src/cpu/x86/vm/assembler_x86.hpp

Mon, 14 Sep 2009 12:14:20 -0700

author
kvn
date
Mon, 14 Sep 2009 12:14:20 -0700
changeset 1421
62001a362ce9
parent 1210
93c14e5562c4
child 1482
beb8f45ee9f0
child 1495
323bd24c6520
permissions
-rw-r--r--

6827605: new String intrinsics may prevent EA scalar replacement
6875866: Intrinsic for String.indexOf() is broken on x86 with SSE4.2
Summary: Modify String intrinsic methods to pass char[] pointers instead of string oops.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BiasedLockingCounters;
    27 // Contains all the definitions needed for x86 assembly code generation.
    29 // Calling convention
    30 class Argument VALUE_OBJ_CLASS_SPEC {
    31  public:
    32   enum {
    33 #ifdef _LP64
    34 #ifdef _WIN64
    35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    37 #else
    38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    40 #endif // _WIN64
    41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    43 #else
    44     n_register_parameters = 0   // 0 registers used to pass arguments
    45 #endif // _LP64
    46   };
    47 };
    50 #ifdef _LP64
    51 // Symbolically name the register arguments used by the c calling convention.
    52 // Windows is different from linux/solaris. So much for standards...
    54 #ifdef _WIN64
    56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    58 REGISTER_DECLARATION(Register, c_rarg2, r8);
    59 REGISTER_DECLARATION(Register, c_rarg3, r9);
    61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    66 #else
    68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    72 REGISTER_DECLARATION(Register, c_rarg4, r8);
    73 REGISTER_DECLARATION(Register, c_rarg5, r9);
    75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    84 #endif // _WIN64
    86 // Symbolically name the register arguments used by the Java calling convention.
    87 // We have control over the convention for java so we can do what we please.
    88 // What pleases us is to offset the java calling convention so that when
    89 // we call a suitable jni method the arguments are lined up and we don't
    90 // have to do little shuffling. A suitable jni method is non-static and a
    91 // small number of arguments (two fewer args on windows)
    92 //
    93 //        |-------------------------------------------------------|
    94 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    95 //        |-------------------------------------------------------|
    96 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
    97 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
    98 //        |-------------------------------------------------------|
    99 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   100 //        |-------------------------------------------------------|
   102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   105 // Windows runs out of register args here
   106 #ifdef _WIN64
   107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   109 #else
   110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   112 #endif /* _WIN64 */
   113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   124 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   125 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   130 #else
   131 // rscratch1 will apear in 32bit code that is dead but of course must compile
   132 // Using noreg ensures if the dead code is incorrectly live and executed it
   133 // will cause an assertion failure
   134 #define rscratch1 noreg
   136 #endif // _LP64
   138 // Address is an abstraction used to represent a memory location
   139 // using any of the amd64 addressing modes with one object.
   140 //
   141 // Note: A register location is represented via a Register, not
   142 //       via an address for efficiency & simplicity reasons.
   144 class ArrayAddress;
   146 class Address VALUE_OBJ_CLASS_SPEC {
   147  public:
   148   enum ScaleFactor {
   149     no_scale = -1,
   150     times_1  =  0,
   151     times_2  =  1,
   152     times_4  =  2,
   153     times_8  =  3,
   154     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   155   };
   156   static ScaleFactor times(int size) {
   157     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
   158     if (size == 8)  return times_8;
   159     if (size == 4)  return times_4;
   160     if (size == 2)  return times_2;
   161     return times_1;
   162   }
   163   static int scale_size(ScaleFactor scale) {
   164     assert(scale != no_scale, "");
   165     assert(((1 << (int)times_1) == 1 &&
   166             (1 << (int)times_2) == 2 &&
   167             (1 << (int)times_4) == 4 &&
   168             (1 << (int)times_8) == 8), "");
   169     return (1 << (int)scale);
   170   }
   172  private:
   173   Register         _base;
   174   Register         _index;
   175   ScaleFactor      _scale;
   176   int              _disp;
   177   RelocationHolder _rspec;
   179   // Easily misused constructors make them private
   180   // %%% can we make these go away?
   181   NOT_LP64(Address(address loc, RelocationHolder spec);)
   182   Address(int disp, address loc, relocInfo::relocType rtype);
   183   Address(int disp, address loc, RelocationHolder spec);
   185  public:
   187  int disp() { return _disp; }
   188   // creation
   189   Address()
   190     : _base(noreg),
   191       _index(noreg),
   192       _scale(no_scale),
   193       _disp(0) {
   194   }
   196   // No default displacement otherwise Register can be implicitly
   197   // converted to 0(Register) which is quite a different animal.
   199   Address(Register base, int disp)
   200     : _base(base),
   201       _index(noreg),
   202       _scale(no_scale),
   203       _disp(disp) {
   204   }
   206   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   207     : _base (base),
   208       _index(index),
   209       _scale(scale),
   210       _disp (disp) {
   211     assert(!index->is_valid() == (scale == Address::no_scale),
   212            "inconsistent address");
   213   }
   215   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
   216     : _base (base),
   217       _index(index.register_or_noreg()),
   218       _scale(scale),
   219       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
   220     if (!index.is_register())  scale = Address::no_scale;
   221     assert(!_index->is_valid() == (scale == Address::no_scale),
   222            "inconsistent address");
   223   }
   225   Address plus_disp(int disp) const {
   226     Address a = (*this);
   227     a._disp += disp;
   228     return a;
   229   }
   231   // The following two overloads are used in connection with the
   232   // ByteSize type (see sizes.hpp).  They simplify the use of
   233   // ByteSize'd arguments in assembly code. Note that their equivalent
   234   // for the optimized build are the member functions with int disp
   235   // argument since ByteSize is mapped to an int type in that case.
   236   //
   237   // Note: DO NOT introduce similar overloaded functions for WordSize
   238   // arguments as in the optimized mode, both ByteSize and WordSize
   239   // are mapped to the same type and thus the compiler cannot make a
   240   // distinction anymore (=> compiler errors).
   242 #ifdef ASSERT
   243   Address(Register base, ByteSize disp)
   244     : _base(base),
   245       _index(noreg),
   246       _scale(no_scale),
   247       _disp(in_bytes(disp)) {
   248   }
   250   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   251     : _base(base),
   252       _index(index),
   253       _scale(scale),
   254       _disp(in_bytes(disp)) {
   255     assert(!index->is_valid() == (scale == Address::no_scale),
   256            "inconsistent address");
   257   }
   259   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
   260     : _base (base),
   261       _index(index.register_or_noreg()),
   262       _scale(scale),
   263       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
   264     if (!index.is_register())  scale = Address::no_scale;
   265     assert(!_index->is_valid() == (scale == Address::no_scale),
   266            "inconsistent address");
   267   }
   269 #endif // ASSERT
   271   // accessors
   272   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   273   Register    base()             const { return _base;  }
   274   Register    index()            const { return _index; }
   275   ScaleFactor scale()            const { return _scale; }
   276   int         disp()             const { return _disp;  }
   278   // Convert the raw encoding form into the form expected by the constructor for
   279   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   280   // that to noreg for the Address constructor.
   281   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
   283   static Address make_array(ArrayAddress);
   285  private:
   286   bool base_needs_rex() const {
   287     return _base != noreg && _base->encoding() >= 8;
   288   }
   290   bool index_needs_rex() const {
   291     return _index != noreg &&_index->encoding() >= 8;
   292   }
   294   relocInfo::relocType reloc() const { return _rspec.type(); }
   296   friend class Assembler;
   297   friend class MacroAssembler;
   298   friend class LIR_Assembler; // base/index/scale/disp
   299 };
   301 //
   302 // AddressLiteral has been split out from Address because operands of this type
   303 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   304 // the few instructions that need to deal with address literals are unique and the
   305 // MacroAssembler does not have to implement every instruction in the Assembler
   306 // in order to search for address literals that may need special handling depending
   307 // on the instruction and the platform. As small step on the way to merging i486/amd64
   308 // directories.
   309 //
   310 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   311   friend class ArrayAddress;
   312   RelocationHolder _rspec;
   313   // Typically we use AddressLiterals we want to use their rval
   314   // However in some situations we want the lval (effect address) of the item.
   315   // We provide a special factory for making those lvals.
   316   bool _is_lval;
   318   // If the target is far we'll need to load the ea of this to
   319   // a register to reach it. Otherwise if near we can do rip
   320   // relative addressing.
   322   address          _target;
   324  protected:
   325   // creation
   326   AddressLiteral()
   327     : _is_lval(false),
   328       _target(NULL)
   329   {}
   331   public:
   334   AddressLiteral(address target, relocInfo::relocType rtype);
   336   AddressLiteral(address target, RelocationHolder const& rspec)
   337     : _rspec(rspec),
   338       _is_lval(false),
   339       _target(target)
   340   {}
   342   AddressLiteral addr() {
   343     AddressLiteral ret = *this;
   344     ret._is_lval = true;
   345     return ret;
   346   }
   349  private:
   351   address target() { return _target; }
   352   bool is_lval() { return _is_lval; }
   354   relocInfo::relocType reloc() const { return _rspec.type(); }
   355   const RelocationHolder& rspec() const { return _rspec; }
   357   friend class Assembler;
   358   friend class MacroAssembler;
   359   friend class Address;
   360   friend class LIR_Assembler;
   361 };
   363 // Convience classes
   364 class RuntimeAddress: public AddressLiteral {
   366   public:
   368   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   370 };
   372 class OopAddress: public AddressLiteral {
   374   public:
   376   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   378 };
   380 class ExternalAddress: public AddressLiteral {
   382   public:
   384   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   386 };
   388 class InternalAddress: public AddressLiteral {
   390   public:
   392   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   394 };
   396 // x86 can do array addressing as a single operation since disp can be an absolute
   397 // address amd64 can't. We create a class that expresses the concept but does extra
   398 // magic on amd64 to get the final result
   400 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   401   private:
   403   AddressLiteral _base;
   404   Address        _index;
   406   public:
   408   ArrayAddress() {};
   409   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   410   AddressLiteral base() { return _base; }
   411   Address index() { return _index; }
   413 };
   415 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   417 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   418 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   419 // is what you get. The Assembler is generating code into a CodeBuffer.
   421 class Assembler : public AbstractAssembler  {
   422   friend class AbstractAssembler; // for the non-virtual hack
   423   friend class LIR_Assembler; // as_Address()
   424   friend class StubGenerator;
   426  public:
   427   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   428     zero          = 0x4,
   429     notZero       = 0x5,
   430     equal         = 0x4,
   431     notEqual      = 0x5,
   432     less          = 0xc,
   433     lessEqual     = 0xe,
   434     greater       = 0xf,
   435     greaterEqual  = 0xd,
   436     below         = 0x2,
   437     belowEqual    = 0x6,
   438     above         = 0x7,
   439     aboveEqual    = 0x3,
   440     overflow      = 0x0,
   441     noOverflow    = 0x1,
   442     carrySet      = 0x2,
   443     carryClear    = 0x3,
   444     negative      = 0x8,
   445     positive      = 0x9,
   446     parity        = 0xa,
   447     noParity      = 0xb
   448   };
   450   enum Prefix {
   451     // segment overrides
   452     CS_segment = 0x2e,
   453     SS_segment = 0x36,
   454     DS_segment = 0x3e,
   455     ES_segment = 0x26,
   456     FS_segment = 0x64,
   457     GS_segment = 0x65,
   459     REX        = 0x40,
   461     REX_B      = 0x41,
   462     REX_X      = 0x42,
   463     REX_XB     = 0x43,
   464     REX_R      = 0x44,
   465     REX_RB     = 0x45,
   466     REX_RX     = 0x46,
   467     REX_RXB    = 0x47,
   469     REX_W      = 0x48,
   471     REX_WB     = 0x49,
   472     REX_WX     = 0x4A,
   473     REX_WXB    = 0x4B,
   474     REX_WR     = 0x4C,
   475     REX_WRB    = 0x4D,
   476     REX_WRX    = 0x4E,
   477     REX_WRXB   = 0x4F
   478   };
   480   enum WhichOperand {
   481     // input to locate_operand, and format code for relocations
   482     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   483     disp32_operand = 1,          // embedded 32-bit displacement or address
   484     call32_operand = 2,          // embedded 32-bit self-relative displacement
   485 #ifndef _LP64
   486     _WhichOperand_limit = 3
   487 #else
   488      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   489     _WhichOperand_limit = 4
   490 #endif
   491   };
   495   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   496   // of instructions are freely declared without the need for wrapping them an ifdef.
   497   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   498   // In the .cpp file the implementations are wrapped so that they are dropped out
   499   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   500   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   501   //
   502   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   503   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   505 private:
   508   // 64bit prefixes
   509   int prefix_and_encode(int reg_enc, bool byteinst = false);
   510   int prefixq_and_encode(int reg_enc);
   512   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   513   int prefixq_and_encode(int dst_enc, int src_enc);
   515   void prefix(Register reg);
   516   void prefix(Address adr);
   517   void prefixq(Address adr);
   519   void prefix(Address adr, Register reg,  bool byteinst = false);
   520   void prefixq(Address adr, Register reg);
   522   void prefix(Address adr, XMMRegister reg);
   524   void prefetch_prefix(Address src);
   526   // Helper functions for groups of instructions
   527   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   529   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   530   // only 32bit??
   531   void emit_arith(int op1, int op2, Register dst, jobject obj);
   532   void emit_arith(int op1, int op2, Register dst, Register src);
   534   void emit_operand(Register reg,
   535                     Register base, Register index, Address::ScaleFactor scale,
   536                     int disp,
   537                     RelocationHolder const& rspec,
   538                     int rip_relative_correction = 0);
   540   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   542   // operands that only take the original 32bit registers
   543   void emit_operand32(Register reg, Address adr);
   545   void emit_operand(XMMRegister reg,
   546                     Register base, Register index, Address::ScaleFactor scale,
   547                     int disp,
   548                     RelocationHolder const& rspec);
   550   void emit_operand(XMMRegister reg, Address adr);
   552   void emit_operand(MMXRegister reg, Address adr);
   554   // workaround gcc (3.2.1-7) bug
   555   void emit_operand(Address adr, MMXRegister reg);
   558   // Immediate-to-memory forms
   559   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   561   void emit_farith(int b1, int b2, int i);
   564  protected:
   565   #ifdef ASSERT
   566   void check_relocation(RelocationHolder const& rspec, int format);
   567   #endif
   569   inline void emit_long64(jlong x);
   571   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   572   void emit_data(jint data, RelocationHolder const& rspec, int format);
   573   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   574   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   577   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   579   // These are all easily abused and hence protected
   581   // 32BIT ONLY SECTION
   582 #ifndef _LP64
   583   // Make these disappear in 64bit mode since they would never be correct
   584   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   585   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   587   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   588   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   590   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   591 #else
   592   // 64BIT ONLY SECTION
   593   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   595   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
   596   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
   598   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
   599   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
   600 #endif // _LP64
   602   // These are unique in that we are ensured by the caller that the 32bit
   603   // relative in these instructions will always be able to reach the potentially
   604   // 64bit address described by entry. Since they can take a 64bit address they
   605   // don't have the 32 suffix like the other instructions in this class.
   607   void call_literal(address entry, RelocationHolder const& rspec);
   608   void jmp_literal(address entry, RelocationHolder const& rspec);
   610   // Avoid using directly section
   611   // Instructions in this section are actually usable by anyone without danger
   612   // of failure but have performance issues that are addressed my enhanced
   613   // instructions which will do the proper thing base on the particular cpu.
   614   // We protect them because we don't trust you...
   616   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   617   // could cause a partial flag stall since they don't set CF flag.
   618   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   619   // which call inc() & dec() or add() & sub() in accordance with
   620   // the product flag UseIncDec value.
   622   void decl(Register dst);
   623   void decl(Address dst);
   624   void decq(Register dst);
   625   void decq(Address dst);
   627   void incl(Register dst);
   628   void incl(Address dst);
   629   void incq(Register dst);
   630   void incq(Address dst);
   632   // New cpus require use of movsd and movss to avoid partial register stall
   633   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   634   // The selection is done in MacroAssembler::movdbl() and movflt().
   636   // Move Scalar Single-Precision Floating-Point Values
   637   void movss(XMMRegister dst, Address src);
   638   void movss(XMMRegister dst, XMMRegister src);
   639   void movss(Address dst, XMMRegister src);
   641   // Move Scalar Double-Precision Floating-Point Values
   642   void movsd(XMMRegister dst, Address src);
   643   void movsd(XMMRegister dst, XMMRegister src);
   644   void movsd(Address dst, XMMRegister src);
   645   void movlpd(XMMRegister dst, Address src);
   647   // New cpus require use of movaps and movapd to avoid partial register stall
   648   // when moving between registers.
   649   void movaps(XMMRegister dst, XMMRegister src);
   650   void movapd(XMMRegister dst, XMMRegister src);
   652   // End avoid using directly
   655   // Instruction prefixes
   656   void prefix(Prefix p);
   658   public:
   660   // Creation
   661   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   663   // Decoding
   664   static address locate_operand(address inst, WhichOperand which);
   665   static address locate_next_instruction(address inst);
   667   // Utilities
   669 #ifdef _LP64
   670  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
   671  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
   672 #else
   673  static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
   674  static bool is_simm32(int32_t x) { return true; }
   675 #endif // LP64
   677   // Generic instructions
   678   // Does 32bit or 64bit as needed for the platform. In some sense these
   679   // belong in macro assembler but there is no need for both varieties to exist
   681   void lea(Register dst, Address src);
   683   void mov(Register dst, Register src);
   685   void pusha();
   686   void popa();
   688   void pushf();
   689   void popf();
   691   void push(int32_t imm32);
   693   void push(Register src);
   695   void pop(Register dst);
   697   // These are dummies to prevent surprise implicit conversions to Register
   698   void push(void* v);
   699   void pop(void* v);
   702   // These do register sized moves/scans
   703   void rep_mov();
   704   void rep_set();
   705   void repne_scan();
   706 #ifdef _LP64
   707   void repne_scanl();
   708 #endif
   710   // Vanilla instructions in lexical order
   712   void adcl(Register dst, int32_t imm32);
   713   void adcl(Register dst, Address src);
   714   void adcl(Register dst, Register src);
   716   void adcq(Register dst, int32_t imm32);
   717   void adcq(Register dst, Address src);
   718   void adcq(Register dst, Register src);
   721   void addl(Address dst, int32_t imm32);
   722   void addl(Address dst, Register src);
   723   void addl(Register dst, int32_t imm32);
   724   void addl(Register dst, Address src);
   725   void addl(Register dst, Register src);
   727   void addq(Address dst, int32_t imm32);
   728   void addq(Address dst, Register src);
   729   void addq(Register dst, int32_t imm32);
   730   void addq(Register dst, Address src);
   731   void addq(Register dst, Register src);
   734   void addr_nop_4();
   735   void addr_nop_5();
   736   void addr_nop_7();
   737   void addr_nop_8();
   739   // Add Scalar Double-Precision Floating-Point Values
   740   void addsd(XMMRegister dst, Address src);
   741   void addsd(XMMRegister dst, XMMRegister src);
   743   // Add Scalar Single-Precision Floating-Point Values
   744   void addss(XMMRegister dst, Address src);
   745   void addss(XMMRegister dst, XMMRegister src);
   747   void andl(Register dst, int32_t imm32);
   748   void andl(Register dst, Address src);
   749   void andl(Register dst, Register src);
   751   void andq(Register dst, int32_t imm32);
   752   void andq(Register dst, Address src);
   753   void andq(Register dst, Register src);
   756   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
   757   void andpd(XMMRegister dst, Address src);
   758   void andpd(XMMRegister dst, XMMRegister src);
   760   void bsfl(Register dst, Register src);
   761   void bsrl(Register dst, Register src);
   763 #ifdef _LP64
   764   void bsfq(Register dst, Register src);
   765   void bsrq(Register dst, Register src);
   766 #endif
   768   void bswapl(Register reg);
   770   void bswapq(Register reg);
   772   void call(Label& L, relocInfo::relocType rtype);
   773   void call(Register reg);  // push pc; pc <- reg
   774   void call(Address adr);   // push pc; pc <- adr
   776   void cdql();
   778   void cdqq();
   780   void cld() { emit_byte(0xfc); }
   782   void clflush(Address adr);
   784   void cmovl(Condition cc, Register dst, Register src);
   785   void cmovl(Condition cc, Register dst, Address src);
   787   void cmovq(Condition cc, Register dst, Register src);
   788   void cmovq(Condition cc, Register dst, Address src);
   791   void cmpb(Address dst, int imm8);
   793   void cmpl(Address dst, int32_t imm32);
   795   void cmpl(Register dst, int32_t imm32);
   796   void cmpl(Register dst, Register src);
   797   void cmpl(Register dst, Address src);
   799   void cmpq(Address dst, int32_t imm32);
   800   void cmpq(Address dst, Register src);
   802   void cmpq(Register dst, int32_t imm32);
   803   void cmpq(Register dst, Register src);
   804   void cmpq(Register dst, Address src);
   806   // these are dummies used to catch attempting to convert NULL to Register
   807   void cmpl(Register dst, void* junk); // dummy
   808   void cmpq(Register dst, void* junk); // dummy
   810   void cmpw(Address dst, int imm16);
   812   void cmpxchg8 (Address adr);
   814   void cmpxchgl(Register reg, Address adr);
   816   void cmpxchgq(Register reg, Address adr);
   818   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   819   void comisd(XMMRegister dst, Address src);
   821   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   822   void comiss(XMMRegister dst, Address src);
   824   // Identify processor type and features
   825   void cpuid() {
   826     emit_byte(0x0F);
   827     emit_byte(0xA2);
   828   }
   830   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   831   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   833   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   834   void cvtsi2sdl(XMMRegister dst, Register src);
   835   void cvtsi2sdq(XMMRegister dst, Register src);
   837   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   838   void cvtsi2ssl(XMMRegister dst, Register src);
   839   void cvtsi2ssq(XMMRegister dst, Register src);
   841   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   842   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   844   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   845   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   847   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   848   void cvtss2sd(XMMRegister dst, XMMRegister src);
   850   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   851   void cvttsd2sil(Register dst, Address src);
   852   void cvttsd2sil(Register dst, XMMRegister src);
   853   void cvttsd2siq(Register dst, XMMRegister src);
   855   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
   856   void cvttss2sil(Register dst, XMMRegister src);
   857   void cvttss2siq(Register dst, XMMRegister src);
   859   // Divide Scalar Double-Precision Floating-Point Values
   860   void divsd(XMMRegister dst, Address src);
   861   void divsd(XMMRegister dst, XMMRegister src);
   863   // Divide Scalar Single-Precision Floating-Point Values
   864   void divss(XMMRegister dst, Address src);
   865   void divss(XMMRegister dst, XMMRegister src);
   867   void emms();
   869   void fabs();
   871   void fadd(int i);
   873   void fadd_d(Address src);
   874   void fadd_s(Address src);
   876   // "Alternate" versions of x87 instructions place result down in FPU
   877   // stack instead of on TOS
   879   void fadda(int i); // "alternate" fadd
   880   void faddp(int i = 1);
   882   void fchs();
   884   void fcom(int i);
   886   void fcomp(int i = 1);
   887   void fcomp_d(Address src);
   888   void fcomp_s(Address src);
   890   void fcompp();
   892   void fcos();
   894   void fdecstp();
   896   void fdiv(int i);
   897   void fdiv_d(Address src);
   898   void fdivr_s(Address src);
   899   void fdiva(int i);  // "alternate" fdiv
   900   void fdivp(int i = 1);
   902   void fdivr(int i);
   903   void fdivr_d(Address src);
   904   void fdiv_s(Address src);
   906   void fdivra(int i); // "alternate" reversed fdiv
   908   void fdivrp(int i = 1);
   910   void ffree(int i = 0);
   912   void fild_d(Address adr);
   913   void fild_s(Address adr);
   915   void fincstp();
   917   void finit();
   919   void fist_s (Address adr);
   920   void fistp_d(Address adr);
   921   void fistp_s(Address adr);
   923   void fld1();
   925   void fld_d(Address adr);
   926   void fld_s(Address adr);
   927   void fld_s(int index);
   928   void fld_x(Address adr);  // extended-precision (80-bit) format
   930   void fldcw(Address src);
   932   void fldenv(Address src);
   934   void fldlg2();
   936   void fldln2();
   938   void fldz();
   940   void flog();
   941   void flog10();
   943   void fmul(int i);
   945   void fmul_d(Address src);
   946   void fmul_s(Address src);
   948   void fmula(int i);  // "alternate" fmul
   950   void fmulp(int i = 1);
   952   void fnsave(Address dst);
   954   void fnstcw(Address src);
   956   void fnstsw_ax();
   958   void fprem();
   959   void fprem1();
   961   void frstor(Address src);
   963   void fsin();
   965   void fsqrt();
   967   void fst_d(Address adr);
   968   void fst_s(Address adr);
   970   void fstp_d(Address adr);
   971   void fstp_d(int index);
   972   void fstp_s(Address adr);
   973   void fstp_x(Address adr); // extended-precision (80-bit) format
   975   void fsub(int i);
   976   void fsub_d(Address src);
   977   void fsub_s(Address src);
   979   void fsuba(int i);  // "alternate" fsub
   981   void fsubp(int i = 1);
   983   void fsubr(int i);
   984   void fsubr_d(Address src);
   985   void fsubr_s(Address src);
   987   void fsubra(int i); // "alternate" reversed fsub
   989   void fsubrp(int i = 1);
   991   void ftan();
   993   void ftst();
   995   void fucomi(int i = 1);
   996   void fucomip(int i = 1);
   998   void fwait();
  1000   void fxch(int i = 1);
  1002   void fxrstor(Address src);
  1004   void fxsave(Address dst);
  1006   void fyl2x();
  1008   void hlt();
  1010   void idivl(Register src);
  1012   void idivq(Register src);
  1014   void imull(Register dst, Register src);
  1015   void imull(Register dst, Register src, int value);
  1017   void imulq(Register dst, Register src);
  1018   void imulq(Register dst, Register src, int value);
  1021   // jcc is the generic conditional branch generator to run-
  1022   // time routines, jcc is used for branches to labels. jcc
  1023   // takes a branch opcode (cc) and a label (L) and generates
  1024   // either a backward branch or a forward branch and links it
  1025   // to the label fixup chain. Usage:
  1026   //
  1027   // Label L;      // unbound label
  1028   // jcc(cc, L);   // forward branch to unbound label
  1029   // bind(L);      // bind label to the current pc
  1030   // jcc(cc, L);   // backward branch to bound label
  1031   // bind(L);      // illegal: a label may be bound only once
  1032   //
  1033   // Note: The same Label can be used for forward and backward branches
  1034   // but it may be bound only once.
  1036   void jcc(Condition cc, Label& L,
  1037            relocInfo::relocType rtype = relocInfo::none);
  1039   // Conditional jump to a 8-bit offset to L.
  1040   // WARNING: be very careful using this for forward jumps.  If the label is
  1041   // not bound within an 8-bit offset of this instruction, a run-time error
  1042   // will occur.
  1043   void jccb(Condition cc, Label& L);
  1045   void jmp(Address entry);    // pc <- entry
  1047   // Label operations & relative jumps (PPUM Appendix D)
  1048   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
  1050   void jmp(Register entry); // pc <- entry
  1052   // Unconditional 8-bit offset jump to L.
  1053   // WARNING: be very careful using this for forward jumps.  If the label is
  1054   // not bound within an 8-bit offset of this instruction, a run-time error
  1055   // will occur.
  1056   void jmpb(Label& L);
  1058   void ldmxcsr( Address src );
  1060   void leal(Register dst, Address src);
  1062   void leaq(Register dst, Address src);
  1064   void lfence() {
  1065     emit_byte(0x0F);
  1066     emit_byte(0xAE);
  1067     emit_byte(0xE8);
  1070   void lock();
  1072   void lzcntl(Register dst, Register src);
  1074 #ifdef _LP64
  1075   void lzcntq(Register dst, Register src);
  1076 #endif
  1078   enum Membar_mask_bits {
  1079     StoreStore = 1 << 3,
  1080     LoadStore  = 1 << 2,
  1081     StoreLoad  = 1 << 1,
  1082     LoadLoad   = 1 << 0
  1083   };
  1085   // Serializes memory and blows flags
  1086   void membar(Membar_mask_bits order_constraint) {
  1087     if (os::is_MP()) {
  1088       // We only have to handle StoreLoad
  1089       if (order_constraint & StoreLoad) {
  1090         // All usable chips support "locked" instructions which suffice
  1091         // as barriers, and are much faster than the alternative of
  1092         // using cpuid instruction. We use here a locked add [esp],0.
  1093         // This is conveniently otherwise a no-op except for blowing
  1094         // flags.
  1095         // Any change to this code may need to revisit other places in
  1096         // the code where this idiom is used, in particular the
  1097         // orderAccess code.
  1098         lock();
  1099         addl(Address(rsp, 0), 0);// Assert the lock# signal here
  1104   void mfence();
  1106   // Moves
  1108   void mov64(Register dst, int64_t imm64);
  1110   void movb(Address dst, Register src);
  1111   void movb(Address dst, int imm8);
  1112   void movb(Register dst, Address src);
  1114   void movdl(XMMRegister dst, Register src);
  1115   void movdl(Register dst, XMMRegister src);
  1117   // Move Double Quadword
  1118   void movdq(XMMRegister dst, Register src);
  1119   void movdq(Register dst, XMMRegister src);
  1121   // Move Aligned Double Quadword
  1122   void movdqa(Address     dst, XMMRegister src);
  1123   void movdqa(XMMRegister dst, Address src);
  1124   void movdqa(XMMRegister dst, XMMRegister src);
  1126   // Move Unaligned Double Quadword
  1127   void movdqu(Address     dst, XMMRegister src);
  1128   void movdqu(XMMRegister dst, Address src);
  1129   void movdqu(XMMRegister dst, XMMRegister src);
  1131   void movl(Register dst, int32_t imm32);
  1132   void movl(Address dst, int32_t imm32);
  1133   void movl(Register dst, Register src);
  1134   void movl(Register dst, Address src);
  1135   void movl(Address dst, Register src);
  1137   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1138   // by giving the compiler two choices it can't resolve
  1140   void movl(Address  dst, void* junk);
  1141   void movl(Register dst, void* junk);
  1143 #ifdef _LP64
  1144   void movq(Register dst, Register src);
  1145   void movq(Register dst, Address src);
  1146   void movq(Address dst, Register src);
  1147 #endif
  1149   void movq(Address     dst, MMXRegister src );
  1150   void movq(MMXRegister dst, Address src );
  1152 #ifdef _LP64
  1153   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1154   // by giving the compiler two choices it can't resolve
  1156   void movq(Address  dst, void* dummy);
  1157   void movq(Register dst, void* dummy);
  1158 #endif
  1160   // Move Quadword
  1161   void movq(Address     dst, XMMRegister src);
  1162   void movq(XMMRegister dst, Address src);
  1164   void movsbl(Register dst, Address src);
  1165   void movsbl(Register dst, Register src);
  1167 #ifdef _LP64
  1168   void movsbq(Register dst, Address src);
  1169   void movsbq(Register dst, Register src);
  1171   // Move signed 32bit immediate to 64bit extending sign
  1172   void movslq(Address dst, int32_t imm64);
  1173   void movslq(Register dst, int32_t imm64);
  1175   void movslq(Register dst, Address src);
  1176   void movslq(Register dst, Register src);
  1177   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1178 #endif
  1180   void movswl(Register dst, Address src);
  1181   void movswl(Register dst, Register src);
  1183 #ifdef _LP64
  1184   void movswq(Register dst, Address src);
  1185   void movswq(Register dst, Register src);
  1186 #endif
  1188   void movw(Address dst, int imm16);
  1189   void movw(Register dst, Address src);
  1190   void movw(Address dst, Register src);
  1192   void movzbl(Register dst, Address src);
  1193   void movzbl(Register dst, Register src);
  1195 #ifdef _LP64
  1196   void movzbq(Register dst, Address src);
  1197   void movzbq(Register dst, Register src);
  1198 #endif
  1200   void movzwl(Register dst, Address src);
  1201   void movzwl(Register dst, Register src);
  1203 #ifdef _LP64
  1204   void movzwq(Register dst, Address src);
  1205   void movzwq(Register dst, Register src);
  1206 #endif
  1208   void mull(Address src);
  1209   void mull(Register src);
  1211   // Multiply Scalar Double-Precision Floating-Point Values
  1212   void mulsd(XMMRegister dst, Address src);
  1213   void mulsd(XMMRegister dst, XMMRegister src);
  1215   // Multiply Scalar Single-Precision Floating-Point Values
  1216   void mulss(XMMRegister dst, Address src);
  1217   void mulss(XMMRegister dst, XMMRegister src);
  1219   void negl(Register dst);
  1221 #ifdef _LP64
  1222   void negq(Register dst);
  1223 #endif
  1225   void nop(int i = 1);
  1227   void notl(Register dst);
  1229 #ifdef _LP64
  1230   void notq(Register dst);
  1231 #endif
  1233   void orl(Address dst, int32_t imm32);
  1234   void orl(Register dst, int32_t imm32);
  1235   void orl(Register dst, Address src);
  1236   void orl(Register dst, Register src);
  1238   void orq(Address dst, int32_t imm32);
  1239   void orq(Register dst, int32_t imm32);
  1240   void orq(Register dst, Address src);
  1241   void orq(Register dst, Register src);
  1243   // SSE4.2 string instructions
  1244   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  1245   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
  1247   void popl(Address dst);
  1249 #ifdef _LP64
  1250   void popq(Address dst);
  1251 #endif
  1253   void popcntl(Register dst, Address src);
  1254   void popcntl(Register dst, Register src);
  1256 #ifdef _LP64
  1257   void popcntq(Register dst, Address src);
  1258   void popcntq(Register dst, Register src);
  1259 #endif
  1261   // Prefetches (SSE, SSE2, 3DNOW only)
  1263   void prefetchnta(Address src);
  1264   void prefetchr(Address src);
  1265   void prefetcht0(Address src);
  1266   void prefetcht1(Address src);
  1267   void prefetcht2(Address src);
  1268   void prefetchw(Address src);
  1270   // Shuffle Packed Doublewords
  1271   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1272   void pshufd(XMMRegister dst, Address src,     int mode);
  1274   // Shuffle Packed Low Words
  1275   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1276   void pshuflw(XMMRegister dst, Address src,     int mode);
  1278   // Shift Right Logical Quadword Immediate
  1279   void psrlq(XMMRegister dst, int shift);
  1281   // Logical Compare Double Quadword
  1282   void ptest(XMMRegister dst, XMMRegister src);
  1283   void ptest(XMMRegister dst, Address src);
  1285   // Interleave Low Bytes
  1286   void punpcklbw(XMMRegister dst, XMMRegister src);
  1288   void pushl(Address src);
  1290   void pushq(Address src);
  1292   // Xor Packed Byte Integer Values
  1293   void pxor(XMMRegister dst, Address src);
  1294   void pxor(XMMRegister dst, XMMRegister src);
  1296   void rcll(Register dst, int imm8);
  1298   void rclq(Register dst, int imm8);
  1300   void ret(int imm16);
  1302   void sahf();
  1304   void sarl(Register dst, int imm8);
  1305   void sarl(Register dst);
  1307   void sarq(Register dst, int imm8);
  1308   void sarq(Register dst);
  1310   void sbbl(Address dst, int32_t imm32);
  1311   void sbbl(Register dst, int32_t imm32);
  1312   void sbbl(Register dst, Address src);
  1313   void sbbl(Register dst, Register src);
  1315   void sbbq(Address dst, int32_t imm32);
  1316   void sbbq(Register dst, int32_t imm32);
  1317   void sbbq(Register dst, Address src);
  1318   void sbbq(Register dst, Register src);
  1320   void setb(Condition cc, Register dst);
  1322   void shldl(Register dst, Register src);
  1324   void shll(Register dst, int imm8);
  1325   void shll(Register dst);
  1327   void shlq(Register dst, int imm8);
  1328   void shlq(Register dst);
  1330   void shrdl(Register dst, Register src);
  1332   void shrl(Register dst, int imm8);
  1333   void shrl(Register dst);
  1335   void shrq(Register dst, int imm8);
  1336   void shrq(Register dst);
  1338   void smovl(); // QQQ generic?
  1340   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1341   void sqrtsd(XMMRegister dst, Address src);
  1342   void sqrtsd(XMMRegister dst, XMMRegister src);
  1344   void std() { emit_byte(0xfd); }
  1346   void stmxcsr( Address dst );
  1348   void subl(Address dst, int32_t imm32);
  1349   void subl(Address dst, Register src);
  1350   void subl(Register dst, int32_t imm32);
  1351   void subl(Register dst, Address src);
  1352   void subl(Register dst, Register src);
  1354   void subq(Address dst, int32_t imm32);
  1355   void subq(Address dst, Register src);
  1356   void subq(Register dst, int32_t imm32);
  1357   void subq(Register dst, Address src);
  1358   void subq(Register dst, Register src);
  1361   // Subtract Scalar Double-Precision Floating-Point Values
  1362   void subsd(XMMRegister dst, Address src);
  1363   void subsd(XMMRegister dst, XMMRegister src);
  1365   // Subtract Scalar Single-Precision Floating-Point Values
  1366   void subss(XMMRegister dst, Address src);
  1367   void subss(XMMRegister dst, XMMRegister src);
  1369   void testb(Register dst, int imm8);
  1371   void testl(Register dst, int32_t imm32);
  1372   void testl(Register dst, Register src);
  1373   void testl(Register dst, Address src);
  1375   void testq(Register dst, int32_t imm32);
  1376   void testq(Register dst, Register src);
  1379   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1380   void ucomisd(XMMRegister dst, Address src);
  1381   void ucomisd(XMMRegister dst, XMMRegister src);
  1383   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1384   void ucomiss(XMMRegister dst, Address src);
  1385   void ucomiss(XMMRegister dst, XMMRegister src);
  1387   void xaddl(Address dst, Register src);
  1389   void xaddq(Address dst, Register src);
  1391   void xchgl(Register reg, Address adr);
  1392   void xchgl(Register dst, Register src);
  1394   void xchgq(Register reg, Address adr);
  1395   void xchgq(Register dst, Register src);
  1397   void xorl(Register dst, int32_t imm32);
  1398   void xorl(Register dst, Address src);
  1399   void xorl(Register dst, Register src);
  1401   void xorq(Register dst, Address src);
  1402   void xorq(Register dst, Register src);
  1404   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1405   void xorpd(XMMRegister dst, Address src);
  1406   void xorpd(XMMRegister dst, XMMRegister src);
  1408   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1409   void xorps(XMMRegister dst, Address src);
  1410   void xorps(XMMRegister dst, XMMRegister src);
  1412   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1413 };
  1416 // MacroAssembler extends Assembler by frequently used macros.
  1417 //
  1418 // Instructions for which a 'better' code sequence exists depending
  1419 // on arguments should also go in here.
  1421 class MacroAssembler: public Assembler {
  1422   friend class LIR_Assembler;
  1423   friend class Runtime1;      // as_Address()
  1424  protected:
  1426   Address as_Address(AddressLiteral adr);
  1427   Address as_Address(ArrayAddress adr);
  1429   // Support for VM calls
  1430   //
  1431   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1432   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1433   // additional registers when doing a VM call).
  1434 #ifdef CC_INTERP
  1435   // c++ interpreter never wants to use interp_masm version of call_VM
  1436   #define VIRTUAL
  1437 #else
  1438   #define VIRTUAL virtual
  1439 #endif
  1441   VIRTUAL void call_VM_leaf_base(
  1442     address entry_point,               // the entry point
  1443     int     number_of_arguments        // the number of arguments to pop after the call
  1444   );
  1446   // This is the base routine called by the different versions of call_VM. The interpreter
  1447   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1448   // additional registers when doing a VM call).
  1449   //
  1450   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1451   // returns the register which contains the thread upon return. If a thread register has been
  1452   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1453   // (noreg) than rsp will be used instead.
  1454   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1455     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1456     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1457     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1458     address  entry_point,              // the entry point
  1459     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1460     bool     check_exceptions          // whether to check for pending exceptions after return
  1461   );
  1463   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1464   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1465   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1466   virtual void check_and_handle_popframe(Register java_thread);
  1467   virtual void check_and_handle_earlyret(Register java_thread);
  1469   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1471   // helpers for FPU flag access
  1472   // tmp is a temporary register, if none is available use noreg
  1473   void save_rax   (Register tmp);
  1474   void restore_rax(Register tmp);
  1476  public:
  1477   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1479   // Support for NULL-checks
  1480   //
  1481   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1482   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1483   // offset. No explicit code generation is needed if the offset is within a certain
  1484   // range (0 <= offset <= page_size).
  1486   void null_check(Register reg, int offset = -1);
  1487   static bool needs_explicit_null_check(intptr_t offset);
  1489   // Required platform-specific helpers for Label::patch_instructions.
  1490   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1491   void pd_patch_instruction(address branch, address target);
  1492 #ifndef PRODUCT
  1493   static void pd_print_patched_instruction(address branch);
  1494 #endif
  1496   // The following 4 methods return the offset of the appropriate move instruction
  1498   // Support for fast byte/short loading with zero extension (depending on particular CPU)
  1499   int load_unsigned_byte(Register dst, Address src);
  1500   int load_unsigned_short(Register dst, Address src);
  1502   // Support for fast byte/short loading with sign extension (depending on particular CPU)
  1503   int load_signed_byte(Register dst, Address src);
  1504   int load_signed_short(Register dst, Address src);
  1506   // Support for sign-extension (hi:lo = extend_sign(lo))
  1507   void extend_sign(Register hi, Register lo);
  1509   // Loading values by size and signed-ness
  1510   void load_sized_value(Register dst, Address src, int size_in_bytes, bool is_signed);
  1512   // Support for inc/dec with optimal instruction selection depending on value
  1514   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1515   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1517   void decrementl(Address dst, int value = 1);
  1518   void decrementl(Register reg, int value = 1);
  1520   void decrementq(Register reg, int value = 1);
  1521   void decrementq(Address dst, int value = 1);
  1523   void incrementl(Address dst, int value = 1);
  1524   void incrementl(Register reg, int value = 1);
  1526   void incrementq(Register reg, int value = 1);
  1527   void incrementq(Address dst, int value = 1);
  1530   // Support optimal SSE move instructions.
  1531   void movflt(XMMRegister dst, XMMRegister src) {
  1532     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1533     else                       { movss (dst, src); return; }
  1535   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1536   void movflt(XMMRegister dst, AddressLiteral src);
  1537   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1539   void movdbl(XMMRegister dst, XMMRegister src) {
  1540     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1541     else                       { movsd (dst, src); return; }
  1544   void movdbl(XMMRegister dst, AddressLiteral src);
  1546   void movdbl(XMMRegister dst, Address src) {
  1547     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1548     else                         { movlpd(dst, src); return; }
  1550   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1552   void incrementl(AddressLiteral dst);
  1553   void incrementl(ArrayAddress dst);
  1555   // Alignment
  1556   void align(int modulus);
  1558   // Misc
  1559   void fat_nop(); // 5 byte nop
  1561   // Stack frame creation/removal
  1562   void enter();
  1563   void leave();
  1565   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1566   // The pointer will be loaded into the thread register.
  1567   void get_thread(Register thread);
  1570   // Support for VM calls
  1571   //
  1572   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1573   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1574   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1577   void call_VM(Register oop_result,
  1578                address entry_point,
  1579                bool check_exceptions = true);
  1580   void call_VM(Register oop_result,
  1581                address entry_point,
  1582                Register arg_1,
  1583                bool check_exceptions = true);
  1584   void call_VM(Register oop_result,
  1585                address entry_point,
  1586                Register arg_1, Register arg_2,
  1587                bool check_exceptions = true);
  1588   void call_VM(Register oop_result,
  1589                address entry_point,
  1590                Register arg_1, Register arg_2, Register arg_3,
  1591                bool check_exceptions = true);
  1593   // Overloadings with last_Java_sp
  1594   void call_VM(Register oop_result,
  1595                Register last_java_sp,
  1596                address entry_point,
  1597                int number_of_arguments = 0,
  1598                bool check_exceptions = true);
  1599   void call_VM(Register oop_result,
  1600                Register last_java_sp,
  1601                address entry_point,
  1602                Register arg_1, bool
  1603                check_exceptions = true);
  1604   void call_VM(Register oop_result,
  1605                Register last_java_sp,
  1606                address entry_point,
  1607                Register arg_1, Register arg_2,
  1608                bool check_exceptions = true);
  1609   void call_VM(Register oop_result,
  1610                Register last_java_sp,
  1611                address entry_point,
  1612                Register arg_1, Register arg_2, Register arg_3,
  1613                bool check_exceptions = true);
  1615   void call_VM_leaf(address entry_point,
  1616                     int number_of_arguments = 0);
  1617   void call_VM_leaf(address entry_point,
  1618                     Register arg_1);
  1619   void call_VM_leaf(address entry_point,
  1620                     Register arg_1, Register arg_2);
  1621   void call_VM_leaf(address entry_point,
  1622                     Register arg_1, Register arg_2, Register arg_3);
  1624   // last Java Frame (fills frame anchor)
  1625   void set_last_Java_frame(Register thread,
  1626                            Register last_java_sp,
  1627                            Register last_java_fp,
  1628                            address last_java_pc);
  1630   // thread in the default location (r15_thread on 64bit)
  1631   void set_last_Java_frame(Register last_java_sp,
  1632                            Register last_java_fp,
  1633                            address last_java_pc);
  1635   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  1637   // thread in the default location (r15_thread on 64bit)
  1638   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1640   // Stores
  1641   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  1642   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  1644   void g1_write_barrier_pre(Register obj,
  1645 #ifndef _LP64
  1646                             Register thread,
  1647 #endif
  1648                             Register tmp,
  1649                             Register tmp2,
  1650                             bool     tosca_live);
  1651   void g1_write_barrier_post(Register store_addr,
  1652                              Register new_val,
  1653 #ifndef _LP64
  1654                              Register thread,
  1655 #endif
  1656                              Register tmp,
  1657                              Register tmp2);
  1660   // split store_check(Register obj) to enhance instruction interleaving
  1661   void store_check_part_1(Register obj);
  1662   void store_check_part_2(Register obj);
  1664   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1665   void c2bool(Register x);
  1667   // C++ bool manipulation
  1669   void movbool(Register dst, Address src);
  1670   void movbool(Address dst, bool boolconst);
  1671   void movbool(Address dst, Register src);
  1672   void testbool(Register dst);
  1674   // oop manipulations
  1675   void load_klass(Register dst, Register src);
  1676   void store_klass(Register dst, Register src);
  1678   void load_prototype_header(Register dst, Register src);
  1680 #ifdef _LP64
  1681   void store_klass_gap(Register dst, Register src);
  1683   void load_heap_oop(Register dst, Address src);
  1684   void store_heap_oop(Address dst, Register src);
  1685   void encode_heap_oop(Register r);
  1686   void decode_heap_oop(Register r);
  1687   void encode_heap_oop_not_null(Register r);
  1688   void decode_heap_oop_not_null(Register r);
  1689   void encode_heap_oop_not_null(Register dst, Register src);
  1690   void decode_heap_oop_not_null(Register dst, Register src);
  1692   void set_narrow_oop(Register dst, jobject obj);
  1693   void set_narrow_oop(Address dst, jobject obj);
  1694   void cmp_narrow_oop(Register dst, jobject obj);
  1695   void cmp_narrow_oop(Address dst, jobject obj);
  1697   // if heap base register is used - reinit it with the correct value
  1698   void reinit_heapbase();
  1699 #endif // _LP64
  1701   // Int division/remainder for Java
  1702   // (as idivl, but checks for special case as described in JVM spec.)
  1703   // returns idivl instruction offset for implicit exception handling
  1704   int corrected_idivl(Register reg);
  1706   // Long division/remainder for Java
  1707   // (as idivq, but checks for special case as described in JVM spec.)
  1708   // returns idivq instruction offset for implicit exception handling
  1709   int corrected_idivq(Register reg);
  1711   void int3();
  1713   // Long operation macros for a 32bit cpu
  1714   // Long negation for Java
  1715   void lneg(Register hi, Register lo);
  1717   // Long multiplication for Java
  1718   // (destroys contents of eax, ebx, ecx and edx)
  1719   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  1721   // Long shifts for Java
  1722   // (semantics as described in JVM spec.)
  1723   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  1724   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  1726   // Long compare for Java
  1727   // (semantics as described in JVM spec.)
  1728   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  1731   // misc
  1733   // Sign extension
  1734   void sign_extend_short(Register reg);
  1735   void sign_extend_byte(Register reg);
  1737   // Division by power of 2, rounding towards 0
  1738   void division_with_shift(Register reg, int shift_value);
  1740   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  1741   //
  1742   // CF (corresponds to C0) if x < y
  1743   // PF (corresponds to C2) if unordered
  1744   // ZF (corresponds to C3) if x = y
  1745   //
  1746   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1747   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  1748   void fcmp(Register tmp);
  1749   // Variant of the above which allows y to be further down the stack
  1750   // and which only pops x and y if specified. If pop_right is
  1751   // specified then pop_left must also be specified.
  1752   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  1754   // Floating-point comparison for Java
  1755   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  1756   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1757   // (semantics as described in JVM spec.)
  1758   void fcmp2int(Register dst, bool unordered_is_less);
  1759   // Variant of the above which allows y to be further down the stack
  1760   // and which only pops x and y if specified. If pop_right is
  1761   // specified then pop_left must also be specified.
  1762   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  1764   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  1765   // tmp is a temporary register, if none is available use noreg
  1766   void fremr(Register tmp);
  1769   // same as fcmp2int, but using SSE2
  1770   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1771   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1773   // Inlined sin/cos generator for Java; must not use CPU instruction
  1774   // directly on Intel as it does not have high enough precision
  1775   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  1776   // number of FPU stack slots in use; all but the topmost will
  1777   // require saving if a slow case is necessary. Assumes argument is
  1778   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  1779   // this code.
  1780   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  1782   // branch to L if FPU flag C2 is set/not set
  1783   // tmp is a temporary register, if none is available use noreg
  1784   void jC2 (Register tmp, Label& L);
  1785   void jnC2(Register tmp, Label& L);
  1787   // Pop ST (ffree & fincstp combined)
  1788   void fpop();
  1790   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1791   void push_fTOS();
  1793   // pops double TOS element from CPU stack and pushes on FPU stack
  1794   void pop_fTOS();
  1796   void empty_FPU_stack();
  1798   void push_IU_state();
  1799   void pop_IU_state();
  1801   void push_FPU_state();
  1802   void pop_FPU_state();
  1804   void push_CPU_state();
  1805   void pop_CPU_state();
  1807   // Round up to a power of two
  1808   void round_to(Register reg, int modulus);
  1810   // Callee saved registers handling
  1811   void push_callee_saved_registers();
  1812   void pop_callee_saved_registers();
  1814   // allocation
  1815   void eden_allocate(
  1816     Register obj,                      // result: pointer to object after successful allocation
  1817     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1818     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1819     Register t1,                       // temp register
  1820     Label&   slow_case                 // continuation point if fast allocation fails
  1821   );
  1822   void tlab_allocate(
  1823     Register obj,                      // result: pointer to object after successful allocation
  1824     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1825     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1826     Register t1,                       // temp register
  1827     Register t2,                       // temp register
  1828     Label&   slow_case                 // continuation point if fast allocation fails
  1829   );
  1830   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1832   // interface method calling
  1833   void lookup_interface_method(Register recv_klass,
  1834                                Register intf_klass,
  1835                                RegisterOrConstant itable_index,
  1836                                Register method_result,
  1837                                Register scan_temp,
  1838                                Label& no_such_interface);
  1840   // Test sub_klass against super_klass, with fast and slow paths.
  1842   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  1843   // One of the three labels can be NULL, meaning take the fall-through.
  1844   // If super_check_offset is -1, the value is loaded up from super_klass.
  1845   // No registers are killed, except temp_reg.
  1846   void check_klass_subtype_fast_path(Register sub_klass,
  1847                                      Register super_klass,
  1848                                      Register temp_reg,
  1849                                      Label* L_success,
  1850                                      Label* L_failure,
  1851                                      Label* L_slow_path,
  1852                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  1854   // The rest of the type check; must be wired to a corresponding fast path.
  1855   // It does not repeat the fast path logic, so don't use it standalone.
  1856   // The temp_reg and temp2_reg can be noreg, if no temps are available.
  1857   // Updates the sub's secondary super cache as necessary.
  1858   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  1859   void check_klass_subtype_slow_path(Register sub_klass,
  1860                                      Register super_klass,
  1861                                      Register temp_reg,
  1862                                      Register temp2_reg,
  1863                                      Label* L_success,
  1864                                      Label* L_failure,
  1865                                      bool set_cond_codes = false);
  1867   // Simplified, combined version, good for typical uses.
  1868   // Falls through on failure.
  1869   void check_klass_subtype(Register sub_klass,
  1870                            Register super_klass,
  1871                            Register temp_reg,
  1872                            Label& L_success);
  1874   // method handles (JSR 292)
  1875   void check_method_handle_type(Register mtype_reg, Register mh_reg,
  1876                                 Register temp_reg,
  1877                                 Label& wrong_method_type);
  1878   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  1879                                   Register temp_reg);
  1880   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
  1881   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
  1884   //----
  1885   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  1887   // Debugging
  1889   // only if +VerifyOops
  1890   void verify_oop(Register reg, const char* s = "broken oop");
  1891   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  1893   // only if +VerifyFPU
  1894   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1896   // prints msg, dumps registers and stops execution
  1897   void stop(const char* msg);
  1899   // prints msg and continues
  1900   void warn(const char* msg);
  1902   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  1903   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  1905   void os_breakpoint();
  1907   void untested()                                { stop("untested"); }
  1909   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
  1911   void should_not_reach_here()                   { stop("should not reach here"); }
  1913   void print_CPU_state();
  1915   // Stack overflow checking
  1916   void bang_stack_with_offset(int offset) {
  1917     // stack grows down, caller passes positive offset
  1918     assert(offset > 0, "must bang with negative offset");
  1919     movl(Address(rsp, (-offset)), rax);
  1922   // Writes to stack successive pages until offset reached to check for
  1923   // stack overflow + shadow pages.  Also, clobbers tmp
  1924   void bang_stack_size(Register size, Register tmp);
  1926   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
  1927                                                 Register tmp,
  1928                                                 int offset);
  1930   // Support for serializing memory accesses between threads
  1931   void serialize_memory(Register thread, Register tmp);
  1933   void verify_tlab();
  1935   // Biased locking support
  1936   // lock_reg and obj_reg must be loaded up with the appropriate values.
  1937   // swap_reg must be rax, and is killed.
  1938   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  1939   // be killed; if not supplied, push/pop will be used internally to
  1940   // allocate a temporary (inefficient, avoid if possible).
  1941   // Optional slow case is for implementations (interpreter and C1) which branch to
  1942   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  1943   // Returns offset of first potentially-faulting instruction for null
  1944   // check info (currently consumed only by C1). If
  1945   // swap_reg_contains_mark is true then returns -1 as it is assumed
  1946   // the calling code has already passed any potential faults.
  1947   int biased_locking_enter(Register lock_reg, Register obj_reg,
  1948                            Register swap_reg, Register tmp_reg,
  1949                            bool swap_reg_contains_mark,
  1950                            Label& done, Label* slow_case = NULL,
  1951                            BiasedLockingCounters* counters = NULL);
  1952   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  1955   Condition negate_condition(Condition cond);
  1957   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  1958   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  1959   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  1960   // here in MacroAssembler. The major exception to this rule is call
  1962   // Arithmetics
  1965   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  1966   void addptr(Address dst, Register src);
  1968   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  1969   void addptr(Register dst, int32_t src);
  1970   void addptr(Register dst, Register src);
  1972   void andptr(Register dst, int32_t src);
  1973   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  1975   void cmp8(AddressLiteral src1, int imm);
  1977   // renamed to drag out the casting of address to int32_t/intptr_t
  1978   void cmp32(Register src1, int32_t imm);
  1980   void cmp32(AddressLiteral src1, int32_t imm);
  1981   // compare reg - mem, or reg - &mem
  1982   void cmp32(Register src1, AddressLiteral src2);
  1984   void cmp32(Register src1, Address src2);
  1986 #ifndef _LP64
  1987   void cmpoop(Address dst, jobject obj);
  1988   void cmpoop(Register dst, jobject obj);
  1989 #endif // _LP64
  1991   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  1992   void cmpptr(Address src1, AddressLiteral src2);
  1994   void cmpptr(Register src1, AddressLiteral src2);
  1996   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1997   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1998   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2000   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2001   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2003   // cmp64 to avoild hiding cmpq
  2004   void cmp64(Register src1, AddressLiteral src);
  2006   void cmpxchgptr(Register reg, Address adr);
  2008   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  2011   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  2014   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  2016   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  2018   void shlptr(Register dst, int32_t shift);
  2019   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  2021   void shrptr(Register dst, int32_t shift);
  2022   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  2024   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  2025   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  2027   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2029   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2030   void subptr(Register dst, int32_t src);
  2031   void subptr(Register dst, Register src);
  2034   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2035   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2037   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2038   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2040   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  2044   // Helper functions for statistics gathering.
  2045   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  2046   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  2047   // Unconditional atomic increment.
  2048   void atomic_incl(AddressLiteral counter_addr);
  2050   void lea(Register dst, AddressLiteral adr);
  2051   void lea(Address dst, AddressLiteral adr);
  2052   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  2054   void leal32(Register dst, Address src) { leal(dst, src); }
  2056   void test32(Register src1, AddressLiteral src2);
  2058   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2059   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2060   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2062   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  2063   void testptr(Register src1, Register src2);
  2065   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2066   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2068   // Calls
  2070   void call(Label& L, relocInfo::relocType rtype);
  2071   void call(Register entry);
  2073   // NOTE: this call tranfers to the effective address of entry NOT
  2074   // the address contained by entry. This is because this is more natural
  2075   // for jumps/calls.
  2076   void call(AddressLiteral entry);
  2078   // Jumps
  2080   // NOTE: these jumps tranfer to the effective address of dst NOT
  2081   // the address contained by dst. This is because this is more natural
  2082   // for jumps/calls.
  2083   void jump(AddressLiteral dst);
  2084   void jump_cc(Condition cc, AddressLiteral dst);
  2086   // 32bit can do a case table jump in one instruction but we no longer allow the base
  2087   // to be installed in the Address class. This jump will tranfers to the address
  2088   // contained in the location described by entry (not the address of entry)
  2089   void jump(ArrayAddress entry);
  2091   // Floating
  2093   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  2094   void andpd(XMMRegister dst, AddressLiteral src);
  2096   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  2097   void comiss(XMMRegister dst, AddressLiteral src);
  2099   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  2100   void comisd(XMMRegister dst, AddressLiteral src);
  2102   void fldcw(Address src) { Assembler::fldcw(src); }
  2103   void fldcw(AddressLiteral src);
  2105   void fld_s(int index)   { Assembler::fld_s(index); }
  2106   void fld_s(Address src) { Assembler::fld_s(src); }
  2107   void fld_s(AddressLiteral src);
  2109   void fld_d(Address src) { Assembler::fld_d(src); }
  2110   void fld_d(AddressLiteral src);
  2112   void fld_x(Address src) { Assembler::fld_x(src); }
  2113   void fld_x(AddressLiteral src);
  2115   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  2116   void ldmxcsr(AddressLiteral src);
  2118 private:
  2119   // these are private because users should be doing movflt/movdbl
  2121   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  2122   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  2123   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  2124   void movss(XMMRegister dst, AddressLiteral src);
  2126   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  2127   void movlpd(XMMRegister dst, AddressLiteral src);
  2129 public:
  2131   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  2132   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  2133   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  2134   void movsd(XMMRegister dst, AddressLiteral src);
  2136   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  2137   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  2138   void ucomiss(XMMRegister dst, AddressLiteral src);
  2140   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  2141   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  2142   void ucomisd(XMMRegister dst, AddressLiteral src);
  2144   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  2145   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  2146   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  2147   void xorpd(XMMRegister dst, AddressLiteral src);
  2149   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  2150   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  2151   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  2152   void xorps(XMMRegister dst, AddressLiteral src);
  2154   // Data
  2156   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2158   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2159   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2161   void movoop(Register dst, jobject obj);
  2162   void movoop(Address dst, jobject obj);
  2164   void movptr(ArrayAddress dst, Register src);
  2165   // can this do an lea?
  2166   void movptr(Register dst, ArrayAddress src);
  2168   void movptr(Register dst, Address src);
  2170   void movptr(Register dst, AddressLiteral src);
  2172   void movptr(Register dst, intptr_t src);
  2173   void movptr(Register dst, Register src);
  2174   void movptr(Address dst, intptr_t src);
  2176   void movptr(Address dst, Register src);
  2178 #ifdef _LP64
  2179   // Generally the next two are only used for moving NULL
  2180   // Although there are situations in initializing the mark word where
  2181   // they could be used. They are dangerous.
  2183   // They only exist on LP64 so that int32_t and intptr_t are not the same
  2184   // and we have ambiguous declarations.
  2186   void movptr(Address dst, int32_t imm32);
  2187   void movptr(Register dst, int32_t imm32);
  2188 #endif // _LP64
  2190   // to avoid hiding movl
  2191   void mov32(AddressLiteral dst, Register src);
  2192   void mov32(Register dst, AddressLiteral src);
  2194   // to avoid hiding movb
  2195   void movbyte(ArrayAddress dst, int src);
  2197   // Can push value or effective address
  2198   void pushptr(AddressLiteral src);
  2200   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2201   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2203   void pushoop(jobject obj);
  2205   // sign extend as need a l to ptr sized element
  2206   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2207   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2209   // IndexOf strings.
  2210   void string_indexof(Register str1, Register str2,
  2211                       Register cnt1, Register cnt2, Register result,
  2212                       XMMRegister vec, Register tmp);
  2214   // Compare strings.
  2215   void string_compare(Register str1, Register str2,
  2216                       Register cnt1, Register cnt2, Register result,
  2217                       XMMRegister vec1, XMMRegister vec2);
  2219   // Compare char[] arrays.
  2220   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  2221                           Register limit, Register result, Register chr,
  2222                           XMMRegister vec1, XMMRegister vec2);
  2224 #undef VIRTUAL
  2226 };
  2228 /**
  2229  * class SkipIfEqual:
  2231  * Instantiating this class will result in assembly code being output that will
  2232  * jump around any code emitted between the creation of the instance and it's
  2233  * automatic destruction at the end of a scope block, depending on the value of
  2234  * the flag passed to the constructor, which will be checked at run-time.
  2235  */
  2236 class SkipIfEqual {
  2237  private:
  2238   MacroAssembler* _masm;
  2239   Label _label;
  2241  public:
  2242    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2243    ~SkipIfEqual();
  2244 };
  2246 #ifdef ASSERT
  2247 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2248 #endif

mercurial