src/share/vm/memory/cardTableRS.cpp

Mon, 23 Jun 2008 16:49:37 -0700

author
ysr
date
Mon, 23 Jun 2008 16:49:37 -0700
changeset 782
60fb9c4db4e6
parent 777
37f87013dfd8
child 791
1ee8caae33af
permissions
-rw-r--r--

6718086: CMS assert: _concurrent_iteration_safe_limit update missed
Summary: Initialize the field correctly in ContiguousSpace's constructor and initialize() methods, using the latter for the survivor spaces upon initial construction or a subsequent resizing of the young generation. Add some missing Space sub-class constructors.
Reviewed-by: apetrusenko

     1 /*
     2  * Copyright 2001-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_cardTableRS.cpp.incl"
    28 CardTableRS::CardTableRS(MemRegion whole_heap,
    29                          int max_covered_regions) :
    30   GenRemSet(),
    31   _cur_youngergen_card_val(youngergenP1_card),
    32   _regions_to_iterate(max_covered_regions - 1)
    33 {
    34 #ifndef SERIALGC
    35   if (UseG1GC) {
    36     if (G1RSBarrierUseQueue) {
    37       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
    38                                                   max_covered_regions);
    39     } else {
    40       _ct_bs = new G1SATBCardTableModRefBS(whole_heap, max_covered_regions);
    41     }
    42   } else {
    43     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    44   }
    45 #else
    46   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
    47 #endif
    48   set_bs(_ct_bs);
    49   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
    50   if (_last_cur_val_in_gen == NULL) {
    51     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
    52   }
    53   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
    54     _last_cur_val_in_gen[i] = clean_card_val();
    55   }
    56   _ct_bs->set_CTRS(this);
    57 }
    59 void CardTableRS::resize_covered_region(MemRegion new_region) {
    60   _ct_bs->resize_covered_region(new_region);
    61 }
    63 jbyte CardTableRS::find_unused_youngergenP_card_value() {
    64   for (jbyte v = youngergenP1_card;
    65        v < cur_youngergen_and_prev_nonclean_card;
    66        v++) {
    67     bool seen = false;
    68     for (int g = 0; g < _regions_to_iterate; g++) {
    69       if (_last_cur_val_in_gen[g] == v) {
    70         seen = true;
    71         break;
    72       }
    73     }
    74     if (!seen) return v;
    75   }
    76   ShouldNotReachHere();
    77   return 0;
    78 }
    80 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
    81   // Parallel or sequential, we must always set the prev to equal the
    82   // last one written.
    83   if (parallel) {
    84     // Find a parallel value to be used next.
    85     jbyte next_val = find_unused_youngergenP_card_value();
    86     set_cur_youngergen_card_val(next_val);
    88   } else {
    89     // In an sequential traversal we will always write youngergen, so that
    90     // the inline barrier is  correct.
    91     set_cur_youngergen_card_val(youngergen_card);
    92   }
    93 }
    95 void CardTableRS::younger_refs_iterate(Generation* g,
    96                                        OopsInGenClosure* blk) {
    97   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
    98   g->younger_refs_iterate(blk);
    99 }
   101 class ClearNoncleanCardWrapper: public MemRegionClosure {
   102   MemRegionClosure* _dirty_card_closure;
   103   CardTableRS* _ct;
   104   bool _is_par;
   105 private:
   106   // Clears the given card, return true if the corresponding card should be
   107   // processed.
   108   bool clear_card(jbyte* entry) {
   109     if (_is_par) {
   110       while (true) {
   111         // In the parallel case, we may have to do this several times.
   112         jbyte entry_val = *entry;
   113         assert(entry_val != CardTableRS::clean_card_val(),
   114                "We shouldn't be looking at clean cards, and this should "
   115                "be the only place they get cleaned.");
   116         if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
   117             || _ct->is_prev_youngergen_card_val(entry_val)) {
   118           jbyte res =
   119             Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
   120           if (res == entry_val) {
   121             break;
   122           } else {
   123             assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
   124                    "The CAS above should only fail if another thread did "
   125                    "a GC write barrier.");
   126           }
   127         } else if (entry_val ==
   128                    CardTableRS::cur_youngergen_and_prev_nonclean_card) {
   129           // Parallelism shouldn't matter in this case.  Only the thread
   130           // assigned to scan the card should change this value.
   131           *entry = _ct->cur_youngergen_card_val();
   132           break;
   133         } else {
   134           assert(entry_val == _ct->cur_youngergen_card_val(),
   135                  "Should be the only possibility.");
   136           // In this case, the card was clean before, and become
   137           // cur_youngergen only because of processing of a promoted object.
   138           // We don't have to look at the card.
   139           return false;
   140         }
   141       }
   142       return true;
   143     } else {
   144       jbyte entry_val = *entry;
   145       assert(entry_val != CardTableRS::clean_card_val(),
   146              "We shouldn't be looking at clean cards, and this should "
   147              "be the only place they get cleaned.");
   148       assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
   149              "This should be possible in the sequential case.");
   150       *entry = CardTableRS::clean_card_val();
   151       return true;
   152     }
   153   }
   155 public:
   156   ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure,
   157                            CardTableRS* ct) :
   158     _dirty_card_closure(dirty_card_closure), _ct(ct) {
   159     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
   160   }
   161   void do_MemRegion(MemRegion mr) {
   162     // We start at the high end of "mr", walking backwards
   163     // while accumulating a contiguous dirty range of cards in
   164     // [start_of_non_clean, end_of_non_clean) which we then
   165     // process en masse.
   166     HeapWord* end_of_non_clean = mr.end();
   167     HeapWord* start_of_non_clean = end_of_non_clean;
   168     jbyte*       entry = _ct->byte_for(mr.last());
   169     const jbyte* first_entry = _ct->byte_for(mr.start());
   170     while (entry >= first_entry) {
   171       HeapWord* cur = _ct->addr_for(entry);
   172       if (!clear_card(entry)) {
   173         // We hit a clean card; process any non-empty
   174         // dirty range accumulated so far.
   175         if (start_of_non_clean < end_of_non_clean) {
   176           MemRegion mr2(start_of_non_clean, end_of_non_clean);
   177           _dirty_card_closure->do_MemRegion(mr2);
   178         }
   179         // Reset the dirty window while continuing to
   180         // look for the next dirty window to process.
   181         end_of_non_clean = cur;
   182         start_of_non_clean = end_of_non_clean;
   183       }
   184       // Open the left end of the window one card to the left.
   185       start_of_non_clean = cur;
   186       // Note that "entry" leads "start_of_non_clean" in
   187       // its leftward excursion after this point
   188       // in the loop and, when we hit the left end of "mr",
   189       // will point off of the left end of the card-table
   190       // for "mr".
   191       entry--;
   192     }
   193     // If the first card of "mr" was dirty, we will have
   194     // been left with a dirty window, co-initial with "mr",
   195     // which we now process.
   196     if (start_of_non_clean < end_of_non_clean) {
   197       MemRegion mr2(start_of_non_clean, end_of_non_clean);
   198       _dirty_card_closure->do_MemRegion(mr2);
   199     }
   200   }
   201 };
   202 // clean (by dirty->clean before) ==> cur_younger_gen
   203 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
   204 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
   205 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
   206 // cur-younger-gen                ==> cur_younger_gen
   207 // cur_youngergen_and_prev_nonclean_card ==> no change.
   208 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
   209   jbyte* entry = ct_bs()->byte_for(field);
   210   do {
   211     jbyte entry_val = *entry;
   212     // We put this first because it's probably the most common case.
   213     if (entry_val == clean_card_val()) {
   214       // No threat of contention with cleaning threads.
   215       *entry = cur_youngergen_card_val();
   216       return;
   217     } else if (card_is_dirty_wrt_gen_iter(entry_val)
   218                || is_prev_youngergen_card_val(entry_val)) {
   219       // Mark it as both cur and prev youngergen; card cleaning thread will
   220       // eventually remove the previous stuff.
   221       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
   222       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
   223       // Did the CAS succeed?
   224       if (res == entry_val) return;
   225       // Otherwise, retry, to see the new value.
   226       continue;
   227     } else {
   228       assert(entry_val == cur_youngergen_and_prev_nonclean_card
   229              || entry_val == cur_youngergen_card_val(),
   230              "should be only possibilities.");
   231       return;
   232     }
   233   } while (true);
   234 }
   236 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
   237                                                 OopsInGenClosure* cl) {
   238   DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, _ct_bs->precision(),
   239                                                    cl->gen_boundary());
   240   ClearNoncleanCardWrapper clear_cl(dcto_cl, this);
   242   _ct_bs->non_clean_card_iterate(sp, sp->used_region_at_save_marks(),
   243                                 dcto_cl, &clear_cl, false);
   244 }
   246 void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
   247   GenCollectedHeap* gch = GenCollectedHeap::heap();
   248   // Generations younger than gen have been evacuated. We can clear
   249   // card table entries for gen (we know that it has no pointers
   250   // to younger gens) and for those below. The card tables for
   251   // the youngest gen need never be cleared, and those for perm gen
   252   // will be cleared based on the parameter clear_perm.
   253   // There's a bit of subtlety in the clear() and invalidate()
   254   // methods that we exploit here and in invalidate_or_clear()
   255   // below to avoid missing cards at the fringes. If clear() or
   256   // invalidate() are changed in the future, this code should
   257   // be revisited. 20040107.ysr
   258   Generation* g = gen;
   259   for(Generation* prev_gen = gch->prev_gen(g);
   260       prev_gen != NULL;
   261       g = prev_gen, prev_gen = gch->prev_gen(g)) {
   262     MemRegion to_be_cleared_mr = g->prev_used_region();
   263     clear(to_be_cleared_mr);
   264   }
   265   // Clear perm gen cards if asked to do so.
   266   if (clear_perm) {
   267     MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
   268     clear(to_be_cleared_mr);
   269   }
   270 }
   272 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
   273                                       bool perm) {
   274   GenCollectedHeap* gch = GenCollectedHeap::heap();
   275   // For each generation gen (and younger and/or perm)
   276   // invalidate the cards for the currently occupied part
   277   // of that generation and clear the cards for the
   278   // unoccupied part of the generation (if any, making use
   279   // of that generation's prev_used_region to determine that
   280   // region). No need to do anything for the youngest
   281   // generation. Also see note#20040107.ysr above.
   282   Generation* g = gen;
   283   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
   284       g = prev_gen, prev_gen = gch->prev_gen(g))  {
   285     MemRegion used_mr = g->used_region();
   286     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   287     if (!to_be_cleared_mr.is_empty()) {
   288       clear(to_be_cleared_mr);
   289     }
   290     invalidate(used_mr);
   291     if (!younger) break;
   292   }
   293   // Clear perm gen cards if asked to do so.
   294   if (perm) {
   295     g = gch->perm_gen();
   296     MemRegion used_mr = g->used_region();
   297     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
   298     if (!to_be_cleared_mr.is_empty()) {
   299       clear(to_be_cleared_mr);
   300     }
   301     invalidate(used_mr);
   302   }
   303 }
   306 class VerifyCleanCardClosure: public OopClosure {
   307 private:
   308   HeapWord* _boundary;
   309   HeapWord* _begin;
   310   HeapWord* _end;
   311 protected:
   312   template <class T> void do_oop_work(T* p) {
   313     HeapWord* jp = (HeapWord*)p;
   314     if (jp >= _begin && jp < _end) {
   315       oop obj = oopDesc::load_decode_heap_oop(p);
   316       guarantee(obj == NULL ||
   317                 (HeapWord*)p < _boundary ||
   318                 (HeapWord*)obj >= _boundary,
   319                 "pointer on clean card crosses boundary");
   320     }
   321   }
   322 public:
   323   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
   324     _boundary(b), _begin(begin), _end(end) {}
   325   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
   326   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
   327 };
   329 class VerifyCTSpaceClosure: public SpaceClosure {
   330 private:
   331   CardTableRS* _ct;
   332   HeapWord* _boundary;
   333 public:
   334   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
   335     _ct(ct), _boundary(boundary) {}
   336   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
   337 };
   339 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
   340   CardTableRS* _ct;
   341 public:
   342   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
   343   void do_generation(Generation* gen) {
   344     // Skip the youngest generation.
   345     if (gen->level() == 0) return;
   346     // Normally, we're interested in pointers to younger generations.
   347     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
   348     gen->space_iterate(&blk, true);
   349   }
   350 };
   352 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
   353   // We don't need to do young-gen spaces.
   354   if (s->end() <= gen_boundary) return;
   355   MemRegion used = s->used_region();
   357   jbyte* cur_entry = byte_for(used.start());
   358   jbyte* limit = byte_after(used.last());
   359   while (cur_entry < limit) {
   360     if (*cur_entry == CardTableModRefBS::clean_card) {
   361       jbyte* first_dirty = cur_entry+1;
   362       while (first_dirty < limit &&
   363              *first_dirty == CardTableModRefBS::clean_card) {
   364         first_dirty++;
   365       }
   366       // If the first object is a regular object, and it has a
   367       // young-to-old field, that would mark the previous card.
   368       HeapWord* boundary = addr_for(cur_entry);
   369       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
   370       HeapWord* boundary_block = s->block_start(boundary);
   371       HeapWord* begin = boundary;             // Until proven otherwise.
   372       HeapWord* start_block = boundary_block; // Until proven otherwise.
   373       if (boundary_block < boundary) {
   374         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
   375           oop boundary_obj = oop(boundary_block);
   376           if (!boundary_obj->is_objArray() &&
   377               !boundary_obj->is_typeArray()) {
   378             guarantee(cur_entry > byte_for(used.start()),
   379                       "else boundary would be boundary_block");
   380             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
   381               begin = boundary_block + s->block_size(boundary_block);
   382               start_block = begin;
   383             }
   384           }
   385         }
   386       }
   387       // Now traverse objects until end.
   388       HeapWord* cur = start_block;
   389       VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
   390       while (cur < end) {
   391         if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
   392           oop(cur)->oop_iterate(&verify_blk);
   393         }
   394         cur += s->block_size(cur);
   395       }
   396       cur_entry = first_dirty;
   397     } else {
   398       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
   399       // is a transient value, that cannot be in the card table
   400       // except during GC, and thus assert that:
   401       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
   402       //        "Illegal CT value");
   403       // That however, need not hold, as will become clear in the
   404       // following...
   406       // We'd normally expect that if we are in the parallel case,
   407       // we can't have left a prev value (which would be different
   408       // from the current value) in the card table, and so we'd like to
   409       // assert that:
   410       // guarantee(cur_youngergen_card_val() == youngergen_card
   411       //           || !is_prev_youngergen_card_val(*cur_entry),
   412       //           "Illegal CT value");
   413       // That, however, may not hold occasionally, because of
   414       // CMS or MSC in the old gen. To wit, consider the
   415       // following two simple illustrative scenarios:
   416       // (a) CMS: Consider the case where a large object L
   417       //     spanning several cards is allocated in the old
   418       //     gen, and has a young gen reference stored in it, dirtying
   419       //     some interior cards. A young collection scans the card,
   420       //     finds a young ref and installs a youngergenP_n value.
   421       //     L then goes dead. Now a CMS collection starts,
   422       //     finds L dead and sweeps it up. Assume that L is
   423       //     abutting _unallocated_blk, so _unallocated_blk is
   424       //     adjusted down to (below) L. Assume further that
   425       //     no young collection intervenes during this CMS cycle.
   426       //     The next young gen cycle will not get to look at this
   427       //     youngergenP_n card since it lies in the unoccupied
   428       //     part of the space.
   429       //     Some young collections later the blocks on this
   430       //     card can be re-allocated either due to direct allocation
   431       //     or due to absorbing promotions. At this time, the
   432       //     before-gc verification will fail the above assert.
   433       // (b) MSC: In this case, an object L with a young reference
   434       //     is on a card that (therefore) holds a youngergen_n value.
   435       //     Suppose also that L lies towards the end of the used
   436       //     the used space before GC. An MSC collection
   437       //     occurs that compacts to such an extent that this
   438       //     card is no longer in the occupied part of the space.
   439       //     Since current code in MSC does not always clear cards
   440       //     in the unused part of old gen, this stale youngergen_n
   441       //     value is left behind and can later be covered by
   442       //     an object when promotion or direct allocation
   443       //     re-allocates that part of the heap.
   444       //
   445       // Fortunately, the presence of such stale card values is
   446       // "only" a minor annoyance in that subsequent young collections
   447       // might needlessly scan such cards, but would still never corrupt
   448       // the heap as a result. However, it's likely not to be a significant
   449       // performance inhibitor in practice. For instance,
   450       // some recent measurements with unoccupied cards eagerly cleared
   451       // out to maintain this invariant, showed next to no
   452       // change in young collection times; of course one can construct
   453       // degenerate examples where the cost can be significant.)
   454       // Note, in particular, that if the "stale" card is modified
   455       // after re-allocation, it would be dirty, not "stale". Thus,
   456       // we can never have a younger ref in such a card and it is
   457       // safe not to scan that card in any collection. [As we see
   458       // below, we do some unnecessary scanning
   459       // in some cases in the current parallel scanning algorithm.]
   460       //
   461       // The main point below is that the parallel card scanning code
   462       // deals correctly with these stale card values. There are two main
   463       // cases to consider where we have a stale "younger gen" value and a
   464       // "derivative" case to consider, where we have a stale
   465       // "cur_younger_gen_and_prev_non_clean" value, as will become
   466       // apparent in the case analysis below.
   467       // o Case 1. If the stale value corresponds to a younger_gen_n
   468       //   value other than the cur_younger_gen value then the code
   469       //   treats this as being tantamount to a prev_younger_gen
   470       //   card. This means that the card may be unnecessarily scanned.
   471       //   There are two sub-cases to consider:
   472       //   o Case 1a. Let us say that the card is in the occupied part
   473       //     of the generation at the time the collection begins. In
   474       //     that case the card will be either cleared when it is scanned
   475       //     for young pointers, or will be set to cur_younger_gen as a
   476       //     result of promotion. (We have elided the normal case where
   477       //     the scanning thread and the promoting thread interleave
   478       //     possibly resulting in a transient
   479       //     cur_younger_gen_and_prev_non_clean value before settling
   480       //     to cur_younger_gen. [End Case 1a.]
   481       //   o Case 1b. Consider now the case when the card is in the unoccupied
   482       //     part of the space which becomes occupied because of promotions
   483       //     into it during the current young GC. In this case the card
   484       //     will never be scanned for young references. The current
   485       //     code will set the card value to either
   486       //     cur_younger_gen_and_prev_non_clean or leave
   487       //     it with its stale value -- because the promotions didn't
   488       //     result in any younger refs on that card. Of these two
   489       //     cases, the latter will be covered in Case 1a during
   490       //     a subsequent scan. To deal with the former case, we need
   491       //     to further consider how we deal with a stale value of
   492       //     cur_younger_gen_and_prev_non_clean in our case analysis
   493       //     below. This we do in Case 3 below. [End Case 1b]
   494       //   [End Case 1]
   495       // o Case 2. If the stale value corresponds to cur_younger_gen being
   496       //   a value not necessarily written by a current promotion, the
   497       //   card will not be scanned by the younger refs scanning code.
   498       //   (This is OK since as we argued above such cards cannot contain
   499       //   any younger refs.) The result is that this value will be
   500       //   treated as a prev_younger_gen value in a subsequent collection,
   501       //   which is addressed in Case 1 above. [End Case 2]
   502       // o Case 3. We here consider the "derivative" case from Case 1b. above
   503       //   because of which we may find a stale
   504       //   cur_younger_gen_and_prev_non_clean card value in the table.
   505       //   Once again, as in Case 1, we consider two subcases, depending
   506       //   on whether the card lies in the occupied or unoccupied part
   507       //   of the space at the start of the young collection.
   508       //   o Case 3a. Let us say the card is in the occupied part of
   509       //     the old gen at the start of the young collection. In that
   510       //     case, the card will be scanned by the younger refs scanning
   511       //     code which will set it to cur_younger_gen. In a subsequent
   512       //     scan, the card will be considered again and get its final
   513       //     correct value. [End Case 3a]
   514       //   o Case 3b. Now consider the case where the card is in the
   515       //     unoccupied part of the old gen, and is occupied as a result
   516       //     of promotions during thus young gc. In that case,
   517       //     the card will not be scanned for younger refs. The presence
   518       //     of newly promoted objects on the card will then result in
   519       //     its keeping the value cur_younger_gen_and_prev_non_clean
   520       //     value, which we have dealt with in Case 3 here. [End Case 3b]
   521       //   [End Case 3]
   522       //
   523       // (Please refer to the code in the helper class
   524       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
   525       //
   526       // The informal arguments above can be tightened into a formal
   527       // correctness proof and it behooves us to write up such a proof,
   528       // or to use model checking to prove that there are no lingering
   529       // concerns.
   530       //
   531       // Clearly because of Case 3b one cannot bound the time for
   532       // which a card will retain what we have called a "stale" value.
   533       // However, one can obtain a Loose upper bound on the redundant
   534       // work as a result of such stale values. Note first that any
   535       // time a stale card lies in the occupied part of the space at
   536       // the start of the collection, it is scanned by younger refs
   537       // code and we can define a rank function on card values that
   538       // declines when this is so. Note also that when a card does not
   539       // lie in the occupied part of the space at the beginning of a
   540       // young collection, its rank can either decline or stay unchanged.
   541       // In this case, no extra work is done in terms of redundant
   542       // younger refs scanning of that card.
   543       // Then, the case analysis above reveals that, in the worst case,
   544       // any such stale card will be scanned unnecessarily at most twice.
   545       //
   546       // It is nonethelss advisable to try and get rid of some of this
   547       // redundant work in a subsequent (low priority) re-design of
   548       // the card-scanning code, if only to simplify the underlying
   549       // state machine analysis/proof. ysr 1/28/2002. XXX
   550       cur_entry++;
   551     }
   552   }
   553 }
   555 void CardTableRS::verify() {
   556   // At present, we only know how to verify the card table RS for
   557   // generational heaps.
   558   VerifyCTGenClosure blk(this);
   559   CollectedHeap* ch = Universe::heap();
   560   // We will do the perm-gen portion of the card table, too.
   561   Generation* pg = SharedHeap::heap()->perm_gen();
   562   HeapWord* pg_boundary = pg->reserved().start();
   564   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
   565     GenCollectedHeap::heap()->generation_iterate(&blk, false);
   566     _ct_bs->verify();
   568     // If the old gen collections also collect perm, then we are only
   569     // interested in perm-to-young pointers, not perm-to-old pointers.
   570     GenCollectedHeap* gch = GenCollectedHeap::heap();
   571     CollectorPolicy* cp = gch->collector_policy();
   572     if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
   573       pg_boundary = gch->get_gen(1)->reserved().start();
   574     }
   575   }
   576   VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
   577   SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
   578 }
   581 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
   582   if (!mr.is_empty()) {
   583     jbyte* cur_entry = byte_for(mr.start());
   584     jbyte* limit = byte_after(mr.last());
   585     // The region mr may not start on a card boundary so
   586     // the first card may reflect a write to the space
   587     // just prior to mr.
   588     if (!is_aligned(mr.start())) {
   589       cur_entry++;
   590     }
   591     for (;cur_entry < limit; cur_entry++) {
   592       guarantee(*cur_entry == CardTableModRefBS::clean_card,
   593                 "Unexpected dirty card found");
   594     }
   595   }
   596 }

mercurial