src/cpu/sparc/vm/methodHandles_sparc.cpp

Mon, 12 Mar 2012 15:28:07 -0700

author
never
date
Mon, 12 Mar 2012 15:28:07 -0700
changeset 3637
61b82be3b1ff
parent 3451
5dbed2f542ff
child 3969
1d7922586cf6
permissions
-rw-r--r--

7152957: VM crashes with assert(false) failed: bad AD file
Reviewed-by: kvn, never
Contributed-by: nils.eliasson@oracle.com

     1 /*
     2  * Copyright (c) 2008, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "prims/methodHandles.hpp"
    30 #define __ _masm->
    32 #ifdef PRODUCT
    33 #define BLOCK_COMMENT(str) /* nothing */
    34 #else
    35 #define BLOCK_COMMENT(str) __ block_comment(str)
    36 #endif
    38 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    40 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    41                                                 address interpreted_entry) {
    42   // Just before the actual machine code entry point, allocate space
    43   // for a MethodHandleEntry::Data record, so that we can manage everything
    44   // from one base pointer.
    45   __ align(wordSize);
    46   address target = __ pc() + sizeof(Data);
    47   while (__ pc() < target) {
    48     __ nop();
    49     __ align(wordSize);
    50   }
    52   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    53   me->set_end_address(__ pc());         // set a temporary end_address
    54   me->set_from_interpreted_entry(interpreted_entry);
    55   me->set_type_checking_entry(NULL);
    57   return (address) me;
    58 }
    60 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    61                                                 address start_addr) {
    62   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    63   assert(me->end_address() == start_addr, "valid ME");
    65   // Fill in the real end_address:
    66   __ align(wordSize);
    67   me->set_end_address(__ pc());
    69   return me;
    70 }
    72 // stack walking support
    74 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
    75   //RicochetFrame* f = RicochetFrame::from_frame(fr);
    76   // Cf. is_interpreted_frame path of frame::sender
    77   intptr_t* younger_sp = fr.sp();
    78   intptr_t* sp         = fr.sender_sp();
    79   map->make_integer_regs_unsaved();
    80   map->shift_window(sp, younger_sp);
    81   bool this_frame_adjusted_stack = true;  // I5_savedSP is live in this RF
    82   return frame(sp, younger_sp, this_frame_adjusted_stack);
    83 }
    85 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
    86   ResourceMark rm;
    87   RicochetFrame* f = RicochetFrame::from_frame(fr);
    89   // pick up the argument type descriptor:
    90   Thread* thread = Thread::current();
    91   Handle cookie(thread, f->compute_saved_args_layout(true, true));
    93   // process fixed part
    94   blk->do_oop((oop*)f->saved_target_addr());
    95   blk->do_oop((oop*)f->saved_args_layout_addr());
    97   // process variable arguments:
    98   if (cookie.is_null())  return;  // no arguments to describe
   100   // the cookie is actually the invokeExact method for my target
   101   // his argument signature is what I'm interested in
   102   assert(cookie->is_method(), "");
   103   methodHandle invoker(thread, methodOop(cookie()));
   104   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
   105   assert(!invoker->is_static(), "must have MH argument");
   106   int slot_count = invoker->size_of_parameters();
   107   assert(slot_count >= 1, "must include 'this'");
   108   intptr_t* base = f->saved_args_base();
   109   intptr_t* retval = NULL;
   110   if (f->has_return_value_slot())
   111     retval = f->return_value_slot_addr();
   112   int slot_num = slot_count - 1;
   113   intptr_t* loc = &base[slot_num];
   114   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
   115   int arg_num = 0;
   116   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
   117     if (ss.at_return_type())  continue;
   118     BasicType ptype = ss.type();
   119     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
   120     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
   121     slot_num -= type2size[ptype];
   122     loc = &base[slot_num];
   123     bool is_oop = (ptype == T_OBJECT && loc != retval);
   124     if (is_oop)  blk->do_oop((oop*)loc);
   125     arg_num += 1;
   126   }
   127   assert(slot_num == 0, "must have processed all the arguments");
   128 }
   130 // Ricochet Frames
   131 const Register MethodHandles::RicochetFrame::L1_continuation      = L1;
   132 const Register MethodHandles::RicochetFrame::L2_saved_target      = L2;
   133 const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3;
   134 const Register MethodHandles::RicochetFrame::L4_saved_args_base   = L4; // cf. Gargs = G4
   135 const Register MethodHandles::RicochetFrame::L5_conversion        = L5;
   136 #ifdef ASSERT
   137 const Register MethodHandles::RicochetFrame::L0_magic_number_1    = L0;
   138 #endif //ASSERT
   140 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
   141   if (read_cache) {
   142     oop cookie = saved_args_layout();
   143     if (cookie != NULL)  return cookie;
   144   }
   145   oop target = saved_target();
   146   oop mtype  = java_lang_invoke_MethodHandle::type(target);
   147   oop mtform = java_lang_invoke_MethodType::form(mtype);
   148   oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
   149   if (write_cache)  {
   150     (*saved_args_layout_addr()) = cookie;
   151   }
   152   return cookie;
   153 }
   155 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
   156                                                           // output params:
   157                                                           int* bounce_offset,
   158                                                           int* exception_offset,
   159                                                           int* frame_size_in_words) {
   160   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
   162   address start = __ pc();
   164 #ifdef ASSERT
   165   __ illtrap(0); __ illtrap(0); __ illtrap(0);
   166   // here's a hint of something special:
   167   __ set(MAGIC_NUMBER_1, G0);
   168   __ set(MAGIC_NUMBER_2, G0);
   169 #endif //ASSERT
   170   __ illtrap(0);  // not reached
   172   // Return values are in registers.
   173   // L1_continuation contains a cleanup continuation we must return
   174   // to.
   176   (*bounce_offset) = __ pc() - start;
   177   BLOCK_COMMENT("ricochet_blob.bounce");
   179   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
   180   trace_method_handle(_masm, "return/ricochet_blob.bounce");
   182   __ JMP(L1_continuation, 0);
   183   __ delayed()->nop();
   184   __ illtrap(0);
   186   DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0));
   188   (*exception_offset) = __ pc() - start;
   189   BLOCK_COMMENT("ricochet_blob.exception");
   191   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
   192   // for example, see TemplateInterpreterGenerator::generate_throw_exception
   193   // Live registers in:
   194   //   Oexception  (O0): exception
   195   //   Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr)
   196   __ verify_oop(Oexception);
   198   // Take down the frame.
   200   // Cf. InterpreterMacroAssembler::remove_activation.
   201   leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7);
   203   // We are done with this activation frame; find out where to go next.
   204   // The continuation point will be an exception handler, which expects
   205   // the following registers set up:
   206   //
   207   // Oexception: exception
   208   // Oissuing_pc: the local call that threw exception
   209   // Other On: garbage
   210   // In/Ln:  the contents of the caller's register window
   211   //
   212   // We do the required restore at the last possible moment, because we
   213   // need to preserve some state across a runtime call.
   214   // (Remember that the caller activation is unknown--it might not be
   215   // interpreted, so things like Lscratch are useless in the caller.)
   216   __ mov(Oexception,  Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
   217   __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
   218   __ call_VM_leaf(L7_thread_cache,
   219                   CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
   220                   G2_thread, Oissuing_pc->after_save());
   222   // The caller's SP was adjusted upon method entry to accomodate
   223   // the callee's non-argument locals. Undo that adjustment.
   224   __ JMP(O0, 0);                         // return exception handler in caller
   225   __ delayed()->restore(I5_savedSP, G0, SP);
   227   // (same old exception object is already in Oexception; see above)
   228   // Note that an "issuing PC" is actually the next PC after the call
   229 }
   231 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
   232                                                         Register recv_reg,
   233                                                         Register argv_reg,
   234                                                         address return_handler) {
   235   // does not include the __ save()
   236   assert(argv_reg == Gargs, "");
   237   Address G3_mh_vmtarget(   recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
   238   Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
   240   // Create the RicochetFrame.
   241   // Unlike on x86 we can store all required information in local
   242   // registers.
   243   BLOCK_COMMENT("push RicochetFrame {");
   244   __ set(ExternalAddress(return_handler),          L1_continuation);
   245   __ load_heap_oop(G3_mh_vmtarget,                 L2_saved_target);
   246   __ mov(G0,                                       L3_saved_args_layout);
   247   __ mov(Gargs,                                    L4_saved_args_base);
   248   __ lduw(G3_amh_conversion,                       L5_conversion);  // 32-bit field
   249   // I5, I6, I7 are already set up
   250   DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1,      L0_magic_number_1));
   251   BLOCK_COMMENT("} RicochetFrame");
   252 }
   254 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
   255                                                         Register recv_reg,
   256                                                         Register new_sp_reg,
   257                                                         Register sender_pc_reg) {
   258   assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place");
   259   assert(sender_pc_reg == I7, "in a fixed place");
   260   // does not include the __ ret() & __ restore()
   261   assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg);
   262   // Take down the frame.
   263   // Cf. InterpreterMacroAssembler::remove_activation.
   264   BLOCK_COMMENT("end_ricochet_frame {");
   265   if (recv_reg->is_valid())
   266     __ mov(L2_saved_target, recv_reg);
   267   BLOCK_COMMENT("} end_ricochet_frame");
   268 }
   270 // Emit code to verify that FP is pointing at a valid ricochet frame.
   271 #ifndef PRODUCT
   272 enum {
   273   ARG_LIMIT = 255, SLOP = 45,
   274   // use this parameter for checking for garbage stack movements:
   275   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
   276   // the slop defends against false alarms due to fencepost errors
   277 };
   278 #endif
   280 #ifdef ASSERT
   281 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
   282   // The stack should look like this:
   283   //    ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF]
   284   // Check various invariants.
   286   Register O7_temp = O7, O5_temp = O5;
   288   Label L_ok_1, L_ok_2, L_ok_3, L_ok_4;
   289   BLOCK_COMMENT("verify_clean {");
   290   // Magic numbers must check out:
   291   __ set((int32_t) MAGIC_NUMBER_1, O7_temp);
   292   __ cmp_and_br_short(O7_temp, L0_magic_number_1, Assembler::equal, Assembler::pt, L_ok_1);
   293   __ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found");
   295   __ BIND(L_ok_1);
   297   // Arguments pointer must look reasonable:
   298 #ifdef _LP64
   299   Register FP_temp = O5_temp;
   300   __ add(FP, STACK_BIAS, FP_temp);
   301 #else
   302   Register FP_temp = FP;
   303 #endif
   304   __ cmp_and_brx_short(L4_saved_args_base, FP_temp, Assembler::greaterEqualUnsigned, Assembler::pt, L_ok_2);
   305   __ stop("damaged ricochet frame: L4 < FP");
   307   __ BIND(L_ok_2);
   308   // Disable until we decide on it's fate
   309   // __ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp);
   310   // __ cmp(O7_temp, FP_temp);
   311   // __ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3);
   312   // __ delayed()->nop();
   313   // __ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP");
   315   __ BIND(L_ok_3);
   316   extract_conversion_dest_type(_masm, L5_conversion, O7_temp);
   317   __ cmp_and_br_short(O7_temp, T_VOID, Assembler::equal, Assembler::pt, L_ok_4);
   318   extract_conversion_vminfo(_masm, L5_conversion, O5_temp);
   319   __ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp);
   320   assert(Assembler::is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13");
   321   __ cmp_and_brx_short(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER, Assembler::equal, Assembler::pt, L_ok_4);
   322   __ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found");
   323   __ BIND(L_ok_4);
   324   BLOCK_COMMENT("} verify_clean");
   325 }
   326 #endif //ASSERT
   328 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) {
   329   if (VerifyMethodHandles)
   330     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg,
   331                  "AMH argument is a Class");
   332   __ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg);
   333 }
   335 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) {
   336   assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   337   assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load");
   338   __ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg);
   339 }
   341 void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
   342   assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   343   __ and3(conversion_field_reg, CONV_VMINFO_MASK, reg);
   344 }
   346 void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
   347   __ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg);
   348   __ and3(reg, 0x0F, reg);
   349 }
   351 void MethodHandles::load_stack_move(MacroAssembler* _masm,
   352                                     Address G3_amh_conversion,
   353                                     Register stack_move_reg) {
   354   BLOCK_COMMENT("load_stack_move {");
   355   __ ldsw(G3_amh_conversion, stack_move_reg);
   356   __ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg);
   357 #ifdef ASSERT
   358   if (VerifyMethodHandles) {
   359     Label L_ok, L_bad;
   360     int32_t stack_move_limit = 0x0800;  // extra-large
   361     __ cmp_and_br_short(stack_move_reg, stack_move_limit, Assembler::greaterEqual, Assembler::pn, L_bad);
   362     __ cmp(stack_move_reg, -stack_move_limit);
   363     __ br(Assembler::greater, false, Assembler::pt, L_ok);
   364     __ delayed()->nop();
   365     __ BIND(L_bad);
   366     __ stop("load_stack_move of garbage value");
   367     __ BIND(L_ok);
   368   }
   369 #endif
   370   BLOCK_COMMENT("} load_stack_move");
   371 }
   373 #ifdef ASSERT
   374 void MethodHandles::RicochetFrame::verify() const {
   375   assert(magic_number_1() == MAGIC_NUMBER_1, "");
   376   if (!Universe::heap()->is_gc_active()) {
   377     if (saved_args_layout() != NULL) {
   378       assert(saved_args_layout()->is_method(), "must be valid oop");
   379     }
   380     if (saved_target() != NULL) {
   381       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
   382     }
   383   }
   384   int conv_op = adapter_conversion_op(conversion());
   385   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
   386          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
   387          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
   388          "must be a sane conversion");
   389   if (has_return_value_slot()) {
   390     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
   391   }
   392 }
   394 void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
   395   // Verify that argslot lies within (Gargs, FP].
   396   Label L_ok, L_bad;
   397   BLOCK_COMMENT("verify_argslot {");
   398   __ cmp_and_brx_short(Gargs, argslot_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad);
   399   __ add(FP, STACK_BIAS, temp_reg);  // STACK_BIAS is zero on !_LP64
   400   __ cmp_and_brx_short(argslot_reg, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok);
   401   __ BIND(L_bad);
   402   __ stop(error_message);
   403   __ BIND(L_ok);
   404   BLOCK_COMMENT("} verify_argslot");
   405 }
   407 void MethodHandles::verify_argslots(MacroAssembler* _masm,
   408                                     RegisterOrConstant arg_slots,
   409                                     Register arg_slot_base_reg,
   410                                     Register temp_reg,
   411                                     Register temp2_reg,
   412                                     bool negate_argslots,
   413                                     const char* error_message) {
   414   // Verify that [argslot..argslot+size) lies within (Gargs, FP).
   415   Label L_ok, L_bad;
   416   BLOCK_COMMENT("verify_argslots {");
   417   if (negate_argslots) {
   418     if (arg_slots.is_constant()) {
   419       arg_slots = -1 * arg_slots.as_constant();
   420     } else {
   421       __ neg(arg_slots.as_register(), temp_reg);
   422       arg_slots = temp_reg;
   423     }
   424   }
   425   __ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg);
   426   __ add(FP, STACK_BIAS, temp2_reg);  // STACK_BIAS is zero on !_LP64
   427   __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad);
   428   // Gargs points to the first word so adjust by BytesPerWord
   429   __ add(arg_slot_base_reg, BytesPerWord, temp_reg);
   430   __ cmp_and_brx_short(Gargs, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok);
   431   __ BIND(L_bad);
   432   __ stop(error_message);
   433   __ BIND(L_ok);
   434   BLOCK_COMMENT("} verify_argslots");
   435 }
   437 // Make sure that arg_slots has the same sign as the given direction.
   438 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
   439 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
   440                                       RegisterOrConstant arg_slots, int direction) {
   441   enum { UNREASONABLE_STACK_MOVE = 256 * 4 };  // limit of 255 arguments
   442   bool allow_zero = arg_slots.is_constant();
   443   if (direction == 0) { direction = +1; allow_zero = true; }
   444   assert(stack_move_unit() == -1, "else add extra checks here");
   445   if (arg_slots.is_register()) {
   446     Label L_ok, L_bad;
   447     BLOCK_COMMENT("verify_stack_move {");
   448     // __ btst(-stack_move_unit() - 1, arg_slots.as_register());  // no need
   449     // __ br(Assembler::notZero, false, Assembler::pn, L_bad);
   450     // __ delayed()->nop();
   451     __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
   452     if (direction > 0) {
   453       __ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad);
   454       __ delayed()->nop();
   455       __ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
   456       __ br(Assembler::less, false, Assembler::pn, L_ok);
   457       __ delayed()->nop();
   458     } else {
   459       __ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad);
   460       __ delayed()->nop();
   461       __ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
   462       __ br(Assembler::greater, false, Assembler::pn, L_ok);
   463       __ delayed()->nop();
   464     }
   465     __ BIND(L_bad);
   466     if (direction > 0)
   467       __ stop("assert arg_slots > 0");
   468     else
   469       __ stop("assert arg_slots < 0");
   470     __ BIND(L_ok);
   471     BLOCK_COMMENT("} verify_stack_move");
   472   } else {
   473     intptr_t size = arg_slots.as_constant();
   474     if (direction < 0)  size = -size;
   475     assert(size >= 0, "correct direction of constant move");
   476     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
   477   }
   478 }
   480 void MethodHandles::verify_klass(MacroAssembler* _masm,
   481                                  Register obj_reg, KlassHandle klass,
   482                                  Register temp_reg, Register temp2_reg,
   483                                  const char* error_message) {
   484   oop* klass_addr = klass.raw_value();
   485   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
   486          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
   487          "must be one of the SystemDictionaryHandles");
   488   Label L_ok, L_bad;
   489   BLOCK_COMMENT("verify_klass {");
   490   __ verify_oop(obj_reg);
   491   __ br_null_short(obj_reg, Assembler::pn, L_bad);
   492   __ load_klass(obj_reg, temp_reg);
   493   __ set(ExternalAddress(klass_addr), temp2_reg);
   494   __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
   495   __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok);
   496   intptr_t super_check_offset = klass->super_check_offset();
   497   __ ld_ptr(Address(temp_reg, super_check_offset), temp_reg);
   498   __ set(ExternalAddress(klass_addr), temp2_reg);
   499   __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
   500   __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok);
   501   __ BIND(L_bad);
   502   __ stop(error_message);
   503   __ BIND(L_ok);
   504   BLOCK_COMMENT("} verify_klass");
   505 }
   506 #endif // ASSERT
   509 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register target, Register temp) {
   510   assert(method == G5_method, "interpreter calling convention");
   511   __ verify_oop(method);
   512   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   513   if (JvmtiExport::can_post_interpreter_events()) {
   514     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   515     // compiled code in threads for which the event is enabled.  Check here for
   516     // interp_only_mode if these events CAN be enabled.
   517     __ verify_thread();
   518     Label skip_compiled_code;
   520     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   521     __ ld(interp_only, temp);
   522     __ tst(temp);
   523     __ br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
   524     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   525     __ bind(skip_compiled_code);
   526   }
   527   __ jmp(target, 0);
   528   __ delayed()->nop();
   529 }
   532 // Code generation
   533 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
   534   // I5_savedSP/O5_savedSP: sender SP (must preserve)
   535   // G4 (Gargs): incoming argument list (must preserve)
   536   // G5_method:  invoke methodOop
   537   // G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots])
   538   // O0, O1, O2, O3, O4: garbage temps, blown away
   539   Register O0_mtype   = O0;
   540   Register O1_scratch = O1;
   541   Register O2_scratch = O2;
   542   Register O3_scratch = O3;
   543   Register O4_argslot = O4;
   544   Register O4_argbase = O4;
   546   // emit WrongMethodType path first, to enable back-branch from main path
   547   Label wrong_method_type;
   548   __ bind(wrong_method_type);
   549   Label invoke_generic_slow_path;
   550   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   551   __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
   552   __ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact);
   553   __ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path);
   554   __ delayed()->nop();
   555   __ mov(O0_mtype, G5_method_type);  // required by throw_WrongMethodType
   556   __ mov(G3_method_handle, G3_method_handle);  // already in this register
   557   // O0 will be filled in with JavaThread in stub
   558   __ jump_to(AddressLiteral(StubRoutines::throw_WrongMethodTypeException_entry()), O3_scratch);
   559   __ delayed()->nop();
   561   // here's where control starts out:
   562   __ align(CodeEntryAlignment);
   563   address entry_point = __ pc();
   565   // fetch the MethodType from the method handle
   566   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
   567   // This would simplify several touchy bits of code.
   568   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
   569   {
   570     Register tem = G5_method;
   571     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   572       __ ld_ptr(Address(tem, *pchase), O0_mtype);
   573       tem = O0_mtype;          // in case there is another indirection
   574     }
   575   }
   577   // given the MethodType, find out where the MH argument is buried
   578   __ load_heap_oop(Address(O0_mtype,   __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,        O1_scratch)), O4_argslot);
   579   __ ldsw(         Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
   580   __ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase);
   581   // Note: argument_address uses its input as a scratch register!
   582   Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize);
   583   __ ld_ptr(mh_receiver_slot_addr, G3_method_handle);
   585   trace_method_handle(_masm, "invokeExact");
   587   __ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);
   589   // Nobody uses the MH receiver slot after this.  Make sure.
   590   DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr));
   592   __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
   594   // for invokeGeneric (only), apply argument and result conversions on the fly
   595   __ bind(invoke_generic_slow_path);
   596 #ifdef ASSERT
   597   if (VerifyMethodHandles) {
   598     Label L;
   599     __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
   600     __ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
   601     __ brx(Assembler::equal, false, Assembler::pt, L);
   602     __ delayed()->nop();
   603     __ stop("bad methodOop::intrinsic_id");
   604     __ bind(L);
   605   }
   606 #endif //ASSERT
   608   // make room on the stack for another pointer:
   609   insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch);
   610   // load up an adapter from the calling type (Java weaves this)
   611   Register O2_form    = O2_scratch;
   612   Register O3_adapter = O3_scratch;
   613   __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               O1_scratch)), O2_form);
   614   __ load_heap_oop(Address(O2_form,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
   615   __ verify_oop(O3_adapter);
   616   __ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize));
   617   // As a trusted first argument, pass the type being called, so the adapter knows
   618   // the actual types of the arguments and return values.
   619   // (Generic invokers are shared among form-families of method-type.)
   620   __ st_ptr(O0_mtype,   Address(O4_argbase, 0 * Interpreter::stackElementSize));
   621   // FIXME: assert that O3_adapter is of the right method-type.
   622   __ mov(O3_adapter, G3_method_handle);
   623   trace_method_handle(_masm, "invokeGeneric");
   624   __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
   626   return entry_point;
   627 }
   629 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
   630 static RegisterOrConstant constant(int value) {
   631   return RegisterOrConstant(value);
   632 }
   634 static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) {
   635   __ ldsw(vmargslot_addr, result);
   636 }
   638 static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm,
   639                                                             RegisterOrConstant arg_slots,
   640                                                             Register temp_reg, Register temp2_reg) {
   641   // Keep the stack pointer 2*wordSize aligned.
   642   const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
   643   if (arg_slots.is_constant()) {
   644     const int        offset = arg_slots.as_constant() << LogBytesPerWord;
   645     const int masked_offset = round_to(offset, 2 * BytesPerWord);
   646     const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask;
   647     assert(masked_offset == masked_offset2, "must agree");
   648     __ sub(Gargs,        offset, Gargs);
   649     __ sub(SP,    masked_offset, SP   );
   650     return offset;
   651   } else {
   652 #ifdef ASSERT
   653     {
   654       Label L_ok;
   655       __ cmp_and_br_short(arg_slots.as_register(), 0, Assembler::greaterEqual, Assembler::pt, L_ok);
   656       __ stop("negative arg_slots");
   657       __ bind(L_ok);
   658     }
   659 #endif
   660     __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
   661     __ add( temp_reg,  1*BytesPerWord,       temp2_reg);
   662     __ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg);
   663     __ sub(Gargs, temp_reg,  Gargs);
   664     __ sub(SP,    temp2_reg, SP   );
   665     return temp_reg;
   666   }
   667 }
   669 static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm,
   670                                                           RegisterOrConstant arg_slots,
   671                                                           Register temp_reg, Register temp2_reg) {
   672   // Keep the stack pointer 2*wordSize aligned.
   673   const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
   674   if (arg_slots.is_constant()) {
   675     const int        offset = arg_slots.as_constant() << LogBytesPerWord;
   676     const int masked_offset = offset & ~TwoWordAlignmentMask;
   677     __ add(Gargs,        offset, Gargs);
   678     __ add(SP,    masked_offset, SP   );
   679     return offset;
   680   } else {
   681     __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
   682     __ andn(temp_reg, TwoWordAlignmentMask, temp2_reg);
   683     __ add(Gargs, temp_reg,  Gargs);
   684     __ add(SP,    temp2_reg, SP   );
   685     return temp_reg;
   686   }
   687 }
   689 // Helper to insert argument slots into the stack.
   690 // arg_slots must be a multiple of stack_move_unit() and < 0
   691 // argslot_reg is decremented to point to the new (shifted) location of the argslot
   692 // But, temp_reg ends up holding the original value of argslot_reg.
   693 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   694                                      RegisterOrConstant arg_slots,
   695                                      Register argslot_reg,
   696                                      Register temp_reg, Register temp2_reg, Register temp3_reg) {
   697   // allow constant zero
   698   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   699     return;
   701   assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
   702                              (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
   704   BLOCK_COMMENT("insert_arg_slots {");
   705   if (VerifyMethodHandles)
   706     verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
   707   if (VerifyMethodHandles)
   708     verify_stack_move(_masm, arg_slots, -1);
   710   // Make space on the stack for the inserted argument(s).
   711   // Then pull down everything shallower than argslot_reg.
   712   // The stacked return address gets pulled down with everything else.
   713   // That is, copy [sp, argslot) downward by -size words.  In pseudo-code:
   714   //   sp -= size;
   715   //   for (temp = sp + size; temp < argslot; temp++)
   716   //     temp[-size] = temp[0]
   717   //   argslot -= size;
   719   // offset is temp3_reg in case of arg_slots being a register.
   720   RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
   721   __ sub(Gargs, offset, temp_reg);  // source pointer for copy
   723   {
   724     Label loop;
   725     __ BIND(loop);
   726     // pull one word down each time through the loop
   727     __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
   728     __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
   729     __ add(temp_reg, wordSize, temp_reg);
   730     __ cmp_and_brx_short(temp_reg, argslot_reg, Assembler::lessUnsigned, Assembler::pt, loop);
   731   }
   733   // Now move the argslot down, to point to the opened-up space.
   734   __ add(argslot_reg, offset, argslot_reg);
   735   BLOCK_COMMENT("} insert_arg_slots");
   736 }
   739 // Helper to remove argument slots from the stack.
   740 // arg_slots must be a multiple of stack_move_unit() and > 0
   741 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   742                                      RegisterOrConstant arg_slots,
   743                                      Register argslot_reg,
   744                                      Register temp_reg, Register temp2_reg, Register temp3_reg) {
   745   // allow constant zero
   746   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   747     return;
   748   assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
   749                              (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
   751   BLOCK_COMMENT("remove_arg_slots {");
   752   if (VerifyMethodHandles)
   753     verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false,
   754                     "deleted argument(s) must fall within current frame");
   755   if (VerifyMethodHandles)
   756     verify_stack_move(_masm, arg_slots, +1);
   758   // Pull up everything shallower than argslot.
   759   // Then remove the excess space on the stack.
   760   // The stacked return address gets pulled up with everything else.
   761   // That is, copy [sp, argslot) upward by size words.  In pseudo-code:
   762   //   for (temp = argslot-1; temp >= sp; --temp)
   763   //     temp[size] = temp[0]
   764   //   argslot += size;
   765   //   sp += size;
   767   RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
   768   __ sub(argslot_reg, wordSize, temp_reg);  // source pointer for copy
   770   {
   771     Label L_loop;
   772     __ BIND(L_loop);
   773     // pull one word up each time through the loop
   774     __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
   775     __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
   776     __ sub(temp_reg, wordSize, temp_reg);
   777     __ cmp_and_brx_short(temp_reg, Gargs, Assembler::greaterEqualUnsigned, Assembler::pt, L_loop);
   778   }
   780   // And adjust the argslot address to point at the deletion point.
   781   __ add(argslot_reg, offset, argslot_reg);
   783   // We don't need the offset at this point anymore, just adjust SP and Gargs.
   784   (void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
   786   BLOCK_COMMENT("} remove_arg_slots");
   787 }
   789 // Helper to copy argument slots to the top of the stack.
   790 // The sequence starts with argslot_reg and is counted by slot_count
   791 // slot_count must be a multiple of stack_move_unit() and >= 0
   792 // This function blows the temps but does not change argslot_reg.
   793 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
   794                                    Register argslot_reg,
   795                                    RegisterOrConstant slot_count,
   796                                    Register temp_reg, Register temp2_reg) {
   797   // allow constant zero
   798   if (slot_count.is_constant() && slot_count.as_constant() == 0)
   799     return;
   800   assert_different_registers(argslot_reg, temp_reg, temp2_reg,
   801                              (!slot_count.is_register() ? Gargs : slot_count.as_register()),
   802                              SP);
   803   assert(Interpreter::stackElementSize == wordSize, "else change this code");
   805   BLOCK_COMMENT("push_arg_slots {");
   806   if (VerifyMethodHandles)
   807     verify_stack_move(_masm, slot_count, 0);
   809   RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg);
   811   if (slot_count.is_constant()) {
   812     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
   813       __ ld_ptr(          Address(argslot_reg, i * wordSize), temp_reg);
   814       __ st_ptr(temp_reg, Address(Gargs,       i * wordSize));
   815     }
   816   } else {
   817     Label L_plural, L_loop, L_break;
   818     // Emit code to dynamically check for the common cases, zero and one slot.
   819     __ cmp(slot_count.as_register(), (int32_t) 1);
   820     __ br(Assembler::greater, false, Assembler::pn, L_plural);
   821     __ delayed()->nop();
   822     __ br(Assembler::less, false, Assembler::pn, L_break);
   823     __ delayed()->nop();
   824     __ ld_ptr(          Address(argslot_reg, 0), temp_reg);
   825     __ st_ptr(temp_reg, Address(Gargs,       0));
   826     __ ba_short(L_break);
   827     __ BIND(L_plural);
   829     // Loop for 2 or more:
   830     //   top = &argslot[slot_count]
   831     //   while (top > argslot)  *(--Gargs) = *(--top)
   832     Register top_reg = temp_reg;
   833     __ add(argslot_reg, offset, top_reg);
   834     __ add(Gargs,       offset, Gargs  );  // move back up again so we can go down
   835     __ BIND(L_loop);
   836     __ sub(top_reg, wordSize, top_reg);
   837     __ sub(Gargs,   wordSize, Gargs  );
   838     __ ld_ptr(           Address(top_reg, 0), temp2_reg);
   839     __ st_ptr(temp2_reg, Address(Gargs,   0));
   840     __ cmp_and_brx_short(top_reg, argslot_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop);
   841     __ BIND(L_break);
   842   }
   843   BLOCK_COMMENT("} push_arg_slots");
   844 }
   846 // in-place movement; no change to Gargs
   847 // blows temp_reg, temp2_reg
   848 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
   849                                       Register bottom_reg,  // invariant
   850                                       Address  top_addr,    // can use temp_reg
   851                                       RegisterOrConstant positive_distance_in_slots,  // destroyed if register
   852                                       Register temp_reg, Register temp2_reg) {
   853   assert_different_registers(bottom_reg,
   854                              temp_reg, temp2_reg,
   855                              positive_distance_in_slots.register_or_noreg());
   856   BLOCK_COMMENT("move_arg_slots_up {");
   857   Label L_loop, L_break;
   858   Register top_reg = temp_reg;
   859   if (!top_addr.is_same_address(Address(top_reg, 0))) {
   860     __ add(top_addr, top_reg);
   861   }
   862   // Detect empty (or broken) loop:
   863 #ifdef ASSERT
   864   if (VerifyMethodHandles) {
   865     // Verify that &bottom < &top (non-empty interval)
   866     Label L_ok, L_bad;
   867     if (positive_distance_in_slots.is_register()) {
   868       __ cmp(positive_distance_in_slots.as_register(), (int32_t) 0);
   869       __ br(Assembler::lessEqual, false, Assembler::pn, L_bad);
   870       __ delayed()->nop();
   871     }
   872     __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   873     __ BIND(L_bad);
   874     __ stop("valid bounds (copy up)");
   875     __ BIND(L_ok);
   876   }
   877 #endif
   878   __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break);
   879   // work top down to bottom, copying contiguous data upwards
   880   // In pseudo-code:
   881   //   while (--top >= bottom) *(top + distance) = *(top + 0);
   882   RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg());
   883   __ BIND(L_loop);
   884   __ sub(top_reg, wordSize, top_reg);
   885   __ ld_ptr(           Address(top_reg, 0     ), temp2_reg);
   886   __ st_ptr(temp2_reg, Address(top_reg, offset)           );
   887   __ cmp_and_brx_short(top_reg, bottom_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop);
   888   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   889   __ BIND(L_break);
   890   BLOCK_COMMENT("} move_arg_slots_up");
   891 }
   893 // in-place movement; no change to rsp
   894 // blows temp_reg, temp2_reg
   895 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
   896                                         Address  bottom_addr,  // can use temp_reg
   897                                         Register top_reg,      // invariant
   898                                         RegisterOrConstant negative_distance_in_slots,  // destroyed if register
   899                                         Register temp_reg, Register temp2_reg) {
   900   assert_different_registers(top_reg,
   901                              negative_distance_in_slots.register_or_noreg(),
   902                              temp_reg, temp2_reg);
   903   BLOCK_COMMENT("move_arg_slots_down {");
   904   Label L_loop, L_break;
   905   Register bottom_reg = temp_reg;
   906   if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) {
   907     __ add(bottom_addr, bottom_reg);
   908   }
   909   // Detect empty (or broken) loop:
   910 #ifdef ASSERT
   911   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
   912   if (VerifyMethodHandles) {
   913     // Verify that &bottom < &top (non-empty interval)
   914     Label L_ok, L_bad;
   915     if (negative_distance_in_slots.is_register()) {
   916       __ cmp(negative_distance_in_slots.as_register(), (int32_t) 0);
   917       __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
   918       __ delayed()->nop();
   919     }
   920     __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   921     __ BIND(L_bad);
   922     __ stop("valid bounds (copy down)");
   923     __ BIND(L_ok);
   924   }
   925 #endif
   926   __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break);
   927   // work bottom up to top, copying contiguous data downwards
   928   // In pseudo-code:
   929   //   while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++;
   930   RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg());
   931   __ BIND(L_loop);
   932   __ ld_ptr(           Address(bottom_reg, 0     ), temp2_reg);
   933   __ st_ptr(temp2_reg, Address(bottom_reg, offset)           );
   934   __ add(bottom_reg, wordSize, bottom_reg);
   935   __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_loop);
   936   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   937   __ BIND(L_break);
   938   BLOCK_COMMENT("} move_arg_slots_down");
   939 }
   941 // Copy from a field or array element to a stacked argument slot.
   942 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
   943 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
   944                                    BasicType type, bool is_element,
   945                                    Address value_src, Address slot_dest,
   946                                    Register temp_reg) {
   947   assert(!slot_dest.uses(temp_reg), "must be different register");
   948   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
   949   if (type == T_OBJECT || type == T_ARRAY) {
   950     __ load_heap_oop(value_src, temp_reg);
   951     __ verify_oop(temp_reg);
   952     __ st_ptr(temp_reg, slot_dest);
   953   } else if (type != T_VOID) {
   954     int  arg_size      = type2aelembytes(type);
   955     bool arg_is_signed = is_signed_subword_type(type);
   956     int  slot_size     = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size;  // store int sub-words as int
   957     __ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed);
   958     __ store_sized_value(temp_reg, slot_dest, slot_size              );
   959   }
   960   BLOCK_COMMENT("} move_typed_arg");
   961 }
   963 // Cf. TemplateInterpreterGenerator::generate_return_entry_for and
   964 // InterpreterMacroAssembler::save_return_value
   965 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
   966                                       Address return_slot) {
   967   BLOCK_COMMENT("move_return_value {");
   968   // Look at the type and pull the value out of the corresponding register.
   969   if (type == T_VOID) {
   970     // nothing to do
   971   } else if (type == T_OBJECT) {
   972     __ verify_oop(O0);
   973     __ st_ptr(O0, return_slot);
   974   } else if (type == T_INT || is_subword_type(type)) {
   975     int type_size = type2aelembytes(T_INT);
   976     __ store_sized_value(O0, return_slot, type_size);
   977   } else if (type == T_LONG) {
   978     // store the value by parts
   979     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
   980 #if !defined(_LP64) && defined(COMPILER2)
   981     __ stx(G1, return_slot);
   982 #else
   983   #ifdef _LP64
   984     __ stx(O0, return_slot);
   985   #else
   986     if (return_slot.has_disp()) {
   987       // The displacement is a constant
   988       __ st(O0, return_slot);
   989       __ st(O1, return_slot.plus_disp(Interpreter::stackElementSize));
   990     } else {
   991       __ std(O0, return_slot);
   992     }
   993   #endif
   994 #endif
   995   } else if (type == T_FLOAT) {
   996     __ stf(FloatRegisterImpl::S, Ftos_f, return_slot);
   997   } else if (type == T_DOUBLE) {
   998     __ stf(FloatRegisterImpl::D, Ftos_f, return_slot);
   999   } else {
  1000     ShouldNotReachHere();
  1002   BLOCK_COMMENT("} move_return_value");
  1005 #ifndef PRODUCT
  1006 void MethodHandles::RicochetFrame::describe(const frame* fr, FrameValues& values, int frame_no)  {
  1007     RicochetFrame* rf = new RicochetFrame(*fr);
  1009     // ricochet slots (kept in registers for sparc)
  1010     values.describe(frame_no, rf->register_addr(I5_savedSP), err_msg("exact_sender_sp reg for #%d", frame_no));
  1011     values.describe(frame_no, rf->register_addr(L5_conversion), err_msg("conversion reg for #%d", frame_no));
  1012     values.describe(frame_no, rf->register_addr(L4_saved_args_base), err_msg("saved_args_base reg for #%d", frame_no));
  1013     values.describe(frame_no, rf->register_addr(L3_saved_args_layout), err_msg("saved_args_layout reg for #%d", frame_no));
  1014     values.describe(frame_no, rf->register_addr(L2_saved_target), err_msg("saved_target reg for #%d", frame_no));
  1015     values.describe(frame_no, rf->register_addr(L1_continuation), err_msg("continuation reg for #%d", frame_no));
  1017     // relevant ricochet targets (in caller frame)
  1018     values.describe(-1, rf->saved_args_base(),  err_msg("*saved_args_base for #%d", frame_no));
  1019     values.describe(-1, (intptr_t *)(STACK_BIAS+(uintptr_t)rf->exact_sender_sp()),  err_msg("*exact_sender_sp+STACK_BIAS for #%d", frame_no));
  1021 #endif // ASSERT
  1023 #ifndef PRODUCT
  1024 extern "C" void print_method_handle(oop mh);
  1025 void trace_method_handle_stub(const char* adaptername,
  1026                               oopDesc* mh,
  1027                               intptr_t* saved_sp,
  1028                               intptr_t* args,
  1029                               intptr_t* tracing_fp) {
  1030   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have mh
  1032   tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT " args=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp, args);
  1034   if (Verbose) {
  1035     // dumping last frame with frame::describe
  1037     JavaThread* p = JavaThread::active();
  1039     ResourceMark rm;
  1040     PRESERVE_EXCEPTION_MARK; // may not be needed by safer and unexpensive here
  1041     FrameValues values;
  1043     // Note: We want to allow trace_method_handle from any call site.
  1044     // While trace_method_handle creates a frame, it may be entered
  1045     // without a valid return PC in O7 (e.g. not just after a call).
  1046     // Walking that frame could lead to failures due to that invalid PC.
  1047     // => carefully detect that frame when doing the stack walking
  1049     // walk up to the right frame using the "tracing_fp" argument
  1050     intptr_t* cur_sp = StubRoutines::Sparc::flush_callers_register_windows_func()();
  1051     frame cur_frame(cur_sp, frame::unpatchable, NULL);
  1053     while (cur_frame.fp() != (intptr_t *)(STACK_BIAS+(uintptr_t)tracing_fp)) {
  1054       cur_frame = os::get_sender_for_C_frame(&cur_frame);
  1057     // safely create a frame and call frame::describe
  1058     intptr_t *dump_sp = cur_frame.sender_sp();
  1059     intptr_t *dump_fp = cur_frame.link();
  1061     bool walkable = has_mh; // whether the traced frame shoud be walkable
  1063     // the sender for cur_frame is the caller of trace_method_handle
  1064     if (walkable) {
  1065       // The previous definition of walkable may have to be refined
  1066       // if new call sites cause the next frame constructor to start
  1067       // failing. Alternatively, frame constructors could be
  1068       // modified to support the current or future non walkable
  1069       // frames (but this is more intrusive and is not considered as
  1070       // part of this RFE, which will instead use a simpler output).
  1071       frame dump_frame = frame(dump_sp,
  1072                                cur_frame.sp(), // younger_sp
  1073                                false); // no adaptation
  1074       dump_frame.describe(values, 1);
  1075     } else {
  1076       // Robust dump for frames which cannot be constructed from sp/younger_sp
  1077       // Add descriptions without building a Java frame to avoid issues
  1078       values.describe(-1, dump_fp, "fp for #1 <not parsed, cannot trust pc>");
  1079       values.describe(-1, dump_sp, "sp");
  1082     bool has_args = has_mh; // whether Gargs is meaningful
  1084     // mark args, if seems valid (may not be valid for some adapters)
  1085     if (has_args) {
  1086       if ((args >= dump_sp) && (args < dump_fp)) {
  1087         values.describe(-1, args, "*G4_args");
  1091     // mark saved_sp, if seems valid (may not be valid for some adapters)
  1092     intptr_t *unbiased_sp = (intptr_t *)(STACK_BIAS+(uintptr_t)saved_sp);
  1093     if ((unbiased_sp >= dump_sp - UNREASONABLE_STACK_MOVE) && (unbiased_sp < dump_fp)) {
  1094       values.describe(-1, unbiased_sp, "*saved_sp+STACK_BIAS");
  1097     // Note: the unextended_sp may not be correct
  1098     tty->print_cr("  stack layout:");
  1099     values.print(p);
  1102   if (has_mh) {
  1103     print_method_handle(mh);
  1107 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  1108   if (!TraceMethodHandles)  return;
  1109   BLOCK_COMMENT("trace_method_handle {");
  1110   // save: Gargs, O5_savedSP
  1111   __ save_frame(16); // need space for saving required FPU state
  1113   __ set((intptr_t) adaptername, O0);
  1114   __ mov(G3_method_handle, O1);
  1115   __ mov(I5_savedSP, O2);
  1116   __ mov(Gargs, O3);
  1117   __ mov(I6, O4); // frame identifier for safe stack walking
  1119   // Save scratched registers that might be needed. Robustness is more
  1120   // important than optimizing the saves for this debug only code.
  1122   // save FP result, valid at some call sites (adapter_opt_return_float, ...)
  1123   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
  1124   __ stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1125   // Safely save all globals but G2 (handled by call_VM_leaf) and G7
  1126   // (OS reserved).
  1127   __ mov(G3_method_handle, L3);
  1128   __ mov(Gargs, L4);
  1129   __ mov(G5_method_type, L5);
  1130   __ mov(G6, L6);
  1131   __ mov(G1, L1);
  1133   __ call_VM_leaf(L2 /* for G2 */, CAST_FROM_FN_PTR(address, trace_method_handle_stub));
  1135   __ mov(L3, G3_method_handle);
  1136   __ mov(L4, Gargs);
  1137   __ mov(L5, G5_method_type);
  1138   __ mov(L6, G6);
  1139   __ mov(L1, G1);
  1140   __ ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1142   __ restore();
  1143   BLOCK_COMMENT("} trace_method_handle");
  1145 #endif // PRODUCT
  1147 // which conversion op types are implemented here?
  1148 int MethodHandles::adapter_conversion_ops_supported_mask() {
  1149   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
  1150          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
  1151          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
  1152          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
  1153          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
  1154           // OP_PRIM_TO_REF is below...
  1155          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
  1156          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
  1157          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
  1158          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
  1159           // OP_COLLECT_ARGS is below...
  1160          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
  1161          |(
  1162            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
  1163            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
  1164            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
  1165            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
  1168          );
  1171 //------------------------------------------------------------------------------
  1172 // MethodHandles::generate_method_handle_stub
  1173 //
  1174 // Generate an "entry" field for a method handle.
  1175 // This determines how the method handle will respond to calls.
  1176 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  1177   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
  1179   // Here is the register state during an interpreted call,
  1180   // as set up by generate_method_handle_interpreter_entry():
  1181   // - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
  1182   // - G3: receiver method handle
  1183   // - O5_savedSP: sender SP (must preserve)
  1185   const Register O0_scratch = O0;
  1186   const Register O1_scratch = O1;
  1187   const Register O2_scratch = O2;
  1188   const Register O3_scratch = O3;
  1189   const Register O4_scratch = O4;
  1190   const Register G5_scratch = G5;
  1192   // Often used names:
  1193   const Register O0_argslot = O0;
  1195   // Argument registers for _raise_exception:
  1196   const Register O0_code     = O0;
  1197   const Register O1_actual   = O1;
  1198   const Register O2_required = O2;
  1200   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
  1202   // Some handy addresses:
  1203   Address G3_mh_vmtarget(   G3_method_handle, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
  1205   Address G3_dmh_vmindex(   G3_method_handle, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes());
  1207   Address G3_bmh_vmargslot( G3_method_handle, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes());
  1208   Address G3_bmh_argument(  G3_method_handle, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes());
  1210   Address G3_amh_vmargslot( G3_method_handle, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes());
  1211   Address G3_amh_argument ( G3_method_handle, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes());
  1212   Address G3_amh_conversion(G3_method_handle, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
  1214   const int java_mirror_offset = in_bytes(Klass::java_mirror_offset());
  1216   if (have_entry(ek)) {
  1217     __ nop();  // empty stubs make SG sick
  1218     return;
  1221   address interp_entry = __ pc();
  1223   trace_method_handle(_masm, entry_name(ek));
  1225   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
  1227   switch ((int) ek) {
  1228   case _raise_exception:
  1230       // Not a real MH entry, but rather shared code for raising an
  1231       // exception.  For sharing purposes the arguments are passed into registers
  1232       // and then placed in the intepreter calling convention here.
  1233       assert(raise_exception_method(), "must be set");
  1234       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
  1236       __ set(AddressLiteral((address) &_raise_exception_method), G5_method);
  1237       __ ld_ptr(Address(G5_method, 0), G5_method);
  1239       const int jobject_oop_offset = 0;
  1240       __ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method);
  1242       adjust_SP_and_Gargs_down_by_slots(_masm, 3, noreg, noreg);
  1244       __ st    (O0_code,     __ argument_address(constant(2), noreg, 0));
  1245       __ st_ptr(O1_actual,   __ argument_address(constant(1), noreg, 0));
  1246       __ st_ptr(O2_required, __ argument_address(constant(0), noreg, 0));
  1247       jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1249     break;
  1251   case _invokestatic_mh:
  1252   case _invokespecial_mh:
  1254       __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
  1255       // Same as TemplateTable::invokestatic or invokespecial,
  1256       // minus the CP setup and profiling:
  1257       if (ek == _invokespecial_mh) {
  1258         // Must load & check the first argument before entering the target method.
  1259         __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1260         __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1261         __ null_check(G3_method_handle);
  1262         __ verify_oop(G3_method_handle);
  1264       jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1266     break;
  1268   case _invokevirtual_mh:
  1270       // Same as TemplateTable::invokevirtual,
  1271       // minus the CP setup and profiling:
  1273       // Pick out the vtable index and receiver offset from the MH,
  1274       // and then we can discard it:
  1275       Register O2_index = O2_scratch;
  1276       __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1277       __ ldsw(G3_dmh_vmindex, O2_index);
  1278       // Note:  The verifier allows us to ignore G3_mh_vmtarget.
  1279       __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1280       __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
  1282       // Get receiver klass:
  1283       Register O0_klass = O0_argslot;
  1284       __ load_klass(G3_method_handle, O0_klass);
  1285       __ verify_oop(O0_klass);
  1287       // Get target methodOop & entry point:
  1288       const int base = instanceKlass::vtable_start_offset() * wordSize;
  1289       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  1291       __ sll_ptr(O2_index, LogBytesPerWord, O2_index);
  1292       __ add(O0_klass, O2_index, O0_klass);
  1293       Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
  1294       __ ld_ptr(vtable_entry_addr, G5_method);
  1296       jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1298     break;
  1300   case _invokeinterface_mh:
  1302       // Same as TemplateTable::invokeinterface,
  1303       // minus the CP setup and profiling:
  1304       __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1305       Register O1_intf  = O1_scratch;
  1306       Register G5_index = G5_scratch;
  1307       __ load_heap_oop(G3_mh_vmtarget, O1_intf);
  1308       __ ldsw(G3_dmh_vmindex, G5_index);
  1309       __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1310       __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
  1312       // Get receiver klass:
  1313       Register O0_klass = O0_argslot;
  1314       __ load_klass(G3_method_handle, O0_klass);
  1315       __ verify_oop(O0_klass);
  1317       // Get interface:
  1318       Label no_such_interface;
  1319       __ verify_oop(O1_intf);
  1320       __ lookup_interface_method(O0_klass, O1_intf,
  1321                                  // Note: next two args must be the same:
  1322                                  G5_index, G5_method,
  1323                                  O2_scratch,
  1324                                  O3_scratch,
  1325                                  no_such_interface);
  1327       jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1329       __ bind(no_such_interface);
  1330       // Throw an exception.
  1331       // For historical reasons, it will be IncompatibleClassChangeError.
  1332       __ unimplemented("not tested yet");
  1333       __ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required);  // required interface
  1334       __ mov(   O0_klass,                             O1_actual);    // bad receiver
  1335       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  1336       __ delayed()->mov(Bytecodes::_invokeinterface,  O0_code);      // who is complaining?
  1338     break;
  1340   case _bound_ref_mh:
  1341   case _bound_int_mh:
  1342   case _bound_long_mh:
  1343   case _bound_ref_direct_mh:
  1344   case _bound_int_direct_mh:
  1345   case _bound_long_direct_mh:
  1347       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
  1348       BasicType arg_type  = ek_bound_mh_arg_type(ek);
  1349       int       arg_slots = type2size[arg_type];
  1351       // Make room for the new argument:
  1352       load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot);
  1353       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1355       insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1357       // Store bound argument into the new stack slot:
  1358       __ load_heap_oop(G3_bmh_argument, O1_scratch);
  1359       if (arg_type == T_OBJECT) {
  1360         __ st_ptr(O1_scratch, Address(O0_argslot, 0));
  1361       } else {
  1362         Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
  1363         move_typed_arg(_masm, arg_type, false,
  1364                        prim_value_addr,
  1365                        Address(O0_argslot, 0),
  1366                       O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  1369       if (direct_to_method) {
  1370         __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
  1371         jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1372       } else {
  1373         __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);  // target is a methodOop
  1374         __ verify_oop(G3_method_handle);
  1375         __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1378     break;
  1380   case _adapter_opt_profiling:
  1381     if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
  1382       Address G3_mh_vmcount(G3_method_handle, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
  1383       __ ld(G3_mh_vmcount, O1_scratch);
  1384       __ add(O1_scratch, 1, O1_scratch);
  1385       __ st(O1_scratch, G3_mh_vmcount);
  1387     // fall through
  1389   case _adapter_retype_only:
  1390   case _adapter_retype_raw:
  1391     // Immediately jump to the next MH layer:
  1392     __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1393     __ verify_oop(G3_method_handle);
  1394     __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1395     // This is OK when all parameter types widen.
  1396     // It is also OK when a return type narrows.
  1397     break;
  1399   case _adapter_check_cast:
  1401       // Check a reference argument before jumping to the next layer of MH:
  1402       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1403       Address vmarg = __ argument_address(O0_argslot, O0_argslot);
  1405       // What class are we casting to?
  1406       Register O1_klass = O1_scratch;  // Interesting AMH data.
  1407       __ load_heap_oop(G3_amh_argument, O1_klass);  // This is a Class object!
  1408       load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch);
  1410       Label L_done;
  1411       __ ld_ptr(vmarg, O2_scratch);
  1412       __ br_null_short(O2_scratch, Assembler::pn, L_done);  // No cast if null.
  1413       __ load_klass(O2_scratch, O2_scratch);
  1415       // Live at this point:
  1416       // - O0_argslot      :  argslot index in vmarg; may be required in the failing path
  1417       // - O1_klass        :  klass required by the target method
  1418       // - O2_scratch      :  argument klass to test
  1419       // - G3_method_handle:  adapter method handle
  1420       __ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done);
  1422       // If we get here, the type check failed!
  1423       __ load_heap_oop(G3_amh_argument,        O2_required);  // required class
  1424       __ ld_ptr(       vmarg,                  O1_actual);    // bad object
  1425       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  1426       __ delayed()->mov(Bytecodes::_checkcast, O0_code);      // who is complaining?
  1428       __ BIND(L_done);
  1429       // Get the new MH:
  1430       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1431       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1433     break;
  1435   case _adapter_prim_to_prim:
  1436   case _adapter_ref_to_prim:
  1437     // Handled completely by optimized cases.
  1438     __ stop("init_AdapterMethodHandle should not issue this");
  1439     break;
  1441   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
  1442 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  1443   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  1444   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
  1446       // Perform an in-place conversion to int or an int subword.
  1447       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1448       Address value;
  1449       Address vmarg;
  1450       bool value_left_justified = false;
  1452       switch (ek) {
  1453       case _adapter_opt_i2i:
  1454         value = vmarg = __ argument_address(O0_argslot, O0_argslot);
  1455         break;
  1456       case _adapter_opt_l2i:
  1458           // just delete the extra slot
  1459 #ifdef _LP64
  1460           // In V9, longs are given 2 64-bit slots in the interpreter, but the
  1461           // data is passed in only 1 slot.
  1462           // Keep the second slot.
  1463           __ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot);
  1464           remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1465           value = Address(O0_argslot, 4);  // Get least-significant 32-bit of 64-bit value.
  1466           vmarg = Address(O0_argslot, Interpreter::stackElementSize);
  1467 #else
  1468           // Keep the first slot.
  1469           __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1470           remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1471           value = Address(O0_argslot, 0);
  1472           vmarg = value;
  1473 #endif
  1475         break;
  1476       case _adapter_opt_unboxi:
  1478           vmarg = __ argument_address(O0_argslot, O0_argslot);
  1479           // Load the value up from the heap.
  1480           __ ld_ptr(vmarg, O1_scratch);
  1481           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
  1482 #ifdef ASSERT
  1483           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1484             if (is_subword_type(BasicType(bt)))
  1485               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
  1487 #endif
  1488           __ null_check(O1_scratch, value_offset);
  1489           value = Address(O1_scratch, value_offset);
  1490 #ifdef _BIG_ENDIAN
  1491           // Values stored in objects are packed.
  1492           value_left_justified = true;
  1493 #endif
  1495         break;
  1496       default:
  1497         ShouldNotReachHere();
  1500       // This check is required on _BIG_ENDIAN
  1501       Register G5_vminfo = G5_scratch;
  1502       __ ldsw(G3_amh_conversion, G5_vminfo);
  1503       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  1505       // Original 32-bit vmdata word must be of this form:
  1506       // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
  1507       __ lduw(value, O1_scratch);
  1508       if (!value_left_justified)
  1509         __ sll(O1_scratch, G5_vminfo, O1_scratch);
  1510       Label zero_extend, done;
  1511       __ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo);
  1512       __ br(Assembler::zero, false, Assembler::pn, zero_extend);
  1513       __ delayed()->nop();
  1515       // this path is taken for int->byte, int->short
  1516       __ sra(O1_scratch, G5_vminfo, O1_scratch);
  1517       __ ba_short(done);
  1519       __ bind(zero_extend);
  1520       // this is taken for int->char
  1521       __ srl(O1_scratch, G5_vminfo, O1_scratch);
  1523       __ bind(done);
  1524       __ st(O1_scratch, vmarg);
  1526       // Get the new MH:
  1527       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1528       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1530     break;
  1532   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  1533   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
  1535       // Perform an in-place int-to-long or ref-to-long conversion.
  1536       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1538       // On big-endian machine we duplicate the slot and store the MSW
  1539       // in the first slot.
  1540       __ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot);
  1542       insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1544       Address arg_lsw(O0_argslot, 0);
  1545       Address arg_msw(O0_argslot, -Interpreter::stackElementSize);
  1547       switch (ek) {
  1548       case _adapter_opt_i2l:
  1550 #ifdef _LP64
  1551           __ ldsw(arg_lsw, O2_scratch);                 // Load LSW sign-extended
  1552 #else
  1553           __ ldsw(arg_lsw, O3_scratch);                 // Load LSW sign-extended
  1554           __ srlx(O3_scratch, BitsPerInt, O2_scratch);  // Move MSW value to lower 32-bits for std
  1555 #endif
  1556           __ st_long(O2_scratch, arg_msw);              // Uses O2/O3 on !_LP64
  1558         break;
  1559       case _adapter_opt_unboxl:
  1561           // Load the value up from the heap.
  1562           __ ld_ptr(arg_lsw, O1_scratch);
  1563           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
  1564           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
  1565           __ null_check(O1_scratch, value_offset);
  1566           __ ld_long(Address(O1_scratch, value_offset), O2_scratch);  // Uses O2/O3 on !_LP64
  1567           __ st_long(O2_scratch, arg_msw);
  1569         break;
  1570       default:
  1571         ShouldNotReachHere();
  1574       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1575       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1577     break;
  1579   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  1580   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
  1582       // perform an in-place floating primitive conversion
  1583       __ unimplemented(entry_name(ek));
  1585     break;
  1587   case _adapter_prim_to_ref:
  1588     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1589     break;
  1591   case _adapter_swap_args:
  1592   case _adapter_rot_args:
  1593     // handled completely by optimized cases
  1594     __ stop("init_AdapterMethodHandle should not issue this");
  1595     break;
  1597   case _adapter_opt_swap_1:
  1598   case _adapter_opt_swap_2:
  1599   case _adapter_opt_rot_1_up:
  1600   case _adapter_opt_rot_1_down:
  1601   case _adapter_opt_rot_2_up:
  1602   case _adapter_opt_rot_2_down:
  1604       int swap_slots = ek_adapter_opt_swap_slots(ek);
  1605       int rotate     = ek_adapter_opt_swap_mode(ek);
  1607       // 'argslot' is the position of the first argument to swap.
  1608       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1609       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1610       if (VerifyMethodHandles)
  1611         verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame");
  1613       // 'vminfo' is the second.
  1614       Register O1_destslot = O1_scratch;
  1615       load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot);
  1616       __ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot);
  1617       if (VerifyMethodHandles)
  1618         verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame");
  1620       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
  1621       if (!rotate) {
  1622         // simple swap
  1623         for (int i = 0; i < swap_slots; i++) {
  1624           __ ld_ptr(            Address(O0_argslot,  i * wordSize), O2_scratch);
  1625           __ ld_ptr(            Address(O1_destslot, i * wordSize), O3_scratch);
  1626           __ st_ptr(O3_scratch, Address(O0_argslot,  i * wordSize));
  1627           __ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize));
  1629       } else {
  1630         // A rotate is actually pair of moves, with an "odd slot" (or pair)
  1631         // changing place with a series of other slots.
  1632         // First, push the "odd slot", which is going to get overwritten
  1633         switch (swap_slots) {
  1634         case 2 :  __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru
  1635         case 1 :  __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break;
  1636         default:  ShouldNotReachHere();
  1638         if (rotate > 0) {
  1639           // Here is rotate > 0:
  1640           // (low mem)                                          (high mem)
  1641           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
  1642           // =>
  1643           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
  1644           // work argslot down to destslot, copying contiguous data upwards
  1645           // pseudo-code:
  1646           //   argslot  = src_addr - swap_bytes
  1647           //   destslot = dest_addr
  1648           //   while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--;
  1649           move_arg_slots_up(_masm,
  1650                             O1_destslot,
  1651                             Address(O0_argslot, 0),
  1652                             swap_slots,
  1653                             O0_argslot, O2_scratch);
  1654         } else {
  1655           // Here is the other direction, rotate < 0:
  1656           // (low mem)                                          (high mem)
  1657           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
  1658           // =>
  1659           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
  1660           // work argslot up to destslot, copying contiguous data downwards
  1661           // pseudo-code:
  1662           //   argslot  = src_addr + swap_bytes
  1663           //   destslot = dest_addr
  1664           //   while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++;
  1665           // dest_slot denotes an exclusive upper limit
  1666           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
  1667           if (limit_bias != 0)
  1668             __ add(O1_destslot, - limit_bias * wordSize, O1_destslot);
  1669           move_arg_slots_down(_masm,
  1670                               Address(O0_argslot, swap_slots * wordSize),
  1671                               O1_destslot,
  1672                               -swap_slots,
  1673                               O0_argslot, O2_scratch);
  1675           __ sub(O1_destslot, swap_slots * wordSize, O1_destslot);
  1677         // pop the original first chunk into the destination slot, now free
  1678         switch (swap_slots) {
  1679         case 2 :  __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru
  1680         case 1 :  __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break;
  1681         default:  ShouldNotReachHere();
  1685       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1686       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1688     break;
  1690   case _adapter_dup_args:
  1692       // 'argslot' is the position of the first argument to duplicate.
  1693       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1694       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1696       // 'stack_move' is negative number of words to duplicate.
  1697       Register O1_stack_move = O1_scratch;
  1698       load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
  1700       if (VerifyMethodHandles) {
  1701         verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true,
  1702                         "copied argument(s) must fall within current frame");
  1705       // insert location is always the bottom of the argument list:
  1706       __ neg(O1_stack_move);
  1707       push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch);
  1709       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1710       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1712     break;
  1714   case _adapter_drop_args:
  1716       // 'argslot' is the position of the first argument to nuke.
  1717       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1718       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1720       // 'stack_move' is number of words to drop.
  1721       Register O1_stack_move = O1_scratch;
  1722       load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
  1724       remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch);
  1726       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1727       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1729     break;
  1731   case _adapter_collect_args:
  1732   case _adapter_fold_args:
  1733   case _adapter_spread_args:
  1734     // Handled completely by optimized cases.
  1735     __ stop("init_AdapterMethodHandle should not issue this");
  1736     break;
  1738   case _adapter_opt_collect_ref:
  1739   case _adapter_opt_collect_int:
  1740   case _adapter_opt_collect_long:
  1741   case _adapter_opt_collect_float:
  1742   case _adapter_opt_collect_double:
  1743   case _adapter_opt_collect_void:
  1744   case _adapter_opt_collect_0_ref:
  1745   case _adapter_opt_collect_1_ref:
  1746   case _adapter_opt_collect_2_ref:
  1747   case _adapter_opt_collect_3_ref:
  1748   case _adapter_opt_collect_4_ref:
  1749   case _adapter_opt_collect_5_ref:
  1750   case _adapter_opt_filter_S0_ref:
  1751   case _adapter_opt_filter_S1_ref:
  1752   case _adapter_opt_filter_S2_ref:
  1753   case _adapter_opt_filter_S3_ref:
  1754   case _adapter_opt_filter_S4_ref:
  1755   case _adapter_opt_filter_S5_ref:
  1756   case _adapter_opt_collect_2_S0_ref:
  1757   case _adapter_opt_collect_2_S1_ref:
  1758   case _adapter_opt_collect_2_S2_ref:
  1759   case _adapter_opt_collect_2_S3_ref:
  1760   case _adapter_opt_collect_2_S4_ref:
  1761   case _adapter_opt_collect_2_S5_ref:
  1762   case _adapter_opt_fold_ref:
  1763   case _adapter_opt_fold_int:
  1764   case _adapter_opt_fold_long:
  1765   case _adapter_opt_fold_float:
  1766   case _adapter_opt_fold_double:
  1767   case _adapter_opt_fold_void:
  1768   case _adapter_opt_fold_1_ref:
  1769   case _adapter_opt_fold_2_ref:
  1770   case _adapter_opt_fold_3_ref:
  1771   case _adapter_opt_fold_4_ref:
  1772   case _adapter_opt_fold_5_ref:
  1774       // Given a fresh incoming stack frame, build a new ricochet frame.
  1775       // On entry, TOS points at a return PC, and FP is the callers frame ptr.
  1776       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
  1777       // RCX contains an AdapterMethodHandle of the indicated kind.
  1779       // Relevant AMH fields:
  1780       // amh.vmargslot:
  1781       //   points to the trailing edge of the arguments
  1782       //   to filter, collect, or fold.  For a boxing operation,
  1783       //   it points just after the single primitive value.
  1784       // amh.argument:
  1785       //   recursively called MH, on |collect| arguments
  1786       // amh.vmtarget:
  1787       //   final destination MH, on return value, etc.
  1788       // amh.conversion.dest:
  1789       //   tells what is the type of the return value
  1790       //   (not needed here, since dest is also derived from ek)
  1791       // amh.conversion.vminfo:
  1792       //   points to the trailing edge of the return value
  1793       //   when the vmtarget is to be called; this is
  1794       //   equal to vmargslot + (retained ? |collect| : 0)
  1796       // Pass 0 or more argument slots to the recursive target.
  1797       int collect_count_constant = ek_adapter_opt_collect_count(ek);
  1799       // The collected arguments are copied from the saved argument list:
  1800       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
  1802       assert(ek_orig == _adapter_collect_args ||
  1803              ek_orig == _adapter_fold_args, "");
  1804       bool retain_original_args = (ek_orig == _adapter_fold_args);
  1806       // The return value is replaced (or inserted) at the 'vminfo' argslot.
  1807       // Sometimes we can compute this statically.
  1808       int dest_slot_constant = -1;
  1809       if (!retain_original_args)
  1810         dest_slot_constant = collect_slot_constant;
  1811       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
  1812         // We are preserving all the arguments, and the return value is prepended,
  1813         // so the return slot is to the left (above) the |collect| sequence.
  1814         dest_slot_constant = collect_slot_constant + collect_count_constant;
  1816       // Replace all those slots by the result of the recursive call.
  1817       // The result type can be one of ref, int, long, float, double, void.
  1818       // In the case of void, nothing is pushed on the stack after return.
  1819       BasicType dest = ek_adapter_opt_collect_type(ek);
  1820       assert(dest == type2wfield[dest], "dest is a stack slot type");
  1821       int dest_count = type2size[dest];
  1822       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
  1824       // Choose a return continuation.
  1825       EntryKind ek_ret = _adapter_opt_return_any;
  1826       if (dest != T_CONFLICT && OptimizeMethodHandles) {
  1827         switch (dest) {
  1828         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
  1829         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
  1830         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
  1831         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
  1832         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
  1833         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
  1834         default       : ShouldNotReachHere();
  1836         if (dest == T_OBJECT && dest_slot_constant >= 0) {
  1837           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
  1838           if (ek_try <= _adapter_opt_return_LAST &&
  1839               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
  1840             ek_ret = ek_try;
  1843         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
  1846       // Already pushed:  ... keep1 | collect | keep2 |
  1848       // Push a few extra argument words, if we need them to store the return value.
  1850         int extra_slots = 0;
  1851         if (retain_original_args) {
  1852           extra_slots = dest_count;
  1853         } else if (collect_count_constant == -1) {
  1854           extra_slots = dest_count;  // collect_count might be zero; be generous
  1855         } else if (dest_count > collect_count_constant) {
  1856           extra_slots = (dest_count - collect_count_constant);
  1857         } else {
  1858           // else we know we have enough dead space in |collect| to repurpose for return values
  1860         if (extra_slots != 0) {
  1861           __ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP);
  1865       // Set up Ricochet Frame.
  1866       __ mov(SP, O5_savedSP);  // record SP for the callee
  1868       // One extra (empty) slot for outgoing target MH (see Gargs computation below).
  1869       __ save_frame(2);  // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23.
  1871       // Note: Gargs is live throughout the following, until we make our recursive call.
  1872       // And the RF saves a copy in L4_saved_args_base.
  1874       RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs,
  1875                                           entry(ek_ret)->from_interpreted_entry());
  1877       // Compute argument base:
  1878       // Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above).
  1879       __ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs);
  1881       // Now pushed:  ... keep1 | collect | keep2 | extra | [RF]
  1883 #ifdef ASSERT
  1884       if (VerifyMethodHandles && dest != T_CONFLICT) {
  1885         BLOCK_COMMENT("verify AMH.conv.dest {");
  1886         extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch);
  1887         Label L_dest_ok;
  1888         __ cmp(O1_scratch, (int) dest);
  1889         __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
  1890         __ delayed()->nop();
  1891         if (dest == T_INT) {
  1892           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1893             if (is_subword_type(BasicType(bt))) {
  1894               __ cmp(O1_scratch, (int) bt);
  1895               __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
  1896               __ delayed()->nop();
  1900         __ stop("bad dest in AMH.conv");
  1901         __ BIND(L_dest_ok);
  1902         BLOCK_COMMENT("} verify AMH.conv.dest");
  1904 #endif //ASSERT
  1906       // Find out where the original copy of the recursive argument sequence begins.
  1907       Register O0_coll = O0_scratch;
  1909         RegisterOrConstant collect_slot = collect_slot_constant;
  1910         if (collect_slot_constant == -1) {
  1911           load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch);
  1912           collect_slot = O1_scratch;
  1914         // collect_slot might be 0, but we need the move anyway.
  1915         __ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll);
  1916         // O0_coll now points at the trailing edge of |collect| and leading edge of |keep2|
  1919       // Replace the old AMH with the recursive MH.  (No going back now.)
  1920       // In the case of a boxing call, the recursive call is to a 'boxer' method,
  1921       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
  1922       // or collect call, it will take one or more arguments, transform them,
  1923       // and return some result, to store back into argument_base[vminfo].
  1924       __ load_heap_oop(G3_amh_argument, G3_method_handle);
  1925       if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch);
  1927       // Calculate |collect|, the number of arguments we are collecting.
  1928       Register O1_collect_count = O1_scratch;
  1929       RegisterOrConstant collect_count;
  1930       if (collect_count_constant < 0) {
  1931         __ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch);
  1932         collect_count = O1_collect_count;
  1933       } else {
  1934         collect_count = collect_count_constant;
  1935 #ifdef ASSERT
  1936         if (VerifyMethodHandles) {
  1937           BLOCK_COMMENT("verify collect_count_constant {");
  1938           __ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch);
  1939           Label L_count_ok;
  1940           __ cmp_and_br_short(O3_scratch, collect_count_constant, Assembler::equal, Assembler::pt, L_count_ok);
  1941           __ stop("bad vminfo in AMH.conv");
  1942           __ BIND(L_count_ok);
  1943           BLOCK_COMMENT("} verify collect_count_constant");
  1945 #endif //ASSERT
  1948       // copy |collect| slots directly to TOS:
  1949       push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch);
  1950       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
  1951       // O0_coll still points at the trailing edge of |collect| and leading edge of |keep2|
  1953       // If necessary, adjust the saved arguments to make room for the eventual return value.
  1954       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
  1955       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
  1956       // In the non-retaining case, this might move keep2 either up or down.
  1957       // We don't have to copy the whole | RF... collect | complex,
  1958       // but we must adjust RF.saved_args_base.
  1959       // Also, from now on, we will forget about the original copy of |collect|.
  1960       // If we are retaining it, we will treat it as part of |keep2|.
  1961       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
  1963       BLOCK_COMMENT("adjust trailing arguments {");
  1964       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
  1965       int                open_count  = dest_count;
  1966       RegisterOrConstant close_count = collect_count_constant;
  1967       Register O1_close_count = O1_collect_count;
  1968       if (retain_original_args) {
  1969         close_count = constant(0);
  1970       } else if (collect_count_constant == -1) {
  1971         close_count = O1_collect_count;
  1974       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
  1975       RegisterOrConstant keep3_count;
  1976       Register O2_keep3_count = O2_scratch;
  1977       if (dest_slot_constant < 0) {
  1978         extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count);
  1979         keep3_count = O2_keep3_count;
  1980       } else  {
  1981         keep3_count = dest_slot_constant;
  1982 #ifdef ASSERT
  1983         if (VerifyMethodHandles && dest_slot_constant < 0) {
  1984           BLOCK_COMMENT("verify dest_slot_constant {");
  1985           extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch);
  1986           Label L_vminfo_ok;
  1987           __ cmp_and_br_short(O3_scratch, dest_slot_constant, Assembler::equal, Assembler::pt, L_vminfo_ok);
  1988           __ stop("bad vminfo in AMH.conv");
  1989           __ BIND(L_vminfo_ok);
  1990           BLOCK_COMMENT("} verify dest_slot_constant");
  1992 #endif //ASSERT
  1995       // tasks remaining:
  1996       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
  1997       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
  1998       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
  2000       // Old and new argument locations (based at slot 0).
  2001       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
  2002       bool zero_open_count = (open_count == 0);  // remember this bit of info
  2003       if (move_keep3 && fix_arg_base) {
  2004         // It will be easier to have everything in one register:
  2005         if (close_count.is_register()) {
  2006           // Deduct open_count from close_count register to get a clean +/- value.
  2007           __ sub(close_count.as_register(), open_count, close_count.as_register());
  2008         } else {
  2009           close_count = close_count.as_constant() - open_count;
  2011         open_count = 0;
  2013       Register L4_old_argv = RicochetFrame::L4_saved_args_base;
  2014       Register O3_new_argv = O3_scratch;
  2015       if (fix_arg_base) {
  2016         __ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv,
  2017                -(open_count * Interpreter::stackElementSize));
  2020       // First decide if any actual data are to be moved.
  2021       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
  2022       // (As it happens, all movements involve an argument list size change.)
  2024       // If there are variable parameters, use dynamic checks to skip around the whole mess.
  2025       Label L_done;
  2026       if (keep3_count.is_register()) {
  2027         __ cmp_and_br_short(keep3_count.as_register(), 0, Assembler::equal, Assembler::pn, L_done);
  2029       if (close_count.is_register()) {
  2030         __ cmp_and_br_short(close_count.as_register(), open_count, Assembler::equal, Assembler::pn, L_done);
  2033       if (move_keep3 && fix_arg_base) {
  2034         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
  2035         if (!close_count.is_constant()) {
  2036           emit_move_down = emit_guard = !zero_open_count;
  2037           emit_move_up   = true;
  2038         } else if (open_count != close_count.as_constant()) {
  2039           emit_move_down = (open_count > close_count.as_constant());
  2040           emit_move_up   = !emit_move_down;
  2042         Label L_move_up;
  2043         if (emit_guard) {
  2044           __ cmp(close_count.as_register(), open_count);
  2045           __ br(Assembler::greater, false, Assembler::pn, L_move_up);
  2046           __ delayed()->nop();
  2049         if (emit_move_down) {
  2050           // Move arguments down if |+dest+| > |-collect-|
  2051           // (This is rare, except when arguments are retained.)
  2052           // This opens space for the return value.
  2053           if (keep3_count.is_constant()) {
  2054             for (int i = 0; i < keep3_count.as_constant(); i++) {
  2055               __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
  2056               __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
  2058           } else {
  2059             // Live: O1_close_count, O2_keep3_count, O3_new_argv
  2060             Register argv_top = O0_scratch;
  2061             __ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top);
  2062             move_arg_slots_down(_masm,
  2063                                 Address(L4_old_argv, 0),  // beginning of old argv
  2064                                 argv_top,                 // end of old argv
  2065                                 close_count,              // distance to move down (must be negative)
  2066                                 O4_scratch, G5_scratch);
  2070         if (emit_guard) {
  2071           __ ba_short(L_done);  // assumes emit_move_up is true also
  2072           __ BIND(L_move_up);
  2075         if (emit_move_up) {
  2076           // Move arguments up if |+dest+| < |-collect-|
  2077           // (This is usual, except when |keep3| is empty.)
  2078           // This closes up the space occupied by the now-deleted collect values.
  2079           if (keep3_count.is_constant()) {
  2080             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
  2081               __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
  2082               __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
  2084           } else {
  2085             Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch));
  2086             // Live: O1_close_count, O2_keep3_count, O3_new_argv
  2087             move_arg_slots_up(_masm,
  2088                               L4_old_argv,  // beginning of old argv
  2089                               argv_top,     // end of old argv
  2090                               close_count,  // distance to move up (must be positive)
  2091                               O4_scratch, G5_scratch);
  2095       __ BIND(L_done);
  2097       if (fix_arg_base) {
  2098         // adjust RF.saved_args_base
  2099         __ mov(O3_new_argv, RicochetFrame::L4_saved_args_base);
  2102       if (stomp_dest) {
  2103         // Stomp the return slot, so it doesn't hold garbage.
  2104         // This isn't strictly necessary, but it may help detect bugs.
  2105         __ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch);
  2106         __ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base,
  2107                                       __ argument_offset(keep3_count, keep3_count.register_or_noreg())));  // uses O2_keep3_count
  2109       BLOCK_COMMENT("} adjust trailing arguments");
  2111       BLOCK_COMMENT("do_recursive_call");
  2112       __ mov(SP, O5_savedSP);  // record SP for the callee
  2113       __ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7);
  2114       // The globally unique bounce address has two purposes:
  2115       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
  2116       // 2. When returned to, it cuts back the stack and redirects control flow
  2117       //    to the return handler.
  2118       // The return handler will further cut back the stack when it takes
  2119       // down the RF.  Perhaps there is a way to streamline this further.
  2121       // State during recursive call:
  2122       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
  2123       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  2125     break;
  2127   case _adapter_opt_return_ref:
  2128   case _adapter_opt_return_int:
  2129   case _adapter_opt_return_long:
  2130   case _adapter_opt_return_float:
  2131   case _adapter_opt_return_double:
  2132   case _adapter_opt_return_void:
  2133   case _adapter_opt_return_S0_ref:
  2134   case _adapter_opt_return_S1_ref:
  2135   case _adapter_opt_return_S2_ref:
  2136   case _adapter_opt_return_S3_ref:
  2137   case _adapter_opt_return_S4_ref:
  2138   case _adapter_opt_return_S5_ref:
  2140       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
  2141       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
  2143       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2145       if (dest_slot_constant == -1) {
  2146         // The current stub is a general handler for this dest_type.
  2147         // It can be called from _adapter_opt_return_any below.
  2148         // Stash the address in a little table.
  2149         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
  2150         address return_handler = __ pc();
  2151         _adapter_return_handlers[dest_type_constant] = return_handler;
  2152         if (dest_type_constant == T_INT) {
  2153           // do the subword types too
  2154           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  2155             if (is_subword_type(BasicType(bt)) &&
  2156                 _adapter_return_handlers[bt] == NULL) {
  2157               _adapter_return_handlers[bt] = return_handler;
  2163       // On entry to this continuation handler, make Gargs live again.
  2164       __ mov(RicochetFrame::L4_saved_args_base, Gargs);
  2166       Register O7_temp   = O7;
  2167       Register O5_vminfo = O5;
  2169       RegisterOrConstant dest_slot = dest_slot_constant;
  2170       if (dest_slot_constant == -1) {
  2171         extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo);
  2172         dest_slot = O5_vminfo;
  2174       // Store the result back into the argslot.
  2175       // This code uses the interpreter calling sequence, in which the return value
  2176       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
  2177       // There are certain irregularities with floating point values, which can be seen
  2178       // in TemplateInterpreterGenerator::generate_return_entry_for.
  2179       move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp));
  2181       RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7);
  2183       // Load the final target and go.
  2184       if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch);
  2185       __ restore(I5_savedSP, G0, SP);
  2186       __ jump_to_method_handle_entry(G3_method_handle, O0_scratch);
  2187       __ illtrap(0);
  2189     break;
  2191   case _adapter_opt_return_any:
  2193       Register O7_temp      = O7;
  2194       Register O5_dest_type = O5;
  2196       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2197       extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type);
  2198       __ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp);
  2199       __ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type);
  2200       __ ld_ptr(O7_temp, O5_dest_type, O7_temp);
  2202 #ifdef ASSERT
  2203       { Label L_ok;
  2204         __ br_notnull_short(O7_temp, Assembler::pt, L_ok);
  2205         __ stop("bad method handle return");
  2206         __ BIND(L_ok);
  2208 #endif //ASSERT
  2209       __ JMP(O7_temp, 0);
  2210       __ delayed()->nop();
  2212     break;
  2214   case _adapter_opt_spread_0:
  2215   case _adapter_opt_spread_1_ref:
  2216   case _adapter_opt_spread_2_ref:
  2217   case _adapter_opt_spread_3_ref:
  2218   case _adapter_opt_spread_4_ref:
  2219   case _adapter_opt_spread_5_ref:
  2220   case _adapter_opt_spread_ref:
  2221   case _adapter_opt_spread_byte:
  2222   case _adapter_opt_spread_char:
  2223   case _adapter_opt_spread_short:
  2224   case _adapter_opt_spread_int:
  2225   case _adapter_opt_spread_long:
  2226   case _adapter_opt_spread_float:
  2227   case _adapter_opt_spread_double:
  2229       // spread an array out into a group of arguments
  2230       int  length_constant    = ek_adapter_opt_spread_count(ek);
  2231       bool length_can_be_zero = (length_constant == 0);
  2232       if (length_constant < 0) {
  2233         // some adapters with variable length must handle the zero case
  2234         if (!OptimizeMethodHandles ||
  2235             ek_adapter_opt_spread_type(ek) != T_OBJECT)
  2236           length_can_be_zero = true;
  2239       // find the address of the array argument
  2240       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  2241       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  2243       // O0_argslot points both to the array and to the first output arg
  2244       Address vmarg = Address(O0_argslot, 0);
  2246       // Get the array value.
  2247       Register  O1_array       = O1_scratch;
  2248       Register  O2_array_klass = O2_scratch;
  2249       BasicType elem_type      = ek_adapter_opt_spread_type(ek);
  2250       int       elem_slots     = type2size[elem_type];  // 1 or 2
  2251       int       array_slots    = 1;  // array is always a T_OBJECT
  2252       int       length_offset  = arrayOopDesc::length_offset_in_bytes();
  2253       int       elem0_offset   = arrayOopDesc::base_offset_in_bytes(elem_type);
  2254       __ ld_ptr(vmarg, O1_array);
  2256       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
  2257       if (length_can_be_zero) {
  2258         // handle the null pointer case, if zero is allowed
  2259         Label L_skip;
  2260         if (length_constant < 0) {
  2261           load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch);
  2262           __ cmp_zero_and_br(Assembler::notZero, O3_scratch, L_skip);
  2263           __ delayed()->nop(); // to avoid back-to-back cbcond instructions
  2265         __ br_null_short(O1_array, Assembler::pn, L_array_is_empty);
  2266         __ BIND(L_skip);
  2268       __ null_check(O1_array, oopDesc::klass_offset_in_bytes());
  2269       __ load_klass(O1_array, O2_array_klass);
  2271       // Check the array type.
  2272       Register O3_klass = O3_scratch;
  2273       __ load_heap_oop(G3_amh_argument, O3_klass);  // this is a Class object!
  2274       load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch);
  2276       Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length;
  2277       __ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass);
  2278       // If we get here, the type check failed!
  2279       __ ba_short(L_bad_array_klass);
  2280       __ BIND(L_ok_array_klass);
  2282       // Check length.
  2283       if (length_constant >= 0) {
  2284         __ ldsw(Address(O1_array, length_offset), O4_scratch);
  2285         __ cmp(O4_scratch, length_constant);
  2286       } else {
  2287         Register O3_vminfo = O3_scratch;
  2288         load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo);
  2289         __ ldsw(Address(O1_array, length_offset), O4_scratch);
  2290         __ cmp(O3_vminfo, O4_scratch);
  2292       __ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length);
  2293       __ delayed()->nop();
  2295       Register O2_argslot_limit = O2_scratch;
  2297       // Array length checks out.  Now insert any required stack slots.
  2298       if (length_constant == -1) {
  2299         // Form a pointer to the end of the affected region.
  2300         __ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit);
  2301         // 'stack_move' is negative number of words to insert
  2302         // This number already accounts for elem_slots.
  2303         Register O3_stack_move = O3_scratch;
  2304         load_stack_move(_masm, G3_amh_conversion, O3_stack_move);
  2305         __ cmp(O3_stack_move, 0);
  2306         assert(stack_move_unit() < 0, "else change this comparison");
  2307         __ br(Assembler::less, false, Assembler::pn, L_insert_arg_space);
  2308         __ delayed()->nop();
  2309         __ br(Assembler::equal, false, Assembler::pn, L_copy_args);
  2310         __ delayed()->nop();
  2311         // single argument case, with no array movement
  2312         __ BIND(L_array_is_empty);
  2313         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2314                          O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  2315         __ ba_short(L_args_done);  // no spreading to do
  2316         __ BIND(L_insert_arg_space);
  2317         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
  2318         // Live: O1_array, O2_argslot_limit, O3_stack_move
  2319         insert_arg_slots(_masm, O3_stack_move,
  2320                          O0_argslot, O4_scratch, G5_scratch, O1_scratch);
  2321         // reload from rdx_argslot_limit since rax_argslot is now decremented
  2322         __ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array);
  2323       } else if (length_constant >= 1) {
  2324         int new_slots = (length_constant * elem_slots) - array_slots;
  2325         insert_arg_slots(_masm, new_slots * stack_move_unit(),
  2326                          O0_argslot, O2_scratch, O3_scratch, O4_scratch);
  2327       } else if (length_constant == 0) {
  2328         __ BIND(L_array_is_empty);
  2329         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2330                          O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  2331       } else {
  2332         ShouldNotReachHere();
  2335       // Copy from the array to the new slots.
  2336       // Note: Stack change code preserves integrity of O0_argslot pointer.
  2337       // So even after slot insertions, O0_argslot still points to first argument.
  2338       // Beware:  Arguments that are shallow on the stack are deep in the array,
  2339       // and vice versa.  So a downward-growing stack (the usual) has to be copied
  2340       // elementwise in reverse order from the source array.
  2341       __ BIND(L_copy_args);
  2342       if (length_constant == -1) {
  2343         // [O0_argslot, O2_argslot_limit) is the area we are inserting into.
  2344         // Array element [0] goes at O0_argslot_limit[-wordSize].
  2345         Register O1_source = O1_array;
  2346         __ add(Address(O1_array, elem0_offset), O1_source);
  2347         Register O4_fill_ptr = O4_scratch;
  2348         __ mov(O2_argslot_limit, O4_fill_ptr);
  2349         Label L_loop;
  2350         __ BIND(L_loop);
  2351         __ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr);
  2352         move_typed_arg(_masm, elem_type, true,
  2353                        Address(O1_source, 0), Address(O4_fill_ptr, 0),
  2354                        O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  2355         __ add(O1_source, type2aelembytes(elem_type), O1_source);
  2356         __ cmp_and_brx_short(O4_fill_ptr, O0_argslot, Assembler::greaterUnsigned, Assembler::pt, L_loop);
  2357       } else if (length_constant == 0) {
  2358         // nothing to copy
  2359       } else {
  2360         int elem_offset = elem0_offset;
  2361         int slot_offset = length_constant * Interpreter::stackElementSize;
  2362         for (int index = 0; index < length_constant; index++) {
  2363           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
  2364           move_typed_arg(_masm, elem_type, true,
  2365                          Address(O1_array, elem_offset), Address(O0_argslot, slot_offset),
  2366                          O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  2367           elem_offset += type2aelembytes(elem_type);
  2370       __ BIND(L_args_done);
  2372       // Arguments are spread.  Move to next method handle.
  2373       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  2374       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  2376       __ BIND(L_bad_array_klass);
  2377       assert(!vmarg.uses(O2_required), "must be different registers");
  2378       __ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required);  // required class
  2379       __ ld_ptr(       vmarg,                                       O1_actual);    // bad object
  2380       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  2381       __ delayed()->mov(Bytecodes::_aaload,                         O0_code);      // who is complaining?
  2383       __ bind(L_bad_array_length);
  2384       assert(!vmarg.uses(O2_required), "must be different registers");
  2385       __ mov(   G3_method_handle,                O2_required);  // required class
  2386       __ ld_ptr(vmarg,                           O1_actual);    // bad object
  2387       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  2388       __ delayed()->mov(Bytecodes::_arraylength, O0_code);      // who is complaining?
  2390     break;
  2392   default:
  2393     DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek)));
  2394     ShouldNotReachHere();
  2396   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
  2398   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  2399   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  2401   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial