src/share/vm/c1/c1_LIR.hpp

Thu, 03 Jan 2013 15:08:43 -0500

author
bpittore
date
Thu, 03 Jan 2013 15:08:43 -0500
changeset 4404
608b2e8a0063
parent 4106
7eca5de9e0b6
child 4721
47bc9800972c
permissions
-rw-r--r--

8004051: assert(_oprs_len[mode] < maxNumberOfOperands) failed: array overflow
Summary: assert is triggered when number of register based arguments passed to a java method exceeds 16.
Reviewed-by: roland, vladidan

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_C1_C1_LIR_HPP
    26 #define SHARE_VM_C1_C1_LIR_HPP
    28 #include "c1/c1_ValueType.hpp"
    29 #include "oops/method.hpp"
    31 class BlockBegin;
    32 class BlockList;
    33 class LIR_Assembler;
    34 class CodeEmitInfo;
    35 class CodeStub;
    36 class CodeStubList;
    37 class ArrayCopyStub;
    38 class LIR_Op;
    39 class ciType;
    40 class ValueType;
    41 class LIR_OpVisitState;
    42 class FpuStackSim;
    44 //---------------------------------------------------------------------
    45 //                 LIR Operands
    46 //  LIR_OprDesc
    47 //    LIR_OprPtr
    48 //      LIR_Const
    49 //      LIR_Address
    50 //---------------------------------------------------------------------
    51 class LIR_OprDesc;
    52 class LIR_OprPtr;
    53 class LIR_Const;
    54 class LIR_Address;
    55 class LIR_OprVisitor;
    58 typedef LIR_OprDesc* LIR_Opr;
    59 typedef int          RegNr;
    61 define_array(LIR_OprArray, LIR_Opr)
    62 define_stack(LIR_OprList, LIR_OprArray)
    64 define_array(LIR_OprRefArray, LIR_Opr*)
    65 define_stack(LIR_OprRefList, LIR_OprRefArray)
    67 define_array(CodeEmitInfoArray, CodeEmitInfo*)
    68 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
    70 define_array(LIR_OpArray, LIR_Op*)
    71 define_stack(LIR_OpList, LIR_OpArray)
    73 // define LIR_OprPtr early so LIR_OprDesc can refer to it
    74 class LIR_OprPtr: public CompilationResourceObj {
    75  public:
    76   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
    77   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
    79   virtual LIR_Const*  as_constant()              { return NULL; }
    80   virtual LIR_Address* as_address()              { return NULL; }
    81   virtual BasicType type() const                 = 0;
    82   virtual void print_value_on(outputStream* out) const = 0;
    83 };
    87 // LIR constants
    88 class LIR_Const: public LIR_OprPtr {
    89  private:
    90   JavaValue _value;
    92   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
    93   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
    94   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
    96  public:
    97   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
    98   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
    99   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
   100   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
   101   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
   102   LIR_Const(void* p) {
   103 #ifdef _LP64
   104     assert(sizeof(jlong) >= sizeof(p), "too small");;
   105     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
   106 #else
   107     assert(sizeof(jint) >= sizeof(p), "too small");;
   108     _value.set_type(T_INT);     _value.set_jint((jint)p);
   109 #endif
   110   }
   111   LIR_Const(Metadata* m) {
   112     _value.set_type(T_METADATA);
   113 #ifdef _LP64
   114     _value.set_jlong((jlong)m);
   115 #else
   116     _value.set_jint((jint)m);
   117 #endif // _LP64
   118   }
   120   virtual BasicType type()       const { return _value.get_type(); }
   121   virtual LIR_Const* as_constant()     { return this; }
   123   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
   124   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
   125   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
   126   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
   127   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
   128   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
   129   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
   131 #ifdef _LP64
   132   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
   133   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
   134 #else
   135   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
   136   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
   137 #endif
   140   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
   141   jint      as_jint_lo_bits() const    {
   142     if (type() == T_DOUBLE) {
   143       return low(jlong_cast(_value.get_jdouble()));
   144     } else {
   145       return as_jint_lo();
   146     }
   147   }
   148   jint      as_jint_hi_bits() const    {
   149     if (type() == T_DOUBLE) {
   150       return high(jlong_cast(_value.get_jdouble()));
   151     } else {
   152       return as_jint_hi();
   153     }
   154   }
   155   jlong      as_jlong_bits() const    {
   156     if (type() == T_DOUBLE) {
   157       return jlong_cast(_value.get_jdouble());
   158     } else {
   159       return as_jlong();
   160     }
   161   }
   163   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   166   bool is_zero_float() {
   167     jfloat f = as_jfloat();
   168     jfloat ok = 0.0f;
   169     return jint_cast(f) == jint_cast(ok);
   170   }
   172   bool is_one_float() {
   173     jfloat f = as_jfloat();
   174     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
   175   }
   177   bool is_zero_double() {
   178     jdouble d = as_jdouble();
   179     jdouble ok = 0.0;
   180     return jlong_cast(d) == jlong_cast(ok);
   181   }
   183   bool is_one_double() {
   184     jdouble d = as_jdouble();
   185     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
   186   }
   187 };
   190 //---------------------LIR Operand descriptor------------------------------------
   191 //
   192 // The class LIR_OprDesc represents a LIR instruction operand;
   193 // it can be a register (ALU/FPU), stack location or a constant;
   194 // Constants and addresses are represented as resource area allocated
   195 // structures (see above).
   196 // Registers and stack locations are inlined into the this pointer
   197 // (see value function).
   199 class LIR_OprDesc: public CompilationResourceObj {
   200  public:
   201   // value structure:
   202   //     data       opr-type opr-kind
   203   // +--------------+-------+-------+
   204   // [max...........|7 6 5 4|3 2 1 0]
   205   //                             ^
   206   //                    is_pointer bit
   207   //
   208   // lowest bit cleared, means it is a structure pointer
   209   // we need  4 bits to represent types
   211  private:
   212   friend class LIR_OprFact;
   214   // Conversion
   215   intptr_t value() const                         { return (intptr_t) this; }
   217   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
   218     return (value() & mask) == masked_value;
   219   }
   221   enum OprKind {
   222       pointer_value      = 0
   223     , stack_value        = 1
   224     , cpu_register       = 3
   225     , fpu_register       = 5
   226     , illegal_value      = 7
   227   };
   229   enum OprBits {
   230       pointer_bits   = 1
   231     , kind_bits      = 3
   232     , type_bits      = 4
   233     , size_bits      = 2
   234     , destroys_bits  = 1
   235     , virtual_bits   = 1
   236     , is_xmm_bits    = 1
   237     , last_use_bits  = 1
   238     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
   239     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
   240                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
   241     , data_bits      = BitsPerInt - non_data_bits
   242     , reg_bits       = data_bits / 2      // for two registers in one value encoding
   243   };
   245   enum OprShift {
   246       kind_shift     = 0
   247     , type_shift     = kind_shift     + kind_bits
   248     , size_shift     = type_shift     + type_bits
   249     , destroys_shift = size_shift     + size_bits
   250     , last_use_shift = destroys_shift + destroys_bits
   251     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
   252     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
   253     , is_xmm_shift   = virtual_shift + virtual_bits
   254     , data_shift     = is_xmm_shift + is_xmm_bits
   255     , reg1_shift = data_shift
   256     , reg2_shift = data_shift + reg_bits
   258   };
   260   enum OprSize {
   261       single_size = 0 << size_shift
   262     , double_size = 1 << size_shift
   263   };
   265   enum OprMask {
   266       kind_mask      = right_n_bits(kind_bits)
   267     , type_mask      = right_n_bits(type_bits) << type_shift
   268     , size_mask      = right_n_bits(size_bits) << size_shift
   269     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
   270     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
   271     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
   272     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
   273     , pointer_mask   = right_n_bits(pointer_bits)
   274     , lower_reg_mask = right_n_bits(reg_bits)
   275     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
   276   };
   278   uintptr_t data() const                         { return value() >> data_shift; }
   279   int lo_reg_half() const                        { return data() & lower_reg_mask; }
   280   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
   281   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
   282   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
   284   static char type_char(BasicType t);
   286  public:
   287   enum {
   288     vreg_base = ConcreteRegisterImpl::number_of_registers,
   289     vreg_max = (1 << data_bits) - 1
   290   };
   292   static inline LIR_Opr illegalOpr();
   294   enum OprType {
   295       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
   296     , int_type      = 1 << type_shift
   297     , long_type     = 2 << type_shift
   298     , object_type   = 3 << type_shift
   299     , address_type  = 4 << type_shift
   300     , float_type    = 5 << type_shift
   301     , double_type   = 6 << type_shift
   302     , metadata_type = 7 << type_shift
   303   };
   304   friend OprType as_OprType(BasicType t);
   305   friend BasicType as_BasicType(OprType t);
   307   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
   308   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
   310   static OprSize size_for(BasicType t) {
   311     switch (t) {
   312       case T_LONG:
   313       case T_DOUBLE:
   314         return double_size;
   315         break;
   317       case T_FLOAT:
   318       case T_BOOLEAN:
   319       case T_CHAR:
   320       case T_BYTE:
   321       case T_SHORT:
   322       case T_INT:
   323       case T_ADDRESS:
   324       case T_OBJECT:
   325       case T_ARRAY:
   326       case T_METADATA:
   327         return single_size;
   328         break;
   330       default:
   331         ShouldNotReachHere();
   332         return single_size;
   333       }
   334   }
   337   void validate_type() const PRODUCT_RETURN;
   339   BasicType type() const {
   340     if (is_pointer()) {
   341       return pointer()->type();
   342     }
   343     return as_BasicType(type_field());
   344   }
   347   ValueType* value_type() const                  { return as_ValueType(type()); }
   349   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
   351   bool is_equal(LIR_Opr opr) const         { return this == opr; }
   352   // checks whether types are same
   353   bool is_same_type(LIR_Opr opr) const     {
   354     assert(type_field() != unknown_type &&
   355            opr->type_field() != unknown_type, "shouldn't see unknown_type");
   356     return type_field() == opr->type_field();
   357   }
   358   bool is_same_register(LIR_Opr opr) {
   359     return (is_register() && opr->is_register() &&
   360             kind_field() == opr->kind_field() &&
   361             (value() & no_type_mask) == (opr->value() & no_type_mask));
   362   }
   364   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
   365   bool is_illegal() const      { return kind_field() == illegal_value; }
   366   bool is_valid() const        { return kind_field() != illegal_value; }
   368   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
   369   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
   371   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
   372   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
   374   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
   375   bool is_oop() const;
   377   // semantic for fpu- and xmm-registers:
   378   // * is_float and is_double return true for xmm_registers
   379   //   (so is_single_fpu and is_single_xmm are true)
   380   // * So you must always check for is_???_xmm prior to is_???_fpu to
   381   //   distinguish between fpu- and xmm-registers
   383   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
   384   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
   385   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
   387   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
   388   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
   389   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
   390   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
   391   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
   393   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
   394   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
   395   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
   396   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
   397   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
   399   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
   400   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
   401   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
   403   // fast accessor functions for special bits that do not work for pointers
   404   // (in this functions, the check for is_pointer() is omitted)
   405   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
   406   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
   407   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
   408   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
   409   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
   411   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
   412   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
   413   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
   414   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
   417   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
   418   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
   419   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   420   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   421   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   422   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   423   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   424   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   425   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
   426   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   427   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   428   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
   430   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
   431   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
   432   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
   434   Register as_register()    const;
   435   Register as_register_lo() const;
   436   Register as_register_hi() const;
   438   Register as_pointer_register() {
   439 #ifdef _LP64
   440     if (is_double_cpu()) {
   441       assert(as_register_lo() == as_register_hi(), "should be a single register");
   442       return as_register_lo();
   443     }
   444 #endif
   445     return as_register();
   446   }
   448 #ifdef X86
   449   XMMRegister as_xmm_float_reg() const;
   450   XMMRegister as_xmm_double_reg() const;
   451   // for compatibility with RInfo
   452   int fpu () const                                  { return lo_reg_half(); }
   453 #endif // X86
   454 #if defined(SPARC) || defined(ARM) || defined(PPC)
   455   FloatRegister as_float_reg   () const;
   456   FloatRegister as_double_reg  () const;
   457 #endif
   459   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
   460   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
   461   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
   462   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
   463   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
   465   void print() const PRODUCT_RETURN;
   466   void print(outputStream* out) const PRODUCT_RETURN;
   467 };
   470 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
   471   switch (type) {
   472   case T_INT:      return LIR_OprDesc::int_type;
   473   case T_LONG:     return LIR_OprDesc::long_type;
   474   case T_FLOAT:    return LIR_OprDesc::float_type;
   475   case T_DOUBLE:   return LIR_OprDesc::double_type;
   476   case T_OBJECT:
   477   case T_ARRAY:    return LIR_OprDesc::object_type;
   478   case T_ADDRESS:  return LIR_OprDesc::address_type;
   479   case T_METADATA: return LIR_OprDesc::metadata_type;
   480   case T_ILLEGAL:  // fall through
   481   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
   482   }
   483 }
   485 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
   486   switch (t) {
   487   case LIR_OprDesc::int_type:     return T_INT;
   488   case LIR_OprDesc::long_type:    return T_LONG;
   489   case LIR_OprDesc::float_type:   return T_FLOAT;
   490   case LIR_OprDesc::double_type:  return T_DOUBLE;
   491   case LIR_OprDesc::object_type:  return T_OBJECT;
   492   case LIR_OprDesc::address_type: return T_ADDRESS;
   493   case LIR_OprDesc::metadata_type:return T_METADATA;
   494   case LIR_OprDesc::unknown_type: // fall through
   495   default: ShouldNotReachHere();  return T_ILLEGAL;
   496   }
   497 }
   500 // LIR_Address
   501 class LIR_Address: public LIR_OprPtr {
   502  friend class LIR_OpVisitState;
   504  public:
   505   // NOTE: currently these must be the log2 of the scale factor (and
   506   // must also be equivalent to the ScaleFactor enum in
   507   // assembler_i486.hpp)
   508   enum Scale {
   509     times_1  =  0,
   510     times_2  =  1,
   511     times_4  =  2,
   512     times_8  =  3
   513   };
   515  private:
   516   LIR_Opr   _base;
   517   LIR_Opr   _index;
   518   Scale     _scale;
   519   intx      _disp;
   520   BasicType _type;
   522  public:
   523   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
   524        _base(base)
   525      , _index(index)
   526      , _scale(times_1)
   527      , _type(type)
   528      , _disp(0) { verify(); }
   530   LIR_Address(LIR_Opr base, intx disp, BasicType type):
   531        _base(base)
   532      , _index(LIR_OprDesc::illegalOpr())
   533      , _scale(times_1)
   534      , _type(type)
   535      , _disp(disp) { verify(); }
   537   LIR_Address(LIR_Opr base, BasicType type):
   538        _base(base)
   539      , _index(LIR_OprDesc::illegalOpr())
   540      , _scale(times_1)
   541      , _type(type)
   542      , _disp(0) { verify(); }
   544 #if defined(X86) || defined(ARM)
   545   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
   546        _base(base)
   547      , _index(index)
   548      , _scale(scale)
   549      , _type(type)
   550      , _disp(disp) { verify(); }
   551 #endif // X86 || ARM
   553   LIR_Opr base()  const                          { return _base;  }
   554   LIR_Opr index() const                          { return _index; }
   555   Scale   scale() const                          { return _scale; }
   556   intx    disp()  const                          { return _disp;  }
   558   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
   560   virtual LIR_Address* as_address()              { return this;   }
   561   virtual BasicType type() const                 { return _type; }
   562   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   564   void verify() const PRODUCT_RETURN;
   566   static Scale scale(BasicType type);
   567 };
   570 // operand factory
   571 class LIR_OprFact: public AllStatic {
   572  public:
   574   static LIR_Opr illegalOpr;
   576   static LIR_Opr single_cpu(int reg) {
   577     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   578                                LIR_OprDesc::int_type             |
   579                                LIR_OprDesc::cpu_register         |
   580                                LIR_OprDesc::single_size);
   581   }
   582   static LIR_Opr single_cpu_oop(int reg) {
   583     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   584                                LIR_OprDesc::object_type          |
   585                                LIR_OprDesc::cpu_register         |
   586                                LIR_OprDesc::single_size);
   587   }
   588   static LIR_Opr single_cpu_address(int reg) {
   589     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   590                                LIR_OprDesc::address_type         |
   591                                LIR_OprDesc::cpu_register         |
   592                                LIR_OprDesc::single_size);
   593   }
   594   static LIR_Opr single_cpu_metadata(int reg) {
   595     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   596                                LIR_OprDesc::metadata_type        |
   597                                LIR_OprDesc::cpu_register         |
   598                                LIR_OprDesc::single_size);
   599   }
   600   static LIR_Opr double_cpu(int reg1, int reg2) {
   601     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
   602     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   603                                (reg2 << LIR_OprDesc::reg2_shift) |
   604                                LIR_OprDesc::long_type            |
   605                                LIR_OprDesc::cpu_register         |
   606                                LIR_OprDesc::double_size);
   607   }
   609   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   610                                                                              LIR_OprDesc::float_type           |
   611                                                                              LIR_OprDesc::fpu_register         |
   612                                                                              LIR_OprDesc::single_size); }
   613 #if defined(ARM)
   614   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
   615   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   616   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
   617 #endif
   618 #ifdef SPARC
   619   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   620                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
   621                                                                              LIR_OprDesc::double_type          |
   622                                                                              LIR_OprDesc::fpu_register         |
   623                                                                              LIR_OprDesc::double_size); }
   624 #endif
   625 #ifdef X86
   626   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   627                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   628                                                                              LIR_OprDesc::double_type          |
   629                                                                              LIR_OprDesc::fpu_register         |
   630                                                                              LIR_OprDesc::double_size); }
   632   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   633                                                                              LIR_OprDesc::float_type           |
   634                                                                              LIR_OprDesc::fpu_register         |
   635                                                                              LIR_OprDesc::single_size          |
   636                                                                              LIR_OprDesc::is_xmm_mask); }
   637   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   638                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   639                                                                              LIR_OprDesc::double_type          |
   640                                                                              LIR_OprDesc::fpu_register         |
   641                                                                              LIR_OprDesc::double_size          |
   642                                                                              LIR_OprDesc::is_xmm_mask); }
   643 #endif // X86
   644 #ifdef PPC
   645   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   646                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   647                                                                              LIR_OprDesc::double_type          |
   648                                                                              LIR_OprDesc::fpu_register         |
   649                                                                              LIR_OprDesc::double_size); }
   650   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
   651                                                                              LIR_OprDesc::float_type           |
   652                                                                              LIR_OprDesc::cpu_register         |
   653                                                                              LIR_OprDesc::single_size); }
   654   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
   655                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
   656                                                                              LIR_OprDesc::double_type          |
   657                                                                              LIR_OprDesc::cpu_register         |
   658                                                                              LIR_OprDesc::double_size); }
   659 #endif // PPC
   661   static LIR_Opr virtual_register(int index, BasicType type) {
   662     LIR_Opr res;
   663     switch (type) {
   664       case T_OBJECT: // fall through
   665       case T_ARRAY:
   666         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
   667                                             LIR_OprDesc::object_type  |
   668                                             LIR_OprDesc::cpu_register |
   669                                             LIR_OprDesc::single_size  |
   670                                             LIR_OprDesc::virtual_mask);
   671         break;
   673       case T_METADATA:
   674         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
   675                                             LIR_OprDesc::metadata_type|
   676                                             LIR_OprDesc::cpu_register |
   677                                             LIR_OprDesc::single_size  |
   678                                             LIR_OprDesc::virtual_mask);
   679         break;
   681       case T_INT:
   682         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   683                                   LIR_OprDesc::int_type              |
   684                                   LIR_OprDesc::cpu_register          |
   685                                   LIR_OprDesc::single_size           |
   686                                   LIR_OprDesc::virtual_mask);
   687         break;
   689       case T_ADDRESS:
   690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   691                                   LIR_OprDesc::address_type          |
   692                                   LIR_OprDesc::cpu_register          |
   693                                   LIR_OprDesc::single_size           |
   694                                   LIR_OprDesc::virtual_mask);
   695         break;
   697       case T_LONG:
   698         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   699                                   LIR_OprDesc::long_type             |
   700                                   LIR_OprDesc::cpu_register          |
   701                                   LIR_OprDesc::double_size           |
   702                                   LIR_OprDesc::virtual_mask);
   703         break;
   705 #ifdef __SOFTFP__
   706       case T_FLOAT:
   707         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   708                                   LIR_OprDesc::float_type  |
   709                                   LIR_OprDesc::cpu_register |
   710                                   LIR_OprDesc::single_size |
   711                                   LIR_OprDesc::virtual_mask);
   712         break;
   713       case T_DOUBLE:
   714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   715                                   LIR_OprDesc::double_type |
   716                                   LIR_OprDesc::cpu_register |
   717                                   LIR_OprDesc::double_size |
   718                                   LIR_OprDesc::virtual_mask);
   719         break;
   720 #else // __SOFTFP__
   721       case T_FLOAT:
   722         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   723                                   LIR_OprDesc::float_type           |
   724                                   LIR_OprDesc::fpu_register         |
   725                                   LIR_OprDesc::single_size          |
   726                                   LIR_OprDesc::virtual_mask);
   727         break;
   729       case
   730         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   731                                             LIR_OprDesc::double_type           |
   732                                             LIR_OprDesc::fpu_register          |
   733                                             LIR_OprDesc::double_size           |
   734                                             LIR_OprDesc::virtual_mask);
   735         break;
   736 #endif // __SOFTFP__
   737       default:       ShouldNotReachHere(); res = illegalOpr;
   738     }
   740 #ifdef ASSERT
   741     res->validate_type();
   742     assert(res->vreg_number() == index, "conversion check");
   743     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
   744     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   746     // old-style calculation; check if old and new method are equal
   747     LIR_OprDesc::OprType t = as_OprType(type);
   748 #ifdef __SOFTFP__
   749     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   750                                t |
   751                                LIR_OprDesc::cpu_register |
   752                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   753 #else // __SOFTFP__
   754     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
   755                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
   756                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   757     assert(res == old_res, "old and new method not equal");
   758 #endif // __SOFTFP__
   759 #endif // ASSERT
   761     return res;
   762   }
   764   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
   765   // the index is platform independent; a double stack useing indeces 2 and 3 has always
   766   // index 2.
   767   static LIR_Opr stack(int index, BasicType type) {
   768     LIR_Opr res;
   769     switch (type) {
   770       case T_OBJECT: // fall through
   771       case T_ARRAY:
   772         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   773                                   LIR_OprDesc::object_type           |
   774                                   LIR_OprDesc::stack_value           |
   775                                   LIR_OprDesc::single_size);
   776         break;
   778       case T_METADATA:
   779         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   780                                   LIR_OprDesc::metadata_type         |
   781                                   LIR_OprDesc::stack_value           |
   782                                   LIR_OprDesc::single_size);
   783         break;
   784       case T_INT:
   785         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   786                                   LIR_OprDesc::int_type              |
   787                                   LIR_OprDesc::stack_value           |
   788                                   LIR_OprDesc::single_size);
   789         break;
   791       case T_ADDRESS:
   792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   793                                   LIR_OprDesc::address_type          |
   794                                   LIR_OprDesc::stack_value           |
   795                                   LIR_OprDesc::single_size);
   796         break;
   798       case T_LONG:
   799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   800                                   LIR_OprDesc::long_type             |
   801                                   LIR_OprDesc::stack_value           |
   802                                   LIR_OprDesc::double_size);
   803         break;
   805       case T_FLOAT:
   806         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   807                                   LIR_OprDesc::float_type            |
   808                                   LIR_OprDesc::stack_value           |
   809                                   LIR_OprDesc::single_size);
   810         break;
   811       case T_DOUBLE:
   812         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   813                                   LIR_OprDesc::double_type           |
   814                                   LIR_OprDesc::stack_value           |
   815                                   LIR_OprDesc::double_size);
   816         break;
   818       default:       ShouldNotReachHere(); res = illegalOpr;
   819     }
   821 #ifdef ASSERT
   822     assert(index >= 0, "index must be positive");
   823     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   825     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   826                                           LIR_OprDesc::stack_value           |
   827                                           as_OprType(type)                   |
   828                                           LIR_OprDesc::size_for(type));
   829     assert(res == old_res, "old and new method not equal");
   830 #endif
   832     return res;
   833   }
   835   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
   836   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
   837   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
   838   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
   839   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
   840   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
   841   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
   842   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
   843   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
   844   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
   845   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
   847   static LIR_Opr value_type(ValueType* type);
   848   static LIR_Opr dummy_value_type(ValueType* type);
   849 };
   852 //-------------------------------------------------------------------------------
   853 //                   LIR Instructions
   854 //-------------------------------------------------------------------------------
   855 //
   856 // Note:
   857 //  - every instruction has a result operand
   858 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
   859 //  - every instruction has a LIR_OpCode operand
   860 //  - LIR_OpN, means an instruction that has N input operands
   861 //
   862 // class hierarchy:
   863 //
   864 class  LIR_Op;
   865 class    LIR_Op0;
   866 class      LIR_OpLabel;
   867 class    LIR_Op1;
   868 class      LIR_OpBranch;
   869 class      LIR_OpConvert;
   870 class      LIR_OpAllocObj;
   871 class      LIR_OpRoundFP;
   872 class    LIR_Op2;
   873 class    LIR_OpDelay;
   874 class    LIR_Op3;
   875 class      LIR_OpAllocArray;
   876 class    LIR_OpCall;
   877 class      LIR_OpJavaCall;
   878 class      LIR_OpRTCall;
   879 class    LIR_OpArrayCopy;
   880 class    LIR_OpLock;
   881 class    LIR_OpTypeCheck;
   882 class    LIR_OpCompareAndSwap;
   883 class    LIR_OpProfileCall;
   886 // LIR operation codes
   887 enum LIR_Code {
   888     lir_none
   889   , begin_op0
   890       , lir_word_align
   891       , lir_label
   892       , lir_nop
   893       , lir_backwardbranch_target
   894       , lir_std_entry
   895       , lir_osr_entry
   896       , lir_build_frame
   897       , lir_fpop_raw
   898       , lir_24bit_FPU
   899       , lir_reset_FPU
   900       , lir_breakpoint
   901       , lir_rtcall
   902       , lir_membar
   903       , lir_membar_acquire
   904       , lir_membar_release
   905       , lir_membar_loadload
   906       , lir_membar_storestore
   907       , lir_membar_loadstore
   908       , lir_membar_storeload
   909       , lir_get_thread
   910   , end_op0
   911   , begin_op1
   912       , lir_fxch
   913       , lir_fld
   914       , lir_ffree
   915       , lir_push
   916       , lir_pop
   917       , lir_null_check
   918       , lir_return
   919       , lir_leal
   920       , lir_neg
   921       , lir_branch
   922       , lir_cond_float_branch
   923       , lir_move
   924       , lir_prefetchr
   925       , lir_prefetchw
   926       , lir_convert
   927       , lir_alloc_object
   928       , lir_monaddr
   929       , lir_roundfp
   930       , lir_safepoint
   931       , lir_pack64
   932       , lir_unpack64
   933       , lir_unwind
   934   , end_op1
   935   , begin_op2
   936       , lir_cmp
   937       , lir_cmp_l2i
   938       , lir_ucmp_fd2i
   939       , lir_cmp_fd2i
   940       , lir_cmove
   941       , lir_add
   942       , lir_sub
   943       , lir_mul
   944       , lir_mul_strictfp
   945       , lir_div
   946       , lir_div_strictfp
   947       , lir_rem
   948       , lir_sqrt
   949       , lir_abs
   950       , lir_sin
   951       , lir_cos
   952       , lir_tan
   953       , lir_log
   954       , lir_log10
   955       , lir_exp
   956       , lir_pow
   957       , lir_logic_and
   958       , lir_logic_or
   959       , lir_logic_xor
   960       , lir_shl
   961       , lir_shr
   962       , lir_ushr
   963       , lir_alloc_array
   964       , lir_throw
   965       , lir_compare_to
   966       , lir_xadd
   967       , lir_xchg
   968   , end_op2
   969   , begin_op3
   970       , lir_idiv
   971       , lir_irem
   972   , end_op3
   973   , begin_opJavaCall
   974       , lir_static_call
   975       , lir_optvirtual_call
   976       , lir_icvirtual_call
   977       , lir_virtual_call
   978       , lir_dynamic_call
   979   , end_opJavaCall
   980   , begin_opArrayCopy
   981       , lir_arraycopy
   982   , end_opArrayCopy
   983   , begin_opLock
   984     , lir_lock
   985     , lir_unlock
   986   , end_opLock
   987   , begin_delay_slot
   988     , lir_delay_slot
   989   , end_delay_slot
   990   , begin_opTypeCheck
   991     , lir_instanceof
   992     , lir_checkcast
   993     , lir_store_check
   994   , end_opTypeCheck
   995   , begin_opCompareAndSwap
   996     , lir_cas_long
   997     , lir_cas_obj
   998     , lir_cas_int
   999   , end_opCompareAndSwap
  1000   , begin_opMDOProfile
  1001     , lir_profile_call
  1002   , end_opMDOProfile
  1003 };
  1006 enum LIR_Condition {
  1007     lir_cond_equal
  1008   , lir_cond_notEqual
  1009   , lir_cond_less
  1010   , lir_cond_lessEqual
  1011   , lir_cond_greaterEqual
  1012   , lir_cond_greater
  1013   , lir_cond_belowEqual
  1014   , lir_cond_aboveEqual
  1015   , lir_cond_always
  1016   , lir_cond_unknown = -1
  1017 };
  1020 enum LIR_PatchCode {
  1021   lir_patch_none,
  1022   lir_patch_low,
  1023   lir_patch_high,
  1024   lir_patch_normal
  1025 };
  1028 enum LIR_MoveKind {
  1029   lir_move_normal,
  1030   lir_move_volatile,
  1031   lir_move_unaligned,
  1032   lir_move_wide,
  1033   lir_move_max_flag
  1034 };
  1037 // --------------------------------------------------
  1038 // LIR_Op
  1039 // --------------------------------------------------
  1040 class LIR_Op: public CompilationResourceObj {
  1041  friend class LIR_OpVisitState;
  1043 #ifdef ASSERT
  1044  private:
  1045   const char *  _file;
  1046   int           _line;
  1047 #endif
  1049  protected:
  1050   LIR_Opr       _result;
  1051   unsigned short _code;
  1052   unsigned short _flags;
  1053   CodeEmitInfo* _info;
  1054   int           _id;     // value id for register allocation
  1055   int           _fpu_pop_count;
  1056   Instruction*  _source; // for debugging
  1058   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
  1060  protected:
  1061   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
  1063  public:
  1064   LIR_Op()
  1065     : _result(LIR_OprFact::illegalOpr)
  1066     , _code(lir_none)
  1067     , _flags(0)
  1068     , _info(NULL)
  1069 #ifdef ASSERT
  1070     , _file(NULL)
  1071     , _line(0)
  1072 #endif
  1073     , _fpu_pop_count(0)
  1074     , _source(NULL)
  1075     , _id(-1)                             {}
  1077   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
  1078     : _result(result)
  1079     , _code(code)
  1080     , _flags(0)
  1081     , _info(info)
  1082 #ifdef ASSERT
  1083     , _file(NULL)
  1084     , _line(0)
  1085 #endif
  1086     , _fpu_pop_count(0)
  1087     , _source(NULL)
  1088     , _id(-1)                             {}
  1090   CodeEmitInfo* info() const                  { return _info;   }
  1091   LIR_Code code()      const                  { return (LIR_Code)_code;   }
  1092   LIR_Opr result_opr() const                  { return _result; }
  1093   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
  1095 #ifdef ASSERT
  1096   void set_file_and_line(const char * file, int line) {
  1097     _file = file;
  1098     _line = line;
  1100 #endif
  1102   virtual const char * name() const PRODUCT_RETURN0;
  1104   int id()             const                  { return _id;     }
  1105   void set_id(int id)                         { _id = id; }
  1107   // FPU stack simulation helpers -- only used on Intel
  1108   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
  1109   int  fpu_pop_count() const                  { return _fpu_pop_count; }
  1110   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
  1112   Instruction* source() const                 { return _source; }
  1113   void set_source(Instruction* ins)           { _source = ins; }
  1115   virtual void emit_code(LIR_Assembler* masm) = 0;
  1116   virtual void print_instr(outputStream* out) const   = 0;
  1117   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
  1119   virtual LIR_OpCall* as_OpCall() { return NULL; }
  1120   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
  1121   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
  1122   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
  1123   virtual LIR_OpLock* as_OpLock() { return NULL; }
  1124   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
  1125   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
  1126   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
  1127   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
  1128   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
  1129   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
  1130   virtual LIR_Op0* as_Op0() { return NULL; }
  1131   virtual LIR_Op1* as_Op1() { return NULL; }
  1132   virtual LIR_Op2* as_Op2() { return NULL; }
  1133   virtual LIR_Op3* as_Op3() { return NULL; }
  1134   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
  1135   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
  1136   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
  1137   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
  1139   virtual void verify() const {}
  1140 };
  1142 // for calls
  1143 class LIR_OpCall: public LIR_Op {
  1144  friend class LIR_OpVisitState;
  1146  protected:
  1147   address      _addr;
  1148   LIR_OprList* _arguments;
  1149  protected:
  1150   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
  1151              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1152     : LIR_Op(code, result, info)
  1153     , _arguments(arguments)
  1154     , _addr(addr) {}
  1156  public:
  1157   address addr() const                           { return _addr; }
  1158   const LIR_OprList* arguments() const           { return _arguments; }
  1159   virtual LIR_OpCall* as_OpCall()                { return this; }
  1160 };
  1163 // --------------------------------------------------
  1164 // LIR_OpJavaCall
  1165 // --------------------------------------------------
  1166 class LIR_OpJavaCall: public LIR_OpCall {
  1167  friend class LIR_OpVisitState;
  1169  private:
  1170   ciMethod* _method;
  1171   LIR_Opr   _receiver;
  1172   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
  1174  public:
  1175   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1176                  LIR_Opr receiver, LIR_Opr result,
  1177                  address addr, LIR_OprList* arguments,
  1178                  CodeEmitInfo* info)
  1179   : LIR_OpCall(code, addr, result, arguments, info)
  1180   , _receiver(receiver)
  1181   , _method(method)
  1182   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
  1183   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1185   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1186                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
  1187                  LIR_OprList* arguments, CodeEmitInfo* info)
  1188   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
  1189   , _receiver(receiver)
  1190   , _method(method)
  1191   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
  1192   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1194   LIR_Opr receiver() const                       { return _receiver; }
  1195   ciMethod* method() const                       { return _method;   }
  1197   // JSR 292 support.
  1198   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
  1199   bool is_method_handle_invoke() const {
  1200     return
  1201       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
  1202       ||
  1203       method()->is_compiled_lambda_form()  // Java-generated adapter
  1204       ||
  1205       method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
  1208   intptr_t vtable_offset() const {
  1209     assert(_code == lir_virtual_call, "only have vtable for real vcall");
  1210     return (intptr_t) addr();
  1213   virtual void emit_code(LIR_Assembler* masm);
  1214   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
  1215   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1216 };
  1218 // --------------------------------------------------
  1219 // LIR_OpLabel
  1220 // --------------------------------------------------
  1221 // Location where a branch can continue
  1222 class LIR_OpLabel: public LIR_Op {
  1223  friend class LIR_OpVisitState;
  1225  private:
  1226   Label* _label;
  1227  public:
  1228   LIR_OpLabel(Label* lbl)
  1229    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
  1230    , _label(lbl)                                 {}
  1231   Label* label() const                           { return _label; }
  1233   virtual void emit_code(LIR_Assembler* masm);
  1234   virtual LIR_OpLabel* as_OpLabel() { return this; }
  1235   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1236 };
  1238 // LIR_OpArrayCopy
  1239 class LIR_OpArrayCopy: public LIR_Op {
  1240  friend class LIR_OpVisitState;
  1242  private:
  1243   ArrayCopyStub*  _stub;
  1244   LIR_Opr   _src;
  1245   LIR_Opr   _src_pos;
  1246   LIR_Opr   _dst;
  1247   LIR_Opr   _dst_pos;
  1248   LIR_Opr   _length;
  1249   LIR_Opr   _tmp;
  1250   ciArrayKlass* _expected_type;
  1251   int       _flags;
  1253 public:
  1254   enum Flags {
  1255     src_null_check         = 1 << 0,
  1256     dst_null_check         = 1 << 1,
  1257     src_pos_positive_check = 1 << 2,
  1258     dst_pos_positive_check = 1 << 3,
  1259     length_positive_check  = 1 << 4,
  1260     src_range_check        = 1 << 5,
  1261     dst_range_check        = 1 << 6,
  1262     type_check             = 1 << 7,
  1263     overlapping            = 1 << 8,
  1264     unaligned              = 1 << 9,
  1265     src_objarray           = 1 << 10,
  1266     dst_objarray           = 1 << 11,
  1267     all_flags              = (1 << 12) - 1
  1268   };
  1270   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
  1271                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
  1273   LIR_Opr src() const                            { return _src; }
  1274   LIR_Opr src_pos() const                        { return _src_pos; }
  1275   LIR_Opr dst() const                            { return _dst; }
  1276   LIR_Opr dst_pos() const                        { return _dst_pos; }
  1277   LIR_Opr length() const                         { return _length; }
  1278   LIR_Opr tmp() const                            { return _tmp; }
  1279   int flags() const                              { return _flags; }
  1280   ciArrayKlass* expected_type() const            { return _expected_type; }
  1281   ArrayCopyStub* stub() const                    { return _stub; }
  1283   virtual void emit_code(LIR_Assembler* masm);
  1284   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
  1285   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1286 };
  1289 // --------------------------------------------------
  1290 // LIR_Op0
  1291 // --------------------------------------------------
  1292 class LIR_Op0: public LIR_Op {
  1293  friend class LIR_OpVisitState;
  1295  public:
  1296   LIR_Op0(LIR_Code code)
  1297    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1298   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
  1299    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1301   virtual void emit_code(LIR_Assembler* masm);
  1302   virtual LIR_Op0* as_Op0() { return this; }
  1303   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1304 };
  1307 // --------------------------------------------------
  1308 // LIR_Op1
  1309 // --------------------------------------------------
  1311 class LIR_Op1: public LIR_Op {
  1312  friend class LIR_OpVisitState;
  1314  protected:
  1315   LIR_Opr         _opr;   // input operand
  1316   BasicType       _type;  // Operand types
  1317   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
  1319   static void print_patch_code(outputStream* out, LIR_PatchCode code);
  1321   void set_kind(LIR_MoveKind kind) {
  1322     assert(code() == lir_move, "must be");
  1323     _flags = kind;
  1326  public:
  1327   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
  1328     : LIR_Op(code, result, info)
  1329     , _opr(opr)
  1330     , _patch(patch)
  1331     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1333   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
  1334     : LIR_Op(code, result, info)
  1335     , _opr(opr)
  1336     , _patch(patch)
  1337     , _type(type)                      {
  1338     assert(code == lir_move, "must be");
  1339     set_kind(kind);
  1342   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
  1343     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1344     , _opr(opr)
  1345     , _patch(lir_patch_none)
  1346     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1348   LIR_Opr in_opr()           const               { return _opr;   }
  1349   LIR_PatchCode patch_code() const               { return _patch; }
  1350   BasicType type()           const               { return _type;  }
  1352   LIR_MoveKind move_kind() const {
  1353     assert(code() == lir_move, "must be");
  1354     return (LIR_MoveKind)_flags;
  1357   virtual void emit_code(LIR_Assembler* masm);
  1358   virtual LIR_Op1* as_Op1() { return this; }
  1359   virtual const char * name() const PRODUCT_RETURN0;
  1361   void set_in_opr(LIR_Opr opr) { _opr = opr; }
  1363   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1364   virtual void verify() const;
  1365 };
  1368 // for runtime calls
  1369 class LIR_OpRTCall: public LIR_OpCall {
  1370  friend class LIR_OpVisitState;
  1372  private:
  1373   LIR_Opr _tmp;
  1374  public:
  1375   LIR_OpRTCall(address addr, LIR_Opr tmp,
  1376                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1377     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
  1378     , _tmp(tmp) {}
  1380   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1381   virtual void emit_code(LIR_Assembler* masm);
  1382   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
  1384   LIR_Opr tmp() const                            { return _tmp; }
  1386   virtual void verify() const;
  1387 };
  1390 class LIR_OpBranch: public LIR_Op {
  1391  friend class LIR_OpVisitState;
  1393  private:
  1394   LIR_Condition _cond;
  1395   BasicType     _type;
  1396   Label*        _label;
  1397   BlockBegin*   _block;  // if this is a branch to a block, this is the block
  1398   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
  1399   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
  1401  public:
  1402   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
  1403     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
  1404     , _cond(cond)
  1405     , _type(type)
  1406     , _label(lbl)
  1407     , _block(NULL)
  1408     , _ublock(NULL)
  1409     , _stub(NULL) { }
  1411   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
  1412   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
  1414   // for unordered comparisons
  1415   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
  1417   LIR_Condition cond()        const              { return _cond;        }
  1418   BasicType     type()        const              { return _type;        }
  1419   Label*        label()       const              { return _label;       }
  1420   BlockBegin*   block()       const              { return _block;       }
  1421   BlockBegin*   ublock()      const              { return _ublock;      }
  1422   CodeStub*     stub()        const              { return _stub;       }
  1424   void          change_block(BlockBegin* b);
  1425   void          change_ublock(BlockBegin* b);
  1426   void          negate_cond();
  1428   virtual void emit_code(LIR_Assembler* masm);
  1429   virtual LIR_OpBranch* as_OpBranch() { return this; }
  1430   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1431 };
  1434 class ConversionStub;
  1436 class LIR_OpConvert: public LIR_Op1 {
  1437  friend class LIR_OpVisitState;
  1439  private:
  1440    Bytecodes::Code _bytecode;
  1441    ConversionStub* _stub;
  1442 #ifdef PPC
  1443   LIR_Opr _tmp1;
  1444   LIR_Opr _tmp2;
  1445 #endif
  1447  public:
  1448    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
  1449      : LIR_Op1(lir_convert, opr, result)
  1450      , _stub(stub)
  1451 #ifdef PPC
  1452      , _tmp1(LIR_OprDesc::illegalOpr())
  1453      , _tmp2(LIR_OprDesc::illegalOpr())
  1454 #endif
  1455      , _bytecode(code)                           {}
  1457 #ifdef PPC
  1458    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
  1459                  ,LIR_Opr tmp1, LIR_Opr tmp2)
  1460      : LIR_Op1(lir_convert, opr, result)
  1461      , _stub(stub)
  1462      , _tmp1(tmp1)
  1463      , _tmp2(tmp2)
  1464      , _bytecode(code)                           {}
  1465 #endif
  1467   Bytecodes::Code bytecode() const               { return _bytecode; }
  1468   ConversionStub* stub() const                   { return _stub; }
  1469 #ifdef PPC
  1470   LIR_Opr tmp1() const                           { return _tmp1; }
  1471   LIR_Opr tmp2() const                           { return _tmp2; }
  1472 #endif
  1474   virtual void emit_code(LIR_Assembler* masm);
  1475   virtual LIR_OpConvert* as_OpConvert() { return this; }
  1476   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1478   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
  1479 };
  1482 // LIR_OpAllocObj
  1483 class LIR_OpAllocObj : public LIR_Op1 {
  1484  friend class LIR_OpVisitState;
  1486  private:
  1487   LIR_Opr _tmp1;
  1488   LIR_Opr _tmp2;
  1489   LIR_Opr _tmp3;
  1490   LIR_Opr _tmp4;
  1491   int     _hdr_size;
  1492   int     _obj_size;
  1493   CodeStub* _stub;
  1494   bool    _init_check;
  1496  public:
  1497   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
  1498                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
  1499                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
  1500     : LIR_Op1(lir_alloc_object, klass, result)
  1501     , _tmp1(t1)
  1502     , _tmp2(t2)
  1503     , _tmp3(t3)
  1504     , _tmp4(t4)
  1505     , _hdr_size(hdr_size)
  1506     , _obj_size(obj_size)
  1507     , _init_check(init_check)
  1508     , _stub(stub)                                { }
  1510   LIR_Opr klass()        const                   { return in_opr();     }
  1511   LIR_Opr obj()          const                   { return result_opr(); }
  1512   LIR_Opr tmp1()         const                   { return _tmp1;        }
  1513   LIR_Opr tmp2()         const                   { return _tmp2;        }
  1514   LIR_Opr tmp3()         const                   { return _tmp3;        }
  1515   LIR_Opr tmp4()         const                   { return _tmp4;        }
  1516   int     header_size()  const                   { return _hdr_size;    }
  1517   int     object_size()  const                   { return _obj_size;    }
  1518   bool    init_check()   const                   { return _init_check;  }
  1519   CodeStub* stub()       const                   { return _stub;        }
  1521   virtual void emit_code(LIR_Assembler* masm);
  1522   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
  1523   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1524 };
  1527 // LIR_OpRoundFP
  1528 class LIR_OpRoundFP : public LIR_Op1 {
  1529  friend class LIR_OpVisitState;
  1531  private:
  1532   LIR_Opr _tmp;
  1534  public:
  1535   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
  1536     : LIR_Op1(lir_roundfp, reg, result)
  1537     , _tmp(stack_loc_temp) {}
  1539   LIR_Opr tmp() const                            { return _tmp; }
  1540   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
  1541   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1542 };
  1544 // LIR_OpTypeCheck
  1545 class LIR_OpTypeCheck: public LIR_Op {
  1546  friend class LIR_OpVisitState;
  1548  private:
  1549   LIR_Opr       _object;
  1550   LIR_Opr       _array;
  1551   ciKlass*      _klass;
  1552   LIR_Opr       _tmp1;
  1553   LIR_Opr       _tmp2;
  1554   LIR_Opr       _tmp3;
  1555   bool          _fast_check;
  1556   CodeEmitInfo* _info_for_patch;
  1557   CodeEmitInfo* _info_for_exception;
  1558   CodeStub*     _stub;
  1559   ciMethod*     _profiled_method;
  1560   int           _profiled_bci;
  1561   bool          _should_profile;
  1563 public:
  1564   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1565                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1566                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
  1567   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
  1568                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
  1570   LIR_Opr object() const                         { return _object;         }
  1571   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
  1572   LIR_Opr tmp1() const                           { return _tmp1;           }
  1573   LIR_Opr tmp2() const                           { return _tmp2;           }
  1574   LIR_Opr tmp3() const                           { return _tmp3;           }
  1575   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
  1576   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
  1577   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
  1578   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
  1579   CodeStub* stub() const                         { return _stub;           }
  1581   // MethodData* profiling
  1582   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
  1583   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
  1584   void set_should_profile(bool b)                { _should_profile = b;       }
  1585   ciMethod* profiled_method() const              { return _profiled_method;   }
  1586   int       profiled_bci() const                 { return _profiled_bci;      }
  1587   bool      should_profile() const               { return _should_profile;    }
  1589   virtual void emit_code(LIR_Assembler* masm);
  1590   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
  1591   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1592 };
  1594 // LIR_Op2
  1595 class LIR_Op2: public LIR_Op {
  1596  friend class LIR_OpVisitState;
  1598   int  _fpu_stack_size; // for sin/cos implementation on Intel
  1600  protected:
  1601   LIR_Opr   _opr1;
  1602   LIR_Opr   _opr2;
  1603   BasicType _type;
  1604   LIR_Opr   _tmp1;
  1605   LIR_Opr   _tmp2;
  1606   LIR_Opr   _tmp3;
  1607   LIR_Opr   _tmp4;
  1608   LIR_Opr   _tmp5;
  1609   LIR_Condition _condition;
  1611   void verify() const;
  1613  public:
  1614   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
  1615     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1616     , _opr1(opr1)
  1617     , _opr2(opr2)
  1618     , _type(T_ILLEGAL)
  1619     , _condition(condition)
  1620     , _fpu_stack_size(0)
  1621     , _tmp1(LIR_OprFact::illegalOpr)
  1622     , _tmp2(LIR_OprFact::illegalOpr)
  1623     , _tmp3(LIR_OprFact::illegalOpr)
  1624     , _tmp4(LIR_OprFact::illegalOpr)
  1625     , _tmp5(LIR_OprFact::illegalOpr) {
  1626     assert(code == lir_cmp, "code check");
  1629   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
  1630     : LIR_Op(code, result, NULL)
  1631     , _opr1(opr1)
  1632     , _opr2(opr2)
  1633     , _type(type)
  1634     , _condition(condition)
  1635     , _fpu_stack_size(0)
  1636     , _tmp1(LIR_OprFact::illegalOpr)
  1637     , _tmp2(LIR_OprFact::illegalOpr)
  1638     , _tmp3(LIR_OprFact::illegalOpr)
  1639     , _tmp4(LIR_OprFact::illegalOpr)
  1640     , _tmp5(LIR_OprFact::illegalOpr) {
  1641     assert(code == lir_cmove, "code check");
  1642     assert(type != T_ILLEGAL, "cmove should have type");
  1645   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
  1646           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
  1647     : LIR_Op(code, result, info)
  1648     , _opr1(opr1)
  1649     , _opr2(opr2)
  1650     , _type(type)
  1651     , _condition(lir_cond_unknown)
  1652     , _fpu_stack_size(0)
  1653     , _tmp1(LIR_OprFact::illegalOpr)
  1654     , _tmp2(LIR_OprFact::illegalOpr)
  1655     , _tmp3(LIR_OprFact::illegalOpr)
  1656     , _tmp4(LIR_OprFact::illegalOpr)
  1657     , _tmp5(LIR_OprFact::illegalOpr) {
  1658     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1661   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
  1662           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
  1663     : LIR_Op(code, result, NULL)
  1664     , _opr1(opr1)
  1665     , _opr2(opr2)
  1666     , _type(T_ILLEGAL)
  1667     , _condition(lir_cond_unknown)
  1668     , _fpu_stack_size(0)
  1669     , _tmp1(tmp1)
  1670     , _tmp2(tmp2)
  1671     , _tmp3(tmp3)
  1672     , _tmp4(tmp4)
  1673     , _tmp5(tmp5) {
  1674     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1677   LIR_Opr in_opr1() const                        { return _opr1; }
  1678   LIR_Opr in_opr2() const                        { return _opr2; }
  1679   BasicType type()  const                        { return _type; }
  1680   LIR_Opr tmp1_opr() const                       { return _tmp1; }
  1681   LIR_Opr tmp2_opr() const                       { return _tmp2; }
  1682   LIR_Opr tmp3_opr() const                       { return _tmp3; }
  1683   LIR_Opr tmp4_opr() const                       { return _tmp4; }
  1684   LIR_Opr tmp5_opr() const                       { return _tmp5; }
  1685   LIR_Condition condition() const  {
  1686     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
  1688   void set_condition(LIR_Condition condition) {
  1689     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
  1692   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
  1693   int  fpu_stack_size() const                    { return _fpu_stack_size; }
  1695   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
  1696   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
  1698   virtual void emit_code(LIR_Assembler* masm);
  1699   virtual LIR_Op2* as_Op2() { return this; }
  1700   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1701 };
  1703 class LIR_OpAllocArray : public LIR_Op {
  1704  friend class LIR_OpVisitState;
  1706  private:
  1707   LIR_Opr   _klass;
  1708   LIR_Opr   _len;
  1709   LIR_Opr   _tmp1;
  1710   LIR_Opr   _tmp2;
  1711   LIR_Opr   _tmp3;
  1712   LIR_Opr   _tmp4;
  1713   BasicType _type;
  1714   CodeStub* _stub;
  1716  public:
  1717   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
  1718     : LIR_Op(lir_alloc_array, result, NULL)
  1719     , _klass(klass)
  1720     , _len(len)
  1721     , _tmp1(t1)
  1722     , _tmp2(t2)
  1723     , _tmp3(t3)
  1724     , _tmp4(t4)
  1725     , _type(type)
  1726     , _stub(stub) {}
  1728   LIR_Opr   klass()   const                      { return _klass;       }
  1729   LIR_Opr   len()     const                      { return _len;         }
  1730   LIR_Opr   obj()     const                      { return result_opr(); }
  1731   LIR_Opr   tmp1()    const                      { return _tmp1;        }
  1732   LIR_Opr   tmp2()    const                      { return _tmp2;        }
  1733   LIR_Opr   tmp3()    const                      { return _tmp3;        }
  1734   LIR_Opr   tmp4()    const                      { return _tmp4;        }
  1735   BasicType type()    const                      { return _type;        }
  1736   CodeStub* stub()    const                      { return _stub;        }
  1738   virtual void emit_code(LIR_Assembler* masm);
  1739   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
  1740   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1741 };
  1744 class LIR_Op3: public LIR_Op {
  1745  friend class LIR_OpVisitState;
  1747  private:
  1748   LIR_Opr _opr1;
  1749   LIR_Opr _opr2;
  1750   LIR_Opr _opr3;
  1751  public:
  1752   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
  1753     : LIR_Op(code, result, info)
  1754     , _opr1(opr1)
  1755     , _opr2(opr2)
  1756     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
  1757   LIR_Opr in_opr1() const                        { return _opr1; }
  1758   LIR_Opr in_opr2() const                        { return _opr2; }
  1759   LIR_Opr in_opr3() const                        { return _opr3; }
  1761   virtual void emit_code(LIR_Assembler* masm);
  1762   virtual LIR_Op3* as_Op3() { return this; }
  1763   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1764 };
  1767 //--------------------------------
  1768 class LabelObj: public CompilationResourceObj {
  1769  private:
  1770   Label _label;
  1771  public:
  1772   LabelObj()                                     {}
  1773   Label* label()                                 { return &_label; }
  1774 };
  1777 class LIR_OpLock: public LIR_Op {
  1778  friend class LIR_OpVisitState;
  1780  private:
  1781   LIR_Opr _hdr;
  1782   LIR_Opr _obj;
  1783   LIR_Opr _lock;
  1784   LIR_Opr _scratch;
  1785   CodeStub* _stub;
  1786  public:
  1787   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
  1788     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1789     , _hdr(hdr)
  1790     , _obj(obj)
  1791     , _lock(lock)
  1792     , _scratch(scratch)
  1793     , _stub(stub)                      {}
  1795   LIR_Opr hdr_opr() const                        { return _hdr; }
  1796   LIR_Opr obj_opr() const                        { return _obj; }
  1797   LIR_Opr lock_opr() const                       { return _lock; }
  1798   LIR_Opr scratch_opr() const                    { return _scratch; }
  1799   CodeStub* stub() const                         { return _stub; }
  1801   virtual void emit_code(LIR_Assembler* masm);
  1802   virtual LIR_OpLock* as_OpLock() { return this; }
  1803   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1804 };
  1807 class LIR_OpDelay: public LIR_Op {
  1808  friend class LIR_OpVisitState;
  1810  private:
  1811   LIR_Op* _op;
  1813  public:
  1814   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
  1815     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
  1816     _op(op) {
  1817     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
  1819   virtual void emit_code(LIR_Assembler* masm);
  1820   virtual LIR_OpDelay* as_OpDelay() { return this; }
  1821   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1822   LIR_Op* delay_op() const { return _op; }
  1823   CodeEmitInfo* call_info() const { return info(); }
  1824 };
  1827 // LIR_OpCompareAndSwap
  1828 class LIR_OpCompareAndSwap : public LIR_Op {
  1829  friend class LIR_OpVisitState;
  1831  private:
  1832   LIR_Opr _addr;
  1833   LIR_Opr _cmp_value;
  1834   LIR_Opr _new_value;
  1835   LIR_Opr _tmp1;
  1836   LIR_Opr _tmp2;
  1838  public:
  1839   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  1840                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
  1841     : LIR_Op(code, result, NULL)  // no result, no info
  1842     , _addr(addr)
  1843     , _cmp_value(cmp_value)
  1844     , _new_value(new_value)
  1845     , _tmp1(t1)
  1846     , _tmp2(t2)                                  { }
  1848   LIR_Opr addr()        const                    { return _addr;  }
  1849   LIR_Opr cmp_value()   const                    { return _cmp_value; }
  1850   LIR_Opr new_value()   const                    { return _new_value; }
  1851   LIR_Opr tmp1()        const                    { return _tmp1;      }
  1852   LIR_Opr tmp2()        const                    { return _tmp2;      }
  1854   virtual void emit_code(LIR_Assembler* masm);
  1855   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
  1856   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1857 };
  1859 // LIR_OpProfileCall
  1860 class LIR_OpProfileCall : public LIR_Op {
  1861  friend class LIR_OpVisitState;
  1863  private:
  1864   ciMethod* _profiled_method;
  1865   int       _profiled_bci;
  1866   ciMethod* _profiled_callee;
  1867   LIR_Opr   _mdo;
  1868   LIR_Opr   _recv;
  1869   LIR_Opr   _tmp1;
  1870   ciKlass*  _known_holder;
  1872  public:
  1873   // Destroys recv
  1874   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
  1875     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1876     , _profiled_method(profiled_method)
  1877     , _profiled_bci(profiled_bci)
  1878     , _profiled_callee(profiled_callee)
  1879     , _mdo(mdo)
  1880     , _recv(recv)
  1881     , _tmp1(t1)
  1882     , _known_holder(known_holder)                { }
  1884   ciMethod* profiled_method() const              { return _profiled_method;  }
  1885   int       profiled_bci()    const              { return _profiled_bci;     }
  1886   ciMethod* profiled_callee() const              { return _profiled_callee;  }
  1887   LIR_Opr   mdo()             const              { return _mdo;              }
  1888   LIR_Opr   recv()            const              { return _recv;             }
  1889   LIR_Opr   tmp1()            const              { return _tmp1;             }
  1890   ciKlass*  known_holder()    const              { return _known_holder;     }
  1892   virtual void emit_code(LIR_Assembler* masm);
  1893   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
  1894   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1895 };
  1897 class LIR_InsertionBuffer;
  1899 //--------------------------------LIR_List---------------------------------------------------
  1900 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
  1901 // The LIR instructions are appended by the LIR_List class itself;
  1902 //
  1903 // Notes:
  1904 // - all offsets are(should be) in bytes
  1905 // - local positions are specified with an offset, with offset 0 being local 0
  1907 class LIR_List: public CompilationResourceObj {
  1908  private:
  1909   LIR_OpList  _operations;
  1911   Compilation*  _compilation;
  1912 #ifndef PRODUCT
  1913   BlockBegin*   _block;
  1914 #endif
  1915 #ifdef ASSERT
  1916   const char *  _file;
  1917   int           _line;
  1918 #endif
  1920   void append(LIR_Op* op) {
  1921     if (op->source() == NULL)
  1922       op->set_source(_compilation->current_instruction());
  1923 #ifndef PRODUCT
  1924     if (PrintIRWithLIR) {
  1925       _compilation->maybe_print_current_instruction();
  1926       op->print(); tty->cr();
  1928 #endif // PRODUCT
  1930     _operations.append(op);
  1932 #ifdef ASSERT
  1933     op->verify();
  1934     op->set_file_and_line(_file, _line);
  1935     _file = NULL;
  1936     _line = 0;
  1937 #endif
  1940  public:
  1941   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
  1943 #ifdef ASSERT
  1944   void set_file_and_line(const char * file, int line);
  1945 #endif
  1947   //---------- accessors ---------------
  1948   LIR_OpList* instructions_list()                { return &_operations; }
  1949   int         length() const                     { return _operations.length(); }
  1950   LIR_Op*     at(int i) const                    { return _operations.at(i); }
  1952   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
  1954   // insert LIR_Ops in buffer to right places in LIR_List
  1955   void append(LIR_InsertionBuffer* buffer);
  1957   //---------- mutators ---------------
  1958   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
  1959   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
  1960   void remove_at(int i)                          { _operations.remove_at(i); }
  1962   //---------- printing -------------
  1963   void print_instructions() PRODUCT_RETURN;
  1966   //---------- instructions -------------
  1967   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1968                         address dest, LIR_OprList* arguments,
  1969                         CodeEmitInfo* info) {
  1970     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
  1972   void call_static(ciMethod* method, LIR_Opr result,
  1973                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1974     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
  1976   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1977                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1978     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
  1980   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1981                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
  1982     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
  1984   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1985                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1986     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
  1989   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
  1990   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
  1991   void membar()                                  { append(new LIR_Op0(lir_membar)); }
  1992   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
  1993   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
  1994   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
  1995   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
  1996   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
  1997   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
  1999   void nop()                                     { append(new LIR_Op0(lir_nop)); }
  2000   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
  2002   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
  2003   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
  2005   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
  2007   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
  2008   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
  2010   // result is a stack location for old backend and vreg for UseLinearScan
  2011   // stack_loc_temp is an illegal register for old backend
  2012   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
  2013   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  2014   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  2015   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  2016   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  2017   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
  2018   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
  2019   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
  2020     if (UseCompressedOops) {
  2021       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
  2022     } else {
  2023       move(src, dst, info);
  2026   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
  2027     if (UseCompressedOops) {
  2028       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
  2029     } else {
  2030       move(src, dst, info);
  2033   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
  2035   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
  2036   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
  2038   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
  2039   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
  2041   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
  2043   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
  2045 #ifdef PPC
  2046   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
  2047 #endif
  2048   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
  2050   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
  2051   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
  2052   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
  2054   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
  2055   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
  2057   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
  2058   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2059     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
  2061   void unwind_exception(LIR_Opr exceptionOop) {
  2062     append(new LIR_Op1(lir_unwind, exceptionOop));
  2065   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2066     append(new LIR_Op2(lir_compare_to,  left, right, dst));
  2069   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
  2070   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
  2072   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
  2073     append(new LIR_Op2(lir_cmp, condition, left, right, info));
  2075   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
  2076     cmp(condition, left, LIR_OprFact::intConst(right), info);
  2079   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
  2080   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
  2082   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
  2083     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
  2086   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2087                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2088   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2089                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2090   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2091                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2093   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
  2094   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
  2095   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
  2096   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
  2097   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
  2098   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
  2099   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
  2100   void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
  2101   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
  2103   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
  2104   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
  2105   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
  2106   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
  2107   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
  2108   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
  2109   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
  2111   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2112   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  2114   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  2116   void prefetch(LIR_Address* addr, bool is_store);
  2118   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2119   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2120   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  2121   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2122   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  2124   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2125   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2126   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2127   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2129   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
  2130   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
  2132   // jump is an unconditional branch
  2133   void jump(BlockBegin* block) {
  2134     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
  2136   void jump(CodeStub* stub) {
  2137     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
  2139   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
  2140   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
  2141     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  2142     append(new LIR_OpBranch(cond, type, block));
  2144   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
  2145     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  2146     append(new LIR_OpBranch(cond, type, stub));
  2148   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
  2149     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
  2150     append(new LIR_OpBranch(cond, type, block, unordered));
  2153   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2154   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2155   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2157   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2158   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2159   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2161   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
  2162   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
  2164   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
  2165     append(new LIR_OpRTCall(routine, tmp, result, arguments));
  2168   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
  2169                     LIR_OprList* arguments, CodeEmitInfo* info) {
  2170     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
  2173   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
  2174   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
  2175   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
  2177   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
  2178   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
  2179   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
  2181   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
  2183   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
  2185   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
  2186   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
  2188   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
  2189                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  2190                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  2191                   ciMethod* profiled_method, int profiled_bci);
  2192   // MethodData* profiling
  2193   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
  2194     append(new LIR_OpProfileCall(lir_profile_call, method, bci, callee, mdo, recv, t1, cha_klass));
  2197   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
  2198   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
  2199 };
  2201 void print_LIR(BlockList* blocks);
  2203 class LIR_InsertionBuffer : public CompilationResourceObj {
  2204  private:
  2205   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
  2207   // list of insertion points. index and count are stored alternately:
  2208   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
  2209   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
  2210   intStack    _index_and_count;
  2212   // the LIR_Ops to be inserted
  2213   LIR_OpList  _ops;
  2215   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
  2216   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
  2217   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
  2219 #ifdef ASSERT
  2220   void verify();
  2221 #endif
  2222  public:
  2223   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
  2225   // must be called before using the insertion buffer
  2226   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
  2227   bool initialized() const  { return _lir != NULL; }
  2228   // called automatically when the buffer is appended to the LIR_List
  2229   void finish()             { _lir = NULL; }
  2231   // accessors
  2232   LIR_List*  lir_list() const             { return _lir; }
  2233   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
  2234   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
  2235   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
  2237   int number_of_ops() const               { return _ops.length(); }
  2238   LIR_Op* op_at(int i) const              { return _ops.at(i); }
  2240   // append an instruction to the buffer
  2241   void append(int index, LIR_Op* op);
  2243   // instruction
  2244   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  2245 };
  2248 //
  2249 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
  2250 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
  2251 // information about the input, output and temporaries used by the
  2252 // op to be recorded.  It also records whether the op has call semantics
  2253 // and also records all the CodeEmitInfos used by this op.
  2254 //
  2257 class LIR_OpVisitState: public StackObj {
  2258  public:
  2259   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
  2261   enum {
  2262     maxNumberOfOperands = 20,
  2263     maxNumberOfInfos = 4
  2264   };
  2266  private:
  2267   LIR_Op*          _op;
  2269   // optimization: the operands and infos are not stored in a variable-length
  2270   //               list, but in a fixed-size array to save time of size checks and resizing
  2271   int              _oprs_len[numModes];
  2272   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
  2273   int _info_len;
  2274   CodeEmitInfo*    _info_new[maxNumberOfInfos];
  2276   bool             _has_call;
  2277   bool             _has_slow_case;
  2280   // only include register operands
  2281   // addresses are decomposed to the base and index registers
  2282   // constants and stack operands are ignored
  2283   void append(LIR_Opr& opr, OprMode mode) {
  2284     assert(opr->is_valid(), "should not call this otherwise");
  2285     assert(mode >= 0 && mode < numModes, "bad mode");
  2287     if (opr->is_register()) {
  2288        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2289       _oprs_new[mode][_oprs_len[mode]++] = &opr;
  2291     } else if (opr->is_pointer()) {
  2292       LIR_Address* address = opr->as_address_ptr();
  2293       if (address != NULL) {
  2294         // special handling for addresses: add base and index register of the address
  2295         // both are always input operands or temp if we want to extend
  2296         // their liveness!
  2297         if (mode == outputMode) {
  2298           mode = inputMode;
  2300         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
  2301         if (address->_base->is_valid()) {
  2302           assert(address->_base->is_register(), "must be");
  2303           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2304           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
  2306         if (address->_index->is_valid()) {
  2307           assert(address->_index->is_register(), "must be");
  2308           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2309           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
  2312       } else {
  2313         assert(opr->is_constant(), "constant operands are not processed");
  2315     } else {
  2316       assert(opr->is_stack(), "stack operands are not processed");
  2320   void append(CodeEmitInfo* info) {
  2321     assert(info != NULL, "should not call this otherwise");
  2322     assert(_info_len < maxNumberOfInfos, "array overflow");
  2323     _info_new[_info_len++] = info;
  2326  public:
  2327   LIR_OpVisitState()         { reset(); }
  2329   LIR_Op* op() const         { return _op; }
  2330   void set_op(LIR_Op* op)    { reset(); _op = op; }
  2332   bool has_call() const      { return _has_call; }
  2333   bool has_slow_case() const { return _has_slow_case; }
  2335   void reset() {
  2336     _op = NULL;
  2337     _has_call = false;
  2338     _has_slow_case = false;
  2340     _oprs_len[inputMode] = 0;
  2341     _oprs_len[tempMode] = 0;
  2342     _oprs_len[outputMode] = 0;
  2343     _info_len = 0;
  2347   int opr_count(OprMode mode) const {
  2348     assert(mode >= 0 && mode < numModes, "bad mode");
  2349     return _oprs_len[mode];
  2352   LIR_Opr opr_at(OprMode mode, int index) const {
  2353     assert(mode >= 0 && mode < numModes, "bad mode");
  2354     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2355     return *_oprs_new[mode][index];
  2358   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
  2359     assert(mode >= 0 && mode < numModes, "bad mode");
  2360     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2361     *_oprs_new[mode][index] = opr;
  2364   int info_count() const {
  2365     return _info_len;
  2368   CodeEmitInfo* info_at(int index) const {
  2369     assert(index < _info_len, "index out of bounds");
  2370     return _info_new[index];
  2373   XHandlers* all_xhandler();
  2375   // collects all register operands of the instruction
  2376   void visit(LIR_Op* op);
  2378 #if ASSERT
  2379   // check that an operation has no operands
  2380   bool no_operands(LIR_Op* op);
  2381 #endif
  2383   // LIR_Op visitor functions use these to fill in the state
  2384   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
  2385   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
  2386   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
  2387   void do_info(CodeEmitInfo* info)        { append(info); }
  2389   void do_stub(CodeStub* stub);
  2390   void do_call()                          { _has_call = true; }
  2391   void do_slow_case()                     { _has_slow_case = true; }
  2392   void do_slow_case(CodeEmitInfo* info) {
  2393     _has_slow_case = true;
  2394     append(info);
  2396 };
  2399 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
  2401 #endif // SHARE_VM_C1_C1_LIR_HPP

mercurial