src/share/vm/oops/methodData.hpp

Thu, 04 Apr 2019 17:56:29 +0800

author
aoqi
date
Thu, 04 Apr 2019 17:56:29 +0800
changeset 9572
624a0741915c
parent 9203
53eec13fbaa5
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    35 class KlassSizeStats;
    37 // The MethodData object collects counts and other profile information
    38 // during zeroth-tier (interpretive) and first-tier execution.
    39 // The profile is used later by compilation heuristics.  Some heuristics
    40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    41 // optimization often has a down-side, a corner case that it handles
    42 // poorly, but which is thought to be rare.  The profile provides
    43 // evidence of this rarity for a given method or even BCI.  It allows
    44 // the compiler to back out of the optimization at places where it
    45 // has historically been a poor choice.  Other heuristics try to use
    46 // specific information gathered about types observed at a given site.
    47 //
    48 // All data in the profile is approximate.  It is expected to be accurate
    49 // on the whole, but the system expects occasional inaccuraces, due to
    50 // counter overflow, multiprocessor races during data collection, space
    51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    52 // optimization quality but will not affect correctness.  Also, each MDO
    53 // is marked with its birth-date ("creation_mileage") which can be used
    54 // to assess the quality ("maturity") of its data.
    55 //
    56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    57 // state.  Also, certain recorded per-BCI events are given one-bit counters
    58 // which overflow to a saturated state which applied to all counters at
    59 // that BCI.  In other words, there is a small lattice which approximates
    60 // the ideal of an infinite-precision counter for each event at each BCI,
    61 // and the lattice quickly "bottoms out" in a state where all counters
    62 // are taken to be indefinitely large.
    63 //
    64 // The reader will find many data races in profile gathering code, starting
    65 // with invocation counter incrementation.  None of these races harm correct
    66 // execution of the compiled code.
    68 // forward decl
    69 class ProfileData;
    71 // DataLayout
    72 //
    73 // Overlay for generic profiling data.
    74 class DataLayout VALUE_OBJ_CLASS_SPEC {
    75   friend class VMStructs;
    77 private:
    78   // Every data layout begins with a header.  This header
    79   // contains a tag, which is used to indicate the size/layout
    80   // of the data, 4 bits of flags, which can be used in any way,
    81   // 4 bits of trap history (none/one reason/many reasons),
    82   // and a bci, which is used to tie this piece of data to a
    83   // specific bci in the bytecodes.
    84   union {
    85     intptr_t _bits;
    86     struct {
    87       u1 _tag;
    88       u1 _flags;
    89       u2 _bci;
    90     } _struct;
    91   } _header;
    93   // The data layout has an arbitrary number of cells, each sized
    94   // to accomodate a pointer or an integer.
    95   intptr_t _cells[1];
    97   // Some types of data layouts need a length field.
    98   static bool needs_array_len(u1 tag);
   100 public:
   101   enum {
   102     counter_increment = 1
   103   };
   105   enum {
   106     cell_size = sizeof(intptr_t)
   107   };
   109   // Tag values
   110   enum {
   111     no_tag,
   112     bit_data_tag,
   113     counter_data_tag,
   114     jump_data_tag,
   115     receiver_type_data_tag,
   116     virtual_call_data_tag,
   117     ret_data_tag,
   118     branch_data_tag,
   119     multi_branch_data_tag,
   120     arg_info_data_tag,
   121     call_type_data_tag,
   122     virtual_call_type_data_tag,
   123     parameters_type_data_tag,
   124     speculative_trap_data_tag
   125   };
   127   enum {
   128     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   129     // The trap state breaks down further as [recompile:1 | reason:3].
   130     // This further breakdown is defined in deoptimization.cpp.
   131     // See Deoptimization::trap_state_reason for an assert that
   132     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   133     //
   134     // The trap_state is collected only if ProfileTraps is true.
   135     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   136     trap_shift = BitsPerByte - trap_bits,
   137     trap_mask = right_n_bits(trap_bits),
   138     trap_mask_in_place = (trap_mask << trap_shift),
   139     flag_limit = trap_shift,
   140     flag_mask = right_n_bits(flag_limit),
   141     first_flag = 0
   142   };
   144   // Size computation
   145   static int header_size_in_bytes() {
   146     return cell_size;
   147   }
   148   static int header_size_in_cells() {
   149     return 1;
   150   }
   152   static int compute_size_in_bytes(int cell_count) {
   153     return header_size_in_bytes() + cell_count * cell_size;
   154   }
   156   // Initialization
   157   void initialize(u1 tag, u2 bci, int cell_count);
   159   // Accessors
   160   u1 tag() {
   161     return _header._struct._tag;
   162   }
   164   // Return a few bits of trap state.  Range is [0..trap_mask].
   165   // The state tells if traps with zero, one, or many reasons have occurred.
   166   // It also tells whether zero or many recompilations have occurred.
   167   // The associated trap histogram in the MDO itself tells whether
   168   // traps are common or not.  If a BCI shows that a trap X has
   169   // occurred, and the MDO shows N occurrences of X, we make the
   170   // simplifying assumption that all N occurrences can be blamed
   171   // on that BCI.
   172   int trap_state() const {
   173     return ((_header._struct._flags >> trap_shift) & trap_mask);
   174   }
   176   void set_trap_state(int new_state) {
   177     assert(ProfileTraps, "used only under +ProfileTraps");
   178     uint old_flags = (_header._struct._flags & flag_mask);
   179     _header._struct._flags = (new_state << trap_shift) | old_flags;
   180   }
   182   u1 flags() const {
   183     return _header._struct._flags;
   184   }
   186   u2 bci() const {
   187     return _header._struct._bci;
   188   }
   190   void set_header(intptr_t value) {
   191     _header._bits = value;
   192   }
   193   intptr_t header() {
   194     return _header._bits;
   195   }
   196   void set_cell_at(int index, intptr_t value) {
   197     _cells[index] = value;
   198   }
   199   void release_set_cell_at(int index, intptr_t value) {
   200     OrderAccess::release_store_ptr(&_cells[index], value);
   201   }
   202   intptr_t cell_at(int index) const {
   203     return _cells[index];
   204   }
   206   void set_flag_at(int flag_number) {
   207     assert(flag_number < flag_limit, "oob");
   208     _header._struct._flags |= (0x1 << flag_number);
   209   }
   210   bool flag_at(int flag_number) const {
   211     assert(flag_number < flag_limit, "oob");
   212     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   213   }
   215   // Low-level support for code generation.
   216   static ByteSize header_offset() {
   217     return byte_offset_of(DataLayout, _header);
   218   }
   219   static ByteSize tag_offset() {
   220     return byte_offset_of(DataLayout, _header._struct._tag);
   221   }
   222   static ByteSize flags_offset() {
   223     return byte_offset_of(DataLayout, _header._struct._flags);
   224   }
   225   static ByteSize bci_offset() {
   226     return byte_offset_of(DataLayout, _header._struct._bci);
   227   }
   228   static ByteSize cell_offset(int index) {
   229     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   230   }
   231 #ifdef CC_INTERP
   232   static int cell_offset_in_bytes(int index) {
   233     return (int)offset_of(DataLayout, _cells[index]);
   234   }
   235 #endif // CC_INTERP
   236   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   237   static int flag_number_to_byte_constant(int flag_number) {
   238     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   239     DataLayout temp; temp.set_header(0);
   240     temp.set_flag_at(flag_number);
   241     return temp._header._struct._flags;
   242   }
   243   // Return a value which, when or-ed as a word into _header, sets the flag.
   244   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   245     DataLayout temp; temp.set_header(0);
   246     temp._header._struct._flags = byte_constant;
   247     return temp._header._bits;
   248   }
   250   ProfileData* data_in();
   252   // GC support
   253   void clean_weak_klass_links(BoolObjectClosure* cl);
   255   // Redefinition support
   256   void clean_weak_method_links();
   257 };
   260 // ProfileData class hierarchy
   261 class ProfileData;
   262 class   BitData;
   263 class     CounterData;
   264 class       ReceiverTypeData;
   265 class         VirtualCallData;
   266 class           VirtualCallTypeData;
   267 class       RetData;
   268 class       CallTypeData;
   269 class   JumpData;
   270 class     BranchData;
   271 class   ArrayData;
   272 class     MultiBranchData;
   273 class     ArgInfoData;
   274 class     ParametersTypeData;
   275 class   SpeculativeTrapData;
   277 // ProfileData
   278 //
   279 // A ProfileData object is created to refer to a section of profiling
   280 // data in a structured way.
   281 class ProfileData : public ResourceObj {
   282   friend class TypeEntries;
   283   friend class ReturnTypeEntry;
   284   friend class TypeStackSlotEntries;
   285 private:
   286 #ifndef PRODUCT
   287   enum {
   288     tab_width_one = 16,
   289     tab_width_two = 36
   290   };
   291 #endif // !PRODUCT
   293   // This is a pointer to a section of profiling data.
   294   DataLayout* _data;
   296   char* print_data_on_helper(const MethodData* md) const;
   298 protected:
   299   DataLayout* data() { return _data; }
   300   const DataLayout* data() const { return _data; }
   302   enum {
   303     cell_size = DataLayout::cell_size
   304   };
   306 public:
   307   // How many cells are in this?
   308   virtual int cell_count() const {
   309     ShouldNotReachHere();
   310     return -1;
   311   }
   313   // Return the size of this data.
   314   int size_in_bytes() {
   315     return DataLayout::compute_size_in_bytes(cell_count());
   316   }
   318 protected:
   319   // Low-level accessors for underlying data
   320   void set_intptr_at(int index, intptr_t value) {
   321     assert(0 <= index && index < cell_count(), "oob");
   322     data()->set_cell_at(index, value);
   323   }
   324   void release_set_intptr_at(int index, intptr_t value) {
   325     assert(0 <= index && index < cell_count(), "oob");
   326     data()->release_set_cell_at(index, value);
   327   }
   328   intptr_t intptr_at(int index) const {
   329     assert(0 <= index && index < cell_count(), "oob");
   330     return data()->cell_at(index);
   331   }
   332   void set_uint_at(int index, uint value) {
   333     set_intptr_at(index, (intptr_t) value);
   334   }
   335   void release_set_uint_at(int index, uint value) {
   336     release_set_intptr_at(index, (intptr_t) value);
   337   }
   338   uint uint_at(int index) const {
   339     return (uint)intptr_at(index);
   340   }
   341   void set_int_at(int index, int value) {
   342     set_intptr_at(index, (intptr_t) value);
   343   }
   344   void release_set_int_at(int index, int value) {
   345     release_set_intptr_at(index, (intptr_t) value);
   346   }
   347   int int_at(int index) const {
   348     return (int)intptr_at(index);
   349   }
   350   int int_at_unchecked(int index) const {
   351     return (int)data()->cell_at(index);
   352   }
   353   void set_oop_at(int index, oop value) {
   354     set_intptr_at(index, cast_from_oop<intptr_t>(value));
   355   }
   356   oop oop_at(int index) const {
   357     return cast_to_oop(intptr_at(index));
   358   }
   360   void set_flag_at(int flag_number) {
   361     data()->set_flag_at(flag_number);
   362   }
   363   bool flag_at(int flag_number) const {
   364     return data()->flag_at(flag_number);
   365   }
   367   // two convenient imports for use by subclasses:
   368   static ByteSize cell_offset(int index) {
   369     return DataLayout::cell_offset(index);
   370   }
   371   static int flag_number_to_byte_constant(int flag_number) {
   372     return DataLayout::flag_number_to_byte_constant(flag_number);
   373   }
   375   ProfileData(DataLayout* data) {
   376     _data = data;
   377   }
   379 #ifdef CC_INTERP
   380   // Static low level accessors for DataLayout with ProfileData's semantics.
   382   static int cell_offset_in_bytes(int index) {
   383     return DataLayout::cell_offset_in_bytes(index);
   384   }
   386   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
   387                                             int inc = DataLayout::counter_increment) {
   388     uint count = ((uint)layout->cell_at(index)) + inc;
   389     if (count == 0) return;
   390     layout->set_cell_at(index, (intptr_t) count);
   391   }
   393   static int int_at(DataLayout* layout, int index) {
   394     return (int)layout->cell_at(index);
   395   }
   397   static int uint_at(DataLayout* layout, int index) {
   398     return (uint)layout->cell_at(index);
   399   }
   401   static oop oop_at(DataLayout* layout, int index) {
   402     return cast_to_oop(layout->cell_at(index));
   403   }
   405   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
   406     layout->set_cell_at(index, (intptr_t) value);
   407   }
   409   static void set_flag_at(DataLayout* layout, int flag_number) {
   410     layout->set_flag_at(flag_number);
   411   }
   412 #endif // CC_INTERP
   414 public:
   415   // Constructor for invalid ProfileData.
   416   ProfileData();
   418   u2 bci() const {
   419     return data()->bci();
   420   }
   422   address dp() {
   423     return (address)_data;
   424   }
   426   int trap_state() const {
   427     return data()->trap_state();
   428   }
   429   void set_trap_state(int new_state) {
   430     data()->set_trap_state(new_state);
   431   }
   433   // Type checking
   434   virtual bool is_BitData()         const { return false; }
   435   virtual bool is_CounterData()     const { return false; }
   436   virtual bool is_JumpData()        const { return false; }
   437   virtual bool is_ReceiverTypeData()const { return false; }
   438   virtual bool is_VirtualCallData() const { return false; }
   439   virtual bool is_RetData()         const { return false; }
   440   virtual bool is_BranchData()      const { return false; }
   441   virtual bool is_ArrayData()       const { return false; }
   442   virtual bool is_MultiBranchData() const { return false; }
   443   virtual bool is_ArgInfoData()     const { return false; }
   444   virtual bool is_CallTypeData()    const { return false; }
   445   virtual bool is_VirtualCallTypeData()const { return false; }
   446   virtual bool is_ParametersTypeData() const { return false; }
   447   virtual bool is_SpeculativeTrapData()const { return false; }
   450   BitData* as_BitData() const {
   451     assert(is_BitData(), "wrong type");
   452     return is_BitData()         ? (BitData*)        this : NULL;
   453   }
   454   CounterData* as_CounterData() const {
   455     assert(is_CounterData(), "wrong type");
   456     return is_CounterData()     ? (CounterData*)    this : NULL;
   457   }
   458   JumpData* as_JumpData() const {
   459     assert(is_JumpData(), "wrong type");
   460     return is_JumpData()        ? (JumpData*)       this : NULL;
   461   }
   462   ReceiverTypeData* as_ReceiverTypeData() const {
   463     assert(is_ReceiverTypeData(), "wrong type");
   464     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   465   }
   466   VirtualCallData* as_VirtualCallData() const {
   467     assert(is_VirtualCallData(), "wrong type");
   468     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   469   }
   470   RetData* as_RetData() const {
   471     assert(is_RetData(), "wrong type");
   472     return is_RetData()         ? (RetData*)        this : NULL;
   473   }
   474   BranchData* as_BranchData() const {
   475     assert(is_BranchData(), "wrong type");
   476     return is_BranchData()      ? (BranchData*)     this : NULL;
   477   }
   478   ArrayData* as_ArrayData() const {
   479     assert(is_ArrayData(), "wrong type");
   480     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   481   }
   482   MultiBranchData* as_MultiBranchData() const {
   483     assert(is_MultiBranchData(), "wrong type");
   484     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   485   }
   486   ArgInfoData* as_ArgInfoData() const {
   487     assert(is_ArgInfoData(), "wrong type");
   488     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   489   }
   490   CallTypeData* as_CallTypeData() const {
   491     assert(is_CallTypeData(), "wrong type");
   492     return is_CallTypeData() ? (CallTypeData*)this : NULL;
   493   }
   494   VirtualCallTypeData* as_VirtualCallTypeData() const {
   495     assert(is_VirtualCallTypeData(), "wrong type");
   496     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
   497   }
   498   ParametersTypeData* as_ParametersTypeData() const {
   499     assert(is_ParametersTypeData(), "wrong type");
   500     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
   501   }
   502   SpeculativeTrapData* as_SpeculativeTrapData() const {
   503     assert(is_SpeculativeTrapData(), "wrong type");
   504     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
   505   }
   508   // Subclass specific initialization
   509   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   511   // GC support
   512   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   514   // Redefinition support
   515   virtual void clean_weak_method_links() {}
   517   // CI translation: ProfileData can represent both MethodDataOop data
   518   // as well as CIMethodData data. This function is provided for translating
   519   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   520   // most ProfileData don't require any translation, so we provide the null
   521   // translation here, and the required translators are in the ci subclasses.
   522   virtual void translate_from(const ProfileData* data) {}
   524   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
   525     ShouldNotReachHere();
   526   }
   528   void print_data_on(outputStream* st, const MethodData* md) const;
   530 #ifndef PRODUCT
   531   void print_shared(outputStream* st, const char* name, const char* extra) const;
   532   void tab(outputStream* st, bool first = false) const;
   533 #endif
   534 };
   536 // BitData
   537 //
   538 // A BitData holds a flag or two in its header.
   539 class BitData : public ProfileData {
   540 protected:
   541   enum {
   542     // null_seen:
   543     //  saw a null operand (cast/aastore/instanceof)
   544     null_seen_flag              = DataLayout::first_flag + 0
   545   };
   546   enum { bit_cell_count = 0 };  // no additional data fields needed.
   547 public:
   548   BitData(DataLayout* layout) : ProfileData(layout) {
   549   }
   551   virtual bool is_BitData() const { return true; }
   553   static int static_cell_count() {
   554     return bit_cell_count;
   555   }
   557   virtual int cell_count() const {
   558     return static_cell_count();
   559   }
   561   // Accessor
   563   // The null_seen flag bit is specially known to the interpreter.
   564   // Consulting it allows the compiler to avoid setting up null_check traps.
   565   bool null_seen()     { return flag_at(null_seen_flag); }
   566   void set_null_seen()    { set_flag_at(null_seen_flag); }
   569   // Code generation support
   570   static int null_seen_byte_constant() {
   571     return flag_number_to_byte_constant(null_seen_flag);
   572   }
   574   static ByteSize bit_data_size() {
   575     return cell_offset(bit_cell_count);
   576   }
   578 #ifdef CC_INTERP
   579   static int bit_data_size_in_bytes() {
   580     return cell_offset_in_bytes(bit_cell_count);
   581   }
   583   static void set_null_seen(DataLayout* layout) {
   584     set_flag_at(layout, null_seen_flag);
   585   }
   587   static DataLayout* advance(DataLayout* layout) {
   588     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
   589   }
   590 #endif // CC_INTERP
   592 #ifndef PRODUCT
   593   void print_data_on(outputStream* st, const char* extra = NULL) const;
   594 #endif
   595 };
   597 // CounterData
   598 //
   599 // A CounterData corresponds to a simple counter.
   600 class CounterData : public BitData {
   601 protected:
   602   enum {
   603     count_off,
   604     counter_cell_count
   605   };
   606 public:
   607   CounterData(DataLayout* layout) : BitData(layout) {}
   609   virtual bool is_CounterData() const { return true; }
   611   static int static_cell_count() {
   612     return counter_cell_count;
   613   }
   615   virtual int cell_count() const {
   616     return static_cell_count();
   617   }
   619   // Direct accessor
   620   uint count() const {
   621     return uint_at(count_off);
   622   }
   624   // Code generation support
   625   static ByteSize count_offset() {
   626     return cell_offset(count_off);
   627   }
   628   static ByteSize counter_data_size() {
   629     return cell_offset(counter_cell_count);
   630   }
   632   void set_count(uint count) {
   633     set_uint_at(count_off, count);
   634   }
   636 #ifdef CC_INTERP
   637   static int counter_data_size_in_bytes() {
   638     return cell_offset_in_bytes(counter_cell_count);
   639   }
   641   static void increment_count_no_overflow(DataLayout* layout) {
   642     increment_uint_at_no_overflow(layout, count_off);
   643   }
   645   // Support counter decrementation at checkcast / subtype check failed.
   646   static void decrement_count(DataLayout* layout) {
   647     increment_uint_at_no_overflow(layout, count_off, -1);
   648   }
   650   static DataLayout* advance(DataLayout* layout) {
   651     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
   652   }
   653 #endif // CC_INTERP
   655 #ifndef PRODUCT
   656   void print_data_on(outputStream* st, const char* extra = NULL) const;
   657 #endif
   658 };
   660 // JumpData
   661 //
   662 // A JumpData is used to access profiling information for a direct
   663 // branch.  It is a counter, used for counting the number of branches,
   664 // plus a data displacement, used for realigning the data pointer to
   665 // the corresponding target bci.
   666 class JumpData : public ProfileData {
   667 protected:
   668   enum {
   669     taken_off_set,
   670     displacement_off_set,
   671     jump_cell_count
   672   };
   674   void set_displacement(int displacement) {
   675     set_int_at(displacement_off_set, displacement);
   676   }
   678 public:
   679   JumpData(DataLayout* layout) : ProfileData(layout) {
   680     assert(layout->tag() == DataLayout::jump_data_tag ||
   681       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   682   }
   684   virtual bool is_JumpData() const { return true; }
   686   static int static_cell_count() {
   687     return jump_cell_count;
   688   }
   690   virtual int cell_count() const {
   691     return static_cell_count();
   692   }
   694   // Direct accessor
   695   uint taken() const {
   696     return uint_at(taken_off_set);
   697   }
   699   void set_taken(uint cnt) {
   700     set_uint_at(taken_off_set, cnt);
   701   }
   703   // Saturating counter
   704   uint inc_taken() {
   705     uint cnt = taken() + 1;
   706     // Did we wrap? Will compiler screw us??
   707     if (cnt == 0) cnt--;
   708     set_uint_at(taken_off_set, cnt);
   709     return cnt;
   710   }
   712   int displacement() const {
   713     return int_at(displacement_off_set);
   714   }
   716   // Code generation support
   717   static ByteSize taken_offset() {
   718     return cell_offset(taken_off_set);
   719   }
   721   static ByteSize displacement_offset() {
   722     return cell_offset(displacement_off_set);
   723   }
   725 #ifdef CC_INTERP
   726   static void increment_taken_count_no_overflow(DataLayout* layout) {
   727     increment_uint_at_no_overflow(layout, taken_off_set);
   728   }
   730   static DataLayout* advance_taken(DataLayout* layout) {
   731     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
   732   }
   734   static uint taken_count(DataLayout* layout) {
   735     return (uint) uint_at(layout, taken_off_set);
   736   }
   737 #endif // CC_INTERP
   739   // Specific initialization.
   740   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   742 #ifndef PRODUCT
   743   void print_data_on(outputStream* st, const char* extra = NULL) const;
   744 #endif
   745 };
   747 // Entries in a ProfileData object to record types: it can either be
   748 // none (no profile), unknown (conflicting profile data) or a klass if
   749 // a single one is seen. Whether a null reference was seen is also
   750 // recorded. No counter is associated with the type and a single type
   751 // is tracked (unlike VirtualCallData).
   752 class TypeEntries {
   754 public:
   756   // A single cell is used to record information for a type:
   757   // - the cell is initialized to 0
   758   // - when a type is discovered it is stored in the cell
   759   // - bit zero of the cell is used to record whether a null reference
   760   // was encountered or not
   761   // - bit 1 is set to record a conflict in the type information
   763   enum {
   764     null_seen = 1,
   765     type_mask = ~null_seen,
   766     type_unknown = 2,
   767     status_bits = null_seen | type_unknown,
   768     type_klass_mask = ~status_bits
   769   };
   771   // what to initialize a cell to
   772   static intptr_t type_none() {
   773     return 0;
   774   }
   776   // null seen = bit 0 set?
   777   static bool was_null_seen(intptr_t v) {
   778     return (v & null_seen) != 0;
   779   }
   781   // conflicting type information = bit 1 set?
   782   static bool is_type_unknown(intptr_t v) {
   783     return (v & type_unknown) != 0;
   784   }
   786   // not type information yet = all bits cleared, ignoring bit 0?
   787   static bool is_type_none(intptr_t v) {
   788     return (v & type_mask) == 0;
   789   }
   791   // recorded type: cell without bit 0 and 1
   792   static intptr_t klass_part(intptr_t v) {
   793     intptr_t r = v & type_klass_mask;
   794     return r;
   795   }
   797   // type recorded
   798   static Klass* valid_klass(intptr_t k) {
   799     if (!is_type_none(k) &&
   800         !is_type_unknown(k)) {
   801       Klass* res = (Klass*)klass_part(k);
   802       assert(res != NULL, "invalid");
   803       return res;
   804     } else {
   805       return NULL;
   806     }
   807   }
   809   static intptr_t with_status(intptr_t k, intptr_t in) {
   810     return k | (in & status_bits);
   811   }
   813   static intptr_t with_status(Klass* k, intptr_t in) {
   814     return with_status((intptr_t)k, in);
   815   }
   817 #ifndef PRODUCT
   818   static void print_klass(outputStream* st, intptr_t k);
   819 #endif
   821   // GC support
   822   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
   824 protected:
   825   // ProfileData object these entries are part of
   826   ProfileData* _pd;
   827   // offset within the ProfileData object where the entries start
   828   const int _base_off;
   830   TypeEntries(int base_off)
   831     : _base_off(base_off), _pd(NULL) {}
   833   void set_intptr_at(int index, intptr_t value) {
   834     _pd->set_intptr_at(index, value);
   835   }
   837   intptr_t intptr_at(int index) const {
   838     return _pd->intptr_at(index);
   839   }
   841 public:
   842   void set_profile_data(ProfileData* pd) {
   843     _pd = pd;
   844   }
   845 };
   847 // Type entries used for arguments passed at a call and parameters on
   848 // method entry. 2 cells per entry: one for the type encoded as in
   849 // TypeEntries and one initialized with the stack slot where the
   850 // profiled object is to be found so that the interpreter can locate
   851 // it quickly.
   852 class TypeStackSlotEntries : public TypeEntries {
   854 private:
   855   enum {
   856     stack_slot_entry,
   857     type_entry,
   858     per_arg_cell_count
   859   };
   861   // offset of cell for stack slot for entry i within ProfileData object
   862   int stack_slot_offset(int i) const {
   863     return _base_off + stack_slot_local_offset(i);
   864   }
   866 protected:
   867   const int _number_of_entries;
   869   // offset of cell for type for entry i within ProfileData object
   870   int type_offset(int i) const {
   871     return _base_off + type_local_offset(i);
   872   }
   874 public:
   876   TypeStackSlotEntries(int base_off, int nb_entries)
   877     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
   879   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
   881   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
   883   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
   884   static int stack_slot_local_offset(int i) {
   885     return i * per_arg_cell_count + stack_slot_entry;
   886   }
   888   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
   889   static int type_local_offset(int i) {
   890     return i * per_arg_cell_count + type_entry;
   891   }
   893   // stack slot for entry i
   894   uint stack_slot(int i) const {
   895     assert(i >= 0 && i < _number_of_entries, "oob");
   896     return _pd->uint_at(stack_slot_offset(i));
   897   }
   899   // set stack slot for entry i
   900   void set_stack_slot(int i, uint num) {
   901     assert(i >= 0 && i < _number_of_entries, "oob");
   902     _pd->set_uint_at(stack_slot_offset(i), num);
   903   }
   905   // type for entry i
   906   intptr_t type(int i) const {
   907     assert(i >= 0 && i < _number_of_entries, "oob");
   908     return _pd->intptr_at(type_offset(i));
   909   }
   911   // set type for entry i
   912   void set_type(int i, intptr_t k) {
   913     assert(i >= 0 && i < _number_of_entries, "oob");
   914     _pd->set_intptr_at(type_offset(i), k);
   915   }
   917   static ByteSize per_arg_size() {
   918     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
   919   }
   921   static int per_arg_count() {
   922     return per_arg_cell_count ;
   923   }
   925   // GC support
   926   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   928 #ifndef PRODUCT
   929   void print_data_on(outputStream* st) const;
   930 #endif
   931 };
   933 // Type entry used for return from a call. A single cell to record the
   934 // type.
   935 class ReturnTypeEntry : public TypeEntries {
   937 private:
   938   enum {
   939     cell_count = 1
   940   };
   942 public:
   943   ReturnTypeEntry(int base_off)
   944     : TypeEntries(base_off) {}
   946   void post_initialize() {
   947     set_type(type_none());
   948   }
   950   intptr_t type() const {
   951     return _pd->intptr_at(_base_off);
   952   }
   954   void set_type(intptr_t k) {
   955     _pd->set_intptr_at(_base_off, k);
   956   }
   958   static int static_cell_count() {
   959     return cell_count;
   960   }
   962   static ByteSize size() {
   963     return in_ByteSize(cell_count * DataLayout::cell_size);
   964   }
   966   ByteSize type_offset() {
   967     return DataLayout::cell_offset(_base_off);
   968   }
   970   // GC support
   971   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   973 #ifndef PRODUCT
   974   void print_data_on(outputStream* st) const;
   975 #endif
   976 };
   978 // Entries to collect type information at a call: contains arguments
   979 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
   980 // number of cells. Because the number of cells for the return type is
   981 // smaller than the number of cells for the type of an arguments, the
   982 // number of cells is used to tell how many arguments are profiled and
   983 // whether a return value is profiled. See has_arguments() and
   984 // has_return().
   985 class TypeEntriesAtCall {
   986 private:
   987   static int stack_slot_local_offset(int i) {
   988     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
   989   }
   991   static int argument_type_local_offset(int i) {
   992     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
   993   }
   995 public:
   997   static int header_cell_count() {
   998     return 1;
   999   }
  1001   static int cell_count_local_offset() {
  1002     return 0;
  1005   static int compute_cell_count(BytecodeStream* stream);
  1007   static void initialize(DataLayout* dl, int base, int cell_count) {
  1008     int off = base + cell_count_local_offset();
  1009     dl->set_cell_at(off, cell_count - base - header_cell_count());
  1012   static bool arguments_profiling_enabled();
  1013   static bool return_profiling_enabled();
  1015   // Code generation support
  1016   static ByteSize cell_count_offset() {
  1017     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
  1020   static ByteSize args_data_offset() {
  1021     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
  1024   static ByteSize stack_slot_offset(int i) {
  1025     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
  1028   static ByteSize argument_type_offset(int i) {
  1029     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
  1032   static ByteSize return_only_size() {
  1033     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
  1036 };
  1038 // CallTypeData
  1039 //
  1040 // A CallTypeData is used to access profiling information about a non
  1041 // virtual call for which we collect type information about arguments
  1042 // and return value.
  1043 class CallTypeData : public CounterData {
  1044 private:
  1045   // entries for arguments if any
  1046   TypeStackSlotEntries _args;
  1047   // entry for return type if any
  1048   ReturnTypeEntry _ret;
  1050   int cell_count_global_offset() const {
  1051     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1054   // number of cells not counting the header
  1055   int cell_count_no_header() const {
  1056     return uint_at(cell_count_global_offset());
  1059   void check_number_of_arguments(int total) {
  1060     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1063 public:
  1064   CallTypeData(DataLayout* layout) :
  1065     CounterData(layout),
  1066     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1067     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1069     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
  1070     // Some compilers (VC++) don't want this passed in member initialization list
  1071     _args.set_profile_data(this);
  1072     _ret.set_profile_data(this);
  1075   const TypeStackSlotEntries* args() const {
  1076     assert(has_arguments(), "no profiling of arguments");
  1077     return &_args;
  1080   const ReturnTypeEntry* ret() const {
  1081     assert(has_return(), "no profiling of return value");
  1082     return &_ret;
  1085   virtual bool is_CallTypeData() const { return true; }
  1087   static int static_cell_count() {
  1088     return -1;
  1091   static int compute_cell_count(BytecodeStream* stream) {
  1092     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1095   static void initialize(DataLayout* dl, int cell_count) {
  1096     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
  1099   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1101   virtual int cell_count() const {
  1102     return CounterData::static_cell_count() +
  1103       TypeEntriesAtCall::header_cell_count() +
  1104       int_at_unchecked(cell_count_global_offset());
  1107   int number_of_arguments() const {
  1108     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1111   void set_argument_type(int i, Klass* k) {
  1112     assert(has_arguments(), "no arguments!");
  1113     intptr_t current = _args.type(i);
  1114     _args.set_type(i, TypeEntries::with_status(k, current));
  1117   void set_return_type(Klass* k) {
  1118     assert(has_return(), "no return!");
  1119     intptr_t current = _ret.type();
  1120     _ret.set_type(TypeEntries::with_status(k, current));
  1123   // An entry for a return value takes less space than an entry for an
  1124   // argument so if the number of cells exceeds the number of cells
  1125   // needed for an argument, this object contains type information for
  1126   // at least one argument.
  1127   bool has_arguments() const {
  1128     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1129     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1130     return res;
  1133   // An entry for a return value takes less space than an entry for an
  1134   // argument, so if the remainder of the number of cells divided by
  1135   // the number of cells for an argument is not null, a return value
  1136   // is profiled in this object.
  1137   bool has_return() const {
  1138     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1139     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1140     return res;
  1143   // Code generation support
  1144   static ByteSize args_data_offset() {
  1145     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1148   // GC support
  1149   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1150     if (has_arguments()) {
  1151       _args.clean_weak_klass_links(is_alive_closure);
  1153     if (has_return()) {
  1154       _ret.clean_weak_klass_links(is_alive_closure);
  1158 #ifndef PRODUCT
  1159   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
  1160 #endif
  1161 };
  1163 // ReceiverTypeData
  1164 //
  1165 // A ReceiverTypeData is used to access profiling information about a
  1166 // dynamic type check.  It consists of a counter which counts the total times
  1167 // that the check is reached, and a series of (Klass*, count) pairs
  1168 // which are used to store a type profile for the receiver of the check.
  1169 class ReceiverTypeData : public CounterData {
  1170 protected:
  1171   enum {
  1172     receiver0_offset = counter_cell_count,
  1173     count0_offset,
  1174     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
  1175   };
  1177 public:
  1178   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
  1179     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
  1180            layout->tag() == DataLayout::virtual_call_data_tag ||
  1181            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1184   virtual bool is_ReceiverTypeData() const { return true; }
  1186   static int static_cell_count() {
  1187     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
  1190   virtual int cell_count() const {
  1191     return static_cell_count();
  1194   // Direct accessors
  1195   static uint row_limit() {
  1196     return TypeProfileWidth;
  1198   static int receiver_cell_index(uint row) {
  1199     return receiver0_offset + row * receiver_type_row_cell_count;
  1201   static int receiver_count_cell_index(uint row) {
  1202     return count0_offset + row * receiver_type_row_cell_count;
  1205   Klass* receiver(uint row) const {
  1206     assert(row < row_limit(), "oob");
  1208     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
  1209     assert(recv == NULL || recv->is_klass(), "wrong type");
  1210     return recv;
  1213   void set_receiver(uint row, Klass* k) {
  1214     assert((uint)row < row_limit(), "oob");
  1215     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
  1218   uint receiver_count(uint row) const {
  1219     assert(row < row_limit(), "oob");
  1220     return uint_at(receiver_count_cell_index(row));
  1223   void set_receiver_count(uint row, uint count) {
  1224     assert(row < row_limit(), "oob");
  1225     set_uint_at(receiver_count_cell_index(row), count);
  1228   void clear_row(uint row) {
  1229     assert(row < row_limit(), "oob");
  1230     // Clear total count - indicator of polymorphic call site.
  1231     // The site may look like as monomorphic after that but
  1232     // it allow to have more accurate profiling information because
  1233     // there was execution phase change since klasses were unloaded.
  1234     // If the site is still polymorphic then MDO will be updated
  1235     // to reflect it. But it could be the case that the site becomes
  1236     // only bimorphic. Then keeping total count not 0 will be wrong.
  1237     // Even if we use monomorphic (when it is not) for compilation
  1238     // we will only have trap, deoptimization and recompile again
  1239     // with updated MDO after executing method in Interpreter.
  1240     // An additional receiver will be recorded in the cleaned row
  1241     // during next call execution.
  1242     //
  1243     // Note: our profiling logic works with empty rows in any slot.
  1244     // We do sorting a profiling info (ciCallProfile) for compilation.
  1245     //
  1246     set_count(0);
  1247     set_receiver(row, NULL);
  1248     set_receiver_count(row, 0);
  1251   // Code generation support
  1252   static ByteSize receiver_offset(uint row) {
  1253     return cell_offset(receiver_cell_index(row));
  1255   static ByteSize receiver_count_offset(uint row) {
  1256     return cell_offset(receiver_count_cell_index(row));
  1258   static ByteSize receiver_type_data_size() {
  1259     return cell_offset(static_cell_count());
  1262   // GC support
  1263   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
  1265 #ifdef CC_INTERP
  1266   static int receiver_type_data_size_in_bytes() {
  1267     return cell_offset_in_bytes(static_cell_count());
  1270   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
  1271     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
  1272     return recv;
  1275   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
  1276     const int num_rows = row_limit();
  1277     // Receiver already exists?
  1278     for (int row = 0; row < num_rows; row++) {
  1279       if (receiver_unchecked(layout, row) == rcvr) {
  1280         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
  1281         return;
  1284     // New receiver, find a free slot.
  1285     for (int row = 0; row < num_rows; row++) {
  1286       if (receiver_unchecked(layout, row) == NULL) {
  1287         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
  1288         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
  1289         return;
  1292     // Receiver did not match any saved receiver and there is no empty row for it.
  1293     // Increment total counter to indicate polymorphic case.
  1294     increment_count_no_overflow(layout);
  1297   static DataLayout* advance(DataLayout* layout) {
  1298     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
  1300 #endif // CC_INTERP
  1302 #ifndef PRODUCT
  1303   void print_receiver_data_on(outputStream* st) const;
  1304   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1305 #endif
  1306 };
  1308 // VirtualCallData
  1309 //
  1310 // A VirtualCallData is used to access profiling information about a
  1311 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
  1312 class VirtualCallData : public ReceiverTypeData {
  1313 public:
  1314   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
  1315     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
  1316            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1319   virtual bool is_VirtualCallData() const { return true; }
  1321   static int static_cell_count() {
  1322     // At this point we could add more profile state, e.g., for arguments.
  1323     // But for now it's the same size as the base record type.
  1324     return ReceiverTypeData::static_cell_count();
  1327   virtual int cell_count() const {
  1328     return static_cell_count();
  1331   // Direct accessors
  1332   static ByteSize virtual_call_data_size() {
  1333     return cell_offset(static_cell_count());
  1336 #ifdef CC_INTERP
  1337   static int virtual_call_data_size_in_bytes() {
  1338     return cell_offset_in_bytes(static_cell_count());
  1341   static DataLayout* advance(DataLayout* layout) {
  1342     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
  1344 #endif // CC_INTERP
  1346 #ifndef PRODUCT
  1347   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1348 #endif
  1349 };
  1351 // VirtualCallTypeData
  1352 //
  1353 // A VirtualCallTypeData is used to access profiling information about
  1354 // a virtual call for which we collect type information about
  1355 // arguments and return value.
  1356 class VirtualCallTypeData : public VirtualCallData {
  1357 private:
  1358   // entries for arguments if any
  1359   TypeStackSlotEntries _args;
  1360   // entry for return type if any
  1361   ReturnTypeEntry _ret;
  1363   int cell_count_global_offset() const {
  1364     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
  1367   // number of cells not counting the header
  1368   int cell_count_no_header() const {
  1369     return uint_at(cell_count_global_offset());
  1372   void check_number_of_arguments(int total) {
  1373     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
  1376 public:
  1377   VirtualCallTypeData(DataLayout* layout) :
  1378     VirtualCallData(layout),
  1379     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
  1380     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
  1382     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
  1383     // Some compilers (VC++) don't want this passed in member initialization list
  1384     _args.set_profile_data(this);
  1385     _ret.set_profile_data(this);
  1388   const TypeStackSlotEntries* args() const {
  1389     assert(has_arguments(), "no profiling of arguments");
  1390     return &_args;
  1393   const ReturnTypeEntry* ret() const {
  1394     assert(has_return(), "no profiling of return value");
  1395     return &_ret;
  1398   virtual bool is_VirtualCallTypeData() const { return true; }
  1400   static int static_cell_count() {
  1401     return -1;
  1404   static int compute_cell_count(BytecodeStream* stream) {
  1405     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
  1408   static void initialize(DataLayout* dl, int cell_count) {
  1409     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
  1412   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1414   virtual int cell_count() const {
  1415     return VirtualCallData::static_cell_count() +
  1416       TypeEntriesAtCall::header_cell_count() +
  1417       int_at_unchecked(cell_count_global_offset());
  1420   int number_of_arguments() const {
  1421     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
  1424   void set_argument_type(int i, Klass* k) {
  1425     assert(has_arguments(), "no arguments!");
  1426     intptr_t current = _args.type(i);
  1427     _args.set_type(i, TypeEntries::with_status(k, current));
  1430   void set_return_type(Klass* k) {
  1431     assert(has_return(), "no return!");
  1432     intptr_t current = _ret.type();
  1433     _ret.set_type(TypeEntries::with_status(k, current));
  1436   // An entry for a return value takes less space than an entry for an
  1437   // argument, so if the remainder of the number of cells divided by
  1438   // the number of cells for an argument is not null, a return value
  1439   // is profiled in this object.
  1440   bool has_return() const {
  1441     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
  1442     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
  1443     return res;
  1446   // An entry for a return value takes less space than an entry for an
  1447   // argument so if the number of cells exceeds the number of cells
  1448   // needed for an argument, this object contains type information for
  1449   // at least one argument.
  1450   bool has_arguments() const {
  1451     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
  1452     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
  1453     return res;
  1456   // Code generation support
  1457   static ByteSize args_data_offset() {
  1458     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
  1461   // GC support
  1462   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1463     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
  1464     if (has_arguments()) {
  1465       _args.clean_weak_klass_links(is_alive_closure);
  1467     if (has_return()) {
  1468       _ret.clean_weak_klass_links(is_alive_closure);
  1472 #ifndef PRODUCT
  1473   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
  1474 #endif
  1475 };
  1477 // RetData
  1478 //
  1479 // A RetData is used to access profiling information for a ret bytecode.
  1480 // It is composed of a count of the number of times that the ret has
  1481 // been executed, followed by a series of triples of the form
  1482 // (bci, count, di) which count the number of times that some bci was the
  1483 // target of the ret and cache a corresponding data displacement.
  1484 class RetData : public CounterData {
  1485 protected:
  1486   enum {
  1487     bci0_offset = counter_cell_count,
  1488     count0_offset,
  1489     displacement0_offset,
  1490     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
  1491   };
  1493   void set_bci(uint row, int bci) {
  1494     assert((uint)row < row_limit(), "oob");
  1495     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1497   void release_set_bci(uint row, int bci) {
  1498     assert((uint)row < row_limit(), "oob");
  1499     // 'release' when setting the bci acts as a valid flag for other
  1500     // threads wrt bci_count and bci_displacement.
  1501     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
  1503   void set_bci_count(uint row, uint count) {
  1504     assert((uint)row < row_limit(), "oob");
  1505     set_uint_at(count0_offset + row * ret_row_cell_count, count);
  1507   void set_bci_displacement(uint row, int disp) {
  1508     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
  1511 public:
  1512   RetData(DataLayout* layout) : CounterData(layout) {
  1513     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
  1516   virtual bool is_RetData() const { return true; }
  1518   enum {
  1519     no_bci = -1 // value of bci when bci1/2 are not in use.
  1520   };
  1522   static int static_cell_count() {
  1523     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
  1526   virtual int cell_count() const {
  1527     return static_cell_count();
  1530   static uint row_limit() {
  1531     return BciProfileWidth;
  1533   static int bci_cell_index(uint row) {
  1534     return bci0_offset + row * ret_row_cell_count;
  1536   static int bci_count_cell_index(uint row) {
  1537     return count0_offset + row * ret_row_cell_count;
  1539   static int bci_displacement_cell_index(uint row) {
  1540     return displacement0_offset + row * ret_row_cell_count;
  1543   // Direct accessors
  1544   int bci(uint row) const {
  1545     return int_at(bci_cell_index(row));
  1547   uint bci_count(uint row) const {
  1548     return uint_at(bci_count_cell_index(row));
  1550   int bci_displacement(uint row) const {
  1551     return int_at(bci_displacement_cell_index(row));
  1554   // Interpreter Runtime support
  1555   address fixup_ret(int return_bci, MethodData* mdo);
  1557   // Code generation support
  1558   static ByteSize bci_offset(uint row) {
  1559     return cell_offset(bci_cell_index(row));
  1561   static ByteSize bci_count_offset(uint row) {
  1562     return cell_offset(bci_count_cell_index(row));
  1564   static ByteSize bci_displacement_offset(uint row) {
  1565     return cell_offset(bci_displacement_cell_index(row));
  1568 #ifdef CC_INTERP
  1569   static DataLayout* advance(MethodData *md, int bci);
  1570 #endif // CC_INTERP
  1572   // Specific initialization.
  1573   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1575 #ifndef PRODUCT
  1576   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1577 #endif
  1578 };
  1580 // BranchData
  1581 //
  1582 // A BranchData is used to access profiling data for a two-way branch.
  1583 // It consists of taken and not_taken counts as well as a data displacement
  1584 // for the taken case.
  1585 class BranchData : public JumpData {
  1586 protected:
  1587   enum {
  1588     not_taken_off_set = jump_cell_count,
  1589     branch_cell_count
  1590   };
  1592   void set_displacement(int displacement) {
  1593     set_int_at(displacement_off_set, displacement);
  1596 public:
  1597   BranchData(DataLayout* layout) : JumpData(layout) {
  1598     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
  1601   virtual bool is_BranchData() const { return true; }
  1603   static int static_cell_count() {
  1604     return branch_cell_count;
  1607   virtual int cell_count() const {
  1608     return static_cell_count();
  1611   // Direct accessor
  1612   uint not_taken() const {
  1613     return uint_at(not_taken_off_set);
  1616   void set_not_taken(uint cnt) {
  1617     set_uint_at(not_taken_off_set, cnt);
  1620   uint inc_not_taken() {
  1621     uint cnt = not_taken() + 1;
  1622     // Did we wrap? Will compiler screw us??
  1623     if (cnt == 0) cnt--;
  1624     set_uint_at(not_taken_off_set, cnt);
  1625     return cnt;
  1628   // Code generation support
  1629   static ByteSize not_taken_offset() {
  1630     return cell_offset(not_taken_off_set);
  1632   static ByteSize branch_data_size() {
  1633     return cell_offset(branch_cell_count);
  1636 #ifdef CC_INTERP
  1637   static int branch_data_size_in_bytes() {
  1638     return cell_offset_in_bytes(branch_cell_count);
  1641   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
  1642     increment_uint_at_no_overflow(layout, not_taken_off_set);
  1645   static DataLayout* advance_not_taken(DataLayout* layout) {
  1646     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
  1648 #endif // CC_INTERP
  1650   // Specific initialization.
  1651   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1653 #ifndef PRODUCT
  1654   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1655 #endif
  1656 };
  1658 // ArrayData
  1659 //
  1660 // A ArrayData is a base class for accessing profiling data which does
  1661 // not have a statically known size.  It consists of an array length
  1662 // and an array start.
  1663 class ArrayData : public ProfileData {
  1664 protected:
  1665   friend class DataLayout;
  1667   enum {
  1668     array_len_off_set,
  1669     array_start_off_set
  1670   };
  1672   uint array_uint_at(int index) const {
  1673     int aindex = index + array_start_off_set;
  1674     return uint_at(aindex);
  1676   int array_int_at(int index) const {
  1677     int aindex = index + array_start_off_set;
  1678     return int_at(aindex);
  1680   oop array_oop_at(int index) const {
  1681     int aindex = index + array_start_off_set;
  1682     return oop_at(aindex);
  1684   void array_set_int_at(int index, int value) {
  1685     int aindex = index + array_start_off_set;
  1686     set_int_at(aindex, value);
  1689 #ifdef CC_INTERP
  1690   // Static low level accessors for DataLayout with ArrayData's semantics.
  1692   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
  1693     int aindex = index + array_start_off_set;
  1694     increment_uint_at_no_overflow(layout, aindex);
  1697   static int array_int_at(DataLayout* layout, int index) {
  1698     int aindex = index + array_start_off_set;
  1699     return int_at(layout, aindex);
  1701 #endif // CC_INTERP
  1703   // Code generation support for subclasses.
  1704   static ByteSize array_element_offset(int index) {
  1705     return cell_offset(array_start_off_set + index);
  1708 public:
  1709   ArrayData(DataLayout* layout) : ProfileData(layout) {}
  1711   virtual bool is_ArrayData() const { return true; }
  1713   static int static_cell_count() {
  1714     return -1;
  1717   int array_len() const {
  1718     return int_at_unchecked(array_len_off_set);
  1721   virtual int cell_count() const {
  1722     return array_len() + 1;
  1725   // Code generation support
  1726   static ByteSize array_len_offset() {
  1727     return cell_offset(array_len_off_set);
  1729   static ByteSize array_start_offset() {
  1730     return cell_offset(array_start_off_set);
  1732 };
  1734 // MultiBranchData
  1735 //
  1736 // A MultiBranchData is used to access profiling information for
  1737 // a multi-way branch (*switch bytecodes).  It consists of a series
  1738 // of (count, displacement) pairs, which count the number of times each
  1739 // case was taken and specify the data displacment for each branch target.
  1740 class MultiBranchData : public ArrayData {
  1741 protected:
  1742   enum {
  1743     default_count_off_set,
  1744     default_disaplacement_off_set,
  1745     case_array_start
  1746   };
  1747   enum {
  1748     relative_count_off_set,
  1749     relative_displacement_off_set,
  1750     per_case_cell_count
  1751   };
  1753   void set_default_displacement(int displacement) {
  1754     array_set_int_at(default_disaplacement_off_set, displacement);
  1756   void set_displacement_at(int index, int displacement) {
  1757     array_set_int_at(case_array_start +
  1758                      index * per_case_cell_count +
  1759                      relative_displacement_off_set,
  1760                      displacement);
  1763 public:
  1764   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1765     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1768   virtual bool is_MultiBranchData() const { return true; }
  1770   static int compute_cell_count(BytecodeStream* stream);
  1772   int number_of_cases() const {
  1773     int alen = array_len() - 2; // get rid of default case here.
  1774     assert(alen % per_case_cell_count == 0, "must be even");
  1775     return (alen / per_case_cell_count);
  1778   uint default_count() const {
  1779     return array_uint_at(default_count_off_set);
  1781   int default_displacement() const {
  1782     return array_int_at(default_disaplacement_off_set);
  1785   uint count_at(int index) const {
  1786     return array_uint_at(case_array_start +
  1787                          index * per_case_cell_count +
  1788                          relative_count_off_set);
  1790   int displacement_at(int index) const {
  1791     return array_int_at(case_array_start +
  1792                         index * per_case_cell_count +
  1793                         relative_displacement_off_set);
  1796   // Code generation support
  1797   static ByteSize default_count_offset() {
  1798     return array_element_offset(default_count_off_set);
  1800   static ByteSize default_displacement_offset() {
  1801     return array_element_offset(default_disaplacement_off_set);
  1803   static ByteSize case_count_offset(int index) {
  1804     return case_array_offset() +
  1805            (per_case_size() * index) +
  1806            relative_count_offset();
  1808   static ByteSize case_array_offset() {
  1809     return array_element_offset(case_array_start);
  1811   static ByteSize per_case_size() {
  1812     return in_ByteSize(per_case_cell_count) * cell_size;
  1814   static ByteSize relative_count_offset() {
  1815     return in_ByteSize(relative_count_off_set) * cell_size;
  1817   static ByteSize relative_displacement_offset() {
  1818     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1821 #ifdef CC_INTERP
  1822   static void increment_count_no_overflow(DataLayout* layout, int index) {
  1823     if (index == -1) {
  1824       increment_array_uint_at_no_overflow(layout, default_count_off_set);
  1825     } else {
  1826       increment_array_uint_at_no_overflow(layout, case_array_start +
  1827                                                   index * per_case_cell_count +
  1828                                                   relative_count_off_set);
  1832   static DataLayout* advance(DataLayout* layout, int index) {
  1833     if (index == -1) {
  1834       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
  1835     } else {
  1836       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
  1837                                                                               index * per_case_cell_count +
  1838                                                                               relative_displacement_off_set));
  1841 #endif // CC_INTERP
  1843   // Specific initialization.
  1844   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1846 #ifndef PRODUCT
  1847   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1848 #endif
  1849 };
  1851 class ArgInfoData : public ArrayData {
  1853 public:
  1854   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1855     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1858   virtual bool is_ArgInfoData() const { return true; }
  1861   int number_of_args() const {
  1862     return array_len();
  1865   uint arg_modified(int arg) const {
  1866     return array_uint_at(arg);
  1869   void set_arg_modified(int arg, uint val) {
  1870     array_set_int_at(arg, val);
  1873 #ifndef PRODUCT
  1874   void print_data_on(outputStream* st, const char* extra = NULL) const;
  1875 #endif
  1876 };
  1878 // ParametersTypeData
  1879 //
  1880 // A ParametersTypeData is used to access profiling information about
  1881 // types of parameters to a method
  1882 class ParametersTypeData : public ArrayData {
  1884 private:
  1885   TypeStackSlotEntries _parameters;
  1887   static int stack_slot_local_offset(int i) {
  1888     assert_profiling_enabled();
  1889     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
  1892   static int type_local_offset(int i) {
  1893     assert_profiling_enabled();
  1894     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
  1897   static bool profiling_enabled();
  1898   static void assert_profiling_enabled() {
  1899     assert(profiling_enabled(), "method parameters profiling should be on");
  1902 public:
  1903   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
  1904     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
  1905     // Some compilers (VC++) don't want this passed in member initialization list
  1906     _parameters.set_profile_data(this);
  1909   static int compute_cell_count(Method* m);
  1911   virtual bool is_ParametersTypeData() const { return true; }
  1913   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1915   int number_of_parameters() const {
  1916     return array_len() / TypeStackSlotEntries::per_arg_count();
  1919   const TypeStackSlotEntries* parameters() const { return &_parameters; }
  1921   uint stack_slot(int i) const {
  1922     return _parameters.stack_slot(i);
  1925   void set_type(int i, Klass* k) {
  1926     intptr_t current = _parameters.type(i);
  1927     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
  1930   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
  1931     _parameters.clean_weak_klass_links(is_alive_closure);
  1934 #ifndef PRODUCT
  1935   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
  1936 #endif
  1938   static ByteSize stack_slot_offset(int i) {
  1939     return cell_offset(stack_slot_local_offset(i));
  1942   static ByteSize type_offset(int i) {
  1943     return cell_offset(type_local_offset(i));
  1945 };
  1947 // SpeculativeTrapData
  1948 //
  1949 // A SpeculativeTrapData is used to record traps due to type
  1950 // speculation. It records the root of the compilation: that type
  1951 // speculation is wrong in the context of one compilation (for
  1952 // method1) doesn't mean it's wrong in the context of another one (for
  1953 // method2). Type speculation could have more/different data in the
  1954 // context of the compilation of method2 and it's worthwhile to try an
  1955 // optimization that failed for compilation of method1 in the context
  1956 // of compilation of method2.
  1957 // Space for SpeculativeTrapData entries is allocated from the extra
  1958 // data space in the MDO. If we run out of space, the trap data for
  1959 // the ProfileData at that bci is updated.
  1960 class SpeculativeTrapData : public ProfileData {
  1961 protected:
  1962   enum {
  1963     method_offset,
  1964     speculative_trap_cell_count
  1965   };
  1966 public:
  1967   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
  1968     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
  1971   virtual bool is_SpeculativeTrapData() const { return true; }
  1973   static int static_cell_count() {
  1974     return speculative_trap_cell_count;
  1977   virtual int cell_count() const {
  1978     return static_cell_count();
  1981   // Direct accessor
  1982   Method* method() const {
  1983     return (Method*)intptr_at(method_offset);
  1986   void set_method(Method* m) {
  1987     set_intptr_at(method_offset, (intptr_t)m);
  1990 #ifndef PRODUCT
  1991   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
  1992 #endif
  1993 };
  1995 // MethodData*
  1996 //
  1997 // A MethodData* holds information which has been collected about
  1998 // a method.  Its layout looks like this:
  1999 //
  2000 // -----------------------------
  2001 // | header                    |
  2002 // | klass                     |
  2003 // -----------------------------
  2004 // | method                    |
  2005 // | size of the MethodData* |
  2006 // -----------------------------
  2007 // | Data entries...           |
  2008 // |   (variable size)         |
  2009 // |                           |
  2010 // .                           .
  2011 // .                           .
  2012 // .                           .
  2013 // |                           |
  2014 // -----------------------------
  2015 //
  2016 // The data entry area is a heterogeneous array of DataLayouts. Each
  2017 // DataLayout in the array corresponds to a specific bytecode in the
  2018 // method.  The entries in the array are sorted by the corresponding
  2019 // bytecode.  Access to the data is via resource-allocated ProfileData,
  2020 // which point to the underlying blocks of DataLayout structures.
  2021 //
  2022 // During interpretation, if profiling in enabled, the interpreter
  2023 // maintains a method data pointer (mdp), which points at the entry
  2024 // in the array corresponding to the current bci.  In the course of
  2025 // intepretation, when a bytecode is encountered that has profile data
  2026 // associated with it, the entry pointed to by mdp is updated, then the
  2027 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  2028 // is NULL to begin with, the interpreter assumes that the current method
  2029 // is not (yet) being profiled.
  2030 //
  2031 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  2032 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  2033 // from the base of the data entry array.  A "displacement" is the byte offset
  2034 // in certain ProfileData objects that indicate the amount the mdp must be
  2035 // adjusted in the event of a change in control flow.
  2036 //
  2038 CC_INTERP_ONLY(class BytecodeInterpreter;)
  2039 class CleanExtraDataClosure;
  2041 class MethodData : public Metadata {
  2042   friend class VMStructs;
  2043   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
  2044 private:
  2045   friend class ProfileData;
  2047   // Back pointer to the Method*
  2048   Method* _method;
  2050   // Size of this oop in bytes
  2051   int _size;
  2053   // Cached hint for bci_to_dp and bci_to_data
  2054   int _hint_di;
  2056   Mutex _extra_data_lock;
  2058   MethodData(methodHandle method, int size, TRAPS);
  2059 public:
  2060   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  2061   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
  2063   bool is_methodData() const volatile { return true; }
  2065   // Whole-method sticky bits and flags
  2066   enum {
  2067     _trap_hist_limit    = 20,   // decoupled from Deoptimization::Reason_LIMIT
  2068     _trap_hist_mask     = max_jubyte,
  2069     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  2070   }; // Public flag values
  2071 private:
  2072   uint _nof_decompiles;             // count of all nmethod removals
  2073   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  2074   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  2075   union {
  2076     intptr_t _align;
  2077     u1 _array[_trap_hist_limit];
  2078   } _trap_hist;
  2080   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  2081   intx              _eflags;          // flags on escape information
  2082   intx              _arg_local;       // bit set of non-escaping arguments
  2083   intx              _arg_stack;       // bit set of stack-allocatable arguments
  2084   intx              _arg_returned;    // bit set of returned arguments
  2086   int _creation_mileage;              // method mileage at MDO creation
  2088   // How many invocations has this MDO seen?
  2089   // These counters are used to determine the exact age of MDO.
  2090   // We need those because in tiered a method can be concurrently
  2091   // executed at different levels.
  2092   InvocationCounter _invocation_counter;
  2093   // Same for backedges.
  2094   InvocationCounter _backedge_counter;
  2095   // Counter values at the time profiling started.
  2096   int               _invocation_counter_start;
  2097   int               _backedge_counter_start;
  2099 #if INCLUDE_RTM_OPT
  2100   // State of RTM code generation during compilation of the method
  2101   int               _rtm_state;
  2102 #endif
  2104   // Number of loops and blocks is computed when compiling the first
  2105   // time with C1. It is used to determine if method is trivial.
  2106   short             _num_loops;
  2107   short             _num_blocks;
  2108   // Does this method contain anything worth profiling?
  2109   enum WouldProfile {unknown, no_profile, profile};
  2110   WouldProfile      _would_profile;
  2112   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  2113   int _data_size;
  2115   // data index for the area dedicated to parameters. -1 if no
  2116   // parameter profiling.
  2117   int _parameters_type_data_di;
  2119   // Beginning of the data entries
  2120   intptr_t _data[1];
  2122   // Helper for size computation
  2123   static int compute_data_size(BytecodeStream* stream);
  2124   static int bytecode_cell_count(Bytecodes::Code code);
  2125   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
  2126   enum { no_profile_data = -1, variable_cell_count = -2 };
  2128   // Helper for initialization
  2129   DataLayout* data_layout_at(int data_index) const {
  2130     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  2131     return (DataLayout*) (((address)_data) + data_index);
  2134   // Initialize an individual data segment.  Returns the size of
  2135   // the segment in bytes.
  2136   int initialize_data(BytecodeStream* stream, int data_index);
  2138   // Helper for data_at
  2139   DataLayout* limit_data_position() const {
  2140     return (DataLayout*)((address)data_base() + _data_size);
  2142   bool out_of_bounds(int data_index) const {
  2143     return data_index >= data_size();
  2146   // Give each of the data entries a chance to perform specific
  2147   // data initialization.
  2148   void post_initialize(BytecodeStream* stream);
  2150   // hint accessors
  2151   int      hint_di() const  { return _hint_di; }
  2152   void set_hint_di(int di)  {
  2153     assert(!out_of_bounds(di), "hint_di out of bounds");
  2154     _hint_di = di;
  2156   ProfileData* data_before(int bci) {
  2157     // avoid SEGV on this edge case
  2158     if (data_size() == 0)
  2159       return NULL;
  2160     int hint = hint_di();
  2161     if (data_layout_at(hint)->bci() <= bci)
  2162       return data_at(hint);
  2163     return first_data();
  2166   // What is the index of the first data entry?
  2167   int first_di() const { return 0; }
  2169   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
  2170   // Find or create an extra ProfileData:
  2171   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
  2173   // return the argument info cell
  2174   ArgInfoData *arg_info();
  2176   enum {
  2177     no_type_profile = 0,
  2178     type_profile_jsr292 = 1,
  2179     type_profile_all = 2
  2180   };
  2182   static bool profile_jsr292(methodHandle m, int bci);
  2183   static int profile_arguments_flag();
  2184   static bool profile_all_arguments();
  2185   static bool profile_arguments_for_invoke(methodHandle m, int bci);
  2186   static int profile_return_flag();
  2187   static bool profile_all_return();
  2188   static bool profile_return_for_invoke(methodHandle m, int bci);
  2189   static int profile_parameters_flag();
  2190   static bool profile_parameters_jsr292_only();
  2191   static bool profile_all_parameters();
  2193   void clean_extra_data(CleanExtraDataClosure* cl);
  2194   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
  2195   void verify_extra_data_clean(CleanExtraDataClosure* cl);
  2197 public:
  2198   static int header_size() {
  2199     return sizeof(MethodData)/wordSize;
  2202   // Compute the size of a MethodData* before it is created.
  2203   static int compute_allocation_size_in_bytes(methodHandle method);
  2204   static int compute_allocation_size_in_words(methodHandle method);
  2205   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
  2207   // Determine if a given bytecode can have profile information.
  2208   static bool bytecode_has_profile(Bytecodes::Code code) {
  2209     return bytecode_cell_count(code) != no_profile_data;
  2212   // reset into original state
  2213   void init();
  2215   // My size
  2216   int size_in_bytes() const { return _size; }
  2217   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  2218 #if INCLUDE_SERVICES
  2219   void collect_statistics(KlassSizeStats *sz) const;
  2220 #endif
  2222   int      creation_mileage() const  { return _creation_mileage; }
  2223   void set_creation_mileage(int x)   { _creation_mileage = x; }
  2225   int invocation_count() {
  2226     if (invocation_counter()->carry()) {
  2227       return InvocationCounter::count_limit;
  2229     return invocation_counter()->count();
  2231   int backedge_count() {
  2232     if (backedge_counter()->carry()) {
  2233       return InvocationCounter::count_limit;
  2235     return backedge_counter()->count();
  2238   int invocation_count_start() {
  2239     if (invocation_counter()->carry()) {
  2240       return 0;
  2242     return _invocation_counter_start;
  2245   int backedge_count_start() {
  2246     if (backedge_counter()->carry()) {
  2247       return 0;
  2249     return _backedge_counter_start;
  2252   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  2253   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  2255   void reset_start_counters() {
  2256     _invocation_counter_start = invocation_count();
  2257     _backedge_counter_start = backedge_count();
  2260   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  2261   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  2263 #if INCLUDE_RTM_OPT
  2264   int rtm_state() const {
  2265     return _rtm_state;
  2267   void set_rtm_state(RTMState rstate) {
  2268     _rtm_state = (int)rstate;
  2270   void atomic_set_rtm_state(RTMState rstate) {
  2271     Atomic::store((int)rstate, &_rtm_state);
  2274   static int rtm_state_offset_in_bytes() {
  2275     return offset_of(MethodData, _rtm_state);
  2277 #endif
  2279   void set_would_profile(bool p)              { _would_profile = p ? profile : no_profile; }
  2280   bool would_profile() const                  { return _would_profile != no_profile; }
  2282   int num_loops() const                       { return _num_loops;  }
  2283   void set_num_loops(int n)                   { _num_loops = n;     }
  2284   int num_blocks() const                      { return _num_blocks; }
  2285   void set_num_blocks(int n)                  { _num_blocks = n;    }
  2287   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  2288   static int mileage_of(Method* m);
  2290   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  2291   enum EscapeFlag {
  2292     estimated    = 1 << 0,
  2293     return_local = 1 << 1,
  2294     return_allocated = 1 << 2,
  2295     allocated_escapes = 1 << 3,
  2296     unknown_modified = 1 << 4
  2297   };
  2299   intx eflags()                                  { return _eflags; }
  2300   intx arg_local()                               { return _arg_local; }
  2301   intx arg_stack()                               { return _arg_stack; }
  2302   intx arg_returned()                            { return _arg_returned; }
  2303   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  2304                                                    assert(aid != NULL, "arg_info must be not null");
  2305                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2306                                                    return aid->arg_modified(a); }
  2308   void set_eflags(intx v)                        { _eflags = v; }
  2309   void set_arg_local(intx v)                     { _arg_local = v; }
  2310   void set_arg_stack(intx v)                     { _arg_stack = v; }
  2311   void set_arg_returned(intx v)                  { _arg_returned = v; }
  2312   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  2313                                                    assert(aid != NULL, "arg_info must be not null");
  2314                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  2315                                                    aid->set_arg_modified(a, v); }
  2317   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  2319   // Location and size of data area
  2320   address data_base() const {
  2321     return (address) _data;
  2323   int data_size() const {
  2324     return _data_size;
  2327   // Accessors
  2328   Method* method() const { return _method; }
  2330   // Get the data at an arbitrary (sort of) data index.
  2331   ProfileData* data_at(int data_index) const;
  2333   // Walk through the data in order.
  2334   ProfileData* first_data() const { return data_at(first_di()); }
  2335   ProfileData* next_data(ProfileData* current) const;
  2336   bool is_valid(ProfileData* current) const { return current != NULL; }
  2338   // Convert a dp (data pointer) to a di (data index).
  2339   int dp_to_di(address dp) const {
  2340     return dp - ((address)_data);
  2343   address di_to_dp(int di) {
  2344     return (address)data_layout_at(di);
  2347   // bci to di/dp conversion.
  2348   address bci_to_dp(int bci);
  2349   int bci_to_di(int bci) {
  2350     return dp_to_di(bci_to_dp(bci));
  2353   // Get the data at an arbitrary bci, or NULL if there is none.
  2354   ProfileData* bci_to_data(int bci);
  2356   // Same, but try to create an extra_data record if one is needed:
  2357   ProfileData* allocate_bci_to_data(int bci, Method* m) {
  2358     ProfileData* data = NULL;
  2359     // If m not NULL, try to allocate a SpeculativeTrapData entry
  2360     if (m == NULL) {
  2361       data = bci_to_data(bci);
  2363     if (data != NULL) {
  2364       return data;
  2366     data = bci_to_extra_data(bci, m, true);
  2367     if (data != NULL) {
  2368       return data;
  2370     // If SpeculativeTrapData allocation fails try to allocate a
  2371     // regular entry
  2372     data = bci_to_data(bci);
  2373     if (data != NULL) {
  2374       return data;
  2376     return bci_to_extra_data(bci, NULL, true);
  2379   // Add a handful of extra data records, for trap tracking.
  2380   DataLayout* extra_data_base() const { return limit_data_position(); }
  2381   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  2382   int extra_data_size() const { return (address)extra_data_limit()
  2383                                - (address)extra_data_base(); }
  2384   static DataLayout* next_extra(DataLayout* dp);
  2386   // Return (uint)-1 for overflow.
  2387   uint trap_count(int reason) const {
  2388     assert((uint)reason < _trap_hist_limit, "oob");
  2389     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  2391   // For loops:
  2392   static uint trap_reason_limit() { return _trap_hist_limit; }
  2393   static uint trap_count_limit()  { return _trap_hist_mask; }
  2394   uint inc_trap_count(int reason) {
  2395     // Count another trap, anywhere in this method.
  2396     assert(reason >= 0, "must be single trap");
  2397     if ((uint)reason < _trap_hist_limit) {
  2398       uint cnt1 = 1 + _trap_hist._array[reason];
  2399       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  2400         _trap_hist._array[reason] = cnt1;
  2401         return cnt1;
  2402       } else {
  2403         return _trap_hist_mask + (++_nof_overflow_traps);
  2405     } else {
  2406       // Could not represent the count in the histogram.
  2407       return (++_nof_overflow_traps);
  2411   uint overflow_trap_count() const {
  2412     return _nof_overflow_traps;
  2414   uint overflow_recompile_count() const {
  2415     return _nof_overflow_recompiles;
  2417   void inc_overflow_recompile_count() {
  2418     _nof_overflow_recompiles += 1;
  2420   uint decompile_count() const {
  2421     return _nof_decompiles;
  2423   void inc_decompile_count() {
  2424     _nof_decompiles += 1;
  2425     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  2426       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  2430   // Return pointer to area dedicated to parameters in MDO
  2431   ParametersTypeData* parameters_type_data() const {
  2432     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
  2435   int parameters_type_data_di() const {
  2436     assert(_parameters_type_data_di != -1, "no args type data");
  2437     return _parameters_type_data_di;
  2440   // Support for code generation
  2441   static ByteSize data_offset() {
  2442     return byte_offset_of(MethodData, _data[0]);
  2445   static ByteSize invocation_counter_offset() {
  2446     return byte_offset_of(MethodData, _invocation_counter);
  2448   static ByteSize backedge_counter_offset() {
  2449     return byte_offset_of(MethodData, _backedge_counter);
  2452   static ByteSize parameters_type_data_di_offset() {
  2453     return byte_offset_of(MethodData, _parameters_type_data_di);
  2456   // Deallocation support - no pointer fields to deallocate
  2457   void deallocate_contents(ClassLoaderData* loader_data) {}
  2459   // GC support
  2460   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  2462   // Printing
  2463 #ifndef PRODUCT
  2464   void print_on      (outputStream* st) const;
  2465 #endif
  2466   void print_value_on(outputStream* st) const;
  2468 #ifndef PRODUCT
  2469   // printing support for method data
  2470   void print_data_on(outputStream* st) const;
  2471 #endif
  2473   const char* internal_name() const { return "{method data}"; }
  2475   // verification
  2476   void verify_on(outputStream* st);
  2477   void verify_data_on(outputStream* st);
  2479   static bool profile_parameters_for_method(methodHandle m);
  2480   static bool profile_arguments();
  2481   static bool profile_arguments_jsr292_only();
  2482   static bool profile_return();
  2483   static bool profile_parameters();
  2484   static bool profile_return_jsr292_only();
  2486   void clean_method_data(BoolObjectClosure* is_alive);
  2488   void clean_weak_method_links();
  2489 };
  2491 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial