src/os/bsd/vm/os_bsd.cpp

Fri, 24 Oct 2014 15:02:37 -0400

author
hseigel
date
Fri, 24 Oct 2014 15:02:37 -0400
changeset 7707
60a992c821f8
parent 6782
f73af4455d7d
child 6876
710a3c8b516e
child 6918
d22136881b85
permissions
-rw-r--r--

8050807: Better performing performance data handling
Reviewed-by: dcubed, dholmes, pnauman, ctornqvi, mschoene
Contributed-by: gerald.thornbrugh@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_bsd.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_bsd.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_bsd.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/java.hpp"
    48 #include "runtime/javaCalls.hpp"
    49 #include "runtime/mutexLocker.hpp"
    50 #include "runtime/objectMonitor.hpp"
    51 #include "runtime/osThread.hpp"
    52 #include "runtime/perfMemory.hpp"
    53 #include "runtime/sharedRuntime.hpp"
    54 #include "runtime/statSampler.hpp"
    55 #include "runtime/stubRoutines.hpp"
    56 #include "runtime/thread.inline.hpp"
    57 #include "runtime/threadCritical.hpp"
    58 #include "runtime/timer.hpp"
    59 #include "services/attachListener.hpp"
    60 #include "services/memTracker.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "utilities/decoder.hpp"
    63 #include "utilities/defaultStream.hpp"
    64 #include "utilities/events.hpp"
    65 #include "utilities/growableArray.hpp"
    66 #include "utilities/vmError.hpp"
    68 // put OS-includes here
    69 # include <sys/types.h>
    70 # include <sys/mman.h>
    71 # include <sys/stat.h>
    72 # include <sys/select.h>
    73 # include <pthread.h>
    74 # include <signal.h>
    75 # include <errno.h>
    76 # include <dlfcn.h>
    77 # include <stdio.h>
    78 # include <unistd.h>
    79 # include <sys/resource.h>
    80 # include <pthread.h>
    81 # include <sys/stat.h>
    82 # include <sys/time.h>
    83 # include <sys/times.h>
    84 # include <sys/utsname.h>
    85 # include <sys/socket.h>
    86 # include <sys/wait.h>
    87 # include <time.h>
    88 # include <pwd.h>
    89 # include <poll.h>
    90 # include <semaphore.h>
    91 # include <fcntl.h>
    92 # include <string.h>
    93 # include <sys/param.h>
    94 # include <sys/sysctl.h>
    95 # include <sys/ipc.h>
    96 # include <sys/shm.h>
    97 #ifndef __APPLE__
    98 # include <link.h>
    99 #endif
   100 # include <stdint.h>
   101 # include <inttypes.h>
   102 # include <sys/ioctl.h>
   103 # include <sys/syscall.h>
   105 #if defined(__FreeBSD__) || defined(__NetBSD__)
   106 # include <elf.h>
   107 #endif
   109 #ifdef __APPLE__
   110 # include <mach/mach.h> // semaphore_* API
   111 # include <mach-o/dyld.h>
   112 # include <sys/proc_info.h>
   113 # include <objc/objc-auto.h>
   114 #endif
   116 #ifndef MAP_ANONYMOUS
   117 #define MAP_ANONYMOUS MAP_ANON
   118 #endif
   120 #define MAX_PATH    (2 * K)
   122 // for timer info max values which include all bits
   123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   125 #define LARGEPAGES_BIT (1 << 6)
   127 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   129 ////////////////////////////////////////////////////////////////////////////////
   130 // global variables
   131 julong os::Bsd::_physical_memory = 0;
   133 #ifdef __APPLE__
   134 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
   135 volatile uint64_t         os::Bsd::_max_abstime   = 0;
   136 #else
   137 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   138 #endif
   139 pthread_t os::Bsd::_main_thread;
   140 int os::Bsd::_page_size = -1;
   142 static jlong initial_time_count=0;
   144 static int clock_tics_per_sec = 100;
   146 // For diagnostics to print a message once. see run_periodic_checks
   147 static sigset_t check_signal_done;
   148 static bool check_signals = true;
   150 static pid_t _initial_pid = 0;
   152 /* Signal number used to suspend/resume a thread */
   154 /* do not use any signal number less than SIGSEGV, see 4355769 */
   155 static int SR_signum = SIGUSR2;
   156 sigset_t SR_sigset;
   159 ////////////////////////////////////////////////////////////////////////////////
   160 // utility functions
   162 static int SR_initialize();
   163 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   165 julong os::available_memory() {
   166   return Bsd::available_memory();
   167 }
   169 // available here means free
   170 julong os::Bsd::available_memory() {
   171   uint64_t available = physical_memory() >> 2;
   172 #ifdef __APPLE__
   173   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
   174   vm_statistics64_data_t vmstat;
   175   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
   176                                          (host_info64_t)&vmstat, &count);
   177   assert(kerr == KERN_SUCCESS,
   178          "host_statistics64 failed - check mach_host_self() and count");
   179   if (kerr == KERN_SUCCESS) {
   180     available = vmstat.free_count * os::vm_page_size();
   181   }
   182 #endif
   183   return available;
   184 }
   186 julong os::physical_memory() {
   187   return Bsd::physical_memory();
   188 }
   190 ////////////////////////////////////////////////////////////////////////////////
   191 // environment support
   193 bool os::getenv(const char* name, char* buf, int len) {
   194   const char* val = ::getenv(name);
   195   if (val != NULL && strlen(val) < (size_t)len) {
   196     strcpy(buf, val);
   197     return true;
   198   }
   199   if (len > 0) buf[0] = 0;  // return a null string
   200   return false;
   201 }
   204 // Return true if user is running as root.
   206 bool os::have_special_privileges() {
   207   static bool init = false;
   208   static bool privileges = false;
   209   if (!init) {
   210     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   211     init = true;
   212   }
   213   return privileges;
   214 }
   218 // Cpu architecture string
   219 #if   defined(ZERO)
   220 static char cpu_arch[] = ZERO_LIBARCH;
   221 #elif defined(IA64)
   222 static char cpu_arch[] = "ia64";
   223 #elif defined(IA32)
   224 static char cpu_arch[] = "i386";
   225 #elif defined(AMD64)
   226 static char cpu_arch[] = "amd64";
   227 #elif defined(ARM)
   228 static char cpu_arch[] = "arm";
   229 #elif defined(PPC32)
   230 static char cpu_arch[] = "ppc";
   231 #elif defined(SPARC)
   232 #  ifdef _LP64
   233 static char cpu_arch[] = "sparcv9";
   234 #  else
   235 static char cpu_arch[] = "sparc";
   236 #  endif
   237 #else
   238 #error Add appropriate cpu_arch setting
   239 #endif
   241 // Compiler variant
   242 #ifdef COMPILER2
   243 #define COMPILER_VARIANT "server"
   244 #else
   245 #define COMPILER_VARIANT "client"
   246 #endif
   249 void os::Bsd::initialize_system_info() {
   250   int mib[2];
   251   size_t len;
   252   int cpu_val;
   253   julong mem_val;
   255   /* get processors count via hw.ncpus sysctl */
   256   mib[0] = CTL_HW;
   257   mib[1] = HW_NCPU;
   258   len = sizeof(cpu_val);
   259   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
   260        assert(len == sizeof(cpu_val), "unexpected data size");
   261        set_processor_count(cpu_val);
   262   }
   263   else {
   264        set_processor_count(1);   // fallback
   265   }
   267   /* get physical memory via hw.memsize sysctl (hw.memsize is used
   268    * since it returns a 64 bit value)
   269    */
   270   mib[0] = CTL_HW;
   272 #if defined (HW_MEMSIZE) // Apple
   273   mib[1] = HW_MEMSIZE;
   274 #elif defined(HW_PHYSMEM) // Most of BSD
   275   mib[1] = HW_PHYSMEM;
   276 #elif defined(HW_REALMEM) // Old FreeBSD
   277   mib[1] = HW_REALMEM;
   278 #else
   279   #error No ways to get physmem
   280 #endif
   282   len = sizeof(mem_val);
   283   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
   284        assert(len == sizeof(mem_val), "unexpected data size");
   285        _physical_memory = mem_val;
   286   } else {
   287        _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
   288   }
   290 #ifdef __OpenBSD__
   291   {
   292        // limit _physical_memory memory view on OpenBSD since
   293        // datasize rlimit restricts us anyway.
   294        struct rlimit limits;
   295        getrlimit(RLIMIT_DATA, &limits);
   296        _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
   297   }
   298 #endif
   299 }
   301 #ifdef __APPLE__
   302 static const char *get_home() {
   303   const char *home_dir = ::getenv("HOME");
   304   if ((home_dir == NULL) || (*home_dir == '\0')) {
   305     struct passwd *passwd_info = getpwuid(geteuid());
   306     if (passwd_info != NULL) {
   307       home_dir = passwd_info->pw_dir;
   308     }
   309   }
   311   return home_dir;
   312 }
   313 #endif
   315 void os::init_system_properties_values() {
   316   // The next steps are taken in the product version:
   317   //
   318   // Obtain the JAVA_HOME value from the location of libjvm.so.
   319   // This library should be located at:
   320   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   321   //
   322   // If "/jre/lib/" appears at the right place in the path, then we
   323   // assume libjvm.so is installed in a JDK and we use this path.
   324   //
   325   // Otherwise exit with message: "Could not create the Java virtual machine."
   326   //
   327   // The following extra steps are taken in the debugging version:
   328   //
   329   // If "/jre/lib/" does NOT appear at the right place in the path
   330   // instead of exit check for $JAVA_HOME environment variable.
   331   //
   332   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   333   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   334   // it looks like libjvm.so is installed there
   335   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   336   //
   337   // Otherwise exit.
   338   //
   339   // Important note: if the location of libjvm.so changes this
   340   // code needs to be changed accordingly.
   342 // See ld(1):
   343 //      The linker uses the following search paths to locate required
   344 //      shared libraries:
   345 //        1: ...
   346 //        ...
   347 //        7: The default directories, normally /lib and /usr/lib.
   348 #ifndef DEFAULT_LIBPATH
   349 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   350 #endif
   352 // Base path of extensions installed on the system.
   353 #define SYS_EXT_DIR     "/usr/java/packages"
   354 #define EXTENSIONS_DIR  "/lib/ext"
   355 #define ENDORSED_DIR    "/lib/endorsed"
   357 #ifndef __APPLE__
   359   // Buffer that fits several sprintfs.
   360   // Note that the space for the colon and the trailing null are provided
   361   // by the nulls included by the sizeof operator.
   362   const size_t bufsize =
   363     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   364          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   365          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   366   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   368   // sysclasspath, java_home, dll_dir
   369   {
   370     char *pslash;
   371     os::jvm_path(buf, bufsize);
   373     // Found the full path to libjvm.so.
   374     // Now cut the path to <java_home>/jre if we can.
   375     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   376     pslash = strrchr(buf, '/');
   377     if (pslash != NULL) {
   378       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   379     }
   380     Arguments::set_dll_dir(buf);
   382     if (pslash != NULL) {
   383       pslash = strrchr(buf, '/');
   384       if (pslash != NULL) {
   385         *pslash = '\0';          // Get rid of /<arch>.
   386         pslash = strrchr(buf, '/');
   387         if (pslash != NULL) {
   388           *pslash = '\0';        // Get rid of /lib.
   389         }
   390       }
   391     }
   392     Arguments::set_java_home(buf);
   393     set_boot_path('/', ':');
   394   }
   396   // Where to look for native libraries.
   397   //
   398   // Note: Due to a legacy implementation, most of the library path
   399   // is set in the launcher. This was to accomodate linking restrictions
   400   // on legacy Bsd implementations (which are no longer supported).
   401   // Eventually, all the library path setting will be done here.
   402   //
   403   // However, to prevent the proliferation of improperly built native
   404   // libraries, the new path component /usr/java/packages is added here.
   405   // Eventually, all the library path setting will be done here.
   406   {
   407     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   408     // should always exist (until the legacy problem cited above is
   409     // addressed).
   410     const char *v = ::getenv("LD_LIBRARY_PATH");
   411     const char *v_colon = ":";
   412     if (v == NULL) { v = ""; v_colon = ""; }
   413     // That's +1 for the colon and +1 for the trailing '\0'.
   414     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   415                                                      strlen(v) + 1 +
   416                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   417                                                      mtInternal);
   418     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   419     Arguments::set_library_path(ld_library_path);
   420     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   421   }
   423   // Extensions directories.
   424   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   425   Arguments::set_ext_dirs(buf);
   427   // Endorsed standards default directory.
   428   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   429   Arguments::set_endorsed_dirs(buf);
   431   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   433 #else // __APPLE__
   435 #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
   436 #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
   438   const char *user_home_dir = get_home();
   439   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
   440   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
   441     sizeof(SYS_EXTENSIONS_DIRS);
   443   // Buffer that fits several sprintfs.
   444   // Note that the space for the colon and the trailing null are provided
   445   // by the nulls included by the sizeof operator.
   446   const size_t bufsize =
   447     MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
   448          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
   449          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   450   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   452   // sysclasspath, java_home, dll_dir
   453   {
   454     char *pslash;
   455     os::jvm_path(buf, bufsize);
   457     // Found the full path to libjvm.so.
   458     // Now cut the path to <java_home>/jre if we can.
   459     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   460     pslash = strrchr(buf, '/');
   461     if (pslash != NULL) {
   462       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   463     }
   464     Arguments::set_dll_dir(buf);
   466     if (pslash != NULL) {
   467       pslash = strrchr(buf, '/');
   468       if (pslash != NULL) {
   469         *pslash = '\0';          // Get rid of /lib.
   470       }
   471     }
   472     Arguments::set_java_home(buf);
   473     set_boot_path('/', ':');
   474   }
   476   // Where to look for native libraries.
   477   //
   478   // Note: Due to a legacy implementation, most of the library path
   479   // is set in the launcher. This was to accomodate linking restrictions
   480   // on legacy Bsd implementations (which are no longer supported).
   481   // Eventually, all the library path setting will be done here.
   482   //
   483   // However, to prevent the proliferation of improperly built native
   484   // libraries, the new path component /usr/java/packages is added here.
   485   // Eventually, all the library path setting will be done here.
   486   {
   487     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   488     // should always exist (until the legacy problem cited above is
   489     // addressed).
   490     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
   491     // can specify a directory inside an app wrapper
   492     const char *l = ::getenv("JAVA_LIBRARY_PATH");
   493     const char *l_colon = ":";
   494     if (l == NULL) { l = ""; l_colon = ""; }
   496     const char *v = ::getenv("DYLD_LIBRARY_PATH");
   497     const char *v_colon = ":";
   498     if (v == NULL) { v = ""; v_colon = ""; }
   500     // Apple's Java6 has "." at the beginning of java.library.path.
   501     // OpenJDK on Windows has "." at the end of java.library.path.
   502     // OpenJDK on Linux and Solaris don't have "." in java.library.path
   503     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
   504     // "." is appended to the end of java.library.path. Yes, this
   505     // could cause a change in behavior, but Apple's Java6 behavior
   506     // can be achieved by putting "." at the beginning of the
   507     // JAVA_LIBRARY_PATH environment variable.
   508     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   509                                                      strlen(v) + 1 + strlen(l) + 1 +
   510                                                      system_ext_size + 3,
   511                                                      mtInternal);
   512     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
   513             v, v_colon, l, l_colon, user_home_dir);
   514     Arguments::set_library_path(ld_library_path);
   515     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   516   }
   518   // Extensions directories.
   519   //
   520   // Note that the space for the colon and the trailing null are provided
   521   // by the nulls included by the sizeof operator (so actually one byte more
   522   // than necessary is allocated).
   523   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
   524           user_home_dir, Arguments::get_java_home());
   525   Arguments::set_ext_dirs(buf);
   527   // Endorsed standards default directory.
   528   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   529   Arguments::set_endorsed_dirs(buf);
   531   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   533 #undef SYS_EXTENSIONS_DIR
   534 #undef SYS_EXTENSIONS_DIRS
   536 #endif // __APPLE__
   538 #undef SYS_EXT_DIR
   539 #undef EXTENSIONS_DIR
   540 #undef ENDORSED_DIR
   541 }
   543 ////////////////////////////////////////////////////////////////////////////////
   544 // breakpoint support
   546 void os::breakpoint() {
   547   BREAKPOINT;
   548 }
   550 extern "C" void breakpoint() {
   551   // use debugger to set breakpoint here
   552 }
   554 ////////////////////////////////////////////////////////////////////////////////
   555 // signal support
   557 debug_only(static bool signal_sets_initialized = false);
   558 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   560 bool os::Bsd::is_sig_ignored(int sig) {
   561       struct sigaction oact;
   562       sigaction(sig, (struct sigaction*)NULL, &oact);
   563       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   564                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   565       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   566            return true;
   567       else
   568            return false;
   569 }
   571 void os::Bsd::signal_sets_init() {
   572   // Should also have an assertion stating we are still single-threaded.
   573   assert(!signal_sets_initialized, "Already initialized");
   574   // Fill in signals that are necessarily unblocked for all threads in
   575   // the VM. Currently, we unblock the following signals:
   576   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   577   //                         by -Xrs (=ReduceSignalUsage));
   578   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   579   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   580   // the dispositions or masks wrt these signals.
   581   // Programs embedding the VM that want to use the above signals for their
   582   // own purposes must, at this time, use the "-Xrs" option to prevent
   583   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   584   // (See bug 4345157, and other related bugs).
   585   // In reality, though, unblocking these signals is really a nop, since
   586   // these signals are not blocked by default.
   587   sigemptyset(&unblocked_sigs);
   588   sigemptyset(&allowdebug_blocked_sigs);
   589   sigaddset(&unblocked_sigs, SIGILL);
   590   sigaddset(&unblocked_sigs, SIGSEGV);
   591   sigaddset(&unblocked_sigs, SIGBUS);
   592   sigaddset(&unblocked_sigs, SIGFPE);
   593   sigaddset(&unblocked_sigs, SR_signum);
   595   if (!ReduceSignalUsage) {
   596    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   597       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   598       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   599    }
   600    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   601       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   602       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   603    }
   604    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   605       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   606       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   607    }
   608   }
   609   // Fill in signals that are blocked by all but the VM thread.
   610   sigemptyset(&vm_sigs);
   611   if (!ReduceSignalUsage)
   612     sigaddset(&vm_sigs, BREAK_SIGNAL);
   613   debug_only(signal_sets_initialized = true);
   615 }
   617 // These are signals that are unblocked while a thread is running Java.
   618 // (For some reason, they get blocked by default.)
   619 sigset_t* os::Bsd::unblocked_signals() {
   620   assert(signal_sets_initialized, "Not initialized");
   621   return &unblocked_sigs;
   622 }
   624 // These are the signals that are blocked while a (non-VM) thread is
   625 // running Java. Only the VM thread handles these signals.
   626 sigset_t* os::Bsd::vm_signals() {
   627   assert(signal_sets_initialized, "Not initialized");
   628   return &vm_sigs;
   629 }
   631 // These are signals that are blocked during cond_wait to allow debugger in
   632 sigset_t* os::Bsd::allowdebug_blocked_signals() {
   633   assert(signal_sets_initialized, "Not initialized");
   634   return &allowdebug_blocked_sigs;
   635 }
   637 void os::Bsd::hotspot_sigmask(Thread* thread) {
   639   //Save caller's signal mask before setting VM signal mask
   640   sigset_t caller_sigmask;
   641   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   643   OSThread* osthread = thread->osthread();
   644   osthread->set_caller_sigmask(caller_sigmask);
   646   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
   648   if (!ReduceSignalUsage) {
   649     if (thread->is_VM_thread()) {
   650       // Only the VM thread handles BREAK_SIGNAL ...
   651       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   652     } else {
   653       // ... all other threads block BREAK_SIGNAL
   654       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   655     }
   656   }
   657 }
   660 //////////////////////////////////////////////////////////////////////////////
   661 // create new thread
   663 // check if it's safe to start a new thread
   664 static bool _thread_safety_check(Thread* thread) {
   665   return true;
   666 }
   668 #ifdef __APPLE__
   669 // library handle for calling objc_registerThreadWithCollector()
   670 // without static linking to the libobjc library
   671 #define OBJC_LIB "/usr/lib/libobjc.dylib"
   672 #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
   673 typedef void (*objc_registerThreadWithCollector_t)();
   674 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
   675 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
   676 #endif
   678 #ifdef __APPLE__
   679 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
   680   // Additional thread_id used to correlate threads in SA
   681   thread_identifier_info_data_t     m_ident_info;
   682   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
   684   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
   685               (thread_info_t) &m_ident_info, &count);
   687   return m_ident_info.thread_id;
   688 }
   689 #endif
   691 // Thread start routine for all newly created threads
   692 static void *java_start(Thread *thread) {
   693   // Try to randomize the cache line index of hot stack frames.
   694   // This helps when threads of the same stack traces evict each other's
   695   // cache lines. The threads can be either from the same JVM instance, or
   696   // from different JVM instances. The benefit is especially true for
   697   // processors with hyperthreading technology.
   698   static int counter = 0;
   699   int pid = os::current_process_id();
   700   alloca(((pid ^ counter++) & 7) * 128);
   702   ThreadLocalStorage::set_thread(thread);
   704   OSThread* osthread = thread->osthread();
   705   Monitor* sync = osthread->startThread_lock();
   707   // non floating stack BsdThreads needs extra check, see above
   708   if (!_thread_safety_check(thread)) {
   709     // notify parent thread
   710     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   711     osthread->set_state(ZOMBIE);
   712     sync->notify_all();
   713     return NULL;
   714   }
   716   osthread->set_thread_id(os::Bsd::gettid());
   718 #ifdef __APPLE__
   719   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
   720   guarantee(unique_thread_id != 0, "unique thread id was not found");
   721   osthread->set_unique_thread_id(unique_thread_id);
   722 #endif
   723   // initialize signal mask for this thread
   724   os::Bsd::hotspot_sigmask(thread);
   726   // initialize floating point control register
   727   os::Bsd::init_thread_fpu_state();
   729 #ifdef __APPLE__
   730   // register thread with objc gc
   731   if (objc_registerThreadWithCollectorFunction != NULL) {
   732     objc_registerThreadWithCollectorFunction();
   733   }
   734 #endif
   736   // handshaking with parent thread
   737   {
   738     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   740     // notify parent thread
   741     osthread->set_state(INITIALIZED);
   742     sync->notify_all();
   744     // wait until os::start_thread()
   745     while (osthread->get_state() == INITIALIZED) {
   746       sync->wait(Mutex::_no_safepoint_check_flag);
   747     }
   748   }
   750   // call one more level start routine
   751   thread->run();
   753   return 0;
   754 }
   756 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   757   assert(thread->osthread() == NULL, "caller responsible");
   759   // Allocate the OSThread object
   760   OSThread* osthread = new OSThread(NULL, NULL);
   761   if (osthread == NULL) {
   762     return false;
   763   }
   765   // set the correct thread state
   766   osthread->set_thread_type(thr_type);
   768   // Initial state is ALLOCATED but not INITIALIZED
   769   osthread->set_state(ALLOCATED);
   771   thread->set_osthread(osthread);
   773   // init thread attributes
   774   pthread_attr_t attr;
   775   pthread_attr_init(&attr);
   776   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   778   // stack size
   779   if (os::Bsd::supports_variable_stack_size()) {
   780     // calculate stack size if it's not specified by caller
   781     if (stack_size == 0) {
   782       stack_size = os::Bsd::default_stack_size(thr_type);
   784       switch (thr_type) {
   785       case os::java_thread:
   786         // Java threads use ThreadStackSize which default value can be
   787         // changed with the flag -Xss
   788         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   789         stack_size = JavaThread::stack_size_at_create();
   790         break;
   791       case os::compiler_thread:
   792         if (CompilerThreadStackSize > 0) {
   793           stack_size = (size_t)(CompilerThreadStackSize * K);
   794           break;
   795         } // else fall through:
   796           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   797       case os::vm_thread:
   798       case os::pgc_thread:
   799       case os::cgc_thread:
   800       case os::watcher_thread:
   801         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   802         break;
   803       }
   804     }
   806     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
   807     pthread_attr_setstacksize(&attr, stack_size);
   808   } else {
   809     // let pthread_create() pick the default value.
   810   }
   812   ThreadState state;
   814   {
   815     pthread_t tid;
   816     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   818     pthread_attr_destroy(&attr);
   820     if (ret != 0) {
   821       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   822         perror("pthread_create()");
   823       }
   824       // Need to clean up stuff we've allocated so far
   825       thread->set_osthread(NULL);
   826       delete osthread;
   827       return false;
   828     }
   830     // Store pthread info into the OSThread
   831     osthread->set_pthread_id(tid);
   833     // Wait until child thread is either initialized or aborted
   834     {
   835       Monitor* sync_with_child = osthread->startThread_lock();
   836       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   837       while ((state = osthread->get_state()) == ALLOCATED) {
   838         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   839       }
   840     }
   842   }
   844   // Aborted due to thread limit being reached
   845   if (state == ZOMBIE) {
   846       thread->set_osthread(NULL);
   847       delete osthread;
   848       return false;
   849   }
   851   // The thread is returned suspended (in state INITIALIZED),
   852   // and is started higher up in the call chain
   853   assert(state == INITIALIZED, "race condition");
   854   return true;
   855 }
   857 /////////////////////////////////////////////////////////////////////////////
   858 // attach existing thread
   860 // bootstrap the main thread
   861 bool os::create_main_thread(JavaThread* thread) {
   862   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
   863   return create_attached_thread(thread);
   864 }
   866 bool os::create_attached_thread(JavaThread* thread) {
   867 #ifdef ASSERT
   868     thread->verify_not_published();
   869 #endif
   871   // Allocate the OSThread object
   872   OSThread* osthread = new OSThread(NULL, NULL);
   874   if (osthread == NULL) {
   875     return false;
   876   }
   878   osthread->set_thread_id(os::Bsd::gettid());
   880   // Store pthread info into the OSThread
   881 #ifdef __APPLE__
   882   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
   883   guarantee(unique_thread_id != 0, "just checking");
   884   osthread->set_unique_thread_id(unique_thread_id);
   885 #endif
   886   osthread->set_pthread_id(::pthread_self());
   888   // initialize floating point control register
   889   os::Bsd::init_thread_fpu_state();
   891   // Initial thread state is RUNNABLE
   892   osthread->set_state(RUNNABLE);
   894   thread->set_osthread(osthread);
   896   // initialize signal mask for this thread
   897   // and save the caller's signal mask
   898   os::Bsd::hotspot_sigmask(thread);
   900   return true;
   901 }
   903 void os::pd_start_thread(Thread* thread) {
   904   OSThread * osthread = thread->osthread();
   905   assert(osthread->get_state() != INITIALIZED, "just checking");
   906   Monitor* sync_with_child = osthread->startThread_lock();
   907   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   908   sync_with_child->notify();
   909 }
   911 // Free Bsd resources related to the OSThread
   912 void os::free_thread(OSThread* osthread) {
   913   assert(osthread != NULL, "osthread not set");
   915   if (Thread::current()->osthread() == osthread) {
   916     // Restore caller's signal mask
   917     sigset_t sigmask = osthread->caller_sigmask();
   918     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   919    }
   921   delete osthread;
   922 }
   924 //////////////////////////////////////////////////////////////////////////////
   925 // thread local storage
   927 // Restore the thread pointer if the destructor is called. This is in case
   928 // someone from JNI code sets up a destructor with pthread_key_create to run
   929 // detachCurrentThread on thread death. Unless we restore the thread pointer we
   930 // will hang or crash. When detachCurrentThread is called the key will be set
   931 // to null and we will not be called again. If detachCurrentThread is never
   932 // called we could loop forever depending on the pthread implementation.
   933 static void restore_thread_pointer(void* p) {
   934   Thread* thread = (Thread*) p;
   935   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   936 }
   938 int os::allocate_thread_local_storage() {
   939   pthread_key_t key;
   940   int rslt = pthread_key_create(&key, restore_thread_pointer);
   941   assert(rslt == 0, "cannot allocate thread local storage");
   942   return (int)key;
   943 }
   945 // Note: This is currently not used by VM, as we don't destroy TLS key
   946 // on VM exit.
   947 void os::free_thread_local_storage(int index) {
   948   int rslt = pthread_key_delete((pthread_key_t)index);
   949   assert(rslt == 0, "invalid index");
   950 }
   952 void os::thread_local_storage_at_put(int index, void* value) {
   953   int rslt = pthread_setspecific((pthread_key_t)index, value);
   954   assert(rslt == 0, "pthread_setspecific failed");
   955 }
   957 extern "C" Thread* get_thread() {
   958   return ThreadLocalStorage::thread();
   959 }
   962 ////////////////////////////////////////////////////////////////////////////////
   963 // time support
   965 // Time since start-up in seconds to a fine granularity.
   966 // Used by VMSelfDestructTimer and the MemProfiler.
   967 double os::elapsedTime() {
   969   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
   970 }
   972 jlong os::elapsed_counter() {
   973   return javaTimeNanos() - initial_time_count;
   974 }
   976 jlong os::elapsed_frequency() {
   977   return NANOSECS_PER_SEC; // nanosecond resolution
   978 }
   980 bool os::supports_vtime() { return true; }
   981 bool os::enable_vtime()   { return false; }
   982 bool os::vtime_enabled()  { return false; }
   984 double os::elapsedVTime() {
   985   // better than nothing, but not much
   986   return elapsedTime();
   987 }
   989 jlong os::javaTimeMillis() {
   990   timeval time;
   991   int status = gettimeofday(&time, NULL);
   992   assert(status != -1, "bsd error");
   993   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
   994 }
   996 #ifndef __APPLE__
   997 #ifndef CLOCK_MONOTONIC
   998 #define CLOCK_MONOTONIC (1)
   999 #endif
  1000 #endif
  1002 #ifdef __APPLE__
  1003 void os::Bsd::clock_init() {
  1004   mach_timebase_info(&_timebase_info);
  1006 #else
  1007 void os::Bsd::clock_init() {
  1008   struct timespec res;
  1009   struct timespec tp;
  1010   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
  1011       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
  1012     // yes, monotonic clock is supported
  1013     _clock_gettime = ::clock_gettime;
  1016 #endif
  1019 #ifdef __APPLE__
  1021 jlong os::javaTimeNanos() {
  1022     const uint64_t tm = mach_absolute_time();
  1023     const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
  1024     const uint64_t prev = Bsd::_max_abstime;
  1025     if (now <= prev) {
  1026       return prev;   // same or retrograde time;
  1028     const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
  1029     assert(obsv >= prev, "invariant");   // Monotonicity
  1030     // If the CAS succeeded then we're done and return "now".
  1031     // If the CAS failed and the observed value "obsv" is >= now then
  1032     // we should return "obsv".  If the CAS failed and now > obsv > prv then
  1033     // some other thread raced this thread and installed a new value, in which case
  1034     // we could either (a) retry the entire operation, (b) retry trying to install now
  1035     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
  1036     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1037     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
  1038     // to (a) or (b) -- and greatly reduces coherence traffic.
  1039     // We might also condition (c) on the magnitude of the delta between obsv and now.
  1040     // Avoiding excessive CAS operations to hot RW locations is critical.
  1041     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
  1042     return (prev == obsv) ? now : obsv;
  1045 #else // __APPLE__
  1047 jlong os::javaTimeNanos() {
  1048   if (Bsd::supports_monotonic_clock()) {
  1049     struct timespec tp;
  1050     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
  1051     assert(status == 0, "gettime error");
  1052     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1053     return result;
  1054   } else {
  1055     timeval time;
  1056     int status = gettimeofday(&time, NULL);
  1057     assert(status != -1, "bsd error");
  1058     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1059     return 1000 * usecs;
  1063 #endif // __APPLE__
  1065 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1066   if (Bsd::supports_monotonic_clock()) {
  1067     info_ptr->max_value = ALL_64_BITS;
  1069     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1070     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1071     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1072   } else {
  1073     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1074     info_ptr->max_value = ALL_64_BITS;
  1076     // gettimeofday is a real time clock so it skips
  1077     info_ptr->may_skip_backward = true;
  1078     info_ptr->may_skip_forward = true;
  1081   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1084 // Return the real, user, and system times in seconds from an
  1085 // arbitrary fixed point in the past.
  1086 bool os::getTimesSecs(double* process_real_time,
  1087                       double* process_user_time,
  1088                       double* process_system_time) {
  1089   struct tms ticks;
  1090   clock_t real_ticks = times(&ticks);
  1092   if (real_ticks == (clock_t) (-1)) {
  1093     return false;
  1094   } else {
  1095     double ticks_per_second = (double) clock_tics_per_sec;
  1096     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1097     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1098     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1100     return true;
  1105 char * os::local_time_string(char *buf, size_t buflen) {
  1106   struct tm t;
  1107   time_t long_time;
  1108   time(&long_time);
  1109   localtime_r(&long_time, &t);
  1110   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1111                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1112                t.tm_hour, t.tm_min, t.tm_sec);
  1113   return buf;
  1116 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1117   return localtime_r(clock, res);
  1120 ////////////////////////////////////////////////////////////////////////////////
  1121 // runtime exit support
  1123 // Note: os::shutdown() might be called very early during initialization, or
  1124 // called from signal handler. Before adding something to os::shutdown(), make
  1125 // sure it is async-safe and can handle partially initialized VM.
  1126 void os::shutdown() {
  1128   // allow PerfMemory to attempt cleanup of any persistent resources
  1129   perfMemory_exit();
  1131   // needs to remove object in file system
  1132   AttachListener::abort();
  1134   // flush buffered output, finish log files
  1135   ostream_abort();
  1137   // Check for abort hook
  1138   abort_hook_t abort_hook = Arguments::abort_hook();
  1139   if (abort_hook != NULL) {
  1140     abort_hook();
  1145 // Note: os::abort() might be called very early during initialization, or
  1146 // called from signal handler. Before adding something to os::abort(), make
  1147 // sure it is async-safe and can handle partially initialized VM.
  1148 void os::abort(bool dump_core) {
  1149   os::shutdown();
  1150   if (dump_core) {
  1151 #ifndef PRODUCT
  1152     fdStream out(defaultStream::output_fd());
  1153     out.print_raw("Current thread is ");
  1154     char buf[16];
  1155     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1156     out.print_raw_cr(buf);
  1157     out.print_raw_cr("Dumping core ...");
  1158 #endif
  1159     ::abort(); // dump core
  1162   ::exit(1);
  1165 // Die immediately, no exit hook, no abort hook, no cleanup.
  1166 void os::die() {
  1167   // _exit() on BsdThreads only kills current thread
  1168   ::abort();
  1171 // This method is a copy of JDK's sysGetLastErrorString
  1172 // from src/solaris/hpi/src/system_md.c
  1174 size_t os::lasterror(char *buf, size_t len) {
  1176   if (errno == 0)  return 0;
  1178   const char *s = ::strerror(errno);
  1179   size_t n = ::strlen(s);
  1180   if (n >= len) {
  1181     n = len - 1;
  1183   ::strncpy(buf, s, n);
  1184   buf[n] = '\0';
  1185   return n;
  1188 // Information of current thread in variety of formats
  1189 pid_t os::Bsd::gettid() {
  1190   int retval = -1;
  1192 #ifdef __APPLE__ //XNU kernel
  1193   // despite the fact mach port is actually not a thread id use it
  1194   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
  1195   retval = ::pthread_mach_thread_np(::pthread_self());
  1196   guarantee(retval != 0, "just checking");
  1197   return retval;
  1199 #elif __FreeBSD__
  1200   retval = syscall(SYS_thr_self);
  1201 #elif __OpenBSD__
  1202   retval = syscall(SYS_getthrid);
  1203 #elif __NetBSD__
  1204   retval = (pid_t) syscall(SYS__lwp_self);
  1205 #endif
  1207   if (retval == -1) {
  1208     return getpid();
  1212 intx os::current_thread_id() {
  1213 #ifdef __APPLE__
  1214   return (intx)::pthread_mach_thread_np(::pthread_self());
  1215 #else
  1216   return (intx)::pthread_self();
  1217 #endif
  1220 int os::current_process_id() {
  1222   // Under the old bsd thread library, bsd gives each thread
  1223   // its own process id. Because of this each thread will return
  1224   // a different pid if this method were to return the result
  1225   // of getpid(2). Bsd provides no api that returns the pid
  1226   // of the launcher thread for the vm. This implementation
  1227   // returns a unique pid, the pid of the launcher thread
  1228   // that starts the vm 'process'.
  1230   // Under the NPTL, getpid() returns the same pid as the
  1231   // launcher thread rather than a unique pid per thread.
  1232   // Use gettid() if you want the old pre NPTL behaviour.
  1234   // if you are looking for the result of a call to getpid() that
  1235   // returns a unique pid for the calling thread, then look at the
  1236   // OSThread::thread_id() method in osThread_bsd.hpp file
  1238   return (int)(_initial_pid ? _initial_pid : getpid());
  1241 // DLL functions
  1243 #define JNI_LIB_PREFIX "lib"
  1244 #ifdef __APPLE__
  1245 #define JNI_LIB_SUFFIX ".dylib"
  1246 #else
  1247 #define JNI_LIB_SUFFIX ".so"
  1248 #endif
  1250 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
  1252 // This must be hard coded because it's the system's temporary
  1253 // directory not the java application's temp directory, ala java.io.tmpdir.
  1254 #ifdef __APPLE__
  1255 // macosx has a secure per-user temporary directory
  1256 char temp_path_storage[PATH_MAX];
  1257 const char* os::get_temp_directory() {
  1258   static char *temp_path = NULL;
  1259   if (temp_path == NULL) {
  1260     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
  1261     if (pathSize == 0 || pathSize > PATH_MAX) {
  1262       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
  1264     temp_path = temp_path_storage;
  1266   return temp_path;
  1268 #else /* __APPLE__ */
  1269 const char* os::get_temp_directory() { return "/tmp"; }
  1270 #endif /* __APPLE__ */
  1272 static bool file_exists(const char* filename) {
  1273   struct stat statbuf;
  1274   if (filename == NULL || strlen(filename) == 0) {
  1275     return false;
  1277   return os::stat(filename, &statbuf) == 0;
  1280 bool os::dll_build_name(char* buffer, size_t buflen,
  1281                         const char* pname, const char* fname) {
  1282   bool retval = false;
  1283   // Copied from libhpi
  1284   const size_t pnamelen = pname ? strlen(pname) : 0;
  1286   // Return error on buffer overflow.
  1287   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
  1288     return retval;
  1291   if (pnamelen == 0) {
  1292     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
  1293     retval = true;
  1294   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1295     int n;
  1296     char** pelements = split_path(pname, &n);
  1297     if (pelements == NULL) {
  1298       return false;
  1300     for (int i = 0 ; i < n ; i++) {
  1301       // Really shouldn't be NULL, but check can't hurt
  1302       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1303         continue; // skip the empty path values
  1305       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
  1306           pelements[i], fname);
  1307       if (file_exists(buffer)) {
  1308         retval = true;
  1309         break;
  1312     // release the storage
  1313     for (int i = 0 ; i < n ; i++) {
  1314       if (pelements[i] != NULL) {
  1315         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1318     if (pelements != NULL) {
  1319       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1321   } else {
  1322     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
  1323     retval = true;
  1325   return retval;
  1328 // check if addr is inside libjvm.so
  1329 bool os::address_is_in_vm(address addr) {
  1330   static address libjvm_base_addr;
  1331   Dl_info dlinfo;
  1333   if (libjvm_base_addr == NULL) {
  1334     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1335       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1337     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1340   if (dladdr((void *)addr, &dlinfo) != 0) {
  1341     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1344   return false;
  1348 #define MACH_MAXSYMLEN 256
  1350 bool os::dll_address_to_function_name(address addr, char *buf,
  1351                                       int buflen, int *offset) {
  1352   // buf is not optional, but offset is optional
  1353   assert(buf != NULL, "sanity check");
  1355   Dl_info dlinfo;
  1356   char localbuf[MACH_MAXSYMLEN];
  1358   if (dladdr((void*)addr, &dlinfo) != 0) {
  1359     // see if we have a matching symbol
  1360     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1361       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1362         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1364       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1365       return true;
  1367     // no matching symbol so try for just file info
  1368     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1369       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1370                           buf, buflen, offset, dlinfo.dli_fname)) {
  1371          return true;
  1375     // Handle non-dynamic manually:
  1376     if (dlinfo.dli_fbase != NULL &&
  1377         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
  1378                         dlinfo.dli_fbase)) {
  1379       if (!Decoder::demangle(localbuf, buf, buflen)) {
  1380         jio_snprintf(buf, buflen, "%s", localbuf);
  1382       return true;
  1385   buf[0] = '\0';
  1386   if (offset != NULL) *offset = -1;
  1387   return false;
  1390 // ported from solaris version
  1391 bool os::dll_address_to_library_name(address addr, char* buf,
  1392                                      int buflen, int* offset) {
  1393   // buf is not optional, but offset is optional
  1394   assert(buf != NULL, "sanity check");
  1396   Dl_info dlinfo;
  1398   if (dladdr((void*)addr, &dlinfo) != 0) {
  1399     if (dlinfo.dli_fname != NULL) {
  1400       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1402     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1403       *offset = addr - (address)dlinfo.dli_fbase;
  1405     return true;
  1408   buf[0] = '\0';
  1409   if (offset) *offset = -1;
  1410   return false;
  1413 // Loads .dll/.so and
  1414 // in case of error it checks if .dll/.so was built for the
  1415 // same architecture as Hotspot is running on
  1417 #ifdef __APPLE__
  1418 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
  1419   void * result= ::dlopen(filename, RTLD_LAZY);
  1420   if (result != NULL) {
  1421     // Successful loading
  1422     return result;
  1425   // Read system error message into ebuf
  1426   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1427   ebuf[ebuflen-1]='\0';
  1429   return NULL;
  1431 #else
  1432 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1434   void * result= ::dlopen(filename, RTLD_LAZY);
  1435   if (result != NULL) {
  1436     // Successful loading
  1437     return result;
  1440   Elf32_Ehdr elf_head;
  1442   // Read system error message into ebuf
  1443   // It may or may not be overwritten below
  1444   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1445   ebuf[ebuflen-1]='\0';
  1446   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1447   char* diag_msg_buf=ebuf+strlen(ebuf);
  1449   if (diag_msg_max_length==0) {
  1450     // No more space in ebuf for additional diagnostics message
  1451     return NULL;
  1455   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1457   if (file_descriptor < 0) {
  1458     // Can't open library, report dlerror() message
  1459     return NULL;
  1462   bool failed_to_read_elf_head=
  1463     (sizeof(elf_head)!=
  1464         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1466   ::close(file_descriptor);
  1467   if (failed_to_read_elf_head) {
  1468     // file i/o error - report dlerror() msg
  1469     return NULL;
  1472   typedef struct {
  1473     Elf32_Half  code;         // Actual value as defined in elf.h
  1474     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1475     char        elf_class;    // 32 or 64 bit
  1476     char        endianess;    // MSB or LSB
  1477     char*       name;         // String representation
  1478   } arch_t;
  1480   #ifndef EM_486
  1481   #define EM_486          6               /* Intel 80486 */
  1482   #endif
  1484   #ifndef EM_MIPS_RS3_LE
  1485   #define EM_MIPS_RS3_LE  10              /* MIPS */
  1486   #endif
  1488   #ifndef EM_PPC64
  1489   #define EM_PPC64        21              /* PowerPC64 */
  1490   #endif
  1492   #ifndef EM_S390
  1493   #define EM_S390         22              /* IBM System/390 */
  1494   #endif
  1496   #ifndef EM_IA_64
  1497   #define EM_IA_64        50              /* HP/Intel IA-64 */
  1498   #endif
  1500   #ifndef EM_X86_64
  1501   #define EM_X86_64       62              /* AMD x86-64 */
  1502   #endif
  1504   static const arch_t arch_array[]={
  1505     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1506     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1507     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1508     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1509     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1510     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1511     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1512     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1513     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1514     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1515     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1516     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1517     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1518     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1519     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1520     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1521   };
  1523   #if  (defined IA32)
  1524     static  Elf32_Half running_arch_code=EM_386;
  1525   #elif   (defined AMD64)
  1526     static  Elf32_Half running_arch_code=EM_X86_64;
  1527   #elif  (defined IA64)
  1528     static  Elf32_Half running_arch_code=EM_IA_64;
  1529   #elif  (defined __sparc) && (defined _LP64)
  1530     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1531   #elif  (defined __sparc) && (!defined _LP64)
  1532     static  Elf32_Half running_arch_code=EM_SPARC;
  1533   #elif  (defined __powerpc64__)
  1534     static  Elf32_Half running_arch_code=EM_PPC64;
  1535   #elif  (defined __powerpc__)
  1536     static  Elf32_Half running_arch_code=EM_PPC;
  1537   #elif  (defined ARM)
  1538     static  Elf32_Half running_arch_code=EM_ARM;
  1539   #elif  (defined S390)
  1540     static  Elf32_Half running_arch_code=EM_S390;
  1541   #elif  (defined ALPHA)
  1542     static  Elf32_Half running_arch_code=EM_ALPHA;
  1543   #elif  (defined MIPSEL)
  1544     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1545   #elif  (defined PARISC)
  1546     static  Elf32_Half running_arch_code=EM_PARISC;
  1547   #elif  (defined MIPS)
  1548     static  Elf32_Half running_arch_code=EM_MIPS;
  1549   #elif  (defined M68K)
  1550     static  Elf32_Half running_arch_code=EM_68K;
  1551   #else
  1552     #error Method os::dll_load requires that one of following is defined:\
  1553          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1554   #endif
  1556   // Identify compatability class for VM's architecture and library's architecture
  1557   // Obtain string descriptions for architectures
  1559   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1560   int running_arch_index=-1;
  1562   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1563     if (running_arch_code == arch_array[i].code) {
  1564       running_arch_index    = i;
  1566     if (lib_arch.code == arch_array[i].code) {
  1567       lib_arch.compat_class = arch_array[i].compat_class;
  1568       lib_arch.name         = arch_array[i].name;
  1572   assert(running_arch_index != -1,
  1573     "Didn't find running architecture code (running_arch_code) in arch_array");
  1574   if (running_arch_index == -1) {
  1575     // Even though running architecture detection failed
  1576     // we may still continue with reporting dlerror() message
  1577     return NULL;
  1580   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1581     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1582     return NULL;
  1585 #ifndef S390
  1586   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1587     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1588     return NULL;
  1590 #endif // !S390
  1592   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1593     if ( lib_arch.name!=NULL ) {
  1594       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1595         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1596         lib_arch.name, arch_array[running_arch_index].name);
  1597     } else {
  1598       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1599       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1600         lib_arch.code,
  1601         arch_array[running_arch_index].name);
  1605   return NULL;
  1607 #endif /* !__APPLE__ */
  1609 void* os::get_default_process_handle() {
  1610 #ifdef __APPLE__
  1611   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
  1612   // to avoid finding unexpected symbols on second (or later)
  1613   // loads of a library.
  1614   return (void*)::dlopen(NULL, RTLD_FIRST);
  1615 #else
  1616   return (void*)::dlopen(NULL, RTLD_LAZY);
  1617 #endif
  1620 // XXX: Do we need a lock around this as per Linux?
  1621 void* os::dll_lookup(void* handle, const char* name) {
  1622   return dlsym(handle, name);
  1626 static bool _print_ascii_file(const char* filename, outputStream* st) {
  1627   int fd = ::open(filename, O_RDONLY);
  1628   if (fd == -1) {
  1629      return false;
  1632   char buf[32];
  1633   int bytes;
  1634   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  1635     st->print_raw(buf, bytes);
  1638   ::close(fd);
  1640   return true;
  1643 void os::print_dll_info(outputStream *st) {
  1644   st->print_cr("Dynamic libraries:");
  1645 #ifdef RTLD_DI_LINKMAP
  1646   Dl_info dli;
  1647   void *handle;
  1648   Link_map *map;
  1649   Link_map *p;
  1651   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
  1652       dli.dli_fname == NULL) {
  1653     st->print_cr("Error: Cannot print dynamic libraries.");
  1654     return;
  1656   handle = dlopen(dli.dli_fname, RTLD_LAZY);
  1657   if (handle == NULL) {
  1658     st->print_cr("Error: Cannot print dynamic libraries.");
  1659     return;
  1661   dlinfo(handle, RTLD_DI_LINKMAP, &map);
  1662   if (map == NULL) {
  1663     st->print_cr("Error: Cannot print dynamic libraries.");
  1664     return;
  1667   while (map->l_prev != NULL)
  1668     map = map->l_prev;
  1670   while (map != NULL) {
  1671     st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  1672     map = map->l_next;
  1675   dlclose(handle);
  1676 #elif defined(__APPLE__)
  1677   uint32_t count;
  1678   uint32_t i;
  1680   count = _dyld_image_count();
  1681   for (i = 1; i < count; i++) {
  1682     const char *name = _dyld_get_image_name(i);
  1683     intptr_t slide = _dyld_get_image_vmaddr_slide(i);
  1684     st->print_cr(PTR_FORMAT " \t%s", slide, name);
  1686 #else
  1687   st->print_cr("Error: Cannot print dynamic libraries.");
  1688 #endif
  1691 void os::print_os_info_brief(outputStream* st) {
  1692   st->print("Bsd");
  1694   os::Posix::print_uname_info(st);
  1697 void os::print_os_info(outputStream* st) {
  1698   st->print("OS:");
  1699   st->print("Bsd");
  1701   os::Posix::print_uname_info(st);
  1703   os::Posix::print_rlimit_info(st);
  1705   os::Posix::print_load_average(st);
  1708 void os::pd_print_cpu_info(outputStream* st) {
  1709   // Nothing to do for now.
  1712 void os::print_memory_info(outputStream* st) {
  1714   st->print("Memory:");
  1715   st->print(" %dk page", os::vm_page_size()>>10);
  1717   st->print(", physical " UINT64_FORMAT "k",
  1718             os::physical_memory() >> 10);
  1719   st->print("(" UINT64_FORMAT "k free)",
  1720             os::available_memory() >> 10);
  1721   st->cr();
  1723   // meminfo
  1724   st->print("\n/proc/meminfo:\n");
  1725   _print_ascii_file("/proc/meminfo", st);
  1726   st->cr();
  1729 void os::print_siginfo(outputStream* st, void* siginfo) {
  1730   const siginfo_t* si = (const siginfo_t*)siginfo;
  1732   os::Posix::print_siginfo_brief(st, si);
  1734   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  1735       UseSharedSpaces) {
  1736     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1737     if (mapinfo->is_in_shared_space(si->si_addr)) {
  1738       st->print("\n\nError accessing class data sharing archive."   \
  1739                 " Mapped file inaccessible during execution, "      \
  1740                 " possible disk/network problem.");
  1743   st->cr();
  1747 static void print_signal_handler(outputStream* st, int sig,
  1748                                  char* buf, size_t buflen);
  1750 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1751   st->print_cr("Signal Handlers:");
  1752   print_signal_handler(st, SIGSEGV, buf, buflen);
  1753   print_signal_handler(st, SIGBUS , buf, buflen);
  1754   print_signal_handler(st, SIGFPE , buf, buflen);
  1755   print_signal_handler(st, SIGPIPE, buf, buflen);
  1756   print_signal_handler(st, SIGXFSZ, buf, buflen);
  1757   print_signal_handler(st, SIGILL , buf, buflen);
  1758   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  1759   print_signal_handler(st, SR_signum, buf, buflen);
  1760   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  1761   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  1762   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  1763   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  1766 static char saved_jvm_path[MAXPATHLEN] = {0};
  1768 // Find the full path to the current module, libjvm
  1769 void os::jvm_path(char *buf, jint buflen) {
  1770   // Error checking.
  1771   if (buflen < MAXPATHLEN) {
  1772     assert(false, "must use a large-enough buffer");
  1773     buf[0] = '\0';
  1774     return;
  1776   // Lazy resolve the path to current module.
  1777   if (saved_jvm_path[0] != 0) {
  1778     strcpy(buf, saved_jvm_path);
  1779     return;
  1782   char dli_fname[MAXPATHLEN];
  1783   bool ret = dll_address_to_library_name(
  1784                 CAST_FROM_FN_PTR(address, os::jvm_path),
  1785                 dli_fname, sizeof(dli_fname), NULL);
  1786   assert(ret, "cannot locate libjvm");
  1787   char *rp = NULL;
  1788   if (ret && dli_fname[0] != '\0') {
  1789     rp = realpath(dli_fname, buf);
  1791   if (rp == NULL)
  1792     return;
  1794   if (Arguments::created_by_gamma_launcher()) {
  1795     // Support for the gamma launcher.  Typical value for buf is
  1796     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
  1797     // the right place in the string, then assume we are installed in a JDK and
  1798     // we're done.  Otherwise, check for a JAVA_HOME environment variable and
  1799     // construct a path to the JVM being overridden.
  1801     const char *p = buf + strlen(buf) - 1;
  1802     for (int count = 0; p > buf && count < 5; ++count) {
  1803       for (--p; p > buf && *p != '/'; --p)
  1804         /* empty */ ;
  1807     if (strncmp(p, "/jre/lib/", 9) != 0) {
  1808       // Look for JAVA_HOME in the environment.
  1809       char* java_home_var = ::getenv("JAVA_HOME");
  1810       if (java_home_var != NULL && java_home_var[0] != 0) {
  1811         char* jrelib_p;
  1812         int len;
  1814         // Check the current module name "libjvm"
  1815         p = strrchr(buf, '/');
  1816         assert(strstr(p, "/libjvm") == p, "invalid library name");
  1818         rp = realpath(java_home_var, buf);
  1819         if (rp == NULL)
  1820           return;
  1822         // determine if this is a legacy image or modules image
  1823         // modules image doesn't have "jre" subdirectory
  1824         len = strlen(buf);
  1825         assert(len < buflen, "Ran out of buffer space");
  1826         jrelib_p = buf + len;
  1828         // Add the appropriate library subdir
  1829         snprintf(jrelib_p, buflen-len, "/jre/lib");
  1830         if (0 != access(buf, F_OK)) {
  1831           snprintf(jrelib_p, buflen-len, "/lib");
  1834         // Add the appropriate client or server subdir
  1835         len = strlen(buf);
  1836         jrelib_p = buf + len;
  1837         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
  1838         if (0 != access(buf, F_OK)) {
  1839           snprintf(jrelib_p, buflen-len, "");
  1842         // If the path exists within JAVA_HOME, add the JVM library name
  1843         // to complete the path to JVM being overridden.  Otherwise fallback
  1844         // to the path to the current library.
  1845         if (0 == access(buf, F_OK)) {
  1846           // Use current module name "libjvm"
  1847           len = strlen(buf);
  1848           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
  1849         } else {
  1850           // Fall back to path of current library
  1851           rp = realpath(dli_fname, buf);
  1852           if (rp == NULL)
  1853             return;
  1859   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  1862 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1863   // no prefix required, not even "_"
  1866 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1867   // no suffix required
  1870 ////////////////////////////////////////////////////////////////////////////////
  1871 // sun.misc.Signal support
  1873 static volatile jint sigint_count = 0;
  1875 static void
  1876 UserHandler(int sig, void *siginfo, void *context) {
  1877   // 4511530 - sem_post is serialized and handled by the manager thread. When
  1878   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  1879   // don't want to flood the manager thread with sem_post requests.
  1880   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  1881       return;
  1883   // Ctrl-C is pressed during error reporting, likely because the error
  1884   // handler fails to abort. Let VM die immediately.
  1885   if (sig == SIGINT && is_error_reported()) {
  1886      os::die();
  1889   os::signal_notify(sig);
  1892 void* os::user_handler() {
  1893   return CAST_FROM_FN_PTR(void*, UserHandler);
  1896 extern "C" {
  1897   typedef void (*sa_handler_t)(int);
  1898   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  1901 void* os::signal(int signal_number, void* handler) {
  1902   struct sigaction sigAct, oldSigAct;
  1904   sigfillset(&(sigAct.sa_mask));
  1905   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  1906   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  1908   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  1909     // -1 means registration failed
  1910     return (void *)-1;
  1913   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  1916 void os::signal_raise(int signal_number) {
  1917   ::raise(signal_number);
  1920 /*
  1921  * The following code is moved from os.cpp for making this
  1922  * code platform specific, which it is by its very nature.
  1923  */
  1925 // Will be modified when max signal is changed to be dynamic
  1926 int os::sigexitnum_pd() {
  1927   return NSIG;
  1930 // a counter for each possible signal value
  1931 static volatile jint pending_signals[NSIG+1] = { 0 };
  1933 // Bsd(POSIX) specific hand shaking semaphore.
  1934 #ifdef __APPLE__
  1935 typedef semaphore_t os_semaphore_t;
  1936 #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
  1937 #define SEM_WAIT(sem)           semaphore_wait(sem)
  1938 #define SEM_POST(sem)           semaphore_signal(sem)
  1939 #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
  1940 #else
  1941 typedef sem_t os_semaphore_t;
  1942 #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
  1943 #define SEM_WAIT(sem)           sem_wait(&sem)
  1944 #define SEM_POST(sem)           sem_post(&sem)
  1945 #define SEM_DESTROY(sem)        sem_destroy(&sem)
  1946 #endif
  1948 class Semaphore : public StackObj {
  1949   public:
  1950     Semaphore();
  1951     ~Semaphore();
  1952     void signal();
  1953     void wait();
  1954     bool trywait();
  1955     bool timedwait(unsigned int sec, int nsec);
  1956   private:
  1957     jlong currenttime() const;
  1958     os_semaphore_t _semaphore;
  1959 };
  1961 Semaphore::Semaphore() : _semaphore(0) {
  1962   SEM_INIT(_semaphore, 0);
  1965 Semaphore::~Semaphore() {
  1966   SEM_DESTROY(_semaphore);
  1969 void Semaphore::signal() {
  1970   SEM_POST(_semaphore);
  1973 void Semaphore::wait() {
  1974   SEM_WAIT(_semaphore);
  1977 jlong Semaphore::currenttime() const {
  1978     struct timeval tv;
  1979     gettimeofday(&tv, NULL);
  1980     return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
  1983 #ifdef __APPLE__
  1984 bool Semaphore::trywait() {
  1985   return timedwait(0, 0);
  1988 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  1989   kern_return_t kr = KERN_ABORTED;
  1990   mach_timespec_t waitspec;
  1991   waitspec.tv_sec = sec;
  1992   waitspec.tv_nsec = nsec;
  1994   jlong starttime = currenttime();
  1996   kr = semaphore_timedwait(_semaphore, waitspec);
  1997   while (kr == KERN_ABORTED) {
  1998     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
  2000     jlong current = currenttime();
  2001     jlong passedtime = current - starttime;
  2003     if (passedtime >= totalwait) {
  2004       waitspec.tv_sec = 0;
  2005       waitspec.tv_nsec = 0;
  2006     } else {
  2007       jlong waittime = totalwait - (current - starttime);
  2008       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
  2009       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
  2012     kr = semaphore_timedwait(_semaphore, waitspec);
  2015   return kr == KERN_SUCCESS;
  2018 #else
  2020 bool Semaphore::trywait() {
  2021   return sem_trywait(&_semaphore) == 0;
  2024 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2025   struct timespec ts;
  2026   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
  2028   while (1) {
  2029     int result = sem_timedwait(&_semaphore, &ts);
  2030     if (result == 0) {
  2031       return true;
  2032     } else if (errno == EINTR) {
  2033       continue;
  2034     } else if (errno == ETIMEDOUT) {
  2035       return false;
  2036     } else {
  2037       return false;
  2042 #endif // __APPLE__
  2044 static os_semaphore_t sig_sem;
  2045 static Semaphore sr_semaphore;
  2047 void os::signal_init_pd() {
  2048   // Initialize signal structures
  2049   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2051   // Initialize signal semaphore
  2052   ::SEM_INIT(sig_sem, 0);
  2055 void os::signal_notify(int sig) {
  2056   Atomic::inc(&pending_signals[sig]);
  2057   ::SEM_POST(sig_sem);
  2060 static int check_pending_signals(bool wait) {
  2061   Atomic::store(0, &sigint_count);
  2062   for (;;) {
  2063     for (int i = 0; i < NSIG + 1; i++) {
  2064       jint n = pending_signals[i];
  2065       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2066         return i;
  2069     if (!wait) {
  2070       return -1;
  2072     JavaThread *thread = JavaThread::current();
  2073     ThreadBlockInVM tbivm(thread);
  2075     bool threadIsSuspended;
  2076     do {
  2077       thread->set_suspend_equivalent();
  2078       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2079       ::SEM_WAIT(sig_sem);
  2081       // were we externally suspended while we were waiting?
  2082       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2083       if (threadIsSuspended) {
  2084         //
  2085         // The semaphore has been incremented, but while we were waiting
  2086         // another thread suspended us. We don't want to continue running
  2087         // while suspended because that would surprise the thread that
  2088         // suspended us.
  2089         //
  2090         ::SEM_POST(sig_sem);
  2092         thread->java_suspend_self();
  2094     } while (threadIsSuspended);
  2098 int os::signal_lookup() {
  2099   return check_pending_signals(false);
  2102 int os::signal_wait() {
  2103   return check_pending_signals(true);
  2106 ////////////////////////////////////////////////////////////////////////////////
  2107 // Virtual Memory
  2109 int os::vm_page_size() {
  2110   // Seems redundant as all get out
  2111   assert(os::Bsd::page_size() != -1, "must call os::init");
  2112   return os::Bsd::page_size();
  2115 // Solaris allocates memory by pages.
  2116 int os::vm_allocation_granularity() {
  2117   assert(os::Bsd::page_size() != -1, "must call os::init");
  2118   return os::Bsd::page_size();
  2121 // Rationale behind this function:
  2122 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2123 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2124 //  samples for JITted code. Here we create private executable mapping over the code cache
  2125 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2126 //  info for the reporting script by storing timestamp and location of symbol
  2127 void bsd_wrap_code(char* base, size_t size) {
  2128   static volatile jint cnt = 0;
  2130   if (!UseOprofile) {
  2131     return;
  2134   char buf[PATH_MAX + 1];
  2135   int num = Atomic::add(1, &cnt);
  2137   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
  2138            os::get_temp_directory(), os::current_process_id(), num);
  2139   unlink(buf);
  2141   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2143   if (fd != -1) {
  2144     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2145     if (rv != (off_t)-1) {
  2146       if (::write(fd, "", 1) == 1) {
  2147         mmap(base, size,
  2148              PROT_READ|PROT_WRITE|PROT_EXEC,
  2149              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2152     ::close(fd);
  2153     unlink(buf);
  2157 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2158                                     int err) {
  2159   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2160           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2161           strerror(err), err);
  2164 // NOTE: Bsd kernel does not really reserve the pages for us.
  2165 //       All it does is to check if there are enough free pages
  2166 //       left at the time of mmap(). This could be a potential
  2167 //       problem.
  2168 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2169   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2170 #ifdef __OpenBSD__
  2171   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
  2172   if (::mprotect(addr, size, prot) == 0) {
  2173     return true;
  2175 #else
  2176   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2177                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2178   if (res != (uintptr_t) MAP_FAILED) {
  2179     return true;
  2181 #endif
  2183   // Warn about any commit errors we see in non-product builds just
  2184   // in case mmap() doesn't work as described on the man page.
  2185   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
  2187   return false;
  2190 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2191                        bool exec) {
  2192   // alignment_hint is ignored on this OS
  2193   return pd_commit_memory(addr, size, exec);
  2196 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2197                                   const char* mesg) {
  2198   assert(mesg != NULL, "mesg must be specified");
  2199   if (!pd_commit_memory(addr, size, exec)) {
  2200     // add extra info in product mode for vm_exit_out_of_memory():
  2201     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
  2202     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2206 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2207                                   size_t alignment_hint, bool exec,
  2208                                   const char* mesg) {
  2209   // alignment_hint is ignored on this OS
  2210   pd_commit_memory_or_exit(addr, size, exec, mesg);
  2213 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2216 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2217   ::madvise(addr, bytes, MADV_DONTNEED);
  2220 void os::numa_make_global(char *addr, size_t bytes) {
  2223 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2226 bool os::numa_topology_changed()   { return false; }
  2228 size_t os::numa_get_groups_num() {
  2229   return 1;
  2232 int os::numa_get_group_id() {
  2233   return 0;
  2236 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2237   if (size > 0) {
  2238     ids[0] = 0;
  2239     return 1;
  2241   return 0;
  2244 bool os::get_page_info(char *start, page_info* info) {
  2245   return false;
  2248 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2249   return end;
  2253 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2254 #ifdef __OpenBSD__
  2255   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
  2256   return ::mprotect(addr, size, PROT_NONE) == 0;
  2257 #else
  2258   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2259                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2260   return res  != (uintptr_t) MAP_FAILED;
  2261 #endif
  2264 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2265   return os::commit_memory(addr, size, !ExecMem);
  2268 // If this is a growable mapping, remove the guard pages entirely by
  2269 // munmap()ping them.  If not, just call uncommit_memory().
  2270 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2271   return os::uncommit_memory(addr, size);
  2274 static address _highest_vm_reserved_address = NULL;
  2276 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2277 // at 'requested_addr'. If there are existing memory mappings at the same
  2278 // location, however, they will be overwritten. If 'fixed' is false,
  2279 // 'requested_addr' is only treated as a hint, the return value may or
  2280 // may not start from the requested address. Unlike Bsd mmap(), this
  2281 // function returns NULL to indicate failure.
  2282 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2283   char * addr;
  2284   int flags;
  2286   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2287   if (fixed) {
  2288     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
  2289     flags |= MAP_FIXED;
  2292   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  2293   // touch an uncommitted page. Otherwise, the read/write might
  2294   // succeed if we have enough swap space to back the physical page.
  2295   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  2296                        flags, -1, 0);
  2298   if (addr != MAP_FAILED) {
  2299     // anon_mmap() should only get called during VM initialization,
  2300     // don't need lock (actually we can skip locking even it can be called
  2301     // from multiple threads, because _highest_vm_reserved_address is just a
  2302     // hint about the upper limit of non-stack memory regions.)
  2303     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2304       _highest_vm_reserved_address = (address)addr + bytes;
  2308   return addr == MAP_FAILED ? NULL : addr;
  2311 // Don't update _highest_vm_reserved_address, because there might be memory
  2312 // regions above addr + size. If so, releasing a memory region only creates
  2313 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2314 //
  2315 static int anon_munmap(char * addr, size_t size) {
  2316   return ::munmap(addr, size) == 0;
  2319 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  2320                          size_t alignment_hint) {
  2321   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2324 bool os::pd_release_memory(char* addr, size_t size) {
  2325   return anon_munmap(addr, size);
  2328 static bool bsd_mprotect(char* addr, size_t size, int prot) {
  2329   // Bsd wants the mprotect address argument to be page aligned.
  2330   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
  2332   // According to SUSv3, mprotect() should only be used with mappings
  2333   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2334   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2335   // protection of malloc'ed or statically allocated memory). Check the
  2336   // caller if you hit this assert.
  2337   assert(addr == bottom, "sanity check");
  2339   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
  2340   return ::mprotect(bottom, size, prot) == 0;
  2343 // Set protections specified
  2344 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2345                         bool is_committed) {
  2346   unsigned int p = 0;
  2347   switch (prot) {
  2348   case MEM_PROT_NONE: p = PROT_NONE; break;
  2349   case MEM_PROT_READ: p = PROT_READ; break;
  2350   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2351   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2352   default:
  2353     ShouldNotReachHere();
  2355   // is_committed is unused.
  2356   return bsd_mprotect(addr, bytes, p);
  2359 bool os::guard_memory(char* addr, size_t size) {
  2360   return bsd_mprotect(addr, size, PROT_NONE);
  2363 bool os::unguard_memory(char* addr, size_t size) {
  2364   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2367 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2368   return false;
  2371 // Large page support
  2373 static size_t _large_page_size = 0;
  2375 void os::large_page_init() {
  2379 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  2380   fatal("This code is not used or maintained.");
  2382   // "exec" is passed in but not used.  Creating the shared image for
  2383   // the code cache doesn't have an SHM_X executable permission to check.
  2384   assert(UseLargePages && UseSHM, "only for SHM large pages");
  2386   key_t key = IPC_PRIVATE;
  2387   char *addr;
  2389   bool warn_on_failure = UseLargePages &&
  2390                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  2391                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  2392                         );
  2394   // Create a large shared memory region to attach to based on size.
  2395   // Currently, size is the total size of the heap
  2396   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
  2397   if (shmid == -1) {
  2398      // Possible reasons for shmget failure:
  2399      // 1. shmmax is too small for Java heap.
  2400      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  2401      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  2402      // 2. not enough large page memory.
  2403      //    > check available large pages: cat /proc/meminfo
  2404      //    > increase amount of large pages:
  2405      //          echo new_value > /proc/sys/vm/nr_hugepages
  2406      //      Note 1: different Bsd may use different name for this property,
  2407      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  2408      //      Note 2: it's possible there's enough physical memory available but
  2409      //            they are so fragmented after a long run that they can't
  2410      //            coalesce into large pages. Try to reserve large pages when
  2411      //            the system is still "fresh".
  2412      if (warn_on_failure) {
  2413        warning("Failed to reserve shared memory (errno = %d).", errno);
  2415      return NULL;
  2418   // attach to the region
  2419   addr = (char*)shmat(shmid, req_addr, 0);
  2420   int err = errno;
  2422   // Remove shmid. If shmat() is successful, the actual shared memory segment
  2423   // will be deleted when it's detached by shmdt() or when the process
  2424   // terminates. If shmat() is not successful this will remove the shared
  2425   // segment immediately.
  2426   shmctl(shmid, IPC_RMID, NULL);
  2428   if ((intptr_t)addr == -1) {
  2429      if (warn_on_failure) {
  2430        warning("Failed to attach shared memory (errno = %d).", err);
  2432      return NULL;
  2435   // The memory is committed
  2436   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
  2438   return addr;
  2441 bool os::release_memory_special(char* base, size_t bytes) {
  2442   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  2443   // detaching the SHM segment will also delete it, see reserve_memory_special()
  2444   int rslt = shmdt(base);
  2445   if (rslt == 0) {
  2446     tkr.record((address)base, bytes);
  2447     return true;
  2448   } else {
  2449     tkr.discard();
  2450     return false;
  2455 size_t os::large_page_size() {
  2456   return _large_page_size;
  2459 // HugeTLBFS allows application to commit large page memory on demand;
  2460 // with SysV SHM the entire memory region must be allocated as shared
  2461 // memory.
  2462 bool os::can_commit_large_page_memory() {
  2463   return UseHugeTLBFS;
  2466 bool os::can_execute_large_page_memory() {
  2467   return UseHugeTLBFS;
  2470 // Reserve memory at an arbitrary address, only if that area is
  2471 // available (and not reserved for something else).
  2473 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2474   const int max_tries = 10;
  2475   char* base[max_tries];
  2476   size_t size[max_tries];
  2477   const size_t gap = 0x000000;
  2479   // Assert only that the size is a multiple of the page size, since
  2480   // that's all that mmap requires, and since that's all we really know
  2481   // about at this low abstraction level.  If we need higher alignment,
  2482   // we can either pass an alignment to this method or verify alignment
  2483   // in one of the methods further up the call chain.  See bug 5044738.
  2484   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  2486   // Repeatedly allocate blocks until the block is allocated at the
  2487   // right spot. Give up after max_tries. Note that reserve_memory() will
  2488   // automatically update _highest_vm_reserved_address if the call is
  2489   // successful. The variable tracks the highest memory address every reserved
  2490   // by JVM. It is used to detect heap-stack collision if running with
  2491   // fixed-stack BsdThreads. Because here we may attempt to reserve more
  2492   // space than needed, it could confuse the collision detecting code. To
  2493   // solve the problem, save current _highest_vm_reserved_address and
  2494   // calculate the correct value before return.
  2495   address old_highest = _highest_vm_reserved_address;
  2497   // Bsd mmap allows caller to pass an address as hint; give it a try first,
  2498   // if kernel honors the hint then we can return immediately.
  2499   char * addr = anon_mmap(requested_addr, bytes, false);
  2500   if (addr == requested_addr) {
  2501      return requested_addr;
  2504   if (addr != NULL) {
  2505      // mmap() is successful but it fails to reserve at the requested address
  2506      anon_munmap(addr, bytes);
  2509   int i;
  2510   for (i = 0; i < max_tries; ++i) {
  2511     base[i] = reserve_memory(bytes);
  2513     if (base[i] != NULL) {
  2514       // Is this the block we wanted?
  2515       if (base[i] == requested_addr) {
  2516         size[i] = bytes;
  2517         break;
  2520       // Does this overlap the block we wanted? Give back the overlapped
  2521       // parts and try again.
  2523       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  2524       if (top_overlap >= 0 && top_overlap < bytes) {
  2525         unmap_memory(base[i], top_overlap);
  2526         base[i] += top_overlap;
  2527         size[i] = bytes - top_overlap;
  2528       } else {
  2529         size_t bottom_overlap = base[i] + bytes - requested_addr;
  2530         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  2531           unmap_memory(requested_addr, bottom_overlap);
  2532           size[i] = bytes - bottom_overlap;
  2533         } else {
  2534           size[i] = bytes;
  2540   // Give back the unused reserved pieces.
  2542   for (int j = 0; j < i; ++j) {
  2543     if (base[j] != NULL) {
  2544       unmap_memory(base[j], size[j]);
  2548   if (i < max_tries) {
  2549     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  2550     return requested_addr;
  2551   } else {
  2552     _highest_vm_reserved_address = old_highest;
  2553     return NULL;
  2557 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2558   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
  2561 // TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
  2562 // Solaris uses poll(), bsd uses park().
  2563 // Poll() is likely a better choice, assuming that Thread.interrupt()
  2564 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  2565 // SIGSEGV, see 4355769.
  2567 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  2568   assert(thread == Thread::current(),  "thread consistency check");
  2570   ParkEvent * const slp = thread->_SleepEvent ;
  2571   slp->reset() ;
  2572   OrderAccess::fence() ;
  2574   if (interruptible) {
  2575     jlong prevtime = javaTimeNanos();
  2577     for (;;) {
  2578       if (os::is_interrupted(thread, true)) {
  2579         return OS_INTRPT;
  2582       jlong newtime = javaTimeNanos();
  2584       if (newtime - prevtime < 0) {
  2585         // time moving backwards, should only happen if no monotonic clock
  2586         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2587         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
  2588       } else {
  2589         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  2592       if(millis <= 0) {
  2593         return OS_OK;
  2596       prevtime = newtime;
  2599         assert(thread->is_Java_thread(), "sanity check");
  2600         JavaThread *jt = (JavaThread *) thread;
  2601         ThreadBlockInVM tbivm(jt);
  2602         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  2604         jt->set_suspend_equivalent();
  2605         // cleared by handle_special_suspend_equivalent_condition() or
  2606         // java_suspend_self() via check_and_wait_while_suspended()
  2608         slp->park(millis);
  2610         // were we externally suspended while we were waiting?
  2611         jt->check_and_wait_while_suspended();
  2614   } else {
  2615     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  2616     jlong prevtime = javaTimeNanos();
  2618     for (;;) {
  2619       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  2620       // the 1st iteration ...
  2621       jlong newtime = javaTimeNanos();
  2623       if (newtime - prevtime < 0) {
  2624         // time moving backwards, should only happen if no monotonic clock
  2625         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2626         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
  2627       } else {
  2628         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  2631       if(millis <= 0) break ;
  2633       prevtime = newtime;
  2634       slp->park(millis);
  2636     return OS_OK ;
  2640 void os::naked_short_sleep(jlong ms) {
  2641   struct timespec req;
  2643   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  2644   req.tv_sec = 0;
  2645   if (ms > 0) {
  2646     req.tv_nsec = (ms % 1000) * 1000000;
  2648   else {
  2649     req.tv_nsec = 1;
  2652   nanosleep(&req, NULL);
  2654   return;
  2657 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2658 void os::infinite_sleep() {
  2659   while (true) {    // sleep forever ...
  2660     ::sleep(100);   // ... 100 seconds at a time
  2664 // Used to convert frequent JVM_Yield() to nops
  2665 bool os::dont_yield() {
  2666   return DontYieldALot;
  2669 void os::yield() {
  2670   sched_yield();
  2673 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  2675 void os::yield_all(int attempts) {
  2676   // Yields to all threads, including threads with lower priorities
  2677   // Threads on Bsd are all with same priority. The Solaris style
  2678   // os::yield_all() with nanosleep(1ms) is not necessary.
  2679   sched_yield();
  2682 // Called from the tight loops to possibly influence time-sharing heuristics
  2683 void os::loop_breaker(int attempts) {
  2684   os::yield_all(attempts);
  2687 ////////////////////////////////////////////////////////////////////////////////
  2688 // thread priority support
  2690 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
  2691 // only supports dynamic priority, static priority must be zero. For real-time
  2692 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
  2693 // However, for large multi-threaded applications, SCHED_RR is not only slower
  2694 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  2695 // of 5 runs - Sep 2005).
  2696 //
  2697 // The following code actually changes the niceness of kernel-thread/LWP. It
  2698 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  2699 // not the entire user process, and user level threads are 1:1 mapped to kernel
  2700 // threads. It has always been the case, but could change in the future. For
  2701 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  2702 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  2704 #if !defined(__APPLE__)
  2705 int os::java_to_os_priority[CriticalPriority + 1] = {
  2706   19,              // 0 Entry should never be used
  2708    0,              // 1 MinPriority
  2709    3,              // 2
  2710    6,              // 3
  2712   10,              // 4
  2713   15,              // 5 NormPriority
  2714   18,              // 6
  2716   21,              // 7
  2717   25,              // 8
  2718   28,              // 9 NearMaxPriority
  2720   31,              // 10 MaxPriority
  2722   31               // 11 CriticalPriority
  2723 };
  2724 #else
  2725 /* Using Mach high-level priority assignments */
  2726 int os::java_to_os_priority[CriticalPriority + 1] = {
  2727    0,              // 0 Entry should never be used (MINPRI_USER)
  2729   27,              // 1 MinPriority
  2730   28,              // 2
  2731   29,              // 3
  2733   30,              // 4
  2734   31,              // 5 NormPriority (BASEPRI_DEFAULT)
  2735   32,              // 6
  2737   33,              // 7
  2738   34,              // 8
  2739   35,              // 9 NearMaxPriority
  2741   36,              // 10 MaxPriority
  2743   36               // 11 CriticalPriority
  2744 };
  2745 #endif
  2747 static int prio_init() {
  2748   if (ThreadPriorityPolicy == 1) {
  2749     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  2750     // if effective uid is not root. Perhaps, a more elegant way of doing
  2751     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  2752     if (geteuid() != 0) {
  2753       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  2754         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
  2756       ThreadPriorityPolicy = 0;
  2759   if (UseCriticalJavaThreadPriority) {
  2760     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  2762   return 0;
  2765 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  2766   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  2768 #ifdef __OpenBSD__
  2769   // OpenBSD pthread_setprio starves low priority threads
  2770   return OS_OK;
  2771 #elif defined(__FreeBSD__)
  2772   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
  2773 #elif defined(__APPLE__) || defined(__NetBSD__)
  2774   struct sched_param sp;
  2775   int policy;
  2776   pthread_t self = pthread_self();
  2778   if (pthread_getschedparam(self, &policy, &sp) != 0)
  2779     return OS_ERR;
  2781   sp.sched_priority = newpri;
  2782   if (pthread_setschedparam(self, policy, &sp) != 0)
  2783     return OS_ERR;
  2785   return OS_OK;
  2786 #else
  2787   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  2788   return (ret == 0) ? OS_OK : OS_ERR;
  2789 #endif
  2792 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  2793   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  2794     *priority_ptr = java_to_os_priority[NormPriority];
  2795     return OS_OK;
  2798   errno = 0;
  2799 #if defined(__OpenBSD__) || defined(__FreeBSD__)
  2800   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
  2801 #elif defined(__APPLE__) || defined(__NetBSD__)
  2802   int policy;
  2803   struct sched_param sp;
  2805   pthread_getschedparam(pthread_self(), &policy, &sp);
  2806   *priority_ptr = sp.sched_priority;
  2807 #else
  2808   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  2809 #endif
  2810   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  2813 // Hint to the underlying OS that a task switch would not be good.
  2814 // Void return because it's a hint and can fail.
  2815 void os::hint_no_preempt() {}
  2817 ////////////////////////////////////////////////////////////////////////////////
  2818 // suspend/resume support
  2820 //  the low-level signal-based suspend/resume support is a remnant from the
  2821 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  2822 //  within hotspot. Now there is a single use-case for this:
  2823 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  2824 //      that runs in the watcher thread.
  2825 //  The remaining code is greatly simplified from the more general suspension
  2826 //  code that used to be used.
  2827 //
  2828 //  The protocol is quite simple:
  2829 //  - suspend:
  2830 //      - sends a signal to the target thread
  2831 //      - polls the suspend state of the osthread using a yield loop
  2832 //      - target thread signal handler (SR_handler) sets suspend state
  2833 //        and blocks in sigsuspend until continued
  2834 //  - resume:
  2835 //      - sets target osthread state to continue
  2836 //      - sends signal to end the sigsuspend loop in the SR_handler
  2837 //
  2838 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  2839 //
  2841 static void resume_clear_context(OSThread *osthread) {
  2842   osthread->set_ucontext(NULL);
  2843   osthread->set_siginfo(NULL);
  2846 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  2847   osthread->set_ucontext(context);
  2848   osthread->set_siginfo(siginfo);
  2851 //
  2852 // Handler function invoked when a thread's execution is suspended or
  2853 // resumed. We have to be careful that only async-safe functions are
  2854 // called here (Note: most pthread functions are not async safe and
  2855 // should be avoided.)
  2856 //
  2857 // Note: sigwait() is a more natural fit than sigsuspend() from an
  2858 // interface point of view, but sigwait() prevents the signal hander
  2859 // from being run. libpthread would get very confused by not having
  2860 // its signal handlers run and prevents sigwait()'s use with the
  2861 // mutex granting granting signal.
  2862 //
  2863 // Currently only ever called on the VMThread or JavaThread
  2864 //
  2865 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  2866   // Save and restore errno to avoid confusing native code with EINTR
  2867   // after sigsuspend.
  2868   int old_errno = errno;
  2870   Thread* thread = Thread::current();
  2871   OSThread* osthread = thread->osthread();
  2872   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  2874   os::SuspendResume::State current = osthread->sr.state();
  2875   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  2876     suspend_save_context(osthread, siginfo, context);
  2878     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  2879     os::SuspendResume::State state = osthread->sr.suspended();
  2880     if (state == os::SuspendResume::SR_SUSPENDED) {
  2881       sigset_t suspend_set;  // signals for sigsuspend()
  2883       // get current set of blocked signals and unblock resume signal
  2884       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  2885       sigdelset(&suspend_set, SR_signum);
  2887       sr_semaphore.signal();
  2888       // wait here until we are resumed
  2889       while (1) {
  2890         sigsuspend(&suspend_set);
  2892         os::SuspendResume::State result = osthread->sr.running();
  2893         if (result == os::SuspendResume::SR_RUNNING) {
  2894           sr_semaphore.signal();
  2895           break;
  2896         } else if (result != os::SuspendResume::SR_SUSPENDED) {
  2897           ShouldNotReachHere();
  2901     } else if (state == os::SuspendResume::SR_RUNNING) {
  2902       // request was cancelled, continue
  2903     } else {
  2904       ShouldNotReachHere();
  2907     resume_clear_context(osthread);
  2908   } else if (current == os::SuspendResume::SR_RUNNING) {
  2909     // request was cancelled, continue
  2910   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  2911     // ignore
  2912   } else {
  2913     // ignore
  2916   errno = old_errno;
  2920 static int SR_initialize() {
  2921   struct sigaction act;
  2922   char *s;
  2923   /* Get signal number to use for suspend/resume */
  2924   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  2925     int sig = ::strtol(s, 0, 10);
  2926     if (sig > 0 || sig < NSIG) {
  2927         SR_signum = sig;
  2931   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  2932         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  2934   sigemptyset(&SR_sigset);
  2935   sigaddset(&SR_sigset, SR_signum);
  2937   /* Set up signal handler for suspend/resume */
  2938   act.sa_flags = SA_RESTART|SA_SIGINFO;
  2939   act.sa_handler = (void (*)(int)) SR_handler;
  2941   // SR_signum is blocked by default.
  2942   // 4528190 - We also need to block pthread restart signal (32 on all
  2943   // supported Bsd platforms). Note that BsdThreads need to block
  2944   // this signal for all threads to work properly. So we don't have
  2945   // to use hard-coded signal number when setting up the mask.
  2946   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  2948   if (sigaction(SR_signum, &act, 0) == -1) {
  2949     return -1;
  2952   // Save signal flag
  2953   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
  2954   return 0;
  2957 static int sr_notify(OSThread* osthread) {
  2958   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  2959   assert_status(status == 0, status, "pthread_kill");
  2960   return status;
  2963 // "Randomly" selected value for how long we want to spin
  2964 // before bailing out on suspending a thread, also how often
  2965 // we send a signal to a thread we want to resume
  2966 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  2967 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  2969 // returns true on success and false on error - really an error is fatal
  2970 // but this seems the normal response to library errors
  2971 static bool do_suspend(OSThread* osthread) {
  2972   assert(osthread->sr.is_running(), "thread should be running");
  2973   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  2975   // mark as suspended and send signal
  2976   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  2977     // failed to switch, state wasn't running?
  2978     ShouldNotReachHere();
  2979     return false;
  2982   if (sr_notify(osthread) != 0) {
  2983     ShouldNotReachHere();
  2986   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  2987   while (true) {
  2988     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  2989       break;
  2990     } else {
  2991       // timeout
  2992       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  2993       if (cancelled == os::SuspendResume::SR_RUNNING) {
  2994         return false;
  2995       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  2996         // make sure that we consume the signal on the semaphore as well
  2997         sr_semaphore.wait();
  2998         break;
  2999       } else {
  3000         ShouldNotReachHere();
  3001         return false;
  3006   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  3007   return true;
  3010 static void do_resume(OSThread* osthread) {
  3011   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3012   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  3014   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  3015     // failed to switch to WAKEUP_REQUEST
  3016     ShouldNotReachHere();
  3017     return;
  3020   while (true) {
  3021     if (sr_notify(osthread) == 0) {
  3022       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  3023         if (osthread->sr.is_running()) {
  3024           return;
  3027     } else {
  3028       ShouldNotReachHere();
  3032   guarantee(osthread->sr.is_running(), "Must be running!");
  3035 ////////////////////////////////////////////////////////////////////////////////
  3036 // interrupt support
  3038 void os::interrupt(Thread* thread) {
  3039   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3040     "possibility of dangling Thread pointer");
  3042   OSThread* osthread = thread->osthread();
  3044   if (!osthread->interrupted()) {
  3045     osthread->set_interrupted(true);
  3046     // More than one thread can get here with the same value of osthread,
  3047     // resulting in multiple notifications.  We do, however, want the store
  3048     // to interrupted() to be visible to other threads before we execute unpark().
  3049     OrderAccess::fence();
  3050     ParkEvent * const slp = thread->_SleepEvent ;
  3051     if (slp != NULL) slp->unpark() ;
  3054   // For JSR166. Unpark even if interrupt status already was set
  3055   if (thread->is_Java_thread())
  3056     ((JavaThread*)thread)->parker()->unpark();
  3058   ParkEvent * ev = thread->_ParkEvent ;
  3059   if (ev != NULL) ev->unpark() ;
  3063 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3064   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3065     "possibility of dangling Thread pointer");
  3067   OSThread* osthread = thread->osthread();
  3069   bool interrupted = osthread->interrupted();
  3071   if (interrupted && clear_interrupted) {
  3072     osthread->set_interrupted(false);
  3073     // consider thread->_SleepEvent->reset() ... optional optimization
  3076   return interrupted;
  3079 ///////////////////////////////////////////////////////////////////////////////////
  3080 // signal handling (except suspend/resume)
  3082 // This routine may be used by user applications as a "hook" to catch signals.
  3083 // The user-defined signal handler must pass unrecognized signals to this
  3084 // routine, and if it returns true (non-zero), then the signal handler must
  3085 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3086 // routine will never retun false (zero), but instead will execute a VM panic
  3087 // routine kill the process.
  3088 //
  3089 // If this routine returns false, it is OK to call it again.  This allows
  3090 // the user-defined signal handler to perform checks either before or after
  3091 // the VM performs its own checks.  Naturally, the user code would be making
  3092 // a serious error if it tried to handle an exception (such as a null check
  3093 // or breakpoint) that the VM was generating for its own correct operation.
  3094 //
  3095 // This routine may recognize any of the following kinds of signals:
  3096 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3097 // It should be consulted by handlers for any of those signals.
  3098 //
  3099 // The caller of this routine must pass in the three arguments supplied
  3100 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3101 // field of the structure passed to sigaction().  This routine assumes that
  3102 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3103 //
  3104 // Note that the VM will print warnings if it detects conflicting signal
  3105 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3106 //
  3107 extern "C" JNIEXPORT int
  3108 JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
  3109                         void* ucontext, int abort_if_unrecognized);
  3111 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3112   assert(info != NULL && uc != NULL, "it must be old kernel");
  3113   int orig_errno = errno;  // Preserve errno value over signal handler.
  3114   JVM_handle_bsd_signal(sig, info, uc, true);
  3115   errno = orig_errno;
  3119 // This boolean allows users to forward their own non-matching signals
  3120 // to JVM_handle_bsd_signal, harmlessly.
  3121 bool os::Bsd::signal_handlers_are_installed = false;
  3123 // For signal-chaining
  3124 struct sigaction os::Bsd::sigact[MAXSIGNUM];
  3125 unsigned int os::Bsd::sigs = 0;
  3126 bool os::Bsd::libjsig_is_loaded = false;
  3127 typedef struct sigaction *(*get_signal_t)(int);
  3128 get_signal_t os::Bsd::get_signal_action = NULL;
  3130 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
  3131   struct sigaction *actp = NULL;
  3133   if (libjsig_is_loaded) {
  3134     // Retrieve the old signal handler from libjsig
  3135     actp = (*get_signal_action)(sig);
  3137   if (actp == NULL) {
  3138     // Retrieve the preinstalled signal handler from jvm
  3139     actp = get_preinstalled_handler(sig);
  3142   return actp;
  3145 static bool call_chained_handler(struct sigaction *actp, int sig,
  3146                                  siginfo_t *siginfo, void *context) {
  3147   // Call the old signal handler
  3148   if (actp->sa_handler == SIG_DFL) {
  3149     // It's more reasonable to let jvm treat it as an unexpected exception
  3150     // instead of taking the default action.
  3151     return false;
  3152   } else if (actp->sa_handler != SIG_IGN) {
  3153     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3154       // automaticlly block the signal
  3155       sigaddset(&(actp->sa_mask), sig);
  3158     sa_handler_t hand;
  3159     sa_sigaction_t sa;
  3160     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3161     // retrieve the chained handler
  3162     if (siginfo_flag_set) {
  3163       sa = actp->sa_sigaction;
  3164     } else {
  3165       hand = actp->sa_handler;
  3168     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3169       actp->sa_handler = SIG_DFL;
  3172     // try to honor the signal mask
  3173     sigset_t oset;
  3174     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3176     // call into the chained handler
  3177     if (siginfo_flag_set) {
  3178       (*sa)(sig, siginfo, context);
  3179     } else {
  3180       (*hand)(sig);
  3183     // restore the signal mask
  3184     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3186   // Tell jvm's signal handler the signal is taken care of.
  3187   return true;
  3190 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3191   bool chained = false;
  3192   // signal-chaining
  3193   if (UseSignalChaining) {
  3194     struct sigaction *actp = get_chained_signal_action(sig);
  3195     if (actp != NULL) {
  3196       chained = call_chained_handler(actp, sig, siginfo, context);
  3199   return chained;
  3202 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
  3203   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3204     return &sigact[sig];
  3206   return NULL;
  3209 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3210   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3211   sigact[sig] = oldAct;
  3212   sigs |= (unsigned int)1 << sig;
  3215 // for diagnostic
  3216 int os::Bsd::sigflags[MAXSIGNUM];
  3218 int os::Bsd::get_our_sigflags(int sig) {
  3219   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3220   return sigflags[sig];
  3223 void os::Bsd::set_our_sigflags(int sig, int flags) {
  3224   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3225   sigflags[sig] = flags;
  3228 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
  3229   // Check for overwrite.
  3230   struct sigaction oldAct;
  3231   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3233   void* oldhand = oldAct.sa_sigaction
  3234                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3235                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3236   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3237       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3238       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3239     if (AllowUserSignalHandlers || !set_installed) {
  3240       // Do not overwrite; user takes responsibility to forward to us.
  3241       return;
  3242     } else if (UseSignalChaining) {
  3243       // save the old handler in jvm
  3244       save_preinstalled_handler(sig, oldAct);
  3245       // libjsig also interposes the sigaction() call below and saves the
  3246       // old sigaction on it own.
  3247     } else {
  3248       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3249                     "%#lx for signal %d.", (long)oldhand, sig));
  3253   struct sigaction sigAct;
  3254   sigfillset(&(sigAct.sa_mask));
  3255   sigAct.sa_handler = SIG_DFL;
  3256   if (!set_installed) {
  3257     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3258   } else {
  3259     sigAct.sa_sigaction = signalHandler;
  3260     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3262 #ifdef __APPLE__
  3263   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
  3264   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
  3265   // if the signal handler declares it will handle it on alternate stack.
  3266   // Notice we only declare we will handle it on alt stack, but we are not
  3267   // actually going to use real alt stack - this is just a workaround.
  3268   // Please see ux_exception.c, method catch_mach_exception_raise for details
  3269   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
  3270   if (sig == SIGSEGV) {
  3271     sigAct.sa_flags |= SA_ONSTACK;
  3273 #endif
  3275   // Save flags, which are set by ours
  3276   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3277   sigflags[sig] = sigAct.sa_flags;
  3279   int ret = sigaction(sig, &sigAct, &oldAct);
  3280   assert(ret == 0, "check");
  3282   void* oldhand2  = oldAct.sa_sigaction
  3283                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3284                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3285   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3288 // install signal handlers for signals that HotSpot needs to
  3289 // handle in order to support Java-level exception handling.
  3291 void os::Bsd::install_signal_handlers() {
  3292   if (!signal_handlers_are_installed) {
  3293     signal_handlers_are_installed = true;
  3295     // signal-chaining
  3296     typedef void (*signal_setting_t)();
  3297     signal_setting_t begin_signal_setting = NULL;
  3298     signal_setting_t end_signal_setting = NULL;
  3299     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3300                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3301     if (begin_signal_setting != NULL) {
  3302       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3303                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3304       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3305                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3306       libjsig_is_loaded = true;
  3307       assert(UseSignalChaining, "should enable signal-chaining");
  3309     if (libjsig_is_loaded) {
  3310       // Tell libjsig jvm is setting signal handlers
  3311       (*begin_signal_setting)();
  3314     set_signal_handler(SIGSEGV, true);
  3315     set_signal_handler(SIGPIPE, true);
  3316     set_signal_handler(SIGBUS, true);
  3317     set_signal_handler(SIGILL, true);
  3318     set_signal_handler(SIGFPE, true);
  3319     set_signal_handler(SIGXFSZ, true);
  3321 #if defined(__APPLE__)
  3322     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
  3323     // signals caught and handled by the JVM. To work around this, we reset the mach task
  3324     // signal handler that's placed on our process by CrashReporter. This disables
  3325     // CrashReporter-based reporting.
  3326     //
  3327     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
  3328     // on caught fatal signals.
  3329     //
  3330     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
  3331     // handlers. By replacing the existing task exception handler, we disable gdb's mach
  3332     // exception handling, while leaving the standard BSD signal handlers functional.
  3333     kern_return_t kr;
  3334     kr = task_set_exception_ports(mach_task_self(),
  3335         EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
  3336         MACH_PORT_NULL,
  3337         EXCEPTION_STATE_IDENTITY,
  3338         MACHINE_THREAD_STATE);
  3340     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
  3341 #endif
  3343     if (libjsig_is_loaded) {
  3344       // Tell libjsig jvm finishes setting signal handlers
  3345       (*end_signal_setting)();
  3348     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3349     // and if UserSignalHandler is installed all bets are off
  3350     if (CheckJNICalls) {
  3351       if (libjsig_is_loaded) {
  3352         if (PrintJNIResolving) {
  3353           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3355         check_signals = false;
  3357       if (AllowUserSignalHandlers) {
  3358         if (PrintJNIResolving) {
  3359           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3361         check_signals = false;
  3368 /////
  3369 // glibc on Bsd platform uses non-documented flag
  3370 // to indicate, that some special sort of signal
  3371 // trampoline is used.
  3372 // We will never set this flag, and we should
  3373 // ignore this flag in our diagnostic
  3374 #ifdef SIGNIFICANT_SIGNAL_MASK
  3375 #undef SIGNIFICANT_SIGNAL_MASK
  3376 #endif
  3377 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3379 static const char* get_signal_handler_name(address handler,
  3380                                            char* buf, int buflen) {
  3381   int offset;
  3382   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3383   if (found) {
  3384     // skip directory names
  3385     const char *p1, *p2;
  3386     p1 = buf;
  3387     size_t len = strlen(os::file_separator());
  3388     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3389     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3390   } else {
  3391     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3393   return buf;
  3396 static void print_signal_handler(outputStream* st, int sig,
  3397                                  char* buf, size_t buflen) {
  3398   struct sigaction sa;
  3400   sigaction(sig, NULL, &sa);
  3402   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3403   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3405   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3407   address handler = (sa.sa_flags & SA_SIGINFO)
  3408     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3409     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3411   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3412     st->print("SIG_DFL");
  3413   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3414     st->print("SIG_IGN");
  3415   } else {
  3416     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3419   st->print(", sa_mask[0]=");
  3420   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  3422   address rh = VMError::get_resetted_sighandler(sig);
  3423   // May be, handler was resetted by VMError?
  3424   if(rh != NULL) {
  3425     handler = rh;
  3426     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3429   st->print(", sa_flags=");
  3430   os::Posix::print_sa_flags(st, sa.sa_flags);
  3432   // Check: is it our handler?
  3433   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3434      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3435     // It is our signal handler
  3436     // check for flags, reset system-used one!
  3437     if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
  3438       st->print(
  3439                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3440                 os::Bsd::get_our_sigflags(sig));
  3443   st->cr();
  3447 #define DO_SIGNAL_CHECK(sig) \
  3448   if (!sigismember(&check_signal_done, sig)) \
  3449     os::Bsd::check_signal_handler(sig)
  3451 // This method is a periodic task to check for misbehaving JNI applications
  3452 // under CheckJNI, we can add any periodic checks here
  3454 void os::run_periodic_checks() {
  3456   if (check_signals == false) return;
  3458   // SEGV and BUS if overridden could potentially prevent
  3459   // generation of hs*.log in the event of a crash, debugging
  3460   // such a case can be very challenging, so we absolutely
  3461   // check the following for a good measure:
  3462   DO_SIGNAL_CHECK(SIGSEGV);
  3463   DO_SIGNAL_CHECK(SIGILL);
  3464   DO_SIGNAL_CHECK(SIGFPE);
  3465   DO_SIGNAL_CHECK(SIGBUS);
  3466   DO_SIGNAL_CHECK(SIGPIPE);
  3467   DO_SIGNAL_CHECK(SIGXFSZ);
  3470   // ReduceSignalUsage allows the user to override these handlers
  3471   // see comments at the very top and jvm_solaris.h
  3472   if (!ReduceSignalUsage) {
  3473     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3474     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3475     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3476     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3479   DO_SIGNAL_CHECK(SR_signum);
  3480   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3483 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3485 static os_sigaction_t os_sigaction = NULL;
  3487 void os::Bsd::check_signal_handler(int sig) {
  3488   char buf[O_BUFLEN];
  3489   address jvmHandler = NULL;
  3492   struct sigaction act;
  3493   if (os_sigaction == NULL) {
  3494     // only trust the default sigaction, in case it has been interposed
  3495     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3496     if (os_sigaction == NULL) return;
  3499   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3502   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3504   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3505     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3506     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3509   switch(sig) {
  3510   case SIGSEGV:
  3511   case SIGBUS:
  3512   case SIGFPE:
  3513   case SIGPIPE:
  3514   case SIGILL:
  3515   case SIGXFSZ:
  3516     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3517     break;
  3519   case SHUTDOWN1_SIGNAL:
  3520   case SHUTDOWN2_SIGNAL:
  3521   case SHUTDOWN3_SIGNAL:
  3522   case BREAK_SIGNAL:
  3523     jvmHandler = (address)user_handler();
  3524     break;
  3526   case INTERRUPT_SIGNAL:
  3527     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  3528     break;
  3530   default:
  3531     if (sig == SR_signum) {
  3532       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  3533     } else {
  3534       return;
  3536     break;
  3539   if (thisHandler != jvmHandler) {
  3540     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  3541     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  3542     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  3543     // No need to check this sig any longer
  3544     sigaddset(&check_signal_done, sig);
  3545   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
  3546     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  3547     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
  3548     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  3549     // No need to check this sig any longer
  3550     sigaddset(&check_signal_done, sig);
  3553   // Dump all the signal
  3554   if (sigismember(&check_signal_done, sig)) {
  3555     print_signal_handlers(tty, buf, O_BUFLEN);
  3559 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  3561 extern bool signal_name(int signo, char* buf, size_t len);
  3563 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  3564   if (0 < exception_code && exception_code <= SIGRTMAX) {
  3565     // signal
  3566     if (!signal_name(exception_code, buf, size)) {
  3567       jio_snprintf(buf, size, "SIG%d", exception_code);
  3569     return buf;
  3570   } else {
  3571     return NULL;
  3575 // this is called _before_ the most of global arguments have been parsed
  3576 void os::init(void) {
  3577   char dummy;   /* used to get a guess on initial stack address */
  3578 //  first_hrtime = gethrtime();
  3580   // With BsdThreads the JavaMain thread pid (primordial thread)
  3581   // is different than the pid of the java launcher thread.
  3582   // So, on Bsd, the launcher thread pid is passed to the VM
  3583   // via the sun.java.launcher.pid property.
  3584   // Use this property instead of getpid() if it was correctly passed.
  3585   // See bug 6351349.
  3586   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  3588   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  3590   clock_tics_per_sec = CLK_TCK;
  3592   init_random(1234567);
  3594   ThreadCritical::initialize();
  3596   Bsd::set_page_size(getpagesize());
  3597   if (Bsd::page_size() == -1) {
  3598     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
  3599                   strerror(errno)));
  3601   init_page_sizes((size_t) Bsd::page_size());
  3603   Bsd::initialize_system_info();
  3605   // main_thread points to the aboriginal thread
  3606   Bsd::_main_thread = pthread_self();
  3608   Bsd::clock_init();
  3609   initial_time_count = javaTimeNanos();
  3611 #ifdef __APPLE__
  3612   // XXXDARWIN
  3613   // Work around the unaligned VM callbacks in hotspot's
  3614   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
  3615   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
  3616   // alignment when doing symbol lookup. To work around this, we force early
  3617   // binding of all symbols now, thus binding when alignment is known-good.
  3618   _dyld_bind_fully_image_containing_address((const void *) &os::init);
  3619 #endif
  3622 // To install functions for atexit system call
  3623 extern "C" {
  3624   static void perfMemory_exit_helper() {
  3625     perfMemory_exit();
  3629 // this is called _after_ the global arguments have been parsed
  3630 jint os::init_2(void)
  3632   // Allocate a single page and mark it as readable for safepoint polling
  3633   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3634   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  3636   os::set_polling_page( polling_page );
  3638 #ifndef PRODUCT
  3639   if(Verbose && PrintMiscellaneous)
  3640     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3641 #endif
  3643   if (!UseMembar) {
  3644     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3645     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  3646     os::set_memory_serialize_page( mem_serialize_page );
  3648 #ifndef PRODUCT
  3649     if(Verbose && PrintMiscellaneous)
  3650       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3651 #endif
  3654   // initialize suspend/resume support - must do this before signal_sets_init()
  3655   if (SR_initialize() != 0) {
  3656     perror("SR_initialize failed");
  3657     return JNI_ERR;
  3660   Bsd::signal_sets_init();
  3661   Bsd::install_signal_handlers();
  3663   // Check minimum allowable stack size for thread creation and to initialize
  3664   // the java system classes, including StackOverflowError - depends on page
  3665   // size.  Add a page for compiler2 recursion in main thread.
  3666   // Add in 2*BytesPerWord times page size to account for VM stack during
  3667   // class initialization depending on 32 or 64 bit VM.
  3668   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
  3669             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3670                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
  3672   size_t threadStackSizeInBytes = ThreadStackSize * K;
  3673   if (threadStackSizeInBytes != 0 &&
  3674       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
  3675         tty->print_cr("\nThe stack size specified is too small, "
  3676                       "Specify at least %dk",
  3677                       os::Bsd::min_stack_allowed/ K);
  3678         return JNI_ERR;
  3681   // Make the stack size a multiple of the page size so that
  3682   // the yellow/red zones can be guarded.
  3683   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  3684         vm_page_size()));
  3686   if (MaxFDLimit) {
  3687     // set the number of file descriptors to max. print out error
  3688     // if getrlimit/setrlimit fails but continue regardless.
  3689     struct rlimit nbr_files;
  3690     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  3691     if (status != 0) {
  3692       if (PrintMiscellaneous && (Verbose || WizardMode))
  3693         perror("os::init_2 getrlimit failed");
  3694     } else {
  3695       nbr_files.rlim_cur = nbr_files.rlim_max;
  3697 #ifdef __APPLE__
  3698       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
  3699       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
  3700       // be used instead
  3701       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
  3702 #endif
  3704       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  3705       if (status != 0) {
  3706         if (PrintMiscellaneous && (Verbose || WizardMode))
  3707           perror("os::init_2 setrlimit failed");
  3712   // at-exit methods are called in the reverse order of their registration.
  3713   // atexit functions are called on return from main or as a result of a
  3714   // call to exit(3C). There can be only 32 of these functions registered
  3715   // and atexit() does not set errno.
  3717   if (PerfAllowAtExitRegistration) {
  3718     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3719     // atexit functions can be delayed until process exit time, which
  3720     // can be problematic for embedded VM situations. Embedded VMs should
  3721     // call DestroyJavaVM() to assure that VM resources are released.
  3723     // note: perfMemory_exit_helper atexit function may be removed in
  3724     // the future if the appropriate cleanup code can be added to the
  3725     // VM_Exit VMOperation's doit method.
  3726     if (atexit(perfMemory_exit_helper) != 0) {
  3727       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  3731   // initialize thread priority policy
  3732   prio_init();
  3734 #ifdef __APPLE__
  3735   // dynamically link to objective c gc registration
  3736   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
  3737   if (handleLibObjc != NULL) {
  3738     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
  3740 #endif
  3742   return JNI_OK;
  3745 // this is called at the end of vm_initialization
  3746 void os::init_3(void) { }
  3748 // Mark the polling page as unreadable
  3749 void os::make_polling_page_unreadable(void) {
  3750   if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
  3751     fatal("Could not disable polling page");
  3752 };
  3754 // Mark the polling page as readable
  3755 void os::make_polling_page_readable(void) {
  3756   if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
  3757     fatal("Could not enable polling page");
  3759 };
  3761 int os::active_processor_count() {
  3762   return _processor_count;
  3765 void os::set_native_thread_name(const char *name) {
  3766 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
  3767   // This is only supported in Snow Leopard and beyond
  3768   if (name != NULL) {
  3769     // Add a "Java: " prefix to the name
  3770     char buf[MAXTHREADNAMESIZE];
  3771     snprintf(buf, sizeof(buf), "Java: %s", name);
  3772     pthread_setname_np(buf);
  3774 #endif
  3777 bool os::distribute_processes(uint length, uint* distribution) {
  3778   // Not yet implemented.
  3779   return false;
  3782 bool os::bind_to_processor(uint processor_id) {
  3783   // Not yet implemented.
  3784   return false;
  3787 void os::SuspendedThreadTask::internal_do_task() {
  3788   if (do_suspend(_thread->osthread())) {
  3789     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  3790     do_task(context);
  3791     do_resume(_thread->osthread());
  3795 ///
  3796 class PcFetcher : public os::SuspendedThreadTask {
  3797 public:
  3798   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  3799   ExtendedPC result();
  3800 protected:
  3801   void do_task(const os::SuspendedThreadTaskContext& context);
  3802 private:
  3803   ExtendedPC _epc;
  3804 };
  3806 ExtendedPC PcFetcher::result() {
  3807   guarantee(is_done(), "task is not done yet.");
  3808   return _epc;
  3811 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  3812   Thread* thread = context.thread();
  3813   OSThread* osthread = thread->osthread();
  3814   if (osthread->ucontext() != NULL) {
  3815     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
  3816   } else {
  3817     // NULL context is unexpected, double-check this is the VMThread
  3818     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  3822 // Suspends the target using the signal mechanism and then grabs the PC before
  3823 // resuming the target. Used by the flat-profiler only
  3824 ExtendedPC os::get_thread_pc(Thread* thread) {
  3825   // Make sure that it is called by the watcher for the VMThread
  3826   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  3827   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  3829   PcFetcher fetcher(thread);
  3830   fetcher.run();
  3831   return fetcher.result();
  3834 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  3836   return pthread_cond_timedwait(_cond, _mutex, _abstime);
  3839 ////////////////////////////////////////////////////////////////////////////////
  3840 // debug support
  3842 bool os::find(address addr, outputStream* st) {
  3843   Dl_info dlinfo;
  3844   memset(&dlinfo, 0, sizeof(dlinfo));
  3845   if (dladdr(addr, &dlinfo) != 0) {
  3846     st->print(PTR_FORMAT ": ", addr);
  3847     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  3848       st->print("%s+%#x", dlinfo.dli_sname,
  3849                  addr - (intptr_t)dlinfo.dli_saddr);
  3850     } else if (dlinfo.dli_fbase != NULL) {
  3851       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  3852     } else {
  3853       st->print("<absolute address>");
  3855     if (dlinfo.dli_fname != NULL) {
  3856       st->print(" in %s", dlinfo.dli_fname);
  3858     if (dlinfo.dli_fbase != NULL) {
  3859       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  3861     st->cr();
  3863     if (Verbose) {
  3864       // decode some bytes around the PC
  3865       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  3866       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  3867       address       lowest = (address) dlinfo.dli_sname;
  3868       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  3869       if (begin < lowest)  begin = lowest;
  3870       Dl_info dlinfo2;
  3871       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  3872           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  3873         end = (address) dlinfo2.dli_saddr;
  3874       Disassembler::decode(begin, end, st);
  3876     return true;
  3878   return false;
  3881 ////////////////////////////////////////////////////////////////////////////////
  3882 // misc
  3884 // This does not do anything on Bsd. This is basically a hook for being
  3885 // able to use structured exception handling (thread-local exception filters)
  3886 // on, e.g., Win32.
  3887 void
  3888 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  3889                          JavaCallArguments* args, Thread* thread) {
  3890   f(value, method, args, thread);
  3893 void os::print_statistics() {
  3896 int os::message_box(const char* title, const char* message) {
  3897   int i;
  3898   fdStream err(defaultStream::error_fd());
  3899   for (i = 0; i < 78; i++) err.print_raw("=");
  3900   err.cr();
  3901   err.print_raw_cr(title);
  3902   for (i = 0; i < 78; i++) err.print_raw("-");
  3903   err.cr();
  3904   err.print_raw_cr(message);
  3905   for (i = 0; i < 78; i++) err.print_raw("=");
  3906   err.cr();
  3908   char buf[16];
  3909   // Prevent process from exiting upon "read error" without consuming all CPU
  3910   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  3912   return buf[0] == 'y' || buf[0] == 'Y';
  3915 int os::stat(const char *path, struct stat *sbuf) {
  3916   char pathbuf[MAX_PATH];
  3917   if (strlen(path) > MAX_PATH - 1) {
  3918     errno = ENAMETOOLONG;
  3919     return -1;
  3921   os::native_path(strcpy(pathbuf, path));
  3922   return ::stat(pathbuf, sbuf);
  3925 bool os::check_heap(bool force) {
  3926   return true;
  3929 ATTRIBUTE_PRINTF(3, 0)
  3930 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  3931   return ::vsnprintf(buf, count, format, args);
  3934 // Is a (classpath) directory empty?
  3935 bool os::dir_is_empty(const char* path) {
  3936   DIR *dir = NULL;
  3937   struct dirent *ptr;
  3939   dir = opendir(path);
  3940   if (dir == NULL) return true;
  3942   /* Scan the directory */
  3943   bool result = true;
  3944   char buf[sizeof(struct dirent) + MAX_PATH];
  3945   while (result && (ptr = ::readdir(dir)) != NULL) {
  3946     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  3947       result = false;
  3950   closedir(dir);
  3951   return result;
  3954 // This code originates from JDK's sysOpen and open64_w
  3955 // from src/solaris/hpi/src/system_md.c
  3957 #ifndef O_DELETE
  3958 #define O_DELETE 0x10000
  3959 #endif
  3961 // Open a file. Unlink the file immediately after open returns
  3962 // if the specified oflag has the O_DELETE flag set.
  3963 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  3965 int os::open(const char *path, int oflag, int mode) {
  3967   if (strlen(path) > MAX_PATH - 1) {
  3968     errno = ENAMETOOLONG;
  3969     return -1;
  3971   int fd;
  3972   int o_delete = (oflag & O_DELETE);
  3973   oflag = oflag & ~O_DELETE;
  3975   fd = ::open(path, oflag, mode);
  3976   if (fd == -1) return -1;
  3978   //If the open succeeded, the file might still be a directory
  3980     struct stat buf;
  3981     int ret = ::fstat(fd, &buf);
  3982     int st_mode = buf.st_mode;
  3984     if (ret != -1) {
  3985       if ((st_mode & S_IFMT) == S_IFDIR) {
  3986         errno = EISDIR;
  3987         ::close(fd);
  3988         return -1;
  3990     } else {
  3991       ::close(fd);
  3992       return -1;
  3996     /*
  3997      * All file descriptors that are opened in the JVM and not
  3998      * specifically destined for a subprocess should have the
  3999      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4000      * party native code might fork and exec without closing all
  4001      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4002      * UNIXProcess.c), and this in turn might:
  4004      * - cause end-of-file to fail to be detected on some file
  4005      *   descriptors, resulting in mysterious hangs, or
  4007      * - might cause an fopen in the subprocess to fail on a system
  4008      *   suffering from bug 1085341.
  4010      * (Yes, the default setting of the close-on-exec flag is a Unix
  4011      * design flaw)
  4013      * See:
  4014      * 1085341: 32-bit stdio routines should support file descriptors >255
  4015      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4016      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4017      */
  4018 #ifdef FD_CLOEXEC
  4020         int flags = ::fcntl(fd, F_GETFD);
  4021         if (flags != -1)
  4022             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4024 #endif
  4026   if (o_delete != 0) {
  4027     ::unlink(path);
  4029   return fd;
  4033 // create binary file, rewriting existing file if required
  4034 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4035   int oflags = O_WRONLY | O_CREAT;
  4036   if (!rewrite_existing) {
  4037     oflags |= O_EXCL;
  4039   return ::open(path, oflags, S_IREAD | S_IWRITE);
  4042 // return current position of file pointer
  4043 jlong os::current_file_offset(int fd) {
  4044   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
  4047 // move file pointer to the specified offset
  4048 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4049   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
  4052 // This code originates from JDK's sysAvailable
  4053 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4055 int os::available(int fd, jlong *bytes) {
  4056   jlong cur, end;
  4057   int mode;
  4058   struct stat buf;
  4060   if (::fstat(fd, &buf) >= 0) {
  4061     mode = buf.st_mode;
  4062     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4063       /*
  4064       * XXX: is the following call interruptible? If so, this might
  4065       * need to go through the INTERRUPT_IO() wrapper as for other
  4066       * blocking, interruptible calls in this file.
  4067       */
  4068       int n;
  4069       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4070         *bytes = n;
  4071         return 1;
  4075   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
  4076     return 0;
  4077   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
  4078     return 0;
  4079   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
  4080     return 0;
  4082   *bytes = end - cur;
  4083   return 1;
  4086 int os::socket_available(int fd, jint *pbytes) {
  4087    if (fd < 0)
  4088      return OS_OK;
  4090    int ret;
  4092    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  4094    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4095    // is expected to return 0 on failure and 1 on success to the jdk.
  4097    return (ret == OS_ERR) ? 0 : 1;
  4100 // Map a block of memory.
  4101 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  4102                      char *addr, size_t bytes, bool read_only,
  4103                      bool allow_exec) {
  4104   int prot;
  4105   int flags;
  4107   if (read_only) {
  4108     prot = PROT_READ;
  4109     flags = MAP_SHARED;
  4110   } else {
  4111     prot = PROT_READ | PROT_WRITE;
  4112     flags = MAP_PRIVATE;
  4115   if (allow_exec) {
  4116     prot |= PROT_EXEC;
  4119   if (addr != NULL) {
  4120     flags |= MAP_FIXED;
  4123   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4124                                      fd, file_offset);
  4125   if (mapped_address == MAP_FAILED) {
  4126     return NULL;
  4128   return mapped_address;
  4132 // Remap a block of memory.
  4133 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  4134                        char *addr, size_t bytes, bool read_only,
  4135                        bool allow_exec) {
  4136   // same as map_memory() on this OS
  4137   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4138                         allow_exec);
  4142 // Unmap a block of memory.
  4143 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  4144   return munmap(addr, bytes) == 0;
  4147 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4148 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4149 // of a thread.
  4150 //
  4151 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4152 // the fast estimate available on the platform.
  4154 jlong os::current_thread_cpu_time() {
  4155 #ifdef __APPLE__
  4156   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
  4157 #else
  4158   Unimplemented();
  4159   return 0;
  4160 #endif
  4163 jlong os::thread_cpu_time(Thread* thread) {
  4164 #ifdef __APPLE__
  4165   return os::thread_cpu_time(thread, true /* user + sys */);
  4166 #else
  4167   Unimplemented();
  4168   return 0;
  4169 #endif
  4172 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4173 #ifdef __APPLE__
  4174   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4175 #else
  4176   Unimplemented();
  4177   return 0;
  4178 #endif
  4181 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4182 #ifdef __APPLE__
  4183   struct thread_basic_info tinfo;
  4184   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
  4185   kern_return_t kr;
  4186   thread_t mach_thread;
  4188   mach_thread = thread->osthread()->thread_id();
  4189   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
  4190   if (kr != KERN_SUCCESS)
  4191     return -1;
  4193   if (user_sys_cpu_time) {
  4194     jlong nanos;
  4195     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
  4196     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
  4197     return nanos;
  4198   } else {
  4199     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
  4201 #else
  4202   Unimplemented();
  4203   return 0;
  4204 #endif
  4208 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4209   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4210   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4211   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4212   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4215 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4216   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4217   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4218   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4219   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4222 bool os::is_thread_cpu_time_supported() {
  4223 #ifdef __APPLE__
  4224   return true;
  4225 #else
  4226   return false;
  4227 #endif
  4230 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4231 // Bsd doesn't yet have a (official) notion of processor sets,
  4232 // so just return the system wide load average.
  4233 int os::loadavg(double loadavg[], int nelem) {
  4234   return ::getloadavg(loadavg, nelem);
  4237 void os::pause() {
  4238   char filename[MAX_PATH];
  4239   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4240     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4241   } else {
  4242     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4245   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4246   if (fd != -1) {
  4247     struct stat buf;
  4248     ::close(fd);
  4249     while (::stat(filename, &buf) == 0) {
  4250       (void)::poll(NULL, 0, 100);
  4252   } else {
  4253     jio_fprintf(stderr,
  4254       "Could not open pause file '%s', continuing immediately.\n", filename);
  4259 // Refer to the comments in os_solaris.cpp park-unpark.
  4260 //
  4261 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4262 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4263 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4264 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4265 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4266 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4267 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4268 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4269 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4270 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4271 // of libpthread avoids the problem, but isn't practical.
  4272 //
  4273 // Possible remedies:
  4274 //
  4275 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4276 //      This is palliative and probabilistic, however.  If the thread is preempted
  4277 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4278 //      than the minimum period may have passed, and the abstime may be stale (in the
  4279 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4280 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4281 //
  4282 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4283 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4284 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4285 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4286 //      thread.
  4287 //
  4288 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4289 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4290 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4291 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4292 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4293 //      timers in a graceful fashion.
  4294 //
  4295 // 4.   When the abstime value is in the past it appears that control returns
  4296 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4297 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4298 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4299 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4300 //      It may be possible to avoid reinitialization by checking the return
  4301 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4302 //      condvar we must establish the invariant that cond_signal() is only called
  4303 //      within critical sections protected by the adjunct mutex.  This prevents
  4304 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4305 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4306 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4307 //
  4308 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4309 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4310 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4311 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4312 //
  4313 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4314 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4315 // and only enabling the work-around for vulnerable environments.
  4317 // utility to compute the abstime argument to timedwait:
  4318 // millis is the relative timeout time
  4319 // abstime will be the absolute timeout time
  4320 // TODO: replace compute_abstime() with unpackTime()
  4322 static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
  4323   if (millis < 0)  millis = 0;
  4324   struct timeval now;
  4325   int status = gettimeofday(&now, NULL);
  4326   assert(status == 0, "gettimeofday");
  4327   jlong seconds = millis / 1000;
  4328   millis %= 1000;
  4329   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4330     seconds = 50000000;
  4332   abstime->tv_sec = now.tv_sec  + seconds;
  4333   long       usec = now.tv_usec + millis * 1000;
  4334   if (usec >= 1000000) {
  4335     abstime->tv_sec += 1;
  4336     usec -= 1000000;
  4338   abstime->tv_nsec = usec * 1000;
  4339   return abstime;
  4343 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4344 // Conceptually TryPark() should be equivalent to park(0).
  4346 int os::PlatformEvent::TryPark() {
  4347   for (;;) {
  4348     const int v = _Event ;
  4349     guarantee ((v == 0) || (v == 1), "invariant") ;
  4350     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4354 void os::PlatformEvent::park() {       // AKA "down()"
  4355   // Invariant: Only the thread associated with the Event/PlatformEvent
  4356   // may call park().
  4357   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4358   int v ;
  4359   for (;;) {
  4360       v = _Event ;
  4361       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4363   guarantee (v >= 0, "invariant") ;
  4364   if (v == 0) {
  4365      // Do this the hard way by blocking ...
  4366      int status = pthread_mutex_lock(_mutex);
  4367      assert_status(status == 0, status, "mutex_lock");
  4368      guarantee (_nParked == 0, "invariant") ;
  4369      ++ _nParked ;
  4370      while (_Event < 0) {
  4371         status = pthread_cond_wait(_cond, _mutex);
  4372         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4373         // Treat this the same as if the wait was interrupted
  4374         if (status == ETIMEDOUT) { status = EINTR; }
  4375         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4377      -- _nParked ;
  4379     _Event = 0 ;
  4380      status = pthread_mutex_unlock(_mutex);
  4381      assert_status(status == 0, status, "mutex_unlock");
  4382     // Paranoia to ensure our locked and lock-free paths interact
  4383     // correctly with each other.
  4384     OrderAccess::fence();
  4386   guarantee (_Event >= 0, "invariant") ;
  4389 int os::PlatformEvent::park(jlong millis) {
  4390   guarantee (_nParked == 0, "invariant") ;
  4392   int v ;
  4393   for (;;) {
  4394       v = _Event ;
  4395       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4397   guarantee (v >= 0, "invariant") ;
  4398   if (v != 0) return OS_OK ;
  4400   // We do this the hard way, by blocking the thread.
  4401   // Consider enforcing a minimum timeout value.
  4402   struct timespec abst;
  4403   compute_abstime(&abst, millis);
  4405   int ret = OS_TIMEOUT;
  4406   int status = pthread_mutex_lock(_mutex);
  4407   assert_status(status == 0, status, "mutex_lock");
  4408   guarantee (_nParked == 0, "invariant") ;
  4409   ++_nParked ;
  4411   // Object.wait(timo) will return because of
  4412   // (a) notification
  4413   // (b) timeout
  4414   // (c) thread.interrupt
  4415   //
  4416   // Thread.interrupt and object.notify{All} both call Event::set.
  4417   // That is, we treat thread.interrupt as a special case of notification.
  4418   // The underlying Solaris implementation, cond_timedwait, admits
  4419   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4420   // JVM from making those visible to Java code.  As such, we must
  4421   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4422   //
  4423   // TODO: properly differentiate simultaneous notify+interrupt.
  4424   // In that case, we should propagate the notify to another waiter.
  4426   while (_Event < 0) {
  4427     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
  4428     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4429       pthread_cond_destroy (_cond);
  4430       pthread_cond_init (_cond, NULL) ;
  4432     assert_status(status == 0 || status == EINTR ||
  4433                   status == ETIMEDOUT,
  4434                   status, "cond_timedwait");
  4435     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4436     if (status == ETIMEDOUT) break ;
  4437     // We consume and ignore EINTR and spurious wakeups.
  4439   --_nParked ;
  4440   if (_Event >= 0) {
  4441      ret = OS_OK;
  4443   _Event = 0 ;
  4444   status = pthread_mutex_unlock(_mutex);
  4445   assert_status(status == 0, status, "mutex_unlock");
  4446   assert (_nParked == 0, "invariant") ;
  4447   // Paranoia to ensure our locked and lock-free paths interact
  4448   // correctly with each other.
  4449   OrderAccess::fence();
  4450   return ret;
  4453 void os::PlatformEvent::unpark() {
  4454   // Transitions for _Event:
  4455   //    0 :=> 1
  4456   //    1 :=> 1
  4457   //   -1 :=> either 0 or 1; must signal target thread
  4458   //          That is, we can safely transition _Event from -1 to either
  4459   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  4460   //          unpark() calls.
  4461   // See also: "Semaphores in Plan 9" by Mullender & Cox
  4462   //
  4463   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  4464   // that it will take two back-to-back park() calls for the owning
  4465   // thread to block. This has the benefit of forcing a spurious return
  4466   // from the first park() call after an unpark() call which will help
  4467   // shake out uses of park() and unpark() without condition variables.
  4469   if (Atomic::xchg(1, &_Event) >= 0) return;
  4471   // Wait for the thread associated with the event to vacate
  4472   int status = pthread_mutex_lock(_mutex);
  4473   assert_status(status == 0, status, "mutex_lock");
  4474   int AnyWaiters = _nParked;
  4475   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  4476   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  4477     AnyWaiters = 0;
  4478     pthread_cond_signal(_cond);
  4480   status = pthread_mutex_unlock(_mutex);
  4481   assert_status(status == 0, status, "mutex_unlock");
  4482   if (AnyWaiters != 0) {
  4483     status = pthread_cond_signal(_cond);
  4484     assert_status(status == 0, status, "cond_signal");
  4487   // Note that we signal() _after dropping the lock for "immortal" Events.
  4488   // This is safe and avoids a common class of  futile wakeups.  In rare
  4489   // circumstances this can cause a thread to return prematurely from
  4490   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  4491   // simply re-test the condition and re-park itself.
  4495 // JSR166
  4496 // -------------------------------------------------------
  4498 /*
  4499  * The solaris and bsd implementations of park/unpark are fairly
  4500  * conservative for now, but can be improved. They currently use a
  4501  * mutex/condvar pair, plus a a count.
  4502  * Park decrements count if > 0, else does a condvar wait.  Unpark
  4503  * sets count to 1 and signals condvar.  Only one thread ever waits
  4504  * on the condvar. Contention seen when trying to park implies that someone
  4505  * is unparking you, so don't wait. And spurious returns are fine, so there
  4506  * is no need to track notifications.
  4507  */
  4509 #define MAX_SECS 100000000
  4510 /*
  4511  * This code is common to bsd and solaris and will be moved to a
  4512  * common place in dolphin.
  4514  * The passed in time value is either a relative time in nanoseconds
  4515  * or an absolute time in milliseconds. Either way it has to be unpacked
  4516  * into suitable seconds and nanoseconds components and stored in the
  4517  * given timespec structure.
  4518  * Given time is a 64-bit value and the time_t used in the timespec is only
  4519  * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
  4520  * overflow if times way in the future are given. Further on Solaris versions
  4521  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  4522  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  4523  * As it will be 28 years before "now + 100000000" will overflow we can
  4524  * ignore overflow and just impose a hard-limit on seconds using the value
  4525  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  4526  * years from "now".
  4527  */
  4529 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
  4530   assert (time > 0, "convertTime");
  4532   struct timeval now;
  4533   int status = gettimeofday(&now, NULL);
  4534   assert(status == 0, "gettimeofday");
  4536   time_t max_secs = now.tv_sec + MAX_SECS;
  4538   if (isAbsolute) {
  4539     jlong secs = time / 1000;
  4540     if (secs > max_secs) {
  4541       absTime->tv_sec = max_secs;
  4543     else {
  4544       absTime->tv_sec = secs;
  4546     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  4548   else {
  4549     jlong secs = time / NANOSECS_PER_SEC;
  4550     if (secs >= MAX_SECS) {
  4551       absTime->tv_sec = max_secs;
  4552       absTime->tv_nsec = 0;
  4554     else {
  4555       absTime->tv_sec = now.tv_sec + secs;
  4556       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  4557       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  4558         absTime->tv_nsec -= NANOSECS_PER_SEC;
  4559         ++absTime->tv_sec; // note: this must be <= max_secs
  4563   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  4564   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  4565   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  4566   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  4569 void Parker::park(bool isAbsolute, jlong time) {
  4570   // Ideally we'd do something useful while spinning, such
  4571   // as calling unpackTime().
  4573   // Optional fast-path check:
  4574   // Return immediately if a permit is available.
  4575   // We depend on Atomic::xchg() having full barrier semantics
  4576   // since we are doing a lock-free update to _counter.
  4577   if (Atomic::xchg(0, &_counter) > 0) return;
  4579   Thread* thread = Thread::current();
  4580   assert(thread->is_Java_thread(), "Must be JavaThread");
  4581   JavaThread *jt = (JavaThread *)thread;
  4583   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  4584   // Check interrupt before trying to wait
  4585   if (Thread::is_interrupted(thread, false)) {
  4586     return;
  4589   // Next, demultiplex/decode time arguments
  4590   struct timespec absTime;
  4591   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  4592     return;
  4594   if (time > 0) {
  4595     unpackTime(&absTime, isAbsolute, time);
  4599   // Enter safepoint region
  4600   // Beware of deadlocks such as 6317397.
  4601   // The per-thread Parker:: mutex is a classic leaf-lock.
  4602   // In particular a thread must never block on the Threads_lock while
  4603   // holding the Parker:: mutex.  If safepoints are pending both the
  4604   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  4605   ThreadBlockInVM tbivm(jt);
  4607   // Don't wait if cannot get lock since interference arises from
  4608   // unblocking.  Also. check interrupt before trying wait
  4609   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  4610     return;
  4613   int status ;
  4614   if (_counter > 0)  { // no wait needed
  4615     _counter = 0;
  4616     status = pthread_mutex_unlock(_mutex);
  4617     assert (status == 0, "invariant") ;
  4618     // Paranoia to ensure our locked and lock-free paths interact
  4619     // correctly with each other and Java-level accesses.
  4620     OrderAccess::fence();
  4621     return;
  4624 #ifdef ASSERT
  4625   // Don't catch signals while blocked; let the running threads have the signals.
  4626   // (This allows a debugger to break into the running thread.)
  4627   sigset_t oldsigs;
  4628   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
  4629   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  4630 #endif
  4632   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4633   jt->set_suspend_equivalent();
  4634   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  4636   if (time == 0) {
  4637     status = pthread_cond_wait (_cond, _mutex) ;
  4638   } else {
  4639     status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  4640     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4641       pthread_cond_destroy (_cond) ;
  4642       pthread_cond_init    (_cond, NULL);
  4645   assert_status(status == 0 || status == EINTR ||
  4646                 status == ETIMEDOUT,
  4647                 status, "cond_timedwait");
  4649 #ifdef ASSERT
  4650   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  4651 #endif
  4653   _counter = 0 ;
  4654   status = pthread_mutex_unlock(_mutex) ;
  4655   assert_status(status == 0, status, "invariant") ;
  4656   // Paranoia to ensure our locked and lock-free paths interact
  4657   // correctly with each other and Java-level accesses.
  4658   OrderAccess::fence();
  4660   // If externally suspended while waiting, re-suspend
  4661   if (jt->handle_special_suspend_equivalent_condition()) {
  4662     jt->java_suspend_self();
  4666 void Parker::unpark() {
  4667   int s, status ;
  4668   status = pthread_mutex_lock(_mutex);
  4669   assert (status == 0, "invariant") ;
  4670   s = _counter;
  4671   _counter = 1;
  4672   if (s < 1) {
  4673      if (WorkAroundNPTLTimedWaitHang) {
  4674         status = pthread_cond_signal (_cond) ;
  4675         assert (status == 0, "invariant") ;
  4676         status = pthread_mutex_unlock(_mutex);
  4677         assert (status == 0, "invariant") ;
  4678      } else {
  4679         status = pthread_mutex_unlock(_mutex);
  4680         assert (status == 0, "invariant") ;
  4681         status = pthread_cond_signal (_cond) ;
  4682         assert (status == 0, "invariant") ;
  4684   } else {
  4685     pthread_mutex_unlock(_mutex);
  4686     assert (status == 0, "invariant") ;
  4691 /* Darwin has no "environ" in a dynamic library. */
  4692 #ifdef __APPLE__
  4693 #include <crt_externs.h>
  4694 #define environ (*_NSGetEnviron())
  4695 #else
  4696 extern char** environ;
  4697 #endif
  4699 // Run the specified command in a separate process. Return its exit value,
  4700 // or -1 on failure (e.g. can't fork a new process).
  4701 // Unlike system(), this function can be called from signal handler. It
  4702 // doesn't block SIGINT et al.
  4703 int os::fork_and_exec(char* cmd) {
  4704   const char * argv[4] = {"sh", "-c", cmd, NULL};
  4706   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
  4707   // pthread_atfork handlers and reset pthread library. All we need is a
  4708   // separate process to execve. Make a direct syscall to fork process.
  4709   // On IA64 there's no fork syscall, we have to use fork() and hope for
  4710   // the best...
  4711   pid_t pid = fork();
  4713   if (pid < 0) {
  4714     // fork failed
  4715     return -1;
  4717   } else if (pid == 0) {
  4718     // child process
  4720     // execve() in BsdThreads will call pthread_kill_other_threads_np()
  4721     // first to kill every thread on the thread list. Because this list is
  4722     // not reset by fork() (see notes above), execve() will instead kill
  4723     // every thread in the parent process. We know this is the only thread
  4724     // in the new process, so make a system call directly.
  4725     // IA64 should use normal execve() from glibc to match the glibc fork()
  4726     // above.
  4727     execve("/bin/sh", (char* const*)argv, environ);
  4729     // execve failed
  4730     _exit(-1);
  4732   } else  {
  4733     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  4734     // care about the actual exit code, for now.
  4736     int status;
  4738     // Wait for the child process to exit.  This returns immediately if
  4739     // the child has already exited. */
  4740     while (waitpid(pid, &status, 0) < 0) {
  4741         switch (errno) {
  4742         case ECHILD: return 0;
  4743         case EINTR: break;
  4744         default: return -1;
  4748     if (WIFEXITED(status)) {
  4749        // The child exited normally; get its exit code.
  4750        return WEXITSTATUS(status);
  4751     } else if (WIFSIGNALED(status)) {
  4752        // The child exited because of a signal
  4753        // The best value to return is 0x80 + signal number,
  4754        // because that is what all Unix shells do, and because
  4755        // it allows callers to distinguish between process exit and
  4756        // process death by signal.
  4757        return 0x80 + WTERMSIG(status);
  4758     } else {
  4759        // Unknown exit code; pass it through
  4760        return status;
  4765 // is_headless_jre()
  4766 //
  4767 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  4768 // in order to report if we are running in a headless jre
  4769 //
  4770 // Since JDK8 xawt/libmawt.so was moved into the same directory
  4771 // as libawt.so, and renamed libawt_xawt.so
  4772 //
  4773 bool os::is_headless_jre() {
  4774 #ifdef __APPLE__
  4775     // We no longer build headless-only on Mac OS X
  4776     return false;
  4777 #else
  4778     struct stat statbuf;
  4779     char buf[MAXPATHLEN];
  4780     char libmawtpath[MAXPATHLEN];
  4781     const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
  4782     const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
  4783     char *p;
  4785     // Get path to libjvm.so
  4786     os::jvm_path(buf, sizeof(buf));
  4788     // Get rid of libjvm.so
  4789     p = strrchr(buf, '/');
  4790     if (p == NULL) return false;
  4791     else *p = '\0';
  4793     // Get rid of client or server
  4794     p = strrchr(buf, '/');
  4795     if (p == NULL) return false;
  4796     else *p = '\0';
  4798     // check xawt/libmawt.so
  4799     strcpy(libmawtpath, buf);
  4800     strcat(libmawtpath, xawtstr);
  4801     if (::stat(libmawtpath, &statbuf) == 0) return false;
  4803     // check libawt_xawt.so
  4804     strcpy(libmawtpath, buf);
  4805     strcat(libmawtpath, new_xawtstr);
  4806     if (::stat(libmawtpath, &statbuf) == 0) return false;
  4808     return true;
  4809 #endif
  4812 // Get the default path to the core file
  4813 // Returns the length of the string
  4814 int os::get_core_path(char* buffer, size_t bufferSize) {
  4815   int n = jio_snprintf(buffer, bufferSize, "/cores");
  4817   // Truncate if theoretical string was longer than bufferSize
  4818   n = MIN2(n, (int)bufferSize);
  4820   return n;
  4823 #ifndef PRODUCT
  4824 void TestReserveMemorySpecial_test() {
  4825   // No tests available for this platform
  4827 #endif

mercurial