src/os/bsd/vm/perfMemory_bsd.cpp

Fri, 24 Oct 2014 15:02:37 -0400

author
hseigel
date
Fri, 24 Oct 2014 15:02:37 -0400
changeset 7707
60a992c821f8
parent 6680
78bbf4d43a14
child 7709
5ca2ea5eeff0
permissions
-rw-r--r--

8050807: Better performing performance data handling
Reviewed-by: dcubed, dholmes, pnauman, ctornqvi, mschoene
Contributed-by: gerald.thornbrugh@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "os_bsd.inline.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/perfMemory.hpp"
    33 #include "services/memTracker.hpp"
    34 #include "utilities/exceptions.hpp"
    36 // put OS-includes here
    37 # include <sys/types.h>
    38 # include <sys/mman.h>
    39 # include <errno.h>
    40 # include <stdio.h>
    41 # include <unistd.h>
    42 # include <sys/stat.h>
    43 # include <signal.h>
    44 # include <pwd.h>
    46 static char* backing_store_file_name = NULL;  // name of the backing store
    47                                               // file, if successfully created.
    49 // Standard Memory Implementation Details
    51 // create the PerfData memory region in standard memory.
    52 //
    53 static char* create_standard_memory(size_t size) {
    55   // allocate an aligned chuck of memory
    56   char* mapAddress = os::reserve_memory(size);
    58   if (mapAddress == NULL) {
    59     return NULL;
    60   }
    62   // commit memory
    63   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
    64     if (PrintMiscellaneous && Verbose) {
    65       warning("Could not commit PerfData memory\n");
    66     }
    67     os::release_memory(mapAddress, size);
    68     return NULL;
    69   }
    71   return mapAddress;
    72 }
    74 // delete the PerfData memory region
    75 //
    76 static void delete_standard_memory(char* addr, size_t size) {
    78   // there are no persistent external resources to cleanup for standard
    79   // memory. since DestroyJavaVM does not support unloading of the JVM,
    80   // cleanup of the memory resource is not performed. The memory will be
    81   // reclaimed by the OS upon termination of the process.
    82   //
    83   return;
    84 }
    86 // save the specified memory region to the given file
    87 //
    88 // Note: this function might be called from signal handler (by os::abort()),
    89 // don't allocate heap memory.
    90 //
    91 static void save_memory_to_file(char* addr, size_t size) {
    93  const char* destfile = PerfMemory::get_perfdata_file_path();
    94  assert(destfile[0] != '\0', "invalid PerfData file path");
    96   int result;
    98   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
    99               result);;
   100   if (result == OS_ERR) {
   101     if (PrintMiscellaneous && Verbose) {
   102       warning("Could not create Perfdata save file: %s: %s\n",
   103               destfile, strerror(errno));
   104     }
   105   } else {
   106     int fd = result;
   108     for (size_t remaining = size; remaining > 0;) {
   110       RESTARTABLE(::write(fd, addr, remaining), result);
   111       if (result == OS_ERR) {
   112         if (PrintMiscellaneous && Verbose) {
   113           warning("Could not write Perfdata save file: %s: %s\n",
   114                   destfile, strerror(errno));
   115         }
   116         break;
   117       }
   119       remaining -= (size_t)result;
   120       addr += result;
   121     }
   123     result = ::close(fd);
   124     if (PrintMiscellaneous && Verbose) {
   125       if (result == OS_ERR) {
   126         warning("Could not close %s: %s\n", destfile, strerror(errno));
   127       }
   128     }
   129   }
   130   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
   131 }
   134 // Shared Memory Implementation Details
   136 // Note: the solaris and bsd shared memory implementation uses the mmap
   137 // interface with a backing store file to implement named shared memory.
   138 // Using the file system as the name space for shared memory allows a
   139 // common name space to be supported across a variety of platforms. It
   140 // also provides a name space that Java applications can deal with through
   141 // simple file apis.
   142 //
   143 // The solaris and bsd implementations store the backing store file in
   144 // a user specific temporary directory located in the /tmp file system,
   145 // which is always a local file system and is sometimes a RAM based file
   146 // system.
   148 // return the user specific temporary directory name.
   149 //
   150 // the caller is expected to free the allocated memory.
   151 //
   152 static char* get_user_tmp_dir(const char* user) {
   154   const char* tmpdir = os::get_temp_directory();
   155   const char* perfdir = PERFDATA_NAME;
   156   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
   157   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   159   // construct the path name to user specific tmp directory
   160   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
   162   return dirname;
   163 }
   165 // convert the given file name into a process id. if the file
   166 // does not meet the file naming constraints, return 0.
   167 //
   168 static pid_t filename_to_pid(const char* filename) {
   170   // a filename that doesn't begin with a digit is not a
   171   // candidate for conversion.
   172   //
   173   if (!isdigit(*filename)) {
   174     return 0;
   175   }
   177   // check if file name can be converted to an integer without
   178   // any leftover characters.
   179   //
   180   char* remainder = NULL;
   181   errno = 0;
   182   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
   184   if (errno != 0) {
   185     return 0;
   186   }
   188   // check for left over characters. If any, then the filename is
   189   // not a candidate for conversion.
   190   //
   191   if (remainder != NULL && *remainder != '\0') {
   192     return 0;
   193   }
   195   // successful conversion, return the pid
   196   return pid;
   197 }
   200 // Check if the given statbuf is considered a secure directory for
   201 // the backing store files. Returns true if the directory is considered
   202 // a secure location. Returns false if the statbuf is a symbolic link or
   203 // if an error occurred.
   204 //
   205 static bool is_statbuf_secure(struct stat *statp) {
   206   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
   207     // The path represents a link or some non-directory file type,
   208     // which is not what we expected. Declare it insecure.
   209     //
   210     return false;
   211   }
   212   // We have an existing directory, check if the permissions are safe.
   213   //
   214   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
   215     // The directory is open for writing and could be subjected
   216     // to a symlink or a hard link attack. Declare it insecure.
   217     //
   218     return false;
   219   }
   220   // See if the uid of the directory matches the effective uid of the process.
   221   //
   222   if (statp->st_uid != geteuid()) {
   223     // The directory was not created by this user, declare it insecure.
   224     //
   225     return false;
   226   }
   227   return true;
   228 }
   231 // Check if the given path is considered a secure directory for
   232 // the backing store files. Returns true if the directory exists
   233 // and is considered a secure location. Returns false if the path
   234 // is a symbolic link or if an error occurred.
   235 //
   236 static bool is_directory_secure(const char* path) {
   237   struct stat statbuf;
   238   int result = 0;
   240   RESTARTABLE(::lstat(path, &statbuf), result);
   241   if (result == OS_ERR) {
   242     return false;
   243   }
   245   // The path exists, see if it is secure.
   246   return is_statbuf_secure(&statbuf);
   247 }
   250 // Check if the given directory file descriptor is considered a secure
   251 // directory for the backing store files. Returns true if the directory
   252 // exists and is considered a secure location. Returns false if the path
   253 // is a symbolic link or if an error occurred.
   254 //
   255 static bool is_dirfd_secure(int dir_fd) {
   256   struct stat statbuf;
   257   int result = 0;
   259   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
   260   if (result == OS_ERR) {
   261     return false;
   262   }
   264   // The path exists, now check its mode.
   265   return is_statbuf_secure(&statbuf);
   266 }
   269 // Check to make sure fd1 and fd2 are referencing the same file system object.
   270 //
   271 static bool is_same_fsobject(int fd1, int fd2) {
   272   struct stat statbuf1;
   273   struct stat statbuf2;
   274   int result = 0;
   276   RESTARTABLE(::fstat(fd1, &statbuf1), result);
   277   if (result == OS_ERR) {
   278     return false;
   279   }
   280   RESTARTABLE(::fstat(fd2, &statbuf2), result);
   281   if (result == OS_ERR) {
   282     return false;
   283   }
   285   if ((statbuf1.st_ino == statbuf2.st_ino) &&
   286       (statbuf1.st_dev == statbuf2.st_dev)) {
   287     return true;
   288   } else {
   289     return false;
   290   }
   291 }
   294 // Open the directory of the given path and validate it.
   295 // Return a DIR * of the open directory.
   296 //
   297 static DIR *open_directory_secure(const char* dirname) {
   298   // Open the directory using open() so that it can be verified
   299   // to be secure by calling is_dirfd_secure(), opendir() and then check
   300   // to see if they are the same file system object.  This method does not
   301   // introduce a window of opportunity for the directory to be attacked that
   302   // calling opendir() and is_directory_secure() does.
   303   int result;
   304   DIR *dirp = NULL;
   305   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
   306   if (result == OS_ERR) {
   307     // Directory doesn't exist or is a symlink, so there is nothing to cleanup.
   308     if (PrintMiscellaneous && Verbose) {
   309       if (errno == ELOOP) {
   310         warning("directory %s is a symlink and is not secure\n", dirname);
   311       } else {
   312         warning("could not open directory %s: %s\n", dirname, strerror(errno));
   313       }
   314     }
   315     return dirp;
   316   }
   317   int fd = result;
   319   // Determine if the open directory is secure.
   320   if (!is_dirfd_secure(fd)) {
   321     // The directory is not a secure directory.
   322     os::close(fd);
   323     return dirp;
   324   }
   326   // Open the directory.
   327   dirp = ::opendir(dirname);
   328   if (dirp == NULL) {
   329     // The directory doesn't exist, close fd and return.
   330     os::close(fd);
   331     return dirp;
   332   }
   334   // Check to make sure fd and dirp are referencing the same file system object.
   335   if (!is_same_fsobject(fd, dirfd(dirp))) {
   336     // The directory is not secure.
   337     os::close(fd);
   338     os::closedir(dirp);
   339     dirp = NULL;
   340     return dirp;
   341   }
   343   // Close initial open now that we know directory is secure
   344   os::close(fd);
   346   return dirp;
   347 }
   349 // NOTE: The code below uses fchdir(), open() and unlink() because
   350 // fdopendir(), openat() and unlinkat() are not supported on all
   351 // versions.  Once the support for fdopendir(), openat() and unlinkat()
   352 // is available on all supported versions the code can be changed
   353 // to use these functions.
   355 // Open the directory of the given path, validate it and set the
   356 // current working directory to it.
   357 // Return a DIR * of the open directory and the saved cwd fd.
   358 //
   359 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
   361   // Open the directory.
   362   DIR* dirp = open_directory_secure(dirname);
   363   if (dirp == NULL) {
   364     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
   365     return dirp;
   366   }
   367   int fd = dirfd(dirp);
   369   // Open a fd to the cwd and save it off.
   370   int result;
   371   RESTARTABLE(::open(".", O_RDONLY), result);
   372   if (result == OS_ERR) {
   373     *saved_cwd_fd = -1;
   374   } else {
   375     *saved_cwd_fd = result;
   376   }
   378   // Set the current directory to dirname by using the fd of the directory.
   379   result = fchdir(fd);
   381   return dirp;
   382 }
   384 // Close the directory and restore the current working directory.
   385 //
   386 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
   388   int result;
   389   // If we have a saved cwd change back to it and close the fd.
   390   if (saved_cwd_fd != -1) {
   391     result = fchdir(saved_cwd_fd);
   392     ::close(saved_cwd_fd);
   393   }
   395   // Close the directory.
   396   os::closedir(dirp);
   397 }
   399 // Check if the given file descriptor is considered a secure.
   400 //
   401 static bool is_file_secure(int fd, const char *filename) {
   403   int result;
   404   struct stat statbuf;
   406   // Determine if the file is secure.
   407   RESTARTABLE(::fstat(fd, &statbuf), result);
   408   if (result == OS_ERR) {
   409     if (PrintMiscellaneous && Verbose) {
   410       warning("fstat failed on %s: %s\n", filename, strerror(errno));
   411     }
   412     return false;
   413   }
   414   if (statbuf.st_nlink > 1) {
   415     // A file with multiple links is not expected.
   416     if (PrintMiscellaneous && Verbose) {
   417       warning("file %s has multiple links\n", filename);
   418     }
   419     return false;
   420   }
   421   return true;
   422 }
   424 // return the user name for the given user id
   425 //
   426 // the caller is expected to free the allocated memory.
   427 //
   428 static char* get_user_name(uid_t uid) {
   430   struct passwd pwent;
   432   // determine the max pwbuf size from sysconf, and hardcode
   433   // a default if this not available through sysconf.
   434   //
   435   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
   436   if (bufsize == -1)
   437     bufsize = 1024;
   439   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   441   // POSIX interface to getpwuid_r is used on LINUX
   442   struct passwd* p;
   443   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
   445   if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
   446     if (PrintMiscellaneous && Verbose) {
   447       if (result != 0) {
   448         warning("Could not retrieve passwd entry: %s\n",
   449                 strerror(result));
   450       }
   451       else if (p == NULL) {
   452         // this check is added to protect against an observed problem
   453         // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
   454         // indicating success, but has p == NULL. This was observed when
   455         // inserting a file descriptor exhaustion fault prior to the call
   456         // getpwuid_r() call. In this case, error is set to the appropriate
   457         // error condition, but this is undocumented behavior. This check
   458         // is safe under any condition, but the use of errno in the output
   459         // message may result in an erroneous message.
   460         // Bug Id 89052 was opened with RedHat.
   461         //
   462         warning("Could not retrieve passwd entry: %s\n",
   463                 strerror(errno));
   464       }
   465       else {
   466         warning("Could not determine user name: %s\n",
   467                 p->pw_name == NULL ? "pw_name = NULL" :
   468                                      "pw_name zero length");
   469       }
   470     }
   471     FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
   472     return NULL;
   473   }
   475   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
   476   strcpy(user_name, p->pw_name);
   478   FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
   479   return user_name;
   480 }
   482 // return the name of the user that owns the process identified by vmid.
   483 //
   484 // This method uses a slow directory search algorithm to find the backing
   485 // store file for the specified vmid and returns the user name, as determined
   486 // by the user name suffix of the hsperfdata_<username> directory name.
   487 //
   488 // the caller is expected to free the allocated memory.
   489 //
   490 static char* get_user_name_slow(int vmid, TRAPS) {
   492   // short circuit the directory search if the process doesn't even exist.
   493   if (kill(vmid, 0) == OS_ERR) {
   494     if (errno == ESRCH) {
   495       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
   496                   "Process not found");
   497     }
   498     else /* EPERM */ {
   499       THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
   500     }
   501   }
   503   // directory search
   504   char* oldest_user = NULL;
   505   time_t oldest_ctime = 0;
   507   const char* tmpdirname = os::get_temp_directory();
   509   // open the temp directory
   510   DIR* tmpdirp = open_directory_secure(tmpdirname);
   511   if (tmpdirp == NULL) {
   512     // Cannot open the directory to get the user name, return.
   513     return NULL;
   514   }
   516   // for each entry in the directory that matches the pattern hsperfdata_*,
   517   // open the directory and check if the file for the given vmid exists.
   518   // The file with the expected name and the latest creation date is used
   519   // to determine the user name for the process id.
   520   //
   521   struct dirent* dentry;
   522   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
   523   errno = 0;
   524   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
   526     // check if the directory entry is a hsperfdata file
   527     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
   528       continue;
   529     }
   531     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
   532                  strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
   533     strcpy(usrdir_name, tmpdirname);
   534     strcat(usrdir_name, "/");
   535     strcat(usrdir_name, dentry->d_name);
   537     // open the user directory
   538     DIR* subdirp = open_directory_secure(usrdir_name);
   540     if (subdirp == NULL) {
   541       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   542       continue;
   543     }
   545     struct dirent* udentry;
   546     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
   547     errno = 0;
   548     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
   550       if (filename_to_pid(udentry->d_name) == vmid) {
   551         struct stat statbuf;
   552         int result;
   554         char* filename = NEW_C_HEAP_ARRAY(char,
   555                  strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
   557         strcpy(filename, usrdir_name);
   558         strcat(filename, "/");
   559         strcat(filename, udentry->d_name);
   561         // don't follow symbolic links for the file
   562         RESTARTABLE(::lstat(filename, &statbuf), result);
   563         if (result == OS_ERR) {
   564            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   565            continue;
   566         }
   568         // skip over files that are not regular files.
   569         if (!S_ISREG(statbuf.st_mode)) {
   570           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   571           continue;
   572         }
   574         // compare and save filename with latest creation time
   575         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
   577           if (statbuf.st_ctime > oldest_ctime) {
   578             char* user = strchr(dentry->d_name, '_') + 1;
   580             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
   581             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
   583             strcpy(oldest_user, user);
   584             oldest_ctime = statbuf.st_ctime;
   585           }
   586         }
   588         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   589       }
   590     }
   591     os::closedir(subdirp);
   592     FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
   593     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
   594   }
   595   os::closedir(tmpdirp);
   596   FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
   598   return(oldest_user);
   599 }
   601 // return the name of the user that owns the JVM indicated by the given vmid.
   602 //
   603 static char* get_user_name(int vmid, TRAPS) {
   604   return get_user_name_slow(vmid, CHECK_NULL);
   605 }
   607 // return the file name of the backing store file for the named
   608 // shared memory region for the given user name and vmid.
   609 //
   610 // the caller is expected to free the allocated memory.
   611 //
   612 static char* get_sharedmem_filename(const char* dirname, int vmid) {
   614   // add 2 for the file separator and a null terminator.
   615   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
   617   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
   618   snprintf(name, nbytes, "%s/%d", dirname, vmid);
   620   return name;
   621 }
   624 // remove file
   625 //
   626 // this method removes the file specified by the given path
   627 //
   628 static void remove_file(const char* path) {
   630   int result;
   632   // if the file is a directory, the following unlink will fail. since
   633   // we don't expect to find directories in the user temp directory, we
   634   // won't try to handle this situation. even if accidentially or
   635   // maliciously planted, the directory's presence won't hurt anything.
   636   //
   637   RESTARTABLE(::unlink(path), result);
   638   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
   639     if (errno != ENOENT) {
   640       warning("Could not unlink shared memory backing"
   641               " store file %s : %s\n", path, strerror(errno));
   642     }
   643   }
   644 }
   647 // cleanup stale shared memory resources
   648 //
   649 // This method attempts to remove all stale shared memory files in
   650 // the named user temporary directory. It scans the named directory
   651 // for files matching the pattern ^$[0-9]*$. For each file found, the
   652 // process id is extracted from the file name and a test is run to
   653 // determine if the process is alive. If the process is not alive,
   654 // any stale file resources are removed.
   655 //
   656 static void cleanup_sharedmem_resources(const char* dirname) {
   658   int saved_cwd_fd;
   659   // open the directory and set the current working directory to it
   660   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
   661   if (dirp == NULL) {
   662     // directory doesn't exist or is insecure, so there is nothing to cleanup
   663     return;
   664   }
   666   // for each entry in the directory that matches the expected file
   667   // name pattern, determine if the file resources are stale and if
   668   // so, remove the file resources. Note, instrumented HotSpot processes
   669   // for this user may start and/or terminate during this search and
   670   // remove or create new files in this directory. The behavior of this
   671   // loop under these conditions is dependent upon the implementation of
   672   // opendir/readdir.
   673   //
   674   struct dirent* entry;
   675   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
   677   errno = 0;
   678   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
   680     pid_t pid = filename_to_pid(entry->d_name);
   682     if (pid == 0) {
   684       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
   686         // attempt to remove all unexpected files, except "." and ".."
   687         unlink(entry->d_name);
   688       }
   690       errno = 0;
   691       continue;
   692     }
   694     // we now have a file name that converts to a valid integer
   695     // that could represent a process id . if this process id
   696     // matches the current process id or the process is not running,
   697     // then remove the stale file resources.
   698     //
   699     // process liveness is detected by sending signal number 0 to
   700     // the process id (see kill(2)). if kill determines that the
   701     // process does not exist, then the file resources are removed.
   702     // if kill determines that that we don't have permission to
   703     // signal the process, then the file resources are assumed to
   704     // be stale and are removed because the resources for such a
   705     // process should be in a different user specific directory.
   706     //
   707     if ((pid == os::current_process_id()) ||
   708         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
   710         unlink(entry->d_name);
   711     }
   712     errno = 0;
   713   }
   715   // close the directory and reset the current working directory
   716   close_directory_secure_cwd(dirp, saved_cwd_fd);
   718   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
   719 }
   721 // make the user specific temporary directory. Returns true if
   722 // the directory exists and is secure upon return. Returns false
   723 // if the directory exists but is either a symlink, is otherwise
   724 // insecure, or if an error occurred.
   725 //
   726 static bool make_user_tmp_dir(const char* dirname) {
   728   // create the directory with 0755 permissions. note that the directory
   729   // will be owned by euid::egid, which may not be the same as uid::gid.
   730   //
   731   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
   732     if (errno == EEXIST) {
   733       // The directory already exists and was probably created by another
   734       // JVM instance. However, this could also be the result of a
   735       // deliberate symlink. Verify that the existing directory is safe.
   736       //
   737       if (!is_directory_secure(dirname)) {
   738         // directory is not secure
   739         if (PrintMiscellaneous && Verbose) {
   740           warning("%s directory is insecure\n", dirname);
   741         }
   742         return false;
   743       }
   744     }
   745     else {
   746       // we encountered some other failure while attempting
   747       // to create the directory
   748       //
   749       if (PrintMiscellaneous && Verbose) {
   750         warning("could not create directory %s: %s\n",
   751                 dirname, strerror(errno));
   752       }
   753       return false;
   754     }
   755   }
   756   return true;
   757 }
   759 // create the shared memory file resources
   760 //
   761 // This method creates the shared memory file with the given size
   762 // This method also creates the user specific temporary directory, if
   763 // it does not yet exist.
   764 //
   765 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
   767   // make the user temporary directory
   768   if (!make_user_tmp_dir(dirname)) {
   769     // could not make/find the directory or the found directory
   770     // was not secure
   771     return -1;
   772   }
   774   int saved_cwd_fd;
   775   // open the directory and set the current working directory to it
   776   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
   777   if (dirp == NULL) {
   778     // Directory doesn't exist or is insecure, so cannot create shared
   779     // memory file.
   780     return -1;
   781   }
   783   // Open the filename in the current directory.
   784   // Cannot use O_TRUNC here; truncation of an existing file has to happen
   785   // after the is_file_secure() check below.
   786   int result;
   787   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
   788   if (result == OS_ERR) {
   789     if (PrintMiscellaneous && Verbose) {
   790       if (errno == ELOOP) {
   791         warning("file %s is a symlink and is not secure\n", filename);
   792       } else {
   793         warning("could not create file %s: %s\n", filename, strerror(errno));
   794       }
   795     }
   796     // close the directory and reset the current working directory
   797     close_directory_secure_cwd(dirp, saved_cwd_fd);
   799     return -1;
   800   }
   801   // close the directory and reset the current working directory
   802   close_directory_secure_cwd(dirp, saved_cwd_fd);
   804   // save the file descriptor
   805   int fd = result;
   807   // check to see if the file is secure
   808   if (!is_file_secure(fd, filename)) {
   809     ::close(fd);
   810     return -1;
   811   }
   813   // truncate the file to get rid of any existing data
   814   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
   815   if (result == OS_ERR) {
   816     if (PrintMiscellaneous && Verbose) {
   817       warning("could not truncate shared memory file: %s\n", strerror(errno));
   818     }
   819     ::close(fd);
   820     return -1;
   821   }
   822   // set the file size
   823   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
   824   if (result == OS_ERR) {
   825     if (PrintMiscellaneous && Verbose) {
   826       warning("could not set shared memory file size: %s\n", strerror(errno));
   827     }
   828     ::close(fd);
   829     return -1;
   830   }
   832   // Verify that we have enough disk space for this file.
   833   // We'll get random SIGBUS crashes on memory accesses if
   834   // we don't.
   836   for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
   837     int zero_int = 0;
   838     result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
   839     if (result == -1 ) break;
   840     RESTARTABLE(::write(fd, &zero_int, 1), result);
   841     if (result != 1) {
   842       if (errno == ENOSPC) {
   843         warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
   844       }
   845       break;
   846     }
   847   }
   849   if (result != -1) {
   850     return fd;
   851   } else {
   852     ::close(fd);
   853     return -1;
   854   }
   855 }
   857 // open the shared memory file for the given user and vmid. returns
   858 // the file descriptor for the open file or -1 if the file could not
   859 // be opened.
   860 //
   861 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
   863   // open the file
   864   int result;
   865   RESTARTABLE(::open(filename, oflags), result);
   866   if (result == OS_ERR) {
   867     if (errno == ENOENT) {
   868       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
   869                   "Process not found", OS_ERR);
   870     }
   871     else if (errno == EACCES) {
   872       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
   873                   "Permission denied", OS_ERR);
   874     }
   875     else {
   876       THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
   877     }
   878   }
   879   int fd = result;
   881   // check to see if the file is secure
   882   if (!is_file_secure(fd, filename)) {
   883     ::close(fd);
   884     return -1;
   885   }
   887   return fd;
   888 }
   890 // create a named shared memory region. returns the address of the
   891 // memory region on success or NULL on failure. A return value of
   892 // NULL will ultimately disable the shared memory feature.
   893 //
   894 // On Solaris and Bsd, the name space for shared memory objects
   895 // is the file system name space.
   896 //
   897 // A monitoring application attaching to a JVM does not need to know
   898 // the file system name of the shared memory object. However, it may
   899 // be convenient for applications to discover the existence of newly
   900 // created and terminating JVMs by watching the file system name space
   901 // for files being created or removed.
   902 //
   903 static char* mmap_create_shared(size_t size) {
   905   int result;
   906   int fd;
   907   char* mapAddress;
   909   int vmid = os::current_process_id();
   911   char* user_name = get_user_name(geteuid());
   913   if (user_name == NULL)
   914     return NULL;
   916   char* dirname = get_user_tmp_dir(user_name);
   917   char* filename = get_sharedmem_filename(dirname, vmid);
   919   // get the short filename
   920   char* short_filename = strrchr(filename, '/');
   921   if (short_filename == NULL) {
   922     short_filename = filename;
   923   } else {
   924     short_filename++;
   925   }
   927   // cleanup any stale shared memory files
   928   cleanup_sharedmem_resources(dirname);
   930   assert(((size > 0) && (size % os::vm_page_size() == 0)),
   931          "unexpected PerfMemory region size");
   933   fd = create_sharedmem_resources(dirname, short_filename, size);
   935   FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
   936   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
   938   if (fd == -1) {
   939     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   940     return NULL;
   941   }
   943   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
   945   result = ::close(fd);
   946   assert(result != OS_ERR, "could not close file");
   948   if (mapAddress == MAP_FAILED) {
   949     if (PrintMiscellaneous && Verbose) {
   950       warning("mmap failed -  %s\n", strerror(errno));
   951     }
   952     remove_file(filename);
   953     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
   954     return NULL;
   955   }
   957   // save the file name for use in delete_shared_memory()
   958   backing_store_file_name = filename;
   960   // clear the shared memory region
   961   (void)::memset((void*) mapAddress, 0, size);
   963   // it does not go through os api, the operation has to record from here
   964   MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);
   966   return mapAddress;
   967 }
   969 // release a named shared memory region
   970 //
   971 static void unmap_shared(char* addr, size_t bytes) {
   972   os::release_memory(addr, bytes);
   973 }
   975 // create the PerfData memory region in shared memory.
   976 //
   977 static char* create_shared_memory(size_t size) {
   979   // create the shared memory region.
   980   return mmap_create_shared(size);
   981 }
   983 // delete the shared PerfData memory region
   984 //
   985 static void delete_shared_memory(char* addr, size_t size) {
   987   // cleanup the persistent shared memory resources. since DestroyJavaVM does
   988   // not support unloading of the JVM, unmapping of the memory resource is
   989   // not performed. The memory will be reclaimed by the OS upon termination of
   990   // the process. The backing store file is deleted from the file system.
   992   assert(!PerfDisableSharedMem, "shouldn't be here");
   994   if (backing_store_file_name != NULL) {
   995     remove_file(backing_store_file_name);
   996     // Don't.. Free heap memory could deadlock os::abort() if it is called
   997     // from signal handler. OS will reclaim the heap memory.
   998     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
   999     backing_store_file_name = NULL;
  1003 // return the size of the file for the given file descriptor
  1004 // or 0 if it is not a valid size for a shared memory file
  1005 //
  1006 static size_t sharedmem_filesize(int fd, TRAPS) {
  1008   struct stat statbuf;
  1009   int result;
  1011   RESTARTABLE(::fstat(fd, &statbuf), result);
  1012   if (result == OS_ERR) {
  1013     if (PrintMiscellaneous && Verbose) {
  1014       warning("fstat failed: %s\n", strerror(errno));
  1016     THROW_MSG_0(vmSymbols::java_io_IOException(),
  1017                 "Could not determine PerfMemory size");
  1020   if ((statbuf.st_size == 0) ||
  1021      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
  1022     THROW_MSG_0(vmSymbols::java_lang_Exception(),
  1023                 "Invalid PerfMemory size");
  1026   return (size_t)statbuf.st_size;
  1029 // attach to a named shared memory region.
  1030 //
  1031 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
  1033   char* mapAddress;
  1034   int result;
  1035   int fd;
  1036   size_t size = 0;
  1037   const char* luser = NULL;
  1039   int mmap_prot;
  1040   int file_flags;
  1042   ResourceMark rm;
  1044   // map the high level access mode to the appropriate permission
  1045   // constructs for the file and the shared memory mapping.
  1046   if (mode == PerfMemory::PERF_MODE_RO) {
  1047     mmap_prot = PROT_READ;
  1048     file_flags = O_RDONLY | O_NOFOLLOW;
  1050   else if (mode == PerfMemory::PERF_MODE_RW) {
  1051 #ifdef LATER
  1052     mmap_prot = PROT_READ | PROT_WRITE;
  1053     file_flags = O_RDWR | O_NOFOLLOW;
  1054 #else
  1055     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1056               "Unsupported access mode");
  1057 #endif
  1059   else {
  1060     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1061               "Illegal access mode");
  1064   if (user == NULL || strlen(user) == 0) {
  1065     luser = get_user_name(vmid, CHECK);
  1067   else {
  1068     luser = user;
  1071   if (luser == NULL) {
  1072     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1073               "Could not map vmid to user Name");
  1076   char* dirname = get_user_tmp_dir(luser);
  1078   // since we don't follow symbolic links when creating the backing
  1079   // store file, we don't follow them when attaching either.
  1080   //
  1081   if (!is_directory_secure(dirname)) {
  1082     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1083     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1084               "Process not found");
  1087   char* filename = get_sharedmem_filename(dirname, vmid);
  1089   // copy heap memory to resource memory. the open_sharedmem_file
  1090   // method below need to use the filename, but could throw an
  1091   // exception. using a resource array prevents the leak that
  1092   // would otherwise occur.
  1093   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  1094   strcpy(rfilename, filename);
  1096   // free the c heap resources that are no longer needed
  1097   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
  1098   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  1099   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
  1101   // open the shared memory file for the give vmid
  1102   fd = open_sharedmem_file(rfilename, file_flags, CHECK);
  1103   assert(fd != OS_ERR, "unexpected value");
  1105   if (*sizep == 0) {
  1106     size = sharedmem_filesize(fd, CHECK);
  1107   } else {
  1108     size = *sizep;
  1111   assert(size > 0, "unexpected size <= 0");
  1113   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
  1115   // attempt to close the file - restart if it gets interrupted,
  1116   // but ignore other failures
  1117   result = ::close(fd);
  1118   assert(result != OS_ERR, "could not close file");
  1120   if (mapAddress == MAP_FAILED) {
  1121     if (PrintMiscellaneous && Verbose) {
  1122       warning("mmap failed: %s\n", strerror(errno));
  1124     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
  1125               "Could not map PerfMemory");
  1128   // it does not go through os api, the operation has to record from here
  1129   MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);
  1131   *addr = mapAddress;
  1132   *sizep = size;
  1134   if (PerfTraceMemOps) {
  1135     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
  1136                INTPTR_FORMAT "\n", size, vmid, p2i((void*)mapAddress));
  1143 // create the PerfData memory region
  1144 //
  1145 // This method creates the memory region used to store performance
  1146 // data for the JVM. The memory may be created in standard or
  1147 // shared memory.
  1148 //
  1149 void PerfMemory::create_memory_region(size_t size) {
  1151   if (PerfDisableSharedMem) {
  1152     // do not share the memory for the performance data.
  1153     _start = create_standard_memory(size);
  1155   else {
  1156     _start = create_shared_memory(size);
  1157     if (_start == NULL) {
  1159       // creation of the shared memory region failed, attempt
  1160       // to create a contiguous, non-shared memory region instead.
  1161       //
  1162       if (PrintMiscellaneous && Verbose) {
  1163         warning("Reverting to non-shared PerfMemory region.\n");
  1165       PerfDisableSharedMem = true;
  1166       _start = create_standard_memory(size);
  1170   if (_start != NULL) _capacity = size;
  1174 // delete the PerfData memory region
  1175 //
  1176 // This method deletes the memory region used to store performance
  1177 // data for the JVM. The memory region indicated by the <address, size>
  1178 // tuple will be inaccessible after a call to this method.
  1179 //
  1180 void PerfMemory::delete_memory_region() {
  1182   assert((start() != NULL && capacity() > 0), "verify proper state");
  1184   // If user specifies PerfDataSaveFile, it will save the performance data
  1185   // to the specified file name no matter whether PerfDataSaveToFile is specified
  1186   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  1187   // -XX:+PerfDataSaveToFile.
  1188   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
  1189     save_memory_to_file(start(), capacity());
  1192   if (PerfDisableSharedMem) {
  1193     delete_standard_memory(start(), capacity());
  1195   else {
  1196     delete_shared_memory(start(), capacity());
  1200 // attach to the PerfData memory region for another JVM
  1201 //
  1202 // This method returns an <address, size> tuple that points to
  1203 // a memory buffer that is kept reasonably synchronized with
  1204 // the PerfData memory region for the indicated JVM. This
  1205 // buffer may be kept in synchronization via shared memory
  1206 // or some other mechanism that keeps the buffer updated.
  1207 //
  1208 // If the JVM chooses not to support the attachability feature,
  1209 // this method should throw an UnsupportedOperation exception.
  1210 //
  1211 // This implementation utilizes named shared memory to map
  1212 // the indicated process's PerfData memory region into this JVMs
  1213 // address space.
  1214 //
  1215 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
  1217   if (vmid == 0 || vmid == os::current_process_id()) {
  1218      *addrp = start();
  1219      *sizep = capacity();
  1220      return;
  1223   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
  1226 // detach from the PerfData memory region of another JVM
  1227 //
  1228 // This method detaches the PerfData memory region of another
  1229 // JVM, specified as an <address, size> tuple of a buffer
  1230 // in this process's address space. This method may perform
  1231 // arbitrary actions to accomplish the detachment. The memory
  1232 // region specified by <address, size> will be inaccessible after
  1233 // a call to this method.
  1234 //
  1235 // If the JVM chooses not to support the attachability feature,
  1236 // this method should throw an UnsupportedOperation exception.
  1237 //
  1238 // This implementation utilizes named shared memory to detach
  1239 // the indicated process's PerfData memory region from this
  1240 // process's address space.
  1241 //
  1242 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
  1244   assert(addr != 0, "address sanity check");
  1245   assert(bytes > 0, "capacity sanity check");
  1247   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
  1248     // prevent accidental detachment of this process's PerfMemory region
  1249     return;
  1252   unmap_shared(addr, bytes);
  1255 char* PerfMemory::backing_store_filename() {
  1256   return backing_store_file_name;

mercurial