src/share/vm/opto/escape.hpp

Fri, 02 Jul 2010 17:30:30 -0700

author
kvn
date
Fri, 02 Jul 2010 17:30:30 -0700
changeset 1989
60a14ad85270
parent 1907
c18cbe5936b8
child 2276
e4fcbeb5a698
permissions
-rw-r--r--

6966411: escape.cpp:450 assert(base->Opcode() == Op_ConP
Summary: Execute IGVN optimization before and after Escape Analysis
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2005, 2008, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 //
    26 // Adaptation for C2 of the escape analysis algorithm described in:
    27 //
    28 // [Choi99] Jong-Deok Shoi, Manish Gupta, Mauricio Seffano,
    29 //          Vugranam C. Sreedhar, Sam Midkiff,
    30 //          "Escape Analysis for Java", Procedings of ACM SIGPLAN
    31 //          OOPSLA  Conference, November 1, 1999
    32 //
    33 // The flow-insensitive analysis described in the paper has been implemented.
    34 //
    35 // The analysis requires construction of a "connection graph" (CG) for
    36 // the method being analyzed.  The nodes of the connection graph are:
    37 //
    38 //     -  Java objects (JO)
    39 //     -  Local variables (LV)
    40 //     -  Fields of an object (OF),  these also include array elements
    41 //
    42 // The CG contains 3 types of edges:
    43 //
    44 //   -  PointsTo  (-P>)    {LV, OF} to JO
    45 //   -  Deferred  (-D>)    from {LV, OF} to {LV, OF}
    46 //   -  Field     (-F>)    from JO to OF
    47 //
    48 // The following  utility functions is used by the algorithm:
    49 //
    50 //   PointsTo(n) - n is any CG node, it returns the set of JO that n could
    51 //                 point to.
    52 //
    53 // The algorithm describes how to construct the connection graph
    54 // in the following 4 cases:
    55 //
    56 //          Case                  Edges Created
    57 //
    58 // (1)   p   = new T()              LV -P> JO
    59 // (2)   p   = q                    LV -D> LV
    60 // (3)   p.f = q                    JO -F> OF,  OF -D> LV
    61 // (4)   p   = q.f                  JO -F> OF,  LV -D> OF
    62 //
    63 // In all these cases, p and q are local variables.  For static field
    64 // references, we can construct a local variable containing a reference
    65 // to the static memory.
    66 //
    67 // C2 does not have local variables.  However for the purposes of constructing
    68 // the connection graph, the following IR nodes are treated as local variables:
    69 //     Phi    (pointer values)
    70 //     LoadP
    71 //     Proj#5 (value returned from callnodes including allocations)
    72 //     CheckCastPP, CastPP
    73 //
    74 // The LoadP, Proj and CheckCastPP behave like variables assigned to only once.
    75 // Only a Phi can have multiple assignments.  Each input to a Phi is treated
    76 // as an assignment to it.
    77 //
    78 // The following node types are JavaObject:
    79 //
    80 //     top()
    81 //     Allocate
    82 //     AllocateArray
    83 //     Parm  (for incoming arguments)
    84 //     CastX2P ("unsafe" operations)
    85 //     CreateEx
    86 //     ConP
    87 //     LoadKlass
    88 //     ThreadLocal
    89 //
    90 // AddP nodes are fields.
    91 //
    92 // After building the graph, a pass is made over the nodes, deleting deferred
    93 // nodes and copying the edges from the target of the deferred edge to the
    94 // source.  This results in a graph with no deferred edges, only:
    95 //
    96 //    LV -P> JO
    97 //    OF -P> JO (the object whose oop is stored in the field)
    98 //    JO -F> OF
    99 //
   100 // Then, for each node which is GlobalEscape, anything it could point to
   101 // is marked GlobalEscape.  Finally, for any node marked ArgEscape, anything
   102 // it could point to is marked ArgEscape.
   103 //
   105 class  Compile;
   106 class  Node;
   107 class  CallNode;
   108 class  PhiNode;
   109 class  PhaseTransform;
   110 class  Type;
   111 class  TypePtr;
   112 class  VectorSet;
   114 class PointsToNode {
   115 friend class ConnectionGraph;
   116 public:
   117   typedef enum {
   118     UnknownType = 0,
   119     JavaObject  = 1,
   120     LocalVar    = 2,
   121     Field       = 3
   122   } NodeType;
   124   typedef enum {
   125     UnknownEscape = 0,
   126     NoEscape      = 1, // A scalar replaceable object with unique type.
   127     ArgEscape     = 2, // An object passed as argument or referenced by
   128                        // argument (and not globally escape during call).
   129     GlobalEscape  = 3  // An object escapes the method and thread.
   130   } EscapeState;
   132   typedef enum {
   133     UnknownEdge   = 0,
   134     PointsToEdge  = 1,
   135     DeferredEdge  = 2,
   136     FieldEdge     = 3
   137   } EdgeType;
   139 private:
   140   enum {
   141     EdgeMask = 3,
   142     EdgeShift = 2,
   144     INITIAL_EDGE_COUNT = 4
   145   };
   147   NodeType             _type;
   148   EscapeState          _escape;
   149   GrowableArray<uint>* _edges;   // outgoing edges
   151 public:
   152   Node* _node;              // Ideal node corresponding to this PointsTo node.
   153   int   _offset;            // Object fields offsets.
   154   bool  _scalar_replaceable;// Not escaped object could be replaced with scalar
   155   bool  _hidden_alias;      // This node is an argument to a function.
   156                             // which may return it creating a hidden alias.
   158   PointsToNode():
   159     _type(UnknownType),
   160     _escape(UnknownEscape),
   161     _edges(NULL),
   162     _node(NULL),
   163     _offset(-1),
   164     _scalar_replaceable(true),
   165     _hidden_alias(false) {}
   168   EscapeState escape_state() const { return _escape; }
   169   NodeType node_type() const { return _type;}
   170   int offset() { return _offset;}
   172   void set_offset(int offs) { _offset = offs;}
   173   void set_escape_state(EscapeState state) { _escape = state; }
   174   void set_node_type(NodeType ntype) {
   175     assert(_type == UnknownType || _type == ntype, "Can't change node type");
   176     _type = ntype;
   177   }
   179   // count of outgoing edges
   180   uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); }
   182   // node index of target of outgoing edge "e"
   183   uint edge_target(uint e) const {
   184     assert(_edges != NULL, "valid edge index");
   185     return (_edges->at(e) >> EdgeShift);
   186   }
   187   // type of outgoing edge "e"
   188   EdgeType edge_type(uint e) const {
   189     assert(_edges != NULL, "valid edge index");
   190     return (EdgeType) (_edges->at(e) & EdgeMask);
   191   }
   193   // add a edge of the specified type pointing to the specified target
   194   void add_edge(uint targIdx, EdgeType et);
   196   // remove an edge of the specified type pointing to the specified target
   197   void remove_edge(uint targIdx, EdgeType et);
   199 #ifndef PRODUCT
   200   void dump(bool print_state=true) const;
   201 #endif
   203 };
   205 class ConnectionGraph: public ResourceObj {
   206 private:
   207   GrowableArray<PointsToNode>  _nodes; // Connection graph nodes indexed
   208                                        // by ideal node index.
   210   Unique_Node_List  _delayed_worklist; // Nodes to be processed before
   211                                        // the call build_connection_graph().
   213   GrowableArray<MergeMemNode *>  _mergemem_worklist; // List of all MergeMem nodes
   215   VectorSet                _processed; // Records which nodes have been
   216                                        // processed.
   218   bool                    _collecting; // Indicates whether escape information
   219                                        // is still being collected. If false,
   220                                        // no new nodes will be processed.
   222   uint                _phantom_object; // Index of globally escaping object
   223                                        // that pointer values loaded from
   224                                        // a field which has not been set
   225                                        // are assumed to point to.
   226   uint                      _oop_null; // ConP(#NULL)
   227   uint                     _noop_null; // ConN(#NULL)
   229   Compile *                  _compile; // Compile object for current compilation
   230   PhaseIterGVN *                _igvn; // Value numbering
   232   // Address of an element in _nodes.  Used when the element is to be modified
   233   PointsToNode *ptnode_adr(uint idx) const {
   234     // There should be no new ideal nodes during ConnectionGraph build,
   235     // growableArray::adr_at() will throw assert otherwise.
   236     return _nodes.adr_at(idx);
   237   }
   238   uint nodes_size() const { return _nodes.length(); }
   240   // Add node to ConnectionGraph.
   241   void add_node(Node *n, PointsToNode::NodeType nt, PointsToNode::EscapeState es, bool done);
   243   // offset of a field reference
   244   int address_offset(Node* adr, PhaseTransform *phase);
   246   // compute the escape state for arguments to a call
   247   void process_call_arguments(CallNode *call, PhaseTransform *phase);
   249   // compute the escape state for the return value of a call
   250   void process_call_result(ProjNode *resproj, PhaseTransform *phase);
   252   // Populate Connection Graph with Ideal nodes.
   253   void record_for_escape_analysis(Node *n, PhaseTransform *phase);
   255   // Build Connection Graph and set nodes escape state.
   256   void build_connection_graph(Node *n, PhaseTransform *phase);
   258   // walk the connection graph starting at the node corresponding to "n" and
   259   // add the index of everything it could point to, to "ptset".  This may cause
   260   // Phi's encountered to get (re)processed  (which requires "phase".)
   261   void PointsTo(VectorSet &ptset, Node * n);
   263   //  Edge manipulation.  The "from_i" and "to_i" arguments are the
   264   //  node indices of the source and destination of the edge
   265   void add_pointsto_edge(uint from_i, uint to_i);
   266   void add_deferred_edge(uint from_i, uint to_i);
   267   void add_field_edge(uint from_i, uint to_i, int offs);
   270   // Add an edge to node given by "to_i" from any field of adr_i whose offset
   271   // matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   272   // a pointsto edge is added if it is a JavaObject
   273   void add_edge_from_fields(uint adr, uint to_i, int offs);
   275   // Add a deferred  edge from node given by "from_i" to any field
   276   // of adr_i whose offset matches "offset"
   277   void add_deferred_edge_to_fields(uint from_i, uint adr, int offs);
   280   // Remove outgoing deferred edges from the node referenced by "ni".
   281   // Any outgoing edges from the target of the deferred edge are copied
   282   // to "ni".
   283   void remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited);
   285   Node_Array _node_map; // used for bookeeping during type splitting
   286                         // Used for the following purposes:
   287                         // Memory Phi    - most recent unique Phi split out
   288                         //                 from this Phi
   289                         // MemNode       - new memory input for this node
   290                         // ChecCastPP    - allocation that this is a cast of
   291                         // allocation    - CheckCastPP of the allocation
   292   bool split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn);
   293   PhiNode *create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created);
   294   PhiNode *split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn);
   295   void  move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn);
   296   Node *find_inst_mem(Node *mem, int alias_idx,GrowableArray<PhiNode *>  &orig_phi_worklist,  PhaseGVN  *igvn);
   298   // Propagate unique types created for unescaped allocated objects
   299   // through the graph
   300   void split_unique_types(GrowableArray<Node *>  &alloc_worklist);
   302   // manage entries in _node_map
   303   void  set_map(int idx, Node *n)        { _node_map.map(idx, n); }
   304   Node *get_map(int idx)                 { return _node_map[idx]; }
   305   PhiNode *get_map_phi(int idx) {
   306     Node *phi = _node_map[idx];
   307     return (phi == NULL) ? NULL : phi->as_Phi();
   308   }
   310   // Notify optimizer that a node has been modified
   311   // Node:  This assumes that escape analysis is run before
   312   //        PhaseIterGVN creation
   313   void record_for_optimizer(Node *n) {
   314     _igvn->_worklist.push(n);
   315   }
   317   // Set the escape state of a node
   318   void set_escape_state(uint ni, PointsToNode::EscapeState es);
   320   // Search for objects which are not scalar replaceable.
   321   void verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase);
   323 public:
   324   ConnectionGraph(Compile *C, PhaseIterGVN *igvn);
   326   // Check for non-escaping candidates
   327   static bool has_candidates(Compile *C);
   329   // Perform escape analysis
   330   static void do_analysis(Compile *C, PhaseIterGVN *igvn);
   332   // Compute the escape information
   333   bool compute_escape();
   335   // escape state of a node
   336   PointsToNode::EscapeState escape_state(Node *n);
   338   // other information we have collected
   339   bool is_scalar_replaceable(Node *n) {
   340     if (_collecting || (n->_idx >= nodes_size()))
   341       return false;
   342     PointsToNode* ptn = ptnode_adr(n->_idx);
   343     return ptn->escape_state() == PointsToNode::NoEscape && ptn->_scalar_replaceable;
   344   }
   346   bool hidden_alias(Node *n) {
   347     if (_collecting || (n->_idx >= nodes_size()))
   348       return true;
   349     PointsToNode* ptn = ptnode_adr(n->_idx);
   350     return (ptn->escape_state() != PointsToNode::NoEscape) || ptn->_hidden_alias;
   351   }
   353 #ifndef PRODUCT
   354   void dump();
   355 #endif
   356 };

mercurial