src/share/vm/opto/addnode.cpp

Tue, 02 Sep 2008 15:03:05 -0700

author
never
date
Tue, 02 Sep 2008 15:03:05 -0700
changeset 753
60bc5071073f
parent 741
af945ba2e739
child 755
2b73d212b1fd
permissions
-rw-r--r--

6738933: assert with base pointers must match with compressed oops enabled
Reviewed-by: kvn, rasbold

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_addnode.cpp.incl"
    30 #define MAXFLOAT        ((float)3.40282346638528860e+38)
    32 // Classic Add functionality.  This covers all the usual 'add' behaviors for
    33 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
    34 // all inherited from this class.  The various identity values are supplied
    35 // by virtual functions.
    38 //=============================================================================
    39 //------------------------------hash-------------------------------------------
    40 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
    41 // (commute) inputs to AddNodes willy-nilly so the hash function must return
    42 // the same value in the presence of edge swapping.
    43 uint AddNode::hash() const {
    44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
    45 }
    47 //------------------------------Identity---------------------------------------
    48 // If either input is a constant 0, return the other input.
    49 Node *AddNode::Identity( PhaseTransform *phase ) {
    50   const Type *zero = add_id();  // The additive identity
    51   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
    52   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
    53   return this;
    54 }
    56 //------------------------------commute----------------------------------------
    57 // Commute operands to move loads and constants to the right.
    58 static bool commute( Node *add, int con_left, int con_right ) {
    59   Node *in1 = add->in(1);
    60   Node *in2 = add->in(2);
    62   // Convert "1+x" into "x+1".
    63   // Right is a constant; leave it
    64   if( con_right ) return false;
    65   // Left is a constant; move it right.
    66   if( con_left ) {
    67     add->swap_edges(1, 2);
    68     return true;
    69   }
    71   // Convert "Load+x" into "x+Load".
    72   // Now check for loads
    73   if (in2->is_Load()) {
    74     if (!in1->is_Load()) {
    75       // already x+Load to return
    76       return false;
    77     }
    78     // both are loads, so fall through to sort inputs by idx
    79   } else if( in1->is_Load() ) {
    80     // Left is a Load and Right is not; move it right.
    81     add->swap_edges(1, 2);
    82     return true;
    83   }
    85   PhiNode *phi;
    86   // Check for tight loop increments: Loop-phi of Add of loop-phi
    87   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
    88     return false;
    89   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
    90     add->swap_edges(1, 2);
    91     return true;
    92   }
    94   // Otherwise, sort inputs (commutativity) to help value numbering.
    95   if( in1->_idx > in2->_idx ) {
    96     add->swap_edges(1, 2);
    97     return true;
    98   }
    99   return false;
   100 }
   102 //------------------------------Idealize---------------------------------------
   103 // If we get here, we assume we are associative!
   104 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   105   const Type *t1 = phase->type( in(1) );
   106   const Type *t2 = phase->type( in(2) );
   107   int con_left  = t1->singleton();
   108   int con_right = t2->singleton();
   110   // Check for commutative operation desired
   111   if( commute(this,con_left,con_right) ) return this;
   113   AddNode *progress = NULL;             // Progress flag
   115   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
   116   // constant, and the left input is an add of a constant, flatten the
   117   // expression tree.
   118   Node *add1 = in(1);
   119   Node *add2 = in(2);
   120   int add1_op = add1->Opcode();
   121   int this_op = Opcode();
   122   if( con_right && t2 != Type::TOP && // Right input is a constant?
   123       add1_op == this_op ) { // Left input is an Add?
   125     // Type of left _in right input
   126     const Type *t12 = phase->type( add1->in(2) );
   127     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
   128       // Check for rare case of closed data cycle which can happen inside
   129       // unreachable loops. In these cases the computation is undefined.
   130 #ifdef ASSERT
   131       Node *add11    = add1->in(1);
   132       int   add11_op = add11->Opcode();
   133       if( (add1 == add1->in(1))
   134          || (add11_op == this_op && add11->in(1) == add1) ) {
   135         assert(false, "dead loop in AddNode::Ideal");
   136       }
   137 #endif
   138       // The Add of the flattened expression
   139       Node *x1 = add1->in(1);
   140       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
   141       PhaseIterGVN *igvn = phase->is_IterGVN();
   142       if( igvn ) {
   143         set_req_X(2,x2,igvn);
   144         set_req_X(1,x1,igvn);
   145       } else {
   146         set_req(2,x2);
   147         set_req(1,x1);
   148       }
   149       progress = this;            // Made progress
   150       add1 = in(1);
   151       add1_op = add1->Opcode();
   152     }
   153   }
   155   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
   156   if( add1_op == this_op && !con_right ) {
   157     Node *a12 = add1->in(2);
   158     const Type *t12 = phase->type( a12 );
   159     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
   160       add2 = add1->clone();
   161       add2->set_req(2, in(2));
   162       add2 = phase->transform(add2);
   163       set_req(1, add2);
   164       set_req(2, a12);
   165       progress = this;
   166       add2 = a12;
   167     }
   168   }
   170   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
   171   int add2_op = add2->Opcode();
   172   if( add2_op == this_op && !con_left ) {
   173     Node *a22 = add2->in(2);
   174     const Type *t22 = phase->type( a22 );
   175     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
   176       Node *addx = add2->clone();
   177       addx->set_req(1, in(1));
   178       addx->set_req(2, add2->in(1));
   179       addx = phase->transform(addx);
   180       set_req(1, addx);
   181       set_req(2, a22);
   182       progress = this;
   183     }
   184   }
   186   return progress;
   187 }
   189 //------------------------------Value-----------------------------------------
   190 // An add node sums it's two _in.  If one input is an RSD, we must mixin
   191 // the other input's symbols.
   192 const Type *AddNode::Value( PhaseTransform *phase ) const {
   193   // Either input is TOP ==> the result is TOP
   194   const Type *t1 = phase->type( in(1) );
   195   const Type *t2 = phase->type( in(2) );
   196   if( t1 == Type::TOP ) return Type::TOP;
   197   if( t2 == Type::TOP ) return Type::TOP;
   199   // Either input is BOTTOM ==> the result is the local BOTTOM
   200   const Type *bot = bottom_type();
   201   if( (t1 == bot) || (t2 == bot) ||
   202       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   203     return bot;
   205   // Check for an addition involving the additive identity
   206   const Type *tadd = add_of_identity( t1, t2 );
   207   if( tadd ) return tadd;
   209   return add_ring(t1,t2);               // Local flavor of type addition
   210 }
   212 //------------------------------add_identity-----------------------------------
   213 // Check for addition of the identity
   214 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   215   const Type *zero = add_id();  // The additive identity
   216   if( t1->higher_equal( zero ) ) return t2;
   217   if( t2->higher_equal( zero ) ) return t1;
   219   return NULL;
   220 }
   223 //=============================================================================
   224 //------------------------------Idealize---------------------------------------
   225 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   226   int op1 = in(1)->Opcode();
   227   int op2 = in(2)->Opcode();
   228   // Fold (con1-x)+con2 into (con1+con2)-x
   229   if( op1 == Op_SubI ) {
   230     const Type *t_sub1 = phase->type( in(1)->in(1) );
   231     const Type *t_2    = phase->type( in(2)        );
   232     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   233       return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   234                               in(1)->in(2) );
   235     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   236     if( op2 == Op_SubI ) {
   237       // Check for dead cycle: d = (a-b)+(c-d)
   238       assert( in(1)->in(2) != this && in(2)->in(2) != this,
   239               "dead loop in AddINode::Ideal" );
   240       Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
   241       sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
   242       sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
   243       return sub;
   244     }
   245   }
   247   // Convert "x+(0-y)" into "(x-y)"
   248   if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
   249     return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
   251   // Convert "(0-y)+x" into "(x-y)"
   252   if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
   253     return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
   255   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
   256   // Helps with array allocation math constant folding
   257   // See 4790063:
   258   // Unrestricted transformation is unsafe for some runtime values of 'x'
   259   // ( x ==  0, z == 1, y == -1 ) fails
   260   // ( x == -5, z == 1, y ==  1 ) fails
   261   // Transform works for small z and small negative y when the addition
   262   // (x + (y << z)) does not cross zero.
   263   // Implement support for negative y and (x >= -(y << z))
   264   // Have not observed cases where type information exists to support
   265   // positive y and (x <= -(y << z))
   266   if( op1 == Op_URShiftI && op2 == Op_ConI &&
   267       in(1)->in(2)->Opcode() == Op_ConI ) {
   268     jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
   269     jint y = phase->type( in(2) )->is_int()->get_con();
   271     if( z < 5 && -5 < y && y < 0 ) {
   272       const Type *t_in11 = phase->type(in(1)->in(1));
   273       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
   274         Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
   275         return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
   276       }
   277     }
   278   }
   280   return AddNode::Ideal(phase, can_reshape);
   281 }
   284 //------------------------------Identity---------------------------------------
   285 // Fold (x-y)+y  OR  y+(x-y)  into  x
   286 Node *AddINode::Identity( PhaseTransform *phase ) {
   287   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
   288     return in(1)->in(1);
   289   }
   290   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
   291     return in(2)->in(1);
   292   }
   293   return AddNode::Identity(phase);
   294 }
   297 //------------------------------add_ring---------------------------------------
   298 // Supplied function returns the sum of the inputs.  Guaranteed never
   299 // to be passed a TOP or BOTTOM type, these are filtered out by
   300 // pre-check.
   301 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
   302   const TypeInt *r0 = t0->is_int(); // Handy access
   303   const TypeInt *r1 = t1->is_int();
   304   int lo = r0->_lo + r1->_lo;
   305   int hi = r0->_hi + r1->_hi;
   306   if( !(r0->is_con() && r1->is_con()) ) {
   307     // Not both constants, compute approximate result
   308     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   309       lo = min_jint; hi = max_jint; // Underflow on the low side
   310     }
   311     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   312       lo = min_jint; hi = max_jint; // Overflow on the high side
   313     }
   314     if( lo > hi ) {               // Handle overflow
   315       lo = min_jint; hi = max_jint;
   316     }
   317   } else {
   318     // both constants, compute precise result using 'lo' and 'hi'
   319     // Semantics define overflow and underflow for integer addition
   320     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   321   }
   322   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   323 }
   326 //=============================================================================
   327 //------------------------------Idealize---------------------------------------
   328 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   329   int op1 = in(1)->Opcode();
   330   int op2 = in(2)->Opcode();
   331   // Fold (con1-x)+con2 into (con1+con2)-x
   332   if( op1 == Op_SubL ) {
   333     const Type *t_sub1 = phase->type( in(1)->in(1) );
   334     const Type *t_2    = phase->type( in(2)        );
   335     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
   336       return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
   337                               in(1)->in(2) );
   338     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
   339     if( op2 == Op_SubL ) {
   340       // Check for dead cycle: d = (a-b)+(c-d)
   341       assert( in(1)->in(2) != this && in(2)->in(2) != this,
   342               "dead loop in AddLNode::Ideal" );
   343       Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
   344       sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
   345       sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
   346       return sub;
   347     }
   348   }
   350   // Convert "x+(0-y)" into "(x-y)"
   351   if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
   352     return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
   354   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
   355   // into "(X<<1)+Y" and let shift-folding happen.
   356   if( op2 == Op_AddL &&
   357       in(2)->in(1) == in(1) &&
   358       op1 != Op_ConL &&
   359       0 ) {
   360     Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
   361     return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
   362   }
   364   return AddNode::Ideal(phase, can_reshape);
   365 }
   368 //------------------------------Identity---------------------------------------
   369 // Fold (x-y)+y  OR  y+(x-y)  into  x
   370 Node *AddLNode::Identity( PhaseTransform *phase ) {
   371   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
   372     return in(1)->in(1);
   373   }
   374   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
   375     return in(2)->in(1);
   376   }
   377   return AddNode::Identity(phase);
   378 }
   381 //------------------------------add_ring---------------------------------------
   382 // Supplied function returns the sum of the inputs.  Guaranteed never
   383 // to be passed a TOP or BOTTOM type, these are filtered out by
   384 // pre-check.
   385 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
   386   const TypeLong *r0 = t0->is_long(); // Handy access
   387   const TypeLong *r1 = t1->is_long();
   388   jlong lo = r0->_lo + r1->_lo;
   389   jlong hi = r0->_hi + r1->_hi;
   390   if( !(r0->is_con() && r1->is_con()) ) {
   391     // Not both constants, compute approximate result
   392     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
   393       lo =min_jlong; hi = max_jlong; // Underflow on the low side
   394     }
   395     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
   396       lo = min_jlong; hi = max_jlong; // Overflow on the high side
   397     }
   398     if( lo > hi ) {               // Handle overflow
   399       lo = min_jlong; hi = max_jlong;
   400     }
   401   } else {
   402     // both constants, compute precise result using 'lo' and 'hi'
   403     // Semantics define overflow and underflow for integer addition
   404     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
   405   }
   406   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
   407 }
   410 //=============================================================================
   411 //------------------------------add_of_identity--------------------------------
   412 // Check for addition of the identity
   413 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   414   // x ADD 0  should return x unless 'x' is a -zero
   415   //
   416   // const Type *zero = add_id();     // The additive identity
   417   // jfloat f1 = t1->getf();
   418   // jfloat f2 = t2->getf();
   419   //
   420   // if( t1->higher_equal( zero ) ) return t2;
   421   // if( t2->higher_equal( zero ) ) return t1;
   423   return NULL;
   424 }
   426 //------------------------------add_ring---------------------------------------
   427 // Supplied function returns the sum of the inputs.
   428 // This also type-checks the inputs for sanity.  Guaranteed never to
   429 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   430 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
   431   // We must be adding 2 float constants.
   432   return TypeF::make( t0->getf() + t1->getf() );
   433 }
   435 //------------------------------Ideal------------------------------------------
   436 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   437   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   438     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   439   }
   441   // Floating point additions are not associative because of boundary conditions (infinity)
   442   return commute(this,
   443                  phase->type( in(1) )->singleton(),
   444                  phase->type( in(2) )->singleton() ) ? this : NULL;
   445 }
   448 //=============================================================================
   449 //------------------------------add_of_identity--------------------------------
   450 // Check for addition of the identity
   451 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
   452   // x ADD 0  should return x unless 'x' is a -zero
   453   //
   454   // const Type *zero = add_id();     // The additive identity
   455   // jfloat f1 = t1->getf();
   456   // jfloat f2 = t2->getf();
   457   //
   458   // if( t1->higher_equal( zero ) ) return t2;
   459   // if( t2->higher_equal( zero ) ) return t1;
   461   return NULL;
   462 }
   463 //------------------------------add_ring---------------------------------------
   464 // Supplied function returns the sum of the inputs.
   465 // This also type-checks the inputs for sanity.  Guaranteed never to
   466 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   467 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
   468   // We must be adding 2 double constants.
   469   return TypeD::make( t0->getd() + t1->getd() );
   470 }
   472 //------------------------------Ideal------------------------------------------
   473 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   474   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   475     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
   476   }
   478   // Floating point additions are not associative because of boundary conditions (infinity)
   479   return commute(this,
   480                  phase->type( in(1) )->singleton(),
   481                  phase->type( in(2) )->singleton() ) ? this : NULL;
   482 }
   485 //=============================================================================
   486 //------------------------------Identity---------------------------------------
   487 // If one input is a constant 0, return the other input.
   488 Node *AddPNode::Identity( PhaseTransform *phase ) {
   489   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
   490 }
   492 //------------------------------Idealize---------------------------------------
   493 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   494   // Bail out if dead inputs
   495   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
   497   // If the left input is an add of a constant, flatten the expression tree.
   498   const Node *n = in(Address);
   499   if (n->is_AddP() && n->in(Base) == in(Base)) {
   500     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
   501     assert( !addp->in(Address)->is_AddP() ||
   502              addp->in(Address)->as_AddP() != addp,
   503             "dead loop in AddPNode::Ideal" );
   504     // Type of left input's right input
   505     const Type *t = phase->type( addp->in(Offset) );
   506     if( t == Type::TOP ) return NULL;
   507     const TypeX *t12 = t->is_intptr_t();
   508     if( t12->is_con() ) {       // Left input is an add of a constant?
   509       // If the right input is a constant, combine constants
   510       const Type *temp_t2 = phase->type( in(Offset) );
   511       if( temp_t2 == Type::TOP ) return NULL;
   512       const TypeX *t2 = temp_t2->is_intptr_t();
   513       Node* address;
   514       Node* offset;
   515       if( t2->is_con() ) {
   516         // The Add of the flattened expression
   517         address = addp->in(Address);
   518         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
   519       } else {
   520         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
   521         address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
   522         offset  = addp->in(Offset);
   523       }
   524       PhaseIterGVN *igvn = phase->is_IterGVN();
   525       if( igvn ) {
   526         set_req_X(Address,address,igvn);
   527         set_req_X(Offset,offset,igvn);
   528       } else {
   529         set_req(Address,address);
   530         set_req(Offset,offset);
   531       }
   532       return this;
   533     }
   534   }
   536   // Raw pointers?
   537   if( in(Base)->bottom_type() == Type::TOP ) {
   538     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
   539     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
   540       Node* offset = in(Offset);
   541       return new (phase->C, 2) CastX2PNode(offset);
   542     }
   543   }
   545   // If the right is an add of a constant, push the offset down.
   546   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
   547   // The idea is to merge array_base+scaled_index groups together,
   548   // and only have different constant offsets from the same base.
   549   const Node *add = in(Offset);
   550   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
   551     const Type *t22 = phase->type( add->in(2) );
   552     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
   553       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
   554       set_req(Offset, add->in(2));
   555       return this;              // Made progress
   556     }
   557   }
   559   return NULL;                  // No progress
   560 }
   562 //------------------------------bottom_type------------------------------------
   563 // Bottom-type is the pointer-type with unknown offset.
   564 const Type *AddPNode::bottom_type() const {
   565   if (in(Address) == NULL)  return TypePtr::BOTTOM;
   566   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
   567   if( !tp ) return Type::TOP;   // TOP input means TOP output
   568   assert( in(Offset)->Opcode() != Op_ConP, "" );
   569   const Type *t = in(Offset)->bottom_type();
   570   if( t == Type::TOP )
   571     return tp->add_offset(Type::OffsetTop);
   572   const TypeX *tx = t->is_intptr_t();
   573   intptr_t txoffset = Type::OffsetBot;
   574   if (tx->is_con()) {   // Left input is an add of a constant?
   575     txoffset = tx->get_con();
   576   }
   577   return tp->add_offset(txoffset);
   578 }
   580 //------------------------------Value------------------------------------------
   581 const Type *AddPNode::Value( PhaseTransform *phase ) const {
   582   // Either input is TOP ==> the result is TOP
   583   const Type *t1 = phase->type( in(Address) );
   584   const Type *t2 = phase->type( in(Offset) );
   585   if( t1 == Type::TOP ) return Type::TOP;
   586   if( t2 == Type::TOP ) return Type::TOP;
   588   // Left input is a pointer
   589   const TypePtr *p1 = t1->isa_ptr();
   590   // Right input is an int
   591   const TypeX *p2 = t2->is_intptr_t();
   592   // Add 'em
   593   intptr_t p2offset = Type::OffsetBot;
   594   if (p2->is_con()) {   // Left input is an add of a constant?
   595     p2offset = p2->get_con();
   596   }
   597   return p1->add_offset(p2offset);
   598 }
   600 //------------------------Ideal_base_and_offset--------------------------------
   601 // Split an oop pointer into a base and offset.
   602 // (The offset might be Type::OffsetBot in the case of an array.)
   603 // Return the base, or NULL if failure.
   604 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
   605                                       // second return value:
   606                                       intptr_t& offset) {
   607   if (ptr->is_AddP()) {
   608     Node* base = ptr->in(AddPNode::Base);
   609     Node* addr = ptr->in(AddPNode::Address);
   610     Node* offs = ptr->in(AddPNode::Offset);
   611     if (base == addr || base->is_top()) {
   612       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
   613       if (offset != Type::OffsetBot) {
   614         return addr;
   615       }
   616     }
   617   }
   618   offset = Type::OffsetBot;
   619   return NULL;
   620 }
   622 //------------------------------unpack_offsets----------------------------------
   623 // Collect the AddP offset values into the elements array, giving up
   624 // if there are more than length.
   625 int AddPNode::unpack_offsets(Node* elements[], int length) {
   626   int count = 0;
   627   Node* addr = this;
   628   Node* base = addr->in(AddPNode::Base);
   629   while (addr->is_AddP()) {
   630     if (addr->in(AddPNode::Base) != base) {
   631       // give up
   632       return -1;
   633     }
   634     elements[count++] = addr->in(AddPNode::Offset);
   635     if (count == length) {
   636       // give up
   637       return -1;
   638     }
   639     addr = addr->in(AddPNode::Address);
   640   }
   641   return count;
   642 }
   644 //------------------------------match_edge-------------------------------------
   645 // Do we Match on this edge index or not?  Do not match base pointer edge
   646 uint AddPNode::match_edge(uint idx) const {
   647   return idx > Base;
   648 }
   650 //---------------------------mach_bottom_type----------------------------------
   651 // Utility function for use by ADLC.  Implements bottom_type for matched AddP.
   652 const Type *AddPNode::mach_bottom_type( const MachNode* n) {
   653   Node* base = n->in(Base);
   654   const Type *t = base->bottom_type();
   655   if ( t == Type::TOP ) {
   656     // an untyped pointer
   657     return TypeRawPtr::BOTTOM;
   658   }
   659   const TypePtr* tp = t->isa_oopptr();
   660   if ( tp == NULL )  return t;
   661   if ( tp->_offset == TypePtr::OffsetBot )  return tp;
   663   // We must carefully add up the various offsets...
   664   intptr_t offset = 0;
   665   const TypePtr* tptr = NULL;
   667   uint numopnds = n->num_opnds();
   668   uint index = n->oper_input_base();
   669   for ( uint i = 1; i < numopnds; i++ ) {
   670     MachOper *opnd = n->_opnds[i];
   671     // Check for any interesting operand info.
   672     // In particular, check for both memory and non-memory operands.
   673     // %%%%% Clean this up: use xadd_offset
   674     intptr_t con = opnd->constant();
   675     if ( con == TypePtr::OffsetBot )  goto bottom_out;
   676     offset += con;
   677     con = opnd->constant_disp();
   678     if ( con == TypePtr::OffsetBot )  goto bottom_out;
   679     offset += con;
   680     if( opnd->scale() != 0 ) goto bottom_out;
   682     // Check each operand input edge.  Find the 1 allowed pointer
   683     // edge.  Other edges must be index edges; track exact constant
   684     // inputs and otherwise assume the worst.
   685     for ( uint j = opnd->num_edges(); j > 0; j-- ) {
   686       Node* edge = n->in(index++);
   687       const Type*    et  = edge->bottom_type();
   688       const TypeX*   eti = et->isa_intptr_t();
   689       if ( eti == NULL ) {
   690         // there must be one pointer among the operands
   691         guarantee(tptr == NULL, "must be only one pointer operand");
   692         tptr = et->isa_oopptr();
   693         guarantee(tptr != NULL, "non-int operand must be pointer");
   694         if (tptr->higher_equal(tp->add_offset(tptr->offset())))
   695           tp = tptr; // Set more precise type for bailout
   696         continue;
   697       }
   698       if ( eti->_hi != eti->_lo )  goto bottom_out;
   699       offset += eti->_lo;
   700     }
   701   }
   702   guarantee(tptr != NULL, "must be exactly one pointer operand");
   703   return tptr->add_offset(offset);
   705  bottom_out:
   706   return tp->add_offset(TypePtr::OffsetBot);
   707 }
   709 //=============================================================================
   710 //------------------------------Identity---------------------------------------
   711 Node *OrINode::Identity( PhaseTransform *phase ) {
   712   // x | x => x
   713   if (phase->eqv(in(1), in(2))) {
   714     return in(1);
   715   }
   717   return AddNode::Identity(phase);
   718 }
   720 //------------------------------add_ring---------------------------------------
   721 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   722 // the logical operations the ring's ADD is really a logical OR function.
   723 // This also type-checks the inputs for sanity.  Guaranteed never to
   724 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   725 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
   726   const TypeInt *r0 = t0->is_int(); // Handy access
   727   const TypeInt *r1 = t1->is_int();
   729   // If both args are bool, can figure out better types
   730   if ( r0 == TypeInt::BOOL ) {
   731     if ( r1 == TypeInt::ONE) {
   732       return TypeInt::ONE;
   733     } else if ( r1 == TypeInt::BOOL ) {
   734       return TypeInt::BOOL;
   735     }
   736   } else if ( r0 == TypeInt::ONE ) {
   737     if ( r1 == TypeInt::BOOL ) {
   738       return TypeInt::ONE;
   739     }
   740   }
   742   // If either input is not a constant, just return all integers.
   743   if( !r0->is_con() || !r1->is_con() )
   744     return TypeInt::INT;        // Any integer, but still no symbols.
   746   // Otherwise just OR them bits.
   747   return TypeInt::make( r0->get_con() | r1->get_con() );
   748 }
   750 //=============================================================================
   751 //------------------------------Identity---------------------------------------
   752 Node *OrLNode::Identity( PhaseTransform *phase ) {
   753   // x | x => x
   754   if (phase->eqv(in(1), in(2))) {
   755     return in(1);
   756   }
   758   return AddNode::Identity(phase);
   759 }
   761 //------------------------------add_ring---------------------------------------
   762 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
   763   const TypeLong *r0 = t0->is_long(); // Handy access
   764   const TypeLong *r1 = t1->is_long();
   766   // If either input is not a constant, just return all integers.
   767   if( !r0->is_con() || !r1->is_con() )
   768     return TypeLong::LONG;      // Any integer, but still no symbols.
   770   // Otherwise just OR them bits.
   771   return TypeLong::make( r0->get_con() | r1->get_con() );
   772 }
   774 //=============================================================================
   775 //------------------------------add_ring---------------------------------------
   776 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
   777 // the logical operations the ring's ADD is really a logical OR function.
   778 // This also type-checks the inputs for sanity.  Guaranteed never to
   779 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
   780 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
   781   const TypeInt *r0 = t0->is_int(); // Handy access
   782   const TypeInt *r1 = t1->is_int();
   784   // Complementing a boolean?
   785   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
   786                                || r1 == TypeInt::BOOL))
   787     return TypeInt::BOOL;
   789   if( !r0->is_con() || !r1->is_con() ) // Not constants
   790     return TypeInt::INT;        // Any integer, but still no symbols.
   792   // Otherwise just XOR them bits.
   793   return TypeInt::make( r0->get_con() ^ r1->get_con() );
   794 }
   796 //=============================================================================
   797 //------------------------------add_ring---------------------------------------
   798 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
   799   const TypeLong *r0 = t0->is_long(); // Handy access
   800   const TypeLong *r1 = t1->is_long();
   802   // If either input is not a constant, just return all integers.
   803   if( !r0->is_con() || !r1->is_con() )
   804     return TypeLong::LONG;      // Any integer, but still no symbols.
   806   // Otherwise just OR them bits.
   807   return TypeLong::make( r0->get_con() ^ r1->get_con() );
   808 }
   810 //=============================================================================
   811 //------------------------------add_ring---------------------------------------
   812 // Supplied function returns the sum of the inputs.
   813 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
   814   const TypeInt *r0 = t0->is_int(); // Handy access
   815   const TypeInt *r1 = t1->is_int();
   817   // Otherwise just MAX them bits.
   818   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   819 }
   821 //=============================================================================
   822 //------------------------------Idealize---------------------------------------
   823 // MINs show up in range-check loop limit calculations.  Look for
   824 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
   825 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
   826   Node *progress = NULL;
   827   // Force a right-spline graph
   828   Node *l = in(1);
   829   Node *r = in(2);
   830   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
   831   // to force a right-spline graph for the rest of MinINode::Ideal().
   832   if( l->Opcode() == Op_MinI ) {
   833     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
   834     r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
   835     l = l->in(1);
   836     set_req(1, l);
   837     set_req(2, r);
   838     return this;
   839   }
   841   // Get left input & constant
   842   Node *x = l;
   843   int x_off = 0;
   844   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
   845       x->in(2)->is_Con() ) {
   846     const Type *t = x->in(2)->bottom_type();
   847     if( t == Type::TOP ) return NULL;  // No progress
   848     x_off = t->is_int()->get_con();
   849     x = x->in(1);
   850   }
   852   // Scan a right-spline-tree for MINs
   853   Node *y = r;
   854   int y_off = 0;
   855   // Check final part of MIN tree
   856   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
   857       y->in(2)->is_Con() ) {
   858     const Type *t = y->in(2)->bottom_type();
   859     if( t == Type::TOP ) return NULL;  // No progress
   860     y_off = t->is_int()->get_con();
   861     y = y->in(1);
   862   }
   863   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
   864     swap_edges(1, 2);
   865     return this;
   866   }
   869   if( r->Opcode() == Op_MinI ) {
   870     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
   871     y = r->in(1);
   872     // Check final part of MIN tree
   873     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
   874         y->in(2)->is_Con() ) {
   875       const Type *t = y->in(2)->bottom_type();
   876       if( t == Type::TOP ) return NULL;  // No progress
   877       y_off = t->is_int()->get_con();
   878       y = y->in(1);
   879     }
   881     if( x->_idx > y->_idx )
   882       return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
   884     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
   885     if( !phase->eqv(x,y) ) return NULL;
   886     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
   887     // MIN2(x+c0 or x+c1 which less, z).
   888     return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
   889   } else {
   890     // See if covers: MIN2(x+c0,y+c1)
   891     if( !phase->eqv(x,y) ) return NULL;
   892     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
   893     return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
   894   }
   896 }
   898 //------------------------------add_ring---------------------------------------
   899 // Supplied function returns the sum of the inputs.
   900 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
   901   const TypeInt *r0 = t0->is_int(); // Handy access
   902   const TypeInt *r1 = t1->is_int();
   904   // Otherwise just MIN them bits.
   905   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
   906 }

mercurial