src/cpu/x86/vm/x86_32.ad

Mon, 12 Mar 2012 15:28:07 -0700

author
never
date
Mon, 12 Mar 2012 15:28:07 -0700
changeset 3637
61b82be3b1ff
parent 3577
9b8ce46870df
child 3787
6759698e3140
permissions
-rw-r--r--

7152957: VM crashes with assert(false) failed: bad AD file
Reviewed-by: kvn, never
Contributed-by: nils.eliasson@oracle.com

     1 //
     2 // Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return 2;  // op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 // EMIT_RM()
   345 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   346   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   347   cbuf.insts()->emit_int8(c);
   348 }
   350 // EMIT_CC()
   351 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   352   unsigned char c = (unsigned char)( f1 | f2 );
   353   cbuf.insts()->emit_int8(c);
   354 }
   356 // EMIT_OPCODE()
   357 void emit_opcode(CodeBuffer &cbuf, int code) {
   358   cbuf.insts()->emit_int8((unsigned char) code);
   359 }
   361 // EMIT_OPCODE() w/ relocation information
   362 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   363   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   364   emit_opcode(cbuf, code);
   365 }
   367 // EMIT_D8()
   368 void emit_d8(CodeBuffer &cbuf, int d8) {
   369   cbuf.insts()->emit_int8((unsigned char) d8);
   370 }
   372 // EMIT_D16()
   373 void emit_d16(CodeBuffer &cbuf, int d16) {
   374   cbuf.insts()->emit_int16(d16);
   375 }
   377 // EMIT_D32()
   378 void emit_d32(CodeBuffer &cbuf, int d32) {
   379   cbuf.insts()->emit_int32(d32);
   380 }
   382 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   383 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   384         int format) {
   385   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   386   cbuf.insts()->emit_int32(d32);
   387 }
   389 // emit 32 bit value and construct relocation entry from RelocationHolder
   390 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   391         int format) {
   392 #ifdef ASSERT
   393   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   394     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   395   }
   396 #endif
   397   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   398   cbuf.insts()->emit_int32(d32);
   399 }
   401 // Access stack slot for load or store
   402 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   403   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   404   if( -128 <= disp && disp <= 127 ) {
   405     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   406     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   407     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   408   } else {
   409     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   410     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   411     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   412   }
   413 }
   415    // eRegI ereg, memory mem) %{    // emit_reg_mem
   416 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   417   // There is no index & no scale, use form without SIB byte
   418   if ((index == 0x4) &&
   419       (scale == 0) && (base != ESP_enc)) {
   420     // If no displacement, mode is 0x0; unless base is [EBP]
   421     if ( (displace == 0) && (base != EBP_enc) ) {
   422       emit_rm(cbuf, 0x0, reg_encoding, base);
   423     }
   424     else {                    // If 8-bit displacement, mode 0x1
   425       if ((displace >= -128) && (displace <= 127)
   426           && !(displace_is_oop) ) {
   427         emit_rm(cbuf, 0x1, reg_encoding, base);
   428         emit_d8(cbuf, displace);
   429       }
   430       else {                  // If 32-bit displacement
   431         if (base == -1) { // Special flag for absolute address
   432           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   433           // (manual lies; no SIB needed here)
   434           if ( displace_is_oop ) {
   435             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   436           } else {
   437             emit_d32      (cbuf, displace);
   438           }
   439         }
   440         else {                // Normal base + offset
   441           emit_rm(cbuf, 0x2, reg_encoding, base);
   442           if ( displace_is_oop ) {
   443             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   444           } else {
   445             emit_d32      (cbuf, displace);
   446           }
   447         }
   448       }
   449     }
   450   }
   451   else {                      // Else, encode with the SIB byte
   452     // If no displacement, mode is 0x0; unless base is [EBP]
   453     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   454       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   455       emit_rm(cbuf, scale, index, base);
   456     }
   457     else {                    // If 8-bit displacement, mode 0x1
   458       if ((displace >= -128) && (displace <= 127)
   459           && !(displace_is_oop) ) {
   460         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   461         emit_rm(cbuf, scale, index, base);
   462         emit_d8(cbuf, displace);
   463       }
   464       else {                  // If 32-bit displacement
   465         if (base == 0x04 ) {
   466           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   467           emit_rm(cbuf, scale, index, 0x04);
   468         } else {
   469           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   470           emit_rm(cbuf, scale, index, base);
   471         }
   472         if ( displace_is_oop ) {
   473           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   474         } else {
   475           emit_d32      (cbuf, displace);
   476         }
   477       }
   478     }
   479   }
   480 }
   483 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   484   if( dst_encoding == src_encoding ) {
   485     // reg-reg copy, use an empty encoding
   486   } else {
   487     emit_opcode( cbuf, 0x8B );
   488     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   489   }
   490 }
   492 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   493   Label exit;
   494   __ jccb(Assembler::noParity, exit);
   495   __ pushf();
   496   //
   497   // comiss/ucomiss instructions set ZF,PF,CF flags and
   498   // zero OF,AF,SF for NaN values.
   499   // Fixup flags by zeroing ZF,PF so that compare of NaN
   500   // values returns 'less than' result (CF is set).
   501   // Leave the rest of flags unchanged.
   502   //
   503   //    7 6 5 4 3 2 1 0
   504   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   505   //    0 0 1 0 1 0 1 1   (0x2B)
   506   //
   507   __ andl(Address(rsp, 0), 0xffffff2b);
   508   __ popf();
   509   __ bind(exit);
   510 }
   512 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   513   Label done;
   514   __ movl(dst, -1);
   515   __ jcc(Assembler::parity, done);
   516   __ jcc(Assembler::below, done);
   517   __ setb(Assembler::notEqual, dst);
   518   __ movzbl(dst, dst);
   519   __ bind(done);
   520 }
   523 //=============================================================================
   524 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   526 int Compile::ConstantTable::calculate_table_base_offset() const {
   527   return 0;  // absolute addressing, no offset
   528 }
   530 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   531   // Empty encoding
   532 }
   534 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   535   return 0;
   536 }
   538 #ifndef PRODUCT
   539 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   540   st->print("# MachConstantBaseNode (empty encoding)");
   541 }
   542 #endif
   545 //=============================================================================
   546 #ifndef PRODUCT
   547 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   548   Compile* C = ra_->C;
   550   int framesize = C->frame_slots() << LogBytesPerInt;
   551   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   552   // Remove wordSize for return addr which is already pushed.
   553   framesize -= wordSize;
   555   if (C->need_stack_bang(framesize)) {
   556     framesize -= wordSize;
   557     st->print("# stack bang");
   558     st->print("\n\t");
   559     st->print("PUSH   EBP\t# Save EBP");
   560     if (framesize) {
   561       st->print("\n\t");
   562       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   563     }
   564   } else {
   565     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   566     st->print("\n\t");
   567     framesize -= wordSize;
   568     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   569   }
   571   if (VerifyStackAtCalls) {
   572     st->print("\n\t");
   573     framesize -= wordSize;
   574     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   575   }
   577   if( C->in_24_bit_fp_mode() ) {
   578     st->print("\n\t");
   579     st->print("FLDCW  \t# load 24 bit fpu control word");
   580   }
   581   if (UseSSE >= 2 && VerifyFPU) {
   582     st->print("\n\t");
   583     st->print("# verify FPU stack (must be clean on entry)");
   584   }
   586 #ifdef ASSERT
   587   if (VerifyStackAtCalls) {
   588     st->print("\n\t");
   589     st->print("# stack alignment check");
   590   }
   591 #endif
   592   st->cr();
   593 }
   594 #endif
   597 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   598   Compile* C = ra_->C;
   599   MacroAssembler _masm(&cbuf);
   601   int framesize = C->frame_slots() << LogBytesPerInt;
   603   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   605   C->set_frame_complete(cbuf.insts_size());
   607   if (C->has_mach_constant_base_node()) {
   608     // NOTE: We set the table base offset here because users might be
   609     // emitted before MachConstantBaseNode.
   610     Compile::ConstantTable& constant_table = C->constant_table();
   611     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   612   }
   613 }
   615 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_); // too many variables; just compute it the hard way
   617 }
   619 int MachPrologNode::reloc() const {
   620   return 0; // a large enough number
   621 }
   623 //=============================================================================
   624 #ifndef PRODUCT
   625 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   626   Compile *C = ra_->C;
   627   int framesize = C->frame_slots() << LogBytesPerInt;
   628   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   629   // Remove two words for return addr and rbp,
   630   framesize -= 2*wordSize;
   632   if( C->in_24_bit_fp_mode() ) {
   633     st->print("FLDCW  standard control word");
   634     st->cr(); st->print("\t");
   635   }
   636   if( framesize ) {
   637     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   638     st->cr(); st->print("\t");
   639   }
   640   st->print_cr("POPL   EBP"); st->print("\t");
   641   if( do_polling() && C->is_method_compilation() ) {
   642     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   643     st->cr(); st->print("\t");
   644   }
   645 }
   646 #endif
   648 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   649   Compile *C = ra_->C;
   651   // If method set FPU control word, restore to standard control word
   652   if( C->in_24_bit_fp_mode() ) {
   653     MacroAssembler masm(&cbuf);
   654     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   655   }
   657   int framesize = C->frame_slots() << LogBytesPerInt;
   658   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   659   // Remove two words for return addr and rbp,
   660   framesize -= 2*wordSize;
   662   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   664   if( framesize >= 128 ) {
   665     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   666     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   667     emit_d32(cbuf, framesize);
   668   }
   669   else if( framesize ) {
   670     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   671     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   672     emit_d8(cbuf, framesize);
   673   }
   675   emit_opcode(cbuf, 0x58 | EBP_enc);
   677   if( do_polling() && C->is_method_compilation() ) {
   678     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   679     emit_opcode(cbuf,0x85);
   680     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   681     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   682   }
   683 }
   685 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   686   Compile *C = ra_->C;
   687   // If method set FPU control word, restore to standard control word
   688   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   689   if( do_polling() && C->is_method_compilation() ) size += 6;
   691   int framesize = C->frame_slots() << LogBytesPerInt;
   692   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   693   // Remove two words for return addr and rbp,
   694   framesize -= 2*wordSize;
   696   size++; // popl rbp,
   698   if( framesize >= 128 ) {
   699     size += 6;
   700   } else {
   701     size += framesize ? 3 : 0;
   702   }
   703   return size;
   704 }
   706 int MachEpilogNode::reloc() const {
   707   return 0; // a large enough number
   708 }
   710 const Pipeline * MachEpilogNode::pipeline() const {
   711   return MachNode::pipeline_class();
   712 }
   714 int MachEpilogNode::safepoint_offset() const { return 0; }
   716 //=============================================================================
   718 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   719 static enum RC rc_class( OptoReg::Name reg ) {
   721   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   722   if (OptoReg::is_stack(reg)) return rc_stack;
   724   VMReg r = OptoReg::as_VMReg(reg);
   725   if (r->is_Register()) return rc_int;
   726   if (r->is_FloatRegister()) {
   727     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   728     return rc_float;
   729   }
   730   assert(r->is_XMMRegister(), "must be");
   731   return rc_xmm;
   732 }
   734 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   735                         int opcode, const char *op_str, int size, outputStream* st ) {
   736   if( cbuf ) {
   737     emit_opcode  (*cbuf, opcode );
   738     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   739 #ifndef PRODUCT
   740   } else if( !do_size ) {
   741     if( size != 0 ) st->print("\n\t");
   742     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   743       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   744       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   745     } else { // FLD, FST, PUSH, POP
   746       st->print("%s [ESP + #%d]",op_str,offset);
   747     }
   748 #endif
   749   }
   750   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   751   return size+3+offset_size;
   752 }
   754 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   755 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   756                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   757   if (cbuf) {
   758     MacroAssembler _masm(cbuf);
   759     if (reg_lo+1 == reg_hi) { // double move?
   760       if (is_load) {
   761         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   762       } else {
   763         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   764       }
   765     } else {
   766       if (is_load) {
   767         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   768       } else {
   769         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   770       }
   771     }
   772 #ifndef PRODUCT
   773   } else if (!do_size) {
   774     if (size != 0) st->print("\n\t");
   775     if (reg_lo+1 == reg_hi) { // double move?
   776       if (is_load) st->print("%s %s,[ESP + #%d]",
   777                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   778                               Matcher::regName[reg_lo], offset);
   779       else         st->print("MOVSD  [ESP + #%d],%s",
   780                               offset, Matcher::regName[reg_lo]);
   781     } else {
   782       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   783                               Matcher::regName[reg_lo], offset);
   784       else         st->print("MOVSS  [ESP + #%d],%s",
   785                               offset, Matcher::regName[reg_lo]);
   786     }
   787 #endif
   788   }
   789   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   790   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes.
   791   return size+5+offset_size;
   792 }
   795 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   796                             int src_hi, int dst_hi, int size, outputStream* st ) {
   797   if (cbuf) {
   798     MacroAssembler _masm(cbuf);
   799     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   800       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   801                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   802     } else {
   803       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   804                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   805     }
   806 #ifndef PRODUCT
   807   } else if (!do_size) {
   808     if (size != 0) st->print("\n\t");
   809     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   810       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   811         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   812       } else {
   813         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   814       }
   815     } else {
   816       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   817         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   818       } else {
   819         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   820       }
   821     }
   822 #endif
   823   }
   824   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes.
   825   // Only MOVAPS SSE prefix uses 1 byte.
   826   int sz = 4;
   827   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   828       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   829   return size + sz;
   830 }
   832 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   833                             int src_hi, int dst_hi, int size, outputStream* st ) {
   834   // 32-bit
   835   if (cbuf) {
   836     MacroAssembler _masm(cbuf);
   837     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   838              as_Register(Matcher::_regEncode[src_lo]));
   839 #ifndef PRODUCT
   840   } else if (!do_size) {
   841     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   842 #endif
   843   }
   844   return 4;
   845 }
   848 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   849                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   850   // 32-bit
   851   if (cbuf) {
   852     MacroAssembler _masm(cbuf);
   853     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   854              as_XMMRegister(Matcher::_regEncode[src_lo]));
   855 #ifndef PRODUCT
   856   } else if (!do_size) {
   857     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   858 #endif
   859   }
   860   return 4;
   861 }
   863 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   864   if( cbuf ) {
   865     emit_opcode(*cbuf, 0x8B );
   866     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   867 #ifndef PRODUCT
   868   } else if( !do_size ) {
   869     if( size != 0 ) st->print("\n\t");
   870     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   871 #endif
   872   }
   873   return size+2;
   874 }
   876 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   877                                  int offset, int size, outputStream* st ) {
   878   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   879     if( cbuf ) {
   880       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   881       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   882 #ifndef PRODUCT
   883     } else if( !do_size ) {
   884       if( size != 0 ) st->print("\n\t");
   885       st->print("FLD    %s",Matcher::regName[src_lo]);
   886 #endif
   887     }
   888     size += 2;
   889   }
   891   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   892   const char *op_str;
   893   int op;
   894   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   895     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   896     op = 0xDD;
   897   } else {                   // 32-bit store
   898     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   899     op = 0xD9;
   900     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   901   }
   903   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   904 }
   906 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   907   // Get registers to move
   908   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   909   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   910   OptoReg::Name dst_second = ra_->get_reg_second(this );
   911   OptoReg::Name dst_first = ra_->get_reg_first(this );
   913   enum RC src_second_rc = rc_class(src_second);
   914   enum RC src_first_rc = rc_class(src_first);
   915   enum RC dst_second_rc = rc_class(dst_second);
   916   enum RC dst_first_rc = rc_class(dst_first);
   918   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   920   // Generate spill code!
   921   int size = 0;
   923   if( src_first == dst_first && src_second == dst_second )
   924     return size;            // Self copy, no move
   926   // --------------------------------------
   927   // Check for mem-mem move.  push/pop to move.
   928   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   929     if( src_second == dst_first ) { // overlapping stack copy ranges
   930       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   931       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   932       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   933       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   934     }
   935     // move low bits
   936     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   937     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   938     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   939       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   940       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   941     }
   942     return size;
   943   }
   945   // --------------------------------------
   946   // Check for integer reg-reg copy
   947   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   948     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   950   // Check for integer store
   951   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   952     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   954   // Check for integer load
   955   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   956     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   958   // Check for integer reg-xmm reg copy
   959   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
   960     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
   961             "no 64 bit integer-float reg moves" );
   962     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
   963   }
   964   // --------------------------------------
   965   // Check for float reg-reg copy
   966   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   967     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   968             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   969     if( cbuf ) {
   971       // Note the mucking with the register encode to compensate for the 0/1
   972       // indexing issue mentioned in a comment in the reg_def sections
   973       // for FPR registers many lines above here.
   975       if( src_first != FPR1L_num ) {
   976         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   977         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   978         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   979         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   980      } else {
   981         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   982         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   983      }
   984 #ifndef PRODUCT
   985     } else if( !do_size ) {
   986       if( size != 0 ) st->print("\n\t");
   987       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
   988       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
   989 #endif
   990     }
   991     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
   992   }
   994   // Check for float store
   995   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
   996     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
   997   }
   999   // Check for float load
  1000   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1001     int offset = ra_->reg2offset(src_first);
  1002     const char *op_str;
  1003     int op;
  1004     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1005       op_str = "FLD_D";
  1006       op = 0xDD;
  1007     } else {                   // 32-bit load
  1008       op_str = "FLD_S";
  1009       op = 0xD9;
  1010       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1012     if( cbuf ) {
  1013       emit_opcode  (*cbuf, op );
  1014       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1015       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1016       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1017 #ifndef PRODUCT
  1018     } else if( !do_size ) {
  1019       if( size != 0 ) st->print("\n\t");
  1020       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1021 #endif
  1023     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1024     return size + 3+offset_size+2;
  1027   // Check for xmm reg-reg copy
  1028   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1029     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1030             (src_first+1 == src_second && dst_first+1 == dst_second),
  1031             "no non-adjacent float-moves" );
  1032     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1035   // Check for xmm reg-integer reg copy
  1036   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1037     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1038             "no 64 bit float-integer reg moves" );
  1039     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1042   // Check for xmm store
  1043   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1044     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1047   // Check for float xmm load
  1048   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1049     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1052   // Copy from float reg to xmm reg
  1053   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1054     // copy to the top of stack from floating point reg
  1055     // and use LEA to preserve flags
  1056     if( cbuf ) {
  1057       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1058       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1059       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1060       emit_d8(*cbuf,0xF8);
  1061 #ifndef PRODUCT
  1062     } else if( !do_size ) {
  1063       if( size != 0 ) st->print("\n\t");
  1064       st->print("LEA    ESP,[ESP-8]");
  1065 #endif
  1067     size += 4;
  1069     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1071     // Copy from the temp memory to the xmm reg.
  1072     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1074     if( cbuf ) {
  1075       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1076       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1077       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1078       emit_d8(*cbuf,0x08);
  1079 #ifndef PRODUCT
  1080     } else if( !do_size ) {
  1081       if( size != 0 ) st->print("\n\t");
  1082       st->print("LEA    ESP,[ESP+8]");
  1083 #endif
  1085     size += 4;
  1086     return size;
  1089   assert( size > 0, "missed a case" );
  1091   // --------------------------------------------------------------------
  1092   // Check for second bits still needing moving.
  1093   if( src_second == dst_second )
  1094     return size;               // Self copy; no move
  1095   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1097   // Check for second word int-int move
  1098   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1099     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1101   // Check for second word integer store
  1102   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1103     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1105   // Check for second word integer load
  1106   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1107     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1110   Unimplemented();
  1113 #ifndef PRODUCT
  1114 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1115   implementation( NULL, ra_, false, st );
  1117 #endif
  1119 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1120   implementation( &cbuf, ra_, false, NULL );
  1123 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1124   return implementation( NULL, ra_, true, NULL );
  1128 //=============================================================================
  1129 #ifndef PRODUCT
  1130 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1131   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1132   int reg = ra_->get_reg_first(this);
  1133   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1135 #endif
  1137 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1138   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1139   int reg = ra_->get_encode(this);
  1140   if( offset >= 128 ) {
  1141     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1142     emit_rm(cbuf, 0x2, reg, 0x04);
  1143     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1144     emit_d32(cbuf, offset);
  1146   else {
  1147     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1148     emit_rm(cbuf, 0x1, reg, 0x04);
  1149     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1150     emit_d8(cbuf, offset);
  1154 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1155   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1156   if( offset >= 128 ) {
  1157     return 7;
  1159   else {
  1160     return 4;
  1164 //=============================================================================
  1166 // emit call stub, compiled java to interpreter
  1167 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1168   // Stub is fixed up when the corresponding call is converted from calling
  1169   // compiled code to calling interpreted code.
  1170   // mov rbx,0
  1171   // jmp -1
  1173   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1175   // Note that the code buffer's insts_mark is always relative to insts.
  1176   // That's why we must use the macroassembler to generate a stub.
  1177   MacroAssembler _masm(&cbuf);
  1179   address base =
  1180   __ start_a_stub(Compile::MAX_stubs_size);
  1181   if (base == NULL)  return;  // CodeBuffer::expand failed
  1182   // static stub relocation stores the instruction address of the call
  1183   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1184   // static stub relocation also tags the methodOop in the code-stream.
  1185   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1186   // This is recognized as unresolved by relocs/nativeInst/ic code
  1187   __ jump(RuntimeAddress(__ pc()));
  1189   __ end_a_stub();
  1190   // Update current stubs pointer and restore insts_end.
  1192 // size of call stub, compiled java to interpretor
  1193 uint size_java_to_interp() {
  1194   return 10;  // movl; jmp
  1196 // relocation entries for call stub, compiled java to interpretor
  1197 uint reloc_java_to_interp() {
  1198   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1201 //=============================================================================
  1202 #ifndef PRODUCT
  1203 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1204   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1205   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1206   st->print_cr("\tNOP");
  1207   st->print_cr("\tNOP");
  1208   if( !OptoBreakpoint )
  1209     st->print_cr("\tNOP");
  1211 #endif
  1213 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1214   MacroAssembler masm(&cbuf);
  1215 #ifdef ASSERT
  1216   uint insts_size = cbuf.insts_size();
  1217 #endif
  1218   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1219   masm.jump_cc(Assembler::notEqual,
  1220                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1221   /* WARNING these NOPs are critical so that verified entry point is properly
  1222      aligned for patching by NativeJump::patch_verified_entry() */
  1223   int nops_cnt = 2;
  1224   if( !OptoBreakpoint ) // Leave space for int3
  1225      nops_cnt += 1;
  1226   masm.nop(nops_cnt);
  1228   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1231 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1232   return OptoBreakpoint ? 11 : 12;
  1236 //=============================================================================
  1237 uint size_exception_handler() {
  1238   // NativeCall instruction size is the same as NativeJump.
  1239   // exception handler starts out as jump and can be patched to
  1240   // a call be deoptimization.  (4932387)
  1241   // Note that this value is also credited (in output.cpp) to
  1242   // the size of the code section.
  1243   return NativeJump::instruction_size;
  1246 // Emit exception handler code.  Stuff framesize into a register
  1247 // and call a VM stub routine.
  1248 int emit_exception_handler(CodeBuffer& cbuf) {
  1250   // Note that the code buffer's insts_mark is always relative to insts.
  1251   // That's why we must use the macroassembler to generate a handler.
  1252   MacroAssembler _masm(&cbuf);
  1253   address base =
  1254   __ start_a_stub(size_exception_handler());
  1255   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1256   int offset = __ offset();
  1257   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1258   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1259   __ end_a_stub();
  1260   return offset;
  1263 uint size_deopt_handler() {
  1264   // NativeCall instruction size is the same as NativeJump.
  1265   // exception handler starts out as jump and can be patched to
  1266   // a call be deoptimization.  (4932387)
  1267   // Note that this value is also credited (in output.cpp) to
  1268   // the size of the code section.
  1269   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1272 // Emit deopt handler code.
  1273 int emit_deopt_handler(CodeBuffer& cbuf) {
  1275   // Note that the code buffer's insts_mark is always relative to insts.
  1276   // That's why we must use the macroassembler to generate a handler.
  1277   MacroAssembler _masm(&cbuf);
  1278   address base =
  1279   __ start_a_stub(size_exception_handler());
  1280   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1281   int offset = __ offset();
  1282   InternalAddress here(__ pc());
  1283   __ pushptr(here.addr());
  1285   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1286   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1287   __ end_a_stub();
  1288   return offset;
  1292 const bool Matcher::match_rule_supported(int opcode) {
  1293   if (!has_match_rule(opcode))
  1294     return false;
  1296   switch (opcode) {
  1297     case Op_PopCountI:
  1298     case Op_PopCountL:
  1299       if (!UsePopCountInstruction)
  1300         return false;
  1301     break;
  1304   return true;  // Per default match rules are supported.
  1307 int Matcher::regnum_to_fpu_offset(int regnum) {
  1308   return regnum - 32; // The FP registers are in the second chunk
  1311 // This is UltraSparc specific, true just means we have fast l2f conversion
  1312 const bool Matcher::convL2FSupported(void) {
  1313   return true;
  1316 // Vector width in bytes
  1317 const uint Matcher::vector_width_in_bytes(void) {
  1318   return UseSSE >= 2 ? 8 : 0;
  1321 // Vector ideal reg
  1322 const uint Matcher::vector_ideal_reg(void) {
  1323   return Op_RegD;
  1326 // Is this branch offset short enough that a short branch can be used?
  1327 //
  1328 // NOTE: If the platform does not provide any short branch variants, then
  1329 //       this method should return false for offset 0.
  1330 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1331   // The passed offset is relative to address of the branch.
  1332   // On 86 a branch displacement is calculated relative to address
  1333   // of a next instruction.
  1334   offset -= br_size;
  1336   // the short version of jmpConUCF2 contains multiple branches,
  1337   // making the reach slightly less
  1338   if (rule == jmpConUCF2_rule)
  1339     return (-126 <= offset && offset <= 125);
  1340   return (-128 <= offset && offset <= 127);
  1343 const bool Matcher::isSimpleConstant64(jlong value) {
  1344   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1345   return false;
  1348 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1349 const bool Matcher::init_array_count_is_in_bytes = false;
  1351 // Threshold size for cleararray.
  1352 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1354 // Needs 2 CMOV's for longs.
  1355 const int Matcher::long_cmove_cost() { return 1; }
  1357 // No CMOVF/CMOVD with SSE/SSE2
  1358 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1360 // Should the Matcher clone shifts on addressing modes, expecting them to
  1361 // be subsumed into complex addressing expressions or compute them into
  1362 // registers?  True for Intel but false for most RISCs
  1363 const bool Matcher::clone_shift_expressions = true;
  1365 // Do we need to mask the count passed to shift instructions or does
  1366 // the cpu only look at the lower 5/6 bits anyway?
  1367 const bool Matcher::need_masked_shift_count = false;
  1369 bool Matcher::narrow_oop_use_complex_address() {
  1370   ShouldNotCallThis();
  1371   return true;
  1375 // Is it better to copy float constants, or load them directly from memory?
  1376 // Intel can load a float constant from a direct address, requiring no
  1377 // extra registers.  Most RISCs will have to materialize an address into a
  1378 // register first, so they would do better to copy the constant from stack.
  1379 const bool Matcher::rematerialize_float_constants = true;
  1381 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1382 // needed.  Else we split the double into 2 integer pieces and move it
  1383 // piece-by-piece.  Only happens when passing doubles into C code as the
  1384 // Java calling convention forces doubles to be aligned.
  1385 const bool Matcher::misaligned_doubles_ok = true;
  1388 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1389   // Get the memory operand from the node
  1390   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1391   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1392   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1393   uint opcnt     = 1;                 // First operand
  1394   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1395   while( idx >= skipped+num_edges ) {
  1396     skipped += num_edges;
  1397     opcnt++;                          // Bump operand count
  1398     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1399     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1402   MachOper *memory = node->_opnds[opcnt];
  1403   MachOper *new_memory = NULL;
  1404   switch (memory->opcode()) {
  1405   case DIRECT:
  1406   case INDOFFSET32X:
  1407     // No transformation necessary.
  1408     return;
  1409   case INDIRECT:
  1410     new_memory = new (C) indirect_win95_safeOper( );
  1411     break;
  1412   case INDOFFSET8:
  1413     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1414     break;
  1415   case INDOFFSET32:
  1416     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1417     break;
  1418   case INDINDEXOFFSET:
  1419     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1420     break;
  1421   case INDINDEXSCALE:
  1422     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1423     break;
  1424   case INDINDEXSCALEOFFSET:
  1425     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1426     break;
  1427   case LOAD_LONG_INDIRECT:
  1428   case LOAD_LONG_INDOFFSET32:
  1429     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1430     return;
  1431   default:
  1432     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1433     return;
  1435   node->_opnds[opcnt] = new_memory;
  1438 // Advertise here if the CPU requires explicit rounding operations
  1439 // to implement the UseStrictFP mode.
  1440 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1442 // Are floats conerted to double when stored to stack during deoptimization?
  1443 // On x32 it is stored with convertion only when FPU is used for floats.
  1444 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1446 // Do ints take an entire long register or just half?
  1447 const bool Matcher::int_in_long = false;
  1449 // Return whether or not this register is ever used as an argument.  This
  1450 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1451 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1452 // arguments in those registers not be available to the callee.
  1453 bool Matcher::can_be_java_arg( int reg ) {
  1454   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1455   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1456   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1457   return false;
  1460 bool Matcher::is_spillable_arg( int reg ) {
  1461   return can_be_java_arg(reg);
  1464 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1465   // Use hardware integer DIV instruction when
  1466   // it is faster than a code which use multiply.
  1467   // Only when constant divisor fits into 32 bit
  1468   // (min_jint is excluded to get only correct
  1469   // positive 32 bit values from negative).
  1470   return VM_Version::has_fast_idiv() &&
  1471          (divisor == (int)divisor && divisor != min_jint);
  1474 // Register for DIVI projection of divmodI
  1475 RegMask Matcher::divI_proj_mask() {
  1476   return EAX_REG_mask();
  1479 // Register for MODI projection of divmodI
  1480 RegMask Matcher::modI_proj_mask() {
  1481   return EDX_REG_mask();
  1484 // Register for DIVL projection of divmodL
  1485 RegMask Matcher::divL_proj_mask() {
  1486   ShouldNotReachHere();
  1487   return RegMask();
  1490 // Register for MODL projection of divmodL
  1491 RegMask Matcher::modL_proj_mask() {
  1492   ShouldNotReachHere();
  1493   return RegMask();
  1496 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1497   return EBP_REG_mask();
  1500 // Returns true if the high 32 bits of the value is known to be zero.
  1501 bool is_operand_hi32_zero(Node* n) {
  1502   int opc = n->Opcode();
  1503   if (opc == Op_LoadUI2L) {
  1504     return true;
  1506   if (opc == Op_AndL) {
  1507     Node* o2 = n->in(2);
  1508     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1509       return true;
  1512   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1513     return true;
  1515   return false;
  1518 %}
  1520 //----------ENCODING BLOCK-----------------------------------------------------
  1521 // This block specifies the encoding classes used by the compiler to output
  1522 // byte streams.  Encoding classes generate functions which are called by
  1523 // Machine Instruction Nodes in order to generate the bit encoding of the
  1524 // instruction.  Operands specify their base encoding interface with the
  1525 // interface keyword.  There are currently supported four interfaces,
  1526 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1527 // operand to generate a function which returns its register number when
  1528 // queried.   CONST_INTER causes an operand to generate a function which
  1529 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1530 // operand to generate four functions which return the Base Register, the
  1531 // Index Register, the Scale Value, and the Offset Value of the operand when
  1532 // queried.  COND_INTER causes an operand to generate six functions which
  1533 // return the encoding code (ie - encoding bits for the instruction)
  1534 // associated with each basic boolean condition for a conditional instruction.
  1535 // Instructions specify two basic values for encoding.  They use the
  1536 // ins_encode keyword to specify their encoding class (which must be one of
  1537 // the class names specified in the encoding block), and they use the
  1538 // opcode keyword to specify, in order, their primary, secondary, and
  1539 // tertiary opcode.  Only the opcode sections which a particular instruction
  1540 // needs for encoding need to be specified.
  1541 encode %{
  1542   // Build emit functions for each basic byte or larger field in the intel
  1543   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1544   // code in the enc_class source block.  Emit functions will live in the
  1545   // main source block for now.  In future, we can generalize this by
  1546   // adding a syntax that specifies the sizes of fields in an order,
  1547   // so that the adlc can build the emit functions automagically
  1549   // Emit primary opcode
  1550   enc_class OpcP %{
  1551     emit_opcode(cbuf, $primary);
  1552   %}
  1554   // Emit secondary opcode
  1555   enc_class OpcS %{
  1556     emit_opcode(cbuf, $secondary);
  1557   %}
  1559   // Emit opcode directly
  1560   enc_class Opcode(immI d8) %{
  1561     emit_opcode(cbuf, $d8$$constant);
  1562   %}
  1564   enc_class SizePrefix %{
  1565     emit_opcode(cbuf,0x66);
  1566   %}
  1568   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1569     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1570   %}
  1572   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1573     emit_opcode(cbuf,$opcode$$constant);
  1574     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1575   %}
  1577   enc_class mov_r32_imm0( eRegI dst ) %{
  1578     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1579     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1580   %}
  1582   enc_class cdq_enc %{
  1583     // Full implementation of Java idiv and irem; checks for
  1584     // special case as described in JVM spec., p.243 & p.271.
  1585     //
  1586     //         normal case                           special case
  1587     //
  1588     // input : rax,: dividend                         min_int
  1589     //         reg: divisor                          -1
  1590     //
  1591     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1592     //         rdx: remainder (= rax, irem reg)       0
  1593     //
  1594     //  Code sequnce:
  1595     //
  1596     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1597     //  0F 85 0B 00 00 00    jne         normal_case
  1598     //  33 D2                xor         rdx,edx
  1599     //  83 F9 FF             cmp         rcx,0FFh
  1600     //  0F 84 03 00 00 00    je          done
  1601     //                  normal_case:
  1602     //  99                   cdq
  1603     //  F7 F9                idiv        rax,ecx
  1604     //                  done:
  1605     //
  1606     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1607     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1608     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1609     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1610     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1611     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1612     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1613     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1614     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1615     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1616     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1617     // normal_case:
  1618     emit_opcode(cbuf,0x99);                                         // cdq
  1619     // idiv (note: must be emitted by the user of this rule)
  1620     // normal:
  1621   %}
  1623   // Dense encoding for older common ops
  1624   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1625     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1626   %}
  1629   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1630   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1631     // Check for 8-bit immediate, and set sign extend bit in opcode
  1632     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1633       emit_opcode(cbuf, $primary | 0x02);
  1635     else {                          // If 32-bit immediate
  1636       emit_opcode(cbuf, $primary);
  1638   %}
  1640   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1641     // Emit primary opcode and set sign-extend bit
  1642     // Check for 8-bit immediate, and set sign extend bit in opcode
  1643     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1644       emit_opcode(cbuf, $primary | 0x02);    }
  1645     else {                          // If 32-bit immediate
  1646       emit_opcode(cbuf, $primary);
  1648     // Emit r/m byte with secondary opcode, after primary opcode.
  1649     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1650   %}
  1652   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1653     // Check for 8-bit immediate, and set sign extend bit in opcode
  1654     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1655       $$$emit8$imm$$constant;
  1657     else {                          // If 32-bit immediate
  1658       // Output immediate
  1659       $$$emit32$imm$$constant;
  1661   %}
  1663   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1664     // Emit primary opcode and set sign-extend bit
  1665     // Check for 8-bit immediate, and set sign extend bit in opcode
  1666     int con = (int)$imm$$constant; // Throw away top bits
  1667     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1668     // Emit r/m byte with secondary opcode, after primary opcode.
  1669     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1670     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1671     else                               emit_d32(cbuf,con);
  1672   %}
  1674   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1675     // Emit primary opcode and set sign-extend bit
  1676     // Check for 8-bit immediate, and set sign extend bit in opcode
  1677     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1678     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1679     // Emit r/m byte with tertiary opcode, after primary opcode.
  1680     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1681     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1682     else                               emit_d32(cbuf,con);
  1683   %}
  1685   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1686     emit_cc(cbuf, $secondary, $dst$$reg );
  1687   %}
  1689   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1690     int destlo = $dst$$reg;
  1691     int desthi = HIGH_FROM_LOW(destlo);
  1692     // bswap lo
  1693     emit_opcode(cbuf, 0x0F);
  1694     emit_cc(cbuf, 0xC8, destlo);
  1695     // bswap hi
  1696     emit_opcode(cbuf, 0x0F);
  1697     emit_cc(cbuf, 0xC8, desthi);
  1698     // xchg lo and hi
  1699     emit_opcode(cbuf, 0x87);
  1700     emit_rm(cbuf, 0x3, destlo, desthi);
  1701   %}
  1703   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1704     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1705   %}
  1707   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1708     $$$emit8$primary;
  1709     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1710   %}
  1712   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1713     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1714     emit_d8(cbuf, op >> 8 );
  1715     emit_d8(cbuf, op & 255);
  1716   %}
  1718   // emulate a CMOV with a conditional branch around a MOV
  1719   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1720     // Invert sense of branch from sense of CMOV
  1721     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1722     emit_d8( cbuf, $brOffs$$constant );
  1723   %}
  1725   enc_class enc_PartialSubtypeCheck( ) %{
  1726     Register Redi = as_Register(EDI_enc); // result register
  1727     Register Reax = as_Register(EAX_enc); // super class
  1728     Register Recx = as_Register(ECX_enc); // killed
  1729     Register Resi = as_Register(ESI_enc); // sub class
  1730     Label miss;
  1732     MacroAssembler _masm(&cbuf);
  1733     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1734                                      NULL, &miss,
  1735                                      /*set_cond_codes:*/ true);
  1736     if ($primary) {
  1737       __ xorptr(Redi, Redi);
  1739     __ bind(miss);
  1740   %}
  1742   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1743     MacroAssembler masm(&cbuf);
  1744     int start = masm.offset();
  1745     if (UseSSE >= 2) {
  1746       if (VerifyFPU) {
  1747         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1749     } else {
  1750       // External c_calling_convention expects the FPU stack to be 'clean'.
  1751       // Compiled code leaves it dirty.  Do cleanup now.
  1752       masm.empty_FPU_stack();
  1754     if (sizeof_FFree_Float_Stack_All == -1) {
  1755       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1756     } else {
  1757       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1759   %}
  1761   enc_class Verify_FPU_For_Leaf %{
  1762     if( VerifyFPU ) {
  1763       MacroAssembler masm(&cbuf);
  1764       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1766   %}
  1768   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1769     // This is the instruction starting address for relocation info.
  1770     cbuf.set_insts_mark();
  1771     $$$emit8$primary;
  1772     // CALL directly to the runtime
  1773     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1774                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1776     if (UseSSE >= 2) {
  1777       MacroAssembler _masm(&cbuf);
  1778       BasicType rt = tf()->return_type();
  1780       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1781         // A C runtime call where the return value is unused.  In SSE2+
  1782         // mode the result needs to be removed from the FPU stack.  It's
  1783         // likely that this function call could be removed by the
  1784         // optimizer if the C function is a pure function.
  1785         __ ffree(0);
  1786       } else if (rt == T_FLOAT) {
  1787         __ lea(rsp, Address(rsp, -4));
  1788         __ fstp_s(Address(rsp, 0));
  1789         __ movflt(xmm0, Address(rsp, 0));
  1790         __ lea(rsp, Address(rsp,  4));
  1791       } else if (rt == T_DOUBLE) {
  1792         __ lea(rsp, Address(rsp, -8));
  1793         __ fstp_d(Address(rsp, 0));
  1794         __ movdbl(xmm0, Address(rsp, 0));
  1795         __ lea(rsp, Address(rsp,  8));
  1798   %}
  1801   enc_class pre_call_FPU %{
  1802     // If method sets FPU control word restore it here
  1803     debug_only(int off0 = cbuf.insts_size());
  1804     if( Compile::current()->in_24_bit_fp_mode() ) {
  1805       MacroAssembler masm(&cbuf);
  1806       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1808     debug_only(int off1 = cbuf.insts_size());
  1809     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1810   %}
  1812   enc_class post_call_FPU %{
  1813     // If method sets FPU control word do it here also
  1814     if( Compile::current()->in_24_bit_fp_mode() ) {
  1815       MacroAssembler masm(&cbuf);
  1816       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1818   %}
  1820   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1821     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1822     // who we intended to call.
  1823     cbuf.set_insts_mark();
  1824     $$$emit8$primary;
  1825     if ( !_method ) {
  1826       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1827                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1828     } else if(_optimized_virtual) {
  1829       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1830                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1831     } else {
  1832       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1833                      static_call_Relocation::spec(), RELOC_IMM32 );
  1835     if( _method ) {  // Emit stub for static call
  1836       emit_java_to_interp(cbuf);
  1838   %}
  1840   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1841     // !!!!!
  1842     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1843     // emit_call_dynamic_prologue( cbuf );
  1844     cbuf.set_insts_mark();
  1845     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1846     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1847     address  virtual_call_oop_addr = cbuf.insts_mark();
  1848     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1849     // who we intended to call.
  1850     cbuf.set_insts_mark();
  1851     $$$emit8$primary;
  1852     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1853                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1854   %}
  1856   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1857     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1858     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1860     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1861     cbuf.set_insts_mark();
  1862     $$$emit8$primary;
  1863     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1864     emit_d8(cbuf, disp);             // Displacement
  1866   %}
  1868 //   Following encoding is no longer used, but may be restored if calling
  1869 //   convention changes significantly.
  1870 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1871 //
  1872 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1873 //     // int ic_reg     = Matcher::inline_cache_reg();
  1874 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1875 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1876 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1877 //
  1878 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1879 //     // // so we load it immediately before the call
  1880 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1881 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1882 //
  1883 //     // xor rbp,ebp
  1884 //     emit_opcode(cbuf, 0x33);
  1885 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1886 //
  1887 //     // CALL to interpreter.
  1888 //     cbuf.set_insts_mark();
  1889 //     $$$emit8$primary;
  1890 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1891 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1892 //   %}
  1894   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1895     $$$emit8$primary;
  1896     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1897     $$$emit8$shift$$constant;
  1898   %}
  1900   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1901     // Load immediate does not have a zero or sign extended version
  1902     // for 8-bit immediates
  1903     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1904     $$$emit32$src$$constant;
  1905   %}
  1907   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1908     // Load immediate does not have a zero or sign extended version
  1909     // for 8-bit immediates
  1910     emit_opcode(cbuf, $primary + $dst$$reg);
  1911     $$$emit32$src$$constant;
  1912   %}
  1914   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1915     // Load immediate does not have a zero or sign extended version
  1916     // for 8-bit immediates
  1917     int dst_enc = $dst$$reg;
  1918     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1919     if (src_con == 0) {
  1920       // xor dst, dst
  1921       emit_opcode(cbuf, 0x33);
  1922       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1923     } else {
  1924       emit_opcode(cbuf, $primary + dst_enc);
  1925       emit_d32(cbuf, src_con);
  1927   %}
  1929   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1930     // Load immediate does not have a zero or sign extended version
  1931     // for 8-bit immediates
  1932     int dst_enc = $dst$$reg + 2;
  1933     int src_con = ((julong)($src$$constant)) >> 32;
  1934     if (src_con == 0) {
  1935       // xor dst, dst
  1936       emit_opcode(cbuf, 0x33);
  1937       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1938     } else {
  1939       emit_opcode(cbuf, $primary + dst_enc);
  1940       emit_d32(cbuf, src_con);
  1942   %}
  1945   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1946   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  1947     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1948   %}
  1950   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  1951     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1952   %}
  1954   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1955     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1956   %}
  1958   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  1959     $$$emit8$primary;
  1960     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1961   %}
  1963   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  1964     $$$emit8$secondary;
  1965     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1966   %}
  1968   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1969     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1970   %}
  1972   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1973     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1974   %}
  1976   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  1977     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  1978   %}
  1980   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  1981     // Output immediate
  1982     $$$emit32$src$$constant;
  1983   %}
  1985   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  1986     // Output Float immediate bits
  1987     jfloat jf = $src$$constant;
  1988     int    jf_as_bits = jint_cast( jf );
  1989     emit_d32(cbuf, jf_as_bits);
  1990   %}
  1992   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  1993     // Output Float immediate bits
  1994     jfloat jf = $src$$constant;
  1995     int    jf_as_bits = jint_cast( jf );
  1996     emit_d32(cbuf, jf_as_bits);
  1997   %}
  1999   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2000     // Output immediate
  2001     $$$emit16$src$$constant;
  2002   %}
  2004   enc_class Con_d32(immI src) %{
  2005     emit_d32(cbuf,$src$$constant);
  2006   %}
  2008   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2009     // Output immediate memory reference
  2010     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2011     emit_d32(cbuf, 0x00);
  2012   %}
  2014   enc_class lock_prefix( ) %{
  2015     if( os::is_MP() )
  2016       emit_opcode(cbuf,0xF0);         // [Lock]
  2017   %}
  2019   // Cmp-xchg long value.
  2020   // Note: we need to swap rbx, and rcx before and after the
  2021   //       cmpxchg8 instruction because the instruction uses
  2022   //       rcx as the high order word of the new value to store but
  2023   //       our register encoding uses rbx,.
  2024   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2026     // XCHG  rbx,ecx
  2027     emit_opcode(cbuf,0x87);
  2028     emit_opcode(cbuf,0xD9);
  2029     // [Lock]
  2030     if( os::is_MP() )
  2031       emit_opcode(cbuf,0xF0);
  2032     // CMPXCHG8 [Eptr]
  2033     emit_opcode(cbuf,0x0F);
  2034     emit_opcode(cbuf,0xC7);
  2035     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2036     // XCHG  rbx,ecx
  2037     emit_opcode(cbuf,0x87);
  2038     emit_opcode(cbuf,0xD9);
  2039   %}
  2041   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2042     // [Lock]
  2043     if( os::is_MP() )
  2044       emit_opcode(cbuf,0xF0);
  2046     // CMPXCHG [Eptr]
  2047     emit_opcode(cbuf,0x0F);
  2048     emit_opcode(cbuf,0xB1);
  2049     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2050   %}
  2052   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2053     int res_encoding = $res$$reg;
  2055     // MOV  res,0
  2056     emit_opcode( cbuf, 0xB8 + res_encoding);
  2057     emit_d32( cbuf, 0 );
  2058     // JNE,s  fail
  2059     emit_opcode(cbuf,0x75);
  2060     emit_d8(cbuf, 5 );
  2061     // MOV  res,1
  2062     emit_opcode( cbuf, 0xB8 + res_encoding);
  2063     emit_d32( cbuf, 1 );
  2064     // fail:
  2065   %}
  2067   enc_class set_instruction_start( ) %{
  2068     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2069   %}
  2071   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2072     int reg_encoding = $ereg$$reg;
  2073     int base  = $mem$$base;
  2074     int index = $mem$$index;
  2075     int scale = $mem$$scale;
  2076     int displace = $mem$$disp;
  2077     bool disp_is_oop = $mem->disp_is_oop();
  2078     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2079   %}
  2081   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2082     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2083     int base  = $mem$$base;
  2084     int index = $mem$$index;
  2085     int scale = $mem$$scale;
  2086     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2087     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2088     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2089   %}
  2091   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2092     int r1, r2;
  2093     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2094     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2095     emit_opcode(cbuf,0x0F);
  2096     emit_opcode(cbuf,$tertiary);
  2097     emit_rm(cbuf, 0x3, r1, r2);
  2098     emit_d8(cbuf,$cnt$$constant);
  2099     emit_d8(cbuf,$primary);
  2100     emit_rm(cbuf, 0x3, $secondary, r1);
  2101     emit_d8(cbuf,$cnt$$constant);
  2102   %}
  2104   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2105     emit_opcode( cbuf, 0x8B ); // Move
  2106     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2107     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2108       emit_d8(cbuf,$primary);
  2109       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2110       emit_d8(cbuf,$cnt$$constant-32);
  2112     emit_d8(cbuf,$primary);
  2113     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2114     emit_d8(cbuf,31);
  2115   %}
  2117   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2118     int r1, r2;
  2119     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2120     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2122     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2123     emit_rm(cbuf, 0x3, r1, r2);
  2124     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2125       emit_opcode(cbuf,$primary);
  2126       emit_rm(cbuf, 0x3, $secondary, r1);
  2127       emit_d8(cbuf,$cnt$$constant-32);
  2129     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2130     emit_rm(cbuf, 0x3, r2, r2);
  2131   %}
  2133   // Clone of RegMem but accepts an extra parameter to access each
  2134   // half of a double in memory; it never needs relocation info.
  2135   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2136     emit_opcode(cbuf,$opcode$$constant);
  2137     int reg_encoding = $rm_reg$$reg;
  2138     int base     = $mem$$base;
  2139     int index    = $mem$$index;
  2140     int scale    = $mem$$scale;
  2141     int displace = $mem$$disp + $disp_for_half$$constant;
  2142     bool disp_is_oop = false;
  2143     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2144   %}
  2146   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2147   //
  2148   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2149   // and it never needs relocation information.
  2150   // Frequently used to move data between FPU's Stack Top and memory.
  2151   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2152     int rm_byte_opcode = $rm_opcode$$constant;
  2153     int base     = $mem$$base;
  2154     int index    = $mem$$index;
  2155     int scale    = $mem$$scale;
  2156     int displace = $mem$$disp;
  2157     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2158     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2159   %}
  2161   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2162     int rm_byte_opcode = $rm_opcode$$constant;
  2163     int base     = $mem$$base;
  2164     int index    = $mem$$index;
  2165     int scale    = $mem$$scale;
  2166     int displace = $mem$$disp;
  2167     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2168     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2169   %}
  2171   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2172     int reg_encoding = $dst$$reg;
  2173     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2174     int index        = 0x04;            // 0x04 indicates no index
  2175     int scale        = 0x00;            // 0x00 indicates no scale
  2176     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2177     bool disp_is_oop = false;
  2178     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2179   %}
  2181   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2182     // Compare dst,src
  2183     emit_opcode(cbuf,0x3B);
  2184     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2185     // jmp dst < src around move
  2186     emit_opcode(cbuf,0x7C);
  2187     emit_d8(cbuf,2);
  2188     // move dst,src
  2189     emit_opcode(cbuf,0x8B);
  2190     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2191   %}
  2193   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2194     // Compare dst,src
  2195     emit_opcode(cbuf,0x3B);
  2196     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2197     // jmp dst > src around move
  2198     emit_opcode(cbuf,0x7F);
  2199     emit_d8(cbuf,2);
  2200     // move dst,src
  2201     emit_opcode(cbuf,0x8B);
  2202     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2203   %}
  2205   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2206     // If src is FPR1, we can just FST to store it.
  2207     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2208     int reg_encoding = 0x2; // Just store
  2209     int base  = $mem$$base;
  2210     int index = $mem$$index;
  2211     int scale = $mem$$scale;
  2212     int displace = $mem$$disp;
  2213     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2214     if( $src$$reg != FPR1L_enc ) {
  2215       reg_encoding = 0x3;  // Store & pop
  2216       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2217       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2219     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2220     emit_opcode(cbuf,$primary);
  2221     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2222   %}
  2224   enc_class neg_reg(eRegI dst) %{
  2225     // NEG $dst
  2226     emit_opcode(cbuf,0xF7);
  2227     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2228   %}
  2230   enc_class setLT_reg(eCXRegI dst) %{
  2231     // SETLT $dst
  2232     emit_opcode(cbuf,0x0F);
  2233     emit_opcode(cbuf,0x9C);
  2234     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2235   %}
  2237   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2238     int tmpReg = $tmp$$reg;
  2240     // SUB $p,$q
  2241     emit_opcode(cbuf,0x2B);
  2242     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2243     // SBB $tmp,$tmp
  2244     emit_opcode(cbuf,0x1B);
  2245     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2246     // AND $tmp,$y
  2247     emit_opcode(cbuf,0x23);
  2248     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2249     // ADD $p,$tmp
  2250     emit_opcode(cbuf,0x03);
  2251     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2252   %}
  2254   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2255     int tmpReg = $tmp$$reg;
  2257     // SUB $p,$q
  2258     emit_opcode(cbuf,0x2B);
  2259     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2260     // SBB $tmp,$tmp
  2261     emit_opcode(cbuf,0x1B);
  2262     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2263     // AND $tmp,$y
  2264     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2265     emit_opcode(cbuf,0x23);
  2266     int reg_encoding = tmpReg;
  2267     int base  = $mem$$base;
  2268     int index = $mem$$index;
  2269     int scale = $mem$$scale;
  2270     int displace = $mem$$disp;
  2271     bool disp_is_oop = $mem->disp_is_oop();
  2272     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2273     // ADD $p,$tmp
  2274     emit_opcode(cbuf,0x03);
  2275     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2276   %}
  2278   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2279     // TEST shift,32
  2280     emit_opcode(cbuf,0xF7);
  2281     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2282     emit_d32(cbuf,0x20);
  2283     // JEQ,s small
  2284     emit_opcode(cbuf, 0x74);
  2285     emit_d8(cbuf, 0x04);
  2286     // MOV    $dst.hi,$dst.lo
  2287     emit_opcode( cbuf, 0x8B );
  2288     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2289     // CLR    $dst.lo
  2290     emit_opcode(cbuf, 0x33);
  2291     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2292 // small:
  2293     // SHLD   $dst.hi,$dst.lo,$shift
  2294     emit_opcode(cbuf,0x0F);
  2295     emit_opcode(cbuf,0xA5);
  2296     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2297     // SHL    $dst.lo,$shift"
  2298     emit_opcode(cbuf,0xD3);
  2299     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2300   %}
  2302   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2303     // TEST shift,32
  2304     emit_opcode(cbuf,0xF7);
  2305     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2306     emit_d32(cbuf,0x20);
  2307     // JEQ,s small
  2308     emit_opcode(cbuf, 0x74);
  2309     emit_d8(cbuf, 0x04);
  2310     // MOV    $dst.lo,$dst.hi
  2311     emit_opcode( cbuf, 0x8B );
  2312     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2313     // CLR    $dst.hi
  2314     emit_opcode(cbuf, 0x33);
  2315     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2316 // small:
  2317     // SHRD   $dst.lo,$dst.hi,$shift
  2318     emit_opcode(cbuf,0x0F);
  2319     emit_opcode(cbuf,0xAD);
  2320     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2321     // SHR    $dst.hi,$shift"
  2322     emit_opcode(cbuf,0xD3);
  2323     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2324   %}
  2326   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2327     // TEST shift,32
  2328     emit_opcode(cbuf,0xF7);
  2329     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2330     emit_d32(cbuf,0x20);
  2331     // JEQ,s small
  2332     emit_opcode(cbuf, 0x74);
  2333     emit_d8(cbuf, 0x05);
  2334     // MOV    $dst.lo,$dst.hi
  2335     emit_opcode( cbuf, 0x8B );
  2336     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2337     // SAR    $dst.hi,31
  2338     emit_opcode(cbuf, 0xC1);
  2339     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2340     emit_d8(cbuf, 0x1F );
  2341 // small:
  2342     // SHRD   $dst.lo,$dst.hi,$shift
  2343     emit_opcode(cbuf,0x0F);
  2344     emit_opcode(cbuf,0xAD);
  2345     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2346     // SAR    $dst.hi,$shift"
  2347     emit_opcode(cbuf,0xD3);
  2348     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2349   %}
  2352   // ----------------- Encodings for floating point unit -----------------
  2353   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2354   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2355     $$$emit8$primary;
  2356     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2357   %}
  2359   // Pop argument in FPR0 with FSTP ST(0)
  2360   enc_class PopFPU() %{
  2361     emit_opcode( cbuf, 0xDD );
  2362     emit_d8( cbuf, 0xD8 );
  2363   %}
  2365   // !!!!! equivalent to Pop_Reg_F
  2366   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2367     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2368     emit_d8( cbuf, 0xD8+$dst$$reg );
  2369   %}
  2371   enc_class Push_Reg_DPR( regDPR dst ) %{
  2372     emit_opcode( cbuf, 0xD9 );
  2373     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2374   %}
  2376   enc_class strictfp_bias1( regDPR dst ) %{
  2377     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2378     emit_opcode( cbuf, 0x2D );
  2379     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2380     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2381     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2382   %}
  2384   enc_class strictfp_bias2( regDPR dst ) %{
  2385     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2386     emit_opcode( cbuf, 0x2D );
  2387     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2388     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2389     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2390   %}
  2392   // Special case for moving an integer register to a stack slot.
  2393   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2394     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2395   %}
  2397   // Special case for moving a register to a stack slot.
  2398   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2399     // Opcode already emitted
  2400     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2401     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2402     emit_d32(cbuf, $dst$$disp);   // Displacement
  2403   %}
  2405   // Push the integer in stackSlot 'src' onto FP-stack
  2406   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2407     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2408   %}
  2410   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2411   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2412     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2413   %}
  2415   // Same as Pop_Mem_F except for opcode
  2416   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2417   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2418     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2419   %}
  2421   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2422     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2423     emit_d8( cbuf, 0xD8+$dst$$reg );
  2424   %}
  2426   enc_class Push_Reg_FPR( regFPR dst ) %{
  2427     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2428     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2429   %}
  2431   // Push FPU's float to a stack-slot, and pop FPU-stack
  2432   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2433     int pop = 0x02;
  2434     if ($src$$reg != FPR1L_enc) {
  2435       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2436       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2437       pop = 0x03;
  2439     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2440   %}
  2442   // Push FPU's double to a stack-slot, and pop FPU-stack
  2443   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2444     int pop = 0x02;
  2445     if ($src$$reg != FPR1L_enc) {
  2446       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2447       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2448       pop = 0x03;
  2450     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2451   %}
  2453   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2454   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2455     int pop = 0xD0 - 1; // -1 since we skip FLD
  2456     if ($src$$reg != FPR1L_enc) {
  2457       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2458       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2459       pop = 0xD8;
  2461     emit_opcode( cbuf, 0xDD );
  2462     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2463   %}
  2466   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2467     // load dst in FPR0
  2468     emit_opcode( cbuf, 0xD9 );
  2469     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2470     if ($src$$reg != FPR1L_enc) {
  2471       // fincstp
  2472       emit_opcode (cbuf, 0xD9);
  2473       emit_opcode (cbuf, 0xF7);
  2474       // swap src with FPR1:
  2475       // FXCH FPR1 with src
  2476       emit_opcode(cbuf, 0xD9);
  2477       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2478       // fdecstp
  2479       emit_opcode (cbuf, 0xD9);
  2480       emit_opcode (cbuf, 0xF6);
  2482   %}
  2484   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2485     MacroAssembler _masm(&cbuf);
  2486     __ subptr(rsp, 8);
  2487     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2488     __ fld_d(Address(rsp, 0));
  2489     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2490     __ fld_d(Address(rsp, 0));
  2491   %}
  2493   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2494     MacroAssembler _masm(&cbuf);
  2495     __ subptr(rsp, 4);
  2496     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2497     __ fld_s(Address(rsp, 0));
  2498     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2499     __ fld_s(Address(rsp, 0));
  2500   %}
  2502   enc_class Push_ResultD(regD dst) %{
  2503     MacroAssembler _masm(&cbuf);
  2504     __ fstp_d(Address(rsp, 0));
  2505     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2506     __ addptr(rsp, 8);
  2507   %}
  2509   enc_class Push_ResultF(regF dst, immI d8) %{
  2510     MacroAssembler _masm(&cbuf);
  2511     __ fstp_s(Address(rsp, 0));
  2512     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2513     __ addptr(rsp, $d8$$constant);
  2514   %}
  2516   enc_class Push_SrcD(regD src) %{
  2517     MacroAssembler _masm(&cbuf);
  2518     __ subptr(rsp, 8);
  2519     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2520     __ fld_d(Address(rsp, 0));
  2521   %}
  2523   enc_class push_stack_temp_qword() %{
  2524     MacroAssembler _masm(&cbuf);
  2525     __ subptr(rsp, 8);
  2526   %}
  2528   enc_class pop_stack_temp_qword() %{
  2529     MacroAssembler _masm(&cbuf);
  2530     __ addptr(rsp, 8);
  2531   %}
  2533   enc_class push_xmm_to_fpr1(regD src) %{
  2534     MacroAssembler _masm(&cbuf);
  2535     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2536     __ fld_d(Address(rsp, 0));
  2537   %}
  2539   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2540   // Otherwise return a NaN.
  2541   enc_class pow_exp_core_encoding %{
  2542     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2543     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2544     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2545     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2546     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2547     emit_opcode(cbuf,0x1C);
  2548     emit_d8(cbuf,0x24);
  2549     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2550     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2551     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2552     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2553     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2554     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2555     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2556     emit_d32(cbuf,0xFFFFF800);
  2557     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2558     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2559     emit_d32(cbuf,1023);
  2560     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2561     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2562     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2563     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2564     emit_d8(cbuf,20);
  2565     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2566     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2567     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2568     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2569     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2570     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2571     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2572     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2573     emit_d32(cbuf,0);
  2574     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2575     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2576   %}
  2578   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2579     if ($src$$reg != FPR1L_enc) {
  2580       // fincstp
  2581       emit_opcode (cbuf, 0xD9);
  2582       emit_opcode (cbuf, 0xF7);
  2583       // FXCH FPR1 with src
  2584       emit_opcode(cbuf, 0xD9);
  2585       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2586       // fdecstp
  2587       emit_opcode (cbuf, 0xD9);
  2588       emit_opcode (cbuf, 0xF6);
  2590     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2591     // // FSTP   FPR$dst$$reg
  2592     // emit_opcode( cbuf, 0xDD );
  2593     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2594   %}
  2596   enc_class fnstsw_sahf_skip_parity() %{
  2597     // fnstsw ax
  2598     emit_opcode( cbuf, 0xDF );
  2599     emit_opcode( cbuf, 0xE0 );
  2600     // sahf
  2601     emit_opcode( cbuf, 0x9E );
  2602     // jnp  ::skip
  2603     emit_opcode( cbuf, 0x7B );
  2604     emit_opcode( cbuf, 0x05 );
  2605   %}
  2607   enc_class emitModDPR() %{
  2608     // fprem must be iterative
  2609     // :: loop
  2610     // fprem
  2611     emit_opcode( cbuf, 0xD9 );
  2612     emit_opcode( cbuf, 0xF8 );
  2613     // wait
  2614     emit_opcode( cbuf, 0x9b );
  2615     // fnstsw ax
  2616     emit_opcode( cbuf, 0xDF );
  2617     emit_opcode( cbuf, 0xE0 );
  2618     // sahf
  2619     emit_opcode( cbuf, 0x9E );
  2620     // jp  ::loop
  2621     emit_opcode( cbuf, 0x0F );
  2622     emit_opcode( cbuf, 0x8A );
  2623     emit_opcode( cbuf, 0xF4 );
  2624     emit_opcode( cbuf, 0xFF );
  2625     emit_opcode( cbuf, 0xFF );
  2626     emit_opcode( cbuf, 0xFF );
  2627   %}
  2629   enc_class fpu_flags() %{
  2630     // fnstsw_ax
  2631     emit_opcode( cbuf, 0xDF);
  2632     emit_opcode( cbuf, 0xE0);
  2633     // test ax,0x0400
  2634     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2635     emit_opcode( cbuf, 0xA9 );
  2636     emit_d16   ( cbuf, 0x0400 );
  2637     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2638     // // test rax,0x0400
  2639     // emit_opcode( cbuf, 0xA9 );
  2640     // emit_d32   ( cbuf, 0x00000400 );
  2641     //
  2642     // jz exit (no unordered comparison)
  2643     emit_opcode( cbuf, 0x74 );
  2644     emit_d8    ( cbuf, 0x02 );
  2645     // mov ah,1 - treat as LT case (set carry flag)
  2646     emit_opcode( cbuf, 0xB4 );
  2647     emit_d8    ( cbuf, 0x01 );
  2648     // sahf
  2649     emit_opcode( cbuf, 0x9E);
  2650   %}
  2652   enc_class cmpF_P6_fixup() %{
  2653     // Fixup the integer flags in case comparison involved a NaN
  2654     //
  2655     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2656     emit_opcode( cbuf, 0x7B );
  2657     emit_d8    ( cbuf, 0x03 );
  2658     // MOV AH,1 - treat as LT case (set carry flag)
  2659     emit_opcode( cbuf, 0xB4 );
  2660     emit_d8    ( cbuf, 0x01 );
  2661     // SAHF
  2662     emit_opcode( cbuf, 0x9E);
  2663     // NOP     // target for branch to avoid branch to branch
  2664     emit_opcode( cbuf, 0x90);
  2665   %}
  2667 //     fnstsw_ax();
  2668 //     sahf();
  2669 //     movl(dst, nan_result);
  2670 //     jcc(Assembler::parity, exit);
  2671 //     movl(dst, less_result);
  2672 //     jcc(Assembler::below, exit);
  2673 //     movl(dst, equal_result);
  2674 //     jcc(Assembler::equal, exit);
  2675 //     movl(dst, greater_result);
  2677 // less_result     =  1;
  2678 // greater_result  = -1;
  2679 // equal_result    = 0;
  2680 // nan_result      = -1;
  2682   enc_class CmpF_Result(eRegI dst) %{
  2683     // fnstsw_ax();
  2684     emit_opcode( cbuf, 0xDF);
  2685     emit_opcode( cbuf, 0xE0);
  2686     // sahf
  2687     emit_opcode( cbuf, 0x9E);
  2688     // movl(dst, nan_result);
  2689     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2690     emit_d32( cbuf, -1 );
  2691     // jcc(Assembler::parity, exit);
  2692     emit_opcode( cbuf, 0x7A );
  2693     emit_d8    ( cbuf, 0x13 );
  2694     // movl(dst, less_result);
  2695     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2696     emit_d32( cbuf, -1 );
  2697     // jcc(Assembler::below, exit);
  2698     emit_opcode( cbuf, 0x72 );
  2699     emit_d8    ( cbuf, 0x0C );
  2700     // movl(dst, equal_result);
  2701     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2702     emit_d32( cbuf, 0 );
  2703     // jcc(Assembler::equal, exit);
  2704     emit_opcode( cbuf, 0x74 );
  2705     emit_d8    ( cbuf, 0x05 );
  2706     // movl(dst, greater_result);
  2707     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2708     emit_d32( cbuf, 1 );
  2709   %}
  2712   // Compare the longs and set flags
  2713   // BROKEN!  Do Not use as-is
  2714   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2715     // CMP    $src1.hi,$src2.hi
  2716     emit_opcode( cbuf, 0x3B );
  2717     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2718     // JNE,s  done
  2719     emit_opcode(cbuf,0x75);
  2720     emit_d8(cbuf, 2 );
  2721     // CMP    $src1.lo,$src2.lo
  2722     emit_opcode( cbuf, 0x3B );
  2723     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2724 // done:
  2725   %}
  2727   enc_class convert_int_long( regL dst, eRegI src ) %{
  2728     // mov $dst.lo,$src
  2729     int dst_encoding = $dst$$reg;
  2730     int src_encoding = $src$$reg;
  2731     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2732     // mov $dst.hi,$src
  2733     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2734     // sar $dst.hi,31
  2735     emit_opcode( cbuf, 0xC1 );
  2736     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2737     emit_d8(cbuf, 0x1F );
  2738   %}
  2740   enc_class convert_long_double( eRegL src ) %{
  2741     // push $src.hi
  2742     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2743     // push $src.lo
  2744     emit_opcode(cbuf, 0x50+$src$$reg  );
  2745     // fild 64-bits at [SP]
  2746     emit_opcode(cbuf,0xdf);
  2747     emit_d8(cbuf, 0x6C);
  2748     emit_d8(cbuf, 0x24);
  2749     emit_d8(cbuf, 0x00);
  2750     // pop stack
  2751     emit_opcode(cbuf, 0x83); // add  SP, #8
  2752     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2753     emit_d8(cbuf, 0x8);
  2754   %}
  2756   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2757     // IMUL   EDX:EAX,$src1
  2758     emit_opcode( cbuf, 0xF7 );
  2759     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2760     // SAR    EDX,$cnt-32
  2761     int shift_count = ((int)$cnt$$constant) - 32;
  2762     if (shift_count > 0) {
  2763       emit_opcode(cbuf, 0xC1);
  2764       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2765       emit_d8(cbuf, shift_count);
  2767   %}
  2769   // this version doesn't have add sp, 8
  2770   enc_class convert_long_double2( eRegL src ) %{
  2771     // push $src.hi
  2772     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2773     // push $src.lo
  2774     emit_opcode(cbuf, 0x50+$src$$reg  );
  2775     // fild 64-bits at [SP]
  2776     emit_opcode(cbuf,0xdf);
  2777     emit_d8(cbuf, 0x6C);
  2778     emit_d8(cbuf, 0x24);
  2779     emit_d8(cbuf, 0x00);
  2780   %}
  2782   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2783     // Basic idea: long = (long)int * (long)int
  2784     // IMUL EDX:EAX, src
  2785     emit_opcode( cbuf, 0xF7 );
  2786     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2787   %}
  2789   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2790     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2791     // MUL EDX:EAX, src
  2792     emit_opcode( cbuf, 0xF7 );
  2793     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2794   %}
  2796   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  2797     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2798     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2799     // MOV    $tmp,$src.lo
  2800     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2801     // IMUL   $tmp,EDX
  2802     emit_opcode( cbuf, 0x0F );
  2803     emit_opcode( cbuf, 0xAF );
  2804     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2805     // MOV    EDX,$src.hi
  2806     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2807     // IMUL   EDX,EAX
  2808     emit_opcode( cbuf, 0x0F );
  2809     emit_opcode( cbuf, 0xAF );
  2810     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2811     // ADD    $tmp,EDX
  2812     emit_opcode( cbuf, 0x03 );
  2813     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2814     // MUL   EDX:EAX,$src.lo
  2815     emit_opcode( cbuf, 0xF7 );
  2816     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2817     // ADD    EDX,ESI
  2818     emit_opcode( cbuf, 0x03 );
  2819     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2820   %}
  2822   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  2823     // Basic idea: lo(result) = lo(src * y_lo)
  2824     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2825     // IMUL   $tmp,EDX,$src
  2826     emit_opcode( cbuf, 0x6B );
  2827     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2828     emit_d8( cbuf, (int)$src$$constant );
  2829     // MOV    EDX,$src
  2830     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2831     emit_d32( cbuf, (int)$src$$constant );
  2832     // MUL   EDX:EAX,EDX
  2833     emit_opcode( cbuf, 0xF7 );
  2834     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2835     // ADD    EDX,ESI
  2836     emit_opcode( cbuf, 0x03 );
  2837     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2838   %}
  2840   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2841     // PUSH src1.hi
  2842     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2843     // PUSH src1.lo
  2844     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2845     // PUSH src2.hi
  2846     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2847     // PUSH src2.lo
  2848     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2849     // CALL directly to the runtime
  2850     cbuf.set_insts_mark();
  2851     emit_opcode(cbuf,0xE8);       // Call into runtime
  2852     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2853     // Restore stack
  2854     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2855     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2856     emit_d8(cbuf, 4*4);
  2857   %}
  2859   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2860     // PUSH src1.hi
  2861     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2862     // PUSH src1.lo
  2863     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2864     // PUSH src2.hi
  2865     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2866     // PUSH src2.lo
  2867     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2868     // CALL directly to the runtime
  2869     cbuf.set_insts_mark();
  2870     emit_opcode(cbuf,0xE8);       // Call into runtime
  2871     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2872     // Restore stack
  2873     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2874     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2875     emit_d8(cbuf, 4*4);
  2876   %}
  2878   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  2879     // MOV   $tmp,$src.lo
  2880     emit_opcode(cbuf, 0x8B);
  2881     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2882     // OR    $tmp,$src.hi
  2883     emit_opcode(cbuf, 0x0B);
  2884     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2885   %}
  2887   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2888     // CMP    $src1.lo,$src2.lo
  2889     emit_opcode( cbuf, 0x3B );
  2890     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2891     // JNE,s  skip
  2892     emit_cc(cbuf, 0x70, 0x5);
  2893     emit_d8(cbuf,2);
  2894     // CMP    $src1.hi,$src2.hi
  2895     emit_opcode( cbuf, 0x3B );
  2896     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2897   %}
  2899   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  2900     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2901     emit_opcode( cbuf, 0x3B );
  2902     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2903     // MOV    $tmp,$src1.hi
  2904     emit_opcode( cbuf, 0x8B );
  2905     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2906     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2907     emit_opcode( cbuf, 0x1B );
  2908     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2909   %}
  2911   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  2912     // XOR    $tmp,$tmp
  2913     emit_opcode(cbuf,0x33);  // XOR
  2914     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2915     // CMP    $tmp,$src.lo
  2916     emit_opcode( cbuf, 0x3B );
  2917     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2918     // SBB    $tmp,$src.hi
  2919     emit_opcode( cbuf, 0x1B );
  2920     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2921   %}
  2923  // Sniff, sniff... smells like Gnu Superoptimizer
  2924   enc_class neg_long( eRegL dst ) %{
  2925     emit_opcode(cbuf,0xF7);    // NEG hi
  2926     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2927     emit_opcode(cbuf,0xF7);    // NEG lo
  2928     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2929     emit_opcode(cbuf,0x83);    // SBB hi,0
  2930     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2931     emit_d8    (cbuf,0 );
  2932   %}
  2935   // Because the transitions from emitted code to the runtime
  2936   // monitorenter/exit helper stubs are so slow it's critical that
  2937   // we inline both the stack-locking fast-path and the inflated fast path.
  2938   //
  2939   // See also: cmpFastLock and cmpFastUnlock.
  2940   //
  2941   // What follows is a specialized inline transliteration of the code
  2942   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2943   // another option would be to emit TrySlowEnter and TrySlowExit methods
  2944   // at startup-time.  These methods would accept arguments as
  2945   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2946   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2947   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2948   // In practice, however, the # of lock sites is bounded and is usually small.
  2949   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2950   // if the processor uses simple bimodal branch predictors keyed by EIP
  2951   // Since the helper routines would be called from multiple synchronization
  2952   // sites.
  2953   //
  2954   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2955   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2956   // to those specialized methods.  That'd give us a mostly platform-independent
  2957   // implementation that the JITs could optimize and inline at their pleasure.
  2958   // Done correctly, the only time we'd need to cross to native could would be
  2959   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2960   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2961   // (b) explicit barriers or fence operations.
  2962   //
  2963   // TODO:
  2964   //
  2965   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2966   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2967   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2968   //    the lock operators would typically be faster than reifying Self.
  2969   //
  2970   // *  Ideally I'd define the primitives as:
  2971   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2972   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2973   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2974   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2975   //    Furthermore the register assignments are overconstrained, possibly resulting in
  2976   //    sub-optimal code near the synchronization site.
  2977   //
  2978   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2979   //    Alternately, use a better sp-proximity test.
  2980   //
  2981   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2982   //    Either one is sufficient to uniquely identify a thread.
  2983   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2984   //
  2985   // *  Intrinsify notify() and notifyAll() for the common cases where the
  2986   //    object is locked by the calling thread but the waitlist is empty.
  2987   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2988   //
  2989   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2990   //    But beware of excessive branch density on AMD Opterons.
  2991   //
  2992   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2993   //    or failure of the fast-path.  If the fast-path fails then we pass
  2994   //    control to the slow-path, typically in C.  In Fast_Lock and
  2995   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  2996   //    will emit a conditional branch immediately after the node.
  2997   //    So we have branches to branches and lots of ICC.ZF games.
  2998   //    Instead, it might be better to have C2 pass a "FailureLabel"
  2999   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3000   //    will drop through the node.  ICC.ZF is undefined at exit.
  3001   //    In the case of failure, the node will branch directly to the
  3002   //    FailureLabel
  3005   // obj: object to lock
  3006   // box: on-stack box address (displaced header location) - KILLED
  3007   // rax,: tmp -- KILLED
  3008   // scr: tmp -- KILLED
  3009   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3011     Register objReg = as_Register($obj$$reg);
  3012     Register boxReg = as_Register($box$$reg);
  3013     Register tmpReg = as_Register($tmp$$reg);
  3014     Register scrReg = as_Register($scr$$reg);
  3016     // Ensure the register assignents are disjoint
  3017     guarantee (objReg != boxReg, "") ;
  3018     guarantee (objReg != tmpReg, "") ;
  3019     guarantee (objReg != scrReg, "") ;
  3020     guarantee (boxReg != tmpReg, "") ;
  3021     guarantee (boxReg != scrReg, "") ;
  3022     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3024     MacroAssembler masm(&cbuf);
  3026     if (_counters != NULL) {
  3027       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3029     if (EmitSync & 1) {
  3030         // set box->dhw = unused_mark (3)
  3031         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3032         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3033         masm.cmpptr (rsp, (int32_t)0) ;                        
  3034     } else 
  3035     if (EmitSync & 2) { 
  3036         Label DONE_LABEL ;           
  3037         if (UseBiasedLocking) {
  3038            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3039            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3042         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3043         masm.orptr (tmpReg, 0x1);
  3044         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3045         if (os::is_MP()) { masm.lock();  }
  3046         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3047         masm.jcc(Assembler::equal, DONE_LABEL);
  3048         // Recursive locking
  3049         masm.subptr(tmpReg, rsp);
  3050         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3051         masm.movptr(Address(boxReg, 0), tmpReg);
  3052         masm.bind(DONE_LABEL) ; 
  3053     } else {  
  3054       // Possible cases that we'll encounter in fast_lock 
  3055       // ------------------------------------------------
  3056       // * Inflated
  3057       //    -- unlocked
  3058       //    -- Locked
  3059       //       = by self
  3060       //       = by other
  3061       // * biased
  3062       //    -- by Self
  3063       //    -- by other
  3064       // * neutral
  3065       // * stack-locked
  3066       //    -- by self
  3067       //       = sp-proximity test hits
  3068       //       = sp-proximity test generates false-negative
  3069       //    -- by other
  3070       //
  3072       Label IsInflated, DONE_LABEL, PopDone ;
  3074       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3075       // order to reduce the number of conditional branches in the most common cases.
  3076       // Beware -- there's a subtle invariant that fetch of the markword
  3077       // at [FETCH], below, will never observe a biased encoding (*101b).
  3078       // If this invariant is not held we risk exclusion (safety) failure.
  3079       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3080         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3083       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3084       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3085       masm.jccb  (Assembler::notZero, IsInflated) ;
  3087       // Attempt stack-locking ...
  3088       masm.orptr (tmpReg, 0x1);
  3089       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3090       if (os::is_MP()) { masm.lock();  }
  3091       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3092       if (_counters != NULL) {
  3093         masm.cond_inc32(Assembler::equal,
  3094                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3096       masm.jccb (Assembler::equal, DONE_LABEL);
  3098       // Recursive locking
  3099       masm.subptr(tmpReg, rsp);
  3100       masm.andptr(tmpReg, 0xFFFFF003 );
  3101       masm.movptr(Address(boxReg, 0), tmpReg);
  3102       if (_counters != NULL) {
  3103         masm.cond_inc32(Assembler::equal,
  3104                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3106       masm.jmp  (DONE_LABEL) ;
  3108       masm.bind (IsInflated) ;
  3110       // The object is inflated.
  3111       //
  3112       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3113       //   Use markOopDesc::monitor_value instead of "2".
  3114       //   use markOop::unused_mark() instead of "3".
  3115       // The tmpReg value is an objectMonitor reference ORed with
  3116       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3117       // objectmonitor pointer by masking off the "2" bit or we can just
  3118       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3119       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3120       //
  3121       // I use the latter as it avoids AGI stalls.
  3122       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3123       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3124       //
  3125       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3127       // boxReg refers to the on-stack BasicLock in the current frame.
  3128       // We'd like to write:
  3129       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3130       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3131       // additional latency as we have another ST in the store buffer that must drain.
  3133       if (EmitSync & 8192) { 
  3134          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3135          masm.get_thread (scrReg) ; 
  3136          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3137          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3138          if (os::is_MP()) { masm.lock(); } 
  3139          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3140       } else 
  3141       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3142          masm.movptr(scrReg, boxReg) ; 
  3143          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3145          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3146          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3147             // prefetchw [eax + Offset(_owner)-2]
  3148             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3151          if ((EmitSync & 64) == 0) {
  3152            // Optimistic form: consider XORL tmpReg,tmpReg
  3153            masm.movptr(tmpReg, NULL_WORD) ; 
  3154          } else { 
  3155            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3156            // Test-And-CAS instead of CAS
  3157            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3158            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3159            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3162          // Appears unlocked - try to swing _owner from null to non-null.
  3163          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3164          // to CAS the register containing Self into m->Owner.
  3165          // But we don't have enough registers, so instead we can either try to CAS
  3166          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3167          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3168          // (rsp or the address of the box) into  m->owner is harmless.
  3169          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3170          if (os::is_MP()) { masm.lock();  }
  3171          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3172          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3173          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3174          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3175          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3176          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3178          // If the CAS fails we can either retry or pass control to the slow-path.  
  3179          // We use the latter tactic.  
  3180          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3181          // If the CAS was successful ...
  3182          //   Self has acquired the lock
  3183          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3184          // Intentional fall-through into DONE_LABEL ...
  3185       } else {
  3186          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3187          masm.movptr(boxReg, tmpReg) ; 
  3189          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3190          if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3191             // prefetchw [eax + Offset(_owner)-2]
  3192             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3195          if ((EmitSync & 64) == 0) {
  3196            // Optimistic form
  3197            masm.xorptr  (tmpReg, tmpReg) ; 
  3198          } else { 
  3199            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3200            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3201            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3202            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3205          // Appears unlocked - try to swing _owner from null to non-null.
  3206          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3207          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3208          masm.get_thread (scrReg) ;
  3209          if (os::is_MP()) { masm.lock(); }
  3210          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3212          // If the CAS fails we can either retry or pass control to the slow-path.
  3213          // We use the latter tactic.
  3214          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3215          // If the CAS was successful ...
  3216          //   Self has acquired the lock
  3217          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3218          // Intentional fall-through into DONE_LABEL ...
  3221       // DONE_LABEL is a hot target - we'd really like to place it at the
  3222       // start of cache line by padding with NOPs.
  3223       // See the AMD and Intel software optimization manuals for the
  3224       // most efficient "long" NOP encodings.
  3225       // Unfortunately none of our alignment mechanisms suffice.
  3226       masm.bind(DONE_LABEL);
  3228       // Avoid branch-to-branch on AMD processors
  3229       // This appears to be superstition.
  3230       if (EmitSync & 32) masm.nop() ;
  3233       // At DONE_LABEL the icc ZFlag is set as follows ...
  3234       // Fast_Unlock uses the same protocol.
  3235       // ZFlag == 1 -> Success
  3236       // ZFlag == 0 -> Failure - force control through the slow-path
  3238   %}
  3240   // obj: object to unlock
  3241   // box: box address (displaced header location), killed.  Must be EAX.
  3242   // rbx,: killed tmp; cannot be obj nor box.
  3243   //
  3244   // Some commentary on balanced locking:
  3245   //
  3246   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3247   // Methods that don't have provably balanced locking are forced to run in the
  3248   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3249   // The interpreter provides two properties:
  3250   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3251   //      objects acquired the current activation (frame).  Recall that the
  3252   //      interpreter maintains an on-stack list of locks currently held by
  3253   //      a frame.
  3254   // I2:  If a method attempts to unlock an object that is not held by the
  3255   //      the frame the interpreter throws IMSX.
  3256   //
  3257   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3258   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3259   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3260   // is still locked by A().
  3261   //
  3262   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3263   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3264   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3265   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3267   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3269     Register objReg = as_Register($obj$$reg);
  3270     Register boxReg = as_Register($box$$reg);
  3271     Register tmpReg = as_Register($tmp$$reg);
  3273     guarantee (objReg != boxReg, "") ;
  3274     guarantee (objReg != tmpReg, "") ;
  3275     guarantee (boxReg != tmpReg, "") ;
  3276     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3277     MacroAssembler masm(&cbuf);
  3279     if (EmitSync & 4) {
  3280       // Disable - inhibit all inlining.  Force control through the slow-path
  3281       masm.cmpptr (rsp, 0) ; 
  3282     } else 
  3283     if (EmitSync & 8) {
  3284       Label DONE_LABEL ;
  3285       if (UseBiasedLocking) {
  3286          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3288       // classic stack-locking code ...
  3289       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3290       masm.testptr(tmpReg, tmpReg) ;
  3291       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3292       if (os::is_MP()) { masm.lock(); }
  3293       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3294       masm.bind(DONE_LABEL);
  3295     } else {
  3296       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3298       // Critically, the biased locking test must have precedence over
  3299       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3300       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3301          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3304       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3305       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3306       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3308       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3309       masm.jccb  (Assembler::zero, Stacked) ;
  3311       masm.bind  (Inflated) ;
  3312       // It's inflated.
  3313       // Despite our balanced locking property we still check that m->_owner == Self
  3314       // as java routines or native JNI code called by this thread might
  3315       // have released the lock.
  3316       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3317       // state in _succ so we can avoid fetching EntryList|cxq.
  3318       //
  3319       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3320       // such as recursive enter and exit -- but we have to be wary of
  3321       // I$ bloat, T$ effects and BP$ effects.
  3322       //
  3323       // If there's no contention try a 1-0 exit.  That is, exit without
  3324       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3325       // we detect and recover from the race that the 1-0 exit admits.
  3326       //
  3327       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3328       // before it STs null into _owner, releasing the lock.  Updates
  3329       // to data protected by the critical section must be visible before
  3330       // we drop the lock (and thus before any other thread could acquire
  3331       // the lock and observe the fields protected by the lock).
  3332       // IA32's memory-model is SPO, so STs are ordered with respect to
  3333       // each other and there's no need for an explicit barrier (fence).
  3334       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3336       masm.get_thread (boxReg) ;
  3337       if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  3338         // prefetchw [ebx + Offset(_owner)-2]
  3339         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3342       // Note that we could employ various encoding schemes to reduce
  3343       // the number of loads below (currently 4) to just 2 or 3.
  3344       // Refer to the comments in synchronizer.cpp.
  3345       // In practice the chain of fetches doesn't seem to impact performance, however.
  3346       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3347          // Attempt to reduce branch density - AMD's branch predictor.
  3348          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3349          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3350          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3351          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3352          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3353          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3354          masm.jmpb  (DONE_LABEL) ; 
  3355       } else { 
  3356          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3357          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3358          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3359          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3360          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3361          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3362          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3363          masm.jmpb  (DONE_LABEL) ; 
  3366       // The Following code fragment (EmitSync & 65536) improves the performance of
  3367       // contended applications and contended synchronization microbenchmarks.
  3368       // Unfortunately the emission of the code - even though not executed - causes regressions
  3369       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3370       // with an equal number of never-executed NOPs results in the same regression.
  3371       // We leave it off by default.
  3373       if ((EmitSync & 65536) != 0) {
  3374          Label LSuccess, LGoSlowPath ;
  3376          masm.bind  (CheckSucc) ;
  3378          // Optional pre-test ... it's safe to elide this
  3379          if ((EmitSync & 16) == 0) { 
  3380             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3381             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3384          // We have a classic Dekker-style idiom:
  3385          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3386          // There are a number of ways to implement the barrier:
  3387          // (1) lock:andl &m->_owner, 0
  3388          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3389          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3390          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3391          // (2) If supported, an explicit MFENCE is appealing.
  3392          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3393          //     particularly if the write-buffer is full as might be the case if
  3394          //     if stores closely precede the fence or fence-equivalent instruction.
  3395          //     In more modern implementations MFENCE appears faster, however.
  3396          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3397          //     The $lines underlying the top-of-stack should be in M-state.
  3398          //     The locked add instruction is serializing, of course.
  3399          // (4) Use xchg, which is serializing
  3400          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3401          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3402          //     The integer condition codes will tell us if succ was 0.
  3403          //     Since _succ and _owner should reside in the same $line and
  3404          //     we just stored into _owner, it's likely that the $line
  3405          //     remains in M-state for the lock:orl.
  3406          //
  3407          // We currently use (3), although it's likely that switching to (2)
  3408          // is correct for the future.
  3410          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3411          if (os::is_MP()) { 
  3412             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3413               masm.mfence();
  3414             } else { 
  3415               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3418          // Ratify _succ remains non-null
  3419          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3420          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3422          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3423          if (os::is_MP()) { masm.lock(); }
  3424          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3425          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3426          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3427          // Now install Self over rsp.  This is safe as we're transitioning from
  3428          // non-null to non=null
  3429          masm.get_thread (boxReg) ;
  3430          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3431          // Intentional fall-through into LGoSlowPath ...
  3433          masm.bind  (LGoSlowPath) ; 
  3434          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3435          masm.jmpb  (DONE_LABEL) ; 
  3437          masm.bind  (LSuccess) ; 
  3438          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3439          masm.jmpb  (DONE_LABEL) ; 
  3442       masm.bind (Stacked) ;
  3443       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3444       // It must be stack-locked.
  3445       // Try to reset the header to displaced header.
  3446       // The "box" value on the stack is stable, so we can reload
  3447       // and be assured we observe the same value as above.
  3448       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3449       if (os::is_MP()) {   masm.lock();    }
  3450       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3451       // Intention fall-thru into DONE_LABEL
  3454       // DONE_LABEL is a hot target - we'd really like to place it at the
  3455       // start of cache line by padding with NOPs.
  3456       // See the AMD and Intel software optimization manuals for the
  3457       // most efficient "long" NOP encodings.
  3458       // Unfortunately none of our alignment mechanisms suffice.
  3459       if ((EmitSync & 65536) == 0) {
  3460          masm.bind (CheckSucc) ;
  3462       masm.bind(DONE_LABEL);
  3464       // Avoid branch to branch on AMD processors
  3465       if (EmitSync & 32768) { masm.nop() ; }
  3467   %}
  3470   enc_class enc_pop_rdx() %{
  3471     emit_opcode(cbuf,0x5A);
  3472   %}
  3474   enc_class enc_rethrow() %{
  3475     cbuf.set_insts_mark();
  3476     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3477     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  3478                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3479   %}
  3482   // Convert a double to an int.  Java semantics require we do complex
  3483   // manglelations in the corner cases.  So we set the rounding mode to
  3484   // 'zero', store the darned double down as an int, and reset the
  3485   // rounding mode to 'nearest'.  The hardware throws an exception which
  3486   // patches up the correct value directly to the stack.
  3487   enc_class DPR2I_encoding( regDPR src ) %{
  3488     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3489     // exceptions here, so that a NAN or other corner-case value will
  3490     // thrown an exception (but normal values get converted at full speed).
  3491     // However, I2C adapters and other float-stack manglers leave pending
  3492     // invalid-op exceptions hanging.  We would have to clear them before
  3493     // enabling them and that is more expensive than just testing for the
  3494     // invalid value Intel stores down in the corner cases.
  3495     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3496     emit_opcode(cbuf,0x2D);
  3497     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3498     // Allocate a word
  3499     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3500     emit_opcode(cbuf,0xEC);
  3501     emit_d8(cbuf,0x04);
  3502     // Encoding assumes a double has been pushed into FPR0.
  3503     // Store down the double as an int, popping the FPU stack
  3504     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3505     emit_opcode(cbuf,0x1C);
  3506     emit_d8(cbuf,0x24);
  3507     // Restore the rounding mode; mask the exception
  3508     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3509     emit_opcode(cbuf,0x2D);
  3510     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3511         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3512         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3514     // Load the converted int; adjust CPU stack
  3515     emit_opcode(cbuf,0x58);       // POP EAX
  3516     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3517     emit_d32   (cbuf,0x80000000); //         0x80000000
  3518     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3519     emit_d8    (cbuf,0x07);       // Size of slow_call
  3520     // Push src onto stack slow-path
  3521     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3522     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3523     // CALL directly to the runtime
  3524     cbuf.set_insts_mark();
  3525     emit_opcode(cbuf,0xE8);       // Call into runtime
  3526     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3527     // Carry on here...
  3528   %}
  3530   enc_class DPR2L_encoding( regDPR src ) %{
  3531     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3532     emit_opcode(cbuf,0x2D);
  3533     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3534     // Allocate a word
  3535     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3536     emit_opcode(cbuf,0xEC);
  3537     emit_d8(cbuf,0x08);
  3538     // Encoding assumes a double has been pushed into FPR0.
  3539     // Store down the double as a long, popping the FPU stack
  3540     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3541     emit_opcode(cbuf,0x3C);
  3542     emit_d8(cbuf,0x24);
  3543     // Restore the rounding mode; mask the exception
  3544     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3545     emit_opcode(cbuf,0x2D);
  3546     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3547         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3548         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3550     // Load the converted int; adjust CPU stack
  3551     emit_opcode(cbuf,0x58);       // POP EAX
  3552     emit_opcode(cbuf,0x5A);       // POP EDX
  3553     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3554     emit_d8    (cbuf,0xFA);       // rdx
  3555     emit_d32   (cbuf,0x80000000); //         0x80000000
  3556     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3557     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3558     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3559     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3560     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3561     emit_d8    (cbuf,0x07);       // Size of slow_call
  3562     // Push src onto stack slow-path
  3563     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3564     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3565     // CALL directly to the runtime
  3566     cbuf.set_insts_mark();
  3567     emit_opcode(cbuf,0xE8);       // Call into runtime
  3568     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3569     // Carry on here...
  3570   %}
  3572   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3573     // Operand was loaded from memory into fp ST (stack top)
  3574     // FMUL   ST,$src  /* D8 C8+i */
  3575     emit_opcode(cbuf, 0xD8);
  3576     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3577   %}
  3579   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3580     // FADDP  ST,src2  /* D8 C0+i */
  3581     emit_opcode(cbuf, 0xD8);
  3582     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3583     //could use FADDP  src2,fpST  /* DE C0+i */
  3584   %}
  3586   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3587     // FADDP  src2,ST  /* DE C0+i */
  3588     emit_opcode(cbuf, 0xDE);
  3589     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3590   %}
  3592   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3593     // Operand has been loaded into fp ST (stack top)
  3594       // FSUB   ST,$src1
  3595       emit_opcode(cbuf, 0xD8);
  3596       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3598       // FDIV
  3599       emit_opcode(cbuf, 0xD8);
  3600       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3601   %}
  3603   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3604     // Operand was loaded from memory into fp ST (stack top)
  3605     // FADD   ST,$src  /* D8 C0+i */
  3606     emit_opcode(cbuf, 0xD8);
  3607     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3609     // FMUL  ST,src2  /* D8 C*+i */
  3610     emit_opcode(cbuf, 0xD8);
  3611     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3612   %}
  3615   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3616     // Operand was loaded from memory into fp ST (stack top)
  3617     // FADD   ST,$src  /* D8 C0+i */
  3618     emit_opcode(cbuf, 0xD8);
  3619     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3621     // FMULP  src2,ST  /* DE C8+i */
  3622     emit_opcode(cbuf, 0xDE);
  3623     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3624   %}
  3626   // Atomically load the volatile long
  3627   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3628     emit_opcode(cbuf,0xDF);
  3629     int rm_byte_opcode = 0x05;
  3630     int base     = $mem$$base;
  3631     int index    = $mem$$index;
  3632     int scale    = $mem$$scale;
  3633     int displace = $mem$$disp;
  3634     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3635     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3636     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3637   %}
  3639   // Volatile Store Long.  Must be atomic, so move it into
  3640   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3641   // target address before the store (for null-ptr checks)
  3642   // so the memory operand is used twice in the encoding.
  3643   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3644     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3645     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3646     emit_opcode(cbuf,0xDF);
  3647     int rm_byte_opcode = 0x07;
  3648     int base     = $mem$$base;
  3649     int index    = $mem$$index;
  3650     int scale    = $mem$$scale;
  3651     int displace = $mem$$disp;
  3652     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  3653     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  3654   %}
  3656   // Safepoint Poll.  This polls the safepoint page, and causes an
  3657   // exception if it is not readable. Unfortunately, it kills the condition code
  3658   // in the process
  3659   // We current use TESTL [spp],EDI
  3660   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3662   enc_class Safepoint_Poll() %{
  3663     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3664     emit_opcode(cbuf,0x85);
  3665     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3666     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3667   %}
  3668 %}
  3671 //----------FRAME--------------------------------------------------------------
  3672 // Definition of frame structure and management information.
  3673 //
  3674 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3675 //                             |   (to get allocators register number
  3676 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3677 //  r   CALLER     |        |
  3678 //  o     |        +--------+      pad to even-align allocators stack-slot
  3679 //  w     V        |  pad0  |        numbers; owned by CALLER
  3680 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3681 //  h     ^        |   in   |  5
  3682 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3683 //  |     |        |        |  3
  3684 //  |     |        +--------+
  3685 //  V     |        | old out|      Empty on Intel, window on Sparc
  3686 //        |    old |preserve|      Must be even aligned.
  3687 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3688 //        |        |   in   |  3   area for Intel ret address
  3689 //     Owned by    |preserve|      Empty on Sparc.
  3690 //       SELF      +--------+
  3691 //        |        |  pad2  |  2   pad to align old SP
  3692 //        |        +--------+  1
  3693 //        |        | locks  |  0
  3694 //        |        +--------+----> OptoReg::stack0(), even aligned
  3695 //        |        |  pad1  | 11   pad to align new SP
  3696 //        |        +--------+
  3697 //        |        |        | 10
  3698 //        |        | spills |  9   spills
  3699 //        V        |        |  8   (pad0 slot for callee)
  3700 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3701 //        ^        |  out   |  7
  3702 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3703 //     Owned by    +--------+
  3704 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3705 //        |    new |preserve|      Must be even-aligned.
  3706 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3707 //        |        |        |
  3708 //
  3709 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3710 //         known from SELF's arguments and the Java calling convention.
  3711 //         Region 6-7 is determined per call site.
  3712 // Note 2: If the calling convention leaves holes in the incoming argument
  3713 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3714 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3715 //         incoming area, as the Java calling convention is completely under
  3716 //         the control of the AD file.  Doubles can be sorted and packed to
  3717 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3718 //         varargs C calling conventions.
  3719 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3720 //         even aligned with pad0 as needed.
  3721 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3722 //         region 6-11 is even aligned; it may be padded out more so that
  3723 //         the region from SP to FP meets the minimum stack alignment.
  3725 frame %{
  3726   // What direction does stack grow in (assumed to be same for C & Java)
  3727   stack_direction(TOWARDS_LOW);
  3729   // These three registers define part of the calling convention
  3730   // between compiled code and the interpreter.
  3731   inline_cache_reg(EAX);                // Inline Cache Register
  3732   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3734   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3735   cisc_spilling_operand_name(indOffset32);
  3737   // Number of stack slots consumed by locking an object
  3738   sync_stack_slots(1);
  3740   // Compiled code's Frame Pointer
  3741   frame_pointer(ESP);
  3742   // Interpreter stores its frame pointer in a register which is
  3743   // stored to the stack by I2CAdaptors.
  3744   // I2CAdaptors convert from interpreted java to compiled java.
  3745   interpreter_frame_pointer(EBP);
  3747   // Stack alignment requirement
  3748   // Alignment size in bytes (128-bit -> 16 bytes)
  3749   stack_alignment(StackAlignmentInBytes);
  3751   // Number of stack slots between incoming argument block and the start of
  3752   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3753   // EPILOG must remove this many slots.  Intel needs one slot for
  3754   // return address and one for rbp, (must save rbp)
  3755   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3757   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3758   // for calls to C.  Supports the var-args backing area for register parms.
  3759   varargs_C_out_slots_killed(0);
  3761   // The after-PROLOG location of the return address.  Location of
  3762   // return address specifies a type (REG or STACK) and a number
  3763   // representing the register number (i.e. - use a register name) or
  3764   // stack slot.
  3765   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3766   // Otherwise, it is above the locks and verification slot and alignment word
  3767   return_addr(STACK - 1 +
  3768               round_to((Compile::current()->in_preserve_stack_slots() +
  3769                         Compile::current()->fixed_slots()),
  3770                        stack_alignment_in_slots()));
  3772   // Body of function which returns an integer array locating
  3773   // arguments either in registers or in stack slots.  Passed an array
  3774   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3775   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3776   // arguments for a CALLEE.  Incoming stack arguments are
  3777   // automatically biased by the preserve_stack_slots field above.
  3778   calling_convention %{
  3779     // No difference between ingoing/outgoing just pass false
  3780     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3781   %}
  3784   // Body of function which returns an integer array locating
  3785   // arguments either in registers or in stack slots.  Passed an array
  3786   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3787   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3788   // arguments for a CALLEE.  Incoming stack arguments are
  3789   // automatically biased by the preserve_stack_slots field above.
  3790   c_calling_convention %{
  3791     // This is obviously always outgoing
  3792     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3793   %}
  3795   // Location of C & interpreter return values
  3796   c_return_value %{
  3797     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3798     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3799     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3801     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3802     // that C functions return float and double results in XMM0.
  3803     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3804       return OptoRegPair(XMM0b_num,XMM0a_num);
  3805     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3806       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  3808     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3809   %}
  3811   // Location of return values
  3812   return_value %{
  3813     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3814     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3815     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3816     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3817       return OptoRegPair(XMM0b_num,XMM0a_num);
  3818     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3819       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  3820     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3821   %}
  3823 %}
  3825 //----------ATTRIBUTES---------------------------------------------------------
  3826 //----------Operand Attributes-------------------------------------------------
  3827 op_attrib op_cost(0);        // Required cost attribute
  3829 //----------Instruction Attributes---------------------------------------------
  3830 ins_attrib ins_cost(100);       // Required cost attribute
  3831 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3832 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3833                                 // non-matching short branch variant of some
  3834                                                             // long branch?
  3835 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3836                                 // specifies the alignment that some part of the instruction (not
  3837                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3838                                 // function must be provided for the instruction
  3840 //----------OPERANDS-----------------------------------------------------------
  3841 // Operand definitions must precede instruction definitions for correct parsing
  3842 // in the ADLC because operands constitute user defined types which are used in
  3843 // instruction definitions.
  3845 //----------Simple Operands----------------------------------------------------
  3846 // Immediate Operands
  3847 // Integer Immediate
  3848 operand immI() %{
  3849   match(ConI);
  3851   op_cost(10);
  3852   format %{ %}
  3853   interface(CONST_INTER);
  3854 %}
  3856 // Constant for test vs zero
  3857 operand immI0() %{
  3858   predicate(n->get_int() == 0);
  3859   match(ConI);
  3861   op_cost(0);
  3862   format %{ %}
  3863   interface(CONST_INTER);
  3864 %}
  3866 // Constant for increment
  3867 operand immI1() %{
  3868   predicate(n->get_int() == 1);
  3869   match(ConI);
  3871   op_cost(0);
  3872   format %{ %}
  3873   interface(CONST_INTER);
  3874 %}
  3876 // Constant for decrement
  3877 operand immI_M1() %{
  3878   predicate(n->get_int() == -1);
  3879   match(ConI);
  3881   op_cost(0);
  3882   format %{ %}
  3883   interface(CONST_INTER);
  3884 %}
  3886 // Valid scale values for addressing modes
  3887 operand immI2() %{
  3888   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3889   match(ConI);
  3891   format %{ %}
  3892   interface(CONST_INTER);
  3893 %}
  3895 operand immI8() %{
  3896   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3897   match(ConI);
  3899   op_cost(5);
  3900   format %{ %}
  3901   interface(CONST_INTER);
  3902 %}
  3904 operand immI16() %{
  3905   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3906   match(ConI);
  3908   op_cost(10);
  3909   format %{ %}
  3910   interface(CONST_INTER);
  3911 %}
  3913 // Constant for long shifts
  3914 operand immI_32() %{
  3915   predicate( n->get_int() == 32 );
  3916   match(ConI);
  3918   op_cost(0);
  3919   format %{ %}
  3920   interface(CONST_INTER);
  3921 %}
  3923 operand immI_1_31() %{
  3924   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3925   match(ConI);
  3927   op_cost(0);
  3928   format %{ %}
  3929   interface(CONST_INTER);
  3930 %}
  3932 operand immI_32_63() %{
  3933   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3934   match(ConI);
  3935   op_cost(0);
  3937   format %{ %}
  3938   interface(CONST_INTER);
  3939 %}
  3941 operand immI_1() %{
  3942   predicate( n->get_int() == 1 );
  3943   match(ConI);
  3945   op_cost(0);
  3946   format %{ %}
  3947   interface(CONST_INTER);
  3948 %}
  3950 operand immI_2() %{
  3951   predicate( n->get_int() == 2 );
  3952   match(ConI);
  3954   op_cost(0);
  3955   format %{ %}
  3956   interface(CONST_INTER);
  3957 %}
  3959 operand immI_3() %{
  3960   predicate( n->get_int() == 3 );
  3961   match(ConI);
  3963   op_cost(0);
  3964   format %{ %}
  3965   interface(CONST_INTER);
  3966 %}
  3968 // Pointer Immediate
  3969 operand immP() %{
  3970   match(ConP);
  3972   op_cost(10);
  3973   format %{ %}
  3974   interface(CONST_INTER);
  3975 %}
  3977 // NULL Pointer Immediate
  3978 operand immP0() %{
  3979   predicate( n->get_ptr() == 0 );
  3980   match(ConP);
  3981   op_cost(0);
  3983   format %{ %}
  3984   interface(CONST_INTER);
  3985 %}
  3987 // Long Immediate
  3988 operand immL() %{
  3989   match(ConL);
  3991   op_cost(20);
  3992   format %{ %}
  3993   interface(CONST_INTER);
  3994 %}
  3996 // Long Immediate zero
  3997 operand immL0() %{
  3998   predicate( n->get_long() == 0L );
  3999   match(ConL);
  4000   op_cost(0);
  4002   format %{ %}
  4003   interface(CONST_INTER);
  4004 %}
  4006 // Long Immediate zero
  4007 operand immL_M1() %{
  4008   predicate( n->get_long() == -1L );
  4009   match(ConL);
  4010   op_cost(0);
  4012   format %{ %}
  4013   interface(CONST_INTER);
  4014 %}
  4016 // Long immediate from 0 to 127.
  4017 // Used for a shorter form of long mul by 10.
  4018 operand immL_127() %{
  4019   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4020   match(ConL);
  4021   op_cost(0);
  4023   format %{ %}
  4024   interface(CONST_INTER);
  4025 %}
  4027 // Long Immediate: low 32-bit mask
  4028 operand immL_32bits() %{
  4029   predicate(n->get_long() == 0xFFFFFFFFL);
  4030   match(ConL);
  4031   op_cost(0);
  4033   format %{ %}
  4034   interface(CONST_INTER);
  4035 %}
  4037 // Long Immediate: low 32-bit mask
  4038 operand immL32() %{
  4039   predicate(n->get_long() == (int)(n->get_long()));
  4040   match(ConL);
  4041   op_cost(20);
  4043   format %{ %}
  4044   interface(CONST_INTER);
  4045 %}
  4047 //Double Immediate zero
  4048 operand immDPR0() %{
  4049   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4050   // bug that generates code such that NaNs compare equal to 0.0
  4051   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4052   match(ConD);
  4054   op_cost(5);
  4055   format %{ %}
  4056   interface(CONST_INTER);
  4057 %}
  4059 // Double Immediate one
  4060 operand immDPR1() %{
  4061   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4062   match(ConD);
  4064   op_cost(5);
  4065   format %{ %}
  4066   interface(CONST_INTER);
  4067 %}
  4069 // Double Immediate
  4070 operand immDPR() %{
  4071   predicate(UseSSE<=1);
  4072   match(ConD);
  4074   op_cost(5);
  4075   format %{ %}
  4076   interface(CONST_INTER);
  4077 %}
  4079 operand immD() %{
  4080   predicate(UseSSE>=2);
  4081   match(ConD);
  4083   op_cost(5);
  4084   format %{ %}
  4085   interface(CONST_INTER);
  4086 %}
  4088 // Double Immediate zero
  4089 operand immD0() %{
  4090   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4091   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4092   // compare equal to -0.0.
  4093   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4094   match(ConD);
  4096   format %{ %}
  4097   interface(CONST_INTER);
  4098 %}
  4100 // Float Immediate zero
  4101 operand immFPR0() %{
  4102   predicate(UseSSE == 0 && n->getf() == 0.0F);
  4103   match(ConF);
  4105   op_cost(5);
  4106   format %{ %}
  4107   interface(CONST_INTER);
  4108 %}
  4110 // Float Immediate one
  4111 operand immFPR1() %{
  4112   predicate(UseSSE == 0 && n->getf() == 1.0F);
  4113   match(ConF);
  4115   op_cost(5);
  4116   format %{ %}
  4117   interface(CONST_INTER);
  4118 %}
  4120 // Float Immediate
  4121 operand immFPR() %{
  4122   predicate( UseSSE == 0 );
  4123   match(ConF);
  4125   op_cost(5);
  4126   format %{ %}
  4127   interface(CONST_INTER);
  4128 %}
  4130 // Float Immediate
  4131 operand immF() %{
  4132   predicate(UseSSE >= 1);
  4133   match(ConF);
  4135   op_cost(5);
  4136   format %{ %}
  4137   interface(CONST_INTER);
  4138 %}
  4140 // Float Immediate zero.  Zero and not -0.0
  4141 operand immF0() %{
  4142   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4143   match(ConF);
  4145   op_cost(5);
  4146   format %{ %}
  4147   interface(CONST_INTER);
  4148 %}
  4150 // Immediates for special shifts (sign extend)
  4152 // Constants for increment
  4153 operand immI_16() %{
  4154   predicate( n->get_int() == 16 );
  4155   match(ConI);
  4157   format %{ %}
  4158   interface(CONST_INTER);
  4159 %}
  4161 operand immI_24() %{
  4162   predicate( n->get_int() == 24 );
  4163   match(ConI);
  4165   format %{ %}
  4166   interface(CONST_INTER);
  4167 %}
  4169 // Constant for byte-wide masking
  4170 operand immI_255() %{
  4171   predicate( n->get_int() == 255 );
  4172   match(ConI);
  4174   format %{ %}
  4175   interface(CONST_INTER);
  4176 %}
  4178 // Constant for short-wide masking
  4179 operand immI_65535() %{
  4180   predicate(n->get_int() == 65535);
  4181   match(ConI);
  4183   format %{ %}
  4184   interface(CONST_INTER);
  4185 %}
  4187 // Register Operands
  4188 // Integer Register
  4189 operand eRegI() %{
  4190   constraint(ALLOC_IN_RC(e_reg));
  4191   match(RegI);
  4192   match(xRegI);
  4193   match(eAXRegI);
  4194   match(eBXRegI);
  4195   match(eCXRegI);
  4196   match(eDXRegI);
  4197   match(eDIRegI);
  4198   match(eSIRegI);
  4200   format %{ %}
  4201   interface(REG_INTER);
  4202 %}
  4204 // Subset of Integer Register
  4205 operand xRegI(eRegI reg) %{
  4206   constraint(ALLOC_IN_RC(x_reg));
  4207   match(reg);
  4208   match(eAXRegI);
  4209   match(eBXRegI);
  4210   match(eCXRegI);
  4211   match(eDXRegI);
  4213   format %{ %}
  4214   interface(REG_INTER);
  4215 %}
  4217 // Special Registers
  4218 operand eAXRegI(xRegI reg) %{
  4219   constraint(ALLOC_IN_RC(eax_reg));
  4220   match(reg);
  4221   match(eRegI);
  4223   format %{ "EAX" %}
  4224   interface(REG_INTER);
  4225 %}
  4227 // Special Registers
  4228 operand eBXRegI(xRegI reg) %{
  4229   constraint(ALLOC_IN_RC(ebx_reg));
  4230   match(reg);
  4231   match(eRegI);
  4233   format %{ "EBX" %}
  4234   interface(REG_INTER);
  4235 %}
  4237 operand eCXRegI(xRegI reg) %{
  4238   constraint(ALLOC_IN_RC(ecx_reg));
  4239   match(reg);
  4240   match(eRegI);
  4242   format %{ "ECX" %}
  4243   interface(REG_INTER);
  4244 %}
  4246 operand eDXRegI(xRegI reg) %{
  4247   constraint(ALLOC_IN_RC(edx_reg));
  4248   match(reg);
  4249   match(eRegI);
  4251   format %{ "EDX" %}
  4252   interface(REG_INTER);
  4253 %}
  4255 operand eDIRegI(xRegI reg) %{
  4256   constraint(ALLOC_IN_RC(edi_reg));
  4257   match(reg);
  4258   match(eRegI);
  4260   format %{ "EDI" %}
  4261   interface(REG_INTER);
  4262 %}
  4264 operand naxRegI() %{
  4265   constraint(ALLOC_IN_RC(nax_reg));
  4266   match(RegI);
  4267   match(eCXRegI);
  4268   match(eDXRegI);
  4269   match(eSIRegI);
  4270   match(eDIRegI);
  4272   format %{ %}
  4273   interface(REG_INTER);
  4274 %}
  4276 operand nadxRegI() %{
  4277   constraint(ALLOC_IN_RC(nadx_reg));
  4278   match(RegI);
  4279   match(eBXRegI);
  4280   match(eCXRegI);
  4281   match(eSIRegI);
  4282   match(eDIRegI);
  4284   format %{ %}
  4285   interface(REG_INTER);
  4286 %}
  4288 operand ncxRegI() %{
  4289   constraint(ALLOC_IN_RC(ncx_reg));
  4290   match(RegI);
  4291   match(eAXRegI);
  4292   match(eDXRegI);
  4293   match(eSIRegI);
  4294   match(eDIRegI);
  4296   format %{ %}
  4297   interface(REG_INTER);
  4298 %}
  4300 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4301 // //
  4302 operand eSIRegI(xRegI reg) %{
  4303    constraint(ALLOC_IN_RC(esi_reg));
  4304    match(reg);
  4305    match(eRegI);
  4307    format %{ "ESI" %}
  4308    interface(REG_INTER);
  4309 %}
  4311 // Pointer Register
  4312 operand anyRegP() %{
  4313   constraint(ALLOC_IN_RC(any_reg));
  4314   match(RegP);
  4315   match(eAXRegP);
  4316   match(eBXRegP);
  4317   match(eCXRegP);
  4318   match(eDIRegP);
  4319   match(eRegP);
  4321   format %{ %}
  4322   interface(REG_INTER);
  4323 %}
  4325 operand eRegP() %{
  4326   constraint(ALLOC_IN_RC(e_reg));
  4327   match(RegP);
  4328   match(eAXRegP);
  4329   match(eBXRegP);
  4330   match(eCXRegP);
  4331   match(eDIRegP);
  4333   format %{ %}
  4334   interface(REG_INTER);
  4335 %}
  4337 // On windows95, EBP is not safe to use for implicit null tests.
  4338 operand eRegP_no_EBP() %{
  4339   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  4340   match(RegP);
  4341   match(eAXRegP);
  4342   match(eBXRegP);
  4343   match(eCXRegP);
  4344   match(eDIRegP);
  4346   op_cost(100);
  4347   format %{ %}
  4348   interface(REG_INTER);
  4349 %}
  4351 operand naxRegP() %{
  4352   constraint(ALLOC_IN_RC(nax_reg));
  4353   match(RegP);
  4354   match(eBXRegP);
  4355   match(eDXRegP);
  4356   match(eCXRegP);
  4357   match(eSIRegP);
  4358   match(eDIRegP);
  4360   format %{ %}
  4361   interface(REG_INTER);
  4362 %}
  4364 operand nabxRegP() %{
  4365   constraint(ALLOC_IN_RC(nabx_reg));
  4366   match(RegP);
  4367   match(eCXRegP);
  4368   match(eDXRegP);
  4369   match(eSIRegP);
  4370   match(eDIRegP);
  4372   format %{ %}
  4373   interface(REG_INTER);
  4374 %}
  4376 operand pRegP() %{
  4377   constraint(ALLOC_IN_RC(p_reg));
  4378   match(RegP);
  4379   match(eBXRegP);
  4380   match(eDXRegP);
  4381   match(eSIRegP);
  4382   match(eDIRegP);
  4384   format %{ %}
  4385   interface(REG_INTER);
  4386 %}
  4388 // Special Registers
  4389 // Return a pointer value
  4390 operand eAXRegP(eRegP reg) %{
  4391   constraint(ALLOC_IN_RC(eax_reg));
  4392   match(reg);
  4393   format %{ "EAX" %}
  4394   interface(REG_INTER);
  4395 %}
  4397 // Used in AtomicAdd
  4398 operand eBXRegP(eRegP reg) %{
  4399   constraint(ALLOC_IN_RC(ebx_reg));
  4400   match(reg);
  4401   format %{ "EBX" %}
  4402   interface(REG_INTER);
  4403 %}
  4405 // Tail-call (interprocedural jump) to interpreter
  4406 operand eCXRegP(eRegP reg) %{
  4407   constraint(ALLOC_IN_RC(ecx_reg));
  4408   match(reg);
  4409   format %{ "ECX" %}
  4410   interface(REG_INTER);
  4411 %}
  4413 operand eSIRegP(eRegP reg) %{
  4414   constraint(ALLOC_IN_RC(esi_reg));
  4415   match(reg);
  4416   format %{ "ESI" %}
  4417   interface(REG_INTER);
  4418 %}
  4420 // Used in rep stosw
  4421 operand eDIRegP(eRegP reg) %{
  4422   constraint(ALLOC_IN_RC(edi_reg));
  4423   match(reg);
  4424   format %{ "EDI" %}
  4425   interface(REG_INTER);
  4426 %}
  4428 operand eBPRegP() %{
  4429   constraint(ALLOC_IN_RC(ebp_reg));
  4430   match(RegP);
  4431   format %{ "EBP" %}
  4432   interface(REG_INTER);
  4433 %}
  4435 operand eRegL() %{
  4436   constraint(ALLOC_IN_RC(long_reg));
  4437   match(RegL);
  4438   match(eADXRegL);
  4440   format %{ %}
  4441   interface(REG_INTER);
  4442 %}
  4444 operand eADXRegL( eRegL reg ) %{
  4445   constraint(ALLOC_IN_RC(eadx_reg));
  4446   match(reg);
  4448   format %{ "EDX:EAX" %}
  4449   interface(REG_INTER);
  4450 %}
  4452 operand eBCXRegL( eRegL reg ) %{
  4453   constraint(ALLOC_IN_RC(ebcx_reg));
  4454   match(reg);
  4456   format %{ "EBX:ECX" %}
  4457   interface(REG_INTER);
  4458 %}
  4460 // Special case for integer high multiply
  4461 operand eADXRegL_low_only() %{
  4462   constraint(ALLOC_IN_RC(eadx_reg));
  4463   match(RegL);
  4465   format %{ "EAX" %}
  4466   interface(REG_INTER);
  4467 %}
  4469 // Flags register, used as output of compare instructions
  4470 operand eFlagsReg() %{
  4471   constraint(ALLOC_IN_RC(int_flags));
  4472   match(RegFlags);
  4474   format %{ "EFLAGS" %}
  4475   interface(REG_INTER);
  4476 %}
  4478 // Flags register, used as output of FLOATING POINT compare instructions
  4479 operand eFlagsRegU() %{
  4480   constraint(ALLOC_IN_RC(int_flags));
  4481   match(RegFlags);
  4483   format %{ "EFLAGS_U" %}
  4484   interface(REG_INTER);
  4485 %}
  4487 operand eFlagsRegUCF() %{
  4488   constraint(ALLOC_IN_RC(int_flags));
  4489   match(RegFlags);
  4490   predicate(false);
  4492   format %{ "EFLAGS_U_CF" %}
  4493   interface(REG_INTER);
  4494 %}
  4496 // Condition Code Register used by long compare
  4497 operand flagsReg_long_LTGE() %{
  4498   constraint(ALLOC_IN_RC(int_flags));
  4499   match(RegFlags);
  4500   format %{ "FLAGS_LTGE" %}
  4501   interface(REG_INTER);
  4502 %}
  4503 operand flagsReg_long_EQNE() %{
  4504   constraint(ALLOC_IN_RC(int_flags));
  4505   match(RegFlags);
  4506   format %{ "FLAGS_EQNE" %}
  4507   interface(REG_INTER);
  4508 %}
  4509 operand flagsReg_long_LEGT() %{
  4510   constraint(ALLOC_IN_RC(int_flags));
  4511   match(RegFlags);
  4512   format %{ "FLAGS_LEGT" %}
  4513   interface(REG_INTER);
  4514 %}
  4516 // Float register operands
  4517 operand regDPR() %{
  4518   predicate( UseSSE < 2 );
  4519   constraint(ALLOC_IN_RC(dbl_reg));
  4520   match(RegD);
  4521   match(regDPR1);
  4522   match(regDPR2);
  4523   format %{ %}
  4524   interface(REG_INTER);
  4525 %}
  4527 operand regDPR1(regDPR reg) %{
  4528   predicate( UseSSE < 2 );
  4529   constraint(ALLOC_IN_RC(dbl_reg0));
  4530   match(reg);
  4531   format %{ "FPR1" %}
  4532   interface(REG_INTER);
  4533 %}
  4535 operand regDPR2(regDPR reg) %{
  4536   predicate( UseSSE < 2 );
  4537   constraint(ALLOC_IN_RC(dbl_reg1));
  4538   match(reg);
  4539   format %{ "FPR2" %}
  4540   interface(REG_INTER);
  4541 %}
  4543 operand regnotDPR1(regDPR reg) %{
  4544   predicate( UseSSE < 2 );
  4545   constraint(ALLOC_IN_RC(dbl_notreg0));
  4546   match(reg);
  4547   format %{ %}
  4548   interface(REG_INTER);
  4549 %}
  4551 // XMM Double register operands
  4552 operand regD() %{
  4553   predicate( UseSSE>=2 );
  4554   constraint(ALLOC_IN_RC(xdb_reg));
  4555   match(RegD);
  4556   match(regD6);
  4557   match(regD7);
  4558   format %{ %}
  4559   interface(REG_INTER);
  4560 %}
  4562 // XMM6 double register operands
  4563 operand regD6(regD reg) %{
  4564   predicate( UseSSE>=2 );
  4565   constraint(ALLOC_IN_RC(xdb_reg6));
  4566   match(reg);
  4567   format %{ "XMM6" %}
  4568   interface(REG_INTER);
  4569 %}
  4571 // XMM7 double register operands
  4572 operand regD7(regD reg) %{
  4573   predicate( UseSSE>=2 );
  4574   constraint(ALLOC_IN_RC(xdb_reg7));
  4575   match(reg);
  4576   format %{ "XMM7" %}
  4577   interface(REG_INTER);
  4578 %}
  4580 // Float register operands
  4581 operand regFPR() %{
  4582   predicate( UseSSE < 2 );
  4583   constraint(ALLOC_IN_RC(flt_reg));
  4584   match(RegF);
  4585   match(regFPR1);
  4586   format %{ %}
  4587   interface(REG_INTER);
  4588 %}
  4590 // Float register operands
  4591 operand regFPR1(regFPR reg) %{
  4592   predicate( UseSSE < 2 );
  4593   constraint(ALLOC_IN_RC(flt_reg0));
  4594   match(reg);
  4595   format %{ "FPR1" %}
  4596   interface(REG_INTER);
  4597 %}
  4599 // XMM register operands
  4600 operand regF() %{
  4601   predicate( UseSSE>=1 );
  4602   constraint(ALLOC_IN_RC(xmm_reg));
  4603   match(RegF);
  4604   format %{ %}
  4605   interface(REG_INTER);
  4606 %}
  4609 //----------Memory Operands----------------------------------------------------
  4610 // Direct Memory Operand
  4611 operand direct(immP addr) %{
  4612   match(addr);
  4614   format %{ "[$addr]" %}
  4615   interface(MEMORY_INTER) %{
  4616     base(0xFFFFFFFF);
  4617     index(0x4);
  4618     scale(0x0);
  4619     disp($addr);
  4620   %}
  4621 %}
  4623 // Indirect Memory Operand
  4624 operand indirect(eRegP reg) %{
  4625   constraint(ALLOC_IN_RC(e_reg));
  4626   match(reg);
  4628   format %{ "[$reg]" %}
  4629   interface(MEMORY_INTER) %{
  4630     base($reg);
  4631     index(0x4);
  4632     scale(0x0);
  4633     disp(0x0);
  4634   %}
  4635 %}
  4637 // Indirect Memory Plus Short Offset Operand
  4638 operand indOffset8(eRegP reg, immI8 off) %{
  4639   match(AddP reg off);
  4641   format %{ "[$reg + $off]" %}
  4642   interface(MEMORY_INTER) %{
  4643     base($reg);
  4644     index(0x4);
  4645     scale(0x0);
  4646     disp($off);
  4647   %}
  4648 %}
  4650 // Indirect Memory Plus Long Offset Operand
  4651 operand indOffset32(eRegP reg, immI off) %{
  4652   match(AddP reg off);
  4654   format %{ "[$reg + $off]" %}
  4655   interface(MEMORY_INTER) %{
  4656     base($reg);
  4657     index(0x4);
  4658     scale(0x0);
  4659     disp($off);
  4660   %}
  4661 %}
  4663 // Indirect Memory Plus Long Offset Operand
  4664 operand indOffset32X(eRegI reg, immP off) %{
  4665   match(AddP off reg);
  4667   format %{ "[$reg + $off]" %}
  4668   interface(MEMORY_INTER) %{
  4669     base($reg);
  4670     index(0x4);
  4671     scale(0x0);
  4672     disp($off);
  4673   %}
  4674 %}
  4676 // Indirect Memory Plus Index Register Plus Offset Operand
  4677 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  4678   match(AddP (AddP reg ireg) off);
  4680   op_cost(10);
  4681   format %{"[$reg + $off + $ireg]" %}
  4682   interface(MEMORY_INTER) %{
  4683     base($reg);
  4684     index($ireg);
  4685     scale(0x0);
  4686     disp($off);
  4687   %}
  4688 %}
  4690 // Indirect Memory Plus Index Register Plus Offset Operand
  4691 operand indIndex(eRegP reg, eRegI ireg) %{
  4692   match(AddP reg ireg);
  4694   op_cost(10);
  4695   format %{"[$reg + $ireg]" %}
  4696   interface(MEMORY_INTER) %{
  4697     base($reg);
  4698     index($ireg);
  4699     scale(0x0);
  4700     disp(0x0);
  4701   %}
  4702 %}
  4704 // // -------------------------------------------------------------------------
  4705 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4706 // // -------------------------------------------------------------------------
  4707 // // Scaled Memory Operands
  4708 // // Indirect Memory Times Scale Plus Offset Operand
  4709 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  4710 //   match(AddP off (LShiftI ireg scale));
  4711 //
  4712 //   op_cost(10);
  4713 //   format %{"[$off + $ireg << $scale]" %}
  4714 //   interface(MEMORY_INTER) %{
  4715 //     base(0x4);
  4716 //     index($ireg);
  4717 //     scale($scale);
  4718 //     disp($off);
  4719 //   %}
  4720 // %}
  4722 // Indirect Memory Times Scale Plus Index Register
  4723 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  4724   match(AddP reg (LShiftI ireg scale));
  4726   op_cost(10);
  4727   format %{"[$reg + $ireg << $scale]" %}
  4728   interface(MEMORY_INTER) %{
  4729     base($reg);
  4730     index($ireg);
  4731     scale($scale);
  4732     disp(0x0);
  4733   %}
  4734 %}
  4736 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4737 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  4738   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4740   op_cost(10);
  4741   format %{"[$reg + $off + $ireg << $scale]" %}
  4742   interface(MEMORY_INTER) %{
  4743     base($reg);
  4744     index($ireg);
  4745     scale($scale);
  4746     disp($off);
  4747   %}
  4748 %}
  4750 //----------Load Long Memory Operands------------------------------------------
  4751 // The load-long idiom will use it's address expression again after loading
  4752 // the first word of the long.  If the load-long destination overlaps with
  4753 // registers used in the addressing expression, the 2nd half will be loaded
  4754 // from a clobbered address.  Fix this by requiring that load-long use
  4755 // address registers that do not overlap with the load-long target.
  4757 // load-long support
  4758 operand load_long_RegP() %{
  4759   constraint(ALLOC_IN_RC(esi_reg));
  4760   match(RegP);
  4761   match(eSIRegP);
  4762   op_cost(100);
  4763   format %{  %}
  4764   interface(REG_INTER);
  4765 %}
  4767 // Indirect Memory Operand Long
  4768 operand load_long_indirect(load_long_RegP reg) %{
  4769   constraint(ALLOC_IN_RC(esi_reg));
  4770   match(reg);
  4772   format %{ "[$reg]" %}
  4773   interface(MEMORY_INTER) %{
  4774     base($reg);
  4775     index(0x4);
  4776     scale(0x0);
  4777     disp(0x0);
  4778   %}
  4779 %}
  4781 // Indirect Memory Plus Long Offset Operand
  4782 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4783   match(AddP reg off);
  4785   format %{ "[$reg + $off]" %}
  4786   interface(MEMORY_INTER) %{
  4787     base($reg);
  4788     index(0x4);
  4789     scale(0x0);
  4790     disp($off);
  4791   %}
  4792 %}
  4794 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4797 //----------Special Memory Operands--------------------------------------------
  4798 // Stack Slot Operand - This operand is used for loading and storing temporary
  4799 //                      values on the stack where a match requires a value to
  4800 //                      flow through memory.
  4801 operand stackSlotP(sRegP reg) %{
  4802   constraint(ALLOC_IN_RC(stack_slots));
  4803   // No match rule because this operand is only generated in matching
  4804   format %{ "[$reg]" %}
  4805   interface(MEMORY_INTER) %{
  4806     base(0x4);   // ESP
  4807     index(0x4);  // No Index
  4808     scale(0x0);  // No Scale
  4809     disp($reg);  // Stack Offset
  4810   %}
  4811 %}
  4813 operand stackSlotI(sRegI reg) %{
  4814   constraint(ALLOC_IN_RC(stack_slots));
  4815   // No match rule because this operand is only generated in matching
  4816   format %{ "[$reg]" %}
  4817   interface(MEMORY_INTER) %{
  4818     base(0x4);   // ESP
  4819     index(0x4);  // No Index
  4820     scale(0x0);  // No Scale
  4821     disp($reg);  // Stack Offset
  4822   %}
  4823 %}
  4825 operand stackSlotF(sRegF reg) %{
  4826   constraint(ALLOC_IN_RC(stack_slots));
  4827   // No match rule because this operand is only generated in matching
  4828   format %{ "[$reg]" %}
  4829   interface(MEMORY_INTER) %{
  4830     base(0x4);   // ESP
  4831     index(0x4);  // No Index
  4832     scale(0x0);  // No Scale
  4833     disp($reg);  // Stack Offset
  4834   %}
  4835 %}
  4837 operand stackSlotD(sRegD reg) %{
  4838   constraint(ALLOC_IN_RC(stack_slots));
  4839   // No match rule because this operand is only generated in matching
  4840   format %{ "[$reg]" %}
  4841   interface(MEMORY_INTER) %{
  4842     base(0x4);   // ESP
  4843     index(0x4);  // No Index
  4844     scale(0x0);  // No Scale
  4845     disp($reg);  // Stack Offset
  4846   %}
  4847 %}
  4849 operand stackSlotL(sRegL reg) %{
  4850   constraint(ALLOC_IN_RC(stack_slots));
  4851   // No match rule because this operand is only generated in matching
  4852   format %{ "[$reg]" %}
  4853   interface(MEMORY_INTER) %{
  4854     base(0x4);   // ESP
  4855     index(0x4);  // No Index
  4856     scale(0x0);  // No Scale
  4857     disp($reg);  // Stack Offset
  4858   %}
  4859 %}
  4861 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4862 // Indirect Memory Operand
  4863 operand indirect_win95_safe(eRegP_no_EBP reg)
  4864 %{
  4865   constraint(ALLOC_IN_RC(e_reg));
  4866   match(reg);
  4868   op_cost(100);
  4869   format %{ "[$reg]" %}
  4870   interface(MEMORY_INTER) %{
  4871     base($reg);
  4872     index(0x4);
  4873     scale(0x0);
  4874     disp(0x0);
  4875   %}
  4876 %}
  4878 // Indirect Memory Plus Short Offset Operand
  4879 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4880 %{
  4881   match(AddP reg off);
  4883   op_cost(100);
  4884   format %{ "[$reg + $off]" %}
  4885   interface(MEMORY_INTER) %{
  4886     base($reg);
  4887     index(0x4);
  4888     scale(0x0);
  4889     disp($off);
  4890   %}
  4891 %}
  4893 // Indirect Memory Plus Long Offset Operand
  4894 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4895 %{
  4896   match(AddP reg off);
  4898   op_cost(100);
  4899   format %{ "[$reg + $off]" %}
  4900   interface(MEMORY_INTER) %{
  4901     base($reg);
  4902     index(0x4);
  4903     scale(0x0);
  4904     disp($off);
  4905   %}
  4906 %}
  4908 // Indirect Memory Plus Index Register Plus Offset Operand
  4909 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  4910 %{
  4911   match(AddP (AddP reg ireg) off);
  4913   op_cost(100);
  4914   format %{"[$reg + $off + $ireg]" %}
  4915   interface(MEMORY_INTER) %{
  4916     base($reg);
  4917     index($ireg);
  4918     scale(0x0);
  4919     disp($off);
  4920   %}
  4921 %}
  4923 // Indirect Memory Times Scale Plus Index Register
  4924 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  4925 %{
  4926   match(AddP reg (LShiftI ireg scale));
  4928   op_cost(100);
  4929   format %{"[$reg + $ireg << $scale]" %}
  4930   interface(MEMORY_INTER) %{
  4931     base($reg);
  4932     index($ireg);
  4933     scale($scale);
  4934     disp(0x0);
  4935   %}
  4936 %}
  4938 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4939 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  4940 %{
  4941   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4943   op_cost(100);
  4944   format %{"[$reg + $off + $ireg << $scale]" %}
  4945   interface(MEMORY_INTER) %{
  4946     base($reg);
  4947     index($ireg);
  4948     scale($scale);
  4949     disp($off);
  4950   %}
  4951 %}
  4953 //----------Conditional Branch Operands----------------------------------------
  4954 // Comparison Op  - This is the operation of the comparison, and is limited to
  4955 //                  the following set of codes:
  4956 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4957 //
  4958 // Other attributes of the comparison, such as unsignedness, are specified
  4959 // by the comparison instruction that sets a condition code flags register.
  4960 // That result is represented by a flags operand whose subtype is appropriate
  4961 // to the unsignedness (etc.) of the comparison.
  4962 //
  4963 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4964 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4965 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4967 // Comparision Code
  4968 operand cmpOp() %{
  4969   match(Bool);
  4971   format %{ "" %}
  4972   interface(COND_INTER) %{
  4973     equal(0x4, "e");
  4974     not_equal(0x5, "ne");
  4975     less(0xC, "l");
  4976     greater_equal(0xD, "ge");
  4977     less_equal(0xE, "le");
  4978     greater(0xF, "g");
  4979   %}
  4980 %}
  4982 // Comparison Code, unsigned compare.  Used by FP also, with
  4983 // C2 (unordered) turned into GT or LT already.  The other bits
  4984 // C0 and C3 are turned into Carry & Zero flags.
  4985 operand cmpOpU() %{
  4986   match(Bool);
  4988   format %{ "" %}
  4989   interface(COND_INTER) %{
  4990     equal(0x4, "e");
  4991     not_equal(0x5, "ne");
  4992     less(0x2, "b");
  4993     greater_equal(0x3, "nb");
  4994     less_equal(0x6, "be");
  4995     greater(0x7, "nbe");
  4996   %}
  4997 %}
  4999 // Floating comparisons that don't require any fixup for the unordered case
  5000 operand cmpOpUCF() %{
  5001   match(Bool);
  5002   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5003             n->as_Bool()->_test._test == BoolTest::ge ||
  5004             n->as_Bool()->_test._test == BoolTest::le ||
  5005             n->as_Bool()->_test._test == BoolTest::gt);
  5006   format %{ "" %}
  5007   interface(COND_INTER) %{
  5008     equal(0x4, "e");
  5009     not_equal(0x5, "ne");
  5010     less(0x2, "b");
  5011     greater_equal(0x3, "nb");
  5012     less_equal(0x6, "be");
  5013     greater(0x7, "nbe");
  5014   %}
  5015 %}
  5018 // Floating comparisons that can be fixed up with extra conditional jumps
  5019 operand cmpOpUCF2() %{
  5020   match(Bool);
  5021   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5022             n->as_Bool()->_test._test == BoolTest::eq);
  5023   format %{ "" %}
  5024   interface(COND_INTER) %{
  5025     equal(0x4, "e");
  5026     not_equal(0x5, "ne");
  5027     less(0x2, "b");
  5028     greater_equal(0x3, "nb");
  5029     less_equal(0x6, "be");
  5030     greater(0x7, "nbe");
  5031   %}
  5032 %}
  5034 // Comparison Code for FP conditional move
  5035 operand cmpOp_fcmov() %{
  5036   match(Bool);
  5038   format %{ "" %}
  5039   interface(COND_INTER) %{
  5040     equal        (0x0C8);
  5041     not_equal    (0x1C8);
  5042     less         (0x0C0);
  5043     greater_equal(0x1C0);
  5044     less_equal   (0x0D0);
  5045     greater      (0x1D0);
  5046   %}
  5047 %}
  5049 // Comparision Code used in long compares
  5050 operand cmpOp_commute() %{
  5051   match(Bool);
  5053   format %{ "" %}
  5054   interface(COND_INTER) %{
  5055     equal(0x4, "e");
  5056     not_equal(0x5, "ne");
  5057     less(0xF, "g");
  5058     greater_equal(0xE, "le");
  5059     less_equal(0xD, "ge");
  5060     greater(0xC, "l");
  5061   %}
  5062 %}
  5064 //----------OPERAND CLASSES----------------------------------------------------
  5065 // Operand Classes are groups of operands that are used as to simplify
  5066 // instruction definitions by not requiring the AD writer to specify separate
  5067 // instructions for every form of operand when the instruction accepts
  5068 // multiple operand types with the same basic encoding and format.  The classic
  5069 // case of this is memory operands.
  5071 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5072                indIndex, indIndexScale, indIndexScaleOffset);
  5074 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5075 // This means some kind of offset is always required and you cannot use
  5076 // an oop as the offset (done when working on static globals).
  5077 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5078                     indIndex, indIndexScale, indIndexScaleOffset);
  5081 //----------PIPELINE-----------------------------------------------------------
  5082 // Rules which define the behavior of the target architectures pipeline.
  5083 pipeline %{
  5085 //----------ATTRIBUTES---------------------------------------------------------
  5086 attributes %{
  5087   variable_size_instructions;        // Fixed size instructions
  5088   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5089   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5090   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5091   instruction_fetch_units = 1;       // of 16 bytes
  5093   // List of nop instructions
  5094   nops( MachNop );
  5095 %}
  5097 //----------RESOURCES----------------------------------------------------------
  5098 // Resources are the functional units available to the machine
  5100 // Generic P2/P3 pipeline
  5101 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5102 // 3 instructions decoded per cycle.
  5103 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5104 // 2 ALU op, only ALU0 handles mul/div instructions.
  5105 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5106            MS0, MS1, MEM = MS0 | MS1,
  5107            BR, FPU,
  5108            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5110 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5111 // Pipeline Description specifies the stages in the machine's pipeline
  5113 // Generic P2/P3 pipeline
  5114 pipe_desc(S0, S1, S2, S3, S4, S5);
  5116 //----------PIPELINE CLASSES---------------------------------------------------
  5117 // Pipeline Classes describe the stages in which input and output are
  5118 // referenced by the hardware pipeline.
  5120 // Naming convention: ialu or fpu
  5121 // Then: _reg
  5122 // Then: _reg if there is a 2nd register
  5123 // Then: _long if it's a pair of instructions implementing a long
  5124 // Then: _fat if it requires the big decoder
  5125 //   Or: _mem if it requires the big decoder and a memory unit.
  5127 // Integer ALU reg operation
  5128 pipe_class ialu_reg(eRegI dst) %{
  5129     single_instruction;
  5130     dst    : S4(write);
  5131     dst    : S3(read);
  5132     DECODE : S0;        // any decoder
  5133     ALU    : S3;        // any alu
  5134 %}
  5136 // Long ALU reg operation
  5137 pipe_class ialu_reg_long(eRegL dst) %{
  5138     instruction_count(2);
  5139     dst    : S4(write);
  5140     dst    : S3(read);
  5141     DECODE : S0(2);     // any 2 decoders
  5142     ALU    : S3(2);     // both alus
  5143 %}
  5145 // Integer ALU reg operation using big decoder
  5146 pipe_class ialu_reg_fat(eRegI dst) %{
  5147     single_instruction;
  5148     dst    : S4(write);
  5149     dst    : S3(read);
  5150     D0     : S0;        // big decoder only
  5151     ALU    : S3;        // any alu
  5152 %}
  5154 // Long ALU reg operation using big decoder
  5155 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5156     instruction_count(2);
  5157     dst    : S4(write);
  5158     dst    : S3(read);
  5159     D0     : S0(2);     // big decoder only; twice
  5160     ALU    : S3(2);     // any 2 alus
  5161 %}
  5163 // Integer ALU reg-reg operation
  5164 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5165     single_instruction;
  5166     dst    : S4(write);
  5167     src    : S3(read);
  5168     DECODE : S0;        // any decoder
  5169     ALU    : S3;        // any alu
  5170 %}
  5172 // Long ALU reg-reg operation
  5173 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5174     instruction_count(2);
  5175     dst    : S4(write);
  5176     src    : S3(read);
  5177     DECODE : S0(2);     // any 2 decoders
  5178     ALU    : S3(2);     // both alus
  5179 %}
  5181 // Integer ALU reg-reg operation
  5182 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5183     single_instruction;
  5184     dst    : S4(write);
  5185     src    : S3(read);
  5186     D0     : S0;        // big decoder only
  5187     ALU    : S3;        // any alu
  5188 %}
  5190 // Long ALU reg-reg operation
  5191 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5192     instruction_count(2);
  5193     dst    : S4(write);
  5194     src    : S3(read);
  5195     D0     : S0(2);     // big decoder only; twice
  5196     ALU    : S3(2);     // both alus
  5197 %}
  5199 // Integer ALU reg-mem operation
  5200 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5201     single_instruction;
  5202     dst    : S5(write);
  5203     mem    : S3(read);
  5204     D0     : S0;        // big decoder only
  5205     ALU    : S4;        // any alu
  5206     MEM    : S3;        // any mem
  5207 %}
  5209 // Long ALU reg-mem operation
  5210 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5211     instruction_count(2);
  5212     dst    : S5(write);
  5213     mem    : S3(read);
  5214     D0     : S0(2);     // big decoder only; twice
  5215     ALU    : S4(2);     // any 2 alus
  5216     MEM    : S3(2);     // both mems
  5217 %}
  5219 // Integer mem operation (prefetch)
  5220 pipe_class ialu_mem(memory mem)
  5221 %{
  5222     single_instruction;
  5223     mem    : S3(read);
  5224     D0     : S0;        // big decoder only
  5225     MEM    : S3;        // any mem
  5226 %}
  5228 // Integer Store to Memory
  5229 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5230     single_instruction;
  5231     mem    : S3(read);
  5232     src    : S5(read);
  5233     D0     : S0;        // big decoder only
  5234     ALU    : S4;        // any alu
  5235     MEM    : S3;
  5236 %}
  5238 // Long Store to Memory
  5239 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5240     instruction_count(2);
  5241     mem    : S3(read);
  5242     src    : S5(read);
  5243     D0     : S0(2);     // big decoder only; twice
  5244     ALU    : S4(2);     // any 2 alus
  5245     MEM    : S3(2);     // Both mems
  5246 %}
  5248 // Integer Store to Memory
  5249 pipe_class ialu_mem_imm(memory mem) %{
  5250     single_instruction;
  5251     mem    : S3(read);
  5252     D0     : S0;        // big decoder only
  5253     ALU    : S4;        // any alu
  5254     MEM    : S3;
  5255 %}
  5257 // Integer ALU0 reg-reg operation
  5258 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5259     single_instruction;
  5260     dst    : S4(write);
  5261     src    : S3(read);
  5262     D0     : S0;        // Big decoder only
  5263     ALU0   : S3;        // only alu0
  5264 %}
  5266 // Integer ALU0 reg-mem operation
  5267 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5268     single_instruction;
  5269     dst    : S5(write);
  5270     mem    : S3(read);
  5271     D0     : S0;        // big decoder only
  5272     ALU0   : S4;        // ALU0 only
  5273     MEM    : S3;        // any mem
  5274 %}
  5276 // Integer ALU reg-reg operation
  5277 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5278     single_instruction;
  5279     cr     : S4(write);
  5280     src1   : S3(read);
  5281     src2   : S3(read);
  5282     DECODE : S0;        // any decoder
  5283     ALU    : S3;        // any alu
  5284 %}
  5286 // Integer ALU reg-imm operation
  5287 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5288     single_instruction;
  5289     cr     : S4(write);
  5290     src1   : S3(read);
  5291     DECODE : S0;        // any decoder
  5292     ALU    : S3;        // any alu
  5293 %}
  5295 // Integer ALU reg-mem operation
  5296 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5297     single_instruction;
  5298     cr     : S4(write);
  5299     src1   : S3(read);
  5300     src2   : S3(read);
  5301     D0     : S0;        // big decoder only
  5302     ALU    : S4;        // any alu
  5303     MEM    : S3;
  5304 %}
  5306 // Conditional move reg-reg
  5307 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5308     instruction_count(4);
  5309     y      : S4(read);
  5310     q      : S3(read);
  5311     p      : S3(read);
  5312     DECODE : S0(4);     // any decoder
  5313 %}
  5315 // Conditional move reg-reg
  5316 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5317     single_instruction;
  5318     dst    : S4(write);
  5319     src    : S3(read);
  5320     cr     : S3(read);
  5321     DECODE : S0;        // any decoder
  5322 %}
  5324 // Conditional move reg-mem
  5325 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  5326     single_instruction;
  5327     dst    : S4(write);
  5328     src    : S3(read);
  5329     cr     : S3(read);
  5330     DECODE : S0;        // any decoder
  5331     MEM    : S3;
  5332 %}
  5334 // Conditional move reg-reg long
  5335 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  5336     single_instruction;
  5337     dst    : S4(write);
  5338     src    : S3(read);
  5339     cr     : S3(read);
  5340     DECODE : S0(2);     // any 2 decoders
  5341 %}
  5343 // Conditional move double reg-reg
  5344 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  5345     single_instruction;
  5346     dst    : S4(write);
  5347     src    : S3(read);
  5348     cr     : S3(read);
  5349     DECODE : S0;        // any decoder
  5350 %}
  5352 // Float reg-reg operation
  5353 pipe_class fpu_reg(regDPR dst) %{
  5354     instruction_count(2);
  5355     dst    : S3(read);
  5356     DECODE : S0(2);     // any 2 decoders
  5357     FPU    : S3;
  5358 %}
  5360 // Float reg-reg operation
  5361 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  5362     instruction_count(2);
  5363     dst    : S4(write);
  5364     src    : S3(read);
  5365     DECODE : S0(2);     // any 2 decoders
  5366     FPU    : S3;
  5367 %}
  5369 // Float reg-reg operation
  5370 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  5371     instruction_count(3);
  5372     dst    : S4(write);
  5373     src1   : S3(read);
  5374     src2   : S3(read);
  5375     DECODE : S0(3);     // any 3 decoders
  5376     FPU    : S3(2);
  5377 %}
  5379 // Float reg-reg operation
  5380 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  5381     instruction_count(4);
  5382     dst    : S4(write);
  5383     src1   : S3(read);
  5384     src2   : S3(read);
  5385     src3   : S3(read);
  5386     DECODE : S0(4);     // any 3 decoders
  5387     FPU    : S3(2);
  5388 %}
  5390 // Float reg-reg operation
  5391 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  5392     instruction_count(4);
  5393     dst    : S4(write);
  5394     src1   : S3(read);
  5395     src2   : S3(read);
  5396     src3   : S3(read);
  5397     DECODE : S1(3);     // any 3 decoders
  5398     D0     : S0;        // Big decoder only
  5399     FPU    : S3(2);
  5400     MEM    : S3;
  5401 %}
  5403 // Float reg-mem operation
  5404 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  5405     instruction_count(2);
  5406     dst    : S5(write);
  5407     mem    : S3(read);
  5408     D0     : S0;        // big decoder only
  5409     DECODE : S1;        // any decoder for FPU POP
  5410     FPU    : S4;
  5411     MEM    : S3;        // any mem
  5412 %}
  5414 // Float reg-mem operation
  5415 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  5416     instruction_count(3);
  5417     dst    : S5(write);
  5418     src1   : S3(read);
  5419     mem    : S3(read);
  5420     D0     : S0;        // big decoder only
  5421     DECODE : S1(2);     // any decoder for FPU POP
  5422     FPU    : S4;
  5423     MEM    : S3;        // any mem
  5424 %}
  5426 // Float mem-reg operation
  5427 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  5428     instruction_count(2);
  5429     src    : S5(read);
  5430     mem    : S3(read);
  5431     DECODE : S0;        // any decoder for FPU PUSH
  5432     D0     : S1;        // big decoder only
  5433     FPU    : S4;
  5434     MEM    : S3;        // any mem
  5435 %}
  5437 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  5438     instruction_count(3);
  5439     src1   : S3(read);
  5440     src2   : S3(read);
  5441     mem    : S3(read);
  5442     DECODE : S0(2);     // any decoder for FPU PUSH
  5443     D0     : S1;        // big decoder only
  5444     FPU    : S4;
  5445     MEM    : S3;        // any mem
  5446 %}
  5448 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  5449     instruction_count(3);
  5450     src1   : S3(read);
  5451     src2   : S3(read);
  5452     mem    : S4(read);
  5453     DECODE : S0;        // any decoder for FPU PUSH
  5454     D0     : S0(2);     // big decoder only
  5455     FPU    : S4;
  5456     MEM    : S3(2);     // any mem
  5457 %}
  5459 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  5460     instruction_count(2);
  5461     src1   : S3(read);
  5462     dst    : S4(read);
  5463     D0     : S0(2);     // big decoder only
  5464     MEM    : S3(2);     // any mem
  5465 %}
  5467 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  5468     instruction_count(3);
  5469     src1   : S3(read);
  5470     src2   : S3(read);
  5471     dst    : S4(read);
  5472     D0     : S0(3);     // big decoder only
  5473     FPU    : S4;
  5474     MEM    : S3(3);     // any mem
  5475 %}
  5477 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  5478     instruction_count(3);
  5479     src1   : S4(read);
  5480     mem    : S4(read);
  5481     DECODE : S0;        // any decoder for FPU PUSH
  5482     D0     : S0(2);     // big decoder only
  5483     FPU    : S4;
  5484     MEM    : S3(2);     // any mem
  5485 %}
  5487 // Float load constant
  5488 pipe_class fpu_reg_con(regDPR dst) %{
  5489     instruction_count(2);
  5490     dst    : S5(write);
  5491     D0     : S0;        // big decoder only for the load
  5492     DECODE : S1;        // any decoder for FPU POP
  5493     FPU    : S4;
  5494     MEM    : S3;        // any mem
  5495 %}
  5497 // Float load constant
  5498 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  5499     instruction_count(3);
  5500     dst    : S5(write);
  5501     src    : S3(read);
  5502     D0     : S0;        // big decoder only for the load
  5503     DECODE : S1(2);     // any decoder for FPU POP
  5504     FPU    : S4;
  5505     MEM    : S3;        // any mem
  5506 %}
  5508 // UnConditional branch
  5509 pipe_class pipe_jmp( label labl ) %{
  5510     single_instruction;
  5511     BR   : S3;
  5512 %}
  5514 // Conditional branch
  5515 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  5516     single_instruction;
  5517     cr    : S1(read);
  5518     BR    : S3;
  5519 %}
  5521 // Allocation idiom
  5522 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  5523     instruction_count(1); force_serialization;
  5524     fixed_latency(6);
  5525     heap_ptr : S3(read);
  5526     DECODE   : S0(3);
  5527     D0       : S2;
  5528     MEM      : S3;
  5529     ALU      : S3(2);
  5530     dst      : S5(write);
  5531     BR       : S5;
  5532 %}
  5534 // Generic big/slow expanded idiom
  5535 pipe_class pipe_slow(  ) %{
  5536     instruction_count(10); multiple_bundles; force_serialization;
  5537     fixed_latency(100);
  5538     D0  : S0(2);
  5539     MEM : S3(2);
  5540 %}
  5542 // The real do-nothing guy
  5543 pipe_class empty( ) %{
  5544     instruction_count(0);
  5545 %}
  5547 // Define the class for the Nop node
  5548 define %{
  5549    MachNop = empty;
  5550 %}
  5552 %}
  5554 //----------INSTRUCTIONS-------------------------------------------------------
  5555 //
  5556 // match      -- States which machine-independent subtree may be replaced
  5557 //               by this instruction.
  5558 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5559 //               selection to identify a minimum cost tree of machine
  5560 //               instructions that matches a tree of machine-independent
  5561 //               instructions.
  5562 // format     -- A string providing the disassembly for this instruction.
  5563 //               The value of an instruction's operand may be inserted
  5564 //               by referring to it with a '$' prefix.
  5565 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5566 //               to within an encode class as $primary, $secondary, and $tertiary
  5567 //               respectively.  The primary opcode is commonly used to
  5568 //               indicate the type of machine instruction, while secondary
  5569 //               and tertiary are often used for prefix options or addressing
  5570 //               modes.
  5571 // ins_encode -- A list of encode classes with parameters. The encode class
  5572 //               name must have been defined in an 'enc_class' specification
  5573 //               in the encode section of the architecture description.
  5575 //----------BSWAP-Instruction--------------------------------------------------
  5576 instruct bytes_reverse_int(eRegI dst) %{
  5577   match(Set dst (ReverseBytesI dst));
  5579   format %{ "BSWAP  $dst" %}
  5580   opcode(0x0F, 0xC8);
  5581   ins_encode( OpcP, OpcSReg(dst) );
  5582   ins_pipe( ialu_reg );
  5583 %}
  5585 instruct bytes_reverse_long(eRegL dst) %{
  5586   match(Set dst (ReverseBytesL dst));
  5588   format %{ "BSWAP  $dst.lo\n\t"
  5589             "BSWAP  $dst.hi\n\t"
  5590             "XCHG   $dst.lo $dst.hi" %}
  5592   ins_cost(125);
  5593   ins_encode( bswap_long_bytes(dst) );
  5594   ins_pipe( ialu_reg_reg);
  5595 %}
  5597 instruct bytes_reverse_unsigned_short(eRegI dst) %{
  5598   match(Set dst (ReverseBytesUS dst));
  5600   format %{ "BSWAP  $dst\n\t" 
  5601             "SHR    $dst,16\n\t" %}
  5602   ins_encode %{
  5603     __ bswapl($dst$$Register);
  5604     __ shrl($dst$$Register, 16); 
  5605   %}
  5606   ins_pipe( ialu_reg );
  5607 %}
  5609 instruct bytes_reverse_short(eRegI dst) %{
  5610   match(Set dst (ReverseBytesS dst));
  5612   format %{ "BSWAP  $dst\n\t" 
  5613             "SAR    $dst,16\n\t" %}
  5614   ins_encode %{
  5615     __ bswapl($dst$$Register);
  5616     __ sarl($dst$$Register, 16); 
  5617   %}
  5618   ins_pipe( ialu_reg );
  5619 %}
  5622 //---------- Zeros Count Instructions ------------------------------------------
  5624 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5625   predicate(UseCountLeadingZerosInstruction);
  5626   match(Set dst (CountLeadingZerosI src));
  5627   effect(KILL cr);
  5629   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5630   ins_encode %{
  5631     __ lzcntl($dst$$Register, $src$$Register);
  5632   %}
  5633   ins_pipe(ialu_reg);
  5634 %}
  5636 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  5637   predicate(!UseCountLeadingZerosInstruction);
  5638   match(Set dst (CountLeadingZerosI src));
  5639   effect(KILL cr);
  5641   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5642             "JNZ    skip\n\t"
  5643             "MOV    $dst, -1\n"
  5644       "skip:\n\t"
  5645             "NEG    $dst\n\t"
  5646             "ADD    $dst, 31" %}
  5647   ins_encode %{
  5648     Register Rdst = $dst$$Register;
  5649     Register Rsrc = $src$$Register;
  5650     Label skip;
  5651     __ bsrl(Rdst, Rsrc);
  5652     __ jccb(Assembler::notZero, skip);
  5653     __ movl(Rdst, -1);
  5654     __ bind(skip);
  5655     __ negl(Rdst);
  5656     __ addl(Rdst, BitsPerInt - 1);
  5657   %}
  5658   ins_pipe(ialu_reg);
  5659 %}
  5661 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  5662   predicate(UseCountLeadingZerosInstruction);
  5663   match(Set dst (CountLeadingZerosL src));
  5664   effect(TEMP dst, KILL cr);
  5666   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5667             "JNC    done\n\t"
  5668             "LZCNT  $dst, $src.lo\n\t"
  5669             "ADD    $dst, 32\n"
  5670       "done:" %}
  5671   ins_encode %{
  5672     Register Rdst = $dst$$Register;
  5673     Register Rsrc = $src$$Register;
  5674     Label done;
  5675     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5676     __ jccb(Assembler::carryClear, done);
  5677     __ lzcntl(Rdst, Rsrc);
  5678     __ addl(Rdst, BitsPerInt);
  5679     __ bind(done);
  5680   %}
  5681   ins_pipe(ialu_reg);
  5682 %}
  5684 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  5685   predicate(!UseCountLeadingZerosInstruction);
  5686   match(Set dst (CountLeadingZerosL src));
  5687   effect(TEMP dst, KILL cr);
  5689   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5690             "JZ     msw_is_zero\n\t"
  5691             "ADD    $dst, 32\n\t"
  5692             "JMP    not_zero\n"
  5693       "msw_is_zero:\n\t"
  5694             "BSR    $dst, $src.lo\n\t"
  5695             "JNZ    not_zero\n\t"
  5696             "MOV    $dst, -1\n"
  5697       "not_zero:\n\t"
  5698             "NEG    $dst\n\t"
  5699             "ADD    $dst, 63\n" %}
  5700  ins_encode %{
  5701     Register Rdst = $dst$$Register;
  5702     Register Rsrc = $src$$Register;
  5703     Label msw_is_zero;
  5704     Label not_zero;
  5705     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5706     __ jccb(Assembler::zero, msw_is_zero);
  5707     __ addl(Rdst, BitsPerInt);
  5708     __ jmpb(not_zero);
  5709     __ bind(msw_is_zero);
  5710     __ bsrl(Rdst, Rsrc);
  5711     __ jccb(Assembler::notZero, not_zero);
  5712     __ movl(Rdst, -1);
  5713     __ bind(not_zero);
  5714     __ negl(Rdst);
  5715     __ addl(Rdst, BitsPerLong - 1);
  5716   %}
  5717   ins_pipe(ialu_reg);
  5718 %}
  5720 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  5721   match(Set dst (CountTrailingZerosI src));
  5722   effect(KILL cr);
  5724   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5725             "JNZ    done\n\t"
  5726             "MOV    $dst, 32\n"
  5727       "done:" %}
  5728   ins_encode %{
  5729     Register Rdst = $dst$$Register;
  5730     Label done;
  5731     __ bsfl(Rdst, $src$$Register);
  5732     __ jccb(Assembler::notZero, done);
  5733     __ movl(Rdst, BitsPerInt);
  5734     __ bind(done);
  5735   %}
  5736   ins_pipe(ialu_reg);
  5737 %}
  5739 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  5740   match(Set dst (CountTrailingZerosL src));
  5741   effect(TEMP dst, KILL cr);
  5743   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5744             "JNZ    done\n\t"
  5745             "BSF    $dst, $src.hi\n\t"
  5746             "JNZ    msw_not_zero\n\t"
  5747             "MOV    $dst, 32\n"
  5748       "msw_not_zero:\n\t"
  5749             "ADD    $dst, 32\n"
  5750       "done:" %}
  5751   ins_encode %{
  5752     Register Rdst = $dst$$Register;
  5753     Register Rsrc = $src$$Register;
  5754     Label msw_not_zero;
  5755     Label done;
  5756     __ bsfl(Rdst, Rsrc);
  5757     __ jccb(Assembler::notZero, done);
  5758     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5759     __ jccb(Assembler::notZero, msw_not_zero);
  5760     __ movl(Rdst, BitsPerInt);
  5761     __ bind(msw_not_zero);
  5762     __ addl(Rdst, BitsPerInt);
  5763     __ bind(done);
  5764   %}
  5765   ins_pipe(ialu_reg);
  5766 %}
  5769 //---------- Population Count Instructions -------------------------------------
  5771 instruct popCountI(eRegI dst, eRegI src) %{
  5772   predicate(UsePopCountInstruction);
  5773   match(Set dst (PopCountI src));
  5775   format %{ "POPCNT $dst, $src" %}
  5776   ins_encode %{
  5777     __ popcntl($dst$$Register, $src$$Register);
  5778   %}
  5779   ins_pipe(ialu_reg);
  5780 %}
  5782 instruct popCountI_mem(eRegI dst, memory mem) %{
  5783   predicate(UsePopCountInstruction);
  5784   match(Set dst (PopCountI (LoadI mem)));
  5786   format %{ "POPCNT $dst, $mem" %}
  5787   ins_encode %{
  5788     __ popcntl($dst$$Register, $mem$$Address);
  5789   %}
  5790   ins_pipe(ialu_reg);
  5791 %}
  5793 // Note: Long.bitCount(long) returns an int.
  5794 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  5795   predicate(UsePopCountInstruction);
  5796   match(Set dst (PopCountL src));
  5797   effect(KILL cr, TEMP tmp, TEMP dst);
  5799   format %{ "POPCNT $dst, $src.lo\n\t"
  5800             "POPCNT $tmp, $src.hi\n\t"
  5801             "ADD    $dst, $tmp" %}
  5802   ins_encode %{
  5803     __ popcntl($dst$$Register, $src$$Register);
  5804     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5805     __ addl($dst$$Register, $tmp$$Register);
  5806   %}
  5807   ins_pipe(ialu_reg);
  5808 %}
  5810 // Note: Long.bitCount(long) returns an int.
  5811 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  5812   predicate(UsePopCountInstruction);
  5813   match(Set dst (PopCountL (LoadL mem)));
  5814   effect(KILL cr, TEMP tmp, TEMP dst);
  5816   format %{ "POPCNT $dst, $mem\n\t"
  5817             "POPCNT $tmp, $mem+4\n\t"
  5818             "ADD    $dst, $tmp" %}
  5819   ins_encode %{
  5820     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5821     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5822     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  5823     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  5824     __ addl($dst$$Register, $tmp$$Register);
  5825   %}
  5826   ins_pipe(ialu_reg);
  5827 %}
  5830 //----------Load/Store/Move Instructions---------------------------------------
  5831 //----------Load Instructions--------------------------------------------------
  5832 // Load Byte (8bit signed)
  5833 instruct loadB(xRegI dst, memory mem) %{
  5834   match(Set dst (LoadB mem));
  5836   ins_cost(125);
  5837   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5839   ins_encode %{
  5840     __ movsbl($dst$$Register, $mem$$Address);
  5841   %}
  5843   ins_pipe(ialu_reg_mem);
  5844 %}
  5846 // Load Byte (8bit signed) into Long Register
  5847 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5848   match(Set dst (ConvI2L (LoadB mem)));
  5849   effect(KILL cr);
  5851   ins_cost(375);
  5852   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5853             "MOV    $dst.hi,$dst.lo\n\t"
  5854             "SAR    $dst.hi,7" %}
  5856   ins_encode %{
  5857     __ movsbl($dst$$Register, $mem$$Address);
  5858     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5859     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5860   %}
  5862   ins_pipe(ialu_reg_mem);
  5863 %}
  5865 // Load Unsigned Byte (8bit UNsigned)
  5866 instruct loadUB(xRegI dst, memory mem) %{
  5867   match(Set dst (LoadUB mem));
  5869   ins_cost(125);
  5870   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5872   ins_encode %{
  5873     __ movzbl($dst$$Register, $mem$$Address);
  5874   %}
  5876   ins_pipe(ialu_reg_mem);
  5877 %}
  5879 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5880 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5881   match(Set dst (ConvI2L (LoadUB mem)));
  5882   effect(KILL cr);
  5884   ins_cost(250);
  5885   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5886             "XOR    $dst.hi,$dst.hi" %}
  5888   ins_encode %{
  5889     Register Rdst = $dst$$Register;
  5890     __ movzbl(Rdst, $mem$$Address);
  5891     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5892   %}
  5894   ins_pipe(ialu_reg_mem);
  5895 %}
  5897 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5898 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5899   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5900   effect(KILL cr);
  5902   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5903             "XOR    $dst.hi,$dst.hi\n\t"
  5904             "AND    $dst.lo,$mask" %}
  5905   ins_encode %{
  5906     Register Rdst = $dst$$Register;
  5907     __ movzbl(Rdst, $mem$$Address);
  5908     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5909     __ andl(Rdst, $mask$$constant);
  5910   %}
  5911   ins_pipe(ialu_reg_mem);
  5912 %}
  5914 // Load Short (16bit signed)
  5915 instruct loadS(eRegI dst, memory mem) %{
  5916   match(Set dst (LoadS mem));
  5918   ins_cost(125);
  5919   format %{ "MOVSX  $dst,$mem\t# short" %}
  5921   ins_encode %{
  5922     __ movswl($dst$$Register, $mem$$Address);
  5923   %}
  5925   ins_pipe(ialu_reg_mem);
  5926 %}
  5928 // Load Short (16 bit signed) to Byte (8 bit signed)
  5929 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  5930   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5932   ins_cost(125);
  5933   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5934   ins_encode %{
  5935     __ movsbl($dst$$Register, $mem$$Address);
  5936   %}
  5937   ins_pipe(ialu_reg_mem);
  5938 %}
  5940 // Load Short (16bit signed) into Long Register
  5941 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5942   match(Set dst (ConvI2L (LoadS mem)));
  5943   effect(KILL cr);
  5945   ins_cost(375);
  5946   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5947             "MOV    $dst.hi,$dst.lo\n\t"
  5948             "SAR    $dst.hi,15" %}
  5950   ins_encode %{
  5951     __ movswl($dst$$Register, $mem$$Address);
  5952     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5953     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5954   %}
  5956   ins_pipe(ialu_reg_mem);
  5957 %}
  5959 // Load Unsigned Short/Char (16bit unsigned)
  5960 instruct loadUS(eRegI dst, memory mem) %{
  5961   match(Set dst (LoadUS mem));
  5963   ins_cost(125);
  5964   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5966   ins_encode %{
  5967     __ movzwl($dst$$Register, $mem$$Address);
  5968   %}
  5970   ins_pipe(ialu_reg_mem);
  5971 %}
  5973 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5974 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  5975   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5977   ins_cost(125);
  5978   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5979   ins_encode %{
  5980     __ movsbl($dst$$Register, $mem$$Address);
  5981   %}
  5982   ins_pipe(ialu_reg_mem);
  5983 %}
  5985 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5986 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5987   match(Set dst (ConvI2L (LoadUS mem)));
  5988   effect(KILL cr);
  5990   ins_cost(250);
  5991   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5992             "XOR    $dst.hi,$dst.hi" %}
  5994   ins_encode %{
  5995     __ movzwl($dst$$Register, $mem$$Address);
  5996     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5997   %}
  5999   ins_pipe(ialu_reg_mem);
  6000 %}
  6002 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6003 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6004   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6005   effect(KILL cr);
  6007   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6008             "XOR    $dst.hi,$dst.hi" %}
  6009   ins_encode %{
  6010     Register Rdst = $dst$$Register;
  6011     __ movzbl(Rdst, $mem$$Address);
  6012     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6013   %}
  6014   ins_pipe(ialu_reg_mem);
  6015 %}
  6017 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6018 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6019   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6020   effect(KILL cr);
  6022   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6023             "XOR    $dst.hi,$dst.hi\n\t"
  6024             "AND    $dst.lo,$mask" %}
  6025   ins_encode %{
  6026     Register Rdst = $dst$$Register;
  6027     __ movzwl(Rdst, $mem$$Address);
  6028     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6029     __ andl(Rdst, $mask$$constant);
  6030   %}
  6031   ins_pipe(ialu_reg_mem);
  6032 %}
  6034 // Load Integer
  6035 instruct loadI(eRegI dst, memory mem) %{
  6036   match(Set dst (LoadI mem));
  6038   ins_cost(125);
  6039   format %{ "MOV    $dst,$mem\t# int" %}
  6041   ins_encode %{
  6042     __ movl($dst$$Register, $mem$$Address);
  6043   %}
  6045   ins_pipe(ialu_reg_mem);
  6046 %}
  6048 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6049 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6050   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6052   ins_cost(125);
  6053   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6054   ins_encode %{
  6055     __ movsbl($dst$$Register, $mem$$Address);
  6056   %}
  6057   ins_pipe(ialu_reg_mem);
  6058 %}
  6060 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6061 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6062   match(Set dst (AndI (LoadI mem) mask));
  6064   ins_cost(125);
  6065   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6066   ins_encode %{
  6067     __ movzbl($dst$$Register, $mem$$Address);
  6068   %}
  6069   ins_pipe(ialu_reg_mem);
  6070 %}
  6072 // Load Integer (32 bit signed) to Short (16 bit signed)
  6073 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6074   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6076   ins_cost(125);
  6077   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6078   ins_encode %{
  6079     __ movswl($dst$$Register, $mem$$Address);
  6080   %}
  6081   ins_pipe(ialu_reg_mem);
  6082 %}
  6084 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6085 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6086   match(Set dst (AndI (LoadI mem) mask));
  6088   ins_cost(125);
  6089   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6090   ins_encode %{
  6091     __ movzwl($dst$$Register, $mem$$Address);
  6092   %}
  6093   ins_pipe(ialu_reg_mem);
  6094 %}
  6096 // Load Integer into Long Register
  6097 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6098   match(Set dst (ConvI2L (LoadI mem)));
  6099   effect(KILL cr);
  6101   ins_cost(375);
  6102   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6103             "MOV    $dst.hi,$dst.lo\n\t"
  6104             "SAR    $dst.hi,31" %}
  6106   ins_encode %{
  6107     __ movl($dst$$Register, $mem$$Address);
  6108     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6109     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6110   %}
  6112   ins_pipe(ialu_reg_mem);
  6113 %}
  6115 // Load Integer with mask 0xFF into Long Register
  6116 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6117   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6118   effect(KILL cr);
  6120   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6121             "XOR    $dst.hi,$dst.hi" %}
  6122   ins_encode %{
  6123     Register Rdst = $dst$$Register;
  6124     __ movzbl(Rdst, $mem$$Address);
  6125     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6126   %}
  6127   ins_pipe(ialu_reg_mem);
  6128 %}
  6130 // Load Integer with mask 0xFFFF into Long Register
  6131 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6132   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6133   effect(KILL cr);
  6135   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6136             "XOR    $dst.hi,$dst.hi" %}
  6137   ins_encode %{
  6138     Register Rdst = $dst$$Register;
  6139     __ movzwl(Rdst, $mem$$Address);
  6140     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6141   %}
  6142   ins_pipe(ialu_reg_mem);
  6143 %}
  6145 // Load Integer with 32-bit mask into Long Register
  6146 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6147   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6148   effect(KILL cr);
  6150   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6151             "XOR    $dst.hi,$dst.hi\n\t"
  6152             "AND    $dst.lo,$mask" %}
  6153   ins_encode %{
  6154     Register Rdst = $dst$$Register;
  6155     __ movl(Rdst, $mem$$Address);
  6156     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6157     __ andl(Rdst, $mask$$constant);
  6158   %}
  6159   ins_pipe(ialu_reg_mem);
  6160 %}
  6162 // Load Unsigned Integer into Long Register
  6163 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6164   match(Set dst (LoadUI2L mem));
  6165   effect(KILL cr);
  6167   ins_cost(250);
  6168   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6169             "XOR    $dst.hi,$dst.hi" %}
  6171   ins_encode %{
  6172     __ movl($dst$$Register, $mem$$Address);
  6173     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6174   %}
  6176   ins_pipe(ialu_reg_mem);
  6177 %}
  6179 // Load Long.  Cannot clobber address while loading, so restrict address
  6180 // register to ESI
  6181 instruct loadL(eRegL dst, load_long_memory mem) %{
  6182   predicate(!((LoadLNode*)n)->require_atomic_access());
  6183   match(Set dst (LoadL mem));
  6185   ins_cost(250);
  6186   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6187             "MOV    $dst.hi,$mem+4" %}
  6189   ins_encode %{
  6190     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6191     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6192     __ movl($dst$$Register, Amemlo);
  6193     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6194   %}
  6196   ins_pipe(ialu_reg_long_mem);
  6197 %}
  6199 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6200 // then store it down to the stack and reload on the int
  6201 // side.
  6202 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6203   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6204   match(Set dst (LoadL mem));
  6206   ins_cost(200);
  6207   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6208             "FISTp  $dst" %}
  6209   ins_encode(enc_loadL_volatile(mem,dst));
  6210   ins_pipe( fpu_reg_mem );
  6211 %}
  6213 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  6214   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6215   match(Set dst (LoadL mem));
  6216   effect(TEMP tmp);
  6217   ins_cost(180);
  6218   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6219             "MOVSD  $dst,$tmp" %}
  6220   ins_encode %{
  6221     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6222     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  6223   %}
  6224   ins_pipe( pipe_slow );
  6225 %}
  6227 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  6228   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6229   match(Set dst (LoadL mem));
  6230   effect(TEMP tmp);
  6231   ins_cost(160);
  6232   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6233             "MOVD   $dst.lo,$tmp\n\t"
  6234             "PSRLQ  $tmp,32\n\t"
  6235             "MOVD   $dst.hi,$tmp" %}
  6236   ins_encode %{
  6237     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  6238     __ movdl($dst$$Register, $tmp$$XMMRegister);
  6239     __ psrlq($tmp$$XMMRegister, 32);
  6240     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  6241   %}
  6242   ins_pipe( pipe_slow );
  6243 %}
  6245 // Load Range
  6246 instruct loadRange(eRegI dst, memory mem) %{
  6247   match(Set dst (LoadRange mem));
  6249   ins_cost(125);
  6250   format %{ "MOV    $dst,$mem" %}
  6251   opcode(0x8B);
  6252   ins_encode( OpcP, RegMem(dst,mem));
  6253   ins_pipe( ialu_reg_mem );
  6254 %}
  6257 // Load Pointer
  6258 instruct loadP(eRegP dst, memory mem) %{
  6259   match(Set dst (LoadP mem));
  6261   ins_cost(125);
  6262   format %{ "MOV    $dst,$mem" %}
  6263   opcode(0x8B);
  6264   ins_encode( OpcP, RegMem(dst,mem));
  6265   ins_pipe( ialu_reg_mem );
  6266 %}
  6268 // Load Klass Pointer
  6269 instruct loadKlass(eRegP dst, memory mem) %{
  6270   match(Set dst (LoadKlass mem));
  6272   ins_cost(125);
  6273   format %{ "MOV    $dst,$mem" %}
  6274   opcode(0x8B);
  6275   ins_encode( OpcP, RegMem(dst,mem));
  6276   ins_pipe( ialu_reg_mem );
  6277 %}
  6279 // Load Double
  6280 instruct loadDPR(regDPR dst, memory mem) %{
  6281   predicate(UseSSE<=1);
  6282   match(Set dst (LoadD mem));
  6284   ins_cost(150);
  6285   format %{ "FLD_D  ST,$mem\n\t"
  6286             "FSTP   $dst" %}
  6287   opcode(0xDD);               /* DD /0 */
  6288   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6289               Pop_Reg_DPR(dst) );
  6290   ins_pipe( fpu_reg_mem );
  6291 %}
  6293 // Load Double to XMM
  6294 instruct loadD(regD dst, memory mem) %{
  6295   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6296   match(Set dst (LoadD mem));
  6297   ins_cost(145);
  6298   format %{ "MOVSD  $dst,$mem" %}
  6299   ins_encode %{
  6300     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6301   %}
  6302   ins_pipe( pipe_slow );
  6303 %}
  6305 instruct loadD_partial(regD dst, memory mem) %{
  6306   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6307   match(Set dst (LoadD mem));
  6308   ins_cost(145);
  6309   format %{ "MOVLPD $dst,$mem" %}
  6310   ins_encode %{
  6311     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  6312   %}
  6313   ins_pipe( pipe_slow );
  6314 %}
  6316 // Load to XMM register (single-precision floating point)
  6317 // MOVSS instruction
  6318 instruct loadF(regF dst, memory mem) %{
  6319   predicate(UseSSE>=1);
  6320   match(Set dst (LoadF mem));
  6321   ins_cost(145);
  6322   format %{ "MOVSS  $dst,$mem" %}
  6323   ins_encode %{
  6324     __ movflt ($dst$$XMMRegister, $mem$$Address);
  6325   %}
  6326   ins_pipe( pipe_slow );
  6327 %}
  6329 // Load Float
  6330 instruct loadFPR(regFPR dst, memory mem) %{
  6331   predicate(UseSSE==0);
  6332   match(Set dst (LoadF mem));
  6334   ins_cost(150);
  6335   format %{ "FLD_S  ST,$mem\n\t"
  6336             "FSTP   $dst" %}
  6337   opcode(0xD9);               /* D9 /0 */
  6338   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6339               Pop_Reg_FPR(dst) );
  6340   ins_pipe( fpu_reg_mem );
  6341 %}
  6343 // Load Aligned Packed Byte to XMM register
  6344 instruct loadA8B(regD dst, memory mem) %{
  6345   predicate(UseSSE>=1);
  6346   match(Set dst (Load8B mem));
  6347   ins_cost(125);
  6348   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6349   ins_encode %{
  6350     __ movq($dst$$XMMRegister, $mem$$Address);
  6351   %}
  6352   ins_pipe( pipe_slow );
  6353 %}
  6355 // Load Aligned Packed Short to XMM register
  6356 instruct loadA4S(regD dst, memory mem) %{
  6357   predicate(UseSSE>=1);
  6358   match(Set dst (Load4S mem));
  6359   ins_cost(125);
  6360   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6361   ins_encode %{
  6362     __ movq($dst$$XMMRegister, $mem$$Address);
  6363   %}
  6364   ins_pipe( pipe_slow );
  6365 %}
  6367 // Load Aligned Packed Char to XMM register
  6368 instruct loadA4C(regD dst, memory mem) %{
  6369   predicate(UseSSE>=1);
  6370   match(Set dst (Load4C mem));
  6371   ins_cost(125);
  6372   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6373   ins_encode %{
  6374     __ movq($dst$$XMMRegister, $mem$$Address);
  6375   %}
  6376   ins_pipe( pipe_slow );
  6377 %}
  6379 // Load Aligned Packed Integer to XMM register
  6380 instruct load2IU(regD dst, memory mem) %{
  6381   predicate(UseSSE>=1);
  6382   match(Set dst (Load2I mem));
  6383   ins_cost(125);
  6384   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6385   ins_encode %{
  6386     __ movq($dst$$XMMRegister, $mem$$Address);
  6387   %}
  6388   ins_pipe( pipe_slow );
  6389 %}
  6391 // Load Aligned Packed Single to XMM
  6392 instruct loadA2F(regD dst, memory mem) %{
  6393   predicate(UseSSE>=1);
  6394   match(Set dst (Load2F mem));
  6395   ins_cost(145);
  6396   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6397   ins_encode %{
  6398     __ movq($dst$$XMMRegister, $mem$$Address);
  6399   %}
  6400   ins_pipe( pipe_slow );
  6401 %}
  6403 // Load Effective Address
  6404 instruct leaP8(eRegP dst, indOffset8 mem) %{
  6405   match(Set dst mem);
  6407   ins_cost(110);
  6408   format %{ "LEA    $dst,$mem" %}
  6409   opcode(0x8D);
  6410   ins_encode( OpcP, RegMem(dst,mem));
  6411   ins_pipe( ialu_reg_reg_fat );
  6412 %}
  6414 instruct leaP32(eRegP dst, indOffset32 mem) %{
  6415   match(Set dst mem);
  6417   ins_cost(110);
  6418   format %{ "LEA    $dst,$mem" %}
  6419   opcode(0x8D);
  6420   ins_encode( OpcP, RegMem(dst,mem));
  6421   ins_pipe( ialu_reg_reg_fat );
  6422 %}
  6424 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  6425   match(Set dst mem);
  6427   ins_cost(110);
  6428   format %{ "LEA    $dst,$mem" %}
  6429   opcode(0x8D);
  6430   ins_encode( OpcP, RegMem(dst,mem));
  6431   ins_pipe( ialu_reg_reg_fat );
  6432 %}
  6434 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  6435   match(Set dst mem);
  6437   ins_cost(110);
  6438   format %{ "LEA    $dst,$mem" %}
  6439   opcode(0x8D);
  6440   ins_encode( OpcP, RegMem(dst,mem));
  6441   ins_pipe( ialu_reg_reg_fat );
  6442 %}
  6444 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  6445   match(Set dst mem);
  6447   ins_cost(110);
  6448   format %{ "LEA    $dst,$mem" %}
  6449   opcode(0x8D);
  6450   ins_encode( OpcP, RegMem(dst,mem));
  6451   ins_pipe( ialu_reg_reg_fat );
  6452 %}
  6454 // Load Constant
  6455 instruct loadConI(eRegI dst, immI src) %{
  6456   match(Set dst src);
  6458   format %{ "MOV    $dst,$src" %}
  6459   ins_encode( LdImmI(dst, src) );
  6460   ins_pipe( ialu_reg_fat );
  6461 %}
  6463 // Load Constant zero
  6464 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  6465   match(Set dst src);
  6466   effect(KILL cr);
  6468   ins_cost(50);
  6469   format %{ "XOR    $dst,$dst" %}
  6470   opcode(0x33);  /* + rd */
  6471   ins_encode( OpcP, RegReg( dst, dst ) );
  6472   ins_pipe( ialu_reg );
  6473 %}
  6475 instruct loadConP(eRegP dst, immP src) %{
  6476   match(Set dst src);
  6478   format %{ "MOV    $dst,$src" %}
  6479   opcode(0xB8);  /* + rd */
  6480   ins_encode( LdImmP(dst, src) );
  6481   ins_pipe( ialu_reg_fat );
  6482 %}
  6484 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  6485   match(Set dst src);
  6486   effect(KILL cr);
  6487   ins_cost(200);
  6488   format %{ "MOV    $dst.lo,$src.lo\n\t"
  6489             "MOV    $dst.hi,$src.hi" %}
  6490   opcode(0xB8);
  6491   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  6492   ins_pipe( ialu_reg_long_fat );
  6493 %}
  6495 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  6496   match(Set dst src);
  6497   effect(KILL cr);
  6498   ins_cost(150);
  6499   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  6500             "XOR    $dst.hi,$dst.hi" %}
  6501   opcode(0x33,0x33);
  6502   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  6503   ins_pipe( ialu_reg_long );
  6504 %}
  6506 // The instruction usage is guarded by predicate in operand immFPR().
  6507 instruct loadConFPR(regFPR dst, immFPR con) %{
  6508   match(Set dst con);
  6509   ins_cost(125);
  6510   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  6511             "FSTP   $dst" %}
  6512   ins_encode %{
  6513     __ fld_s($constantaddress($con));
  6514     __ fstp_d($dst$$reg);
  6515   %}
  6516   ins_pipe(fpu_reg_con);
  6517 %}
  6519 // The instruction usage is guarded by predicate in operand immFPR0().
  6520 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  6521   match(Set dst con);
  6522   ins_cost(125);
  6523   format %{ "FLDZ   ST\n\t"
  6524             "FSTP   $dst" %}
  6525   ins_encode %{
  6526     __ fldz();
  6527     __ fstp_d($dst$$reg);
  6528   %}
  6529   ins_pipe(fpu_reg_con);
  6530 %}
  6532 // The instruction usage is guarded by predicate in operand immFPR1().
  6533 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  6534   match(Set dst con);
  6535   ins_cost(125);
  6536   format %{ "FLD1   ST\n\t"
  6537             "FSTP   $dst" %}
  6538   ins_encode %{
  6539     __ fld1();
  6540     __ fstp_d($dst$$reg);
  6541   %}
  6542   ins_pipe(fpu_reg_con);
  6543 %}
  6545 // The instruction usage is guarded by predicate in operand immF().
  6546 instruct loadConF(regF dst, immF con) %{
  6547   match(Set dst con);
  6548   ins_cost(125);
  6549   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  6550   ins_encode %{
  6551     __ movflt($dst$$XMMRegister, $constantaddress($con));
  6552   %}
  6553   ins_pipe(pipe_slow);
  6554 %}
  6556 // The instruction usage is guarded by predicate in operand immF0().
  6557 instruct loadConF0(regF dst, immF0 src) %{
  6558   match(Set dst src);
  6559   ins_cost(100);
  6560   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  6561   ins_encode %{
  6562     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  6563   %}
  6564   ins_pipe(pipe_slow);
  6565 %}
  6567 // The instruction usage is guarded by predicate in operand immDPR().
  6568 instruct loadConDPR(regDPR dst, immDPR con) %{
  6569   match(Set dst con);
  6570   ins_cost(125);
  6572   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  6573             "FSTP   $dst" %}
  6574   ins_encode %{
  6575     __ fld_d($constantaddress($con));
  6576     __ fstp_d($dst$$reg);
  6577   %}
  6578   ins_pipe(fpu_reg_con);
  6579 %}
  6581 // The instruction usage is guarded by predicate in operand immDPR0().
  6582 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  6583   match(Set dst con);
  6584   ins_cost(125);
  6586   format %{ "FLDZ   ST\n\t"
  6587             "FSTP   $dst" %}
  6588   ins_encode %{
  6589     __ fldz();
  6590     __ fstp_d($dst$$reg);
  6591   %}
  6592   ins_pipe(fpu_reg_con);
  6593 %}
  6595 // The instruction usage is guarded by predicate in operand immDPR1().
  6596 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6597   match(Set dst con);
  6598   ins_cost(125);
  6600   format %{ "FLD1   ST\n\t"
  6601             "FSTP   $dst" %}
  6602   ins_encode %{
  6603     __ fld1();
  6604     __ fstp_d($dst$$reg);
  6605   %}
  6606   ins_pipe(fpu_reg_con);
  6607 %}
  6609 // The instruction usage is guarded by predicate in operand immD().
  6610 instruct loadConD(regD dst, immD con) %{
  6611   match(Set dst con);
  6612   ins_cost(125);
  6613   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6614   ins_encode %{
  6615     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6616   %}
  6617   ins_pipe(pipe_slow);
  6618 %}
  6620 // The instruction usage is guarded by predicate in operand immD0().
  6621 instruct loadConD0(regD dst, immD0 src) %{
  6622   match(Set dst src);
  6623   ins_cost(100);
  6624   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6625   ins_encode %{
  6626     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6627   %}
  6628   ins_pipe( pipe_slow );
  6629 %}
  6631 // Load Stack Slot
  6632 instruct loadSSI(eRegI dst, stackSlotI src) %{
  6633   match(Set dst src);
  6634   ins_cost(125);
  6636   format %{ "MOV    $dst,$src" %}
  6637   opcode(0x8B);
  6638   ins_encode( OpcP, RegMem(dst,src));
  6639   ins_pipe( ialu_reg_mem );
  6640 %}
  6642 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6643   match(Set dst src);
  6645   ins_cost(200);
  6646   format %{ "MOV    $dst,$src.lo\n\t"
  6647             "MOV    $dst+4,$src.hi" %}
  6648   opcode(0x8B, 0x8B);
  6649   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6650   ins_pipe( ialu_mem_long_reg );
  6651 %}
  6653 // Load Stack Slot
  6654 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6655   match(Set dst src);
  6656   ins_cost(125);
  6658   format %{ "MOV    $dst,$src" %}
  6659   opcode(0x8B);
  6660   ins_encode( OpcP, RegMem(dst,src));
  6661   ins_pipe( ialu_reg_mem );
  6662 %}
  6664 // Load Stack Slot
  6665 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6666   match(Set dst src);
  6667   ins_cost(125);
  6669   format %{ "FLD_S  $src\n\t"
  6670             "FSTP   $dst" %}
  6671   opcode(0xD9);               /* D9 /0, FLD m32real */
  6672   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6673               Pop_Reg_FPR(dst) );
  6674   ins_pipe( fpu_reg_mem );
  6675 %}
  6677 // Load Stack Slot
  6678 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6679   match(Set dst src);
  6680   ins_cost(125);
  6682   format %{ "FLD_D  $src\n\t"
  6683             "FSTP   $dst" %}
  6684   opcode(0xDD);               /* DD /0, FLD m64real */
  6685   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6686               Pop_Reg_DPR(dst) );
  6687   ins_pipe( fpu_reg_mem );
  6688 %}
  6690 // Prefetch instructions.
  6691 // Must be safe to execute with invalid address (cannot fault).
  6693 instruct prefetchr0( memory mem ) %{
  6694   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6695   match(PrefetchRead mem);
  6696   ins_cost(0);
  6697   size(0);
  6698   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6699   ins_encode();
  6700   ins_pipe(empty);
  6701 %}
  6703 instruct prefetchr( memory mem ) %{
  6704   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6705   match(PrefetchRead mem);
  6706   ins_cost(100);
  6708   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6709   ins_encode %{
  6710     __ prefetchr($mem$$Address);
  6711   %}
  6712   ins_pipe(ialu_mem);
  6713 %}
  6715 instruct prefetchrNTA( memory mem ) %{
  6716   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6717   match(PrefetchRead mem);
  6718   ins_cost(100);
  6720   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6721   ins_encode %{
  6722     __ prefetchnta($mem$$Address);
  6723   %}
  6724   ins_pipe(ialu_mem);
  6725 %}
  6727 instruct prefetchrT0( memory mem ) %{
  6728   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6729   match(PrefetchRead mem);
  6730   ins_cost(100);
  6732   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6733   ins_encode %{
  6734     __ prefetcht0($mem$$Address);
  6735   %}
  6736   ins_pipe(ialu_mem);
  6737 %}
  6739 instruct prefetchrT2( memory mem ) %{
  6740   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6741   match(PrefetchRead mem);
  6742   ins_cost(100);
  6744   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6745   ins_encode %{
  6746     __ prefetcht2($mem$$Address);
  6747   %}
  6748   ins_pipe(ialu_mem);
  6749 %}
  6751 instruct prefetchw0( memory mem ) %{
  6752   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6753   match(PrefetchWrite mem);
  6754   ins_cost(0);
  6755   size(0);
  6756   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6757   ins_encode();
  6758   ins_pipe(empty);
  6759 %}
  6761 instruct prefetchw( memory mem ) %{
  6762   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6763   match( PrefetchWrite mem );
  6764   ins_cost(100);
  6766   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6767   ins_encode %{
  6768     __ prefetchw($mem$$Address);
  6769   %}
  6770   ins_pipe(ialu_mem);
  6771 %}
  6773 instruct prefetchwNTA( memory mem ) %{
  6774   predicate(UseSSE>=1);
  6775   match(PrefetchWrite mem);
  6776   ins_cost(100);
  6778   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6779   ins_encode %{
  6780     __ prefetchnta($mem$$Address);
  6781   %}
  6782   ins_pipe(ialu_mem);
  6783 %}
  6785 // Prefetch instructions for allocation.
  6787 instruct prefetchAlloc0( memory mem ) %{
  6788   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6789   match(PrefetchAllocation mem);
  6790   ins_cost(0);
  6791   size(0);
  6792   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6793   ins_encode();
  6794   ins_pipe(empty);
  6795 %}
  6797 instruct prefetchAlloc( memory mem ) %{
  6798   predicate(AllocatePrefetchInstr==3);
  6799   match( PrefetchAllocation mem );
  6800   ins_cost(100);
  6802   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6803   ins_encode %{
  6804     __ prefetchw($mem$$Address);
  6805   %}
  6806   ins_pipe(ialu_mem);
  6807 %}
  6809 instruct prefetchAllocNTA( memory mem ) %{
  6810   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6811   match(PrefetchAllocation mem);
  6812   ins_cost(100);
  6814   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6815   ins_encode %{
  6816     __ prefetchnta($mem$$Address);
  6817   %}
  6818   ins_pipe(ialu_mem);
  6819 %}
  6821 instruct prefetchAllocT0( memory mem ) %{
  6822   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6823   match(PrefetchAllocation mem);
  6824   ins_cost(100);
  6826   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6827   ins_encode %{
  6828     __ prefetcht0($mem$$Address);
  6829   %}
  6830   ins_pipe(ialu_mem);
  6831 %}
  6833 instruct prefetchAllocT2( memory mem ) %{
  6834   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6835   match(PrefetchAllocation mem);
  6836   ins_cost(100);
  6838   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6839   ins_encode %{
  6840     __ prefetcht2($mem$$Address);
  6841   %}
  6842   ins_pipe(ialu_mem);
  6843 %}
  6845 //----------Store Instructions-------------------------------------------------
  6847 // Store Byte
  6848 instruct storeB(memory mem, xRegI src) %{
  6849   match(Set mem (StoreB mem src));
  6851   ins_cost(125);
  6852   format %{ "MOV8   $mem,$src" %}
  6853   opcode(0x88);
  6854   ins_encode( OpcP, RegMem( src, mem ) );
  6855   ins_pipe( ialu_mem_reg );
  6856 %}
  6858 // Store Char/Short
  6859 instruct storeC(memory mem, eRegI src) %{
  6860   match(Set mem (StoreC mem src));
  6862   ins_cost(125);
  6863   format %{ "MOV16  $mem,$src" %}
  6864   opcode(0x89, 0x66);
  6865   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6866   ins_pipe( ialu_mem_reg );
  6867 %}
  6869 // Store Integer
  6870 instruct storeI(memory mem, eRegI src) %{
  6871   match(Set mem (StoreI mem src));
  6873   ins_cost(125);
  6874   format %{ "MOV    $mem,$src" %}
  6875   opcode(0x89);
  6876   ins_encode( OpcP, RegMem( src, mem ) );
  6877   ins_pipe( ialu_mem_reg );
  6878 %}
  6880 // Store Long
  6881 instruct storeL(long_memory mem, eRegL src) %{
  6882   predicate(!((StoreLNode*)n)->require_atomic_access());
  6883   match(Set mem (StoreL mem src));
  6885   ins_cost(200);
  6886   format %{ "MOV    $mem,$src.lo\n\t"
  6887             "MOV    $mem+4,$src.hi" %}
  6888   opcode(0x89, 0x89);
  6889   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6890   ins_pipe( ialu_mem_long_reg );
  6891 %}
  6893 // Store Long to Integer
  6894 instruct storeL2I(memory mem, eRegL src) %{
  6895   match(Set mem (StoreI mem (ConvL2I src)));
  6897   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6898   ins_encode %{
  6899     __ movl($mem$$Address, $src$$Register);
  6900   %}
  6901   ins_pipe(ialu_mem_reg);
  6902 %}
  6904 // Volatile Store Long.  Must be atomic, so move it into
  6905 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6906 // target address before the store (for null-ptr checks)
  6907 // so the memory operand is used twice in the encoding.
  6908 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6909   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6910   match(Set mem (StoreL mem src));
  6911   effect( KILL cr );
  6912   ins_cost(400);
  6913   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6914             "FILD   $src\n\t"
  6915             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6916   opcode(0x3B);
  6917   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6918   ins_pipe( fpu_reg_mem );
  6919 %}
  6921 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6922   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6923   match(Set mem (StoreL mem src));
  6924   effect( TEMP tmp, KILL cr );
  6925   ins_cost(380);
  6926   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6927             "MOVSD  $tmp,$src\n\t"
  6928             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6929   ins_encode %{
  6930     __ cmpl(rax, $mem$$Address);
  6931     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6932     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6933   %}
  6934   ins_pipe( pipe_slow );
  6935 %}
  6937 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6938   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6939   match(Set mem (StoreL mem src));
  6940   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6941   ins_cost(360);
  6942   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6943             "MOVD   $tmp,$src.lo\n\t"
  6944             "MOVD   $tmp2,$src.hi\n\t"
  6945             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6946             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6947   ins_encode %{
  6948     __ cmpl(rax, $mem$$Address);
  6949     __ movdl($tmp$$XMMRegister, $src$$Register);
  6950     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6951     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6952     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6953   %}
  6954   ins_pipe( pipe_slow );
  6955 %}
  6957 // Store Pointer; for storing unknown oops and raw pointers
  6958 instruct storeP(memory mem, anyRegP src) %{
  6959   match(Set mem (StoreP mem src));
  6961   ins_cost(125);
  6962   format %{ "MOV    $mem,$src" %}
  6963   opcode(0x89);
  6964   ins_encode( OpcP, RegMem( src, mem ) );
  6965   ins_pipe( ialu_mem_reg );
  6966 %}
  6968 // Store Integer Immediate
  6969 instruct storeImmI(memory mem, immI src) %{
  6970   match(Set mem (StoreI mem src));
  6972   ins_cost(150);
  6973   format %{ "MOV    $mem,$src" %}
  6974   opcode(0xC7);               /* C7 /0 */
  6975   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6976   ins_pipe( ialu_mem_imm );
  6977 %}
  6979 // Store Short/Char Immediate
  6980 instruct storeImmI16(memory mem, immI16 src) %{
  6981   predicate(UseStoreImmI16);
  6982   match(Set mem (StoreC mem src));
  6984   ins_cost(150);
  6985   format %{ "MOV16  $mem,$src" %}
  6986   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6987   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6988   ins_pipe( ialu_mem_imm );
  6989 %}
  6991 // Store Pointer Immediate; null pointers or constant oops that do not
  6992 // need card-mark barriers.
  6993 instruct storeImmP(memory mem, immP src) %{
  6994   match(Set mem (StoreP mem src));
  6996   ins_cost(150);
  6997   format %{ "MOV    $mem,$src" %}
  6998   opcode(0xC7);               /* C7 /0 */
  6999   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7000   ins_pipe( ialu_mem_imm );
  7001 %}
  7003 // Store Byte Immediate
  7004 instruct storeImmB(memory mem, immI8 src) %{
  7005   match(Set mem (StoreB mem src));
  7007   ins_cost(150);
  7008   format %{ "MOV8   $mem,$src" %}
  7009   opcode(0xC6);               /* C6 /0 */
  7010   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7011   ins_pipe( ialu_mem_imm );
  7012 %}
  7014 // Store Aligned Packed Byte XMM register to memory
  7015 instruct storeA8B(memory mem, regD src) %{
  7016   predicate(UseSSE>=1);
  7017   match(Set mem (Store8B mem src));
  7018   ins_cost(145);
  7019   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7020   ins_encode %{
  7021     __ movq($mem$$Address, $src$$XMMRegister);
  7022   %}
  7023   ins_pipe( pipe_slow );
  7024 %}
  7026 // Store Aligned Packed Char/Short XMM register to memory
  7027 instruct storeA4C(memory mem, regD src) %{
  7028   predicate(UseSSE>=1);
  7029   match(Set mem (Store4C mem src));
  7030   ins_cost(145);
  7031   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7032   ins_encode %{
  7033     __ movq($mem$$Address, $src$$XMMRegister);
  7034   %}
  7035   ins_pipe( pipe_slow );
  7036 %}
  7038 // Store Aligned Packed Integer XMM register to memory
  7039 instruct storeA2I(memory mem, regD src) %{
  7040   predicate(UseSSE>=1);
  7041   match(Set mem (Store2I mem src));
  7042   ins_cost(145);
  7043   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7044   ins_encode %{
  7045     __ movq($mem$$Address, $src$$XMMRegister);
  7046   %}
  7047   ins_pipe( pipe_slow );
  7048 %}
  7050 // Store CMS card-mark Immediate
  7051 instruct storeImmCM(memory mem, immI8 src) %{
  7052   match(Set mem (StoreCM mem src));
  7054   ins_cost(150);
  7055   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7056   opcode(0xC6);               /* C6 /0 */
  7057   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7058   ins_pipe( ialu_mem_imm );
  7059 %}
  7061 // Store Double
  7062 instruct storeDPR( memory mem, regDPR1 src) %{
  7063   predicate(UseSSE<=1);
  7064   match(Set mem (StoreD mem src));
  7066   ins_cost(100);
  7067   format %{ "FST_D  $mem,$src" %}
  7068   opcode(0xDD);       /* DD /2 */
  7069   ins_encode( enc_FPR_store(mem,src) );
  7070   ins_pipe( fpu_mem_reg );
  7071 %}
  7073 // Store double does rounding on x86
  7074 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  7075   predicate(UseSSE<=1);
  7076   match(Set mem (StoreD mem (RoundDouble src)));
  7078   ins_cost(100);
  7079   format %{ "FST_D  $mem,$src\t# round" %}
  7080   opcode(0xDD);       /* DD /2 */
  7081   ins_encode( enc_FPR_store(mem,src) );
  7082   ins_pipe( fpu_mem_reg );
  7083 %}
  7085 // Store XMM register to memory (double-precision floating points)
  7086 // MOVSD instruction
  7087 instruct storeD(memory mem, regD src) %{
  7088   predicate(UseSSE>=2);
  7089   match(Set mem (StoreD mem src));
  7090   ins_cost(95);
  7091   format %{ "MOVSD  $mem,$src" %}
  7092   ins_encode %{
  7093     __ movdbl($mem$$Address, $src$$XMMRegister);
  7094   %}
  7095   ins_pipe( pipe_slow );
  7096 %}
  7098 // Store XMM register to memory (single-precision floating point)
  7099 // MOVSS instruction
  7100 instruct storeF(memory mem, regF src) %{
  7101   predicate(UseSSE>=1);
  7102   match(Set mem (StoreF mem src));
  7103   ins_cost(95);
  7104   format %{ "MOVSS  $mem,$src" %}
  7105   ins_encode %{
  7106     __ movflt($mem$$Address, $src$$XMMRegister);
  7107   %}
  7108   ins_pipe( pipe_slow );
  7109 %}
  7111 // Store Aligned Packed Single Float XMM register to memory
  7112 instruct storeA2F(memory mem, regD src) %{
  7113   predicate(UseSSE>=1);
  7114   match(Set mem (Store2F mem src));
  7115   ins_cost(145);
  7116   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7117   ins_encode %{
  7118     __ movq($mem$$Address, $src$$XMMRegister);
  7119   %}
  7120   ins_pipe( pipe_slow );
  7121 %}
  7123 // Store Float
  7124 instruct storeFPR( memory mem, regFPR1 src) %{
  7125   predicate(UseSSE==0);
  7126   match(Set mem (StoreF mem src));
  7128   ins_cost(100);
  7129   format %{ "FST_S  $mem,$src" %}
  7130   opcode(0xD9);       /* D9 /2 */
  7131   ins_encode( enc_FPR_store(mem,src) );
  7132   ins_pipe( fpu_mem_reg );
  7133 %}
  7135 // Store Float does rounding on x86
  7136 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  7137   predicate(UseSSE==0);
  7138   match(Set mem (StoreF mem (RoundFloat src)));
  7140   ins_cost(100);
  7141   format %{ "FST_S  $mem,$src\t# round" %}
  7142   opcode(0xD9);       /* D9 /2 */
  7143   ins_encode( enc_FPR_store(mem,src) );
  7144   ins_pipe( fpu_mem_reg );
  7145 %}
  7147 // Store Float does rounding on x86
  7148 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  7149   predicate(UseSSE<=1);
  7150   match(Set mem (StoreF mem (ConvD2F src)));
  7152   ins_cost(100);
  7153   format %{ "FST_S  $mem,$src\t# D-round" %}
  7154   opcode(0xD9);       /* D9 /2 */
  7155   ins_encode( enc_FPR_store(mem,src) );
  7156   ins_pipe( fpu_mem_reg );
  7157 %}
  7159 // Store immediate Float value (it is faster than store from FPU register)
  7160 // The instruction usage is guarded by predicate in operand immFPR().
  7161 instruct storeFPR_imm( memory mem, immFPR src) %{
  7162   match(Set mem (StoreF mem src));
  7164   ins_cost(50);
  7165   format %{ "MOV    $mem,$src\t# store float" %}
  7166   opcode(0xC7);               /* C7 /0 */
  7167   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  7168   ins_pipe( ialu_mem_imm );
  7169 %}
  7171 // Store immediate Float value (it is faster than store from XMM register)
  7172 // The instruction usage is guarded by predicate in operand immF().
  7173 instruct storeF_imm( memory mem, immF src) %{
  7174   match(Set mem (StoreF mem src));
  7176   ins_cost(50);
  7177   format %{ "MOV    $mem,$src\t# store float" %}
  7178   opcode(0xC7);               /* C7 /0 */
  7179   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7180   ins_pipe( ialu_mem_imm );
  7181 %}
  7183 // Store Integer to stack slot
  7184 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7185   match(Set dst src);
  7187   ins_cost(100);
  7188   format %{ "MOV    $dst,$src" %}
  7189   opcode(0x89);
  7190   ins_encode( OpcPRegSS( dst, src ) );
  7191   ins_pipe( ialu_mem_reg );
  7192 %}
  7194 // Store Integer to stack slot
  7195 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7196   match(Set dst src);
  7198   ins_cost(100);
  7199   format %{ "MOV    $dst,$src" %}
  7200   opcode(0x89);
  7201   ins_encode( OpcPRegSS( dst, src ) );
  7202   ins_pipe( ialu_mem_reg );
  7203 %}
  7205 // Store Long to stack slot
  7206 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7207   match(Set dst src);
  7209   ins_cost(200);
  7210   format %{ "MOV    $dst,$src.lo\n\t"
  7211             "MOV    $dst+4,$src.hi" %}
  7212   opcode(0x89, 0x89);
  7213   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7214   ins_pipe( ialu_mem_long_reg );
  7215 %}
  7217 //----------MemBar Instructions-----------------------------------------------
  7218 // Memory barrier flavors
  7220 instruct membar_acquire() %{
  7221   match(MemBarAcquire);
  7222   ins_cost(400);
  7224   size(0);
  7225   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7226   ins_encode();
  7227   ins_pipe(empty);
  7228 %}
  7230 instruct membar_acquire_lock() %{
  7231   match(MemBarAcquireLock);
  7232   ins_cost(0);
  7234   size(0);
  7235   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7236   ins_encode( );
  7237   ins_pipe(empty);
  7238 %}
  7240 instruct membar_release() %{
  7241   match(MemBarRelease);
  7242   ins_cost(400);
  7244   size(0);
  7245   format %{ "MEMBAR-release ! (empty encoding)" %}
  7246   ins_encode( );
  7247   ins_pipe(empty);
  7248 %}
  7250 instruct membar_release_lock() %{
  7251   match(MemBarReleaseLock);
  7252   ins_cost(0);
  7254   size(0);
  7255   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7256   ins_encode( );
  7257   ins_pipe(empty);
  7258 %}
  7260 instruct membar_volatile(eFlagsReg cr) %{
  7261   match(MemBarVolatile);
  7262   effect(KILL cr);
  7263   ins_cost(400);
  7265   format %{ 
  7266     $$template
  7267     if (os::is_MP()) {
  7268       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7269     } else {
  7270       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7272   %}
  7273   ins_encode %{
  7274     __ membar(Assembler::StoreLoad);
  7275   %}
  7276   ins_pipe(pipe_slow);
  7277 %}
  7279 instruct unnecessary_membar_volatile() %{
  7280   match(MemBarVolatile);
  7281   predicate(Matcher::post_store_load_barrier(n));
  7282   ins_cost(0);
  7284   size(0);
  7285   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7286   ins_encode( );
  7287   ins_pipe(empty);
  7288 %}
  7290 instruct membar_storestore() %{
  7291   match(MemBarStoreStore);
  7292   ins_cost(0);
  7294   size(0);
  7295   format %{ "MEMBAR-storestore (empty encoding)" %}
  7296   ins_encode( );
  7297   ins_pipe(empty);
  7298 %}
  7300 //----------Move Instructions--------------------------------------------------
  7301 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7302   match(Set dst (CastX2P src));
  7303   format %{ "# X2P  $dst, $src" %}
  7304   ins_encode( /*empty encoding*/ );
  7305   ins_cost(0);
  7306   ins_pipe(empty);
  7307 %}
  7309 instruct castP2X(eRegI dst, eRegP src ) %{
  7310   match(Set dst (CastP2X src));
  7311   ins_cost(50);
  7312   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7313   ins_encode( enc_Copy( dst, src) );
  7314   ins_pipe( ialu_reg_reg );
  7315 %}
  7317 //----------Conditional Move---------------------------------------------------
  7318 // Conditional move
  7319 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, eRegI dst, eRegI src) %{
  7320   predicate(!VM_Version::supports_cmov() );
  7321   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7322   ins_cost(200);
  7323   format %{ "J$cop,us skip\t# signed cmove\n\t"
  7324             "MOV    $dst,$src\n"
  7325       "skip:" %}
  7326   ins_encode %{
  7327     Label Lskip;
  7328     // Invert sense of branch from sense of CMOV
  7329     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7330     __ movl($dst$$Register, $src$$Register);
  7331     __ bind(Lskip);
  7332   %}
  7333   ins_pipe( pipe_cmov_reg );
  7334 %}
  7336 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src) %{
  7337   predicate(!VM_Version::supports_cmov() );
  7338   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7339   ins_cost(200);
  7340   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  7341             "MOV    $dst,$src\n"
  7342       "skip:" %}
  7343   ins_encode %{
  7344     Label Lskip;
  7345     // Invert sense of branch from sense of CMOV
  7346     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  7347     __ movl($dst$$Register, $src$$Register);
  7348     __ bind(Lskip);
  7349   %}
  7350   ins_pipe( pipe_cmov_reg );
  7351 %}
  7353 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7354   predicate(VM_Version::supports_cmov() );
  7355   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7356   ins_cost(200);
  7357   format %{ "CMOV$cop $dst,$src" %}
  7358   opcode(0x0F,0x40);
  7359   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7360   ins_pipe( pipe_cmov_reg );
  7361 %}
  7363 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7364   predicate(VM_Version::supports_cmov() );
  7365   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7366   ins_cost(200);
  7367   format %{ "CMOV$cop $dst,$src" %}
  7368   opcode(0x0F,0x40);
  7369   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7370   ins_pipe( pipe_cmov_reg );
  7371 %}
  7373 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7374   predicate(VM_Version::supports_cmov() );
  7375   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7376   ins_cost(200);
  7377   expand %{
  7378     cmovI_regU(cop, cr, dst, src);
  7379   %}
  7380 %}
  7382 // Conditional move
  7383 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7384   predicate(VM_Version::supports_cmov() );
  7385   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7386   ins_cost(250);
  7387   format %{ "CMOV$cop $dst,$src" %}
  7388   opcode(0x0F,0x40);
  7389   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7390   ins_pipe( pipe_cmov_mem );
  7391 %}
  7393 // Conditional move
  7394 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7395   predicate(VM_Version::supports_cmov() );
  7396   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7397   ins_cost(250);
  7398   format %{ "CMOV$cop $dst,$src" %}
  7399   opcode(0x0F,0x40);
  7400   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7401   ins_pipe( pipe_cmov_mem );
  7402 %}
  7404 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7405   predicate(VM_Version::supports_cmov() );
  7406   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7407   ins_cost(250);
  7408   expand %{
  7409     cmovI_memU(cop, cr, dst, src);
  7410   %}
  7411 %}
  7413 // Conditional move
  7414 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7415   predicate(VM_Version::supports_cmov() );
  7416   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7417   ins_cost(200);
  7418   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7419   opcode(0x0F,0x40);
  7420   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7421   ins_pipe( pipe_cmov_reg );
  7422 %}
  7424 // Conditional move (non-P6 version)
  7425 // Note:  a CMoveP is generated for  stubs and native wrappers
  7426 //        regardless of whether we are on a P6, so we
  7427 //        emulate a cmov here
  7428 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7429   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7430   ins_cost(300);
  7431   format %{ "Jn$cop   skip\n\t"
  7432           "MOV    $dst,$src\t# pointer\n"
  7433       "skip:" %}
  7434   opcode(0x8b);
  7435   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7436   ins_pipe( pipe_cmov_reg );
  7437 %}
  7439 // Conditional move
  7440 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7441   predicate(VM_Version::supports_cmov() );
  7442   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7443   ins_cost(200);
  7444   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7445   opcode(0x0F,0x40);
  7446   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7447   ins_pipe( pipe_cmov_reg );
  7448 %}
  7450 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7451   predicate(VM_Version::supports_cmov() );
  7452   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7453   ins_cost(200);
  7454   expand %{
  7455     cmovP_regU(cop, cr, dst, src);
  7456   %}
  7457 %}
  7459 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7460 // correctly meets the two pointer arguments; one is an incoming
  7461 // register but the other is a memory operand.  ALSO appears to
  7462 // be buggy with implicit null checks.
  7463 //
  7464 //// Conditional move
  7465 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7466 //  predicate(VM_Version::supports_cmov() );
  7467 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7468 //  ins_cost(250);
  7469 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7470 //  opcode(0x0F,0x40);
  7471 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7472 //  ins_pipe( pipe_cmov_mem );
  7473 //%}
  7474 //
  7475 //// Conditional move
  7476 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7477 //  predicate(VM_Version::supports_cmov() );
  7478 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7479 //  ins_cost(250);
  7480 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7481 //  opcode(0x0F,0x40);
  7482 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7483 //  ins_pipe( pipe_cmov_mem );
  7484 //%}
  7486 // Conditional move
  7487 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  7488   predicate(UseSSE<=1);
  7489   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7490   ins_cost(200);
  7491   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7492   opcode(0xDA);
  7493   ins_encode( enc_cmov_dpr(cop,src) );
  7494   ins_pipe( pipe_cmovDPR_reg );
  7495 %}
  7497 // Conditional move
  7498 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  7499   predicate(UseSSE==0);
  7500   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7501   ins_cost(200);
  7502   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7503   opcode(0xDA);
  7504   ins_encode( enc_cmov_dpr(cop,src) );
  7505   ins_pipe( pipe_cmovDPR_reg );
  7506 %}
  7508 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7509 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  7510   predicate(UseSSE<=1);
  7511   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7512   ins_cost(200);
  7513   format %{ "Jn$cop   skip\n\t"
  7514             "MOV    $dst,$src\t# double\n"
  7515       "skip:" %}
  7516   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7517   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  7518   ins_pipe( pipe_cmovDPR_reg );
  7519 %}
  7521 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7522 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  7523   predicate(UseSSE==0);
  7524   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7525   ins_cost(200);
  7526   format %{ "Jn$cop    skip\n\t"
  7527             "MOV    $dst,$src\t# float\n"
  7528       "skip:" %}
  7529   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7530   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  7531   ins_pipe( pipe_cmovDPR_reg );
  7532 %}
  7534 // No CMOVE with SSE/SSE2
  7535 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7536   predicate (UseSSE>=1);
  7537   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7538   ins_cost(200);
  7539   format %{ "Jn$cop   skip\n\t"
  7540             "MOVSS  $dst,$src\t# float\n"
  7541       "skip:" %}
  7542   ins_encode %{
  7543     Label skip;
  7544     // Invert sense of branch from sense of CMOV
  7545     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7546     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7547     __ bind(skip);
  7548   %}
  7549   ins_pipe( pipe_slow );
  7550 %}
  7552 // No CMOVE with SSE/SSE2
  7553 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7554   predicate (UseSSE>=2);
  7555   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7556   ins_cost(200);
  7557   format %{ "Jn$cop   skip\n\t"
  7558             "MOVSD  $dst,$src\t# float\n"
  7559       "skip:" %}
  7560   ins_encode %{
  7561     Label skip;
  7562     // Invert sense of branch from sense of CMOV
  7563     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7564     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7565     __ bind(skip);
  7566   %}
  7567   ins_pipe( pipe_slow );
  7568 %}
  7570 // unsigned version
  7571 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  7572   predicate (UseSSE>=1);
  7573   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7574   ins_cost(200);
  7575   format %{ "Jn$cop   skip\n\t"
  7576             "MOVSS  $dst,$src\t# float\n"
  7577       "skip:" %}
  7578   ins_encode %{
  7579     Label skip;
  7580     // Invert sense of branch from sense of CMOV
  7581     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7582     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  7583     __ bind(skip);
  7584   %}
  7585   ins_pipe( pipe_slow );
  7586 %}
  7588 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  7589   predicate (UseSSE>=1);
  7590   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7591   ins_cost(200);
  7592   expand %{
  7593     fcmovF_regU(cop, cr, dst, src);
  7594   %}
  7595 %}
  7597 // unsigned version
  7598 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  7599   predicate (UseSSE>=2);
  7600   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7601   ins_cost(200);
  7602   format %{ "Jn$cop   skip\n\t"
  7603             "MOVSD  $dst,$src\t# float\n"
  7604       "skip:" %}
  7605   ins_encode %{
  7606     Label skip;
  7607     // Invert sense of branch from sense of CMOV
  7608     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  7609     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  7610     __ bind(skip);
  7611   %}
  7612   ins_pipe( pipe_slow );
  7613 %}
  7615 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  7616   predicate (UseSSE>=2);
  7617   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7618   ins_cost(200);
  7619   expand %{
  7620     fcmovD_regU(cop, cr, dst, src);
  7621   %}
  7622 %}
  7624 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  7625   predicate(VM_Version::supports_cmov() );
  7626   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7627   ins_cost(200);
  7628   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7629             "CMOV$cop $dst.hi,$src.hi" %}
  7630   opcode(0x0F,0x40);
  7631   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7632   ins_pipe( pipe_cmov_reg_long );
  7633 %}
  7635 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7636   predicate(VM_Version::supports_cmov() );
  7637   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7638   ins_cost(200);
  7639   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7640             "CMOV$cop $dst.hi,$src.hi" %}
  7641   opcode(0x0F,0x40);
  7642   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7643   ins_pipe( pipe_cmov_reg_long );
  7644 %}
  7646 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7647   predicate(VM_Version::supports_cmov() );
  7648   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7649   ins_cost(200);
  7650   expand %{
  7651     cmovL_regU(cop, cr, dst, src);
  7652   %}
  7653 %}
  7655 //----------Arithmetic Instructions--------------------------------------------
  7656 //----------Addition Instructions----------------------------------------------
  7657 // Integer Addition Instructions
  7658 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7659   match(Set dst (AddI dst src));
  7660   effect(KILL cr);
  7662   size(2);
  7663   format %{ "ADD    $dst,$src" %}
  7664   opcode(0x03);
  7665   ins_encode( OpcP, RegReg( dst, src) );
  7666   ins_pipe( ialu_reg_reg );
  7667 %}
  7669 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  7670   match(Set dst (AddI dst src));
  7671   effect(KILL cr);
  7673   format %{ "ADD    $dst,$src" %}
  7674   opcode(0x81, 0x00); /* /0 id */
  7675   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7676   ins_pipe( ialu_reg );
  7677 %}
  7679 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  7680   predicate(UseIncDec);
  7681   match(Set dst (AddI dst src));
  7682   effect(KILL cr);
  7684   size(1);
  7685   format %{ "INC    $dst" %}
  7686   opcode(0x40); /*  */
  7687   ins_encode( Opc_plus( primary, dst ) );
  7688   ins_pipe( ialu_reg );
  7689 %}
  7691 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  7692   match(Set dst (AddI src0 src1));
  7693   ins_cost(110);
  7695   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7696   opcode(0x8D); /* 0x8D /r */
  7697   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7698   ins_pipe( ialu_reg_reg );
  7699 %}
  7701 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7702   match(Set dst (AddP src0 src1));
  7703   ins_cost(110);
  7705   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7706   opcode(0x8D); /* 0x8D /r */
  7707   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7708   ins_pipe( ialu_reg_reg );
  7709 %}
  7711 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  7712   predicate(UseIncDec);
  7713   match(Set dst (AddI dst src));
  7714   effect(KILL cr);
  7716   size(1);
  7717   format %{ "DEC    $dst" %}
  7718   opcode(0x48); /*  */
  7719   ins_encode( Opc_plus( primary, dst ) );
  7720   ins_pipe( ialu_reg );
  7721 %}
  7723 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  7724   match(Set dst (AddP dst src));
  7725   effect(KILL cr);
  7727   size(2);
  7728   format %{ "ADD    $dst,$src" %}
  7729   opcode(0x03);
  7730   ins_encode( OpcP, RegReg( dst, src) );
  7731   ins_pipe( ialu_reg_reg );
  7732 %}
  7734 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7735   match(Set dst (AddP dst src));
  7736   effect(KILL cr);
  7738   format %{ "ADD    $dst,$src" %}
  7739   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7740   // ins_encode( RegImm( dst, src) );
  7741   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7742   ins_pipe( ialu_reg );
  7743 %}
  7745 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  7746   match(Set dst (AddI dst (LoadI src)));
  7747   effect(KILL cr);
  7749   ins_cost(125);
  7750   format %{ "ADD    $dst,$src" %}
  7751   opcode(0x03);
  7752   ins_encode( OpcP, RegMem( dst, src) );
  7753   ins_pipe( ialu_reg_mem );
  7754 %}
  7756 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  7757   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7758   effect(KILL cr);
  7760   ins_cost(150);
  7761   format %{ "ADD    $dst,$src" %}
  7762   opcode(0x01);  /* Opcode 01 /r */
  7763   ins_encode( OpcP, RegMem( src, dst ) );
  7764   ins_pipe( ialu_mem_reg );
  7765 %}
  7767 // Add Memory with Immediate
  7768 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7769   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7770   effect(KILL cr);
  7772   ins_cost(125);
  7773   format %{ "ADD    $dst,$src" %}
  7774   opcode(0x81);               /* Opcode 81 /0 id */
  7775   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7776   ins_pipe( ialu_mem_imm );
  7777 %}
  7779 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7780   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7781   effect(KILL cr);
  7783   ins_cost(125);
  7784   format %{ "INC    $dst" %}
  7785   opcode(0xFF);               /* Opcode FF /0 */
  7786   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7787   ins_pipe( ialu_mem_imm );
  7788 %}
  7790 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7791   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7792   effect(KILL cr);
  7794   ins_cost(125);
  7795   format %{ "DEC    $dst" %}
  7796   opcode(0xFF);               /* Opcode FF /1 */
  7797   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7798   ins_pipe( ialu_mem_imm );
  7799 %}
  7802 instruct checkCastPP( eRegP dst ) %{
  7803   match(Set dst (CheckCastPP dst));
  7805   size(0);
  7806   format %{ "#checkcastPP of $dst" %}
  7807   ins_encode( /*empty encoding*/ );
  7808   ins_pipe( empty );
  7809 %}
  7811 instruct castPP( eRegP dst ) %{
  7812   match(Set dst (CastPP dst));
  7813   format %{ "#castPP of $dst" %}
  7814   ins_encode( /*empty encoding*/ );
  7815   ins_pipe( empty );
  7816 %}
  7818 instruct castII( eRegI dst ) %{
  7819   match(Set dst (CastII dst));
  7820   format %{ "#castII of $dst" %}
  7821   ins_encode( /*empty encoding*/ );
  7822   ins_cost(0);
  7823   ins_pipe( empty );
  7824 %}
  7827 // Load-locked - same as a regular pointer load when used with compare-swap
  7828 instruct loadPLocked(eRegP dst, memory mem) %{
  7829   match(Set dst (LoadPLocked mem));
  7831   ins_cost(125);
  7832   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7833   opcode(0x8B);
  7834   ins_encode( OpcP, RegMem(dst,mem));
  7835   ins_pipe( ialu_reg_mem );
  7836 %}
  7838 // LoadLong-locked - same as a volatile long load when used with compare-swap
  7839 instruct loadLLocked(stackSlotL dst, memory mem) %{
  7840   predicate(UseSSE<=1);
  7841   match(Set dst (LoadLLocked mem));
  7843   ins_cost(200);
  7844   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  7845             "FISTp  $dst" %}
  7846   ins_encode(enc_loadL_volatile(mem,dst));
  7847   ins_pipe( fpu_reg_mem );
  7848 %}
  7850 instruct loadLX_Locked(stackSlotL dst, memory mem, regD tmp) %{
  7851   predicate(UseSSE>=2);
  7852   match(Set dst (LoadLLocked mem));
  7853   effect(TEMP tmp);
  7854   ins_cost(180);
  7855   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  7856             "MOVSD  $dst,$tmp" %}
  7857   ins_encode %{
  7858     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  7859     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  7860   %}
  7861   ins_pipe( pipe_slow );
  7862 %}
  7864 instruct loadLX_reg_Locked(eRegL dst, memory mem, regD tmp) %{
  7865   predicate(UseSSE>=2);
  7866   match(Set dst (LoadLLocked mem));
  7867   effect(TEMP tmp);
  7868   ins_cost(160);
  7869   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  7870             "MOVD   $dst.lo,$tmp\n\t"
  7871             "PSRLQ  $tmp,32\n\t"
  7872             "MOVD   $dst.hi,$tmp" %}
  7873   ins_encode %{
  7874     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  7875     __ movdl($dst$$Register, $tmp$$XMMRegister);
  7876     __ psrlq($tmp$$XMMRegister, 32);
  7877     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  7878   %}
  7879   ins_pipe( pipe_slow );
  7880 %}
  7882 // Conditional-store of the updated heap-top.
  7883 // Used during allocation of the shared heap.
  7884 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7885 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7886   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7887   // EAX is killed if there is contention, but then it's also unused.
  7888   // In the common case of no contention, EAX holds the new oop address.
  7889   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7890   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7891   ins_pipe( pipe_cmpxchg );
  7892 %}
  7894 // Conditional-store of an int value.
  7895 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7896 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  7897   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7898   effect(KILL oldval);
  7899   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7900   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7901   ins_pipe( pipe_cmpxchg );
  7902 %}
  7904 // Conditional-store of a long value.
  7905 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7906 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7907   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7908   effect(KILL oldval);
  7909   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7910             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7911             "XCHG   EBX,ECX"
  7912   %}
  7913   ins_encode %{
  7914     // Note: we need to swap rbx, and rcx before and after the
  7915     //       cmpxchg8 instruction because the instruction uses
  7916     //       rcx as the high order word of the new value to store but
  7917     //       our register encoding uses rbx.
  7918     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7919     if( os::is_MP() )
  7920       __ lock();
  7921     __ cmpxchg8($mem$$Address);
  7922     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7923   %}
  7924   ins_pipe( pipe_cmpxchg );
  7925 %}
  7927 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7929 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7930   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7931   effect(KILL cr, KILL oldval);
  7932   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7933             "MOV    $res,0\n\t"
  7934             "JNE,s  fail\n\t"
  7935             "MOV    $res,1\n"
  7936           "fail:" %}
  7937   ins_encode( enc_cmpxchg8(mem_ptr),
  7938               enc_flags_ne_to_boolean(res) );
  7939   ins_pipe( pipe_cmpxchg );
  7940 %}
  7942 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7943   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7944   effect(KILL cr, KILL oldval);
  7945   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7946             "MOV    $res,0\n\t"
  7947             "JNE,s  fail\n\t"
  7948             "MOV    $res,1\n"
  7949           "fail:" %}
  7950   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7951   ins_pipe( pipe_cmpxchg );
  7952 %}
  7954 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7955   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7956   effect(KILL cr, KILL oldval);
  7957   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7958             "MOV    $res,0\n\t"
  7959             "JNE,s  fail\n\t"
  7960             "MOV    $res,1\n"
  7961           "fail:" %}
  7962   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7963   ins_pipe( pipe_cmpxchg );
  7964 %}
  7966 //----------Subtraction Instructions-------------------------------------------
  7967 // Integer Subtraction Instructions
  7968 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  7969   match(Set dst (SubI dst src));
  7970   effect(KILL cr);
  7972   size(2);
  7973   format %{ "SUB    $dst,$src" %}
  7974   opcode(0x2B);
  7975   ins_encode( OpcP, RegReg( dst, src) );
  7976   ins_pipe( ialu_reg_reg );
  7977 %}
  7979 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  7980   match(Set dst (SubI dst src));
  7981   effect(KILL cr);
  7983   format %{ "SUB    $dst,$src" %}
  7984   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7985   // ins_encode( RegImm( dst, src) );
  7986   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7987   ins_pipe( ialu_reg );
  7988 %}
  7990 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  7991   match(Set dst (SubI dst (LoadI src)));
  7992   effect(KILL cr);
  7994   ins_cost(125);
  7995   format %{ "SUB    $dst,$src" %}
  7996   opcode(0x2B);
  7997   ins_encode( OpcP, RegMem( dst, src) );
  7998   ins_pipe( ialu_reg_mem );
  7999 %}
  8001 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8002   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8003   effect(KILL cr);
  8005   ins_cost(150);
  8006   format %{ "SUB    $dst,$src" %}
  8007   opcode(0x29);  /* Opcode 29 /r */
  8008   ins_encode( OpcP, RegMem( src, dst ) );
  8009   ins_pipe( ialu_mem_reg );
  8010 %}
  8012 // Subtract from a pointer
  8013 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8014   match(Set dst (AddP dst (SubI zero src)));
  8015   effect(KILL cr);
  8017   size(2);
  8018   format %{ "SUB    $dst,$src" %}
  8019   opcode(0x2B);
  8020   ins_encode( OpcP, RegReg( dst, src) );
  8021   ins_pipe( ialu_reg_reg );
  8022 %}
  8024 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8025   match(Set dst (SubI zero dst));
  8026   effect(KILL cr);
  8028   size(2);
  8029   format %{ "NEG    $dst" %}
  8030   opcode(0xF7,0x03);  // Opcode F7 /3
  8031   ins_encode( OpcP, RegOpc( dst ) );
  8032   ins_pipe( ialu_reg );
  8033 %}
  8036 //----------Multiplication/Division Instructions-------------------------------
  8037 // Integer Multiplication Instructions
  8038 // Multiply Register
  8039 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8040   match(Set dst (MulI dst src));
  8041   effect(KILL cr);
  8043   size(3);
  8044   ins_cost(300);
  8045   format %{ "IMUL   $dst,$src" %}
  8046   opcode(0xAF, 0x0F);
  8047   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8048   ins_pipe( ialu_reg_reg_alu0 );
  8049 %}
  8051 // Multiply 32-bit Immediate
  8052 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8053   match(Set dst (MulI src imm));
  8054   effect(KILL cr);
  8056   ins_cost(300);
  8057   format %{ "IMUL   $dst,$src,$imm" %}
  8058   opcode(0x69);  /* 69 /r id */
  8059   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8060   ins_pipe( ialu_reg_reg_alu0 );
  8061 %}
  8063 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8064   match(Set dst src);
  8065   effect(KILL cr);
  8067   // Note that this is artificially increased to make it more expensive than loadConL
  8068   ins_cost(250);
  8069   format %{ "MOV    EAX,$src\t// low word only" %}
  8070   opcode(0xB8);
  8071   ins_encode( LdImmL_Lo(dst, src) );
  8072   ins_pipe( ialu_reg_fat );
  8073 %}
  8075 // Multiply by 32-bit Immediate, taking the shifted high order results
  8076 //  (special case for shift by 32)
  8077 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8078   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8079   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8080              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8081              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8082   effect(USE src1, KILL cr);
  8084   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8085   ins_cost(0*100 + 1*400 - 150);
  8086   format %{ "IMUL   EDX:EAX,$src1" %}
  8087   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8088   ins_pipe( pipe_slow );
  8089 %}
  8091 // Multiply by 32-bit Immediate, taking the shifted high order results
  8092 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8093   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8094   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8095              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8096              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8097   effect(USE src1, KILL cr);
  8099   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8100   ins_cost(1*100 + 1*400 - 150);
  8101   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8102             "SAR    EDX,$cnt-32" %}
  8103   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8104   ins_pipe( pipe_slow );
  8105 %}
  8107 // Multiply Memory 32-bit Immediate
  8108 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8109   match(Set dst (MulI (LoadI src) imm));
  8110   effect(KILL cr);
  8112   ins_cost(300);
  8113   format %{ "IMUL   $dst,$src,$imm" %}
  8114   opcode(0x69);  /* 69 /r id */
  8115   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8116   ins_pipe( ialu_reg_mem_alu0 );
  8117 %}
  8119 // Multiply Memory
  8120 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8121   match(Set dst (MulI dst (LoadI src)));
  8122   effect(KILL cr);
  8124   ins_cost(350);
  8125   format %{ "IMUL   $dst,$src" %}
  8126   opcode(0xAF, 0x0F);
  8127   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8128   ins_pipe( ialu_reg_mem_alu0 );
  8129 %}
  8131 // Multiply Register Int to Long
  8132 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8133   // Basic Idea: long = (long)int * (long)int
  8134   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8135   effect(DEF dst, USE src, USE src1, KILL flags);
  8137   ins_cost(300);
  8138   format %{ "IMUL   $dst,$src1" %}
  8140   ins_encode( long_int_multiply( dst, src1 ) );
  8141   ins_pipe( ialu_reg_reg_alu0 );
  8142 %}
  8144 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8145   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8146   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8147   effect(KILL flags);
  8149   ins_cost(300);
  8150   format %{ "MUL    $dst,$src1" %}
  8152   ins_encode( long_uint_multiply(dst, src1) );
  8153   ins_pipe( ialu_reg_reg_alu0 );
  8154 %}
  8156 // Multiply Register Long
  8157 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8158   match(Set dst (MulL dst src));
  8159   effect(KILL cr, TEMP tmp);
  8160   ins_cost(4*100+3*400);
  8161 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8162 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8163   format %{ "MOV    $tmp,$src.lo\n\t"
  8164             "IMUL   $tmp,EDX\n\t"
  8165             "MOV    EDX,$src.hi\n\t"
  8166             "IMUL   EDX,EAX\n\t"
  8167             "ADD    $tmp,EDX\n\t"
  8168             "MUL    EDX:EAX,$src.lo\n\t"
  8169             "ADD    EDX,$tmp" %}
  8170   ins_encode( long_multiply( dst, src, tmp ) );
  8171   ins_pipe( pipe_slow );
  8172 %}
  8174 // Multiply Register Long where the left operand's high 32 bits are zero
  8175 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8176   predicate(is_operand_hi32_zero(n->in(1)));
  8177   match(Set dst (MulL dst src));
  8178   effect(KILL cr, TEMP tmp);
  8179   ins_cost(2*100+2*400);
  8180 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8181 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8182   format %{ "MOV    $tmp,$src.hi\n\t"
  8183             "IMUL   $tmp,EAX\n\t"
  8184             "MUL    EDX:EAX,$src.lo\n\t"
  8185             "ADD    EDX,$tmp" %}
  8186   ins_encode %{
  8187     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8188     __ imull($tmp$$Register, rax);
  8189     __ mull($src$$Register);
  8190     __ addl(rdx, $tmp$$Register);
  8191   %}
  8192   ins_pipe( pipe_slow );
  8193 %}
  8195 // Multiply Register Long where the right operand's high 32 bits are zero
  8196 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8197   predicate(is_operand_hi32_zero(n->in(2)));
  8198   match(Set dst (MulL dst src));
  8199   effect(KILL cr, TEMP tmp);
  8200   ins_cost(2*100+2*400);
  8201 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8202 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8203   format %{ "MOV    $tmp,$src.lo\n\t"
  8204             "IMUL   $tmp,EDX\n\t"
  8205             "MUL    EDX:EAX,$src.lo\n\t"
  8206             "ADD    EDX,$tmp" %}
  8207   ins_encode %{
  8208     __ movl($tmp$$Register, $src$$Register);
  8209     __ imull($tmp$$Register, rdx);
  8210     __ mull($src$$Register);
  8211     __ addl(rdx, $tmp$$Register);
  8212   %}
  8213   ins_pipe( pipe_slow );
  8214 %}
  8216 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8217 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8218   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8219   match(Set dst (MulL dst src));
  8220   effect(KILL cr);
  8221   ins_cost(1*400);
  8222 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8223 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8224   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8225   ins_encode %{
  8226     __ mull($src$$Register);
  8227   %}
  8228   ins_pipe( pipe_slow );
  8229 %}
  8231 // Multiply Register Long by small constant
  8232 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8233   match(Set dst (MulL dst src));
  8234   effect(KILL cr, TEMP tmp);
  8235   ins_cost(2*100+2*400);
  8236   size(12);
  8237 // Basic idea: lo(result) = lo(src * EAX)
  8238 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8239   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8240             "MOV    EDX,$src\n\t"
  8241             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8242             "ADD    EDX,$tmp" %}
  8243   ins_encode( long_multiply_con( dst, src, tmp ) );
  8244   ins_pipe( pipe_slow );
  8245 %}
  8247 // Integer DIV with Register
  8248 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8249   match(Set rax (DivI rax div));
  8250   effect(KILL rdx, KILL cr);
  8251   size(26);
  8252   ins_cost(30*100+10*100);
  8253   format %{ "CMP    EAX,0x80000000\n\t"
  8254             "JNE,s  normal\n\t"
  8255             "XOR    EDX,EDX\n\t"
  8256             "CMP    ECX,-1\n\t"
  8257             "JE,s   done\n"
  8258     "normal: CDQ\n\t"
  8259             "IDIV   $div\n\t"
  8260     "done:"        %}
  8261   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8262   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8263   ins_pipe( ialu_reg_reg_alu0 );
  8264 %}
  8266 // Divide Register Long
  8267 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8268   match(Set dst (DivL src1 src2));
  8269   effect( KILL cr, KILL cx, KILL bx );
  8270   ins_cost(10000);
  8271   format %{ "PUSH   $src1.hi\n\t"
  8272             "PUSH   $src1.lo\n\t"
  8273             "PUSH   $src2.hi\n\t"
  8274             "PUSH   $src2.lo\n\t"
  8275             "CALL   SharedRuntime::ldiv\n\t"
  8276             "ADD    ESP,16" %}
  8277   ins_encode( long_div(src1,src2) );
  8278   ins_pipe( pipe_slow );
  8279 %}
  8281 // Integer DIVMOD with Register, both quotient and mod results
  8282 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8283   match(DivModI rax div);
  8284   effect(KILL cr);
  8285   size(26);
  8286   ins_cost(30*100+10*100);
  8287   format %{ "CMP    EAX,0x80000000\n\t"
  8288             "JNE,s  normal\n\t"
  8289             "XOR    EDX,EDX\n\t"
  8290             "CMP    ECX,-1\n\t"
  8291             "JE,s   done\n"
  8292     "normal: CDQ\n\t"
  8293             "IDIV   $div\n\t"
  8294     "done:"        %}
  8295   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8296   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8297   ins_pipe( pipe_slow );
  8298 %}
  8300 // Integer MOD with Register
  8301 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8302   match(Set rdx (ModI rax div));
  8303   effect(KILL rax, KILL cr);
  8305   size(26);
  8306   ins_cost(300);
  8307   format %{ "CDQ\n\t"
  8308             "IDIV   $div" %}
  8309   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8310   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8311   ins_pipe( ialu_reg_reg_alu0 );
  8312 %}
  8314 // Remainder Register Long
  8315 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8316   match(Set dst (ModL src1 src2));
  8317   effect( KILL cr, KILL cx, KILL bx );
  8318   ins_cost(10000);
  8319   format %{ "PUSH   $src1.hi\n\t"
  8320             "PUSH   $src1.lo\n\t"
  8321             "PUSH   $src2.hi\n\t"
  8322             "PUSH   $src2.lo\n\t"
  8323             "CALL   SharedRuntime::lrem\n\t"
  8324             "ADD    ESP,16" %}
  8325   ins_encode( long_mod(src1,src2) );
  8326   ins_pipe( pipe_slow );
  8327 %}
  8329 // Divide Register Long (no special case since divisor != -1)
  8330 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8331   match(Set dst (DivL dst imm));
  8332   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8333   ins_cost(1000);
  8334   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  8335             "XOR    $tmp2,$tmp2\n\t"
  8336             "CMP    $tmp,EDX\n\t"
  8337             "JA,s   fast\n\t"
  8338             "MOV    $tmp2,EAX\n\t"
  8339             "MOV    EAX,EDX\n\t"
  8340             "MOV    EDX,0\n\t"
  8341             "JLE,s  pos\n\t"
  8342             "LNEG   EAX : $tmp2\n\t"
  8343             "DIV    $tmp # unsigned division\n\t"
  8344             "XCHG   EAX,$tmp2\n\t"
  8345             "DIV    $tmp\n\t"
  8346             "LNEG   $tmp2 : EAX\n\t"
  8347             "JMP,s  done\n"
  8348     "pos:\n\t"
  8349             "DIV    $tmp\n\t"
  8350             "XCHG   EAX,$tmp2\n"
  8351     "fast:\n\t"
  8352             "DIV    $tmp\n"
  8353     "done:\n\t"
  8354             "MOV    EDX,$tmp2\n\t"
  8355             "NEG    EDX:EAX # if $imm < 0" %}
  8356   ins_encode %{
  8357     int con = (int)$imm$$constant;
  8358     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8359     int pcon = (con > 0) ? con : -con;
  8360     Label Lfast, Lpos, Ldone;
  8362     __ movl($tmp$$Register, pcon);
  8363     __ xorl($tmp2$$Register,$tmp2$$Register);
  8364     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8365     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  8367     __ movl($tmp2$$Register, $dst$$Register); // save
  8368     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8369     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8370     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8372     // Negative dividend.
  8373     // convert value to positive to use unsigned division
  8374     __ lneg($dst$$Register, $tmp2$$Register);
  8375     __ divl($tmp$$Register);
  8376     __ xchgl($dst$$Register, $tmp2$$Register);
  8377     __ divl($tmp$$Register);
  8378     // revert result back to negative
  8379     __ lneg($tmp2$$Register, $dst$$Register);
  8380     __ jmpb(Ldone);
  8382     __ bind(Lpos);
  8383     __ divl($tmp$$Register); // Use unsigned division
  8384     __ xchgl($dst$$Register, $tmp2$$Register);
  8385     // Fallthrow for final divide, tmp2 has 32 bit hi result
  8387     __ bind(Lfast);
  8388     // fast path: src is positive
  8389     __ divl($tmp$$Register); // Use unsigned division
  8391     __ bind(Ldone);
  8392     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  8393     if (con < 0) {
  8394       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  8396   %}
  8397   ins_pipe( pipe_slow );
  8398 %}
  8400 // Remainder Register Long (remainder fit into 32 bits)
  8401 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
  8402   match(Set dst (ModL dst imm));
  8403   effect( TEMP tmp, TEMP tmp2, KILL cr );
  8404   ins_cost(1000);
  8405   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  8406             "CMP    $tmp,EDX\n\t"
  8407             "JA,s   fast\n\t"
  8408             "MOV    $tmp2,EAX\n\t"
  8409             "MOV    EAX,EDX\n\t"
  8410             "MOV    EDX,0\n\t"
  8411             "JLE,s  pos\n\t"
  8412             "LNEG   EAX : $tmp2\n\t"
  8413             "DIV    $tmp # unsigned division\n\t"
  8414             "MOV    EAX,$tmp2\n\t"
  8415             "DIV    $tmp\n\t"
  8416             "NEG    EDX\n\t"
  8417             "JMP,s  done\n"
  8418     "pos:\n\t"
  8419             "DIV    $tmp\n\t"
  8420             "MOV    EAX,$tmp2\n"
  8421     "fast:\n\t"
  8422             "DIV    $tmp\n"
  8423     "done:\n\t"
  8424             "MOV    EAX,EDX\n\t"
  8425             "SAR    EDX,31\n\t" %}
  8426   ins_encode %{
  8427     int con = (int)$imm$$constant;
  8428     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  8429     int pcon = (con > 0) ? con : -con;
  8430     Label  Lfast, Lpos, Ldone;
  8432     __ movl($tmp$$Register, pcon);
  8433     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  8434     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  8436     __ movl($tmp2$$Register, $dst$$Register); // save
  8437     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8438     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  8439     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  8441     // Negative dividend.
  8442     // convert value to positive to use unsigned division
  8443     __ lneg($dst$$Register, $tmp2$$Register);
  8444     __ divl($tmp$$Register);
  8445     __ movl($dst$$Register, $tmp2$$Register);
  8446     __ divl($tmp$$Register);
  8447     // revert remainder back to negative
  8448     __ negl(HIGH_FROM_LOW($dst$$Register));
  8449     __ jmpb(Ldone);
  8451     __ bind(Lpos);
  8452     __ divl($tmp$$Register);
  8453     __ movl($dst$$Register, $tmp2$$Register);
  8455     __ bind(Lfast);
  8456     // fast path: src is positive
  8457     __ divl($tmp$$Register);
  8459     __ bind(Ldone);
  8460     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  8461     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  8463   %}
  8464   ins_pipe( pipe_slow );
  8465 %}
  8467 // Integer Shift Instructions
  8468 // Shift Left by one
  8469 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8470   match(Set dst (LShiftI dst shift));
  8471   effect(KILL cr);
  8473   size(2);
  8474   format %{ "SHL    $dst,$shift" %}
  8475   opcode(0xD1, 0x4);  /* D1 /4 */
  8476   ins_encode( OpcP, RegOpc( dst ) );
  8477   ins_pipe( ialu_reg );
  8478 %}
  8480 // Shift Left by 8-bit immediate
  8481 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8482   match(Set dst (LShiftI dst shift));
  8483   effect(KILL cr);
  8485   size(3);
  8486   format %{ "SHL    $dst,$shift" %}
  8487   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8488   ins_encode( RegOpcImm( dst, shift) );
  8489   ins_pipe( ialu_reg );
  8490 %}
  8492 // Shift Left by variable
  8493 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8494   match(Set dst (LShiftI dst shift));
  8495   effect(KILL cr);
  8497   size(2);
  8498   format %{ "SHL    $dst,$shift" %}
  8499   opcode(0xD3, 0x4);  /* D3 /4 */
  8500   ins_encode( OpcP, RegOpc( dst ) );
  8501   ins_pipe( ialu_reg_reg );
  8502 %}
  8504 // Arithmetic shift right by one
  8505 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8506   match(Set dst (RShiftI dst shift));
  8507   effect(KILL cr);
  8509   size(2);
  8510   format %{ "SAR    $dst,$shift" %}
  8511   opcode(0xD1, 0x7);  /* D1 /7 */
  8512   ins_encode( OpcP, RegOpc( dst ) );
  8513   ins_pipe( ialu_reg );
  8514 %}
  8516 // Arithmetic shift right by one
  8517 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8518   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8519   effect(KILL cr);
  8520   format %{ "SAR    $dst,$shift" %}
  8521   opcode(0xD1, 0x7);  /* D1 /7 */
  8522   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8523   ins_pipe( ialu_mem_imm );
  8524 %}
  8526 // Arithmetic Shift Right by 8-bit immediate
  8527 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8528   match(Set dst (RShiftI dst shift));
  8529   effect(KILL cr);
  8531   size(3);
  8532   format %{ "SAR    $dst,$shift" %}
  8533   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8534   ins_encode( RegOpcImm( dst, shift ) );
  8535   ins_pipe( ialu_mem_imm );
  8536 %}
  8538 // Arithmetic Shift Right by 8-bit immediate
  8539 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8540   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8541   effect(KILL cr);
  8543   format %{ "SAR    $dst,$shift" %}
  8544   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8545   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8546   ins_pipe( ialu_mem_imm );
  8547 %}
  8549 // Arithmetic Shift Right by variable
  8550 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8551   match(Set dst (RShiftI dst shift));
  8552   effect(KILL cr);
  8554   size(2);
  8555   format %{ "SAR    $dst,$shift" %}
  8556   opcode(0xD3, 0x7);  /* D3 /7 */
  8557   ins_encode( OpcP, RegOpc( dst ) );
  8558   ins_pipe( ialu_reg_reg );
  8559 %}
  8561 // Logical shift right by one
  8562 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8563   match(Set dst (URShiftI dst shift));
  8564   effect(KILL cr);
  8566   size(2);
  8567   format %{ "SHR    $dst,$shift" %}
  8568   opcode(0xD1, 0x5);  /* D1 /5 */
  8569   ins_encode( OpcP, RegOpc( dst ) );
  8570   ins_pipe( ialu_reg );
  8571 %}
  8573 // Logical Shift Right by 8-bit immediate
  8574 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8575   match(Set dst (URShiftI dst shift));
  8576   effect(KILL cr);
  8578   size(3);
  8579   format %{ "SHR    $dst,$shift" %}
  8580   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8581   ins_encode( RegOpcImm( dst, shift) );
  8582   ins_pipe( ialu_reg );
  8583 %}
  8586 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8587 // This idiom is used by the compiler for the i2b bytecode.
  8588 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8589   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8591   size(3);
  8592   format %{ "MOVSX  $dst,$src :8" %}
  8593   ins_encode %{
  8594     __ movsbl($dst$$Register, $src$$Register);
  8595   %}
  8596   ins_pipe(ialu_reg_reg);
  8597 %}
  8599 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8600 // This idiom is used by the compiler the i2s bytecode.
  8601 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8602   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8604   size(3);
  8605   format %{ "MOVSX  $dst,$src :16" %}
  8606   ins_encode %{
  8607     __ movswl($dst$$Register, $src$$Register);
  8608   %}
  8609   ins_pipe(ialu_reg_reg);
  8610 %}
  8613 // Logical Shift Right by variable
  8614 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8615   match(Set dst (URShiftI dst shift));
  8616   effect(KILL cr);
  8618   size(2);
  8619   format %{ "SHR    $dst,$shift" %}
  8620   opcode(0xD3, 0x5);  /* D3 /5 */
  8621   ins_encode( OpcP, RegOpc( dst ) );
  8622   ins_pipe( ialu_reg_reg );
  8623 %}
  8626 //----------Logical Instructions-----------------------------------------------
  8627 //----------Integer Logical Instructions---------------------------------------
  8628 // And Instructions
  8629 // And Register with Register
  8630 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8631   match(Set dst (AndI dst src));
  8632   effect(KILL cr);
  8634   size(2);
  8635   format %{ "AND    $dst,$src" %}
  8636   opcode(0x23);
  8637   ins_encode( OpcP, RegReg( dst, src) );
  8638   ins_pipe( ialu_reg_reg );
  8639 %}
  8641 // And Register with Immediate
  8642 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8643   match(Set dst (AndI dst src));
  8644   effect(KILL cr);
  8646   format %{ "AND    $dst,$src" %}
  8647   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8648   // ins_encode( RegImm( dst, src) );
  8649   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8650   ins_pipe( ialu_reg );
  8651 %}
  8653 // And Register with Memory
  8654 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8655   match(Set dst (AndI dst (LoadI src)));
  8656   effect(KILL cr);
  8658   ins_cost(125);
  8659   format %{ "AND    $dst,$src" %}
  8660   opcode(0x23);
  8661   ins_encode( OpcP, RegMem( dst, src) );
  8662   ins_pipe( ialu_reg_mem );
  8663 %}
  8665 // And Memory with Register
  8666 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8667   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8668   effect(KILL cr);
  8670   ins_cost(150);
  8671   format %{ "AND    $dst,$src" %}
  8672   opcode(0x21);  /* Opcode 21 /r */
  8673   ins_encode( OpcP, RegMem( src, dst ) );
  8674   ins_pipe( ialu_mem_reg );
  8675 %}
  8677 // And Memory with Immediate
  8678 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8679   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8680   effect(KILL cr);
  8682   ins_cost(125);
  8683   format %{ "AND    $dst,$src" %}
  8684   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8685   // ins_encode( MemImm( dst, src) );
  8686   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8687   ins_pipe( ialu_mem_imm );
  8688 %}
  8690 // Or Instructions
  8691 // Or Register with Register
  8692 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8693   match(Set dst (OrI dst src));
  8694   effect(KILL cr);
  8696   size(2);
  8697   format %{ "OR     $dst,$src" %}
  8698   opcode(0x0B);
  8699   ins_encode( OpcP, RegReg( dst, src) );
  8700   ins_pipe( ialu_reg_reg );
  8701 %}
  8703 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  8704   match(Set dst (OrI dst (CastP2X src)));
  8705   effect(KILL cr);
  8707   size(2);
  8708   format %{ "OR     $dst,$src" %}
  8709   opcode(0x0B);
  8710   ins_encode( OpcP, RegReg( dst, src) );
  8711   ins_pipe( ialu_reg_reg );
  8712 %}
  8715 // Or Register with Immediate
  8716 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8717   match(Set dst (OrI dst src));
  8718   effect(KILL cr);
  8720   format %{ "OR     $dst,$src" %}
  8721   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8722   // ins_encode( RegImm( dst, src) );
  8723   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8724   ins_pipe( ialu_reg );
  8725 %}
  8727 // Or Register with Memory
  8728 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8729   match(Set dst (OrI dst (LoadI src)));
  8730   effect(KILL cr);
  8732   ins_cost(125);
  8733   format %{ "OR     $dst,$src" %}
  8734   opcode(0x0B);
  8735   ins_encode( OpcP, RegMem( dst, src) );
  8736   ins_pipe( ialu_reg_mem );
  8737 %}
  8739 // Or Memory with Register
  8740 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8741   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8742   effect(KILL cr);
  8744   ins_cost(150);
  8745   format %{ "OR     $dst,$src" %}
  8746   opcode(0x09);  /* Opcode 09 /r */
  8747   ins_encode( OpcP, RegMem( src, dst ) );
  8748   ins_pipe( ialu_mem_reg );
  8749 %}
  8751 // Or Memory with Immediate
  8752 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8753   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8754   effect(KILL cr);
  8756   ins_cost(125);
  8757   format %{ "OR     $dst,$src" %}
  8758   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8759   // ins_encode( MemImm( dst, src) );
  8760   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8761   ins_pipe( ialu_mem_imm );
  8762 %}
  8764 // ROL/ROR
  8765 // ROL expand
  8766 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8767   effect(USE_DEF dst, USE shift, KILL cr);
  8769   format %{ "ROL    $dst, $shift" %}
  8770   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8771   ins_encode( OpcP, RegOpc( dst ));
  8772   ins_pipe( ialu_reg );
  8773 %}
  8775 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8776   effect(USE_DEF dst, USE shift, KILL cr);
  8778   format %{ "ROL    $dst, $shift" %}
  8779   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8780   ins_encode( RegOpcImm(dst, shift) );
  8781   ins_pipe(ialu_reg);
  8782 %}
  8784 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8785   effect(USE_DEF dst, USE shift, KILL cr);
  8787   format %{ "ROL    $dst, $shift" %}
  8788   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8789   ins_encode(OpcP, RegOpc(dst));
  8790   ins_pipe( ialu_reg_reg );
  8791 %}
  8792 // end of ROL expand
  8794 // ROL 32bit by one once
  8795 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8796   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8798   expand %{
  8799     rolI_eReg_imm1(dst, lshift, cr);
  8800   %}
  8801 %}
  8803 // ROL 32bit var by imm8 once
  8804 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8805   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8806   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8808   expand %{
  8809     rolI_eReg_imm8(dst, lshift, cr);
  8810   %}
  8811 %}
  8813 // ROL 32bit var by var once
  8814 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8815   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8817   expand %{
  8818     rolI_eReg_CL(dst, shift, cr);
  8819   %}
  8820 %}
  8822 // ROL 32bit var by var once
  8823 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8824   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8826   expand %{
  8827     rolI_eReg_CL(dst, shift, cr);
  8828   %}
  8829 %}
  8831 // ROR expand
  8832 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8833   effect(USE_DEF dst, USE shift, KILL cr);
  8835   format %{ "ROR    $dst, $shift" %}
  8836   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8837   ins_encode( OpcP, RegOpc( dst ) );
  8838   ins_pipe( ialu_reg );
  8839 %}
  8841 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8842   effect (USE_DEF dst, USE shift, KILL cr);
  8844   format %{ "ROR    $dst, $shift" %}
  8845   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8846   ins_encode( RegOpcImm(dst, shift) );
  8847   ins_pipe( ialu_reg );
  8848 %}
  8850 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8851   effect(USE_DEF dst, USE shift, KILL cr);
  8853   format %{ "ROR    $dst, $shift" %}
  8854   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8855   ins_encode(OpcP, RegOpc(dst));
  8856   ins_pipe( ialu_reg_reg );
  8857 %}
  8858 // end of ROR expand
  8860 // ROR right once
  8861 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8862   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8864   expand %{
  8865     rorI_eReg_imm1(dst, rshift, cr);
  8866   %}
  8867 %}
  8869 // ROR 32bit by immI8 once
  8870 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8871   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8872   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8874   expand %{
  8875     rorI_eReg_imm8(dst, rshift, cr);
  8876   %}
  8877 %}
  8879 // ROR 32bit var by var once
  8880 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8881   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8883   expand %{
  8884     rorI_eReg_CL(dst, shift, cr);
  8885   %}
  8886 %}
  8888 // ROR 32bit var by var once
  8889 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8890   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8892   expand %{
  8893     rorI_eReg_CL(dst, shift, cr);
  8894   %}
  8895 %}
  8897 // Xor Instructions
  8898 // Xor Register with Register
  8899 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8900   match(Set dst (XorI dst src));
  8901   effect(KILL cr);
  8903   size(2);
  8904   format %{ "XOR    $dst,$src" %}
  8905   opcode(0x33);
  8906   ins_encode( OpcP, RegReg( dst, src) );
  8907   ins_pipe( ialu_reg_reg );
  8908 %}
  8910 // Xor Register with Immediate -1
  8911 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  8912   match(Set dst (XorI dst imm));  
  8914   size(2);
  8915   format %{ "NOT    $dst" %}  
  8916   ins_encode %{
  8917      __ notl($dst$$Register);
  8918   %}
  8919   ins_pipe( ialu_reg );
  8920 %}
  8922 // Xor Register with Immediate
  8923 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8924   match(Set dst (XorI dst src));
  8925   effect(KILL cr);
  8927   format %{ "XOR    $dst,$src" %}
  8928   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8929   // ins_encode( RegImm( dst, src) );
  8930   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8931   ins_pipe( ialu_reg );
  8932 %}
  8934 // Xor Register with Memory
  8935 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8936   match(Set dst (XorI dst (LoadI src)));
  8937   effect(KILL cr);
  8939   ins_cost(125);
  8940   format %{ "XOR    $dst,$src" %}
  8941   opcode(0x33);
  8942   ins_encode( OpcP, RegMem(dst, src) );
  8943   ins_pipe( ialu_reg_mem );
  8944 %}
  8946 // Xor Memory with Register
  8947 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8948   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8949   effect(KILL cr);
  8951   ins_cost(150);
  8952   format %{ "XOR    $dst,$src" %}
  8953   opcode(0x31);  /* Opcode 31 /r */
  8954   ins_encode( OpcP, RegMem( src, dst ) );
  8955   ins_pipe( ialu_mem_reg );
  8956 %}
  8958 // Xor Memory with Immediate
  8959 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8960   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8961   effect(KILL cr);
  8963   ins_cost(125);
  8964   format %{ "XOR    $dst,$src" %}
  8965   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8966   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8967   ins_pipe( ialu_mem_imm );
  8968 %}
  8970 //----------Convert Int to Boolean---------------------------------------------
  8972 instruct movI_nocopy(eRegI dst, eRegI src) %{
  8973   effect( DEF dst, USE src );
  8974   format %{ "MOV    $dst,$src" %}
  8975   ins_encode( enc_Copy( dst, src) );
  8976   ins_pipe( ialu_reg_reg );
  8977 %}
  8979 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  8980   effect( USE_DEF dst, USE src, KILL cr );
  8982   size(4);
  8983   format %{ "NEG    $dst\n\t"
  8984             "ADC    $dst,$src" %}
  8985   ins_encode( neg_reg(dst),
  8986               OpcRegReg(0x13,dst,src) );
  8987   ins_pipe( ialu_reg_reg_long );
  8988 %}
  8990 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  8991   match(Set dst (Conv2B src));
  8993   expand %{
  8994     movI_nocopy(dst,src);
  8995     ci2b(dst,src,cr);
  8996   %}
  8997 %}
  8999 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9000   effect( DEF dst, USE src );
  9001   format %{ "MOV    $dst,$src" %}
  9002   ins_encode( enc_Copy( dst, src) );
  9003   ins_pipe( ialu_reg_reg );
  9004 %}
  9006 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9007   effect( USE_DEF dst, USE src, KILL cr );
  9008   format %{ "NEG    $dst\n\t"
  9009             "ADC    $dst,$src" %}
  9010   ins_encode( neg_reg(dst),
  9011               OpcRegReg(0x13,dst,src) );
  9012   ins_pipe( ialu_reg_reg_long );
  9013 %}
  9015 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9016   match(Set dst (Conv2B src));
  9018   expand %{
  9019     movP_nocopy(dst,src);
  9020     cp2b(dst,src,cr);
  9021   %}
  9022 %}
  9024 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9025   match(Set dst (CmpLTMask p q));
  9026   effect( KILL cr );
  9027   ins_cost(400);
  9029   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9030   format %{ "XOR    $dst,$dst\n\t"
  9031             "CMP    $p,$q\n\t"
  9032             "SETlt  $dst\n\t"
  9033             "NEG    $dst" %}
  9034   ins_encode( OpcRegReg(0x33,dst,dst),
  9035               OpcRegReg(0x3B,p,q),
  9036               setLT_reg(dst), neg_reg(dst) );
  9037   ins_pipe( pipe_slow );
  9038 %}
  9040 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9041   match(Set dst (CmpLTMask dst zero));
  9042   effect( DEF dst, KILL cr );
  9043   ins_cost(100);
  9045   format %{ "SAR    $dst,31" %}
  9046   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9047   ins_encode( RegOpcImm( dst, 0x1F ) );
  9048   ins_pipe( ialu_reg );
  9049 %}
  9052 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9053   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9054   effect( KILL tmp, KILL cr );
  9055   ins_cost(400);
  9056   // annoyingly, $tmp has no edges so you cant ask for it in
  9057   // any format or encoding
  9058   format %{ "SUB    $p,$q\n\t"
  9059             "SBB    ECX,ECX\n\t"
  9060             "AND    ECX,$y\n\t"
  9061             "ADD    $p,ECX" %}
  9062   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9063   ins_pipe( pipe_cmplt );
  9064 %}
  9066 /* If I enable this, I encourage spilling in the inner loop of compress.
  9067 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9068   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9069   effect( USE_KILL tmp, KILL cr );
  9070   ins_cost(400);
  9072   format %{ "SUB    $p,$q\n\t"
  9073             "SBB    ECX,ECX\n\t"
  9074             "AND    ECX,$y\n\t"
  9075             "ADD    $p,ECX" %}
  9076   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9077 %}
  9078 */
  9080 //----------Long Instructions------------------------------------------------
  9081 // Add Long Register with Register
  9082 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9083   match(Set dst (AddL dst src));
  9084   effect(KILL cr);
  9085   ins_cost(200);
  9086   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9087             "ADC    $dst.hi,$src.hi" %}
  9088   opcode(0x03, 0x13);
  9089   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9090   ins_pipe( ialu_reg_reg_long );
  9091 %}
  9093 // Add Long Register with Immediate
  9094 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9095   match(Set dst (AddL dst src));
  9096   effect(KILL cr);
  9097   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9098             "ADC    $dst.hi,$src.hi" %}
  9099   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9100   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9101   ins_pipe( ialu_reg_long );
  9102 %}
  9104 // Add Long Register with Memory
  9105 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9106   match(Set dst (AddL dst (LoadL mem)));
  9107   effect(KILL cr);
  9108   ins_cost(125);
  9109   format %{ "ADD    $dst.lo,$mem\n\t"
  9110             "ADC    $dst.hi,$mem+4" %}
  9111   opcode(0x03, 0x13);
  9112   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9113   ins_pipe( ialu_reg_long_mem );
  9114 %}
  9116 // Subtract Long Register with Register.
  9117 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9118   match(Set dst (SubL dst src));
  9119   effect(KILL cr);
  9120   ins_cost(200);
  9121   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9122             "SBB    $dst.hi,$src.hi" %}
  9123   opcode(0x2B, 0x1B);
  9124   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9125   ins_pipe( ialu_reg_reg_long );
  9126 %}
  9128 // Subtract Long Register with Immediate
  9129 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9130   match(Set dst (SubL dst src));
  9131   effect(KILL cr);
  9132   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9133             "SBB    $dst.hi,$src.hi" %}
  9134   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9135   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9136   ins_pipe( ialu_reg_long );
  9137 %}
  9139 // Subtract Long Register with Memory
  9140 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9141   match(Set dst (SubL dst (LoadL mem)));
  9142   effect(KILL cr);
  9143   ins_cost(125);
  9144   format %{ "SUB    $dst.lo,$mem\n\t"
  9145             "SBB    $dst.hi,$mem+4" %}
  9146   opcode(0x2B, 0x1B);
  9147   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9148   ins_pipe( ialu_reg_long_mem );
  9149 %}
  9151 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9152   match(Set dst (SubL zero dst));
  9153   effect(KILL cr);
  9154   ins_cost(300);
  9155   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9156   ins_encode( neg_long(dst) );
  9157   ins_pipe( ialu_reg_reg_long );
  9158 %}
  9160 // And Long Register with Register
  9161 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9162   match(Set dst (AndL dst src));
  9163   effect(KILL cr);
  9164   format %{ "AND    $dst.lo,$src.lo\n\t"
  9165             "AND    $dst.hi,$src.hi" %}
  9166   opcode(0x23,0x23);
  9167   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9168   ins_pipe( ialu_reg_reg_long );
  9169 %}
  9171 // And Long Register with Immediate
  9172 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9173   match(Set dst (AndL dst src));
  9174   effect(KILL cr);
  9175   format %{ "AND    $dst.lo,$src.lo\n\t"
  9176             "AND    $dst.hi,$src.hi" %}
  9177   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9178   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9179   ins_pipe( ialu_reg_long );
  9180 %}
  9182 // And Long Register with Memory
  9183 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9184   match(Set dst (AndL dst (LoadL mem)));
  9185   effect(KILL cr);
  9186   ins_cost(125);
  9187   format %{ "AND    $dst.lo,$mem\n\t"
  9188             "AND    $dst.hi,$mem+4" %}
  9189   opcode(0x23, 0x23);
  9190   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9191   ins_pipe( ialu_reg_long_mem );
  9192 %}
  9194 // Or Long Register with Register
  9195 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9196   match(Set dst (OrL dst src));
  9197   effect(KILL cr);
  9198   format %{ "OR     $dst.lo,$src.lo\n\t"
  9199             "OR     $dst.hi,$src.hi" %}
  9200   opcode(0x0B,0x0B);
  9201   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9202   ins_pipe( ialu_reg_reg_long );
  9203 %}
  9205 // Or Long Register with Immediate
  9206 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9207   match(Set dst (OrL dst src));
  9208   effect(KILL cr);
  9209   format %{ "OR     $dst.lo,$src.lo\n\t"
  9210             "OR     $dst.hi,$src.hi" %}
  9211   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9212   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9213   ins_pipe( ialu_reg_long );
  9214 %}
  9216 // Or Long Register with Memory
  9217 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9218   match(Set dst (OrL dst (LoadL mem)));
  9219   effect(KILL cr);
  9220   ins_cost(125);
  9221   format %{ "OR     $dst.lo,$mem\n\t"
  9222             "OR     $dst.hi,$mem+4" %}
  9223   opcode(0x0B,0x0B);
  9224   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9225   ins_pipe( ialu_reg_long_mem );
  9226 %}
  9228 // Xor Long Register with Register
  9229 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9230   match(Set dst (XorL dst src));
  9231   effect(KILL cr);
  9232   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9233             "XOR    $dst.hi,$src.hi" %}
  9234   opcode(0x33,0x33);
  9235   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9236   ins_pipe( ialu_reg_reg_long );
  9237 %}
  9239 // Xor Long Register with Immediate -1
  9240 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9241   match(Set dst (XorL dst imm));  
  9242   format %{ "NOT    $dst.lo\n\t"
  9243             "NOT    $dst.hi" %}
  9244   ins_encode %{
  9245      __ notl($dst$$Register);
  9246      __ notl(HIGH_FROM_LOW($dst$$Register));
  9247   %}
  9248   ins_pipe( ialu_reg_long );
  9249 %}
  9251 // Xor Long Register with Immediate
  9252 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9253   match(Set dst (XorL dst src));
  9254   effect(KILL cr);
  9255   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9256             "XOR    $dst.hi,$src.hi" %}
  9257   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9258   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9259   ins_pipe( ialu_reg_long );
  9260 %}
  9262 // Xor Long Register with Memory
  9263 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9264   match(Set dst (XorL dst (LoadL mem)));
  9265   effect(KILL cr);
  9266   ins_cost(125);
  9267   format %{ "XOR    $dst.lo,$mem\n\t"
  9268             "XOR    $dst.hi,$mem+4" %}
  9269   opcode(0x33,0x33);
  9270   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9271   ins_pipe( ialu_reg_long_mem );
  9272 %}
  9274 // Shift Left Long by 1
  9275 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9276   predicate(UseNewLongLShift);
  9277   match(Set dst (LShiftL dst cnt));
  9278   effect(KILL cr);
  9279   ins_cost(100);
  9280   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9281             "ADC    $dst.hi,$dst.hi" %}
  9282   ins_encode %{
  9283     __ addl($dst$$Register,$dst$$Register);
  9284     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9285   %}
  9286   ins_pipe( ialu_reg_long );
  9287 %}
  9289 // Shift Left Long by 2
  9290 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9291   predicate(UseNewLongLShift);
  9292   match(Set dst (LShiftL dst cnt));
  9293   effect(KILL cr);
  9294   ins_cost(100);
  9295   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9296             "ADC    $dst.hi,$dst.hi\n\t" 
  9297             "ADD    $dst.lo,$dst.lo\n\t"
  9298             "ADC    $dst.hi,$dst.hi" %}
  9299   ins_encode %{
  9300     __ addl($dst$$Register,$dst$$Register);
  9301     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9302     __ addl($dst$$Register,$dst$$Register);
  9303     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9304   %}
  9305   ins_pipe( ialu_reg_long );
  9306 %}
  9308 // Shift Left Long by 3
  9309 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9310   predicate(UseNewLongLShift);
  9311   match(Set dst (LShiftL dst cnt));
  9312   effect(KILL cr);
  9313   ins_cost(100);
  9314   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9315             "ADC    $dst.hi,$dst.hi\n\t" 
  9316             "ADD    $dst.lo,$dst.lo\n\t"
  9317             "ADC    $dst.hi,$dst.hi\n\t" 
  9318             "ADD    $dst.lo,$dst.lo\n\t"
  9319             "ADC    $dst.hi,$dst.hi" %}
  9320   ins_encode %{
  9321     __ addl($dst$$Register,$dst$$Register);
  9322     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9323     __ addl($dst$$Register,$dst$$Register);
  9324     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9325     __ addl($dst$$Register,$dst$$Register);
  9326     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9327   %}
  9328   ins_pipe( ialu_reg_long );
  9329 %}
  9331 // Shift Left Long by 1-31
  9332 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9333   match(Set dst (LShiftL dst cnt));
  9334   effect(KILL cr);
  9335   ins_cost(200);
  9336   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9337             "SHL    $dst.lo,$cnt" %}
  9338   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9339   ins_encode( move_long_small_shift(dst,cnt) );
  9340   ins_pipe( ialu_reg_long );
  9341 %}
  9343 // Shift Left Long by 32-63
  9344 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9345   match(Set dst (LShiftL dst cnt));
  9346   effect(KILL cr);
  9347   ins_cost(300);
  9348   format %{ "MOV    $dst.hi,$dst.lo\n"
  9349           "\tSHL    $dst.hi,$cnt-32\n"
  9350           "\tXOR    $dst.lo,$dst.lo" %}
  9351   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9352   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9353   ins_pipe( ialu_reg_long );
  9354 %}
  9356 // Shift Left Long by variable
  9357 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9358   match(Set dst (LShiftL dst shift));
  9359   effect(KILL cr);
  9360   ins_cost(500+200);
  9361   size(17);
  9362   format %{ "TEST   $shift,32\n\t"
  9363             "JEQ,s  small\n\t"
  9364             "MOV    $dst.hi,$dst.lo\n\t"
  9365             "XOR    $dst.lo,$dst.lo\n"
  9366     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9367             "SHL    $dst.lo,$shift" %}
  9368   ins_encode( shift_left_long( dst, shift ) );
  9369   ins_pipe( pipe_slow );
  9370 %}
  9372 // Shift Right Long by 1-31
  9373 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9374   match(Set dst (URShiftL dst cnt));
  9375   effect(KILL cr);
  9376   ins_cost(200);
  9377   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9378             "SHR    $dst.hi,$cnt" %}
  9379   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9380   ins_encode( move_long_small_shift(dst,cnt) );
  9381   ins_pipe( ialu_reg_long );
  9382 %}
  9384 // Shift Right Long by 32-63
  9385 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9386   match(Set dst (URShiftL dst cnt));
  9387   effect(KILL cr);
  9388   ins_cost(300);
  9389   format %{ "MOV    $dst.lo,$dst.hi\n"
  9390           "\tSHR    $dst.lo,$cnt-32\n"
  9391           "\tXOR    $dst.hi,$dst.hi" %}
  9392   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9393   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9394   ins_pipe( ialu_reg_long );
  9395 %}
  9397 // Shift Right Long by variable
  9398 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9399   match(Set dst (URShiftL dst shift));
  9400   effect(KILL cr);
  9401   ins_cost(600);
  9402   size(17);
  9403   format %{ "TEST   $shift,32\n\t"
  9404             "JEQ,s  small\n\t"
  9405             "MOV    $dst.lo,$dst.hi\n\t"
  9406             "XOR    $dst.hi,$dst.hi\n"
  9407     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9408             "SHR    $dst.hi,$shift" %}
  9409   ins_encode( shift_right_long( dst, shift ) );
  9410   ins_pipe( pipe_slow );
  9411 %}
  9413 // Shift Right Long by 1-31
  9414 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9415   match(Set dst (RShiftL dst cnt));
  9416   effect(KILL cr);
  9417   ins_cost(200);
  9418   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9419             "SAR    $dst.hi,$cnt" %}
  9420   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9421   ins_encode( move_long_small_shift(dst,cnt) );
  9422   ins_pipe( ialu_reg_long );
  9423 %}
  9425 // Shift Right Long by 32-63
  9426 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9427   match(Set dst (RShiftL dst cnt));
  9428   effect(KILL cr);
  9429   ins_cost(300);
  9430   format %{ "MOV    $dst.lo,$dst.hi\n"
  9431           "\tSAR    $dst.lo,$cnt-32\n"
  9432           "\tSAR    $dst.hi,31" %}
  9433   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9434   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9435   ins_pipe( ialu_reg_long );
  9436 %}
  9438 // Shift Right arithmetic Long by variable
  9439 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9440   match(Set dst (RShiftL dst shift));
  9441   effect(KILL cr);
  9442   ins_cost(600);
  9443   size(18);
  9444   format %{ "TEST   $shift,32\n\t"
  9445             "JEQ,s  small\n\t"
  9446             "MOV    $dst.lo,$dst.hi\n\t"
  9447             "SAR    $dst.hi,31\n"
  9448     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9449             "SAR    $dst.hi,$shift" %}
  9450   ins_encode( shift_right_arith_long( dst, shift ) );
  9451   ins_pipe( pipe_slow );
  9452 %}
  9455 //----------Double Instructions------------------------------------------------
  9456 // Double Math
  9458 // Compare & branch
  9460 // P6 version of float compare, sets condition codes in EFLAGS
  9461 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9462   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9463   match(Set cr (CmpD src1 src2));
  9464   effect(KILL rax);
  9465   ins_cost(150);
  9466   format %{ "FLD    $src1\n\t"
  9467             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9468             "JNP    exit\n\t"
  9469             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9470             "SAHF\n"
  9471      "exit:\tNOP               // avoid branch to branch" %}
  9472   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9473   ins_encode( Push_Reg_DPR(src1),
  9474               OpcP, RegOpc(src2),
  9475               cmpF_P6_fixup );
  9476   ins_pipe( pipe_slow );
  9477 %}
  9479 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9480   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9481   match(Set cr (CmpD src1 src2));
  9482   ins_cost(150);
  9483   format %{ "FLD    $src1\n\t"
  9484             "FUCOMIP ST,$src2  // P6 instruction" %}
  9485   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9486   ins_encode( Push_Reg_DPR(src1),
  9487               OpcP, RegOpc(src2));
  9488   ins_pipe( pipe_slow );
  9489 %}
  9491 // Compare & branch
  9492 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9493   predicate(UseSSE<=1);
  9494   match(Set cr (CmpD src1 src2));
  9495   effect(KILL rax);
  9496   ins_cost(200);
  9497   format %{ "FLD    $src1\n\t"
  9498             "FCOMp  $src2\n\t"
  9499             "FNSTSW AX\n\t"
  9500             "TEST   AX,0x400\n\t"
  9501             "JZ,s   flags\n\t"
  9502             "MOV    AH,1\t# unordered treat as LT\n"
  9503     "flags:\tSAHF" %}
  9504   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9505   ins_encode( Push_Reg_DPR(src1),
  9506               OpcP, RegOpc(src2),
  9507               fpu_flags);
  9508   ins_pipe( pipe_slow );
  9509 %}
  9511 // Compare vs zero into -1,0,1
  9512 instruct cmpDPR_0(eRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9513   predicate(UseSSE<=1);
  9514   match(Set dst (CmpD3 src1 zero));
  9515   effect(KILL cr, KILL rax);
  9516   ins_cost(280);
  9517   format %{ "FTSTD  $dst,$src1" %}
  9518   opcode(0xE4, 0xD9);
  9519   ins_encode( Push_Reg_DPR(src1),
  9520               OpcS, OpcP, PopFPU,
  9521               CmpF_Result(dst));
  9522   ins_pipe( pipe_slow );
  9523 %}
  9525 // Compare into -1,0,1
  9526 instruct cmpDPR_reg(eRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9527   predicate(UseSSE<=1);
  9528   match(Set dst (CmpD3 src1 src2));
  9529   effect(KILL cr, KILL rax);
  9530   ins_cost(300);
  9531   format %{ "FCMPD  $dst,$src1,$src2" %}
  9532   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9533   ins_encode( Push_Reg_DPR(src1),
  9534               OpcP, RegOpc(src2),
  9535               CmpF_Result(dst));
  9536   ins_pipe( pipe_slow );
  9537 %}
  9539 // float compare and set condition codes in EFLAGS by XMM regs
  9540 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9541   predicate(UseSSE>=2);
  9542   match(Set cr (CmpD src1 src2));
  9543   ins_cost(145);
  9544   format %{ "UCOMISD $src1,$src2\n\t"
  9545             "JNP,s   exit\n\t"
  9546             "PUSHF\t# saw NaN, set CF\n\t"
  9547             "AND     [rsp], #0xffffff2b\n\t"
  9548             "POPF\n"
  9549     "exit:" %}
  9550   ins_encode %{
  9551     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9552     emit_cmpfp_fixup(_masm);
  9553   %}
  9554   ins_pipe( pipe_slow );
  9555 %}
  9557 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9558   predicate(UseSSE>=2);
  9559   match(Set cr (CmpD src1 src2));
  9560   ins_cost(100);
  9561   format %{ "UCOMISD $src1,$src2" %}
  9562   ins_encode %{
  9563     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9564   %}
  9565   ins_pipe( pipe_slow );
  9566 %}
  9568 // float compare and set condition codes in EFLAGS by XMM regs
  9569 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9570   predicate(UseSSE>=2);
  9571   match(Set cr (CmpD src1 (LoadD src2)));
  9572   ins_cost(145);
  9573   format %{ "UCOMISD $src1,$src2\n\t"
  9574             "JNP,s   exit\n\t"
  9575             "PUSHF\t# saw NaN, set CF\n\t"
  9576             "AND     [rsp], #0xffffff2b\n\t"
  9577             "POPF\n"
  9578     "exit:" %}
  9579   ins_encode %{
  9580     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9581     emit_cmpfp_fixup(_masm);
  9582   %}
  9583   ins_pipe( pipe_slow );
  9584 %}
  9586 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9587   predicate(UseSSE>=2);
  9588   match(Set cr (CmpD src1 (LoadD src2)));
  9589   ins_cost(100);
  9590   format %{ "UCOMISD $src1,$src2" %}
  9591   ins_encode %{
  9592     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9593   %}
  9594   ins_pipe( pipe_slow );
  9595 %}
  9597 // Compare into -1,0,1 in XMM
  9598 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9599   predicate(UseSSE>=2);
  9600   match(Set dst (CmpD3 src1 src2));
  9601   effect(KILL cr);
  9602   ins_cost(255);
  9603   format %{ "UCOMISD $src1, $src2\n\t"
  9604             "MOV     $dst, #-1\n\t"
  9605             "JP,s    done\n\t"
  9606             "JB,s    done\n\t"
  9607             "SETNE   $dst\n\t"
  9608             "MOVZB   $dst, $dst\n"
  9609     "done:" %}
  9610   ins_encode %{
  9611     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9612     emit_cmpfp3(_masm, $dst$$Register);
  9613   %}
  9614   ins_pipe( pipe_slow );
  9615 %}
  9617 // Compare into -1,0,1 in XMM and memory
  9618 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9619   predicate(UseSSE>=2);
  9620   match(Set dst (CmpD3 src1 (LoadD src2)));
  9621   effect(KILL cr);
  9622   ins_cost(275);
  9623   format %{ "UCOMISD $src1, $src2\n\t"
  9624             "MOV     $dst, #-1\n\t"
  9625             "JP,s    done\n\t"
  9626             "JB,s    done\n\t"
  9627             "SETNE   $dst\n\t"
  9628             "MOVZB   $dst, $dst\n"
  9629     "done:" %}
  9630   ins_encode %{
  9631     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9632     emit_cmpfp3(_masm, $dst$$Register);
  9633   %}
  9634   ins_pipe( pipe_slow );
  9635 %}
  9638 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9639   predicate (UseSSE <=1);
  9640   match(Set dst (SubD dst src));
  9642   format %{ "FLD    $src\n\t"
  9643             "DSUBp  $dst,ST" %}
  9644   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9645   ins_cost(150);
  9646   ins_encode( Push_Reg_DPR(src),
  9647               OpcP, RegOpc(dst) );
  9648   ins_pipe( fpu_reg_reg );
  9649 %}
  9651 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9652   predicate (UseSSE <=1);
  9653   match(Set dst (RoundDouble (SubD src1 src2)));
  9654   ins_cost(250);
  9656   format %{ "FLD    $src2\n\t"
  9657             "DSUB   ST,$src1\n\t"
  9658             "FSTP_D $dst\t# D-round" %}
  9659   opcode(0xD8, 0x5);
  9660   ins_encode( Push_Reg_DPR(src2),
  9661               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9662   ins_pipe( fpu_mem_reg_reg );
  9663 %}
  9666 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9667   predicate (UseSSE <=1);
  9668   match(Set dst (SubD dst (LoadD src)));
  9669   ins_cost(150);
  9671   format %{ "FLD    $src\n\t"
  9672             "DSUBp  $dst,ST" %}
  9673   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9674   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9675               OpcP, RegOpc(dst) );
  9676   ins_pipe( fpu_reg_mem );
  9677 %}
  9679 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9680   predicate (UseSSE<=1);
  9681   match(Set dst (AbsD src));
  9682   ins_cost(100);
  9683   format %{ "FABS" %}
  9684   opcode(0xE1, 0xD9);
  9685   ins_encode( OpcS, OpcP );
  9686   ins_pipe( fpu_reg_reg );
  9687 %}
  9689 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9690   predicate(UseSSE<=1);
  9691   match(Set dst (NegD src));
  9692   ins_cost(100);
  9693   format %{ "FCHS" %}
  9694   opcode(0xE0, 0xD9);
  9695   ins_encode( OpcS, OpcP );
  9696   ins_pipe( fpu_reg_reg );
  9697 %}
  9699 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9700   predicate(UseSSE<=1);
  9701   match(Set dst (AddD dst src));
  9702   format %{ "FLD    $src\n\t"
  9703             "DADD   $dst,ST" %}
  9704   size(4);
  9705   ins_cost(150);
  9706   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9707   ins_encode( Push_Reg_DPR(src),
  9708               OpcP, RegOpc(dst) );
  9709   ins_pipe( fpu_reg_reg );
  9710 %}
  9713 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9714   predicate(UseSSE<=1);
  9715   match(Set dst (RoundDouble (AddD src1 src2)));
  9716   ins_cost(250);
  9718   format %{ "FLD    $src2\n\t"
  9719             "DADD   ST,$src1\n\t"
  9720             "FSTP_D $dst\t# D-round" %}
  9721   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9722   ins_encode( Push_Reg_DPR(src2),
  9723               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9724   ins_pipe( fpu_mem_reg_reg );
  9725 %}
  9728 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9729   predicate(UseSSE<=1);
  9730   match(Set dst (AddD dst (LoadD src)));
  9731   ins_cost(150);
  9733   format %{ "FLD    $src\n\t"
  9734             "DADDp  $dst,ST" %}
  9735   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9736   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9737               OpcP, RegOpc(dst) );
  9738   ins_pipe( fpu_reg_mem );
  9739 %}
  9741 // add-to-memory
  9742 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9743   predicate(UseSSE<=1);
  9744   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9745   ins_cost(150);
  9747   format %{ "FLD_D  $dst\n\t"
  9748             "DADD   ST,$src\n\t"
  9749             "FST_D  $dst" %}
  9750   opcode(0xDD, 0x0);
  9751   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9752               Opcode(0xD8), RegOpc(src),
  9753               set_instruction_start,
  9754               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9755   ins_pipe( fpu_reg_mem );
  9756 %}
  9758 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9759   predicate(UseSSE<=1);
  9760   match(Set dst (AddD dst con));
  9761   ins_cost(125);
  9762   format %{ "FLD1\n\t"
  9763             "DADDp  $dst,ST" %}
  9764   ins_encode %{
  9765     __ fld1();
  9766     __ faddp($dst$$reg);
  9767   %}
  9768   ins_pipe(fpu_reg);
  9769 %}
  9771 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9772   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9773   match(Set dst (AddD dst con));
  9774   ins_cost(200);
  9775   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9776             "DADDp  $dst,ST" %}
  9777   ins_encode %{
  9778     __ fld_d($constantaddress($con));
  9779     __ faddp($dst$$reg);
  9780   %}
  9781   ins_pipe(fpu_reg_mem);
  9782 %}
  9784 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9785   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9786   match(Set dst (RoundDouble (AddD src con)));
  9787   ins_cost(200);
  9788   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9789             "DADD   ST,$src\n\t"
  9790             "FSTP_D $dst\t# D-round" %}
  9791   ins_encode %{
  9792     __ fld_d($constantaddress($con));
  9793     __ fadd($src$$reg);
  9794     __ fstp_d(Address(rsp, $dst$$disp));
  9795   %}
  9796   ins_pipe(fpu_mem_reg_con);
  9797 %}
  9799 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9800   predicate(UseSSE<=1);
  9801   match(Set dst (MulD dst src));
  9802   format %{ "FLD    $src\n\t"
  9803             "DMULp  $dst,ST" %}
  9804   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9805   ins_cost(150);
  9806   ins_encode( Push_Reg_DPR(src),
  9807               OpcP, RegOpc(dst) );
  9808   ins_pipe( fpu_reg_reg );
  9809 %}
  9811 // Strict FP instruction biases argument before multiply then
  9812 // biases result to avoid double rounding of subnormals.
  9813 //
  9814 // scale arg1 by multiplying arg1 by 2^(-15360)
  9815 // load arg2
  9816 // multiply scaled arg1 by arg2
  9817 // rescale product by 2^(15360)
  9818 //
  9819 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9820   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9821   match(Set dst (MulD dst src));
  9822   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9824   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9825             "DMULp  $dst,ST\n\t"
  9826             "FLD    $src\n\t"
  9827             "DMULp  $dst,ST\n\t"
  9828             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9829             "DMULp  $dst,ST\n\t" %}
  9830   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9831   ins_encode( strictfp_bias1(dst),
  9832               Push_Reg_DPR(src),
  9833               OpcP, RegOpc(dst),
  9834               strictfp_bias2(dst) );
  9835   ins_pipe( fpu_reg_reg );
  9836 %}
  9838 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9839   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9840   match(Set dst (MulD dst con));
  9841   ins_cost(200);
  9842   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9843             "DMULp  $dst,ST" %}
  9844   ins_encode %{
  9845     __ fld_d($constantaddress($con));
  9846     __ fmulp($dst$$reg);
  9847   %}
  9848   ins_pipe(fpu_reg_mem);
  9849 %}
  9852 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9853   predicate( UseSSE<=1 );
  9854   match(Set dst (MulD dst (LoadD src)));
  9855   ins_cost(200);
  9856   format %{ "FLD_D  $src\n\t"
  9857             "DMULp  $dst,ST" %}
  9858   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9859   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9860               OpcP, RegOpc(dst) );
  9861   ins_pipe( fpu_reg_mem );
  9862 %}
  9864 //
  9865 // Cisc-alternate to reg-reg multiply
  9866 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9867   predicate( UseSSE<=1 );
  9868   match(Set dst (MulD src (LoadD mem)));
  9869   ins_cost(250);
  9870   format %{ "FLD_D  $mem\n\t"
  9871             "DMUL   ST,$src\n\t"
  9872             "FSTP_D $dst" %}
  9873   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9874   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9875               OpcReg_FPR(src),
  9876               Pop_Reg_DPR(dst) );
  9877   ins_pipe( fpu_reg_reg_mem );
  9878 %}
  9881 // MACRO3 -- addDPR a mulDPR
  9882 // This instruction is a '2-address' instruction in that the result goes
  9883 // back to src2.  This eliminates a move from the macro; possibly the
  9884 // register allocator will have to add it back (and maybe not).
  9885 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9886   predicate( UseSSE<=1 );
  9887   match(Set src2 (AddD (MulD src0 src1) src2));
  9888   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9889             "DMUL   ST,$src1\n\t"
  9890             "DADDp  $src2,ST" %}
  9891   ins_cost(250);
  9892   opcode(0xDD); /* LoadD DD /0 */
  9893   ins_encode( Push_Reg_FPR(src0),
  9894               FMul_ST_reg(src1),
  9895               FAddP_reg_ST(src2) );
  9896   ins_pipe( fpu_reg_reg_reg );
  9897 %}
  9900 // MACRO3 -- subDPR a mulDPR
  9901 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9902   predicate( UseSSE<=1 );
  9903   match(Set src2 (SubD (MulD src0 src1) src2));
  9904   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9905             "DMUL   ST,$src1\n\t"
  9906             "DSUBRp $src2,ST" %}
  9907   ins_cost(250);
  9908   ins_encode( Push_Reg_FPR(src0),
  9909               FMul_ST_reg(src1),
  9910               Opcode(0xDE), Opc_plus(0xE0,src2));
  9911   ins_pipe( fpu_reg_reg_reg );
  9912 %}
  9915 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9916   predicate( UseSSE<=1 );
  9917   match(Set dst (DivD dst src));
  9919   format %{ "FLD    $src\n\t"
  9920             "FDIVp  $dst,ST" %}
  9921   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9922   ins_cost(150);
  9923   ins_encode( Push_Reg_DPR(src),
  9924               OpcP, RegOpc(dst) );
  9925   ins_pipe( fpu_reg_reg );
  9926 %}
  9928 // Strict FP instruction biases argument before division then
  9929 // biases result, to avoid double rounding of subnormals.
  9930 //
  9931 // scale dividend by multiplying dividend by 2^(-15360)
  9932 // load divisor
  9933 // divide scaled dividend by divisor
  9934 // rescale quotient by 2^(15360)
  9935 //
  9936 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9937   predicate (UseSSE<=1);
  9938   match(Set dst (DivD dst src));
  9939   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9940   ins_cost(01);
  9942   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9943             "DMULp  $dst,ST\n\t"
  9944             "FLD    $src\n\t"
  9945             "FDIVp  $dst,ST\n\t"
  9946             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9947             "DMULp  $dst,ST\n\t" %}
  9948   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9949   ins_encode( strictfp_bias1(dst),
  9950               Push_Reg_DPR(src),
  9951               OpcP, RegOpc(dst),
  9952               strictfp_bias2(dst) );
  9953   ins_pipe( fpu_reg_reg );
  9954 %}
  9956 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9957   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9958   match(Set dst (RoundDouble (DivD src1 src2)));
  9960   format %{ "FLD    $src1\n\t"
  9961             "FDIV   ST,$src2\n\t"
  9962             "FSTP_D $dst\t# D-round" %}
  9963   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9964   ins_encode( Push_Reg_DPR(src1),
  9965               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9966   ins_pipe( fpu_mem_reg_reg );
  9967 %}
  9970 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9971   predicate(UseSSE<=1);
  9972   match(Set dst (ModD dst src));
  9973   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9975   format %{ "DMOD   $dst,$src" %}
  9976   ins_cost(250);
  9977   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9978               emitModDPR(),
  9979               Push_Result_Mod_DPR(src),
  9980               Pop_Reg_DPR(dst));
  9981   ins_pipe( pipe_slow );
  9982 %}
  9984 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9985   predicate(UseSSE>=2);
  9986   match(Set dst (ModD src0 src1));
  9987   effect(KILL rax, KILL cr);
  9989   format %{ "SUB    ESP,8\t # DMOD\n"
  9990           "\tMOVSD  [ESP+0],$src1\n"
  9991           "\tFLD_D  [ESP+0]\n"
  9992           "\tMOVSD  [ESP+0],$src0\n"
  9993           "\tFLD_D  [ESP+0]\n"
  9994      "loop:\tFPREM\n"
  9995           "\tFWAIT\n"
  9996           "\tFNSTSW AX\n"
  9997           "\tSAHF\n"
  9998           "\tJP     loop\n"
  9999           "\tFSTP_D [ESP+0]\n"
 10000           "\tMOVSD  $dst,[ESP+0]\n"
 10001           "\tADD    ESP,8\n"
 10002           "\tFSTP   ST0\t # Restore FPU Stack"
 10003     %}
 10004   ins_cost(250);
 10005   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
 10006   ins_pipe( pipe_slow );
 10007 %}
 10009 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
 10010   predicate (UseSSE<=1);
 10011   match(Set dst (SinD src));
 10012   ins_cost(1800);
 10013   format %{ "DSIN   $dst" %}
 10014   opcode(0xD9, 0xFE);
 10015   ins_encode( OpcP, OpcS );
 10016   ins_pipe( pipe_slow );
 10017 %}
 10019 instruct sinD_reg(regD dst, eFlagsReg cr) %{
 10020   predicate (UseSSE>=2);
 10021   match(Set dst (SinD dst));
 10022   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10023   ins_cost(1800);
 10024   format %{ "DSIN   $dst" %}
 10025   opcode(0xD9, 0xFE);
 10026   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10027   ins_pipe( pipe_slow );
 10028 %}
 10030 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
 10031   predicate (UseSSE<=1);
 10032   match(Set dst (CosD src));
 10033   ins_cost(1800);
 10034   format %{ "DCOS   $dst" %}
 10035   opcode(0xD9, 0xFF);
 10036   ins_encode( OpcP, OpcS );
 10037   ins_pipe( pipe_slow );
 10038 %}
 10040 instruct cosD_reg(regD dst, eFlagsReg cr) %{
 10041   predicate (UseSSE>=2);
 10042   match(Set dst (CosD dst));
 10043   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10044   ins_cost(1800);
 10045   format %{ "DCOS   $dst" %}
 10046   opcode(0xD9, 0xFF);
 10047   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
 10048   ins_pipe( pipe_slow );
 10049 %}
 10051 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
 10052   predicate (UseSSE<=1);
 10053   match(Set dst(TanD src));
 10054   format %{ "DTAN   $dst" %}
 10055   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10056               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10057   ins_pipe( pipe_slow );
 10058 %}
 10060 instruct tanD_reg(regD dst, eFlagsReg cr) %{
 10061   predicate (UseSSE>=2);
 10062   match(Set dst(TanD dst));
 10063   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10064   format %{ "DTAN   $dst" %}
 10065   ins_encode( Push_SrcD(dst),
 10066               Opcode(0xD9), Opcode(0xF2),    // fptan
 10067               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10068               Push_ResultD(dst) );
 10069   ins_pipe( pipe_slow );
 10070 %}
 10072 instruct atanDPR_reg(regDPR dst, regDPR src) %{
 10073   predicate (UseSSE<=1);
 10074   match(Set dst(AtanD dst src));
 10075   format %{ "DATA   $dst,$src" %}
 10076   opcode(0xD9, 0xF3);
 10077   ins_encode( Push_Reg_DPR(src),
 10078               OpcP, OpcS, RegOpc(dst) );
 10079   ins_pipe( pipe_slow );
 10080 %}
 10082 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
 10083   predicate (UseSSE>=2);
 10084   match(Set dst(AtanD dst src));
 10085   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
 10086   format %{ "DATA   $dst,$src" %}
 10087   opcode(0xD9, 0xF3);
 10088   ins_encode( Push_SrcD(src),
 10089               OpcP, OpcS, Push_ResultD(dst) );
 10090   ins_pipe( pipe_slow );
 10091 %}
 10093 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
 10094   predicate (UseSSE<=1);
 10095   match(Set dst (SqrtD src));
 10096   format %{ "DSQRT  $dst,$src" %}
 10097   opcode(0xFA, 0xD9);
 10098   ins_encode( Push_Reg_DPR(src),
 10099               OpcS, OpcP, Pop_Reg_DPR(dst) );
 10100   ins_pipe( pipe_slow );
 10101 %}
 10103 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10104   predicate (UseSSE<=1);
 10105   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10106   effect(KILL rax, KILL rbx, KILL rcx);
 10107   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10108             "FLD_D  $X\n\t"
 10109             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10111             "FDUP   \t\t\t# Q Q\n\t"
 10112             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10113             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10114             "FISTP  dword [ESP]\n\t"
 10115             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10116             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10117             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10118             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10119             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10120             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10121             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10122             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10123             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10124             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10125             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10126             "MOV    [ESP+0],0\n\t"
 10127             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10129             "ADD    ESP,8"
 10130              %}
 10131   ins_encode( push_stack_temp_qword,
 10132               Push_Reg_DPR(X),
 10133               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10134               pow_exp_core_encoding,
 10135               pop_stack_temp_qword);
 10136   ins_pipe( pipe_slow );
 10137 %}
 10139 instruct powD_reg(regD dst, regD src0, regD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10140   predicate (UseSSE>=2);
 10141   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10142   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10143   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10144             "MOVSD  [ESP],$src1\n\t"
 10145             "FLD    FPR1,$src1\n\t"
 10146             "MOVSD  [ESP],$src0\n\t"
 10147             "FLD    FPR1,$src0\n\t"
 10148             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10150             "FDUP   \t\t\t# Q Q\n\t"
 10151             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10152             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10153             "FISTP  dword [ESP]\n\t"
 10154             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10155             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10156             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10157             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10158             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10159             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10160             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10161             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10162             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10163             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10164             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10165             "MOV    [ESP+0],0\n\t"
 10166             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10168             "FST_D  [ESP]\n\t"
 10169             "MOVSD  $dst,[ESP]\n\t"
 10170             "ADD    ESP,8"
 10171              %}
 10172   ins_encode( push_stack_temp_qword,
 10173               push_xmm_to_fpr1(src1),
 10174               push_xmm_to_fpr1(src0),
 10175               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10176               pow_exp_core_encoding,
 10177               Push_ResultD(dst) );
 10178   ins_pipe( pipe_slow );
 10179 %}
 10182 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10183   predicate (UseSSE<=1);
 10184   match(Set dpr1 (ExpD dpr1));
 10185   effect(KILL rax, KILL rbx, KILL rcx);
 10186   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10187             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10188             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10190             "FDUP   \t\t\t# Q Q\n\t"
 10191             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10192             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10193             "FISTP  dword [ESP]\n\t"
 10194             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10195             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10196             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10197             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10198             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10199             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10200             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10201             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10202             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10203             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10204             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10205             "MOV    [ESP+0],0\n\t"
 10206             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10208             "ADD    ESP,8"
 10209              %}
 10210   ins_encode( push_stack_temp_qword,
 10211               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10212               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10213               pow_exp_core_encoding,
 10214               pop_stack_temp_qword);
 10215   ins_pipe( pipe_slow );
 10216 %}
 10218 instruct expD_reg(regD dst, regD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10219   predicate (UseSSE>=2);
 10220   match(Set dst (ExpD src));
 10221   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10222   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10223             "MOVSD  [ESP],$src\n\t"
 10224             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10225             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10227             "FDUP   \t\t\t# Q Q\n\t"
 10228             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10229             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10230             "FISTP  dword [ESP]\n\t"
 10231             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10232             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10233             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10234             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10235             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10236             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10237             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10238             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10239             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10240             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10241             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10242             "MOV    [ESP+0],0\n\t"
 10243             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10245             "FST_D  [ESP]\n\t"
 10246             "MOVSD  $dst,[ESP]\n\t"
 10247             "ADD    ESP,8"
 10248              %}
 10249   ins_encode( Push_SrcD(src),
 10250               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10251               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10252               pow_exp_core_encoding,
 10253               Push_ResultD(dst) );
 10254   ins_pipe( pipe_slow );
 10255 %}
 10259 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
 10260   predicate (UseSSE<=1);
 10261   // The source Double operand on FPU stack
 10262   match(Set dst (Log10D src));
 10263   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10264   // fxch         ; swap ST(0) with ST(1)
 10265   // fyl2x        ; compute log_10(2) * log_2(x)
 10266   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10267             "FXCH   \n\t"
 10268             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10269          %}
 10270   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10271               Opcode(0xD9), Opcode(0xC9),   // fxch
 10272               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10274   ins_pipe( pipe_slow );
 10275 %}
 10277 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
 10278   predicate (UseSSE>=2);
 10279   effect(KILL cr);
 10280   match(Set dst (Log10D src));
 10281   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10282   // fyl2x        ; compute log_10(2) * log_2(x)
 10283   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10284             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10285          %}
 10286   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10287               Push_SrcD(src),
 10288               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10289               Push_ResultD(dst));
 10291   ins_pipe( pipe_slow );
 10292 %}
 10294 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10295   predicate (UseSSE<=1);
 10296   // The source Double operand on FPU stack
 10297   match(Set dst (LogD src));
 10298   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10299   // fxch         ; swap ST(0) with ST(1)
 10300   // fyl2x        ; compute log_e(2) * log_2(x)
 10301   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10302             "FXCH   \n\t"
 10303             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10304          %}
 10305   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10306               Opcode(0xD9), Opcode(0xC9),   // fxch
 10307               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10309   ins_pipe( pipe_slow );
 10310 %}
 10312 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10313   predicate (UseSSE>=2);
 10314   effect(KILL cr);
 10315   // The source and result Double operands in XMM registers
 10316   match(Set dst (LogD src));
 10317   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10318   // fyl2x        ; compute log_e(2) * log_2(x)
 10319   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10320             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10321          %}
 10322   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10323               Push_SrcD(src),
 10324               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10325               Push_ResultD(dst));
 10326   ins_pipe( pipe_slow );
 10327 %}
 10329 //-------------Float Instructions-------------------------------
 10330 // Float Math
 10332 // Code for float compare:
 10333 //     fcompp();
 10334 //     fwait(); fnstsw_ax();
 10335 //     sahf();
 10336 //     movl(dst, unordered_result);
 10337 //     jcc(Assembler::parity, exit);
 10338 //     movl(dst, less_result);
 10339 //     jcc(Assembler::below, exit);
 10340 //     movl(dst, equal_result);
 10341 //     jcc(Assembler::equal, exit);
 10342 //     movl(dst, greater_result);
 10343 //   exit:
 10345 // P6 version of float compare, sets condition codes in EFLAGS
 10346 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10347   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10348   match(Set cr (CmpF src1 src2));
 10349   effect(KILL rax);
 10350   ins_cost(150);
 10351   format %{ "FLD    $src1\n\t"
 10352             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10353             "JNP    exit\n\t"
 10354             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10355             "SAHF\n"
 10356      "exit:\tNOP               // avoid branch to branch" %}
 10357   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10358   ins_encode( Push_Reg_DPR(src1),
 10359               OpcP, RegOpc(src2),
 10360               cmpF_P6_fixup );
 10361   ins_pipe( pipe_slow );
 10362 %}
 10364 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10365   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10366   match(Set cr (CmpF src1 src2));
 10367   ins_cost(100);
 10368   format %{ "FLD    $src1\n\t"
 10369             "FUCOMIP ST,$src2  // P6 instruction" %}
 10370   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10371   ins_encode( Push_Reg_DPR(src1),
 10372               OpcP, RegOpc(src2));
 10373   ins_pipe( pipe_slow );
 10374 %}
 10377 // Compare & branch
 10378 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10379   predicate(UseSSE == 0);
 10380   match(Set cr (CmpF src1 src2));
 10381   effect(KILL rax);
 10382   ins_cost(200);
 10383   format %{ "FLD    $src1\n\t"
 10384             "FCOMp  $src2\n\t"
 10385             "FNSTSW AX\n\t"
 10386             "TEST   AX,0x400\n\t"
 10387             "JZ,s   flags\n\t"
 10388             "MOV    AH,1\t# unordered treat as LT\n"
 10389     "flags:\tSAHF" %}
 10390   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10391   ins_encode( Push_Reg_DPR(src1),
 10392               OpcP, RegOpc(src2),
 10393               fpu_flags);
 10394   ins_pipe( pipe_slow );
 10395 %}
 10397 // Compare vs zero into -1,0,1
 10398 instruct cmpFPR_0(eRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10399   predicate(UseSSE == 0);
 10400   match(Set dst (CmpF3 src1 zero));
 10401   effect(KILL cr, KILL rax);
 10402   ins_cost(280);
 10403   format %{ "FTSTF  $dst,$src1" %}
 10404   opcode(0xE4, 0xD9);
 10405   ins_encode( Push_Reg_DPR(src1),
 10406               OpcS, OpcP, PopFPU,
 10407               CmpF_Result(dst));
 10408   ins_pipe( pipe_slow );
 10409 %}
 10411 // Compare into -1,0,1
 10412 instruct cmpFPR_reg(eRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10413   predicate(UseSSE == 0);
 10414   match(Set dst (CmpF3 src1 src2));
 10415   effect(KILL cr, KILL rax);
 10416   ins_cost(300);
 10417   format %{ "FCMPF  $dst,$src1,$src2" %}
 10418   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10419   ins_encode( Push_Reg_DPR(src1),
 10420               OpcP, RegOpc(src2),
 10421               CmpF_Result(dst));
 10422   ins_pipe( pipe_slow );
 10423 %}
 10425 // float compare and set condition codes in EFLAGS by XMM regs
 10426 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10427   predicate(UseSSE>=1);
 10428   match(Set cr (CmpF src1 src2));
 10429   ins_cost(145);
 10430   format %{ "UCOMISS $src1,$src2\n\t"
 10431             "JNP,s   exit\n\t"
 10432             "PUSHF\t# saw NaN, set CF\n\t"
 10433             "AND     [rsp], #0xffffff2b\n\t"
 10434             "POPF\n"
 10435     "exit:" %}
 10436   ins_encode %{
 10437     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10438     emit_cmpfp_fixup(_masm);
 10439   %}
 10440   ins_pipe( pipe_slow );
 10441 %}
 10443 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10444   predicate(UseSSE>=1);
 10445   match(Set cr (CmpF src1 src2));
 10446   ins_cost(100);
 10447   format %{ "UCOMISS $src1,$src2" %}
 10448   ins_encode %{
 10449     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10450   %}
 10451   ins_pipe( pipe_slow );
 10452 %}
 10454 // float compare and set condition codes in EFLAGS by XMM regs
 10455 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10456   predicate(UseSSE>=1);
 10457   match(Set cr (CmpF src1 (LoadF src2)));
 10458   ins_cost(165);
 10459   format %{ "UCOMISS $src1,$src2\n\t"
 10460             "JNP,s   exit\n\t"
 10461             "PUSHF\t# saw NaN, set CF\n\t"
 10462             "AND     [rsp], #0xffffff2b\n\t"
 10463             "POPF\n"
 10464     "exit:" %}
 10465   ins_encode %{
 10466     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10467     emit_cmpfp_fixup(_masm);
 10468   %}
 10469   ins_pipe( pipe_slow );
 10470 %}
 10472 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10473   predicate(UseSSE>=1);
 10474   match(Set cr (CmpF src1 (LoadF src2)));
 10475   ins_cost(100);
 10476   format %{ "UCOMISS $src1,$src2" %}
 10477   ins_encode %{
 10478     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10479   %}
 10480   ins_pipe( pipe_slow );
 10481 %}
 10483 // Compare into -1,0,1 in XMM
 10484 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10485   predicate(UseSSE>=1);
 10486   match(Set dst (CmpF3 src1 src2));
 10487   effect(KILL cr);
 10488   ins_cost(255);
 10489   format %{ "UCOMISS $src1, $src2\n\t"
 10490             "MOV     $dst, #-1\n\t"
 10491             "JP,s    done\n\t"
 10492             "JB,s    done\n\t"
 10493             "SETNE   $dst\n\t"
 10494             "MOVZB   $dst, $dst\n"
 10495     "done:" %}
 10496   ins_encode %{
 10497     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10498     emit_cmpfp3(_masm, $dst$$Register);
 10499   %}
 10500   ins_pipe( pipe_slow );
 10501 %}
 10503 // Compare into -1,0,1 in XMM and memory
 10504 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10505   predicate(UseSSE>=1);
 10506   match(Set dst (CmpF3 src1 (LoadF src2)));
 10507   effect(KILL cr);
 10508   ins_cost(275);
 10509   format %{ "UCOMISS $src1, $src2\n\t"
 10510             "MOV     $dst, #-1\n\t"
 10511             "JP,s    done\n\t"
 10512             "JB,s    done\n\t"
 10513             "SETNE   $dst\n\t"
 10514             "MOVZB   $dst, $dst\n"
 10515     "done:" %}
 10516   ins_encode %{
 10517     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10518     emit_cmpfp3(_masm, $dst$$Register);
 10519   %}
 10520   ins_pipe( pipe_slow );
 10521 %}
 10523 // Spill to obtain 24-bit precision
 10524 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10525   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10526   match(Set dst (SubF src1 src2));
 10528   format %{ "FSUB   $dst,$src1 - $src2" %}
 10529   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10530   ins_encode( Push_Reg_FPR(src1),
 10531               OpcReg_FPR(src2),
 10532               Pop_Mem_FPR(dst) );
 10533   ins_pipe( fpu_mem_reg_reg );
 10534 %}
 10535 //
 10536 // This instruction does not round to 24-bits
 10537 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10538   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10539   match(Set dst (SubF dst src));
 10541   format %{ "FSUB   $dst,$src" %}
 10542   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10543   ins_encode( Push_Reg_FPR(src),
 10544               OpcP, RegOpc(dst) );
 10545   ins_pipe( fpu_reg_reg );
 10546 %}
 10548 // Spill to obtain 24-bit precision
 10549 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10550   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10551   match(Set dst (AddF src1 src2));
 10553   format %{ "FADD   $dst,$src1,$src2" %}
 10554   opcode(0xD8, 0x0); /* D8 C0+i */
 10555   ins_encode( Push_Reg_FPR(src2),
 10556               OpcReg_FPR(src1),
 10557               Pop_Mem_FPR(dst) );
 10558   ins_pipe( fpu_mem_reg_reg );
 10559 %}
 10560 //
 10561 // This instruction does not round to 24-bits
 10562 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10563   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10564   match(Set dst (AddF dst src));
 10566   format %{ "FLD    $src\n\t"
 10567             "FADDp  $dst,ST" %}
 10568   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10569   ins_encode( Push_Reg_FPR(src),
 10570               OpcP, RegOpc(dst) );
 10571   ins_pipe( fpu_reg_reg );
 10572 %}
 10574 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10575   predicate(UseSSE==0);
 10576   match(Set dst (AbsF src));
 10577   ins_cost(100);
 10578   format %{ "FABS" %}
 10579   opcode(0xE1, 0xD9);
 10580   ins_encode( OpcS, OpcP );
 10581   ins_pipe( fpu_reg_reg );
 10582 %}
 10584 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10585   predicate(UseSSE==0);
 10586   match(Set dst (NegF src));
 10587   ins_cost(100);
 10588   format %{ "FCHS" %}
 10589   opcode(0xE0, 0xD9);
 10590   ins_encode( OpcS, OpcP );
 10591   ins_pipe( fpu_reg_reg );
 10592 %}
 10594 // Cisc-alternate to addFPR_reg
 10595 // Spill to obtain 24-bit precision
 10596 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10597   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10598   match(Set dst (AddF src1 (LoadF src2)));
 10600   format %{ "FLD    $src2\n\t"
 10601             "FADD   ST,$src1\n\t"
 10602             "FSTP_S $dst" %}
 10603   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10604   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10605               OpcReg_FPR(src1),
 10606               Pop_Mem_FPR(dst) );
 10607   ins_pipe( fpu_mem_reg_mem );
 10608 %}
 10609 //
 10610 // Cisc-alternate to addFPR_reg
 10611 // This instruction does not round to 24-bits
 10612 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10613   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10614   match(Set dst (AddF dst (LoadF src)));
 10616   format %{ "FADD   $dst,$src" %}
 10617   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10618   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10619               OpcP, RegOpc(dst) );
 10620   ins_pipe( fpu_reg_mem );
 10621 %}
 10623 // // Following two instructions for _222_mpegaudio
 10624 // Spill to obtain 24-bit precision
 10625 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10626   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10627   match(Set dst (AddF src1 src2));
 10629   format %{ "FADD   $dst,$src1,$src2" %}
 10630   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10631   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10632               OpcReg_FPR(src2),
 10633               Pop_Mem_FPR(dst) );
 10634   ins_pipe( fpu_mem_reg_mem );
 10635 %}
 10637 // Cisc-spill variant
 10638 // Spill to obtain 24-bit precision
 10639 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10640   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10641   match(Set dst (AddF src1 (LoadF src2)));
 10643   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10644   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10645   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10646               set_instruction_start,
 10647               OpcP, RMopc_Mem(secondary,src1),
 10648               Pop_Mem_FPR(dst) );
 10649   ins_pipe( fpu_mem_mem_mem );
 10650 %}
 10652 // Spill to obtain 24-bit precision
 10653 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10654   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10655   match(Set dst (AddF src1 src2));
 10657   format %{ "FADD   $dst,$src1,$src2" %}
 10658   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10659   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10660               set_instruction_start,
 10661               OpcP, RMopc_Mem(secondary,src1),
 10662               Pop_Mem_FPR(dst) );
 10663   ins_pipe( fpu_mem_mem_mem );
 10664 %}
 10667 // Spill to obtain 24-bit precision
 10668 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10669   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10670   match(Set dst (AddF src con));
 10671   format %{ "FLD    $src\n\t"
 10672             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10673             "FSTP_S $dst"  %}
 10674   ins_encode %{
 10675     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10676     __ fadd_s($constantaddress($con));
 10677     __ fstp_s(Address(rsp, $dst$$disp));
 10678   %}
 10679   ins_pipe(fpu_mem_reg_con);
 10680 %}
 10681 //
 10682 // This instruction does not round to 24-bits
 10683 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10684   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10685   match(Set dst (AddF src con));
 10686   format %{ "FLD    $src\n\t"
 10687             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10688             "FSTP   $dst"  %}
 10689   ins_encode %{
 10690     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10691     __ fadd_s($constantaddress($con));
 10692     __ fstp_d($dst$$reg);
 10693   %}
 10694   ins_pipe(fpu_reg_reg_con);
 10695 %}
 10697 // Spill to obtain 24-bit precision
 10698 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10699   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10700   match(Set dst (MulF src1 src2));
 10702   format %{ "FLD    $src1\n\t"
 10703             "FMUL   $src2\n\t"
 10704             "FSTP_S $dst"  %}
 10705   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10706   ins_encode( Push_Reg_FPR(src1),
 10707               OpcReg_FPR(src2),
 10708               Pop_Mem_FPR(dst) );
 10709   ins_pipe( fpu_mem_reg_reg );
 10710 %}
 10711 //
 10712 // This instruction does not round to 24-bits
 10713 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10714   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10715   match(Set dst (MulF src1 src2));
 10717   format %{ "FLD    $src1\n\t"
 10718             "FMUL   $src2\n\t"
 10719             "FSTP_S $dst"  %}
 10720   opcode(0xD8, 0x1); /* D8 C8+i */
 10721   ins_encode( Push_Reg_FPR(src2),
 10722               OpcReg_FPR(src1),
 10723               Pop_Reg_FPR(dst) );
 10724   ins_pipe( fpu_reg_reg_reg );
 10725 %}
 10728 // Spill to obtain 24-bit precision
 10729 // Cisc-alternate to reg-reg multiply
 10730 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10731   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10732   match(Set dst (MulF src1 (LoadF src2)));
 10734   format %{ "FLD_S  $src2\n\t"
 10735             "FMUL   $src1\n\t"
 10736             "FSTP_S $dst"  %}
 10737   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10738   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10739               OpcReg_FPR(src1),
 10740               Pop_Mem_FPR(dst) );
 10741   ins_pipe( fpu_mem_reg_mem );
 10742 %}
 10743 //
 10744 // This instruction does not round to 24-bits
 10745 // Cisc-alternate to reg-reg multiply
 10746 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10747   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10748   match(Set dst (MulF src1 (LoadF src2)));
 10750   format %{ "FMUL   $dst,$src1,$src2" %}
 10751   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10752   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10753               OpcReg_FPR(src1),
 10754               Pop_Reg_FPR(dst) );
 10755   ins_pipe( fpu_reg_reg_mem );
 10756 %}
 10758 // Spill to obtain 24-bit precision
 10759 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10760   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10761   match(Set dst (MulF src1 src2));
 10763   format %{ "FMUL   $dst,$src1,$src2" %}
 10764   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10765   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10766               set_instruction_start,
 10767               OpcP, RMopc_Mem(secondary,src1),
 10768               Pop_Mem_FPR(dst) );
 10769   ins_pipe( fpu_mem_mem_mem );
 10770 %}
 10772 // Spill to obtain 24-bit precision
 10773 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10774   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10775   match(Set dst (MulF src con));
 10777   format %{ "FLD    $src\n\t"
 10778             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10779             "FSTP_S $dst"  %}
 10780   ins_encode %{
 10781     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10782     __ fmul_s($constantaddress($con));
 10783     __ fstp_s(Address(rsp, $dst$$disp));
 10784   %}
 10785   ins_pipe(fpu_mem_reg_con);
 10786 %}
 10787 //
 10788 // This instruction does not round to 24-bits
 10789 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10790   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10791   match(Set dst (MulF src con));
 10793   format %{ "FLD    $src\n\t"
 10794             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10795             "FSTP   $dst"  %}
 10796   ins_encode %{
 10797     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10798     __ fmul_s($constantaddress($con));
 10799     __ fstp_d($dst$$reg);
 10800   %}
 10801   ins_pipe(fpu_reg_reg_con);
 10802 %}
 10805 //
 10806 // MACRO1 -- subsume unshared load into mulFPR
 10807 // This instruction does not round to 24-bits
 10808 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10809   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10810   match(Set dst (MulF (LoadF mem1) src));
 10812   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10813             "FMUL   ST,$src\n\t"
 10814             "FSTP   $dst" %}
 10815   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10816   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10817               OpcReg_FPR(src),
 10818               Pop_Reg_FPR(dst) );
 10819   ins_pipe( fpu_reg_reg_mem );
 10820 %}
 10821 //
 10822 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10823 // This instruction does not round to 24-bits
 10824 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10825   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10826   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10827   ins_cost(95);
 10829   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10830             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10831             "FADD   ST,$src2\n\t"
 10832             "FSTP   $dst" %}
 10833   opcode(0xD9); /* LoadF D9 /0 */
 10834   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10835               FMul_ST_reg(src1),
 10836               FAdd_ST_reg(src2),
 10837               Pop_Reg_FPR(dst) );
 10838   ins_pipe( fpu_reg_mem_reg_reg );
 10839 %}
 10841 // MACRO3 -- addFPR a mulFPR
 10842 // This instruction does not round to 24-bits.  It is a '2-address'
 10843 // instruction in that the result goes back to src2.  This eliminates
 10844 // a move from the macro; possibly the register allocator will have
 10845 // to add it back (and maybe not).
 10846 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10847   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10848   match(Set src2 (AddF (MulF src0 src1) src2));
 10850   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10851             "FMUL   ST,$src1\n\t"
 10852             "FADDP  $src2,ST" %}
 10853   opcode(0xD9); /* LoadF D9 /0 */
 10854   ins_encode( Push_Reg_FPR(src0),
 10855               FMul_ST_reg(src1),
 10856               FAddP_reg_ST(src2) );
 10857   ins_pipe( fpu_reg_reg_reg );
 10858 %}
 10860 // MACRO4 -- divFPR subFPR
 10861 // This instruction does not round to 24-bits
 10862 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10863   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10864   match(Set dst (DivF (SubF src2 src1) src3));
 10866   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10867             "FSUB   ST,$src1\n\t"
 10868             "FDIV   ST,$src3\n\t"
 10869             "FSTP  $dst" %}
 10870   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10871   ins_encode( Push_Reg_FPR(src2),
 10872               subFPR_divFPR_encode(src1,src3),
 10873               Pop_Reg_FPR(dst) );
 10874   ins_pipe( fpu_reg_reg_reg_reg );
 10875 %}
 10877 // Spill to obtain 24-bit precision
 10878 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10879   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10880   match(Set dst (DivF src1 src2));
 10882   format %{ "FDIV   $dst,$src1,$src2" %}
 10883   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10884   ins_encode( Push_Reg_FPR(src1),
 10885               OpcReg_FPR(src2),
 10886               Pop_Mem_FPR(dst) );
 10887   ins_pipe( fpu_mem_reg_reg );
 10888 %}
 10889 //
 10890 // This instruction does not round to 24-bits
 10891 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10892   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10893   match(Set dst (DivF dst src));
 10895   format %{ "FDIV   $dst,$src" %}
 10896   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10897   ins_encode( Push_Reg_FPR(src),
 10898               OpcP, RegOpc(dst) );
 10899   ins_pipe( fpu_reg_reg );
 10900 %}
 10903 // Spill to obtain 24-bit precision
 10904 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10905   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10906   match(Set dst (ModF src1 src2));
 10907   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10909   format %{ "FMOD   $dst,$src1,$src2" %}
 10910   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10911               emitModDPR(),
 10912               Push_Result_Mod_DPR(src2),
 10913               Pop_Mem_FPR(dst));
 10914   ins_pipe( pipe_slow );
 10915 %}
 10916 //
 10917 // This instruction does not round to 24-bits
 10918 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10919   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10920   match(Set dst (ModF dst src));
 10921   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10923   format %{ "FMOD   $dst,$src" %}
 10924   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10925               emitModDPR(),
 10926               Push_Result_Mod_DPR(src),
 10927               Pop_Reg_FPR(dst));
 10928   ins_pipe( pipe_slow );
 10929 %}
 10931 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10932   predicate(UseSSE>=1);
 10933   match(Set dst (ModF src0 src1));
 10934   effect(KILL rax, KILL cr);
 10935   format %{ "SUB    ESP,4\t # FMOD\n"
 10936           "\tMOVSS  [ESP+0],$src1\n"
 10937           "\tFLD_S  [ESP+0]\n"
 10938           "\tMOVSS  [ESP+0],$src0\n"
 10939           "\tFLD_S  [ESP+0]\n"
 10940      "loop:\tFPREM\n"
 10941           "\tFWAIT\n"
 10942           "\tFNSTSW AX\n"
 10943           "\tSAHF\n"
 10944           "\tJP     loop\n"
 10945           "\tFSTP_S [ESP+0]\n"
 10946           "\tMOVSS  $dst,[ESP+0]\n"
 10947           "\tADD    ESP,4\n"
 10948           "\tFSTP   ST0\t # Restore FPU Stack"
 10949     %}
 10950   ins_cost(250);
 10951   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10952   ins_pipe( pipe_slow );
 10953 %}
 10956 //----------Arithmetic Conversion Instructions---------------------------------
 10957 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10959 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10960   predicate(UseSSE==0);
 10961   match(Set dst (RoundFloat src));
 10962   ins_cost(125);
 10963   format %{ "FST_S  $dst,$src\t# F-round" %}
 10964   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10965   ins_pipe( fpu_mem_reg );
 10966 %}
 10968 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10969   predicate(UseSSE<=1);
 10970   match(Set dst (RoundDouble src));
 10971   ins_cost(125);
 10972   format %{ "FST_D  $dst,$src\t# D-round" %}
 10973   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10974   ins_pipe( fpu_mem_reg );
 10975 %}
 10977 // Force rounding to 24-bit precision and 6-bit exponent
 10978 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10979   predicate(UseSSE==0);
 10980   match(Set dst (ConvD2F src));
 10981   format %{ "FST_S  $dst,$src\t# F-round" %}
 10982   expand %{
 10983     roundFloat_mem_reg(dst,src);
 10984   %}
 10985 %}
 10987 // Force rounding to 24-bit precision and 6-bit exponent
 10988 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10989   predicate(UseSSE==1);
 10990   match(Set dst (ConvD2F src));
 10991   effect( KILL cr );
 10992   format %{ "SUB    ESP,4\n\t"
 10993             "FST_S  [ESP],$src\t# F-round\n\t"
 10994             "MOVSS  $dst,[ESP]\n\t"
 10995             "ADD ESP,4" %}
 10996   ins_encode %{
 10997     __ subptr(rsp, 4);
 10998     if ($src$$reg != FPR1L_enc) {
 10999       __ fld_s($src$$reg-1);
 11000       __ fstp_s(Address(rsp, 0));
 11001     } else {
 11002       __ fst_s(Address(rsp, 0));
 11004     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 11005     __ addptr(rsp, 4);
 11006   %}
 11007   ins_pipe( pipe_slow );
 11008 %}
 11010 // Force rounding double precision to single precision
 11011 instruct convD2F_reg(regF dst, regD src) %{
 11012   predicate(UseSSE>=2);
 11013   match(Set dst (ConvD2F src));
 11014   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11015   ins_encode %{
 11016     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 11017   %}
 11018   ins_pipe( pipe_slow );
 11019 %}
 11021 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 11022   predicate(UseSSE==0);
 11023   match(Set dst (ConvF2D src));
 11024   format %{ "FST_S  $dst,$src\t# D-round" %}
 11025   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 11026   ins_pipe( fpu_reg_reg );
 11027 %}
 11029 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 11030   predicate(UseSSE==1);
 11031   match(Set dst (ConvF2D src));
 11032   format %{ "FST_D  $dst,$src\t# D-round" %}
 11033   expand %{
 11034     roundDouble_mem_reg(dst,src);
 11035   %}
 11036 %}
 11038 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 11039   predicate(UseSSE==1);
 11040   match(Set dst (ConvF2D src));
 11041   effect( KILL cr );
 11042   format %{ "SUB    ESP,4\n\t"
 11043             "MOVSS  [ESP] $src\n\t"
 11044             "FLD_S  [ESP]\n\t"
 11045             "ADD    ESP,4\n\t"
 11046             "FSTP   $dst\t# D-round" %}
 11047   ins_encode %{
 11048     __ subptr(rsp, 4);
 11049     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11050     __ fld_s(Address(rsp, 0));
 11051     __ addptr(rsp, 4);
 11052     __ fstp_d($dst$$reg);
 11053   %}
 11054   ins_pipe( pipe_slow );
 11055 %}
 11057 instruct convF2D_reg(regD dst, regF src) %{
 11058   predicate(UseSSE>=2);
 11059   match(Set dst (ConvF2D src));
 11060   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11061   ins_encode %{
 11062     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 11063   %}
 11064   ins_pipe( pipe_slow );
 11065 %}
 11067 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11068 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 11069   predicate(UseSSE<=1);
 11070   match(Set dst (ConvD2I src));
 11071   effect( KILL tmp, KILL cr );
 11072   format %{ "FLD    $src\t# Convert double to int \n\t"
 11073             "FLDCW  trunc mode\n\t"
 11074             "SUB    ESP,4\n\t"
 11075             "FISTp  [ESP + #0]\n\t"
 11076             "FLDCW  std/24-bit mode\n\t"
 11077             "POP    EAX\n\t"
 11078             "CMP    EAX,0x80000000\n\t"
 11079             "JNE,s  fast\n\t"
 11080             "FLD_D  $src\n\t"
 11081             "CALL   d2i_wrapper\n"
 11082       "fast:" %}
 11083   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 11084   ins_pipe( pipe_slow );
 11085 %}
 11087 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11088 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11089   predicate(UseSSE>=2);
 11090   match(Set dst (ConvD2I src));
 11091   effect( KILL tmp, KILL cr );
 11092   format %{ "CVTTSD2SI $dst, $src\n\t"
 11093             "CMP    $dst,0x80000000\n\t"
 11094             "JNE,s  fast\n\t"
 11095             "SUB    ESP, 8\n\t"
 11096             "MOVSD  [ESP], $src\n\t"
 11097             "FLD_D  [ESP]\n\t"
 11098             "ADD    ESP, 8\n\t"
 11099             "CALL   d2i_wrapper\n"
 11100       "fast:" %}
 11101   ins_encode %{
 11102     Label fast;
 11103     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 11104     __ cmpl($dst$$Register, 0x80000000);
 11105     __ jccb(Assembler::notEqual, fast);
 11106     __ subptr(rsp, 8);
 11107     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11108     __ fld_d(Address(rsp, 0));
 11109     __ addptr(rsp, 8);
 11110     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11111     __ bind(fast);
 11112   %}
 11113   ins_pipe( pipe_slow );
 11114 %}
 11116 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 11117   predicate(UseSSE<=1);
 11118   match(Set dst (ConvD2L src));
 11119   effect( KILL cr );
 11120   format %{ "FLD    $src\t# Convert double to long\n\t"
 11121             "FLDCW  trunc mode\n\t"
 11122             "SUB    ESP,8\n\t"
 11123             "FISTp  [ESP + #0]\n\t"
 11124             "FLDCW  std/24-bit mode\n\t"
 11125             "POP    EAX\n\t"
 11126             "POP    EDX\n\t"
 11127             "CMP    EDX,0x80000000\n\t"
 11128             "JNE,s  fast\n\t"
 11129             "TEST   EAX,EAX\n\t"
 11130             "JNE,s  fast\n\t"
 11131             "FLD    $src\n\t"
 11132             "CALL   d2l_wrapper\n"
 11133       "fast:" %}
 11134   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 11135   ins_pipe( pipe_slow );
 11136 %}
 11138 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11139 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11140   predicate (UseSSE>=2);
 11141   match(Set dst (ConvD2L src));
 11142   effect( KILL cr );
 11143   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11144             "MOVSD  [ESP],$src\n\t"
 11145             "FLD_D  [ESP]\n\t"
 11146             "FLDCW  trunc mode\n\t"
 11147             "FISTp  [ESP + #0]\n\t"
 11148             "FLDCW  std/24-bit mode\n\t"
 11149             "POP    EAX\n\t"
 11150             "POP    EDX\n\t"
 11151             "CMP    EDX,0x80000000\n\t"
 11152             "JNE,s  fast\n\t"
 11153             "TEST   EAX,EAX\n\t"
 11154             "JNE,s  fast\n\t"
 11155             "SUB    ESP,8\n\t"
 11156             "MOVSD  [ESP],$src\n\t"
 11157             "FLD_D  [ESP]\n\t"
 11158             "ADD    ESP,8\n\t"
 11159             "CALL   d2l_wrapper\n"
 11160       "fast:" %}
 11161   ins_encode %{
 11162     Label fast;
 11163     __ subptr(rsp, 8);
 11164     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11165     __ fld_d(Address(rsp, 0));
 11166     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11167     __ fistp_d(Address(rsp, 0));
 11168     // Restore the rounding mode, mask the exception
 11169     if (Compile::current()->in_24_bit_fp_mode()) {
 11170       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11171     } else {
 11172       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11174     // Load the converted long, adjust CPU stack
 11175     __ pop(rax);
 11176     __ pop(rdx);
 11177     __ cmpl(rdx, 0x80000000);
 11178     __ jccb(Assembler::notEqual, fast);
 11179     __ testl(rax, rax);
 11180     __ jccb(Assembler::notEqual, fast);
 11181     __ subptr(rsp, 8);
 11182     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 11183     __ fld_d(Address(rsp, 0));
 11184     __ addptr(rsp, 8);
 11185     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11186     __ bind(fast);
 11187   %}
 11188   ins_pipe( pipe_slow );
 11189 %}
 11191 // Convert a double to an int.  Java semantics require we do complex
 11192 // manglations in the corner cases.  So we set the rounding mode to
 11193 // 'zero', store the darned double down as an int, and reset the
 11194 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11195 // if we would overflow or converted a NAN; we check for this and
 11196 // and go the slow path if needed.
 11197 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 11198   predicate(UseSSE==0);
 11199   match(Set dst (ConvF2I src));
 11200   effect( KILL tmp, KILL cr );
 11201   format %{ "FLD    $src\t# Convert float to int \n\t"
 11202             "FLDCW  trunc mode\n\t"
 11203             "SUB    ESP,4\n\t"
 11204             "FISTp  [ESP + #0]\n\t"
 11205             "FLDCW  std/24-bit mode\n\t"
 11206             "POP    EAX\n\t"
 11207             "CMP    EAX,0x80000000\n\t"
 11208             "JNE,s  fast\n\t"
 11209             "FLD    $src\n\t"
 11210             "CALL   d2i_wrapper\n"
 11211       "fast:" %}
 11212   // DPR2I_encoding works for FPR2I
 11213   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 11214   ins_pipe( pipe_slow );
 11215 %}
 11217 // Convert a float in xmm to an int reg.
 11218 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11219   predicate(UseSSE>=1);
 11220   match(Set dst (ConvF2I src));
 11221   effect( KILL tmp, KILL cr );
 11222   format %{ "CVTTSS2SI $dst, $src\n\t"
 11223             "CMP    $dst,0x80000000\n\t"
 11224             "JNE,s  fast\n\t"
 11225             "SUB    ESP, 4\n\t"
 11226             "MOVSS  [ESP], $src\n\t"
 11227             "FLD    [ESP]\n\t"
 11228             "ADD    ESP, 4\n\t"
 11229             "CALL   d2i_wrapper\n"
 11230       "fast:" %}
 11231   ins_encode %{
 11232     Label fast;
 11233     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 11234     __ cmpl($dst$$Register, 0x80000000);
 11235     __ jccb(Assembler::notEqual, fast);
 11236     __ subptr(rsp, 4);
 11237     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11238     __ fld_s(Address(rsp, 0));
 11239     __ addptr(rsp, 4);
 11240     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 11241     __ bind(fast);
 11242   %}
 11243   ins_pipe( pipe_slow );
 11244 %}
 11246 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 11247   predicate(UseSSE==0);
 11248   match(Set dst (ConvF2L src));
 11249   effect( KILL cr );
 11250   format %{ "FLD    $src\t# Convert float to long\n\t"
 11251             "FLDCW  trunc mode\n\t"
 11252             "SUB    ESP,8\n\t"
 11253             "FISTp  [ESP + #0]\n\t"
 11254             "FLDCW  std/24-bit mode\n\t"
 11255             "POP    EAX\n\t"
 11256             "POP    EDX\n\t"
 11257             "CMP    EDX,0x80000000\n\t"
 11258             "JNE,s  fast\n\t"
 11259             "TEST   EAX,EAX\n\t"
 11260             "JNE,s  fast\n\t"
 11261             "FLD    $src\n\t"
 11262             "CALL   d2l_wrapper\n"
 11263       "fast:" %}
 11264   // DPR2L_encoding works for FPR2L
 11265   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 11266   ins_pipe( pipe_slow );
 11267 %}
 11269 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11270 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11271   predicate (UseSSE>=1);
 11272   match(Set dst (ConvF2L src));
 11273   effect( KILL cr );
 11274   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11275             "MOVSS  [ESP],$src\n\t"
 11276             "FLD_S  [ESP]\n\t"
 11277             "FLDCW  trunc mode\n\t"
 11278             "FISTp  [ESP + #0]\n\t"
 11279             "FLDCW  std/24-bit mode\n\t"
 11280             "POP    EAX\n\t"
 11281             "POP    EDX\n\t"
 11282             "CMP    EDX,0x80000000\n\t"
 11283             "JNE,s  fast\n\t"
 11284             "TEST   EAX,EAX\n\t"
 11285             "JNE,s  fast\n\t"
 11286             "SUB    ESP,4\t# Convert float to long\n\t"
 11287             "MOVSS  [ESP],$src\n\t"
 11288             "FLD_S  [ESP]\n\t"
 11289             "ADD    ESP,4\n\t"
 11290             "CALL   d2l_wrapper\n"
 11291       "fast:" %}
 11292   ins_encode %{
 11293     Label fast;
 11294     __ subptr(rsp, 8);
 11295     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11296     __ fld_s(Address(rsp, 0));
 11297     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11298     __ fistp_d(Address(rsp, 0));
 11299     // Restore the rounding mode, mask the exception
 11300     if (Compile::current()->in_24_bit_fp_mode()) {
 11301       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11302     } else {
 11303       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11305     // Load the converted long, adjust CPU stack
 11306     __ pop(rax);
 11307     __ pop(rdx);
 11308     __ cmpl(rdx, 0x80000000);
 11309     __ jccb(Assembler::notEqual, fast);
 11310     __ testl(rax, rax);
 11311     __ jccb(Assembler::notEqual, fast);
 11312     __ subptr(rsp, 4);
 11313     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11314     __ fld_s(Address(rsp, 0));
 11315     __ addptr(rsp, 4);
 11316     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11317     __ bind(fast);
 11318   %}
 11319   ins_pipe( pipe_slow );
 11320 %}
 11322 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11323   predicate( UseSSE<=1 );
 11324   match(Set dst (ConvI2D src));
 11325   format %{ "FILD   $src\n\t"
 11326             "FSTP   $dst" %}
 11327   opcode(0xDB, 0x0);  /* DB /0 */
 11328   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11329   ins_pipe( fpu_reg_mem );
 11330 %}
 11332 instruct convI2D_reg(regD dst, eRegI src) %{
 11333   predicate( UseSSE>=2 && !UseXmmI2D );
 11334   match(Set dst (ConvI2D src));
 11335   format %{ "CVTSI2SD $dst,$src" %}
 11336   ins_encode %{
 11337     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11338   %}
 11339   ins_pipe( pipe_slow );
 11340 %}
 11342 instruct convI2D_mem(regD dst, memory mem) %{
 11343   predicate( UseSSE>=2 );
 11344   match(Set dst (ConvI2D (LoadI mem)));
 11345   format %{ "CVTSI2SD $dst,$mem" %}
 11346   ins_encode %{
 11347     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11348   %}
 11349   ins_pipe( pipe_slow );
 11350 %}
 11352 instruct convXI2D_reg(regD dst, eRegI src)
 11353 %{
 11354   predicate( UseSSE>=2 && UseXmmI2D );
 11355   match(Set dst (ConvI2D src));
 11357   format %{ "MOVD  $dst,$src\n\t"
 11358             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11359   ins_encode %{
 11360     __ movdl($dst$$XMMRegister, $src$$Register);
 11361     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11362   %}
 11363   ins_pipe(pipe_slow); // XXX
 11364 %}
 11366 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11367   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11368   match(Set dst (ConvI2D (LoadI mem)));
 11369   format %{ "FILD   $mem\n\t"
 11370             "FSTP   $dst" %}
 11371   opcode(0xDB);      /* DB /0 */
 11372   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11373               Pop_Reg_DPR(dst));
 11374   ins_pipe( fpu_reg_mem );
 11375 %}
 11377 // Convert a byte to a float; no rounding step needed.
 11378 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11379   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11380   match(Set dst (ConvI2F src));
 11381   format %{ "FILD   $src\n\t"
 11382             "FSTP   $dst" %}
 11384   opcode(0xDB, 0x0);  /* DB /0 */
 11385   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11386   ins_pipe( fpu_reg_mem );
 11387 %}
 11389 // In 24-bit mode, force exponent rounding by storing back out
 11390 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11391   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11392   match(Set dst (ConvI2F src));
 11393   ins_cost(200);
 11394   format %{ "FILD   $src\n\t"
 11395             "FSTP_S $dst" %}
 11396   opcode(0xDB, 0x0);  /* DB /0 */
 11397   ins_encode( Push_Mem_I(src),
 11398               Pop_Mem_FPR(dst));
 11399   ins_pipe( fpu_mem_mem );
 11400 %}
 11402 // In 24-bit mode, force exponent rounding by storing back out
 11403 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11404   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11405   match(Set dst (ConvI2F (LoadI mem)));
 11406   ins_cost(200);
 11407   format %{ "FILD   $mem\n\t"
 11408             "FSTP_S $dst" %}
 11409   opcode(0xDB);  /* DB /0 */
 11410   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11411               Pop_Mem_FPR(dst));
 11412   ins_pipe( fpu_mem_mem );
 11413 %}
 11415 // This instruction does not round to 24-bits
 11416 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11417   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11418   match(Set dst (ConvI2F src));
 11419   format %{ "FILD   $src\n\t"
 11420             "FSTP   $dst" %}
 11421   opcode(0xDB, 0x0);  /* DB /0 */
 11422   ins_encode( Push_Mem_I(src),
 11423               Pop_Reg_FPR(dst));
 11424   ins_pipe( fpu_reg_mem );
 11425 %}
 11427 // This instruction does not round to 24-bits
 11428 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11429   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11430   match(Set dst (ConvI2F (LoadI mem)));
 11431   format %{ "FILD   $mem\n\t"
 11432             "FSTP   $dst" %}
 11433   opcode(0xDB);      /* DB /0 */
 11434   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11435               Pop_Reg_FPR(dst));
 11436   ins_pipe( fpu_reg_mem );
 11437 %}
 11439 // Convert an int to a float in xmm; no rounding step needed.
 11440 instruct convI2F_reg(regF dst, eRegI src) %{
 11441   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11442   match(Set dst (ConvI2F src));
 11443   format %{ "CVTSI2SS $dst, $src" %}
 11444   ins_encode %{
 11445     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11446   %}
 11447   ins_pipe( pipe_slow );
 11448 %}
 11450  instruct convXI2F_reg(regF dst, eRegI src)
 11451 %{
 11452   predicate( UseSSE>=2 && UseXmmI2F );
 11453   match(Set dst (ConvI2F src));
 11455   format %{ "MOVD  $dst,$src\n\t"
 11456             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11457   ins_encode %{
 11458     __ movdl($dst$$XMMRegister, $src$$Register);
 11459     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11460   %}
 11461   ins_pipe(pipe_slow); // XXX
 11462 %}
 11464 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11465   match(Set dst (ConvI2L src));
 11466   effect(KILL cr);
 11467   ins_cost(375);
 11468   format %{ "MOV    $dst.lo,$src\n\t"
 11469             "MOV    $dst.hi,$src\n\t"
 11470             "SAR    $dst.hi,31" %}
 11471   ins_encode(convert_int_long(dst,src));
 11472   ins_pipe( ialu_reg_reg_long );
 11473 %}
 11475 // Zero-extend convert int to long
 11476 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11477   match(Set dst (AndL (ConvI2L src) mask) );
 11478   effect( KILL flags );
 11479   ins_cost(250);
 11480   format %{ "MOV    $dst.lo,$src\n\t"
 11481             "XOR    $dst.hi,$dst.hi" %}
 11482   opcode(0x33); // XOR
 11483   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11484   ins_pipe( ialu_reg_reg_long );
 11485 %}
 11487 // Zero-extend long
 11488 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11489   match(Set dst (AndL src mask) );
 11490   effect( KILL flags );
 11491   ins_cost(250);
 11492   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11493             "XOR    $dst.hi,$dst.hi\n\t" %}
 11494   opcode(0x33); // XOR
 11495   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11496   ins_pipe( ialu_reg_reg_long );
 11497 %}
 11499 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11500   predicate (UseSSE<=1);
 11501   match(Set dst (ConvL2D src));
 11502   effect( KILL cr );
 11503   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11504             "PUSH   $src.lo\n\t"
 11505             "FILD   ST,[ESP + #0]\n\t"
 11506             "ADD    ESP,8\n\t"
 11507             "FSTP_D $dst\t# D-round" %}
 11508   opcode(0xDF, 0x5);  /* DF /5 */
 11509   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11510   ins_pipe( pipe_slow );
 11511 %}
 11513 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11514   predicate (UseSSE>=2);
 11515   match(Set dst (ConvL2D src));
 11516   effect( KILL cr );
 11517   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11518             "PUSH   $src.lo\n\t"
 11519             "FILD_D [ESP]\n\t"
 11520             "FSTP_D [ESP]\n\t"
 11521             "MOVSD  $dst,[ESP]\n\t"
 11522             "ADD    ESP,8" %}
 11523   opcode(0xDF, 0x5);  /* DF /5 */
 11524   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11525   ins_pipe( pipe_slow );
 11526 %}
 11528 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11529   predicate (UseSSE>=1);
 11530   match(Set dst (ConvL2F src));
 11531   effect( KILL cr );
 11532   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11533             "PUSH   $src.lo\n\t"
 11534             "FILD_D [ESP]\n\t"
 11535             "FSTP_S [ESP]\n\t"
 11536             "MOVSS  $dst,[ESP]\n\t"
 11537             "ADD    ESP,8" %}
 11538   opcode(0xDF, 0x5);  /* DF /5 */
 11539   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11540   ins_pipe( pipe_slow );
 11541 %}
 11543 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11544   match(Set dst (ConvL2F src));
 11545   effect( KILL cr );
 11546   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11547             "PUSH   $src.lo\n\t"
 11548             "FILD   ST,[ESP + #0]\n\t"
 11549             "ADD    ESP,8\n\t"
 11550             "FSTP_S $dst\t# F-round" %}
 11551   opcode(0xDF, 0x5);  /* DF /5 */
 11552   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11553   ins_pipe( pipe_slow );
 11554 %}
 11556 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 11557   match(Set dst (ConvL2I src));
 11558   effect( DEF dst, USE src );
 11559   format %{ "MOV    $dst,$src.lo" %}
 11560   ins_encode(enc_CopyL_Lo(dst,src));
 11561   ins_pipe( ialu_reg_reg );
 11562 %}
 11565 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 11566   match(Set dst (MoveF2I src));
 11567   effect( DEF dst, USE src );
 11568   ins_cost(100);
 11569   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11570   ins_encode %{
 11571     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11572   %}
 11573   ins_pipe( ialu_reg_mem );
 11574 %}
 11576 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11577   predicate(UseSSE==0);
 11578   match(Set dst (MoveF2I src));
 11579   effect( DEF dst, USE src );
 11581   ins_cost(125);
 11582   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11583   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11584   ins_pipe( fpu_mem_reg );
 11585 %}
 11587 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11588   predicate(UseSSE>=1);
 11589   match(Set dst (MoveF2I src));
 11590   effect( DEF dst, USE src );
 11592   ins_cost(95);
 11593   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11594   ins_encode %{
 11595     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11596   %}
 11597   ins_pipe( pipe_slow );
 11598 %}
 11600 instruct MoveF2I_reg_reg_sse(eRegI dst, regF src) %{
 11601   predicate(UseSSE>=2);
 11602   match(Set dst (MoveF2I src));
 11603   effect( DEF dst, USE src );
 11604   ins_cost(85);
 11605   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11606   ins_encode %{
 11607     __ movdl($dst$$Register, $src$$XMMRegister);
 11608   %}
 11609   ins_pipe( pipe_slow );
 11610 %}
 11612 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 11613   match(Set dst (MoveI2F src));
 11614   effect( DEF dst, USE src );
 11616   ins_cost(100);
 11617   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11618   ins_encode %{
 11619     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11620   %}
 11621   ins_pipe( ialu_mem_reg );
 11622 %}
 11625 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11626   predicate(UseSSE==0);
 11627   match(Set dst (MoveI2F src));
 11628   effect(DEF dst, USE src);
 11630   ins_cost(125);
 11631   format %{ "FLD_S  $src\n\t"
 11632             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11633   opcode(0xD9);               /* D9 /0, FLD m32real */
 11634   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11635               Pop_Reg_FPR(dst) );
 11636   ins_pipe( fpu_reg_mem );
 11637 %}
 11639 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11640   predicate(UseSSE>=1);
 11641   match(Set dst (MoveI2F src));
 11642   effect( DEF dst, USE src );
 11644   ins_cost(95);
 11645   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11646   ins_encode %{
 11647     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11648   %}
 11649   ins_pipe( pipe_slow );
 11650 %}
 11652 instruct MoveI2F_reg_reg_sse(regF dst, eRegI src) %{
 11653   predicate(UseSSE>=2);
 11654   match(Set dst (MoveI2F src));
 11655   effect( DEF dst, USE src );
 11657   ins_cost(85);
 11658   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11659   ins_encode %{
 11660     __ movdl($dst$$XMMRegister, $src$$Register);
 11661   %}
 11662   ins_pipe( pipe_slow );
 11663 %}
 11665 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11666   match(Set dst (MoveD2L src));
 11667   effect(DEF dst, USE src);
 11669   ins_cost(250);
 11670   format %{ "MOV    $dst.lo,$src\n\t"
 11671             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11672   opcode(0x8B, 0x8B);
 11673   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11674   ins_pipe( ialu_mem_long_reg );
 11675 %}
 11677 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11678   predicate(UseSSE<=1);
 11679   match(Set dst (MoveD2L src));
 11680   effect(DEF dst, USE src);
 11682   ins_cost(125);
 11683   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11684   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11685   ins_pipe( fpu_mem_reg );
 11686 %}
 11688 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11689   predicate(UseSSE>=2);
 11690   match(Set dst (MoveD2L src));
 11691   effect(DEF dst, USE src);
 11692   ins_cost(95);
 11693   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11694   ins_encode %{
 11695     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11696   %}
 11697   ins_pipe( pipe_slow );
 11698 %}
 11700 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11701   predicate(UseSSE>=2);
 11702   match(Set dst (MoveD2L src));
 11703   effect(DEF dst, USE src, TEMP tmp);
 11704   ins_cost(85);
 11705   format %{ "MOVD   $dst.lo,$src\n\t"
 11706             "PSHUFLW $tmp,$src,0x4E\n\t"
 11707             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11708   ins_encode %{
 11709     __ movdl($dst$$Register, $src$$XMMRegister);
 11710     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11711     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11712   %}
 11713   ins_pipe( pipe_slow );
 11714 %}
 11716 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11717   match(Set dst (MoveL2D src));
 11718   effect(DEF dst, USE src);
 11720   ins_cost(200);
 11721   format %{ "MOV    $dst,$src.lo\n\t"
 11722             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11723   opcode(0x89, 0x89);
 11724   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11725   ins_pipe( ialu_mem_long_reg );
 11726 %}
 11729 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11730   predicate(UseSSE<=1);
 11731   match(Set dst (MoveL2D src));
 11732   effect(DEF dst, USE src);
 11733   ins_cost(125);
 11735   format %{ "FLD_D  $src\n\t"
 11736             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11737   opcode(0xDD);               /* DD /0, FLD m64real */
 11738   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11739               Pop_Reg_DPR(dst) );
 11740   ins_pipe( fpu_reg_mem );
 11741 %}
 11744 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11745   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11746   match(Set dst (MoveL2D src));
 11747   effect(DEF dst, USE src);
 11749   ins_cost(95);
 11750   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11751   ins_encode %{
 11752     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11753   %}
 11754   ins_pipe( pipe_slow );
 11755 %}
 11757 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11758   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11759   match(Set dst (MoveL2D src));
 11760   effect(DEF dst, USE src);
 11762   ins_cost(95);
 11763   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11764   ins_encode %{
 11765     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11766   %}
 11767   ins_pipe( pipe_slow );
 11768 %}
 11770 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11771   predicate(UseSSE>=2);
 11772   match(Set dst (MoveL2D src));
 11773   effect(TEMP dst, USE src, TEMP tmp);
 11774   ins_cost(85);
 11775   format %{ "MOVD   $dst,$src.lo\n\t"
 11776             "MOVD   $tmp,$src.hi\n\t"
 11777             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11778   ins_encode %{
 11779     __ movdl($dst$$XMMRegister, $src$$Register);
 11780     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11781     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11782   %}
 11783   ins_pipe( pipe_slow );
 11784 %}
 11786 // Replicate scalar to packed byte (1 byte) values in xmm
 11787 instruct Repl8B_reg(regD dst, regD src) %{
 11788   predicate(UseSSE>=2);
 11789   match(Set dst (Replicate8B src));
 11790   format %{ "MOVDQA  $dst,$src\n\t"
 11791             "PUNPCKLBW $dst,$dst\n\t"
 11792             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11793   ins_encode %{
 11794     if ($dst$$reg != $src$$reg) {
 11795       __ movdqa($dst$$XMMRegister, $src$$XMMRegister);
 11797     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
 11798     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11799   %}
 11800   ins_pipe( pipe_slow );
 11801 %}
 11803 // Replicate scalar to packed byte (1 byte) values in xmm
 11804 instruct Repl8B_eRegI(regD dst, eRegI src) %{
 11805   predicate(UseSSE>=2);
 11806   match(Set dst (Replicate8B src));
 11807   format %{ "MOVD    $dst,$src\n\t"
 11808             "PUNPCKLBW $dst,$dst\n\t"
 11809             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11810   ins_encode %{
 11811     __ movdl($dst$$XMMRegister, $src$$Register);
 11812     __ punpcklbw($dst$$XMMRegister, $dst$$XMMRegister);
 11813     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11814   %}
 11815   ins_pipe( pipe_slow );
 11816 %}
 11818 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11819 instruct Repl8B_immI0(regD dst, immI0 zero) %{
 11820   predicate(UseSSE>=2);
 11821   match(Set dst (Replicate8B zero));
 11822   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11823   ins_encode %{
 11824     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11825   %}
 11826   ins_pipe( fpu_reg_reg );
 11827 %}
 11829 // Replicate scalar to packed shore (2 byte) values in xmm
 11830 instruct Repl4S_reg(regD dst, regD src) %{
 11831   predicate(UseSSE>=2);
 11832   match(Set dst (Replicate4S src));
 11833   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11834   ins_encode %{
 11835     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11836   %}
 11837   ins_pipe( fpu_reg_reg );
 11838 %}
 11840 // Replicate scalar to packed shore (2 byte) values in xmm
 11841 instruct Repl4S_eRegI(regD dst, eRegI src) %{
 11842   predicate(UseSSE>=2);
 11843   match(Set dst (Replicate4S src));
 11844   format %{ "MOVD    $dst,$src\n\t"
 11845             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11846   ins_encode %{
 11847     __ movdl($dst$$XMMRegister, $src$$Register);
 11848     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11849   %}
 11850   ins_pipe( fpu_reg_reg );
 11851 %}
 11853 // Replicate scalar zero to packed short (2 byte) values in xmm
 11854 instruct Repl4S_immI0(regD dst, immI0 zero) %{
 11855   predicate(UseSSE>=2);
 11856   match(Set dst (Replicate4S zero));
 11857   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11858   ins_encode %{
 11859     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11860   %}
 11861   ins_pipe( fpu_reg_reg );
 11862 %}
 11864 // Replicate scalar to packed char (2 byte) values in xmm
 11865 instruct Repl4C_reg(regD dst, regD src) %{
 11866   predicate(UseSSE>=2);
 11867   match(Set dst (Replicate4C src));
 11868   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 11869   ins_encode %{
 11870     __ pshuflw($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11871   %}
 11872   ins_pipe( fpu_reg_reg );
 11873 %}
 11875 // Replicate scalar to packed char (2 byte) values in xmm
 11876 instruct Repl4C_eRegI(regD dst, eRegI src) %{
 11877   predicate(UseSSE>=2);
 11878   match(Set dst (Replicate4C src));
 11879   format %{ "MOVD    $dst,$src\n\t"
 11880             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 11881   ins_encode %{
 11882     __ movdl($dst$$XMMRegister, $src$$Register);
 11883     __ pshuflw($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11884   %}
 11885   ins_pipe( fpu_reg_reg );
 11886 %}
 11888 // Replicate scalar zero to packed char (2 byte) values in xmm
 11889 instruct Repl4C_immI0(regD dst, immI0 zero) %{
 11890   predicate(UseSSE>=2);
 11891   match(Set dst (Replicate4C zero));
 11892   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 11893   ins_encode %{
 11894     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11895   %}
 11896   ins_pipe( fpu_reg_reg );
 11897 %}
 11899 // Replicate scalar to packed integer (4 byte) values in xmm
 11900 instruct Repl2I_reg(regD dst, regD src) %{
 11901   predicate(UseSSE>=2);
 11902   match(Set dst (Replicate2I src));
 11903   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 11904   ins_encode %{
 11905     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0x00);
 11906   %}
 11907   ins_pipe( fpu_reg_reg );
 11908 %}
 11910 // Replicate scalar to packed integer (4 byte) values in xmm
 11911 instruct Repl2I_eRegI(regD dst, eRegI src) %{
 11912   predicate(UseSSE>=2);
 11913   match(Set dst (Replicate2I src));
 11914   format %{ "MOVD   $dst,$src\n\t"
 11915             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 11916   ins_encode %{
 11917     __ movdl($dst$$XMMRegister, $src$$Register);
 11918     __ pshufd($dst$$XMMRegister, $dst$$XMMRegister, 0x00);
 11919   %}
 11920   ins_pipe( fpu_reg_reg );
 11921 %}
 11923 // Replicate scalar zero to packed integer (2 byte) values in xmm
 11924 instruct Repl2I_immI0(regD dst, immI0 zero) %{
 11925   predicate(UseSSE>=2);
 11926   match(Set dst (Replicate2I zero));
 11927   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 11928   ins_encode %{
 11929     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11930   %}
 11931   ins_pipe( fpu_reg_reg );
 11932 %}
 11934 // Replicate scalar to packed single precision floating point values in xmm
 11935 instruct Repl2F_reg(regD dst, regD src) %{
 11936   predicate(UseSSE>=2);
 11937   match(Set dst (Replicate2F src));
 11938   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11939   ins_encode %{
 11940     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
 11941   %}
 11942   ins_pipe( fpu_reg_reg );
 11943 %}
 11945 // Replicate scalar to packed single precision floating point values in xmm
 11946 instruct Repl2F_regF(regD dst, regF src) %{
 11947   predicate(UseSSE>=2);
 11948   match(Set dst (Replicate2F src));
 11949   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11950   ins_encode %{
 11951     __ pshufd($dst$$XMMRegister, $src$$XMMRegister, 0xe0);
 11952   %}
 11953   ins_pipe( fpu_reg_reg );
 11954 %}
 11956 // Replicate scalar to packed single precision floating point values in xmm
 11957 instruct Repl2F_immF0(regD dst, immF0 zero) %{
 11958   predicate(UseSSE>=2);
 11959   match(Set dst (Replicate2F zero));
 11960   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 11961   ins_encode %{
 11962     __ pxor($dst$$XMMRegister, $dst$$XMMRegister);
 11963   %}
 11964   ins_pipe( fpu_reg_reg );
 11965 %}
 11967 // =======================================================================
 11968 // fast clearing of an array
 11969 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11970   match(Set dummy (ClearArray cnt base));
 11971   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11972   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11973             "XOR    EAX,EAX\n\t"
 11974             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11975   opcode(0,0x4);
 11976   ins_encode( Opcode(0xD1), RegOpc(ECX),
 11977               OpcRegReg(0x33,EAX,EAX),
 11978               Opcode(0xF3), Opcode(0xAB) );
 11979   ins_pipe( pipe_slow );
 11980 %}
 11982 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11983                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11984   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11985   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11987   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11988   ins_encode %{
 11989     __ string_compare($str1$$Register, $str2$$Register,
 11990                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11991                       $tmp1$$XMMRegister);
 11992   %}
 11993   ins_pipe( pipe_slow );
 11994 %}
 11996 // fast string equals
 11997 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11998                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11999   match(Set result (StrEquals (Binary str1 str2) cnt));
 12000   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12002   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12003   ins_encode %{
 12004     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12005                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12006                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12007   %}
 12008   ins_pipe( pipe_slow );
 12009 %}
 12011 // fast search of substring with known size.
 12012 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 12013                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 12014   predicate(UseSSE42Intrinsics);
 12015   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 12016   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 12018   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 12019   ins_encode %{
 12020     int icnt2 = (int)$int_cnt2$$constant;
 12021     if (icnt2 >= 8) {
 12022       // IndexOf for constant substrings with size >= 8 elements
 12023       // which don't need to be loaded through stack.
 12024       __ string_indexofC8($str1$$Register, $str2$$Register,
 12025                           $cnt1$$Register, $cnt2$$Register,
 12026                           icnt2, $result$$Register,
 12027                           $vec$$XMMRegister, $tmp$$Register);
 12028     } else {
 12029       // Small strings are loaded through stack if they cross page boundary.
 12030       __ string_indexof($str1$$Register, $str2$$Register,
 12031                         $cnt1$$Register, $cnt2$$Register,
 12032                         icnt2, $result$$Register,
 12033                         $vec$$XMMRegister, $tmp$$Register);
 12035   %}
 12036   ins_pipe( pipe_slow );
 12037 %}
 12039 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12040                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 12041   predicate(UseSSE42Intrinsics);
 12042   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12043   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 12045   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 12046   ins_encode %{
 12047     __ string_indexof($str1$$Register, $str2$$Register,
 12048                       $cnt1$$Register, $cnt2$$Register,
 12049                       (-1), $result$$Register,
 12050                       $vec$$XMMRegister, $tmp$$Register);
 12051   %}
 12052   ins_pipe( pipe_slow );
 12053 %}
 12055 // fast array equals
 12056 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12057                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12058 %{
 12059   match(Set result (AryEq ary1 ary2));
 12060   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12061   //ins_cost(300);
 12063   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12064   ins_encode %{
 12065     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12066                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12067                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12068   %}
 12069   ins_pipe( pipe_slow );
 12070 %}
 12072 //----------Control Flow Instructions------------------------------------------
 12073 // Signed compare Instructions
 12074 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12075   match(Set cr (CmpI op1 op2));
 12076   effect( DEF cr, USE op1, USE op2 );
 12077   format %{ "CMP    $op1,$op2" %}
 12078   opcode(0x3B);  /* Opcode 3B /r */
 12079   ins_encode( OpcP, RegReg( op1, op2) );
 12080   ins_pipe( ialu_cr_reg_reg );
 12081 %}
 12083 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12084   match(Set cr (CmpI op1 op2));
 12085   effect( DEF cr, USE op1 );
 12086   format %{ "CMP    $op1,$op2" %}
 12087   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12088   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12089   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12090   ins_pipe( ialu_cr_reg_imm );
 12091 %}
 12093 // Cisc-spilled version of cmpI_eReg
 12094 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12095   match(Set cr (CmpI op1 (LoadI op2)));
 12097   format %{ "CMP    $op1,$op2" %}
 12098   ins_cost(500);
 12099   opcode(0x3B);  /* Opcode 3B /r */
 12100   ins_encode( OpcP, RegMem( op1, op2) );
 12101   ins_pipe( ialu_cr_reg_mem );
 12102 %}
 12104 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12105   match(Set cr (CmpI src zero));
 12106   effect( DEF cr, USE src );
 12108   format %{ "TEST   $src,$src" %}
 12109   opcode(0x85);
 12110   ins_encode( OpcP, RegReg( src, src ) );
 12111   ins_pipe( ialu_cr_reg_imm );
 12112 %}
 12114 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12115   match(Set cr (CmpI (AndI src con) zero));
 12117   format %{ "TEST   $src,$con" %}
 12118   opcode(0xF7,0x00);
 12119   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12120   ins_pipe( ialu_cr_reg_imm );
 12121 %}
 12123 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12124   match(Set cr (CmpI (AndI src mem) zero));
 12126   format %{ "TEST   $src,$mem" %}
 12127   opcode(0x85);
 12128   ins_encode( OpcP, RegMem( src, mem ) );
 12129   ins_pipe( ialu_cr_reg_mem );
 12130 %}
 12132 // Unsigned compare Instructions; really, same as signed except they
 12133 // produce an eFlagsRegU instead of eFlagsReg.
 12134 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12135   match(Set cr (CmpU op1 op2));
 12137   format %{ "CMPu   $op1,$op2" %}
 12138   opcode(0x3B);  /* Opcode 3B /r */
 12139   ins_encode( OpcP, RegReg( op1, op2) );
 12140   ins_pipe( ialu_cr_reg_reg );
 12141 %}
 12143 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12144   match(Set cr (CmpU op1 op2));
 12146   format %{ "CMPu   $op1,$op2" %}
 12147   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12148   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12149   ins_pipe( ialu_cr_reg_imm );
 12150 %}
 12152 // // Cisc-spilled version of cmpU_eReg
 12153 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12154   match(Set cr (CmpU op1 (LoadI op2)));
 12156   format %{ "CMPu   $op1,$op2" %}
 12157   ins_cost(500);
 12158   opcode(0x3B);  /* Opcode 3B /r */
 12159   ins_encode( OpcP, RegMem( op1, op2) );
 12160   ins_pipe( ialu_cr_reg_mem );
 12161 %}
 12163 // // Cisc-spilled version of cmpU_eReg
 12164 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12165 //  match(Set cr (CmpU (LoadI op1) op2));
 12166 //
 12167 //  format %{ "CMPu   $op1,$op2" %}
 12168 //  ins_cost(500);
 12169 //  opcode(0x39);  /* Opcode 39 /r */
 12170 //  ins_encode( OpcP, RegMem( op1, op2) );
 12171 //%}
 12173 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12174   match(Set cr (CmpU src zero));
 12176   format %{ "TESTu  $src,$src" %}
 12177   opcode(0x85);
 12178   ins_encode( OpcP, RegReg( src, src ) );
 12179   ins_pipe( ialu_cr_reg_imm );
 12180 %}
 12182 // Unsigned pointer compare Instructions
 12183 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12184   match(Set cr (CmpP op1 op2));
 12186   format %{ "CMPu   $op1,$op2" %}
 12187   opcode(0x3B);  /* Opcode 3B /r */
 12188   ins_encode( OpcP, RegReg( op1, op2) );
 12189   ins_pipe( ialu_cr_reg_reg );
 12190 %}
 12192 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12193   match(Set cr (CmpP op1 op2));
 12195   format %{ "CMPu   $op1,$op2" %}
 12196   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12197   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12198   ins_pipe( ialu_cr_reg_imm );
 12199 %}
 12201 // // Cisc-spilled version of cmpP_eReg
 12202 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12203   match(Set cr (CmpP op1 (LoadP op2)));
 12205   format %{ "CMPu   $op1,$op2" %}
 12206   ins_cost(500);
 12207   opcode(0x3B);  /* Opcode 3B /r */
 12208   ins_encode( OpcP, RegMem( op1, op2) );
 12209   ins_pipe( ialu_cr_reg_mem );
 12210 %}
 12212 // // Cisc-spilled version of cmpP_eReg
 12213 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12214 //  match(Set cr (CmpP (LoadP op1) op2));
 12215 //
 12216 //  format %{ "CMPu   $op1,$op2" %}
 12217 //  ins_cost(500);
 12218 //  opcode(0x39);  /* Opcode 39 /r */
 12219 //  ins_encode( OpcP, RegMem( op1, op2) );
 12220 //%}
 12222 // Compare raw pointer (used in out-of-heap check).
 12223 // Only works because non-oop pointers must be raw pointers
 12224 // and raw pointers have no anti-dependencies.
 12225 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12226   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12227   match(Set cr (CmpP op1 (LoadP op2)));
 12229   format %{ "CMPu   $op1,$op2" %}
 12230   opcode(0x3B);  /* Opcode 3B /r */
 12231   ins_encode( OpcP, RegMem( op1, op2) );
 12232   ins_pipe( ialu_cr_reg_mem );
 12233 %}
 12235 //
 12236 // This will generate a signed flags result. This should be ok
 12237 // since any compare to a zero should be eq/neq.
 12238 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12239   match(Set cr (CmpP src zero));
 12241   format %{ "TEST   $src,$src" %}
 12242   opcode(0x85);
 12243   ins_encode( OpcP, RegReg( src, src ) );
 12244   ins_pipe( ialu_cr_reg_imm );
 12245 %}
 12247 // Cisc-spilled version of testP_reg
 12248 // This will generate a signed flags result. This should be ok
 12249 // since any compare to a zero should be eq/neq.
 12250 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12251   match(Set cr (CmpP (LoadP op) zero));
 12253   format %{ "TEST   $op,0xFFFFFFFF" %}
 12254   ins_cost(500);
 12255   opcode(0xF7);               /* Opcode F7 /0 */
 12256   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12257   ins_pipe( ialu_cr_reg_imm );
 12258 %}
 12260 // Yanked all unsigned pointer compare operations.
 12261 // Pointer compares are done with CmpP which is already unsigned.
 12263 //----------Max and Min--------------------------------------------------------
 12264 // Min Instructions
 12265 ////
 12266 //   *** Min and Max using the conditional move are slower than the
 12267 //   *** branch version on a Pentium III.
 12268 // // Conditional move for min
 12269 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12270 //  effect( USE_DEF op2, USE op1, USE cr );
 12271 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12272 //  opcode(0x4C,0x0F);
 12273 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12274 //  ins_pipe( pipe_cmov_reg );
 12275 //%}
 12276 //
 12277 //// Min Register with Register (P6 version)
 12278 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12279 //  predicate(VM_Version::supports_cmov() );
 12280 //  match(Set op2 (MinI op1 op2));
 12281 //  ins_cost(200);
 12282 //  expand %{
 12283 //    eFlagsReg cr;
 12284 //    compI_eReg(cr,op1,op2);
 12285 //    cmovI_reg_lt(op2,op1,cr);
 12286 //  %}
 12287 //%}
 12289 // Min Register with Register (generic version)
 12290 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12291   match(Set dst (MinI dst src));
 12292   effect(KILL flags);
 12293   ins_cost(300);
 12295   format %{ "MIN    $dst,$src" %}
 12296   opcode(0xCC);
 12297   ins_encode( min_enc(dst,src) );
 12298   ins_pipe( pipe_slow );
 12299 %}
 12301 // Max Register with Register
 12302 //   *** Min and Max using the conditional move are slower than the
 12303 //   *** branch version on a Pentium III.
 12304 // // Conditional move for max
 12305 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12306 //  effect( USE_DEF op2, USE op1, USE cr );
 12307 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12308 //  opcode(0x4F,0x0F);
 12309 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12310 //  ins_pipe( pipe_cmov_reg );
 12311 //%}
 12312 //
 12313 // // Max Register with Register (P6 version)
 12314 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12315 //  predicate(VM_Version::supports_cmov() );
 12316 //  match(Set op2 (MaxI op1 op2));
 12317 //  ins_cost(200);
 12318 //  expand %{
 12319 //    eFlagsReg cr;
 12320 //    compI_eReg(cr,op1,op2);
 12321 //    cmovI_reg_gt(op2,op1,cr);
 12322 //  %}
 12323 //%}
 12325 // Max Register with Register (generic version)
 12326 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12327   match(Set dst (MaxI dst src));
 12328   effect(KILL flags);
 12329   ins_cost(300);
 12331   format %{ "MAX    $dst,$src" %}
 12332   opcode(0xCC);
 12333   ins_encode( max_enc(dst,src) );
 12334   ins_pipe( pipe_slow );
 12335 %}
 12337 // ============================================================================
 12338 // Counted Loop limit node which represents exact final iterator value.
 12339 // Note: the resulting value should fit into integer range since
 12340 // counted loops have limit check on overflow.
 12341 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 12342   match(Set limit (LoopLimit (Binary init limit) stride));
 12343   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 12344   ins_cost(300);
 12346   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 12347   ins_encode %{
 12348     int strd = (int)$stride$$constant;
 12349     assert(strd != 1 && strd != -1, "sanity");
 12350     int m1 = (strd > 0) ? 1 : -1;
 12351     // Convert limit to long (EAX:EDX)
 12352     __ cdql();
 12353     // Convert init to long (init:tmp)
 12354     __ movl($tmp$$Register, $init$$Register);
 12355     __ sarl($tmp$$Register, 31);
 12356     // $limit - $init
 12357     __ subl($limit$$Register, $init$$Register);
 12358     __ sbbl($limit_hi$$Register, $tmp$$Register);
 12359     // + ($stride - 1)
 12360     if (strd > 0) {
 12361       __ addl($limit$$Register, (strd - 1));
 12362       __ adcl($limit_hi$$Register, 0);
 12363       __ movl($tmp$$Register, strd);
 12364     } else {
 12365       __ addl($limit$$Register, (strd + 1));
 12366       __ adcl($limit_hi$$Register, -1);
 12367       __ lneg($limit_hi$$Register, $limit$$Register);
 12368       __ movl($tmp$$Register, -strd);
 12370     // signed devision: (EAX:EDX) / pos_stride
 12371     __ idivl($tmp$$Register);
 12372     if (strd < 0) {
 12373       // restore sign
 12374       __ negl($tmp$$Register);
 12376     // (EAX) * stride
 12377     __ mull($tmp$$Register);
 12378     // + init (ignore upper bits)
 12379     __ addl($limit$$Register, $init$$Register);
 12380   %}
 12381   ins_pipe( pipe_slow );
 12382 %}
 12384 // ============================================================================
 12385 // Branch Instructions
 12386 // Jump Table
 12387 instruct jumpXtnd(eRegI switch_val) %{
 12388   match(Jump switch_val);
 12389   ins_cost(350);
 12390   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 12391   ins_encode %{
 12392     // Jump to Address(table_base + switch_reg)
 12393     Address index(noreg, $switch_val$$Register, Address::times_1);
 12394     __ jump(ArrayAddress($constantaddress, index));
 12395   %}
 12396   ins_pipe(pipe_jmp);
 12397 %}
 12399 // Jump Direct - Label defines a relative address from JMP+1
 12400 instruct jmpDir(label labl) %{
 12401   match(Goto);
 12402   effect(USE labl);
 12404   ins_cost(300);
 12405   format %{ "JMP    $labl" %}
 12406   size(5);
 12407   ins_encode %{
 12408     Label* L = $labl$$label;
 12409     __ jmp(*L, false); // Always long jump
 12410   %}
 12411   ins_pipe( pipe_jmp );
 12412 %}
 12414 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12415 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12416   match(If cop cr);
 12417   effect(USE labl);
 12419   ins_cost(300);
 12420   format %{ "J$cop    $labl" %}
 12421   size(6);
 12422   ins_encode %{
 12423     Label* L = $labl$$label;
 12424     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12425   %}
 12426   ins_pipe( pipe_jcc );
 12427 %}
 12429 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12430 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12431   match(CountedLoopEnd cop cr);
 12432   effect(USE labl);
 12434   ins_cost(300);
 12435   format %{ "J$cop    $labl\t# Loop end" %}
 12436   size(6);
 12437   ins_encode %{
 12438     Label* L = $labl$$label;
 12439     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12440   %}
 12441   ins_pipe( pipe_jcc );
 12442 %}
 12444 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12445 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12446   match(CountedLoopEnd cop cmp);
 12447   effect(USE labl);
 12449   ins_cost(300);
 12450   format %{ "J$cop,u  $labl\t# Loop end" %}
 12451   size(6);
 12452   ins_encode %{
 12453     Label* L = $labl$$label;
 12454     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12455   %}
 12456   ins_pipe( pipe_jcc );
 12457 %}
 12459 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12460   match(CountedLoopEnd cop cmp);
 12461   effect(USE labl);
 12463   ins_cost(200);
 12464   format %{ "J$cop,u  $labl\t# Loop end" %}
 12465   size(6);
 12466   ins_encode %{
 12467     Label* L = $labl$$label;
 12468     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12469   %}
 12470   ins_pipe( pipe_jcc );
 12471 %}
 12473 // Jump Direct Conditional - using unsigned comparison
 12474 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12475   match(If cop cmp);
 12476   effect(USE labl);
 12478   ins_cost(300);
 12479   format %{ "J$cop,u  $labl" %}
 12480   size(6);
 12481   ins_encode %{
 12482     Label* L = $labl$$label;
 12483     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12484   %}
 12485   ins_pipe(pipe_jcc);
 12486 %}
 12488 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12489   match(If cop cmp);
 12490   effect(USE labl);
 12492   ins_cost(200);
 12493   format %{ "J$cop,u  $labl" %}
 12494   size(6);
 12495   ins_encode %{
 12496     Label* L = $labl$$label;
 12497     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12498   %}
 12499   ins_pipe(pipe_jcc);
 12500 %}
 12502 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12503   match(If cop cmp);
 12504   effect(USE labl);
 12506   ins_cost(200);
 12507   format %{ $$template
 12508     if ($cop$$cmpcode == Assembler::notEqual) {
 12509       $$emit$$"JP,u   $labl\n\t"
 12510       $$emit$$"J$cop,u   $labl"
 12511     } else {
 12512       $$emit$$"JP,u   done\n\t"
 12513       $$emit$$"J$cop,u   $labl\n\t"
 12514       $$emit$$"done:"
 12516   %}
 12517   ins_encode %{
 12518     Label* l = $labl$$label;
 12519     if ($cop$$cmpcode == Assembler::notEqual) {
 12520       __ jcc(Assembler::parity, *l, false);
 12521       __ jcc(Assembler::notEqual, *l, false);
 12522     } else if ($cop$$cmpcode == Assembler::equal) {
 12523       Label done;
 12524       __ jccb(Assembler::parity, done);
 12525       __ jcc(Assembler::equal, *l, false);
 12526       __ bind(done);
 12527     } else {
 12528        ShouldNotReachHere();
 12530   %}
 12531   ins_pipe(pipe_jcc);
 12532 %}
 12534 // ============================================================================
 12535 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12536 // array for an instance of the superklass.  Set a hidden internal cache on a
 12537 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12538 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12539 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12540   match(Set result (PartialSubtypeCheck sub super));
 12541   effect( KILL rcx, KILL cr );
 12543   ins_cost(1100);  // slightly larger than the next version
 12544   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12545             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12546             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12547             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12548             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12549             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12550             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12551      "miss:\t" %}
 12553   opcode(0x1); // Force a XOR of EDI
 12554   ins_encode( enc_PartialSubtypeCheck() );
 12555   ins_pipe( pipe_slow );
 12556 %}
 12558 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12559   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12560   effect( KILL rcx, KILL result );
 12562   ins_cost(1000);
 12563   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12564             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12565             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12566             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12567             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12568             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12569      "miss:\t" %}
 12571   opcode(0x0);  // No need to XOR EDI
 12572   ins_encode( enc_PartialSubtypeCheck() );
 12573   ins_pipe( pipe_slow );
 12574 %}
 12576 // ============================================================================
 12577 // Branch Instructions -- short offset versions
 12578 //
 12579 // These instructions are used to replace jumps of a long offset (the default
 12580 // match) with jumps of a shorter offset.  These instructions are all tagged
 12581 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12582 // match rules in general matching.  Instead, the ADLC generates a conversion
 12583 // method in the MachNode which can be used to do in-place replacement of the
 12584 // long variant with the shorter variant.  The compiler will determine if a
 12585 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12586 // specific code section of the file.
 12588 // Jump Direct - Label defines a relative address from JMP+1
 12589 instruct jmpDir_short(label labl) %{
 12590   match(Goto);
 12591   effect(USE labl);
 12593   ins_cost(300);
 12594   format %{ "JMP,s  $labl" %}
 12595   size(2);
 12596   ins_encode %{
 12597     Label* L = $labl$$label;
 12598     __ jmpb(*L);
 12599   %}
 12600   ins_pipe( pipe_jmp );
 12601   ins_short_branch(1);
 12602 %}
 12604 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12605 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12606   match(If cop cr);
 12607   effect(USE labl);
 12609   ins_cost(300);
 12610   format %{ "J$cop,s  $labl" %}
 12611   size(2);
 12612   ins_encode %{
 12613     Label* L = $labl$$label;
 12614     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12615   %}
 12616   ins_pipe( pipe_jcc );
 12617   ins_short_branch(1);
 12618 %}
 12620 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12621 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12622   match(CountedLoopEnd cop cr);
 12623   effect(USE labl);
 12625   ins_cost(300);
 12626   format %{ "J$cop,s  $labl\t# Loop end" %}
 12627   size(2);
 12628   ins_encode %{
 12629     Label* L = $labl$$label;
 12630     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12631   %}
 12632   ins_pipe( pipe_jcc );
 12633   ins_short_branch(1);
 12634 %}
 12636 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12637 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12638   match(CountedLoopEnd cop cmp);
 12639   effect(USE labl);
 12641   ins_cost(300);
 12642   format %{ "J$cop,us $labl\t# Loop end" %}
 12643   size(2);
 12644   ins_encode %{
 12645     Label* L = $labl$$label;
 12646     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12647   %}
 12648   ins_pipe( pipe_jcc );
 12649   ins_short_branch(1);
 12650 %}
 12652 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12653   match(CountedLoopEnd cop cmp);
 12654   effect(USE labl);
 12656   ins_cost(300);
 12657   format %{ "J$cop,us $labl\t# Loop end" %}
 12658   size(2);
 12659   ins_encode %{
 12660     Label* L = $labl$$label;
 12661     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12662   %}
 12663   ins_pipe( pipe_jcc );
 12664   ins_short_branch(1);
 12665 %}
 12667 // Jump Direct Conditional - using unsigned comparison
 12668 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12669   match(If cop cmp);
 12670   effect(USE labl);
 12672   ins_cost(300);
 12673   format %{ "J$cop,us $labl" %}
 12674   size(2);
 12675   ins_encode %{
 12676     Label* L = $labl$$label;
 12677     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12678   %}
 12679   ins_pipe( pipe_jcc );
 12680   ins_short_branch(1);
 12681 %}
 12683 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12684   match(If cop cmp);
 12685   effect(USE labl);
 12687   ins_cost(300);
 12688   format %{ "J$cop,us $labl" %}
 12689   size(2);
 12690   ins_encode %{
 12691     Label* L = $labl$$label;
 12692     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12693   %}
 12694   ins_pipe( pipe_jcc );
 12695   ins_short_branch(1);
 12696 %}
 12698 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12699   match(If cop cmp);
 12700   effect(USE labl);
 12702   ins_cost(300);
 12703   format %{ $$template
 12704     if ($cop$$cmpcode == Assembler::notEqual) {
 12705       $$emit$$"JP,u,s   $labl\n\t"
 12706       $$emit$$"J$cop,u,s   $labl"
 12707     } else {
 12708       $$emit$$"JP,u,s   done\n\t"
 12709       $$emit$$"J$cop,u,s  $labl\n\t"
 12710       $$emit$$"done:"
 12712   %}
 12713   size(4);
 12714   ins_encode %{
 12715     Label* l = $labl$$label;
 12716     if ($cop$$cmpcode == Assembler::notEqual) {
 12717       __ jccb(Assembler::parity, *l);
 12718       __ jccb(Assembler::notEqual, *l);
 12719     } else if ($cop$$cmpcode == Assembler::equal) {
 12720       Label done;
 12721       __ jccb(Assembler::parity, done);
 12722       __ jccb(Assembler::equal, *l);
 12723       __ bind(done);
 12724     } else {
 12725        ShouldNotReachHere();
 12727   %}
 12728   ins_pipe(pipe_jcc);
 12729   ins_short_branch(1);
 12730 %}
 12732 // ============================================================================
 12733 // Long Compare
 12734 //
 12735 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12736 // is tricky.  The flavor of compare used depends on whether we are testing
 12737 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12738 // The GE test is the negated LT test.  The LE test can be had by commuting
 12739 // the operands (yielding a GE test) and then negating; negate again for the
 12740 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12741 // NE test is negated from that.
 12743 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12744 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12745 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12746 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12747 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12748 // foo match ends up with the wrong leaf.  One fix is to not match both
 12749 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12750 // both forms beat the trinary form of long-compare and both are very useful
 12751 // on Intel which has so few registers.
 12753 // Manifest a CmpL result in an integer register.  Very painful.
 12754 // This is the test to avoid.
 12755 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12756   match(Set dst (CmpL3 src1 src2));
 12757   effect( KILL flags );
 12758   ins_cost(1000);
 12759   format %{ "XOR    $dst,$dst\n\t"
 12760             "CMP    $src1.hi,$src2.hi\n\t"
 12761             "JLT,s  m_one\n\t"
 12762             "JGT,s  p_one\n\t"
 12763             "CMP    $src1.lo,$src2.lo\n\t"
 12764             "JB,s   m_one\n\t"
 12765             "JEQ,s  done\n"
 12766     "p_one:\tINC    $dst\n\t"
 12767             "JMP,s  done\n"
 12768     "m_one:\tDEC    $dst\n"
 12769      "done:" %}
 12770   ins_encode %{
 12771     Label p_one, m_one, done;
 12772     __ xorptr($dst$$Register, $dst$$Register);
 12773     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12774     __ jccb(Assembler::less,    m_one);
 12775     __ jccb(Assembler::greater, p_one);
 12776     __ cmpl($src1$$Register, $src2$$Register);
 12777     __ jccb(Assembler::below,   m_one);
 12778     __ jccb(Assembler::equal,   done);
 12779     __ bind(p_one);
 12780     __ incrementl($dst$$Register);
 12781     __ jmpb(done);
 12782     __ bind(m_one);
 12783     __ decrementl($dst$$Register);
 12784     __ bind(done);
 12785   %}
 12786   ins_pipe( pipe_slow );
 12787 %}
 12789 //======
 12790 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12791 // compares.  Can be used for LE or GT compares by reversing arguments.
 12792 // NOT GOOD FOR EQ/NE tests.
 12793 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12794   match( Set flags (CmpL src zero ));
 12795   ins_cost(100);
 12796   format %{ "TEST   $src.hi,$src.hi" %}
 12797   opcode(0x85);
 12798   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12799   ins_pipe( ialu_cr_reg_reg );
 12800 %}
 12802 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12803 // compares.  Can be used for LE or GT compares by reversing arguments.
 12804 // NOT GOOD FOR EQ/NE tests.
 12805 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 12806   match( Set flags (CmpL src1 src2 ));
 12807   effect( TEMP tmp );
 12808   ins_cost(300);
 12809   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12810             "MOV    $tmp,$src1.hi\n\t"
 12811             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12812   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12813   ins_pipe( ialu_cr_reg_reg );
 12814 %}
 12816 // Long compares reg < zero/req OR reg >= zero/req.
 12817 // Just a wrapper for a normal branch, plus the predicate test.
 12818 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12819   match(If cmp flags);
 12820   effect(USE labl);
 12821   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12822   expand %{
 12823     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12824   %}
 12825 %}
 12827 // Compare 2 longs and CMOVE longs.
 12828 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12829   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12830   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12831   ins_cost(400);
 12832   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12833             "CMOV$cmp $dst.hi,$src.hi" %}
 12834   opcode(0x0F,0x40);
 12835   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12836   ins_pipe( pipe_cmov_reg_long );
 12837 %}
 12839 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12840   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12841   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12842   ins_cost(500);
 12843   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12844             "CMOV$cmp $dst.hi,$src.hi" %}
 12845   opcode(0x0F,0x40);
 12846   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12847   ins_pipe( pipe_cmov_reg_long );
 12848 %}
 12850 // Compare 2 longs and CMOVE ints.
 12851 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 12852   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12853   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12854   ins_cost(200);
 12855   format %{ "CMOV$cmp $dst,$src" %}
 12856   opcode(0x0F,0x40);
 12857   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12858   ins_pipe( pipe_cmov_reg );
 12859 %}
 12861 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 12862   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12863   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12864   ins_cost(250);
 12865   format %{ "CMOV$cmp $dst,$src" %}
 12866   opcode(0x0F,0x40);
 12867   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12868   ins_pipe( pipe_cmov_mem );
 12869 %}
 12871 // Compare 2 longs and CMOVE ints.
 12872 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12873   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12874   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12875   ins_cost(200);
 12876   format %{ "CMOV$cmp $dst,$src" %}
 12877   opcode(0x0F,0x40);
 12878   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12879   ins_pipe( pipe_cmov_reg );
 12880 %}
 12882 // Compare 2 longs and CMOVE doubles
 12883 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12884   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12885   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12886   ins_cost(200);
 12887   expand %{
 12888     fcmovDPR_regS(cmp,flags,dst,src);
 12889   %}
 12890 %}
 12892 // Compare 2 longs and CMOVE doubles
 12893 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12894   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12895   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12896   ins_cost(200);
 12897   expand %{
 12898     fcmovD_regS(cmp,flags,dst,src);
 12899   %}
 12900 %}
 12902 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12903   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12904   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12905   ins_cost(200);
 12906   expand %{
 12907     fcmovFPR_regS(cmp,flags,dst,src);
 12908   %}
 12909 %}
 12911 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12912   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12913   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12914   ins_cost(200);
 12915   expand %{
 12916     fcmovF_regS(cmp,flags,dst,src);
 12917   %}
 12918 %}
 12920 //======
 12921 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12922 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 12923   match( Set flags (CmpL src zero ));
 12924   effect(TEMP tmp);
 12925   ins_cost(200);
 12926   format %{ "MOV    $tmp,$src.lo\n\t"
 12927             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12928   ins_encode( long_cmp_flags0( src, tmp ) );
 12929   ins_pipe( ialu_reg_reg_long );
 12930 %}
 12932 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12933 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12934   match( Set flags (CmpL src1 src2 ));
 12935   ins_cost(200+300);
 12936   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12937             "JNE,s  skip\n\t"
 12938             "CMP    $src1.hi,$src2.hi\n\t"
 12939      "skip:\t" %}
 12940   ins_encode( long_cmp_flags1( src1, src2 ) );
 12941   ins_pipe( ialu_cr_reg_reg );
 12942 %}
 12944 // Long compare reg == zero/reg OR reg != zero/reg
 12945 // Just a wrapper for a normal branch, plus the predicate test.
 12946 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12947   match(If cmp flags);
 12948   effect(USE labl);
 12949   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12950   expand %{
 12951     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12952   %}
 12953 %}
 12955 // Compare 2 longs and CMOVE longs.
 12956 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12957   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12958   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12959   ins_cost(400);
 12960   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12961             "CMOV$cmp $dst.hi,$src.hi" %}
 12962   opcode(0x0F,0x40);
 12963   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12964   ins_pipe( pipe_cmov_reg_long );
 12965 %}
 12967 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12968   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12969   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12970   ins_cost(500);
 12971   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12972             "CMOV$cmp $dst.hi,$src.hi" %}
 12973   opcode(0x0F,0x40);
 12974   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12975   ins_pipe( pipe_cmov_reg_long );
 12976 %}
 12978 // Compare 2 longs and CMOVE ints.
 12979 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 12980   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12981   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12982   ins_cost(200);
 12983   format %{ "CMOV$cmp $dst,$src" %}
 12984   opcode(0x0F,0x40);
 12985   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12986   ins_pipe( pipe_cmov_reg );
 12987 %}
 12989 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 12990   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12991   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12992   ins_cost(250);
 12993   format %{ "CMOV$cmp $dst,$src" %}
 12994   opcode(0x0F,0x40);
 12995   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12996   ins_pipe( pipe_cmov_mem );
 12997 %}
 12999 // Compare 2 longs and CMOVE ints.
 13000 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13001   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13002   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13003   ins_cost(200);
 13004   format %{ "CMOV$cmp $dst,$src" %}
 13005   opcode(0x0F,0x40);
 13006   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13007   ins_pipe( pipe_cmov_reg );
 13008 %}
 13010 // Compare 2 longs and CMOVE doubles
 13011 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 13012   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13013   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13014   ins_cost(200);
 13015   expand %{
 13016     fcmovDPR_regS(cmp,flags,dst,src);
 13017   %}
 13018 %}
 13020 // Compare 2 longs and CMOVE doubles
 13021 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13022   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13023   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13024   ins_cost(200);
 13025   expand %{
 13026     fcmovD_regS(cmp,flags,dst,src);
 13027   %}
 13028 %}
 13030 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 13031   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13032   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13033   ins_cost(200);
 13034   expand %{
 13035     fcmovFPR_regS(cmp,flags,dst,src);
 13036   %}
 13037 %}
 13039 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13040   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13041   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13042   ins_cost(200);
 13043   expand %{
 13044     fcmovF_regS(cmp,flags,dst,src);
 13045   %}
 13046 %}
 13048 //======
 13049 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13050 // Same as cmpL_reg_flags_LEGT except must negate src
 13051 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13052   match( Set flags (CmpL src zero ));
 13053   effect( TEMP tmp );
 13054   ins_cost(300);
 13055   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13056             "CMP    $tmp,$src.lo\n\t"
 13057             "SBB    $tmp,$src.hi\n\t" %}
 13058   ins_encode( long_cmp_flags3(src, tmp) );
 13059   ins_pipe( ialu_reg_reg_long );
 13060 %}
 13062 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13063 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13064 // requires a commuted test to get the same result.
 13065 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13066   match( Set flags (CmpL src1 src2 ));
 13067   effect( TEMP tmp );
 13068   ins_cost(300);
 13069   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13070             "MOV    $tmp,$src2.hi\n\t"
 13071             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13072   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13073   ins_pipe( ialu_cr_reg_reg );
 13074 %}
 13076 // Long compares reg < zero/req OR reg >= zero/req.
 13077 // Just a wrapper for a normal branch, plus the predicate test
 13078 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13079   match(If cmp flags);
 13080   effect(USE labl);
 13081   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13082   ins_cost(300);
 13083   expand %{
 13084     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13085   %}
 13086 %}
 13088 // Compare 2 longs and CMOVE longs.
 13089 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13090   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13091   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13092   ins_cost(400);
 13093   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13094             "CMOV$cmp $dst.hi,$src.hi" %}
 13095   opcode(0x0F,0x40);
 13096   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13097   ins_pipe( pipe_cmov_reg_long );
 13098 %}
 13100 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13101   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13102   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13103   ins_cost(500);
 13104   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13105             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13106   opcode(0x0F,0x40);
 13107   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13108   ins_pipe( pipe_cmov_reg_long );
 13109 %}
 13111 // Compare 2 longs and CMOVE ints.
 13112 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13113   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13114   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13115   ins_cost(200);
 13116   format %{ "CMOV$cmp $dst,$src" %}
 13117   opcode(0x0F,0x40);
 13118   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13119   ins_pipe( pipe_cmov_reg );
 13120 %}
 13122 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13123   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13124   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13125   ins_cost(250);
 13126   format %{ "CMOV$cmp $dst,$src" %}
 13127   opcode(0x0F,0x40);
 13128   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13129   ins_pipe( pipe_cmov_mem );
 13130 %}
 13132 // Compare 2 longs and CMOVE ptrs.
 13133 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13134   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13135   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13136   ins_cost(200);
 13137   format %{ "CMOV$cmp $dst,$src" %}
 13138   opcode(0x0F,0x40);
 13139   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13140   ins_pipe( pipe_cmov_reg );
 13141 %}
 13143 // Compare 2 longs and CMOVE doubles
 13144 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 13145   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13146   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13147   ins_cost(200);
 13148   expand %{
 13149     fcmovDPR_regS(cmp,flags,dst,src);
 13150   %}
 13151 %}
 13153 // Compare 2 longs and CMOVE doubles
 13154 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13155   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13156   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13157   ins_cost(200);
 13158   expand %{
 13159     fcmovD_regS(cmp,flags,dst,src);
 13160   %}
 13161 %}
 13163 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 13164   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13165   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13166   ins_cost(200);
 13167   expand %{
 13168     fcmovFPR_regS(cmp,flags,dst,src);
 13169   %}
 13170 %}
 13173 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13174   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13175   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13176   ins_cost(200);
 13177   expand %{
 13178     fcmovF_regS(cmp,flags,dst,src);
 13179   %}
 13180 %}
 13183 // ============================================================================
 13184 // Procedure Call/Return Instructions
 13185 // Call Java Static Instruction
 13186 // Note: If this code changes, the corresponding ret_addr_offset() and
 13187 //       compute_padding() functions will have to be adjusted.
 13188 instruct CallStaticJavaDirect(method meth) %{
 13189   match(CallStaticJava);
 13190   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13191   effect(USE meth);
 13193   ins_cost(300);
 13194   format %{ "CALL,static " %}
 13195   opcode(0xE8); /* E8 cd */
 13196   ins_encode( pre_call_FPU,
 13197               Java_Static_Call( meth ),
 13198               call_epilog,
 13199               post_call_FPU );
 13200   ins_pipe( pipe_slow );
 13201   ins_alignment(4);
 13202 %}
 13204 // Call Java Static Instruction (method handle version)
 13205 // Note: If this code changes, the corresponding ret_addr_offset() and
 13206 //       compute_padding() functions will have to be adjusted.
 13207 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 13208   match(CallStaticJava);
 13209   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13210   effect(USE meth);
 13211   // EBP is saved by all callees (for interpreter stack correction).
 13212   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13214   ins_cost(300);
 13215   format %{ "CALL,static/MethodHandle " %}
 13216   opcode(0xE8); /* E8 cd */
 13217   ins_encode( pre_call_FPU,
 13218               preserve_SP,
 13219               Java_Static_Call( meth ),
 13220               restore_SP,
 13221               call_epilog,
 13222               post_call_FPU );
 13223   ins_pipe( pipe_slow );
 13224   ins_alignment(4);
 13225 %}
 13227 // Call Java Dynamic Instruction
 13228 // Note: If this code changes, the corresponding ret_addr_offset() and
 13229 //       compute_padding() functions will have to be adjusted.
 13230 instruct CallDynamicJavaDirect(method meth) %{
 13231   match(CallDynamicJava);
 13232   effect(USE meth);
 13234   ins_cost(300);
 13235   format %{ "MOV    EAX,(oop)-1\n\t"
 13236             "CALL,dynamic" %}
 13237   opcode(0xE8); /* E8 cd */
 13238   ins_encode( pre_call_FPU,
 13239               Java_Dynamic_Call( meth ),
 13240               call_epilog,
 13241               post_call_FPU );
 13242   ins_pipe( pipe_slow );
 13243   ins_alignment(4);
 13244 %}
 13246 // Call Runtime Instruction
 13247 instruct CallRuntimeDirect(method meth) %{
 13248   match(CallRuntime );
 13249   effect(USE meth);
 13251   ins_cost(300);
 13252   format %{ "CALL,runtime " %}
 13253   opcode(0xE8); /* E8 cd */
 13254   // Use FFREEs to clear entries in float stack
 13255   ins_encode( pre_call_FPU,
 13256               FFree_Float_Stack_All,
 13257               Java_To_Runtime( meth ),
 13258               post_call_FPU );
 13259   ins_pipe( pipe_slow );
 13260 %}
 13262 // Call runtime without safepoint
 13263 instruct CallLeafDirect(method meth) %{
 13264   match(CallLeaf);
 13265   effect(USE meth);
 13267   ins_cost(300);
 13268   format %{ "CALL_LEAF,runtime " %}
 13269   opcode(0xE8); /* E8 cd */
 13270   ins_encode( pre_call_FPU,
 13271               FFree_Float_Stack_All,
 13272               Java_To_Runtime( meth ),
 13273               Verify_FPU_For_Leaf, post_call_FPU );
 13274   ins_pipe( pipe_slow );
 13275 %}
 13277 instruct CallLeafNoFPDirect(method meth) %{
 13278   match(CallLeafNoFP);
 13279   effect(USE meth);
 13281   ins_cost(300);
 13282   format %{ "CALL_LEAF_NOFP,runtime " %}
 13283   opcode(0xE8); /* E8 cd */
 13284   ins_encode(Java_To_Runtime(meth));
 13285   ins_pipe( pipe_slow );
 13286 %}
 13289 // Return Instruction
 13290 // Remove the return address & jump to it.
 13291 instruct Ret() %{
 13292   match(Return);
 13293   format %{ "RET" %}
 13294   opcode(0xC3);
 13295   ins_encode(OpcP);
 13296   ins_pipe( pipe_jmp );
 13297 %}
 13299 // Tail Call; Jump from runtime stub to Java code.
 13300 // Also known as an 'interprocedural jump'.
 13301 // Target of jump will eventually return to caller.
 13302 // TailJump below removes the return address.
 13303 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13304   match(TailCall jump_target method_oop );
 13305   ins_cost(300);
 13306   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13307   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13308   ins_encode( OpcP, RegOpc(jump_target) );
 13309   ins_pipe( pipe_jmp );
 13310 %}
 13313 // Tail Jump; remove the return address; jump to target.
 13314 // TailCall above leaves the return address around.
 13315 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13316   match( TailJump jump_target ex_oop );
 13317   ins_cost(300);
 13318   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13319             "JMP    $jump_target " %}
 13320   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13321   ins_encode( enc_pop_rdx,
 13322               OpcP, RegOpc(jump_target) );
 13323   ins_pipe( pipe_jmp );
 13324 %}
 13326 // Create exception oop: created by stack-crawling runtime code.
 13327 // Created exception is now available to this handler, and is setup
 13328 // just prior to jumping to this handler.  No code emitted.
 13329 instruct CreateException( eAXRegP ex_oop )
 13330 %{
 13331   match(Set ex_oop (CreateEx));
 13333   size(0);
 13334   // use the following format syntax
 13335   format %{ "# exception oop is in EAX; no code emitted" %}
 13336   ins_encode();
 13337   ins_pipe( empty );
 13338 %}
 13341 // Rethrow exception:
 13342 // The exception oop will come in the first argument position.
 13343 // Then JUMP (not call) to the rethrow stub code.
 13344 instruct RethrowException()
 13345 %{
 13346   match(Rethrow);
 13348   // use the following format syntax
 13349   format %{ "JMP    rethrow_stub" %}
 13350   ins_encode(enc_rethrow);
 13351   ins_pipe( pipe_jmp );
 13352 %}
 13354 // inlined locking and unlocking
 13357 instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 13358   match( Set cr (FastLock object box) );
 13359   effect( TEMP tmp, TEMP scr, USE_KILL box );
 13360   ins_cost(300);
 13361   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 13362   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13363   ins_pipe( pipe_slow );
 13364 %}
 13366 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13367   match( Set cr (FastUnlock object box) );
 13368   effect( TEMP tmp, USE_KILL box );
 13369   ins_cost(300);
 13370   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 13371   ins_encode( Fast_Unlock(object,box,tmp) );
 13372   ins_pipe( pipe_slow );
 13373 %}
 13377 // ============================================================================
 13378 // Safepoint Instruction
 13379 instruct safePoint_poll(eFlagsReg cr) %{
 13380   match(SafePoint);
 13381   effect(KILL cr);
 13383   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13384   // On SPARC that might be acceptable as we can generate the address with
 13385   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13386   // putting additional pressure on the index-0 in the D$.  Because of
 13387   // alignment (just like the situation at hand) the lower indices tend
 13388   // to see more traffic.  It'd be better to change the polling address
 13389   // to offset 0 of the last $line in the polling page.
 13391   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13392   ins_cost(125);
 13393   size(6) ;
 13394   ins_encode( Safepoint_Poll() );
 13395   ins_pipe( ialu_reg_mem );
 13396 %}
 13399 // ============================================================================
 13400 // This name is KNOWN by the ADLC and cannot be changed.
 13401 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 13402 // for this guy.
 13403 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 13404   match(Set dst (ThreadLocal));
 13405   effect(DEF dst, KILL cr);
 13407   format %{ "MOV    $dst, Thread::current()" %}
 13408   ins_encode %{
 13409     Register dstReg = as_Register($dst$$reg);
 13410     __ get_thread(dstReg);
 13411   %}
 13412   ins_pipe( ialu_reg_fat );
 13413 %}
 13417 //----------PEEPHOLE RULES-----------------------------------------------------
 13418 // These must follow all instruction definitions as they use the names
 13419 // defined in the instructions definitions.
 13420 //
 13421 // peepmatch ( root_instr_name [preceding_instruction]* );
 13422 //
 13423 // peepconstraint %{
 13424 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13425 //  [, ...] );
 13426 // // instruction numbers are zero-based using left to right order in peepmatch
 13427 //
 13428 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13429 // // provide an instruction_number.operand_name for each operand that appears
 13430 // // in the replacement instruction's match rule
 13431 //
 13432 // ---------VM FLAGS---------------------------------------------------------
 13433 //
 13434 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13435 //
 13436 // Each peephole rule is given an identifying number starting with zero and
 13437 // increasing by one in the order seen by the parser.  An individual peephole
 13438 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13439 // on the command-line.
 13440 //
 13441 // ---------CURRENT LIMITATIONS----------------------------------------------
 13442 //
 13443 // Only match adjacent instructions in same basic block
 13444 // Only equality constraints
 13445 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13446 // Only one replacement instruction
 13447 //
 13448 // ---------EXAMPLE----------------------------------------------------------
 13449 //
 13450 // // pertinent parts of existing instructions in architecture description
 13451 // instruct movI(eRegI dst, eRegI src) %{
 13452 //   match(Set dst (CopyI src));
 13453 // %}
 13454 //
 13455 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13456 //   match(Set dst (AddI dst src));
 13457 //   effect(KILL cr);
 13458 // %}
 13459 //
 13460 // // Change (inc mov) to lea
 13461 // peephole %{
 13462 //   // increment preceeded by register-register move
 13463 //   peepmatch ( incI_eReg movI );
 13464 //   // require that the destination register of the increment
 13465 //   // match the destination register of the move
 13466 //   peepconstraint ( 0.dst == 1.dst );
 13467 //   // construct a replacement instruction that sets
 13468 //   // the destination to ( move's source register + one )
 13469 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13470 // %}
 13471 //
 13472 // Implementation no longer uses movX instructions since
 13473 // machine-independent system no longer uses CopyX nodes.
 13474 //
 13475 // peephole %{
 13476 //   peepmatch ( incI_eReg movI );
 13477 //   peepconstraint ( 0.dst == 1.dst );
 13478 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13479 // %}
 13480 //
 13481 // peephole %{
 13482 //   peepmatch ( decI_eReg movI );
 13483 //   peepconstraint ( 0.dst == 1.dst );
 13484 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13485 // %}
 13486 //
 13487 // peephole %{
 13488 //   peepmatch ( addI_eReg_imm movI );
 13489 //   peepconstraint ( 0.dst == 1.dst );
 13490 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13491 // %}
 13492 //
 13493 // peephole %{
 13494 //   peepmatch ( addP_eReg_imm movP );
 13495 //   peepconstraint ( 0.dst == 1.dst );
 13496 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13497 // %}
 13499 // // Change load of spilled value to only a spill
 13500 // instruct storeI(memory mem, eRegI src) %{
 13501 //   match(Set mem (StoreI mem src));
 13502 // %}
 13503 //
 13504 // instruct loadI(eRegI dst, memory mem) %{
 13505 //   match(Set dst (LoadI mem));
 13506 // %}
 13507 //
 13508 peephole %{
 13509   peepmatch ( loadI storeI );
 13510   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13511   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13512 %}
 13514 //----------SMARTSPILL RULES---------------------------------------------------
 13515 // These must follow all instruction definitions as they use the names
 13516 // defined in the instructions definitions.

mercurial