elif defined TARGET_ARCH_MODEL_x86_32
    79 # include "adfiles/ad_x86_32.hpp"
    80 #elif defined TARGET_ARCH_MODEL_x86_64
    81 # include "adfiles/ad_x86_64.hpp"
    82 #elif defined TARGET_ARCH_MODEL_sparc
    83 # include "adfiles/ad_sparc.hpp"
    84 #elif defined TARGET_ARCH_MODEL_zero
    85 # include "adfiles/ad_zero.hpp"
    86 #elif defined TARGET_ARCH_MODEL_ppc_64
    87 # include "adfiles/ad_ppc_64.hpp"
    88 #elif defined TARGET_ARCH_MODEL_mips_64
    89 # include "adfiles/ad_mips_64.hpp"
    90 #endif
    93 // -------------------- Compile::mach_constant_base_node -----------------------
    94 // Constant table base node singleton.
    95 MachConstantBaseNode* Compile::mach_constant_base_node() {
    96   if (_mach_constant_base_node == NULL) {
    97     _mach_constant_base_node = new (C) MachConstantBaseNode();
    98     _mach_constant_base_node->add_req(C->root());
    99   }
   100   return _mach_constant_base_node;
   101 }
   104 /// Support for intrinsics.
   106 // Return the index at which m must be inserted (or already exists).
   107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   108 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   109 #ifdef ASSERT
   110   for (int i = 1; i < _intrinsics->length(); i++) {
   111     CallGenerator* cg1 = _intrinsics->at(i-1);
   112     CallGenerator* cg2 = _intrinsics->at(i);
   113     assert(cg1->method() != cg2->method()
   114            ? cg1->method()     < cg2->method()
   115            : cg1->is_virtual() < cg2->is_virtual(),
   116            "compiler intrinsics list must stay sorted");
   117   }
   118 #endif
   119   // Binary search sorted list, in decreasing intervals [lo, hi].
   120   int lo = 0, hi = _intrinsics->length()-1;
   121   while (lo <= hi) {
   122     int mid = (uint)(hi + lo) / 2;
   123     ciMethod* mid_m = _intrinsics->at(mid)->method();
   124     if (m < mid_m) {
   125       hi = mid-1;
   126     } else if (m > mid_m) {
   127       lo = mid+1;
   128     } else {
   129       // look at minor sort key
   130       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   131       if (is_virtual < mid_virt) {
   132         hi = mid-1;
   133       } else if (is_virtual > mid_virt) {
   134         lo = mid+1;
   135       } else {
   136         return mid;  // exact match
   137       }
   138     }
   139   }
   140   return lo;  // inexact match
   141 }
   143 void Compile::register_intrinsic(CallGenerator* cg) {
   144   if (_intrinsics == NULL) {
   145     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   146   }
   147   // This code is stolen from ciObjectFactory::insert.
   148   // Really, GrowableArray should have methods for
   149   // insert_at, remove_at, and binary_search.
   150   int len = _intrinsics->length();
   151   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   152   if (index == len) {
   153     _intrinsics->append(cg);
   154   } else {
   155 #ifdef ASSERT
   156     CallGenerator* oldcg = _intrinsics->at(index);
   157     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   158 #endif
   159     _intrinsics->append(_intrinsics->at(len-1));
   160     int pos;
   161     for (pos = len-2; pos >= index; pos--) {
   162       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   163     }
   164     _intrinsics->at_put(index, cg);
   165   }
   166   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   167 }
   169 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   170   assert(m->is_loaded(), "don't try this on unloaded methods");
   171   if (_intrinsics != NULL) {
   172     int index = intrinsic_insertion_index(m, is_virtual);
   173     if (index < _intrinsics->length()
   174         && _intrinsics->at(index)->method() == m
   175         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   176       return _intrinsics->at(index);
   177     }
   178   }
   179   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   180   if (m->intrinsic_id() != vmIntrinsics::_none &&
   181       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   182     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   183     if (cg != NULL) {
   184       // Save it for next time:
   185       register_intrinsic(cg);
   186       return cg;
   187     } else {
   188       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   189     }
   190   }
   191   return NULL;
   192 }
   194 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   195 // in library_call.cpp.
   198 #ifndef PRODUCT
   199 // statistics gathering...
   201 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   202 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   204 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   205   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   206   int oflags = _intrinsic_hist_flags[id];
   207   assert(flags != 0, "what happened?");
   208   if (is_virtual) {
   209     flags |= _intrinsic_virtual;
   210   }
   211   bool changed = (flags != oflags);
   212   if ((flags & _intrinsic_worked) != 0) {
   213     juint count = (_intrinsic_hist_count[id] += 1);
   214     if (count == 1) {
   215       changed = true;           // first time
   216     }
   217     // increment the overall count also:
   218     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   219   }
   220   if (changed) {
   221     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   222       // Something changed about the intrinsic's virtuality.
   223       if ((flags & _intrinsic_virtual) != 0) {
   224         // This is the first use of this intrinsic as a virtual call.
   225         if (oflags != 0) {
   226           // We already saw it as a non-virtual, so note both cases.
   227           flags |= _intrinsic_both;
   228         }
   229       } else if ((oflags & _intrinsic_both) == 0) {
   230         // This is the first use of this intrinsic as a non-virtual
   231         flags |= _intrinsic_both;
   232       }
   233     }
   234     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   235   }
   236   // update the overall flags also:
   237   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   238   return changed;
   239 }
   241 static char* format_flags(int flags, char* buf) {
   242   buf[0] = 0;
   243   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   244   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   245   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   246   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   247   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   248   if (buf[0] == 0)  strcat(buf, ",");
   249   assert(buf[0] == ',', "must be");
   250   return &buf[1];
   251 }
   253 void Compile::print_intrinsic_statistics() {
   254   char flagsbuf[100];
   255   ttyLocker ttyl;
   256   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   257   tty->print_cr("Compiler intrinsic usage:");
   258   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   259   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   260   #define PRINT_STAT_LINE(name, c, f) \
   261     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   262   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   263     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   264     int   flags = _intrinsic_hist_flags[id];
   265     juint count = _intrinsic_hist_count[id];
   266     if ((flags | count) != 0) {
   267       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   268     }
   269   }
   270   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   271   if (xtty != NULL)  xtty->tail("statistics");
   272 }
   274 void Compile::print_statistics() {
   275   { ttyLocker ttyl;
   276     if (xtty != NULL)  xtty->head("statistics type='opto'");
   277     Parse::print_statistics();
   278     PhaseCCP::print_statistics();
   279     PhaseRegAlloc::print_statistics();
   280     Scheduling::print_statistics();
   281     PhasePeephole::print_statistics();
   282     PhaseIdealLoop::print_statistics();
   283     if (xtty != NULL)  xtty->tail("statistics");
   284   }
   285   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   286     // put this under its own <statistics> element.
   287     print_intrinsic_statistics();
   288   }
   289 }
   290 #endif //PRODUCT
   292 // Support for bundling info
   293 Bundle* Compile::node_bundling(const Node *n) {
   294   assert(valid_bundle_info(n), "oob");
   295   return &_node_bundling_base[n->_idx];
   296 }
   298 bool Compile::valid_bundle_info(const Node *n) {
   299   return (_node_bundling_limit > n->_idx);
   300 }
   303 void Compile::gvn_replace_by(Node* n, Node* nn) {
   304   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   305     Node* use = n->last_out(i);
   306     bool is_in_table = initial_gvn()->hash_delete(use);
   307     uint uses_found = 0;
   308     for (uint j = 0; j < use->len(); j++) {
   309       if (use->in(j) == n) {
   310         if (j < use->req())
   311           use->set_req(j, nn);
   312         else
   313           use->set_prec(j, nn);
   314         uses_found++;
   315       }
   316     }
   317     if (is_in_table) {
   318       // reinsert into table
   319       initial_gvn()->hash_find_insert(use);
   320     }
   321     record_for_igvn(use);
   322     i -= uses_found;    // we deleted 1 or more copies of this edge
   323   }
   324 }
   327 static inline bool not_a_node(const Node* n) {
   328   if (n == NULL)                   return true;
   329   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   330   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   331   return false;
   332 }
   334 // Identify all nodes that are reachable from below, useful.
   335 // Use breadth-first pass that records state in a Unique_Node_List,
   336 // recursive traversal is slower.
   337 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   338   int estimated_worklist_size = live_nodes();
   339   useful.map( estimated_worklist_size, NULL );  // preallocate space
   341   // Initialize worklist
   342   if (root() != NULL)     { useful.push(root()); }
   343   // If 'top' is cached, declare it useful to preserve cached node
   344   if( cached_top_node() ) { useful.push(cached_top_node()); }
   346   // Push all useful nodes onto the list, breadthfirst
   347   for( uint next = 0; next < useful.size(); ++next ) {
   348     assert( next < unique(), "Unique useful nodes < total nodes");
   349     Node *n  = useful.at(next);
   350     uint max = n->len();
   351     for( uint i = 0; i < max; ++i ) {
   352       Node *m = n->in(i);
   353       if (not_a_node(m))  continue;
   354       useful.push(m);
   355     }
   356   }
   357 }
   359 // Update dead_node_list with any missing dead nodes using useful
   360 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   361 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   362   uint max_idx = unique();
   363   VectorSet& useful_node_set = useful.member_set();
   365   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   366     // If node with index node_idx is not in useful set,
   367     // mark it as dead in dead node list.
   368     if (! useful_node_set.test(node_idx) ) {
   369       record_dead_node(node_idx);
   370     }
   371   }
   372 }
   374 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   375   int shift = 0;
   376   for (int i = 0; i < inlines->length(); i++) {
   377     CallGenerator* cg = inlines->at(i);
   378     CallNode* call = cg->call_node();
   379     if (shift > 0) {
   380       inlines->at_put(i-shift, cg);
   381     }
   382     if (!useful.member(call)) {
   383       shift++;
   384     }
   385   }
   386   inlines->trunc_to(inlines->length()-shift);
   387 }
   389 // Disconnect all useless nodes by disconnecting those at the boundary.
   390 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   391   uint next = 0;
   392   while (next < useful.size()) {
   393     Node *n = useful.at(next++);
   394     if (n->is_SafePoint()) {
   395       // We're done with a parsing phase. Replaced nodes are not valid
   396       // beyond that point.
   397       n->as_SafePoint()->delete_replaced_nodes();
   398     }
   399     // Use raw traversal of out edges since this code removes out edges
   400     int max = n->outcnt();
   401     for (int j = 0; j < max; ++j) {
   402       Node* child = n->raw_out(j);
   403       if (! useful.member(child)) {
   404         assert(!child->is_top() || child != top(),
   405                "If top is cached in Compile object it is in useful list");
   406         // Only need to remove this out-edge to the useless node
   407         n->raw_del_out(j);
   408         --j;
   409         --max;
   410       }
   411     }
   412     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   413       record_for_igvn(n->unique_out());
   414     }
   415   }
   416   // Remove useless macro and predicate opaq nodes
   417   for (int i = C->macro_count()-1; i >= 0; i--) {
   418     Node* n = C->macro_node(i);
   419     if (!useful.member(n)) {
   420       remove_macro_node(n);
   421     }
   422   }
   423   // Remove useless CastII nodes with range check dependency
   424   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
   425     Node* cast = range_check_cast_node(i);
   426     if (!useful.member(cast)) {
   427       remove_range_check_cast(cast);
   428     }
   429   }
   430   // Remove useless expensive node
   431   for (int i = C->expensive_count()-1; i >= 0; i--) {
   432     Node* n = C->expensive_node(i);
   433     if (!useful.member(n)) {
   434       remove_expensive_node(n);
   435     }
   436   }
   437   // clean up the late inline lists
   438   remove_useless_late_inlines(&_string_late_inlines, useful);
   439   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   440   remove_useless_late_inlines(&_late_inlines, useful);
   441   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   442 }
   444 //------------------------------frame_size_in_words-----------------------------
   445 // frame_slots in units of words
   446 int Compile::frame_size_in_words() const {
   447   // shift is 0 in LP32 and 1 in LP64
   448   const int shift = (LogBytesPerWord - LogBytesPerInt);
   449   int words = _frame_slots >> shift;
   450   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   451   return words;
   452 }
   454 // To bang the stack of this compiled method we use the stack size
   455 // that the interpreter would need in case of a deoptimization. This
   456 // removes the need to bang the stack in the deoptimization blob which
   457 // in turn simplifies stack overflow handling.
   458 int Compile::bang_size_in_bytes() const {
   459   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
   460 }
   462 // ============================================================================
   463 //------------------------------CompileWrapper---------------------------------
   464 class CompileWrapper : public StackObj {
   465   Compile *const _compile;
   466  public:
   467   CompileWrapper(Compile* compile);
   469   ~CompileWrapper();
   470 };
   472 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   473   // the Compile* pointer is stored in the current ciEnv:
   474   ciEnv* env = compile->env();
   475   assert(env == ciEnv::current(), "must already be a ciEnv active");
   476   assert(env->compiler_data() == NULL, "compile already active?");
   477   env->set_compiler_data(compile);
   478   assert(compile == Compile::current(), "sanity");
   480   compile->set_type_dict(NULL);
   481   compile->set_type_hwm(NULL);
   482   compile->set_type_last_size(0);
   483   compile->set_last_tf(NULL, NULL);
   484   compile->set_indexSet_arena(NULL);
   485   compile->set_indexSet_free_block_list(NULL);
   486   compile->init_type_arena();
   487   Type::Initialize(compile);
   488   _compile->set_scratch_buffer_blob(NULL);
   489   _compile->begin_method();
   490 }
   491 CompileWrapper::~CompileWrapper() {
   492   _compile->end_method();
   493   if (_compile->scratch_buffer_blob() != NULL)
   494     BufferBlob::free(_compile->scratch_buffer_blob());
   495   _compile->env()->set_compiler_data(NULL);
   496 }
   499 //----------------------------print_compile_messages---------------------------
   500 void Compile::print_compile_messages() {
   501 #ifndef PRODUCT
   502   // Check if recompiling
   503   if (_subsume_loads == false && PrintOpto) {
   504     // Recompiling without allowing machine instructions to subsume loads
   505     tty->print_cr("*********************************************************");
   506     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   507     tty->print_cr("*********************************************************");
   508   }
   509   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   510     // Recompiling without escape analysis
   511     tty->print_cr("*********************************************************");
   512     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   513     tty->print_cr("*********************************************************");
   514   }
   515   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   516     // Recompiling without boxing elimination
   517     tty->print_cr("*********************************************************");
   518     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   519     tty->print_cr("*********************************************************");
   520   }
   521   if (env()->break_at_compile()) {
   522     // Open the debugger when compiling this method.
   523     tty->print("### Breaking when compiling: ");
   524     method()->print_short_name();
   525     tty->cr();
   526     BREAKPOINT;
   527   }
   529   if( PrintOpto ) {
   530     if (is_osr_compilation()) {
   531       tty->print("[OSR]%3d", _compile_id);
   532     } else {
   533       tty->print("%3d", _compile_id);
   534     }
   535   }
   536 #endif
   537 }
   540 //-----------------------init_scratch_buffer_blob------------------------------
   541 // Construct a temporary BufferBlob and cache it for this compile.
   542 void Compile::init_scratch_buffer_blob(int const_size) {
   543   // If there is already a scratch buffer blob allocated and the
   544   // constant section is big enough, use it.  Otherwise free the
   545   // current and allocate a new one.
   546   BufferBlob* blob = scratch_buffer_blob();
   547   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   548     // Use the current blob.
   549   } else {
   550     if (blob != NULL) {
   551       BufferBlob::free(blob);
   552     }
   554     ResourceMark rm;
   555     _scratch_const_size = const_size;
   556     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   557     blob = BufferBlob::create("Compile::scratch_buffer", size);
   558     // Record the buffer blob for next time.
   559     set_scratch_buffer_blob(blob);
   560     // Have we run out of code space?
   561     if (scratch_buffer_blob() == NULL) {
   562       // Let CompilerBroker disable further compilations.
   563       record_failure("Not enough space for scratch buffer in CodeCache");
   564       return;
   565     }
   566   }
   568   // Initialize the relocation buffers
   569   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   570   set_scratch_locs_memory(locs_buf);
   571 }
   574 //-----------------------scratch_emit_size-------------------------------------
   575 // Helper function that computes size by emitting code
   576 uint Compile::scratch_emit_size(const Node* n) {
   577   // Start scratch_emit_size section.
   578   set_in_scratch_emit_size(true);
   580   // Emit into a trash buffer and count bytes emitted.
   581   // This is a pretty expensive way to compute a size,
   582   // but it works well enough if seldom used.
   583   // All common fixed-size instructions are given a size
   584   // method by the AD file.
   585   // Note that the scratch buffer blob and locs memory are
   586   // allocated at the beginning of the compile task, and
   587   // may be shared by several calls to scratch_emit_size.
   588   // The allocation of the scratch buffer blob is particularly
   589   // expensive, since it has to grab the code cache lock.
   590   BufferBlob* blob = this->scratch_buffer_blob();
   591   assert(blob != NULL, "Initialize BufferBlob at start");
   592   assert(blob->size() > MAX_inst_size, "sanity");
   593   relocInfo* locs_buf = scratch_locs_memory();
   594   address blob_begin = blob->content_begin();
   595   address blob_end   = (address)locs_buf;
   596   assert(blob->content_contains(blob_end), "sanity");
   597   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   598   buf.initialize_consts_size(_scratch_const_size);
   599   buf.initialize_stubs_size(MAX_stubs_size);
   600   assert(locs_buf != NULL, "sanity");
   601   int lsize = MAX_locs_size / 3;
   602   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   603   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   604   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   606   // Do the emission.
   608   Label fakeL; // Fake label for branch instructions.
   609   Label*   saveL = NULL;
   610   uint save_bnum = 0;
   611   bool is_branch = n->is_MachBranch();
   612   if (is_branch) {
   613     MacroAssembler masm(&buf);
   614     masm.bind(fakeL);
   615     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   616     n->as_MachBranch()->label_set(&fakeL, 0);
   617   }
   618   n->emit(buf, this->regalloc());
   620   // Emitting into the scratch buffer should not fail
   621   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
   623   if (is_branch) // Restore label.
   624     n->as_MachBranch()->label_set(saveL, save_bnum);
   626   // End scratch_emit_size section.
   627   set_in_scratch_emit_size(false);
   629   return buf.insts_size();
   630 }
   633 // ============================================================================
   634 //------------------------------Compile standard-------------------------------
   635 debug_only( int Compile::_debug_idx = 100000; )
   637 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   638 // the continuation bci for on stack replacement.
   641 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   642                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   643                 : Phase(Compiler),
   644                   _env(ci_env),
   645                   _log(ci_env->log()),
   646                   _compile_id(ci_env->compile_id()),
   647                   _save_argument_registers(false),
   648                   _stub_name(NULL),
   649                   _stub_function(NULL),
   650                   _stub_entry_point(NULL),
   651                   _method(target),
   652                   _entry_bci(osr_bci),
   653                   _initial_gvn(NULL),
   654                   _for_igvn(NULL),
   655                   _warm_calls(NULL),
   656                   _subsume_loads(subsume_loads),
   657                   _do_escape_analysis(do_escape_analysis),
   658                   _eliminate_boxing(eliminate_boxing),
   659                   _failure_reason(NULL),
   660                   _code_buffer("Compile::Fill_buffer"),
   661                   _orig_pc_slot(0),
   662                   _orig_pc_slot_offset_in_bytes(0),
   663                   _has_method_handle_invokes(false),
   664                   _mach_constant_base_node(NULL),
   665                   _node_bundling_limit(0),
   666                   _node_bundling_base(NULL),
   667                   _java_calls(0),
   668                   _inner_loops(0),
   669                   _scratch_const_size(-1),
   670                   _in_scratch_emit_size(false),
   671                   _dead_node_list(comp_arena()),
   672                   _dead_node_count(0),
   673 #ifndef PRODUCT
   674                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   675                   _in_dump_cnt(0),
   676                   _printer(IdealGraphPrinter::printer()),
   677 #endif
   678                   _congraph(NULL),
   679                   _comp_arena(mtCompiler),
   680                   _node_arena(mtCompiler),
   681                   _old_arena(mtCompiler),
   682                   _Compile_types(mtCompiler),
   683                   _replay_inline_data(NULL),
   684                   _late_inlines(comp_arena(), 2, 0, NULL),
   685                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   686                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   687                   _late_inlines_pos(0),
   688                   _number_of_mh_late_inlines(0),
   689                   _inlining_progress(false),
   690                   _inlining_incrementally(false),
   691                   _print_inlining_list(NULL),
   692                   _print_inlining_idx(0),
   693                   _interpreter_frame_size(0),
   694                   _max_node_limit(MaxNodeLimit) {
   695   C = this;
   697   CompileWrapper cw(this);
   698 #ifndef PRODUCT
   699   if (TimeCompiler2) {
   700     tty->print(" ");
   701     target->holder()->name()->print();
   702     tty->print(".");
   703     target->print_short_name();
   704     tty->print("  ");
   705   }
   706   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   707   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   708   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   709   if (!print_opto_assembly) {
   710     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   711     if (print_assembly && !Disassembler::can_decode()) {
   712       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   713       print_opto_assembly = true;
   714     }
   715   }
   716   set_print_assembly(print_opto_assembly);
   717   set_parsed_irreducible_loop(false);
   719   if (method()->has_option("ReplayInline")) {
   720     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
   721   }
   722 #endif
   723   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
   724   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
   725   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
   727   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
   728     // Make sure the method being compiled gets its own MDO,
   729     // so we can at least track the decompile_count().
   730     // Need MDO to record RTM code generation state.
   731     method()->ensure_method_data();
   732   }
   734   Init(::AliasLevel);
   737   print_compile_messages();
   739   _ilt = InlineTree::build_inline_tree_root();
   741   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   742   assert(num_alias_types() >= AliasIdxRaw, "");
   744 #define MINIMUM_NODE_HASH  1023
   745   // Node list that Iterative GVN will start with
   746   Unique_Node_List for_igvn(comp_arena());
   747   set_for_igvn(&for_igvn);
   749   // GVN that will be run immediately on new nodes
   750   uint estimated_size = method()->code_size()*4+64;
   751   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   752   PhaseGVN gvn(node_arena(), estimated_size);
   753   set_initial_gvn(&gvn);
   755   if (print_inlining() || print_intrinsics()) {
   756     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   757   }
   758   { // Scope for timing the parser
   759     TracePhase t3("parse", &_t_parser, true);
   761     // Put top into the hash table ASAP.
   762     initial_gvn()->transform_no_reclaim(top());
   764     // Set up tf(), start(), and find a CallGenerator.
   765     CallGenerator* cg = NULL;
   766     if (is_osr_compilation()) {
   767       const TypeTuple *domain = StartOSRNode::osr_domain();
   768       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   769       init_tf(TypeFunc::make(domain, range));
   770       StartNode* s = new (this) StartOSRNode(root(), domain);
   771       initial_gvn()->set_type_bottom(s);
   772       init_start(s);
   773       cg = CallGenerator::for_osr(method(), entry_bci());
   774     } else {
   775       // Normal case.
   776       init_tf(TypeFunc::make(method()));
   777       StartNode* s = new (this) StartNode(root(), tf()->domain());
   778       initial_gvn()->set_type_bottom(s);
   779       init_start(s);
   780       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   781         // With java.lang.ref.reference.get() we must go through the
   782         // intrinsic when G1 is enabled - even when get() is the root
   783         // method of the compile - so that, if necessary, the value in
   784         // the referent field of the reference object gets recorded by
   785         // the pre-barrier code.
   786         // Specifically, if G1 is enabled, the value in the referent
   787         // field is recorded by the G1 SATB pre barrier. This will
   788         // result in the referent being marked live and the reference
   789         // object removed from the list of discovered references during
   790         // reference processing.
   791         cg = find_intrinsic(method(), false);
   792       }
   793       if (cg == NULL) {
   794         float past_uses = method()->interpreter_invocation_count();
   795         float expected_uses = past_uses;
   796         cg = CallGenerator::for_inline(method(), expected_uses);
   797       }
   798     }
   799     if (failing())  return;
   800     if (cg == NULL) {
   801       record_method_not_compilable_all_tiers("cannot parse method");
   802       return;
   803     }
   804     JVMState* jvms = build_start_state(start(), tf());
   805     if ((jvms = cg->generate(jvms)) == NULL) {
   806       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
   807         record_method_not_compilable("method parse failed");
   808       }
   809       return;
   810     }
   811     GraphKit kit(jvms);
   813     if (!kit.stopped()) {
   814       // Accept return values, and transfer control we know not where.
   815       // This is done by a special, unique ReturnNode bound to root.
   816       return_values(kit.jvms());
   817     }
   819     if (kit.has_exceptions()) {
   820       // Any exceptions that escape from this call must be rethrown
   821       // to whatever caller is dynamically above us on the stack.
   822       // This is done by a special, unique RethrowNode bound to root.
   823       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   824     }
   826     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   828     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   829       inline_string_calls(true);
   830     }
   832     if (failing())  return;
   834     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   836     // Remove clutter produced by parsing.
   837     if (!failing()) {
   838       ResourceMark rm;
   839       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   840     }
   841   }
   843   // Note:  Large methods are capped off in do_one_bytecode().
   844   if (failing())  return;
   846   // After parsing, node notes are no longer automagic.
   847   // They must be propagated by register_new_node_with_optimizer(),
   848   // clone(), or the like.
   849   set_default_node_notes(NULL);
   851   for (;;) {
   852     int successes = Inline_Warm();
   853     if (failing())  return;
   854     if (successes == 0)  break;
   855   }
   857   // Drain the list.
   858   Finish_Warm();
   859 #ifndef PRODUCT
   860   if (_printer) {
   861     _printer->print_inlining(this);
   862   }
   863 #endif
   865   if (failing())  return;
   866   NOT_PRODUCT( verify_graph_edges(); )
   868   // Now optimize
   869   Optimize();
   870   if (failing())  return;
   871   NOT_PRODUCT( verify_graph_edges(); )
   873 #ifndef PRODUCT
   874   if (PrintIdeal) {
   875     ttyLocker ttyl;  // keep the following output all in one block
   876     // This output goes directly to the tty, not the compiler log.
   877     // To enable tools to match it up with the compilation activity,
   878     // be sure to tag this tty output with the compile ID.
   879     if (xtty != NULL) {
   880       xtty->head("ideal compile_id='%d'%s", compile_id(),
   881                  is_osr_compilation()    ? " compile_kind='osr'" :
   882                  "");
   883     }
   884     root()->dump(9999);
   885     if (xtty != NULL) {
   886       xtty->tail("ideal");
   887     }
   888   }
   889 #endif
   891   NOT_PRODUCT( verify_barriers(); )
   893   // Dump compilation data to replay it.
   894   if (method()->has_option("DumpReplay")) {
   895     env()->dump_replay_data(_compile_id);
   896   }
   897   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
   898     env()->dump_inline_data(_compile_id);
   899   }
   901   // Now that we know the size of all the monitors we can add a fixed slot
   902   // for the original deopt pc.
   904   _orig_pc_slot =  fixed_slots();
   905   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   906   set_fixed_slots(next_slot);
   908   // Compute when to use implicit null checks. Used by matching trap based
   909   // nodes and NullCheck optimization.
   910   set_allowed_deopt_reasons();
   912   // Now generate code
   913   Code_Gen();
   914   if (failing())  return;
   916   // Check if we want to skip execution of all compiled code.
   917   {
   918 #ifndef PRODUCT
   919     if (OptoNoExecute) {
   920       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   921       return;
   922     }
   923     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   924 #endif
   926     if (is_osr_compilation()) {
   927       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   928       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   929     } else {
   930       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   931       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   932     }
   934     env()->register_method(_method, _entry_bci,
   935                            &_code_offsets,
   936                            _orig_pc_slot_offset_in_bytes,
   937                            code_buffer(),
   938                            frame_size_in_words(), _oop_map_set,
   939                            &_handler_table, &_inc_table,
   940                            compiler,
   941                            env()->comp_level(),
   942                            has_unsafe_access(),
   943                            SharedRuntime::is_wide_vector(max_vector_size()),
   944                            rtm_state()
   945                            );
   947     if (log() != NULL) // Print code cache state into compiler log
   948       log()->code_cache_state();
   949   }
   950 }
   952 //------------------------------Compile----------------------------------------
   953 // Compile a runtime stub
   954 Compile::Compile( ciEnv* ci_env,
   955                   TypeFunc_generator generator,
   956                   address stub_function,
   957                   const char *stub_name,
   958                   int is_fancy_jump,
   959                   bool pass_tls,
   960                   bool save_arg_registers,
   961                   bool return_pc )
   962   : Phase(Compiler),
   963     _env(ci_env),
   964     _log(ci_env->log()),
   965     _compile_id(0),
   966     _save_argument_registers(save_arg_registers),
   967     _method(NULL),
   968     _stub_name(stub_name),
   969     _stub_function(stub_function),
   970     _stub_entry_point(NULL),
   971     _entry_bci(InvocationEntryBci),
   972     _initial_gvn(NULL),
   973     _for_igvn(NULL),
   974     _warm_calls(NULL),
   975     _orig_pc_slot(0),
   976     _orig_pc_slot_offset_in_bytes(0),
   977     _subsume_loads(true),
   978     _do_escape_analysis(false),
   979     _eliminate_boxing(false),
   980     _failure_reason(NULL),
   981     _code_buffer("Compile::Fill_buffer"),
   982     _has_method_handle_invokes(false),
   983     _mach_constant_base_node(NULL),
   984     _node_bundling_limit(0),
   985     _node_bundling_base(NULL),
   986     _java_calls(0),
   987     _inner_loops(0),
   988 #ifndef PRODUCT
   989     _trace_opto_output(TraceOptoOutput),
   990     _in_dump_cnt(0),
   991     _printer(NULL),
   992 #endif
   993     _comp_arena(mtCompiler),
   994     _node_arena(mtCompiler),
   995     _old_arena(mtCompiler),
   996     _Compile_types(mtCompiler),
   997     _dead_node_list(comp_arena()),
   998     _dead_node_count(0),
   999     _congraph(NULL),
  1000     _replay_inline_data(NULL),
  1001     _number_of_mh_late_inlines(0),
  1002     _inlining_progress(false),
  1003     _inlining_incrementally(false),
  1004     _print_inlining_list(NULL),
  1005     _print_inlining_idx(0),
  1006     _allowed_reasons(0),
  1007     _interpreter_frame_size(0),
  1008     _max_node_limit(MaxNodeLimit) {
  1009   C = this;
  1011 #ifndef PRODUCT
  1012   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
  1013   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
  1014   set_print_assembly(PrintFrameConverterAssembly);
  1015   set_parsed_irreducible_loop(false);
  1016 #endif
  1017   set_has_irreducible_loop(false); // no loops
  1019   CompileWrapper cw(this);
  1020   Init(/*AliasLevel=*/ 0);
  1021   init_tf((*generator)());
  1024     // The following is a dummy for the sake of GraphKit::gen_stub
  1025     Unique_Node_List for_igvn(comp_arena());
  1026     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
  1027     PhaseGVN gvn(Thread::current()->resource_area(),255);
  1028     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
  1029     gvn.transform_no_reclaim(top());
  1031     GraphKit kit;
  1032     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
  1035   NOT_PRODUCT( verify_graph_edges(); )
  1036   Code_Gen();
  1037   if (failing())  return;
  1040   // Entry point will be accessed using compile->stub_entry_point();
  1041   if (code_buffer() == NULL) {
  1042     Matcher::soft_match_failure();
  1043   } else {
  1044     if (PrintAssembly && (WizardMode || Verbose))
  1045       tty->print_cr("### Stub::%s", stub_name);
  1047     if (!failing()) {
  1048       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
  1050       // Make the NMethod
  1051       // For now we mark the frame as never safe for profile stackwalking
  1052       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
  1053                                                       code_buffer(),
  1054                                                       CodeOffsets::frame_never_safe,
  1055                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
  1056                                                       frame_size_in_words(),
  1057                                                       _oop_map_set,
  1058                                                       save_arg_registers);
  1059       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
  1061       _stub_entry_point = rs->entry_point();
  1066 //------------------------------Init-------------------------------------------
  1067 // Prepare for a single compilation
  1068 void Compile::Init(int aliaslevel) {
  1069   _unique  = 0;
  1070   _regalloc = NULL;
  1072   _tf      = NULL;  // filled in later
  1073   _top     = NULL;  // cached later
  1074   _matcher = NULL;  // filled in later
  1075   _cfg     = NULL;  // filled in later
  1077   set_24_bit_selection_and_mode(Use24BitFP, false);
  1079   _node_note_array = NULL;
  1080   _default_node_notes = NULL;
  1082   _immutable_memory = NULL; // filled in at first inquiry
  1084   // Globally visible Nodes
  1085   // First set TOP to NULL to give safe behavior during creation of RootNode
  1086   set_cached_top_node(NULL);
  1087   set_root(new (this) RootNode());
  1088   // Now that you have a Root to point to, create the real TOP
  1089   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1090   set_recent_alloc(NULL, NULL);
  1092   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1093   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1094   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1095   env()->set_dependencies(new Dependencies(env()));
  1097   _fixed_slots = 0;
  1098   set_has_split_ifs(false);
  1099   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1100   set_has_stringbuilder(false);
  1101   set_has_boxed_value(false);
  1102   _trap_can_recompile = false;  // no traps emitted yet
  1103   _major_progress = true; // start out assuming good things will happen
  1104   set_has_unsafe_access(false);
  1105   set_max_vector_size(0);
  1106   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1107   set_decompile_count(0);
  1109   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1110   set_num_loop_opts(LoopOptsCount);
  1111   set_do_inlining(Inline);
  1112   set_max_inline_size(MaxInlineSize);
  1113   set_freq_inline_size(FreqInlineSize);
  1114   set_do_scheduling(OptoScheduling);
  1115   set_do_count_invocations(false);
  1116   set_do_method_data_update(false);
  1117   set_rtm_state(NoRTM); // No RTM lock eliding by default
  1118   method_has_option_value("MaxNodeLimit", _max_node_limit);
  1119 #if INCLUDE_RTM_OPT
  1120   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
  1121     int rtm_state = method()->method_data()->rtm_state();
  1122     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
  1123       // Don't generate RTM lock eliding code.
  1124       set_rtm_state(NoRTM);
  1125     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
  1126       // Generate RTM lock eliding code without abort ratio calculation code.
  1127       set_rtm_state(UseRTM);
  1128     } else if (UseRTMDeopt) {
  1129       // Generate RTM lock eliding code and include abort ratio calculation
  1130       // code if UseRTMDeopt is on.
  1131       set_rtm_state(ProfileRTM);
  1134 #endif
  1135   if (debug_info()->recording_non_safepoints()) {
  1136     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1137                         (comp_arena(), 8, 0, NULL));
  1138     set_default_node_notes(Node_Notes::make(this));
  1141   // // -- Initialize types before each compile --
  1142   // // Update cached type information
  1143   // if( _method && _method->constants() )
  1144   //   Type::update_loaded_types(_method, _method->constants());
  1146   // Init alias_type map.
  1147   if (!_do_escape_analysis && aliaslevel == 3)
  1148     aliaslevel = 2;  // No unique types without escape analysis
  1149   _AliasLevel = aliaslevel;
  1150   const int grow_ats = 16;
  1151   _max_alias_types = grow_ats;
  1152   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1153   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1154   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1156     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1158   // Initialize the first few types.
  1159   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1160   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1161   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1162   _num_alias_types = AliasIdxRaw+1;
  1163   // Zero out the alias type cache.
  1164   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1165   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1166   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1168   _intrinsics = NULL;
  1169   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1170   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1171   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1172   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1173   register_library_intrinsics();
  1176 //---------------------------init_start----------------------------------------
  1177 // Install the StartNode on this compile object.
  1178 void Compile::init_start(StartNode* s) {
  1179   if (failing())
  1180     return; // already failing
  1181   assert(s == start(), "");
  1184 StartNode* Compile::start() const {
  1185   assert(!failing(), "");
  1186   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1187     Node* start = root()->fast_out(i);
  1188     if( start->is_Start() )
  1189       return start->as_Start();
  1191   fatal("Did not find Start node!");
  1192   return NULL;
  1195 //-------------------------------immutable_memory-------------------------------------
  1196 // Access immutable memory
  1197 Node* Compile::immutable_memory() {
  1198   if (_immutable_memory != NULL) {
  1199     return _immutable_memory;
  1201   StartNode* s = start();
  1202   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1203     Node *p = s->fast_out(i);
  1204     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1205       _immutable_memory = p;
  1206       return _immutable_memory;
  1209   ShouldNotReachHere();
  1210   return NULL;
  1213 //----------------------set_cached_top_node------------------------------------
  1214 // Install the cached top node, and make sure Node::is_top works correctly.
  1215 void Compile::set_cached_top_node(Node* tn) {
  1216   if (tn != NULL)  verify_top(tn);
  1217   Node* old_top = _top;
  1218   _top = tn;
  1219   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1220   // their _out arrays.
  1221   if (_top != NULL)     _top->setup_is_top();
  1222   if (old_top != NULL)  old_top->setup_is_top();
  1223   assert(_top == NULL || top()->is_top(), "");
  1226 #ifdef ASSERT
  1227 uint Compile::count_live_nodes_by_graph_walk() {
  1228   Unique_Node_List useful(comp_arena());
  1229   // Get useful node list by walking the graph.
  1230   identify_useful_nodes(useful);
  1231   return useful.size();
  1234 void Compile::print_missing_nodes() {
  1236   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1237   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1238     return;
  1241   // This is an expensive function. It is executed only when the user
  1242   // specifies VerifyIdealNodeCount option or otherwise knows the
  1243   // additional work that needs to be done to identify reachable nodes
  1244   // by walking the flow graph and find the missing ones using
  1245   // _dead_node_list.
  1247   Unique_Node_List useful(comp_arena());
  1248   // Get useful node list by walking the graph.
  1249   identify_useful_nodes(useful);
  1251   uint l_nodes = C->live_nodes();
  1252   uint l_nodes_by_walk = useful.size();
  1254   if (l_nodes != l_nodes_by_walk) {
  1255     if (_log != NULL) {
  1256       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1257       _log->stamp();
  1258       _log->end_head();
  1260     VectorSet& useful_member_set = useful.member_set();
  1261     int last_idx = l_nodes_by_walk;
  1262     for (int i = 0; i < last_idx; i++) {
  1263       if (useful_member_set.test(i)) {
  1264         if (_dead_node_list.test(i)) {
  1265           if (_log != NULL) {
  1266             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1268           if (PrintIdealNodeCount) {
  1269             // Print the log message to tty
  1270               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1271               useful.at(i)->dump();
  1275       else if (! _dead_node_list.test(i)) {
  1276         if (_log != NULL) {
  1277           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1279         if (PrintIdealNodeCount) {
  1280           // Print the log message to tty
  1281           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1285     if (_log != NULL) {
  1286       _log->tail("mismatched_nodes");
  1290 #endif
  1292 #ifndef PRODUCT
  1293 void Compile::verify_top(Node* tn) const {
  1294   if (tn != NULL) {
  1295     assert(tn->is_Con(), "top node must be a constant");
  1296     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1297     assert(tn->in(0) != NULL, "must have live top node");
  1300 #endif
  1303 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1305 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1306   guarantee(arr != NULL, "");
  1307   int num_blocks = arr->length();
  1308   if (grow_by < num_blocks)  grow_by = num_blocks;
  1309   int num_notes = grow_by * _node_notes_block_size;
  1310   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1311   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1312   while (num_notes > 0) {
  1313     arr->append(notes);
  1314     notes     += _node_notes_block_size;
  1315     num_notes -= _node_notes_block_size;
  1317   assert(num_notes == 0, "exact multiple, please");
  1320 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1321   if (source == NULL || dest == NULL)  return false;
  1323   if (dest->is_Con())
  1324     return false;               // Do not push debug info onto constants.
  1326 #ifdef ASSERT
  1327   // Leave a bread crumb trail pointing to the original node:
  1328   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1329     dest->set_debug_orig(source);
  1331 #endif
  1333   if (node_note_array() == NULL)
  1334     return false;               // Not collecting any notes now.
  1336   // This is a copy onto a pre-existing node, which may already have notes.
  1337   // If both nodes have notes, do not overwrite any pre-existing notes.
  1338   Node_Notes* source_notes = node_notes_at(source->_idx);
  1339   if (source_notes == NULL || source_notes->is_clear())  return false;
  1340   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1341   if (dest_notes == NULL || dest_notes->is_clear()) {
  1342     return set_node_notes_at(dest->_idx, source_notes);
  1345   Node_Notes merged_notes = (*source_notes);
  1346   // The order of operations here ensures that dest notes will win...
  1347   merged_notes.update_from(dest_notes);
  1348   return set_node_notes_at(dest->_idx, &merged_notes);
  1352 //--------------------------allow_range_check_smearing-------------------------
  1353 // Gating condition for coalescing similar range checks.
  1354 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1355 // single covering check that is at least as strong as any of them.
  1356 // If the optimization succeeds, the simplified (strengthened) range check
  1357 // will always succeed.  If it fails, we will deopt, and then give up
  1358 // on the optimization.
  1359 bool Compile::allow_range_check_smearing() const {
  1360   // If this method has already thrown a range-check,
  1361   // assume it was because we already tried range smearing
  1362   // and it failed.
  1363   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1364   return !already_trapped;
  1368 //------------------------------flatten_alias_type-----------------------------
  1369 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1370   int offset = tj->offset();
  1371   TypePtr::PTR ptr = tj->ptr();
  1373   // Known instance (scalarizable allocation) alias only with itself.
  1374   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1375                        tj->is_oopptr()->is_known_instance();
  1377   // Process weird unsafe references.
  1378   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1379     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1380     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1381     tj = TypeOopPtr::BOTTOM;
  1382     ptr = tj->ptr();
  1383     offset = tj->offset();
  1386   // Array pointers need some flattening
  1387   const TypeAryPtr *ta = tj->isa_aryptr();
  1388   if (ta && ta->is_stable()) {
  1389     // Erase stability property for alias analysis.
  1390     tj = ta = ta->cast_to_stable(false);
  1392   if( ta && is_known_inst ) {
  1393     if ( offset != Type::OffsetBot &&
  1394          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1395       offset = Type::OffsetBot; // Flatten constant access into array body only
  1396       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1398   } else if( ta && _AliasLevel >= 2 ) {
  1399     // For arrays indexed by constant indices, we flatten the alias
  1400     // space to include all of the array body.  Only the header, klass
  1401     // and array length can be accessed un-aliased.
  1402     if( offset != Type::OffsetBot ) {
  1403       if( ta->const_oop() ) { // MethodData* or Method*
  1404         offset = Type::OffsetBot;   // Flatten constant access into array body
  1405         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1406       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1407         // range is OK as-is.
  1408         tj = ta = TypeAryPtr::RANGE;
  1409       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1410         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1411         ta = TypeAryPtr::RANGE; // generic ignored junk
  1412         ptr = TypePtr::BotPTR;
  1413       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1414         tj = TypeInstPtr::MARK;
  1415         ta = TypeAryPtr::RANGE; // generic ignored junk
  1416         ptr = TypePtr::BotPTR;
  1417       } else {                  // Random constant offset into array body
  1418         offset = Type::OffsetBot;   // Flatten constant access into array body
  1419         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1422     // Arrays of fixed size alias with arrays of unknown size.
  1423     if (ta->size() != TypeInt::POS) {
  1424       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1425       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1427     // Arrays of known objects become arrays of unknown objects.
  1428     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1429       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1430       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1432     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1433       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1434       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1436     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1437     // cannot be distinguished by bytecode alone.
  1438     if (ta->elem() == TypeInt::BOOL) {
  1439       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1440       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1441       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1443     // During the 2nd round of IterGVN, NotNull castings are removed.
  1444     // Make sure the Bottom and NotNull variants alias the same.
  1445     // Also, make sure exact and non-exact variants alias the same.
  1446     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
  1447       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1451   // Oop pointers need some flattening
  1452   const TypeInstPtr *to = tj->isa_instptr();
  1453   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1454     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1455     if( ptr == TypePtr::Constant ) {
  1456       if (to->klass() != ciEnv::current()->Class_klass() ||
  1457           offset < k->size_helper() * wordSize) {
  1458         // No constant oop pointers (such as Strings); they alias with
  1459         // unknown strings.
  1460         assert(!is_known_inst, "not scalarizable allocation");
  1461         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1463     } else if( is_known_inst ) {
  1464       tj = to; // Keep NotNull and klass_is_exact for instance type
  1465     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1466       // During the 2nd round of IterGVN, NotNull castings are removed.
  1467       // Make sure the Bottom and NotNull variants alias the same.
  1468       // Also, make sure exact and non-exact variants alias the same.
  1469       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1471     if (to->speculative() != NULL) {
  1472       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
  1474     // Canonicalize the holder of this field
  1475     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1476       // First handle header references such as a LoadKlassNode, even if the
  1477       // object's klass is unloaded at compile time (4965979).
  1478       if (!is_known_inst) { // Do it only for non-instance types
  1479         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1481     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1482       // Static fields are in the space above the normal instance
  1483       // fields in the java.lang.Class instance.
  1484       if (to->klass() != ciEnv::current()->Class_klass()) {
  1485         to = NULL;
  1486         tj = TypeOopPtr::BOTTOM;
  1487         offset = tj->offset();
  1489     } else {
  1490       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1491       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1492         if( is_known_inst ) {
  1493           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1494         } else {
  1495           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1501   // Klass pointers to object array klasses need some flattening
  1502   const TypeKlassPtr *tk = tj->isa_klassptr();
  1503   if( tk ) {
  1504     // If we are referencing a field within a Klass, we need
  1505     // to assume the worst case of an Object.  Both exact and
  1506     // inexact types must flatten to the same alias class so
  1507     // use NotNull as the PTR.
  1508     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1510       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1511                                    TypeKlassPtr::OBJECT->klass(),
  1512                                    offset);
  1515     ciKlass* klass = tk->klass();
  1516     if( klass->is_obj_array_klass() ) {
  1517       ciKlass* k = TypeAryPtr::OOPS->klass();
  1518       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1519         k = TypeInstPtr::BOTTOM->klass();
  1520       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1523     // Check for precise loads from the primary supertype array and force them
  1524     // to the supertype cache alias index.  Check for generic array loads from
  1525     // the primary supertype array and also force them to the supertype cache
  1526     // alias index.  Since the same load can reach both, we need to merge
  1527     // these 2 disparate memories into the same alias class.  Since the
  1528     // primary supertype array is read-only, there's no chance of confusion
  1529     // where we bypass an array load and an array store.
  1530     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1531     if (offset == Type::OffsetBot ||
  1532         (offset >= primary_supers_offset &&
  1533          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1534         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1535       offset = in_bytes(Klass::secondary_super_cache_offset());
  1536       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1540   // Flatten all Raw pointers together.
  1541   if (tj->base() == Type::RawPtr)
  1542     tj = TypeRawPtr::BOTTOM;
  1544   if (tj->base() == Type::AnyPtr)
  1545     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1547   // Flatten all to bottom for now
  1548   switch( _AliasLevel ) {
  1549   case 0:
  1550     tj = TypePtr::BOTTOM;
  1551     break;
  1552   case 1:                       // Flatten to: oop, static, field or array
  1553     switch (tj->base()) {
  1554     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1555     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1556     case Type::AryPtr:   // do not distinguish arrays at all
  1557     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1558     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1559     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1560     default: ShouldNotReachHere();
  1562     break;
  1563   case 2:                       // No collapsing at level 2; keep all splits
  1564   case 3:                       // No collapsing at level 3; keep all splits
  1565     break;
  1566   default:
  1567     Unimplemented();
  1570   offset = tj->offset();
  1571   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1573   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1574           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1575           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1576           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1577           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1578           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1579           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1580           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1581   assert( tj->ptr() != TypePtr::TopPTR &&
  1582           tj->ptr() != TypePtr::AnyNull &&
  1583           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1584 //    assert( tj->ptr() != TypePtr::Constant ||
  1585 //            tj->base() == Type::RawPtr ||
  1586 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1588   return tj;
  1591 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1592   _index = i;
  1593   _adr_type = at;
  1594   _field = NULL;
  1595   _element = NULL;
  1596   _is_rewritable = true; // default
  1597   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1598   if (atoop != NULL && atoop->is_known_instance()) {
  1599     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1600     _general_index = Compile::current()->get_alias_index(gt);
  1601   } else {
  1602     _general_index = 0;
  1606 BasicType Compile::AliasType::basic_type() const {
  1607   if (element() != NULL) {
  1608     const Type* element = adr_type()->is_aryptr()->elem();
  1609     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
  1610   } if (field() != NULL) {
  1611     return field()->layout_type();
  1612   } else {
  1613     return T_ILLEGAL; // unknown
  1617 //---------------------------------print_on------------------------------------
  1618 #ifndef PRODUCT
  1619 void Compile::AliasType::print_on(outputStream* st) {
  1620   if (index() < 10)
  1621         st->print("@ <%d> ", index());
  1622   else  st->print("@ <%d>",  index());
  1623   st->print(is_rewritable() ? "   " : " RO");
  1624   int offset = adr_type()->offset();
  1625   if (offset == Type::OffsetBot)
  1626         st->print(" +any");
  1627   else  st->print(" +%-3d", offset);
  1628   st->print(" in ");
  1629   adr_type()->dump_on(st);
  1630   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1631   if (field() != NULL && tjp) {
  1632     if (tjp->klass()  != field()->holder() ||
  1633         tjp->offset() != field()->offset_in_bytes()) {
  1634       st->print(" != ");
  1635       field()->print();
  1636       st->print(" ***");
  1641 void print_alias_types() {
  1642   Compile* C = Compile::current();
  1643   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1644   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1645     C->alias_type(idx)->print_on(tty);
  1646     tty->cr();
  1649 #endif
  1652 //----------------------------probe_alias_cache--------------------------------
  1653 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1654   intptr_t key = (intptr_t) adr_type;
  1655   key ^= key >> logAliasCacheSize;
  1656   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1660 //-----------------------------grow_alias_types--------------------------------
  1661 void Compile::grow_alias_types() {
  1662   const int old_ats  = _max_alias_types; // how many before?
  1663   const int new_ats  = old_ats;          // how many more?
  1664   const int grow_ats = old_ats+new_ats;  // how many now?
  1665   _max_alias_types = grow_ats;
  1666   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1667   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1668   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1669   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1673 //--------------------------------find_alias_type------------------------------
  1674 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1675   if (_AliasLevel == 0)
  1676     return alias_type(AliasIdxBot);
  1678   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1679   if (ace->_adr_type == adr_type) {
  1680     return alias_type(ace->_index);
  1683   // Handle special cases.
  1684   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1685   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1687   // Do it the slow way.
  1688   const TypePtr* flat = flatten_alias_type(adr_type);
  1690 #ifdef ASSERT
  1692     ResourceMark rm;
  1693     assert(flat == flatten_alias_type(flat),
  1694            err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type),
  1695                    Type::str(flat), Type::str(flatten_alias_type(flat))));
  1696     assert(flat != TypePtr::BOTTOM,
  1697            err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type)));
  1698     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1699       const TypeOopPtr* foop = flat->is_oopptr();
  1700       // Scalarizable allocations have exact klass always.
  1701       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1702       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1703       assert(foop == flatten_alias_type(xoop),
  1704              err_msg("exactness must not affect alias type: foop = %s; xoop = %s",
  1705                      Type::str(foop), Type::str(xoop)));
  1708 #endif
  1710   int idx = AliasIdxTop;
  1711   for (int i = 0; i < num_alias_types(); i++) {
  1712     if (alias_type(i)->adr_type() == flat) {
  1713       idx = i;
  1714       break;
  1718   if (idx == AliasIdxTop) {
  1719     if (no_create)  return NULL;
  1720     // Grow the array if necessary.
  1721     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1722     // Add a new alias type.
  1723     idx = _num_alias_types++;
  1724     _alias_types[idx]->Init(idx, flat);
  1725     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1726     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1727     if (flat->isa_instptr()) {
  1728       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1729           && flat->is_instptr()->klass() == env()->Class_klass())
  1730         alias_type(idx)->set_rewritable(false);
  1732     if (flat->isa_aryptr()) {
  1733 #ifdef ASSERT
  1734       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1735       // (T_BYTE has the weakest alignment and size restrictions...)
  1736       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1737 #endif
  1738       if (flat->offset() == TypePtr::OffsetBot) {
  1739         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1742     if (flat->isa_klassptr()) {
  1743       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1744         alias_type(idx)->set_rewritable(false);
  1745       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1746         alias_type(idx)->set_rewritable(false);
  1747       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1748         alias_type(idx)->set_rewritable(false);
  1749       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1750         alias_type(idx)->set_rewritable(false);
  1752     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1753     // but the base pointer type is not distinctive enough to identify
  1754     // references into JavaThread.)
  1756     // Check for final fields.
  1757     const TypeInstPtr* tinst = flat->isa_instptr();
  1758     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1759       ciField* field;
  1760       if (tinst->const_oop() != NULL &&
  1761           tinst->klass() == ciEnv::current()->Class_klass() &&
  1762           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1763         // static field
  1764         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1765         field = k->get_field_by_offset(tinst->offset(), true);
  1766       } else {
  1767         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1768         field = k->get_field_by_offset(tinst->offset(), false);
  1770       assert(field == NULL ||
  1771              original_field == NULL ||
  1772              (field->holder() == original_field->holder() &&
  1773               field->offset() == original_field->offset() &&
  1774               field->is_static() == original_field->is_static()), "wrong field?");
  1775       // Set field() and is_rewritable() attributes.
  1776       if (field != NULL)  alias_type(idx)->set_field(field);
  1780   // Fill the cache for next time.
  1781   ace->_adr_type = adr_type;
  1782   ace->_index    = idx;
  1783   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1785   // Might as well try to fill the cache for the flattened version, too.
  1786   AliasCacheEntry* face = probe_alias_cache(flat);
  1787   if (face->_adr_type == NULL) {
  1788     face->_adr_type = flat;
  1789     face->_index    = idx;
  1790     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1793   return alias_type(idx);
  1797 Compile::AliasType* Compile::alias_type(ciField* field) {
  1798   const TypeOopPtr* t;
  1799   if (field->is_static())
  1800     t = TypeInstPtr::make(field->holder()->java_mirror());
  1801   else
  1802     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1803   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1804   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1805   return atp;
  1809 //------------------------------have_alias_type--------------------------------
  1810 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1811   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1812   if (ace->_adr_type == adr_type) {
  1813     return true;
  1816   // Handle special cases.
  1817   if (adr_type == NULL)             return true;
  1818   if (adr_type == TypePtr::BOTTOM)  return true;
  1820   return find_alias_type(adr_type, true, NULL) != NULL;
  1823 //-----------------------------must_alias--------------------------------------
  1824 // True if all values of the given address type are in the given alias category.
  1825 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1826   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1827   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1828   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1829   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1831   // the only remaining possible overlap is identity
  1832   int adr_idx = get_alias_index(adr_type);
  1833   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1834   assert(adr_idx == alias_idx ||
  1835          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1836           && adr_type                       != TypeOopPtr::BOTTOM),
  1837          "should not be testing for overlap with an unsafe pointer");
  1838   return adr_idx == alias_idx;
  1841 //------------------------------can_alias--------------------------------------
  1842 // True if any values of the given address type are in the given alias category.
  1843 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1844   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1845   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1846   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1847   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1849   // the only remaining possible overlap is identity
  1850   int adr_idx = get_alias_index(adr_type);
  1851   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1852   return adr_idx == alias_idx;
  1857 //---------------------------pop_warm_call-------------------------------------
  1858 WarmCallInfo* Compile::pop_warm_call() {
  1859   WarmCallInfo* wci = _warm_calls;
  1860   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1861   return wci;
  1864 //----------------------------Inline_Warm--------------------------------------
  1865 int Compile::Inline_Warm() {
  1866   // If there is room, try to inline some more warm call sites.
  1867   // %%% Do a graph index compaction pass when we think we're out of space?
  1868   if (!InlineWarmCalls)  return 0;
  1870   int calls_made_hot = 0;
  1871   int room_to_grow   = NodeCountInliningCutoff - unique();
  1872   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1873   int amount_grown   = 0;
  1874   WarmCallInfo* call;
  1875   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1876     int est_size = (int)call->size();
  1877     if (est_size > (room_to_grow - amount_grown)) {
  1878       // This one won't fit anyway.  Get rid of it.
  1879       call->make_cold();
  1880       continue;
  1882     call->make_hot();
  1883     calls_made_hot++;
  1884     amount_grown   += est_size;
  1885     amount_to_grow -= est_size;
  1888   if (calls_made_hot > 0)  set_major_progress();
  1889   return calls_made_hot;
  1893 //----------------------------Finish_Warm--------------------------------------
  1894 void Compile::Finish_Warm() {
  1895   if (!InlineWarmCalls)  return;
  1896   if (failing())  return;
  1897   if (warm_calls() == NULL)  return;
  1899   // Clean up loose ends, if we are out of space for inlining.
  1900   WarmCallInfo* call;
  1901   while ((call = pop_warm_call()) != NULL) {
  1902     call->make_cold();
  1906 //---------------------cleanup_loop_predicates-----------------------
  1907 // Remove the opaque nodes that protect the predicates so that all unused
  1908 // checks and uncommon_traps will be eliminated from the ideal graph
  1909 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1910   if (predicate_count()==0) return;
  1911   for (int i = predicate_count(); i > 0; i--) {
  1912     Node * n = predicate_opaque1_node(i-1);
  1913     assert(n->Opcode() == Op_Opaque1, "must be");
  1914     igvn.replace_node(n, n->in(1));
  1916   assert(predicate_count()==0, "should be clean!");
  1919 void Compile::add_range_check_cast(Node* n) {
  1920   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
  1921   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
  1922   _range_check_casts->append(n);
  1925 // Remove all range check dependent CastIINodes.
  1926 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
  1927   for (int i = range_check_cast_count(); i > 0; i--) {
  1928     Node* cast = range_check_cast_node(i-1);
  1929     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
  1930     igvn.replace_node(cast, cast->in(1));
  1932   assert(range_check_cast_count() == 0, "should be empty");
  1935 // StringOpts and late inlining of string methods
  1936 void Compile::inline_string_calls(bool parse_time) {
  1938     // remove useless nodes to make the usage analysis simpler
  1939     ResourceMark rm;
  1940     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1944     ResourceMark rm;
  1945     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1946     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1947     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1950   // now inline anything that we skipped the first time around
  1951   if (!parse_time) {
  1952     _late_inlines_pos = _late_inlines.length();
  1955   while (_string_late_inlines.length() > 0) {
  1956     CallGenerator* cg = _string_late_inlines.pop();
  1957     cg->do_late_inline();
  1958     if (failing())  return;
  1960   _string_late_inlines.trunc_to(0);
  1963 // Late inlining of boxing methods
  1964 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1965   if (_boxing_late_inlines.length() > 0) {
  1966     assert(has_boxed_value(), "inconsistent");
  1968     PhaseGVN* gvn = initial_gvn();
  1969     set_inlining_incrementally(true);
  1971     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1972     for_igvn()->clear();
  1973     gvn->replace_with(&igvn);
  1975     _late_inlines_pos = _late_inlines.length();
  1977     while (_boxing_late_inlines.length() > 0) {
  1978       CallGenerator* cg = _boxing_late_inlines.pop();
  1979       cg->do_late_inline();
  1980       if (failing())  return;
  1982     _boxing_late_inlines.trunc_to(0);
  1985       ResourceMark rm;
  1986       PhaseRemoveUseless pru(gvn, for_igvn());
  1989     igvn = PhaseIterGVN(gvn);
  1990     igvn.optimize();
  1992     set_inlining_progress(false);
  1993     set_inlining_incrementally(false);
  1997 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1998   assert(IncrementalInline, "incremental inlining should be on");
  1999   PhaseGVN* gvn = initial_gvn();
  2001   set_inlining_progress(false);
  2002   for_igvn()->clear();
  2003   gvn->replace_with(&igvn);
  2005   int i = 0;
  2007   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  2008     CallGenerator* cg = _late_inlines.at(i);
  2009     _late_inlines_pos = i+1;
  2010     cg->do_late_inline();
  2011     if (failing())  return;
  2013   int j = 0;
  2014   for (; i < _late_inlines.length(); i++, j++) {
  2015     _late_inlines.at_put(j, _late_inlines.at(i));
  2017   _late_inlines.trunc_to(j);
  2020     ResourceMark rm;
  2021     PhaseRemoveUseless pru(gvn, for_igvn());
  2024   igvn = PhaseIterGVN(gvn);
  2027 // Perform incremental inlining until bound on number of live nodes is reached
  2028 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  2029   PhaseGVN* gvn = initial_gvn();
  2031   set_inlining_incrementally(true);
  2032   set_inlining_progress(true);
  2033   uint low_live_nodes = 0;
  2035   while(inlining_progress() && _late_inlines.length() > 0) {
  2037     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  2038       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  2039         // PhaseIdealLoop is expensive so we only try it once we are
  2040         // out of live nodes and we only try it again if the previous
  2041         // helped got the number of nodes down significantly
  2042         PhaseIdealLoop ideal_loop( igvn, false, true );
  2043         if (failing())  return;
  2044         low_live_nodes = live_nodes();
  2045         _major_progress = true;
  2048       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  2049         break;
  2053     inline_incrementally_one(igvn);
  2055     if (failing())  return;
  2057     igvn.optimize();
  2059     if (failing())  return;
  2062   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  2064   if (_string_late_inlines.length() > 0) {
  2065     assert(has_stringbuilder(), "inconsistent");
  2066     for_igvn()->clear();
  2067     initial_gvn()->replace_with(&igvn);
  2069     inline_string_calls(false);
  2071     if (failing())  return;
  2074       ResourceMark rm;
  2075       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  2078     igvn = PhaseIterGVN(gvn);
  2080     igvn.optimize();
  2083   set_inlining_incrementally(false);
  2087 //------------------------------Optimize---------------------------------------
  2088 // Given a graph, optimize it.
  2089 void Compile::Optimize() {
  2090   TracePhase t1("optimizer", &_t_optimizer, true);
  2092 #ifndef PRODUCT
  2093   if (env()->break_at_compile()) {
  2094     BREAKPOINT;
  2097 #endif
  2099   ResourceMark rm;
  2100   int          loop_opts_cnt;
  2102   NOT_PRODUCT( verify_graph_edges(); )
  2104   print_method(PHASE_AFTER_PARSING);
  2107   // Iterative Global Value Numbering, including ideal transforms
  2108   // Initialize IterGVN with types and values from parse-time GVN
  2109   PhaseIterGVN igvn(initial_gvn());
  2111     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  2112     igvn.optimize();
  2115   print_method(PHASE_ITER_GVN1, 2);
  2117   if (failing())  return;
  2120     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2121     inline_incrementally(igvn);
  2124   print_method(PHASE_INCREMENTAL_INLINE, 2);
  2126   if (failing())  return;
  2128   if (eliminate_boxing()) {
  2129     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2130     // Inline valueOf() methods now.
  2131     inline_boxing_calls(igvn);
  2133     if (AlwaysIncrementalInline) {
  2134       inline_incrementally(igvn);
  2137     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2139     if (failing())  return;
  2142   // Remove the speculative part of types and clean up the graph from
  2143   // the extra CastPP nodes whose only purpose is to carry them. Do
  2144   // that early so that optimizations are not disrupted by the extra
  2145   // CastPP nodes.
  2146   remove_speculative_types(igvn);
  2148   // No more new expensive nodes will be added to the list from here
  2149   // so keep only the actual candidates for optimizations.
  2150   cleanup_expensive_nodes(igvn);
  2152   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
  2153     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
  2154     initial_gvn()->replace_with(&igvn);
  2155     for_igvn()->clear();
  2156     Unique_Node_List new_worklist(C->comp_arena());
  2158       ResourceMark rm;
  2159       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
  2161     set_for_igvn(&new_worklist);
  2162     igvn = PhaseIterGVN(initial_gvn());
  2163     igvn.optimize();
  2166   // Perform escape analysis
  2167   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2168     if (has_loops()) {
  2169       // Cleanup graph (remove dead nodes).
  2170       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2171       PhaseIdealLoop ideal_loop( igvn, false, true );
  2172       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2173       if (failing())  return;
  2175     ConnectionGraph::do_analysis(this, &igvn);
  2177     if (failing())  return;
  2179     // Optimize out fields loads from scalar replaceable allocations.
  2180     igvn.optimize();
  2181     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2183     if (failing())  return;
  2185     if (congraph() != NULL && macro_count() > 0) {
  2186       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2187       PhaseMacroExpand mexp(igvn);
  2188       mexp.eliminate_macro_nodes();
  2189       igvn.set_delay_transform(false);
  2191       igvn.optimize();
  2192       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2194       if (failing())  return;
  2198   // Loop transforms on the ideal graph.  Range Check Elimination,
  2199   // peeling, unrolling, etc.
  2201   // Set loop opts counter
  2202   loop_opts_cnt = num_loop_opts();
  2203   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2205       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2206       PhaseIdealLoop ideal_loop( igvn, true );
  2207       loop_opts_cnt--;
  2208       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2209       if (failing())  return;
  2211     // Loop opts pass if partial peeling occurred in previous pass
  2212     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2213       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2214       PhaseIdealLoop ideal_loop( igvn, false );
  2215       loop_opts_cnt--;
  2216       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2217       if (failing())  return;
  2219     // Loop opts pass for loop-unrolling before CCP
  2220     if(major_progress() && (loop_opts_cnt > 0)) {
  2221       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2222       PhaseIdealLoop ideal_loop( igvn, false );
  2223       loop_opts_cnt--;
  2224       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2226     if (!failing()) {
  2227       // Verify that last round of loop opts produced a valid graph
  2228       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2229       PhaseIdealLoop::verify(igvn);
  2232   if (failing())  return;
  2234   // Conditional Constant Propagation;
  2235   PhaseCCP ccp( &igvn );
  2236   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2238     TracePhase t2("ccp", &_t_ccp, true);
  2239     ccp.do_transform();
  2241   print_method(PHASE_CPP1, 2);
  2243   assert( true, "Break here to ccp.dump_old2new_map()");
  2245   // Iterative Global Value Numbering, including ideal transforms
  2247     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2248     igvn = ccp;
  2249     igvn.optimize();
  2252   print_method(PHASE_ITER_GVN2, 2);
  2254   if (failing())  return;
  2256   // Loop transforms on the ideal graph.  Range Check Elimination,
  2257   // peeling, unrolling, etc.
  2258   if(loop_opts_cnt > 0) {
  2259     debug_only( int cnt = 0; );
  2260     while(major_progress() && (loop_opts_cnt > 0)) {
  2261       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2262       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2263       PhaseIdealLoop ideal_loop( igvn, true);
  2264       loop_opts_cnt--;
  2265       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2266       if (failing())  return;
  2271     // Verify that all previous optimizations produced a valid graph
  2272     // at least to this point, even if no loop optimizations were done.
  2273     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2274     PhaseIdealLoop::verify(igvn);
  2277   if (range_check_cast_count() > 0) {
  2278     // No more loop optimizations. Remove all range check dependent CastIINodes.
  2279     C->remove_range_check_casts(igvn);
  2280     igvn.optimize();
  2284     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2285     PhaseMacroExpand  mex(igvn);
  2286     if (mex.expand_macro_nodes()) {
  2287       assert(failing(), "must bail out w/ explicit message");
  2288       return;
  2292  } // (End scope of igvn; run destructor if necessary for asserts.)
  2294   dump_inlining();
  2295   // A method with only infinite loops has no edges entering loops from root
  2297     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2298     if (final_graph_reshaping()) {
  2299       assert(failing(), "must bail out w/ explicit message");
  2300       return;
  2304   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2308 //------------------------------Code_Gen---------------------------------------
  2309 // Given a graph, generate code for it
  2310 void Compile::Code_Gen() {
  2311   if (failing()) {
  2312     return;
  2315   // Perform instruction selection.  You might think we could reclaim Matcher
  2316   // memory PDQ, but actually the Matcher is used in generating spill code.
  2317   // Internals of the Matcher (including some VectorSets) must remain live
  2318   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2319   // set a bit in reclaimed memory.
  2321   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2322   // nodes.  Mapping is only valid at the root of each matched subtree.
  2323   NOT_PRODUCT( verify_graph_edges(); )
  2325   Matcher matcher;
  2326   _matcher = &matcher;
  2328     TracePhase t2("matcher", &_t_matcher, true);
  2329     matcher.match();
  2331   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2332   // nodes.  Mapping is only valid at the root of each matched subtree.
  2333   NOT_PRODUCT( verify_graph_edges(); )
  2335   // If you have too many nodes, or if matching has failed, bail out
  2336   check_node_count(0, "out of nodes matching instructions");
  2337   if (failing()) {
  2338     return;
  2341   // Build a proper-looking CFG
  2342   PhaseCFG cfg(node_arena(), root(), matcher);
  2343   _cfg = &cfg;
  2345     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2346     bool success = cfg.do_global_code_motion();
  2347     if (!success) {
  2348       return;
  2351     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2352     NOT_PRODUCT( verify_graph_edges(); )
  2353     debug_only( cfg.verify(); )
  2356   PhaseChaitin regalloc(unique(), cfg, matcher);
  2357   _regalloc = &regalloc;
  2359     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2360     // Perform register allocation.  After Chaitin, use-def chains are
  2361     // no longer accurate (at spill code) and so must be ignored.
  2362     // Node->LRG->reg mappings are still accurate.
  2363     _regalloc->Register_Allocate();
  2365     // Bail out if the allocator builds too many nodes
  2366     if (failing()) {
  2367       return;
  2371   // Prior to register allocation we kept empty basic blocks in case the
  2372   // the allocator needed a place to spill.  After register allocation we
  2373   // are not adding any new instructions.  If any basic block is empty, we
  2374   // can now safely remove it.
  2376     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2377     cfg.remove_empty_blocks();
  2378     if (do_freq_based_layout()) {
  2379       PhaseBlockLayout layout(cfg);
  2380     } else {
  2381       cfg.set_loop_alignment();
  2383     cfg.fixup_flow();
  2386   // Apply peephole optimizations
  2387   if( OptoPeephole ) {
  2388     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2389     PhasePeephole peep( _regalloc, cfg);
  2390     peep.do_transform();
  2393   // Do late expand if CPU requires this.
  2394   if (Matcher::require_postalloc_expand) {
  2395     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
  2396     cfg.postalloc_expand(_regalloc);
  2399   // Convert Nodes to instruction bits in a buffer
  2401     // %%%% workspace merge brought two timers together for one job
  2402     TracePhase t2a("output", &_t_output, true);
  2403     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2404     Output();
  2407   print_method(PHASE_FINAL_CODE);
  2409   // He's dead, Jim.
  2410   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
  2411   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
  2415 //------------------------------dump_asm---------------------------------------
  2416 // Dump formatted assembly
  2417 #ifndef PRODUCT
  2418 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2419   bool cut_short = false;
  2420   tty->print_cr("#");
  2421   tty->print("#  ");  _tf->dump();  tty->cr();
  2422   tty->print_cr("#");
  2424   // For all blocks
  2425   int pc = 0x0;                 // Program counter
  2426   char starts_bundle = ' ';
  2427   _regalloc->dump_frame();
  2429   Node *n = NULL;
  2430   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2431     if (VMThread::should_terminate()) {
  2432       cut_short = true;
  2433       break;
  2435     Block* block = _cfg->get_block(i);
  2436     if (block->is_connector() && !Verbose) {
  2437       continue;
  2439     n = block->head();
  2440     if (pcs && n->_idx < pc_limit) {
  2441       tty->print("%3.3x   ", pcs[n->_idx]);
  2442     } else {
  2443       tty->print("      ");
  2445     block->dump_head(_cfg);
  2446     if (block->is_connector()) {
  2447       tty->print_cr("        # Empty connector block");
  2448     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2449       tty->print_cr("        # Block is sole successor of call");
  2452     // For all instructions
  2453     Node *delay = NULL;
  2454     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2455       if (VMThread::should_terminate()) {
  2456         cut_short = true;
  2457         break;
  2459       n = block->get_node(j);
  2460       if (valid_bundle_info(n)) {
  2461         Bundle* bundle = node_bundling(n);
  2462         if (bundle->used_in_unconditional_delay()) {
  2463           delay = n;
  2464           continue;
  2466         if (bundle->starts_bundle()) {
  2467           starts_bundle = '+';
  2471       if (WizardMode) {
  2472         n->dump();
  2475       if( !n->is_Region() &&    // Dont print in the Assembly
  2476           !n->is_Phi() &&       // a few noisely useless nodes
  2477           !n->is_Proj() &&
  2478           !n->is_MachTemp() &&
  2479           !n->is_SafePointScalarObject() &&
  2480           !n->is_Catch() &&     // Would be nice to print exception table targets
  2481           !n->is_MergeMem() &&  // Not very interesting
  2482           !n->is_top() &&       // Debug info table constants
  2483           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2484           ) {
  2485         if (pcs && n->_idx < pc_limit)
  2486           tty->print("%3.3x", pcs[n->_idx]);
  2487         else
  2488           tty->print("   ");
  2489         tty->print(" %c ", starts_bundle);
  2490         starts_bundle = ' ';
  2491         tty->print("\t");
  2492         n->format(_regalloc, tty);
  2493         tty->cr();
  2496       // If we have an instruction with a delay slot, and have seen a delay,
  2497       // then back up and print it
  2498       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2499         assert(delay != NULL, "no unconditional delay instruction");
  2500         if (WizardMode) delay->dump();
  2502         if (node_bundling(delay)->starts_bundle())
  2503           starts_bundle = '+';
  2504         if (pcs && n->_idx < pc_limit)
  2505           tty->print("%3.3x", pcs[n->_idx]);
  2506         else
  2507           tty->print("   ");
  2508         tty->print(" %c ", starts_bundle);
  2509         starts_bundle = ' ';
  2510         tty->print("\t");
  2511         delay->format(_regalloc, tty);
  2512         tty->cr();
  2513         delay = NULL;
  2516       // Dump the exception table as well
  2517       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2518         // Print the exception table for this offset
  2519         _handler_table.print_subtable_for(pc);
  2523     if (pcs && n->_idx < pc_limit)
  2524       tty->print_cr("%3.3x", pcs[n->_idx]);
  2525     else
  2526       tty->cr();
  2528     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2530   } // End of per-block dump
  2531   tty->cr();
  2533   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2535 #endif
  2537 //------------------------------Final_Reshape_Counts---------------------------
  2538 // This class defines counters to help identify when a method
  2539 // may/must be executed using hardware with only 24-bit precision.
  2540 struct Final_Reshape_Counts : public StackObj {
  2541   int  _call_count;             // count non-inlined 'common' calls
  2542   int  _float_count;            // count float ops requiring 24-bit precision
  2543   int  _double_count;           // count double ops requiring more precision
  2544   int  _java_call_count;        // count non-inlined 'java' calls
  2545   int  _inner_loop_count;       // count loops which need alignment
  2546   VectorSet _visited;           // Visitation flags
  2547   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2549   Final_Reshape_Counts() :
  2550     _call_count(0), _float_count(0), _double_count(0),
  2551     _java_call_count(0), _inner_loop_count(0),
  2552     _visited( Thread::current()->resource_area() ) { }
  2554   void inc_call_count  () { _call_count  ++; }
  2555   void inc_float_count () { _float_count ++; }
  2556   void inc_double_count() { _double_count++; }
  2557   void inc_java_call_count() { _java_call_count++; }
  2558   void inc_inner_loop_count() { _inner_loop_count++; }
  2560   int  get_call_count  () const { return _call_count  ; }
  2561   int  get_float_count () const { return _float_count ; }
  2562   int  get_double_count() const { return _double_count; }
  2563   int  get_java_call_count() const { return _java_call_count; }
  2564   int  get_inner_loop_count() const { return _inner_loop_count; }
  2565 };
  2567 #ifdef ASSERT
  2568 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2569   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2570   // Make sure the offset goes inside the instance layout.
  2571   return k->contains_field_offset(tp->offset());
  2572   // Note that OffsetBot and OffsetTop are very negative.
  2574 #endif
  2576 // Eliminate trivially redundant StoreCMs and accumulate their
  2577 // precedence edges.
  2578 void Compile::eliminate_redundant_card_marks(Node* n) {
  2579   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2580   if (n->in(MemNode::Address)->outcnt() > 1) {
  2581     // There are multiple users of the same address so it might be
  2582     // possible to eliminate some of the StoreCMs
  2583     Node* mem = n->in(MemNode::Memory);
  2584     Node* adr = n->in(MemNode::Address);
  2585     Node* val = n->in(MemNode::ValueIn);
  2586     Node* prev = n;
  2587     bool done = false;
  2588     // Walk the chain of StoreCMs eliminating ones that match.  As
  2589     // long as it's a chain of single users then the optimization is
  2590     // safe.  Eliminating partially redundant StoreCMs would require
  2591     // cloning copies down the other paths.
  2592     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2593       if (adr == mem->in(MemNode::Address) &&
  2594           val == mem->in(MemNode::ValueIn)) {
  2595         // redundant StoreCM
  2596         if (mem->req() > MemNode::OopStore) {
  2597           // Hasn't been processed by this code yet.
  2598           n->add_prec(mem->in(MemNode::OopStore));
  2599         } else {
  2600           // Already converted to precedence edge
  2601           for (uint i = mem->req(); i < mem->len(); i++) {
  2602             // Accumulate any precedence edges
  2603             if (mem->in(i) != NULL) {
  2604               n->add_prec(mem->in(i));
  2607           // Everything above this point has been processed.
  2608           done = true;
  2610         // Eliminate the previous StoreCM
  2611         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2612         assert(mem->outcnt() == 0, "should be dead");
  2613         mem->disconnect_inputs(NULL, this);
  2614       } else {
  2615         prev = mem;
  2617       mem = prev->in(MemNode::Memory);
  2622 //------------------------------final_graph_reshaping_impl----------------------
  2623 // Implement items 1-5 from final_graph_reshaping below.
  2624 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2626   if ( n->outcnt() == 0 ) return; // dead node
  2627   uint nop = n->Opcode();
  2629   // Check for 2-input instruction with "last use" on right input.
  2630   // Swap to left input.  Implements item (2).
  2631   if( n->req() == 3 &&          // two-input instruction
  2632       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2633       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2634       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2635       !n->in(2)->is_Con() ) {   // right use is not a constant
  2636     // Check for commutative opcode
  2637     switch( nop ) {
  2638     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2639     case Op_MaxI:  case Op_MinI:
  2640     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2641     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2642     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2643       // Move "last use" input to left by swapping inputs
  2644       n->swap_edges(1, 2);
  2645       break;
  2647     default:
  2648       break;
  2652 #ifdef ASSERT
  2653   if( n->is_Mem() ) {
  2654     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2655     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2656             // oop will be recorded in oop map if load crosses safepoint
  2657             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2658                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2659             "raw memory operations should have control edge");
  2661 #endif
  2662   // Count FPU ops and common calls, implements item (3)
  2663   switch( nop ) {
  2664   // Count all float operations that may use FPU
  2665   case Op_AddF:
  2666   case Op_SubF:
  2667   case Op_MulF:
  2668   case Op_DivF:
  2669   case Op_NegF:
  2670   case Op_ModF:
  2671   case Op_ConvI2F:
  2672   case Op_ConF:
  2673   case Op_CmpF:
  2674   case Op_CmpF3:
  2675   // case Op_ConvL2F: // longs are split into 32-bit halves
  2676     frc.inc_float_count();
  2677     break;
  2679   case Op_ConvF2D:
  2680   case Op_ConvD2F:
  2681     frc.inc_float_count();
  2682     frc.inc_double_count();
  2683     break;
  2685   // Count all double operations that may use FPU
  2686   case Op_AddD:
  2687   case Op_SubD:
  2688   case Op_MulD:
  2689   case Op_DivD:
  2690   case Op_NegD:
  2691   case Op_ModD:
  2692   case Op_ConvI2D:
  2693   case Op_ConvD2I:
  2694   // case Op_ConvL2D: // handled by leaf call
  2695   // case Op_ConvD2L: // handled by leaf call
  2696   case Op_ConD:
  2697   case Op_CmpD:
  2698   case Op_CmpD3:
  2699     frc.inc_double_count();
  2700     break;
  2701   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2702   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2703   case Op_Opaque3:
  2704     n->subsume_by(n->in(1), this);
  2705     break;
  2706   case Op_CallStaticJava:
  2707   case Op_CallJava:
  2708   case Op_CallDynamicJava:
  2709     frc.inc_java_call_count(); // Count java call site;
  2710   case Op_CallRuntime:
  2711   case Op_CallLeaf:
  2712   case Op_CallLeafNoFP: {
  2713     assert( n->is_Call(), "" );
  2714     CallNode *call = n->as_Call();
  2715     // Count call sites where the FP mode bit would have to be flipped.
  2716     // Do not count uncommon runtime calls:
  2717     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2718     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2719     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2720       frc.inc_call_count();   // Count the call site
  2721     } else {                  // See if uncommon argument is shared
  2722       Node *n = call->in(TypeFunc::Parms);
  2723       int nop = n->Opcode();
  2724       // Clone shared simple arguments to uncommon calls, item (1).
  2725       if( n->outcnt() > 1 &&
  2726           !n->is_Proj() &&
  2727           nop != Op_CreateEx &&
  2728           nop != Op_CheckCastPP &&
  2729           nop != Op_DecodeN &&
  2730           nop != Op_DecodeNKlass &&
  2731           !n->is_Mem() ) {
  2732         Node *x = n->clone();
  2733         call->set_req( TypeFunc::Parms, x );
  2736     break;
  2739   case Op_StoreD:
  2740   case Op_LoadD:
  2741   case Op_LoadD_unaligned:
  2742     frc.inc_double_count();
  2743     goto handle_mem;
  2744   case Op_StoreF:
  2745   case Op_LoadF:
  2746     frc.inc_float_count();
  2747     goto handle_mem;
  2749   case Op_StoreCM:
  2751       // Convert OopStore dependence into precedence edge
  2752       Node* prec = n->in(MemNode::OopStore);
  2753       n->del_req(MemNode::OopStore);
  2754       n->add_prec(prec);
  2755       eliminate_redundant_card_marks(n);
  2758     // fall through
  2760   case Op_StoreB:
  2761   case Op_StoreC:
  2762   case Op_StorePConditional:
  2763   case Op_StoreI:
  2764   case Op_StoreL:
  2765   case Op_StoreIConditional:
  2766   case Op_StoreLConditional:
  2767   case Op_CompareAndSwapI:
  2768   case Op_CompareAndSwapL:
  2769   case Op_CompareAndSwapP:
  2770   case Op_CompareAndSwapN:
  2771   case Op_GetAndAddI:
  2772   case Op_GetAndAddL:
  2773   case Op_GetAndSetI:
  2774   case Op_GetAndSetL:
  2775   case Op_GetAndSetP:
  2776   case Op_GetAndSetN:
  2777   case Op_StoreP:
  2778   case Op_StoreN:
  2779   case Op_StoreNKlass:
  2780   case Op_LoadB:
  2781   case Op_LoadUB:
  2782   case Op_LoadUS:
  2783   case Op_LoadI:
  2784   case Op_LoadKlass:
  2785   case Op_LoadNKlass:
  2786   case Op_LoadL:
  2787   case Op_LoadL_unaligned:
  2788   case Op_LoadPLocked:
  2789   case Op_LoadP:
  2790   case Op_LoadN:
  2791   case Op_LoadRange:
  2792   case Op_LoadS: {
  2793   handle_mem:
  2794 #ifdef ASSERT
  2795     if( VerifyOptoOopOffsets ) {
  2796       assert( n->is_Mem(), "" );
  2797       MemNode *mem  = (MemNode*)n;
  2798       // Check to see if address types have grounded out somehow.
  2799       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2800       assert( !tp || oop_offset_is_sane(tp), "" );
  2802 #endif
  2803     break;
  2806   case Op_AddP: {               // Assert sane base pointers
  2807     Node *addp = n->in(AddPNode::Address);
  2808     assert( !addp->is_AddP() ||
  2809             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2810             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2811             "Base pointers must match" );
  2812 #ifdef _LP64
  2813     if ((UseCompressedOops || UseCompressedClassPointers) &&
  2814         addp->Opcode() == Op_ConP &&
  2815         addp == n->in(AddPNode::Base) &&
  2816         n->in(AddPNode::Offset)->is_Con()) {
  2817       // Use addressing with narrow klass to load with offset on x86.
  2818       // On sparc loading 32-bits constant and decoding it have less
  2819       // instructions (4) then load 64-bits constant (7).
  2820       // Do this transformation here since IGVN will convert ConN back to ConP.
  2821       const Type* t = addp->bottom_type();
  2822       if (t->isa_oopptr() || t->isa_klassptr()) {
  2823         Node* nn = NULL;
  2825         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2827         // Look for existing ConN node of the same exact type.
  2828         Node* r  = root();
  2829         uint cnt = r->outcnt();
  2830         for (uint i = 0; i < cnt; i++) {
  2831           Node* m = r->raw_out(i);
  2832           if (m!= NULL && m->Opcode() == op &&
  2833               m->bottom_type()->make_ptr() == t) {
  2834             nn = m;
  2835             break;
  2838         if (nn != NULL) {
  2839           // Decode a narrow oop to match address
  2840           // [R12 + narrow_oop_reg<<3 + offset]
  2841           if (t->isa_oopptr()) {
  2842             nn = new (this) DecodeNNode(nn, t);
  2843           } else {
  2844             nn = new (this) DecodeNKlassNode(nn, t);
  2846           n->set_req(AddPNode::Base, nn);
  2847           n->set_req(AddPNode::Address, nn);
  2848           if (addp->outcnt() == 0) {
  2849             addp->disconnect_inputs(NULL, this);
  2854 #endif
  2855     break;
  2858 #ifdef _LP64
  2859   case Op_CastPP:
  2860     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2861       Node* in1 = n->in(1);
  2862       const Type* t = n->bottom_type();
  2863       Node* new_in1 = in1->clone();
  2864       new_in1->as_DecodeN()->set_type(t);
  2866       if (!Matcher::narrow_oop_use_complex_address()) {
  2867         //
  2868         // x86, ARM and friends can handle 2 adds in addressing mode
  2869         // and Matcher can fold a DecodeN node into address by using
  2870         // a narrow oop directly and do implicit NULL check in address:
  2871         //
  2872         // [R12 + narrow_oop_reg<<3 + offset]
  2873         // NullCheck narrow_oop_reg
  2874         //
  2875         // On other platforms (Sparc) we have to keep new DecodeN node and
  2876         // use it to do implicit NULL check in address:
  2877         //
  2878         // decode_not_null narrow_oop_reg, base_reg
  2879         // [base_reg + offset]
  2880         // NullCheck base_reg
  2881         //
  2882         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2883         // to keep the information to which NULL check the new DecodeN node
  2884         // corresponds to use it as value in implicit_null_check().
  2885         //
  2886         new_in1->set_req(0, n->in(0));
  2889       n->subsume_by(new_in1, this);
  2890       if (in1->outcnt() == 0) {
  2891         in1->disconnect_inputs(NULL, this);
  2894     break;
  2896   case Op_CmpP:
  2897     // Do this transformation here to preserve CmpPNode::sub() and
  2898     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2899     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2900       Node* in1 = n->in(1);
  2901       Node* in2 = n->in(2);
  2902       if (!in1->is_DecodeNarrowPtr()) {
  2903         in2 = in1;
  2904         in1 = n->in(2);
  2906       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2908       Node* new_in2 = NULL;
  2909       if (in2->is_DecodeNarrowPtr()) {
  2910         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2911         new_in2 = in2->in(1);
  2912       } else if (in2->Opcode() == Op_ConP) {
  2913         const Type* t = in2->bottom_type();
  2914         if (t == TypePtr::NULL_PTR) {
  2915           assert(in1->is_DecodeN(), "compare klass to null?");
  2916           // Don't convert CmpP null check into CmpN if compressed
  2917           // oops implicit null check is not generated.
  2918           // This will allow to generate normal oop implicit null check.
  2919           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2920             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2921           //
  2922           // This transformation together with CastPP transformation above
  2923           // will generated code for implicit NULL checks for compressed oops.
  2924           //
  2925           // The original code after Optimize()
  2926           //
  2927           //    LoadN memory, narrow_oop_reg
  2928           //    decode narrow_oop_reg, base_reg
  2929           //    CmpP base_reg, NULL
  2930           //    CastPP base_reg // NotNull
  2931           //    Load [base_reg + offset], val_reg
  2932           //
  2933           // after these transformations will be
  2934           //
  2935           //    LoadN memory, narrow_oop_reg
  2936           //    CmpN narrow_oop_reg, NULL
  2937           //    decode_not_null narrow_oop_reg, base_reg
  2938           //    Load [base_reg + offset], val_reg
  2939           //
  2940           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2941           // since narrow oops can be used in debug info now (see the code in
  2942           // final_graph_reshaping_walk()).
  2943           //
  2944           // At the end the code will be matched to
  2945           // on x86:
  2946           //
  2947           //    Load_narrow_oop memory, narrow_oop_reg
  2948           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2949           //    NullCheck narrow_oop_reg
  2950           //
  2951           // and on sparc:
  2952           //
  2953           //    Load_narrow_oop memory, narrow_oop_reg
  2954           //    decode_not_null narrow_oop_reg, base_reg
  2955           //    Load [base_reg + offset], val_reg
  2956           //    NullCheck base_reg
  2957           //
  2958         } else if (t->isa_oopptr()) {
  2959           new_in2 = ConNode::make(this, t->make_narrowoop());
  2960         } else if (t->isa_klassptr()) {
  2961           new_in2 = ConNode::make(this, t->make_narrowklass());
  2964       if (new_in2 != NULL) {
  2965         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2966         n->subsume_by(cmpN, this);
  2967         if (in1->outcnt() == 0) {
  2968           in1->disconnect_inputs(NULL, this);
  2970         if (in2->outcnt() == 0) {
  2971           in2->disconnect_inputs(NULL, this);
  2975     break;
  2977   case Op_DecodeN:
  2978   case Op_DecodeNKlass:
  2979     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2980     // DecodeN could be pinned when it can't be fold into
  2981     // an address expression, see the code for Op_CastPP above.
  2982     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2983     break;
  2985   case Op_EncodeP:
  2986   case Op_EncodePKlass: {
  2987     Node* in1 = n->in(1);
  2988     if (in1->is_DecodeNarrowPtr()) {
  2989       n->subsume_by(in1->in(1), this);
  2990     } else if (in1->Opcode() == Op_ConP) {
  2991       const Type* t = in1->bottom_type();
  2992       if (t == TypePtr::NULL_PTR) {
  2993         assert(t->isa_oopptr(), "null klass?");
  2994         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2995       } else if (t->isa_oopptr()) {
  2996         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2997       } else if (t->isa_klassptr()) {
  2998         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  3001     if (in1->outcnt() == 0) {
  3002       in1->disconnect_inputs(NULL, this);
  3004     break;
  3007   case Op_Proj: {
  3008     if (OptimizeStringConcat) {
  3009       ProjNode* p = n->as_Proj();
  3010       if (p->_is_io_use) {
  3011         // Separate projections were used for the exception path which
  3012         // are normally removed by a late inline.  If it wasn't inlined
  3013         // then they will hang around and should just be replaced with
  3014         // the original one.
  3015         Node* proj = NULL;
  3016         // Replace with just one
  3017         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  3018           Node *use = i.get();
  3019           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  3020             proj = use;
  3021             break;
  3024         assert(proj != NULL, "must be found");
  3025         p->subsume_by(proj, this);
  3028     break;
  3031   case Op_Phi:
  3032     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  3033       // The EncodeP optimization may create Phi with the same edges
  3034       // for all paths. It is not handled well by Register Allocator.
  3035       Node* unique_in = n->in(1);
  3036       assert(unique_in != NULL, "");
  3037       uint cnt = n->req();
  3038       for (uint i = 2; i < cnt; i++) {
  3039         Node* m = n->in(i);
  3040         assert(m != NULL, "");
  3041         if (unique_in != m)
  3042           unique_in = NULL;
  3044       if (unique_in != NULL) {
  3045         n->subsume_by(unique_in, this);
  3048     break;
  3050 #endif
  3052 #ifdef ASSERT
  3053   case Op_CastII:
  3054     // Verify that all range check dependent CastII nodes were removed.
  3055     if (n->isa_CastII()->has_range_check()) {
  3056       n->dump(3);
  3057       assert(false, "Range check dependent CastII node was not removed");
  3059     break;
  3060 #endif
  3062   case Op_ModI:
  3063     if (UseDivMod) {
  3064       // Check if a%b and a/b both exist
  3065       Node* d = n->find_similar(Op_DivI);
  3066       if (d) {
  3067         // Replace them with a fused divmod if supported
  3068         if (Matcher::has_match_rule(Op_DivModI)) {
  3069           DivModINode* divmod = DivModINode::make(this, n);
  3070           d->subsume_by(divmod->div_proj(), this);
  3071           n->subsume_by(divmod->mod_proj(), this);
  3072         } else {
  3073           // replace a%b with a-((a/b)*b)
  3074           Node* mult = new (this) MulINode(d, d->in(2));
  3075           Node* sub  = new (this) SubINode(d->in(1), mult);
  3076           n->subsume_by(sub, this);
  3080     break;
  3082   case Op_ModL:
  3083     if (UseDivMod) {
  3084       // Check if a%b and a/b both exist
  3085       Node* d = n->find_similar(Op_DivL);
  3086       if (d) {
  3087         // Replace them with a fused divmod if supported
  3088         if (Matcher::has_match_rule(Op_DivModL)) {
  3089           DivModLNode* divmod = DivModLNode::make(this, n);
  3090           d->subsume_by(divmod->div_proj(), this);
  3091           n->subsume_by(divmod->mod_proj(), this);
  3092         } else {
  3093           // replace a%b with a-((a/b)*b)
  3094           Node* mult = new (this) MulLNode(d, d->in(2));
  3095           Node* sub  = new (this) SubLNode(d->in(1), mult);
  3096           n->subsume_by(sub, this);
  3100     break;
  3102   case Op_LoadVector:
  3103   case Op_StoreVector:
  3104     break;
  3106   case Op_PackB:
  3107   case Op_PackS:
  3108   case Op_PackI:
  3109   case Op_PackF:
  3110   case Op_PackL:
  3111   case Op_PackD:
  3112     if (n->req()-1 > 2) {
  3113       // Replace many operand PackNodes with a binary tree for matching
  3114       PackNode* p = (PackNode*) n;
  3115       Node* btp = p->binary_tree_pack(this, 1, n->req());
  3116       n->subsume_by(btp, this);
  3118     break;
  3119   case Op_Loop:
  3120   case Op_CountedLoop:
  3121     if (n->as_Loop()->is_inner_loop()) {
  3122       frc.inc_inner_loop_count();
  3124     break;
  3125   case Op_LShiftI:
  3126   case Op_RShiftI:
  3127   case Op_URShiftI:
  3128   case Op_LShiftL:
  3129   case Op_RShiftL:
  3130   case Op_URShiftL:
  3131     if (Matcher::need_masked_shift_count) {
  3132       // The cpu's shift instructions don't restrict the count to the
  3133       // lower 5/6 bits. We need to do the masking ourselves.
  3134       Node* in2 = n->in(2);
  3135       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  3136       const TypeInt* t = in2->find_int_type();
  3137       if (t != NULL && t->is_con()) {
  3138         juint shift = t->get_con();
  3139         if (shift > mask) { // Unsigned cmp
  3140           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  3142       } else {
  3143         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  3144           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  3145           n->set_req(2, shift);
  3148       if (in2->outcnt() == 0) { // Remove dead node
  3149         in2->disconnect_inputs(NULL, this);
  3152     break;
  3153   case Op_MemBarStoreStore:
  3154   case Op_MemBarRelease:
  3155     // Break the link with AllocateNode: it is no longer useful and
  3156     // confuses register allocation.
  3157     if (n->req() > MemBarNode::Precedent) {
  3158       n->set_req(MemBarNode::Precedent, top());
  3160     break;
  3161   default:
  3162     assert( !n->is_Call(), "" );
  3163     assert( !n->is_Mem(), "" );
  3164     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
  3165     break;
  3168   // Collect CFG split points
  3169   if (n->is_MultiBranch())
  3170     frc._tests.push(n);
  3173 //------------------------------final_graph_reshaping_walk---------------------
  3174 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3175 // requires that the walk visits a node's inputs before visiting the node.
  3176 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3177   ResourceArea *area = Thread::current()->resource_area();
  3178   Unique_Node_List sfpt(area);
  3180   frc._visited.set(root->_idx); // first, mark node as visited
  3181   uint cnt = root->req();
  3182   Node *n = root;
  3183   uint  i = 0;
  3184   while (true) {
  3185     if (i < cnt) {
  3186       // Place all non-visited non-null inputs onto stack
  3187       Node* m = n->in(i);
  3188       ++i;
  3189       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3190         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
  3191           // compute worst case interpreter size in case of a deoptimization
  3192           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
  3194           sfpt.push(m);
  3196         cnt = m->req();
  3197         nstack.push(n, i); // put on stack parent and next input's index
  3198         n = m;
  3199         i = 0;
  3201     } else {
  3202       // Now do post-visit work
  3203       final_graph_reshaping_impl( n, frc );
  3204       if (nstack.is_empty())
  3205         break;             // finished
  3206       n = nstack.node();   // Get node from stack
  3207       cnt = n->req();
  3208       i = nstack.index();
  3209       nstack.pop();        // Shift to the next node on stack
  3213   // Skip next transformation if compressed oops are not used.
  3214   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3215       (!UseCompressedOops && !UseCompressedClassPointers))
  3216     return;
  3218   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3219   // It could be done for an uncommon traps or any safepoints/calls
  3220   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3221   while (sfpt.size() > 0) {
  3222     n = sfpt.pop();
  3223     JVMState *jvms = n->as_SafePoint()->jvms();
  3224     assert(jvms != NULL, "sanity");
  3225     int start = jvms->debug_start();
  3226     int end   = n->req();
  3227     bool is_uncommon = (n->is_CallStaticJava() &&
  3228                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3229     for (int j = start; j < end; j++) {
  3230       Node* in = n->in(j);
  3231       if (in->is_DecodeNarrowPtr()) {
  3232         bool safe_to_skip = true;
  3233         if (!is_uncommon ) {
  3234           // Is it safe to skip?
  3235           for (uint i = 0; i < in->outcnt(); i++) {
  3236             Node* u = in->raw_out(i);
  3237             if (!u->is_SafePoint() ||
  3238                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3239               safe_to_skip = false;
  3243         if (safe_to_skip) {
  3244           n->set_req(j, in->in(1));
  3246         if (in->outcnt() == 0) {
  3247           in->disconnect_inputs(NULL, this);
  3254 //------------------------------final_graph_reshaping--------------------------
  3255 // Final Graph Reshaping.
  3256 //
  3257 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3258 //     and not commoned up and forced early.  Must come after regular
  3259 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3260 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3261 //     Remove Opaque nodes.
  3262 // (2) Move last-uses by commutative operations to the left input to encourage
  3263 //     Intel update-in-place two-address operations and better register usage
  3264 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3265 //     calls canonicalizing them back.
  3266 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3267 //     and call sites.  On Intel, we can get correct rounding either by
  3268 //     forcing singles to memory (requires extra stores and loads after each
  3269 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3270 //     clearing the mode bit around call sites).  The mode bit is only used
  3271 //     if the relative frequency of single FP ops to calls is low enough.
  3272 //     This is a key transform for SPEC mpeg_audio.
  3273 // (4) Detect infinite loops; blobs of code reachable from above but not
  3274 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3275 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3276 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3277 //     Detection is by looking for IfNodes where only 1 projection is
  3278 //     reachable from below or CatchNodes missing some targets.
  3279 // (5) Assert for insane oop offsets in debug mode.
  3281 bool Compile::final_graph_reshaping() {
  3282   // an infinite loop may have been eliminated by the optimizer,
  3283   // in which case the graph will be empty.
  3284   if (root()->req() == 1) {
  3285     record_method_not_compilable("trivial infinite loop");
  3286     return true;
  3289   // Expensive nodes have their control input set to prevent the GVN
  3290   // from freely commoning them. There's no GVN beyond this point so
  3291   // no need to keep the control input. We want the expensive nodes to
  3292   // be freely moved to the least frequent code path by gcm.
  3293   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3294   for (int i = 0; i < expensive_count(); i++) {
  3295     _expensive_nodes->at(i)->set_req(0, NULL);
  3298   Final_Reshape_Counts frc;
  3300   // Visit everybody reachable!
  3301   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
  3302   Node_Stack nstack(live_nodes() >> 1);
  3303   final_graph_reshaping_walk(nstack, root(), frc);
  3305   // Check for unreachable (from below) code (i.e., infinite loops).
  3306   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3307     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3308     // Get number of CFG targets.
  3309     // Note that PCTables include exception targets after calls.
  3310     uint required_outcnt = n->required_outcnt();
  3311     if (n->outcnt() != required_outcnt) {
  3312       // Check for a few special cases.  Rethrow Nodes never take the
  3313       // 'fall-thru' path, so expected kids is 1 less.
  3314       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3315         if (n->in(0)->in(0)->is_Call()) {
  3316           CallNode *call = n->in(0)->in(0)->as_Call();
  3317           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3318             required_outcnt--;      // Rethrow always has 1 less kid
  3319           } else if (call->req() > TypeFunc::Parms &&
  3320                      call->is_CallDynamicJava()) {
  3321             // Check for null receiver. In such case, the optimizer has
  3322             // detected that the virtual call will always result in a null
  3323             // pointer exception. The fall-through projection of this CatchNode
  3324             // will not be populated.
  3325             Node *arg0 = call->in(TypeFunc::Parms);
  3326             if (arg0->is_Type() &&
  3327                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3328               required_outcnt--;
  3330           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3331                      call->req() > TypeFunc::Parms+1 &&
  3332                      call->is_CallStaticJava()) {
  3333             // Check for negative array length. In such case, the optimizer has
  3334             // detected that the allocation attempt will always result in an
  3335             // exception. There is no fall-through projection of this CatchNode .
  3336             Node *arg1 = call->in(TypeFunc::Parms+1);
  3337             if (arg1->is_Type() &&
  3338                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3339               required_outcnt--;
  3344       // Recheck with a better notion of 'required_outcnt'
  3345       if (n->outcnt() != required_outcnt) {
  3346         record_method_not_compilable("malformed control flow");
  3347         return true;            // Not all targets reachable!
  3350     // Check that I actually visited all kids.  Unreached kids
  3351     // must be infinite loops.
  3352     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3353       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3354         record_method_not_compilable("infinite loop");
  3355         return true;            // Found unvisited kid; must be unreach
  3359   // If original bytecodes contained a mixture of floats and doubles
  3360   // check if the optimizer has made it homogenous, item (3).
  3361   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3362       frc.get_float_count() > 32 &&
  3363       frc.get_double_count() == 0 &&
  3364       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3365     set_24_bit_selection_and_mode( false,  true );
  3368   set_java_calls(frc.get_java_call_count());
  3369   set_inner_loops(frc.get_inner_loop_count());
  3371   // No infinite loops, no reason to bail out.
  3372   return false;
  3375 //-----------------------------too_many_traps----------------------------------
  3376 // Report if there are too many traps at the current method and bci.
  3377 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3378 bool Compile::too_many_traps(ciMethod* method,
  3379                              int bci,
  3380                              Deoptimization::DeoptReason reason) {
  3381   ciMethodData* md = method->method_data();
  3382   if (md->is_empty()) {
  3383     // Assume the trap has not occurred, or that it occurred only
  3384     // because of a transient condition during start-up in the interpreter.
  3385     return false;
  3387   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
  3388   if (md->has_trap_at(bci, m, reason) != 0) {
  3389     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3390     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3391     // assume the worst.
  3392     if (log())
  3393       log()->elem("observe trap='%s' count='%d'",
  3394                   Deoptimization::trap_reason_name(reason),
  3395                   md->trap_count(reason));
  3396     return true;
  3397   } else {
  3398     // Ignore method/bci and see if there have been too many globally.
  3399     return too_many_traps(reason, md);
  3403 // Less-accurate variant which does not require a method and bci.
  3404 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3405                              ciMethodData* logmd) {
  3406   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
  3407     // Too many traps globally.
  3408     // Note that we use cumulative trap_count, not just md->trap_count.
  3409     if (log()) {
  3410       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3411       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3412                   Deoptimization::trap_reason_name(reason),
  3413                   mcount, trap_count(reason));
  3415     return true;
  3416   } else {
  3417     // The coast is clear.
  3418     return false;
  3422 //--------------------------too_many_recompiles--------------------------------
  3423 // Report if there are too many recompiles at the current method and bci.
  3424 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3425 // Is not eager to return true, since this will cause the compiler to use
  3426 // Action_none for a trap point, to avoid too many recompilations.
  3427 bool Compile::too_many_recompiles(ciMethod* method,
  3428                                   int bci,
  3429                                   Deoptimization::DeoptReason reason) {
  3430   ciMethodData* md = method->method_data();
  3431   if (md->is_empty()) {
  3432     // Assume the trap has not occurred, or that it occurred only
  3433     // because of a transient condition during start-up in the interpreter.
  3434     return false;
  3436   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3437   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3438   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3439   Deoptimization::DeoptReason per_bc_reason
  3440     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3441   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
  3442   if ((per_bc_reason == Deoptimization::Reason_none
  3443        || md->has_trap_at(bci, m, reason) != 0)
  3444       // The trap frequency measure we care about is the recompile count:
  3445       && md->trap_recompiled_at(bci, m)
  3446       && md->overflow_recompile_count() >= bc_cutoff) {
  3447     // Do not emit a trap here if it has already caused recompilations.
  3448     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3449     // assume the worst.
  3450     if (log())
  3451       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3452                   Deoptimization::trap_reason_name(reason),
  3453                   md->trap_count(reason),
  3454                   md->overflow_recompile_count());
  3455     return true;
  3456   } else if (trap_count(reason) != 0
  3457              && decompile_count() >= m_cutoff) {
  3458     // Too many recompiles globally, and we have seen this sort of trap.
  3459     // Use cumulative decompile_count, not just md->decompile_count.
  3460     if (log())
  3461       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3462                   Deoptimization::trap_reason_name(reason),
  3463                   md->trap_count(reason), trap_count(reason),
  3464                   md->decompile_count(), decompile_count());
  3465     return true;
  3466   } else {
  3467     // The coast is clear.
  3468     return false;
  3472 // Compute when not to trap. Used by matching trap based nodes and
  3473 // NullCheck optimization.
  3474 void Compile::set_allowed_deopt_reasons() {
  3475   _allowed_reasons = 0;
  3476   if (is_method_compilation()) {
  3477     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
  3478       assert(rs < BitsPerInt, "recode bit map");
  3479       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
  3480         _allowed_reasons |= nth_bit(rs);
  3486 #ifndef PRODUCT
  3487 //------------------------------verify_graph_edges---------------------------
  3488 // Walk the Graph and verify that there is a one-to-one correspondence
  3489 // between Use-Def edges and Def-Use edges in the graph.
  3490 void Compile::verify_graph_edges(bool no_dead_code) {
  3491   if (VerifyGraphEdges) {
  3492     ResourceArea *area = Thread::current()->resource_area();
  3493     Unique_Node_List visited(area);
  3494     // Call recursive graph walk to check edges
  3495     _root->verify_edges(visited);
  3496     if (no_dead_code) {
  3497       // Now make sure that no visited node is used by an unvisited node.
  3498       bool dead_nodes = false;
  3499       Unique_Node_List checked(area);
  3500       while (visited.size() > 0) {
  3501         Node* n = visited.pop();
  3502         checked.push(n);
  3503         for (uint i = 0; i < n->outcnt(); i++) {
  3504           Node* use = n->raw_out(i);
  3505           if (checked.member(use))  continue;  // already checked
  3506           if (visited.member(use))  continue;  // already in the graph
  3507           if (use->is_Con())        continue;  // a dead ConNode is OK
  3508           // At this point, we have found a dead node which is DU-reachable.
  3509           if (!dead_nodes) {
  3510             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3511             dead_nodes = true;
  3513           use->dump(2);
  3514           tty->print_cr("---");
  3515           checked.push(use);  // No repeats; pretend it is now checked.
  3518       assert(!dead_nodes, "using nodes must be reachable from root");
  3523 // Verify GC barriers consistency
  3524 // Currently supported:
  3525 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
  3526 void Compile::verify_barriers() {
  3527   if (UseG1GC) {
  3528     // Verify G1 pre-barriers
  3529     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
  3531     ResourceArea *area = Thread::current()->resource_area();
  3532     Unique_Node_List visited(area);
  3533     Node_List worklist(area);
  3534     // We're going to walk control flow backwards starting from the Root
  3535     worklist.push(_root);
  3536     while (worklist.size() > 0) {
  3537       Node* x = worklist.pop();
  3538       if (x == NULL || x == top()) continue;
  3539       if (visited.member(x)) {
  3540         continue;
  3541       } else {
  3542         visited.push(x);
  3545       if (x->is_Region()) {
  3546         for (uint i = 1; i < x->req(); i++) {
  3547           worklist.push(x->in(i));
  3549       } else {
  3550         worklist.push(x->in(0));
  3551         // We are looking for the pattern:
  3552         //                            /->ThreadLocal
  3553         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
  3554         //              \->ConI(0)
  3555         // We want to verify that the If and the LoadB have the same control
  3556         // See GraphKit::g1_write_barrier_pre()
  3557         if (x->is_If()) {
  3558           IfNode *iff = x->as_If();
  3559           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
  3560             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
  3561             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
  3562                 && cmp->in(1)->is_Load()) {
  3563               LoadNode* load = cmp->in(1)->as_Load();
  3564               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
  3565                   && load->in(2)->in(3)->is_Con()
  3566                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
  3568                 Node* if_ctrl = iff->in(0);
  3569                 Node* load_ctrl = load->in(0);
  3571                 if (if_ctrl != load_ctrl) {
  3572                   // Skip possible CProj->NeverBranch in infinite loops
  3573                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
  3574                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
  3575                     if_ctrl = if_ctrl->in(0)->in(0);
  3578                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
  3588 #endif
  3590 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3591 // This is required because there is not quite a 1-1 relation between the
  3592 // ciEnv and its compilation task and the Compile object.  Note that one
  3593 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3594 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3595 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3596 // by the logic in C2Compiler.
  3597 void Compile::record_failure(const char* reason) {
  3598   if (log() != NULL) {
  3599     log()->elem("failure reason='%s' phase='compile'", reason);
  3601   if (_failure_reason == NULL) {
  3602     // Record the first failure reason.
  3603     _failure_reason = reason;
  3606   EventCompilerFailure event;
  3607   if (event.should_commit()) {
  3608     event.set_compileID(Compile::compile_id());
  3609     event.set_failure(reason);
  3610     event.commit();
  3613   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3614     C->print_method(PHASE_FAILURE);
  3616   _root = NULL;  // flush the graph, too
  3619 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3620   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3621     _phase_name(name), _dolog(dolog)
  3623   if (dolog) {
  3624     C = Compile::current();
  3625     _log = C->log();
  3626   } else {
  3627     C = NULL;
  3628     _log = NULL;
  3630   if (_log != NULL) {
  3631     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3632     _log->stamp();
  3633     _log->end_head();
  3637 Compile::TracePhase::~TracePhase() {
  3639   C = Compile::current();
  3640   if (_dolog) {
  3641     _log = C->log();
  3642   } else {
  3643     _log = NULL;
  3646 #ifdef ASSERT
  3647   if (PrintIdealNodeCount) {
  3648     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3649                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3652   if (VerifyIdealNodeCount) {
  3653     Compile::current()->print_missing_nodes();
  3655 #endif
  3657   if (_log != NULL) {
  3658     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3662 //=============================================================================
  3663 // Two Constant's are equal when the type and the value are equal.
  3664 bool Compile::Constant::operator==(const Constant& other) {
  3665   if (type()          != other.type()         )  return false;
  3666   if (can_be_reused() != other.can_be_reused())  return false;
  3667   // For floating point values we compare the bit pattern.
  3668   switch (type()) {
  3669   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3670   case T_LONG:
  3671   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3672   case T_OBJECT:
  3673   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3674   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3675   case T_METADATA: return (_v._metadata == other._v._metadata);
  3676   default: ShouldNotReachHere();
  3678   return false;
  3681 static int type_to_size_in_bytes(BasicType t) {
  3682   switch (t) {
  3683   case T_LONG:    return sizeof(jlong  );
  3684   case T_FLOAT:   return sizeof(jfloat );
  3685   case T_DOUBLE:  return sizeof(jdouble);
  3686   case T_METADATA: return sizeof(Metadata*);
  3687     // We use T_VOID as marker for jump-table entries (labels) which
  3688     // need an internal word relocation.
  3689   case T_VOID:
  3690   case T_ADDRESS:
  3691   case T_OBJECT:  return sizeof(jobject);
  3694   ShouldNotReachHere();
  3695   return -1;
  3698 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3699   // sort descending
  3700   if (a->freq() > b->freq())  return -1;
  3701   if (a->freq() < b->freq())  return  1;
  3702   return 0;
  3705 void Compile::ConstantTable::calculate_offsets_and_size() {
  3706   // First, sort the array by frequencies.
  3707   _constants.sort(qsort_comparator);
  3709 #ifdef ASSERT
  3710   // Make sure all jump-table entries were sorted to the end of the
  3711   // array (they have a negative frequency).
  3712   bool found_void = false;
  3713   for (int i = 0; i < _constants.length(); i++) {
  3714     Constant con = _constants.at(i);
  3715     if (con.type() == T_VOID)
  3716       found_void = true;  // jump-tables
  3717     else
  3718       assert(!found_void, "wrong sorting");
  3720 #endif
  3722   int offset = 0;
  3723   for (int i = 0; i < _constants.length(); i++) {
  3724     Constant* con = _constants.adr_at(i);
  3726     // Align offset for type.
  3727     int typesize = type_to_size_in_bytes(con->type());
  3728     offset = align_size_up(offset, typesize);
  3729     con->set_offset(offset);   // set constant's offset
  3731     if (con->type() == T_VOID) {
  3732       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3733       offset = offset + typesize * n->outcnt();  // expand jump-table
  3734     } else {
  3735       offset = offset + typesize;
  3739   // Align size up to the next section start (which is insts; see
  3740   // CodeBuffer::align_at_start).
  3741   assert(_size == -1, "already set?");
  3742   _size = align_size_up(offset, CodeEntryAlignment);
  3745 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3746   MacroAssembler _masm(&cb);
  3747   for (int i = 0; i < _constants.length(); i++) {
  3748     Constant con = _constants.at(i);
  3749     address constant_addr = NULL;
  3750     switch (con.type()) {
  3751     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3752     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3753     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3754     case T_OBJECT: {
  3755       jobject obj = con.get_jobject();
  3756       int oop_index = _masm.oop_recorder()->find_index(obj);
  3757       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3758       break;
  3760     case T_ADDRESS: {
  3761       address addr = (address) con.get_jobject();
  3762       constant_addr = _masm.address_constant(addr);
  3763       break;
  3765     // We use T_VOID as marker for jump-table entries (labels) which
  3766     // need an internal word relocation.
  3767     case T_VOID: {
  3768       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3769       // Fill the jump-table with a dummy word.  The real value is
  3770       // filled in later in fill_jump_table.
  3771       address dummy = (address) n;
  3772       constant_addr = _masm.address_constant(dummy);
  3773       // Expand jump-table
  3774       for (uint i = 1; i < n->outcnt(); i++) {
  3775         address temp_addr = _masm.address_constant(dummy + i);
  3776         assert(temp_addr, "consts section too small");
  3778       break;
  3780     case T_METADATA: {
  3781       Metadata* obj = con.get_metadata();
  3782       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3783       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3784       break;
  3786     default: ShouldNotReachHere();
  3788     assert(constant_addr, "consts section too small");
  3789     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
  3790             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
  3794 int Compile::ConstantTable::find_offset(Constant& con) const {
  3795   int idx = _constants.find(con);
  3796   assert(idx != -1, "constant must be in constant table");
  3797   int offset = _constants.at(idx).offset();
  3798   assert(offset != -1, "constant table not emitted yet?");
  3799   return offset;
  3802 void Compile::ConstantTable::add(Constant& con) {
  3803   if (con.can_be_reused()) {
  3804     int idx = _constants.find(con);
  3805     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3806       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3807       return;
  3810   (void) _constants.append(con);
  3813 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3814   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3815   Constant con(type, value, b->_freq);
  3816   add(con);
  3817   return con;
  3820 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3821   Constant con(metadata);
  3822   add(con);
  3823   return con;
  3826 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3827   jvalue value;
  3828   BasicType type = oper->type()->basic_type();
  3829   switch (type) {
  3830   case T_LONG:    value.j = oper->constantL(); break;
  3831   case T_FLOAT:   value.f = oper->constantF(); break;
  3832   case T_DOUBLE:  value.d = oper->constantD(); break;
  3833   case T_OBJECT:
  3834   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3835   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3836   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3838   return add(n, type, value);
  3841 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3842   jvalue value;
  3843   // We can use the node pointer here to identify the right jump-table
  3844   // as this method is called from Compile::Fill_buffer right before
  3845   // the MachNodes are emitted and the jump-table is filled (means the
  3846   // MachNode pointers do not change anymore).
  3847   value.l = (jobject) n;
  3848   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3849   add(con);
  3850   return con;
  3853 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3854   // If called from Compile::scratch_emit_size do nothing.
  3855   if (Compile::current()->in_scratch_emit_size())  return;
  3857   assert(labels.is_nonempty(), "must be");
  3858   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3860   // Since MachConstantNode::constant_offset() also contains
  3861   // table_base_offset() we need to subtract the table_base_offset()
  3862   // to get the plain offset into the constant table.
  3863   int offset = n->constant_offset() - table_base_offset();
  3865   MacroAssembler _masm(&cb);
  3866   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3868   for (uint i = 0; i < n->outcnt(); i++) {
  3869     address* constant_addr = &jump_table_base[i];
  3870     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
  3871     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3872     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3876 void Compile::dump_inlining() {
  3877   if (print_inlining() || print_intrinsics()) {
  3878     // Print inlining message for candidates that we couldn't inline
  3879     // for lack of space or non constant receiver
  3880     for (int i = 0; i < _late_inlines.length(); i++) {
  3881       CallGenerator* cg = _late_inlines.at(i);
  3882       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3884     Unique_Node_List useful;
  3885     useful.push(root());
  3886     for (uint next = 0; next < useful.size(); ++next) {
  3887       Node* n  = useful.at(next);
  3888       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3889         CallNode* call = n->as_Call();
  3890         CallGenerator* cg = call->generator();
  3891         cg->print_inlining_late("receiver not constant");
  3893       uint max = n->len();
  3894       for ( uint i = 0; i < max; ++i ) {
  3895         Node *m = n->in(i);
  3896         if ( m == NULL ) continue;
  3897         useful.push(m);
  3900     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3901       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
  3906 // Dump inlining replay data to the stream.
  3907 // Don't change thread state and acquire any locks.
  3908 void Compile::dump_inline_data(outputStream* out) {
  3909   InlineTree* inl_tree = ilt();
  3910   if (inl_tree != NULL) {
  3911     out->print(" inline %d", inl_tree->count());
  3912     inl_tree->dump_replay_data(out);
  3916 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3917   if (n1->Opcode() < n2->Opcode())      return -1;
  3918   else if (n1->Opcode() > n2->Opcode()) return 1;
  3920   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3921   for (uint i = 1; i < n1->req(); i++) {
  3922     if (n1->in(i) < n2->in(i))      return -1;
  3923     else if (n1->in(i) > n2->in(i)) return 1;
  3926   return 0;
  3929 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3930   Node* n1 = *n1p;
  3931   Node* n2 = *n2p;
  3933   return cmp_expensive_nodes(n1, n2);
  3936 void Compile::sort_expensive_nodes() {
  3937   if (!expensive_nodes_sorted()) {
  3938     _expensive_nodes->sort(cmp_expensive_nodes);
  3942 bool Compile::expensive_nodes_sorted() const {
  3943   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3944     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3945       return false;
  3948   return true;
  3951 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3952   if (_expensive_nodes->length() == 0) {
  3953     return false;
  3956   assert(OptimizeExpensiveOps, "optimization off?");
  3958   // Take this opportunity to remove dead nodes from the list
  3959   int j = 0;
  3960   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3961     Node* n = _expensive_nodes->at(i);
  3962     if (!n->is_unreachable(igvn)) {
  3963       assert(n->is_expensive(), "should be expensive");
  3964       _expensive_nodes->at_put(j, n);
  3965       j++;
  3968   _expensive_nodes->trunc_to(j);
  3970   // Then sort the list so that similar nodes are next to each other
  3971   // and check for at least two nodes of identical kind with same data
  3972   // inputs.
  3973   sort_expensive_nodes();
  3975   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3976     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3977       return true;
  3981   return false;
  3984 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3985   if (_expensive_nodes->length() == 0) {
  3986     return;
  3989   assert(OptimizeExpensiveOps, "optimization off?");
  3991   // Sort to bring similar nodes next to each other and clear the
  3992   // control input of nodes for which there's only a single copy.
  3993   sort_expensive_nodes();
  3995   int j = 0;
  3996   int identical = 0;
  3997   int i = 0;
  3998   for (; i < _expensive_nodes->length()-1; i++) {
  3999     assert(j <= i, "can't write beyond current index");
  4000     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  4001       identical++;
  4002       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  4003       continue;
  4005     if (identical > 0) {
  4006       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  4007       identical = 0;
  4008     } else {
  4009       Node* n = _expensive_nodes->at(i);
  4010       igvn.hash_delete(n);
  4011       n->set_req(0, NULL);
  4012       igvn.hash_insert(n);
  4015   if (identical > 0) {
  4016     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  4017   } else if (_expensive_nodes->length() >= 1) {
  4018     Node* n = _expensive_nodes->at(i);
  4019     igvn.hash_delete(n);
  4020     n->set_req(0, NULL);
  4021     igvn.hash_insert(n);
  4023   _expensive_nodes->trunc_to(j);
  4026 void Compile::add_expensive_node(Node * n) {
  4027   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  4028   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  4029   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  4030   if (OptimizeExpensiveOps) {
  4031     _expensive_nodes->append(n);
  4032   } else {
  4033     // Clear control input and let IGVN optimize expensive nodes if
  4034     // OptimizeExpensiveOps is off.
  4035     n->set_req(0, NULL);
  4039 /**
  4040  * Remove the speculative part of types and clean up the graph
  4041  */
  4042 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
  4043   if (UseTypeSpeculation) {
  4044     Unique_Node_List worklist;
  4045     worklist.push(root());
  4046     int modified = 0;
  4047     // Go over all type nodes that carry a speculative type, drop the
  4048     // speculative part of the type and enqueue the node for an igvn
  4049     // which may optimize it out.
  4050     for (uint next = 0; next < worklist.size(); ++next) {
  4051       Node *n  = worklist.at(next);
  4052       if (n->is_Type()) {
  4053         TypeNode* tn = n->as_Type();
  4054         const Type* t = tn->type();
  4055         const Type* t_no_spec = t->remove_speculative();
  4056         if (t_no_spec != t) {
  4057           bool in_hash = igvn.hash_delete(n);
  4058           assert(in_hash, "node should be in igvn hash table");
  4059           tn->set_type(t_no_spec);
  4060           igvn.hash_insert(n);
  4061           igvn._worklist.push(n); // give it a chance to go away
  4062           modified++;
  4065       uint max = n->len();
  4066       for( uint i = 0; i < max; ++i ) {
  4067         Node *m = n->in(i);
  4068         if (not_a_node(m))  continue;
  4069         worklist.push(m);
  4072     // Drop the speculative part of all types in the igvn's type table
  4073     igvn.remove_speculative_types();
  4074     if (modified > 0) {
  4075       igvn.optimize();
  4077 #ifdef ASSERT
  4078     // Verify that after the IGVN is over no speculative type has resurfaced
  4079     worklist.clear();
  4080     worklist.push(root());
  4081     for (uint next = 0; next < worklist.size(); ++next) {
  4082       Node *n  = worklist.at(next);
  4083       const Type* t = igvn.type_or_null(n);
  4084       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
  4085       if (n->is_Type()) {
  4086         t = n->as_Type()->type();
  4087         assert(t == t->remove_speculative(), "no more speculative types");
  4089       uint max = n->len();
  4090       for( uint i = 0; i < max; ++i ) {
  4091         Node *m = n->in(i);
  4092         if (not_a_node(m))  continue;
  4093         worklist.push(m);
  4096     igvn.check_no_speculative_types();
  4097 #endif
  4101 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
  4102 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
  4103   if (ctrl != NULL) {
  4104     // Express control dependency by a CastII node with a narrow type.
  4105     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
  4106     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
  4107     // node from floating above the range check during loop optimizations. Otherwise, the
  4108     // ConvI2L node may be eliminated independently of the range check, causing the data path
  4109     // to become TOP while the control path is still there (although it's unreachable).
  4110     value->set_req(0, ctrl);
  4111     // Save CastII node to remove it after loop optimizations.
  4112     phase->C->add_range_check_cast(value);
  4113     value = phase->transform(value);
  4115   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
  4116   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
  4119 // Auxiliary method to support randomized stressing/fuzzing.
  4120 //
  4121 // This method can be called the arbitrary number of times, with current count
  4122 // as the argument. The logic allows selecting a single candidate from the
  4123 // running list of candidates as follows:
  4124 //    int count = 0;
  4125 //    Cand* selected = null;
  4126 //    while(cand = cand->next()) {
  4127 //      if (randomized_select(++count)) {
  4128 //        selected = cand;
  4129 //      }
  4130 //    }
  4131 //
  4132 // Including count equalizes the chances any candidate is "selected".
  4133 // This is useful when we don't have the complete list of candidates to choose
  4134 // from uniformly. In this case, we need to adjust the randomicity of the
  4135 // selection, or else we will end up biasing the selection towards the latter
  4136 // candidates.
  4137 //
  4138 // Quick back-envelope calculation shows that for the list of n candidates
  4139 // the equal probability for the candidate to persist as "best" can be
  4140 // achieved by replacing it with "next" k-th candidate with the probability
  4141 // of 1/k. It can be easily shown that by the end of the run, the
  4142 // probability for any candidate is converged to 1/n, thus giving the
  4143 // uniform distribution among all the candidates.
  4144 //
  4145 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  4146 #define RANDOMIZED_DOMAIN_POW 29
  4147 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  4148 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  4149 bool Compile::randomized_select(int count) {
  4150   assert(count > 0, "only positive");
  4151   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial