src/cpu/x86/vm/x86_32.ad

Thu, 20 Mar 2014 17:49:27 -0700

author
kvn
date
Thu, 20 Mar 2014 17:49:27 -0700
changeset 6429
606acabe7b5c
parent 6378
8a8ff6b577ed
child 6518
62c54fcc0a35
permissions
-rw-r--r--

8031320: Use Intel RTM instructions for locks
Summary: Use RTM for inflated locks and stack locks.
Reviewed-by: iveresov, twisti, roland, dcubed

     1 //
     2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    78 // allocator, and only shows up in the encodings.
    79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    81 // Ok so here's the trick FPR1 is really st(0) except in the midst
    82 // of emission of assembly for a machnode. During the emission the fpu stack
    83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    84 // the stack will not have this element so FPR1 == st(0) from the
    85 // oopMap viewpoint. This same weirdness with numbering causes
    86 // instruction encoding to have to play games with the register
    87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    88 // where it does flt->flt moves to see an example
    89 //
    90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
    97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
    98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
    99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   105 // Specify priority of register selection within phases of register
   106 // allocation.  Highest priority is first.  A useful heuristic is to
   107 // give registers a low priority when they are required by machine
   108 // instructions, like EAX and EDX.  Registers which are used as
   109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   110 // For the Intel integer registers, the equivalent Long pairs are
   111 // EDX:EAX, EBX:ECX, and EDI:EBP.
   112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   115                     FPR6L, FPR6H, FPR7L, FPR7H );
   118 //----------Architecture Description Register Classes--------------------------
   119 // Several register classes are automatically defined based upon information in
   120 // this architecture description.
   121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   125 //
   126 // Class for all registers
   127 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   128 // Class for general registers
   129 reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   130 // Class for general registers which may be used for implicit null checks on win95
   131 // Also safe for use by tailjump. We don't want to allocate in rbp,
   132 reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   133 // Class of "X" registers
   134 reg_class int_x_reg(EBX, ECX, EDX, EAX);
   135 // Class of registers that can appear in an address with no offset.
   136 // EBP and ESP require an extra instruction byte for zero offset.
   137 // Used in fast-unlock
   138 reg_class p_reg(EDX, EDI, ESI, EBX);
   139 // Class for general registers not including ECX
   140 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   141 // Class for general registers not including EAX
   142 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   143 // Class for general registers not including EAX or EBX.
   144 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   145 // Class of EAX (for multiply and divide operations)
   146 reg_class eax_reg(EAX);
   147 // Class of EBX (for atomic add)
   148 reg_class ebx_reg(EBX);
   149 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   150 reg_class ecx_reg(ECX);
   151 // Class of EDX (for multiply and divide operations)
   152 reg_class edx_reg(EDX);
   153 // Class of EDI (for synchronization)
   154 reg_class edi_reg(EDI);
   155 // Class of ESI (for synchronization)
   156 reg_class esi_reg(ESI);
   157 // Singleton class for interpreter's stack pointer
   158 reg_class ebp_reg(EBP);
   159 // Singleton class for stack pointer
   160 reg_class sp_reg(ESP);
   161 // Singleton class for instruction pointer
   162 // reg_class ip_reg(EIP);
   163 // Class of integer register pairs
   164 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   165 // Class of integer register pairs that aligns with calling convention
   166 reg_class eadx_reg( EAX,EDX );
   167 reg_class ebcx_reg( ECX,EBX );
   168 // Not AX or DX, used in divides
   169 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   171 // Floating point registers.  Notice FPR0 is not a choice.
   172 // FPR0 is not ever allocated; we use clever encodings to fake
   173 // a 2-address instructions out of Intels FP stack.
   174 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   176 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   177                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   178                       FPR7L,FPR7H );
   180 reg_class fp_flt_reg0( FPR1L );
   181 reg_class fp_dbl_reg0( FPR1L,FPR1H );
   182 reg_class fp_dbl_reg1( FPR2L,FPR2H );
   183 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   184                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   186 %}
   189 //----------SOURCE BLOCK-------------------------------------------------------
   190 // This is a block of C++ code which provides values, functions, and
   191 // definitions necessary in the rest of the architecture description
   192 source_hpp %{
   193 // Must be visible to the DFA in dfa_x86_32.cpp
   194 extern bool is_operand_hi32_zero(Node* n);
   195 %}
   197 source %{
   198 #define   RELOC_IMM32    Assembler::imm_operand
   199 #define   RELOC_DISP32   Assembler::disp32_operand
   201 #define __ _masm.
   203 // How to find the high register of a Long pair, given the low register
   204 #define   HIGH_FROM_LOW(x) ((x)+2)
   206 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   207 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   208 // fast versions of NegF/NegD and AbsF/AbsD.
   210 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   211 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   212   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   213   // of 128-bits operands for SSE instructions.
   214   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   215   // Store the value to a 128-bits operand.
   216   operand[0] = lo;
   217   operand[1] = hi;
   218   return operand;
   219 }
   221 // Buffer for 128-bits masks used by SSE instructions.
   222 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   224 // Static initialization during VM startup.
   225 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   226 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   227 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   228 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   230 // Offset hacking within calls.
   231 static int pre_call_resets_size() {
   232   int size = 0;
   233   Compile* C = Compile::current();
   234   if (C->in_24_bit_fp_mode()) {
   235     size += 6; // fldcw
   236   }
   237   if (C->max_vector_size() > 16) {
   238     size += 3; // vzeroupper
   239   }
   240   return size;
   241 }
   243 static int preserve_SP_size() {
   244   return 2;  // op, rm(reg/reg)
   245 }
   247 // !!!!! Special hack to get all type of calls to specify the byte offset
   248 //       from the start of the call to the point where the return address
   249 //       will point.
   250 int MachCallStaticJavaNode::ret_addr_offset() {
   251   int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
   252   if (_method_handle_invoke)
   253     offset += preserve_SP_size();
   254   return offset;
   255 }
   257 int MachCallDynamicJavaNode::ret_addr_offset() {
   258   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
   259 }
   261 static int sizeof_FFree_Float_Stack_All = -1;
   263 int MachCallRuntimeNode::ret_addr_offset() {
   264   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   265   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
   266 }
   268 // Indicate if the safepoint node needs the polling page as an input.
   269 // Since x86 does have absolute addressing, it doesn't.
   270 bool SafePointNode::needs_polling_address_input() {
   271   return false;
   272 }
   274 //
   275 // Compute padding required for nodes which need alignment
   276 //
   278 // The address of the call instruction needs to be 4-byte aligned to
   279 // ensure that it does not span a cache line so that it can be patched.
   280 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   281   current_offset += pre_call_resets_size();  // skip fldcw, if any
   282   current_offset += 1;      // skip call opcode byte
   283   return round_to(current_offset, alignment_required()) - current_offset;
   284 }
   286 // The address of the call instruction needs to be 4-byte aligned to
   287 // ensure that it does not span a cache line so that it can be patched.
   288 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   289   current_offset += pre_call_resets_size();  // skip fldcw, if any
   290   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   291   current_offset += 1;      // skip call opcode byte
   292   return round_to(current_offset, alignment_required()) - current_offset;
   293 }
   295 // The address of the call instruction needs to be 4-byte aligned to
   296 // ensure that it does not span a cache line so that it can be patched.
   297 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   298   current_offset += pre_call_resets_size();  // skip fldcw, if any
   299   current_offset += 5;      // skip MOV instruction
   300   current_offset += 1;      // skip call opcode byte
   301   return round_to(current_offset, alignment_required()) - current_offset;
   302 }
   304 // EMIT_RM()
   305 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   306   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   307   cbuf.insts()->emit_int8(c);
   308 }
   310 // EMIT_CC()
   311 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   312   unsigned char c = (unsigned char)( f1 | f2 );
   313   cbuf.insts()->emit_int8(c);
   314 }
   316 // EMIT_OPCODE()
   317 void emit_opcode(CodeBuffer &cbuf, int code) {
   318   cbuf.insts()->emit_int8((unsigned char) code);
   319 }
   321 // EMIT_OPCODE() w/ relocation information
   322 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   323   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
   324   emit_opcode(cbuf, code);
   325 }
   327 // EMIT_D8()
   328 void emit_d8(CodeBuffer &cbuf, int d8) {
   329   cbuf.insts()->emit_int8((unsigned char) d8);
   330 }
   332 // EMIT_D16()
   333 void emit_d16(CodeBuffer &cbuf, int d16) {
   334   cbuf.insts()->emit_int16(d16);
   335 }
   337 // EMIT_D32()
   338 void emit_d32(CodeBuffer &cbuf, int d32) {
   339   cbuf.insts()->emit_int32(d32);
   340 }
   342 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   343 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   344         int format) {
   345   cbuf.relocate(cbuf.insts_mark(), reloc, format);
   346   cbuf.insts()->emit_int32(d32);
   347 }
   349 // emit 32 bit value and construct relocation entry from RelocationHolder
   350 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   351         int format) {
   352 #ifdef ASSERT
   353   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   354     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   355   }
   356 #endif
   357   cbuf.relocate(cbuf.insts_mark(), rspec, format);
   358   cbuf.insts()->emit_int32(d32);
   359 }
   361 // Access stack slot for load or store
   362 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   363   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   364   if( -128 <= disp && disp <= 127 ) {
   365     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   366     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   367     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   368   } else {
   369     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   370     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   371     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   372   }
   373 }
   375    // rRegI ereg, memory mem) %{    // emit_reg_mem
   376 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
   377   // There is no index & no scale, use form without SIB byte
   378   if ((index == 0x4) &&
   379       (scale == 0) && (base != ESP_enc)) {
   380     // If no displacement, mode is 0x0; unless base is [EBP]
   381     if ( (displace == 0) && (base != EBP_enc) ) {
   382       emit_rm(cbuf, 0x0, reg_encoding, base);
   383     }
   384     else {                    // If 8-bit displacement, mode 0x1
   385       if ((displace >= -128) && (displace <= 127)
   386           && (disp_reloc == relocInfo::none) ) {
   387         emit_rm(cbuf, 0x1, reg_encoding, base);
   388         emit_d8(cbuf, displace);
   389       }
   390       else {                  // If 32-bit displacement
   391         if (base == -1) { // Special flag for absolute address
   392           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   393           // (manual lies; no SIB needed here)
   394           if ( disp_reloc != relocInfo::none ) {
   395             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   396           } else {
   397             emit_d32      (cbuf, displace);
   398           }
   399         }
   400         else {                // Normal base + offset
   401           emit_rm(cbuf, 0x2, reg_encoding, base);
   402           if ( disp_reloc != relocInfo::none ) {
   403             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   404           } else {
   405             emit_d32      (cbuf, displace);
   406           }
   407         }
   408       }
   409     }
   410   }
   411   else {                      // Else, encode with the SIB byte
   412     // If no displacement, mode is 0x0; unless base is [EBP]
   413     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   414       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   415       emit_rm(cbuf, scale, index, base);
   416     }
   417     else {                    // If 8-bit displacement, mode 0x1
   418       if ((displace >= -128) && (displace <= 127)
   419           && (disp_reloc == relocInfo::none) ) {
   420         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   421         emit_rm(cbuf, scale, index, base);
   422         emit_d8(cbuf, displace);
   423       }
   424       else {                  // If 32-bit displacement
   425         if (base == 0x04 ) {
   426           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   427           emit_rm(cbuf, scale, index, 0x04);
   428         } else {
   429           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   430           emit_rm(cbuf, scale, index, base);
   431         }
   432         if ( disp_reloc != relocInfo::none ) {
   433           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
   434         } else {
   435           emit_d32      (cbuf, displace);
   436         }
   437       }
   438     }
   439   }
   440 }
   443 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   444   if( dst_encoding == src_encoding ) {
   445     // reg-reg copy, use an empty encoding
   446   } else {
   447     emit_opcode( cbuf, 0x8B );
   448     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   449   }
   450 }
   452 void emit_cmpfp_fixup(MacroAssembler& _masm) {
   453   Label exit;
   454   __ jccb(Assembler::noParity, exit);
   455   __ pushf();
   456   //
   457   // comiss/ucomiss instructions set ZF,PF,CF flags and
   458   // zero OF,AF,SF for NaN values.
   459   // Fixup flags by zeroing ZF,PF so that compare of NaN
   460   // values returns 'less than' result (CF is set).
   461   // Leave the rest of flags unchanged.
   462   //
   463   //    7 6 5 4 3 2 1 0
   464   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
   465   //    0 0 1 0 1 0 1 1   (0x2B)
   466   //
   467   __ andl(Address(rsp, 0), 0xffffff2b);
   468   __ popf();
   469   __ bind(exit);
   470 }
   472 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
   473   Label done;
   474   __ movl(dst, -1);
   475   __ jcc(Assembler::parity, done);
   476   __ jcc(Assembler::below, done);
   477   __ setb(Assembler::notEqual, dst);
   478   __ movzbl(dst, dst);
   479   __ bind(done);
   480 }
   483 //=============================================================================
   484 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
   486 int Compile::ConstantTable::calculate_table_base_offset() const {
   487   return 0;  // absolute addressing, no offset
   488 }
   490 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
   491   // Empty encoding
   492 }
   494 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
   495   return 0;
   496 }
   498 #ifndef PRODUCT
   499 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   500   st->print("# MachConstantBaseNode (empty encoding)");
   501 }
   502 #endif
   505 //=============================================================================
   506 #ifndef PRODUCT
   507 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
   508   Compile* C = ra_->C;
   510   int framesize = C->frame_slots() << LogBytesPerInt;
   511   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   512   // Remove wordSize for return addr which is already pushed.
   513   framesize -= wordSize;
   515   if (C->need_stack_bang(framesize)) {
   516     framesize -= wordSize;
   517     st->print("# stack bang");
   518     st->print("\n\t");
   519     st->print("PUSH   EBP\t# Save EBP");
   520     if (framesize) {
   521       st->print("\n\t");
   522       st->print("SUB    ESP, #%d\t# Create frame",framesize);
   523     }
   524   } else {
   525     st->print("SUB    ESP, #%d\t# Create frame",framesize);
   526     st->print("\n\t");
   527     framesize -= wordSize;
   528     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
   529   }
   531   if (VerifyStackAtCalls) {
   532     st->print("\n\t");
   533     framesize -= wordSize;
   534     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
   535   }
   537   if( C->in_24_bit_fp_mode() ) {
   538     st->print("\n\t");
   539     st->print("FLDCW  \t# load 24 bit fpu control word");
   540   }
   541   if (UseSSE >= 2 && VerifyFPU) {
   542     st->print("\n\t");
   543     st->print("# verify FPU stack (must be clean on entry)");
   544   }
   546 #ifdef ASSERT
   547   if (VerifyStackAtCalls) {
   548     st->print("\n\t");
   549     st->print("# stack alignment check");
   550   }
   551 #endif
   552   st->cr();
   553 }
   554 #endif
   557 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   558   Compile* C = ra_->C;
   559   MacroAssembler _masm(&cbuf);
   561   int framesize = C->frame_slots() << LogBytesPerInt;
   563   __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
   565   C->set_frame_complete(cbuf.insts_size());
   567   if (C->has_mach_constant_base_node()) {
   568     // NOTE: We set the table base offset here because users might be
   569     // emitted before MachConstantBaseNode.
   570     Compile::ConstantTable& constant_table = C->constant_table();
   571     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
   572   }
   573 }
   575 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   576   return MachNode::size(ra_); // too many variables; just compute it the hard way
   577 }
   579 int MachPrologNode::reloc() const {
   580   return 0; // a large enough number
   581 }
   583 //=============================================================================
   584 #ifndef PRODUCT
   585 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   586   Compile *C = ra_->C;
   587   int framesize = C->frame_slots() << LogBytesPerInt;
   588   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   589   // Remove two words for return addr and rbp,
   590   framesize -= 2*wordSize;
   592   if (C->max_vector_size() > 16) {
   593     st->print("VZEROUPPER");
   594     st->cr(); st->print("\t");
   595   }
   596   if (C->in_24_bit_fp_mode()) {
   597     st->print("FLDCW  standard control word");
   598     st->cr(); st->print("\t");
   599   }
   600   if (framesize) {
   601     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   602     st->cr(); st->print("\t");
   603   }
   604   st->print_cr("POPL   EBP"); st->print("\t");
   605   if (do_polling() && C->is_method_compilation()) {
   606     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   607     st->cr(); st->print("\t");
   608   }
   609 }
   610 #endif
   612 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   613   Compile *C = ra_->C;
   615   if (C->max_vector_size() > 16) {
   616     // Clear upper bits of YMM registers when current compiled code uses
   617     // wide vectors to avoid AVX <-> SSE transition penalty during call.
   618     MacroAssembler masm(&cbuf);
   619     masm.vzeroupper();
   620   }
   621   // If method set FPU control word, restore to standard control word
   622   if (C->in_24_bit_fp_mode()) {
   623     MacroAssembler masm(&cbuf);
   624     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   625   }
   627   int framesize = C->frame_slots() << LogBytesPerInt;
   628   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   629   // Remove two words for return addr and rbp,
   630   framesize -= 2*wordSize;
   632   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   634   if (framesize >= 128) {
   635     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   636     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   637     emit_d32(cbuf, framesize);
   638   } else if (framesize) {
   639     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   640     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   641     emit_d8(cbuf, framesize);
   642   }
   644   emit_opcode(cbuf, 0x58 | EBP_enc);
   646   if (do_polling() && C->is_method_compilation()) {
   647     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
   648     emit_opcode(cbuf,0x85);
   649     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   650     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   651   }
   652 }
   654 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   655   Compile *C = ra_->C;
   656   // If method set FPU control word, restore to standard control word
   657   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   658   if (C->max_vector_size() > 16) size += 3; // vzeroupper
   659   if (do_polling() && C->is_method_compilation()) size += 6;
   661   int framesize = C->frame_slots() << LogBytesPerInt;
   662   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   663   // Remove two words for return addr and rbp,
   664   framesize -= 2*wordSize;
   666   size++; // popl rbp,
   668   if (framesize >= 128) {
   669     size += 6;
   670   } else {
   671     size += framesize ? 3 : 0;
   672   }
   673   return size;
   674 }
   676 int MachEpilogNode::reloc() const {
   677   return 0; // a large enough number
   678 }
   680 const Pipeline * MachEpilogNode::pipeline() const {
   681   return MachNode::pipeline_class();
   682 }
   684 int MachEpilogNode::safepoint_offset() const { return 0; }
   686 //=============================================================================
   688 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   689 static enum RC rc_class( OptoReg::Name reg ) {
   691   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   692   if (OptoReg::is_stack(reg)) return rc_stack;
   694   VMReg r = OptoReg::as_VMReg(reg);
   695   if (r->is_Register()) return rc_int;
   696   if (r->is_FloatRegister()) {
   697     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   698     return rc_float;
   699   }
   700   assert(r->is_XMMRegister(), "must be");
   701   return rc_xmm;
   702 }
   704 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   705                         int opcode, const char *op_str, int size, outputStream* st ) {
   706   if( cbuf ) {
   707     emit_opcode  (*cbuf, opcode );
   708     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
   709 #ifndef PRODUCT
   710   } else if( !do_size ) {
   711     if( size != 0 ) st->print("\n\t");
   712     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   713       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   714       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   715     } else { // FLD, FST, PUSH, POP
   716       st->print("%s [ESP + #%d]",op_str,offset);
   717     }
   718 #endif
   719   }
   720   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   721   return size+3+offset_size;
   722 }
   724 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   725 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   726                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   727   if (cbuf) {
   728     MacroAssembler _masm(cbuf);
   729     if (reg_lo+1 == reg_hi) { // double move?
   730       if (is_load) {
   731         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   732       } else {
   733         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   734       }
   735     } else {
   736       if (is_load) {
   737         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
   738       } else {
   739         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
   740       }
   741     }
   742 #ifndef PRODUCT
   743   } else if (!do_size) {
   744     if (size != 0) st->print("\n\t");
   745     if (reg_lo+1 == reg_hi) { // double move?
   746       if (is_load) st->print("%s %s,[ESP + #%d]",
   747                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   748                               Matcher::regName[reg_lo], offset);
   749       else         st->print("MOVSD  [ESP + #%d],%s",
   750                               offset, Matcher::regName[reg_lo]);
   751     } else {
   752       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
   753                               Matcher::regName[reg_lo], offset);
   754       else         st->print("MOVSS  [ESP + #%d],%s",
   755                               offset, Matcher::regName[reg_lo]);
   756     }
   757 #endif
   758   }
   759   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   760   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
   761   return size+5+offset_size;
   762 }
   765 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   766                             int src_hi, int dst_hi, int size, outputStream* st ) {
   767   if (cbuf) {
   768     MacroAssembler _masm(cbuf);
   769     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   770       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   771                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   772     } else {
   773       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   774                 as_XMMRegister(Matcher::_regEncode[src_lo]));
   775     }
   776 #ifndef PRODUCT
   777   } else if (!do_size) {
   778     if (size != 0) st->print("\n\t");
   779     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
   780       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
   781         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   782       } else {
   783         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   784       }
   785     } else {
   786       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   787         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   788       } else {
   789         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   790       }
   791     }
   792 #endif
   793   }
   794   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
   795   // Only MOVAPS SSE prefix uses 1 byte.
   796   int sz = 4;
   797   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
   798       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
   799   return size + sz;
   800 }
   802 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   803                             int src_hi, int dst_hi, int size, outputStream* st ) {
   804   // 32-bit
   805   if (cbuf) {
   806     MacroAssembler _masm(cbuf);
   807     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
   808              as_Register(Matcher::_regEncode[src_lo]));
   809 #ifndef PRODUCT
   810   } else if (!do_size) {
   811     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   812 #endif
   813   }
   814   return 4;
   815 }
   818 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   819                                  int src_hi, int dst_hi, int size, outputStream* st ) {
   820   // 32-bit
   821   if (cbuf) {
   822     MacroAssembler _masm(cbuf);
   823     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
   824              as_XMMRegister(Matcher::_regEncode[src_lo]));
   825 #ifndef PRODUCT
   826   } else if (!do_size) {
   827     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
   828 #endif
   829   }
   830   return 4;
   831 }
   833 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   834   if( cbuf ) {
   835     emit_opcode(*cbuf, 0x8B );
   836     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   837 #ifndef PRODUCT
   838   } else if( !do_size ) {
   839     if( size != 0 ) st->print("\n\t");
   840     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   841 #endif
   842   }
   843   return size+2;
   844 }
   846 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   847                                  int offset, int size, outputStream* st ) {
   848   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   849     if( cbuf ) {
   850       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   851       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   852 #ifndef PRODUCT
   853     } else if( !do_size ) {
   854       if( size != 0 ) st->print("\n\t");
   855       st->print("FLD    %s",Matcher::regName[src_lo]);
   856 #endif
   857     }
   858     size += 2;
   859   }
   861   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   862   const char *op_str;
   863   int op;
   864   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   865     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   866     op = 0xDD;
   867   } else {                   // 32-bit store
   868     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   869     op = 0xD9;
   870     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   871   }
   873   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   874 }
   876 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
   877 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   878                           int src_hi, int dst_hi, uint ireg, outputStream* st);
   880 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
   881                             int stack_offset, int reg, uint ireg, outputStream* st);
   883 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
   884                                      int dst_offset, uint ireg, outputStream* st) {
   885   int calc_size = 0;
   886   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   887   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   888   switch (ireg) {
   889   case Op_VecS:
   890     calc_size = 3+src_offset_size + 3+dst_offset_size;
   891     break;
   892   case Op_VecD:
   893     calc_size = 3+src_offset_size + 3+dst_offset_size;
   894     src_offset += 4;
   895     dst_offset += 4;
   896     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
   897     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
   898     calc_size += 3+src_offset_size + 3+dst_offset_size;
   899     break;
   900   case Op_VecX:
   901     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   902     break;
   903   case Op_VecY:
   904     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
   905     break;
   906   default:
   907     ShouldNotReachHere();
   908   }
   909   if (cbuf) {
   910     MacroAssembler _masm(cbuf);
   911     int offset = __ offset();
   912     switch (ireg) {
   913     case Op_VecS:
   914       __ pushl(Address(rsp, src_offset));
   915       __ popl (Address(rsp, dst_offset));
   916       break;
   917     case Op_VecD:
   918       __ pushl(Address(rsp, src_offset));
   919       __ popl (Address(rsp, dst_offset));
   920       __ pushl(Address(rsp, src_offset+4));
   921       __ popl (Address(rsp, dst_offset+4));
   922       break;
   923     case Op_VecX:
   924       __ movdqu(Address(rsp, -16), xmm0);
   925       __ movdqu(xmm0, Address(rsp, src_offset));
   926       __ movdqu(Address(rsp, dst_offset), xmm0);
   927       __ movdqu(xmm0, Address(rsp, -16));
   928       break;
   929     case Op_VecY:
   930       __ vmovdqu(Address(rsp, -32), xmm0);
   931       __ vmovdqu(xmm0, Address(rsp, src_offset));
   932       __ vmovdqu(Address(rsp, dst_offset), xmm0);
   933       __ vmovdqu(xmm0, Address(rsp, -32));
   934       break;
   935     default:
   936       ShouldNotReachHere();
   937     }
   938     int size = __ offset() - offset;
   939     assert(size == calc_size, "incorrect size calculattion");
   940     return size;
   941 #ifndef PRODUCT
   942   } else if (!do_size) {
   943     switch (ireg) {
   944     case Op_VecS:
   945       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
   946                 "popl    [rsp + #%d]",
   947                 src_offset, dst_offset);
   948       break;
   949     case Op_VecD:
   950       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
   951                 "popq    [rsp + #%d]\n\t"
   952                 "pushl   [rsp + #%d]\n\t"
   953                 "popq    [rsp + #%d]",
   954                 src_offset, dst_offset, src_offset+4, dst_offset+4);
   955       break;
   956      case Op_VecX:
   957       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
   958                 "movdqu  xmm0, [rsp + #%d]\n\t"
   959                 "movdqu  [rsp + #%d], xmm0\n\t"
   960                 "movdqu  xmm0, [rsp - #16]",
   961                 src_offset, dst_offset);
   962       break;
   963     case Op_VecY:
   964       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
   965                 "vmovdqu xmm0, [rsp + #%d]\n\t"
   966                 "vmovdqu [rsp + #%d], xmm0\n\t"
   967                 "vmovdqu xmm0, [rsp - #32]",
   968                 src_offset, dst_offset);
   969       break;
   970     default:
   971       ShouldNotReachHere();
   972     }
   973 #endif
   974   }
   975   return calc_size;
   976 }
   978 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   979   // Get registers to move
   980   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   981   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   982   OptoReg::Name dst_second = ra_->get_reg_second(this );
   983   OptoReg::Name dst_first = ra_->get_reg_first(this );
   985   enum RC src_second_rc = rc_class(src_second);
   986   enum RC src_first_rc = rc_class(src_first);
   987   enum RC dst_second_rc = rc_class(dst_second);
   988   enum RC dst_first_rc = rc_class(dst_first);
   990   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   992   // Generate spill code!
   993   int size = 0;
   995   if( src_first == dst_first && src_second == dst_second )
   996     return size;            // Self copy, no move
   998   if (bottom_type()->isa_vect() != NULL) {
   999     uint ireg = ideal_reg();
  1000     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
  1001     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
  1002     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
  1003     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1004       // mem -> mem
  1005       int src_offset = ra_->reg2offset(src_first);
  1006       int dst_offset = ra_->reg2offset(dst_first);
  1007       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
  1008     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1009       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
  1010     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1011       int stack_offset = ra_->reg2offset(dst_first);
  1012       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
  1013     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
  1014       int stack_offset = ra_->reg2offset(src_first);
  1015       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
  1016     } else {
  1017       ShouldNotReachHere();
  1021   // --------------------------------------
  1022   // Check for mem-mem move.  push/pop to move.
  1023   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1024     if( src_second == dst_first ) { // overlapping stack copy ranges
  1025       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
  1026       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1027       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1028       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
  1030     // move low bits
  1031     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
  1032     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
  1033     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
  1034       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
  1035       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
  1037     return size;
  1040   // --------------------------------------
  1041   // Check for integer reg-reg copy
  1042   if( src_first_rc == rc_int && dst_first_rc == rc_int )
  1043     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
  1045   // Check for integer store
  1046   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
  1047     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
  1049   // Check for integer load
  1050   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
  1051     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
  1053   // Check for integer reg-xmm reg copy
  1054   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
  1055     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1056             "no 64 bit integer-float reg moves" );
  1057     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1059   // --------------------------------------
  1060   // Check for float reg-reg copy
  1061   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1062     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1063             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
  1064     if( cbuf ) {
  1066       // Note the mucking with the register encode to compensate for the 0/1
  1067       // indexing issue mentioned in a comment in the reg_def sections
  1068       // for FPR registers many lines above here.
  1070       if( src_first != FPR1L_num ) {
  1071         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
  1072         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
  1073         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1074         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1075      } else {
  1076         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
  1077         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
  1079 #ifndef PRODUCT
  1080     } else if( !do_size ) {
  1081       if( size != 0 ) st->print("\n\t");
  1082       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
  1083       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
  1084 #endif
  1086     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
  1089   // Check for float store
  1090   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1091     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
  1094   // Check for float load
  1095   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1096     int offset = ra_->reg2offset(src_first);
  1097     const char *op_str;
  1098     int op;
  1099     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
  1100       op_str = "FLD_D";
  1101       op = 0xDD;
  1102     } else {                   // 32-bit load
  1103       op_str = "FLD_S";
  1104       op = 0xD9;
  1105       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
  1107     if( cbuf ) {
  1108       emit_opcode  (*cbuf, op );
  1109       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
  1110       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1111       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1112 #ifndef PRODUCT
  1113     } else if( !do_size ) {
  1114       if( size != 0 ) st->print("\n\t");
  1115       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1116 #endif
  1118     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1119     return size + 3+offset_size+2;
  1122   // Check for xmm reg-reg copy
  1123   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1124     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1125             (src_first+1 == src_second && dst_first+1 == dst_second),
  1126             "no non-adjacent float-moves" );
  1127     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1130   // Check for xmm reg-integer reg copy
  1131   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
  1132     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
  1133             "no 64 bit float-integer reg moves" );
  1134     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1137   // Check for xmm store
  1138   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1139     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1142   // Check for float xmm load
  1143   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1144     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1147   // Copy from float reg to xmm reg
  1148   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1149     // copy to the top of stack from floating point reg
  1150     // and use LEA to preserve flags
  1151     if( cbuf ) {
  1152       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1153       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1154       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1155       emit_d8(*cbuf,0xF8);
  1156 #ifndef PRODUCT
  1157     } else if( !do_size ) {
  1158       if( size != 0 ) st->print("\n\t");
  1159       st->print("LEA    ESP,[ESP-8]");
  1160 #endif
  1162     size += 4;
  1164     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1166     // Copy from the temp memory to the xmm reg.
  1167     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1169     if( cbuf ) {
  1170       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1171       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1172       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1173       emit_d8(*cbuf,0x08);
  1174 #ifndef PRODUCT
  1175     } else if( !do_size ) {
  1176       if( size != 0 ) st->print("\n\t");
  1177       st->print("LEA    ESP,[ESP+8]");
  1178 #endif
  1180     size += 4;
  1181     return size;
  1184   assert( size > 0, "missed a case" );
  1186   // --------------------------------------------------------------------
  1187   // Check for second bits still needing moving.
  1188   if( src_second == dst_second )
  1189     return size;               // Self copy; no move
  1190   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1192   // Check for second word int-int move
  1193   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1194     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1196   // Check for second word integer store
  1197   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1198     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1200   // Check for second word integer load
  1201   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1202     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1205   Unimplemented();
  1208 #ifndef PRODUCT
  1209 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
  1210   implementation( NULL, ra_, false, st );
  1212 #endif
  1214 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1215   implementation( &cbuf, ra_, false, NULL );
  1218 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1219   return implementation( NULL, ra_, true, NULL );
  1223 //=============================================================================
  1224 #ifndef PRODUCT
  1225 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1226   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1227   int reg = ra_->get_reg_first(this);
  1228   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1230 #endif
  1232 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1233   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1234   int reg = ra_->get_encode(this);
  1235   if( offset >= 128 ) {
  1236     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1237     emit_rm(cbuf, 0x2, reg, 0x04);
  1238     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1239     emit_d32(cbuf, offset);
  1241   else {
  1242     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1243     emit_rm(cbuf, 0x1, reg, 0x04);
  1244     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1245     emit_d8(cbuf, offset);
  1249 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1250   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1251   if( offset >= 128 ) {
  1252     return 7;
  1254   else {
  1255     return 4;
  1259 //=============================================================================
  1260 #ifndef PRODUCT
  1261 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1262   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1263   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1264   st->print_cr("\tNOP");
  1265   st->print_cr("\tNOP");
  1266   if( !OptoBreakpoint )
  1267     st->print_cr("\tNOP");
  1269 #endif
  1271 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1272   MacroAssembler masm(&cbuf);
  1273 #ifdef ASSERT
  1274   uint insts_size = cbuf.insts_size();
  1275 #endif
  1276   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1277   masm.jump_cc(Assembler::notEqual,
  1278                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1279   /* WARNING these NOPs are critical so that verified entry point is properly
  1280      aligned for patching by NativeJump::patch_verified_entry() */
  1281   int nops_cnt = 2;
  1282   if( !OptoBreakpoint ) // Leave space for int3
  1283      nops_cnt += 1;
  1284   masm.nop(nops_cnt);
  1286   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
  1289 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1290   return OptoBreakpoint ? 11 : 12;
  1294 //=============================================================================
  1295 uint size_exception_handler() {
  1296   // NativeCall instruction size is the same as NativeJump.
  1297   // exception handler starts out as jump and can be patched to
  1298   // a call be deoptimization.  (4932387)
  1299   // Note that this value is also credited (in output.cpp) to
  1300   // the size of the code section.
  1301   return NativeJump::instruction_size;
  1304 // Emit exception handler code.  Stuff framesize into a register
  1305 // and call a VM stub routine.
  1306 int emit_exception_handler(CodeBuffer& cbuf) {
  1308   // Note that the code buffer's insts_mark is always relative to insts.
  1309   // That's why we must use the macroassembler to generate a handler.
  1310   MacroAssembler _masm(&cbuf);
  1311   address base =
  1312   __ start_a_stub(size_exception_handler());
  1313   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1314   int offset = __ offset();
  1315   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
  1316   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1317   __ end_a_stub();
  1318   return offset;
  1321 uint size_deopt_handler() {
  1322   // NativeCall instruction size is the same as NativeJump.
  1323   // exception handler starts out as jump and can be patched to
  1324   // a call be deoptimization.  (4932387)
  1325   // Note that this value is also credited (in output.cpp) to
  1326   // the size of the code section.
  1327   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1330 // Emit deopt handler code.
  1331 int emit_deopt_handler(CodeBuffer& cbuf) {
  1333   // Note that the code buffer's insts_mark is always relative to insts.
  1334   // That's why we must use the macroassembler to generate a handler.
  1335   MacroAssembler _masm(&cbuf);
  1336   address base =
  1337   __ start_a_stub(size_exception_handler());
  1338   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1339   int offset = __ offset();
  1340   InternalAddress here(__ pc());
  1341   __ pushptr(here.addr());
  1343   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1344   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1345   __ end_a_stub();
  1346   return offset;
  1349 int Matcher::regnum_to_fpu_offset(int regnum) {
  1350   return regnum - 32; // The FP registers are in the second chunk
  1353 // This is UltraSparc specific, true just means we have fast l2f conversion
  1354 const bool Matcher::convL2FSupported(void) {
  1355   return true;
  1358 // Is this branch offset short enough that a short branch can be used?
  1359 //
  1360 // NOTE: If the platform does not provide any short branch variants, then
  1361 //       this method should return false for offset 0.
  1362 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1363   // The passed offset is relative to address of the branch.
  1364   // On 86 a branch displacement is calculated relative to address
  1365   // of a next instruction.
  1366   offset -= br_size;
  1368   // the short version of jmpConUCF2 contains multiple branches,
  1369   // making the reach slightly less
  1370   if (rule == jmpConUCF2_rule)
  1371     return (-126 <= offset && offset <= 125);
  1372   return (-128 <= offset && offset <= 127);
  1375 const bool Matcher::isSimpleConstant64(jlong value) {
  1376   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1377   return false;
  1380 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1381 const bool Matcher::init_array_count_is_in_bytes = false;
  1383 // Threshold size for cleararray.
  1384 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1386 // Needs 2 CMOV's for longs.
  1387 const int Matcher::long_cmove_cost() { return 1; }
  1389 // No CMOVF/CMOVD with SSE/SSE2
  1390 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
  1392 // Should the Matcher clone shifts on addressing modes, expecting them to
  1393 // be subsumed into complex addressing expressions or compute them into
  1394 // registers?  True for Intel but false for most RISCs
  1395 const bool Matcher::clone_shift_expressions = true;
  1397 // Do we need to mask the count passed to shift instructions or does
  1398 // the cpu only look at the lower 5/6 bits anyway?
  1399 const bool Matcher::need_masked_shift_count = false;
  1401 bool Matcher::narrow_oop_use_complex_address() {
  1402   ShouldNotCallThis();
  1403   return true;
  1406 bool Matcher::narrow_klass_use_complex_address() {
  1407   ShouldNotCallThis();
  1408   return true;
  1412 // Is it better to copy float constants, or load them directly from memory?
  1413 // Intel can load a float constant from a direct address, requiring no
  1414 // extra registers.  Most RISCs will have to materialize an address into a
  1415 // register first, so they would do better to copy the constant from stack.
  1416 const bool Matcher::rematerialize_float_constants = true;
  1418 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1419 // needed.  Else we split the double into 2 integer pieces and move it
  1420 // piece-by-piece.  Only happens when passing doubles into C code as the
  1421 // Java calling convention forces doubles to be aligned.
  1422 const bool Matcher::misaligned_doubles_ok = true;
  1425 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1426   // Get the memory operand from the node
  1427   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1428   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1429   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1430   uint opcnt     = 1;                 // First operand
  1431   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1432   while( idx >= skipped+num_edges ) {
  1433     skipped += num_edges;
  1434     opcnt++;                          // Bump operand count
  1435     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1436     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1439   MachOper *memory = node->_opnds[opcnt];
  1440   MachOper *new_memory = NULL;
  1441   switch (memory->opcode()) {
  1442   case DIRECT:
  1443   case INDOFFSET32X:
  1444     // No transformation necessary.
  1445     return;
  1446   case INDIRECT:
  1447     new_memory = new (C) indirect_win95_safeOper( );
  1448     break;
  1449   case INDOFFSET8:
  1450     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1451     break;
  1452   case INDOFFSET32:
  1453     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1454     break;
  1455   case INDINDEXOFFSET:
  1456     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1457     break;
  1458   case INDINDEXSCALE:
  1459     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1460     break;
  1461   case INDINDEXSCALEOFFSET:
  1462     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1463     break;
  1464   case LOAD_LONG_INDIRECT:
  1465   case LOAD_LONG_INDOFFSET32:
  1466     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1467     return;
  1468   default:
  1469     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1470     return;
  1472   node->_opnds[opcnt] = new_memory;
  1475 // Advertise here if the CPU requires explicit rounding operations
  1476 // to implement the UseStrictFP mode.
  1477 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1479 // Are floats conerted to double when stored to stack during deoptimization?
  1480 // On x32 it is stored with convertion only when FPU is used for floats.
  1481 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1483 // Do ints take an entire long register or just half?
  1484 const bool Matcher::int_in_long = false;
  1486 // Return whether or not this register is ever used as an argument.  This
  1487 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1488 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1489 // arguments in those registers not be available to the callee.
  1490 bool Matcher::can_be_java_arg( int reg ) {
  1491   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1492   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
  1493   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1494   return false;
  1497 bool Matcher::is_spillable_arg( int reg ) {
  1498   return can_be_java_arg(reg);
  1501 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1502   // Use hardware integer DIV instruction when
  1503   // it is faster than a code which use multiply.
  1504   // Only when constant divisor fits into 32 bit
  1505   // (min_jint is excluded to get only correct
  1506   // positive 32 bit values from negative).
  1507   return VM_Version::has_fast_idiv() &&
  1508          (divisor == (int)divisor && divisor != min_jint);
  1511 // Register for DIVI projection of divmodI
  1512 RegMask Matcher::divI_proj_mask() {
  1513   return EAX_REG_mask();
  1516 // Register for MODI projection of divmodI
  1517 RegMask Matcher::modI_proj_mask() {
  1518   return EDX_REG_mask();
  1521 // Register for DIVL projection of divmodL
  1522 RegMask Matcher::divL_proj_mask() {
  1523   ShouldNotReachHere();
  1524   return RegMask();
  1527 // Register for MODL projection of divmodL
  1528 RegMask Matcher::modL_proj_mask() {
  1529   ShouldNotReachHere();
  1530   return RegMask();
  1533 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1534   return EBP_REG_mask();
  1537 // Returns true if the high 32 bits of the value is known to be zero.
  1538 bool is_operand_hi32_zero(Node* n) {
  1539   int opc = n->Opcode();
  1540   if (opc == Op_AndL) {
  1541     Node* o2 = n->in(2);
  1542     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1543       return true;
  1546   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1547     return true;
  1549   return false;
  1552 %}
  1554 //----------ENCODING BLOCK-----------------------------------------------------
  1555 // This block specifies the encoding classes used by the compiler to output
  1556 // byte streams.  Encoding classes generate functions which are called by
  1557 // Machine Instruction Nodes in order to generate the bit encoding of the
  1558 // instruction.  Operands specify their base encoding interface with the
  1559 // interface keyword.  There are currently supported four interfaces,
  1560 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1561 // operand to generate a function which returns its register number when
  1562 // queried.   CONST_INTER causes an operand to generate a function which
  1563 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1564 // operand to generate four functions which return the Base Register, the
  1565 // Index Register, the Scale Value, and the Offset Value of the operand when
  1566 // queried.  COND_INTER causes an operand to generate six functions which
  1567 // return the encoding code (ie - encoding bits for the instruction)
  1568 // associated with each basic boolean condition for a conditional instruction.
  1569 // Instructions specify two basic values for encoding.  They use the
  1570 // ins_encode keyword to specify their encoding class (which must be one of
  1571 // the class names specified in the encoding block), and they use the
  1572 // opcode keyword to specify, in order, their primary, secondary, and
  1573 // tertiary opcode.  Only the opcode sections which a particular instruction
  1574 // needs for encoding need to be specified.
  1575 encode %{
  1576   // Build emit functions for each basic byte or larger field in the intel
  1577   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1578   // code in the enc_class source block.  Emit functions will live in the
  1579   // main source block for now.  In future, we can generalize this by
  1580   // adding a syntax that specifies the sizes of fields in an order,
  1581   // so that the adlc can build the emit functions automagically
  1583   // Emit primary opcode
  1584   enc_class OpcP %{
  1585     emit_opcode(cbuf, $primary);
  1586   %}
  1588   // Emit secondary opcode
  1589   enc_class OpcS %{
  1590     emit_opcode(cbuf, $secondary);
  1591   %}
  1593   // Emit opcode directly
  1594   enc_class Opcode(immI d8) %{
  1595     emit_opcode(cbuf, $d8$$constant);
  1596   %}
  1598   enc_class SizePrefix %{
  1599     emit_opcode(cbuf,0x66);
  1600   %}
  1602   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1603     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1604   %}
  1606   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
  1607     emit_opcode(cbuf,$opcode$$constant);
  1608     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1609   %}
  1611   enc_class mov_r32_imm0( rRegI dst ) %{
  1612     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1613     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1614   %}
  1616   enc_class cdq_enc %{
  1617     // Full implementation of Java idiv and irem; checks for
  1618     // special case as described in JVM spec., p.243 & p.271.
  1619     //
  1620     //         normal case                           special case
  1621     //
  1622     // input : rax,: dividend                         min_int
  1623     //         reg: divisor                          -1
  1624     //
  1625     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1626     //         rdx: remainder (= rax, irem reg)       0
  1627     //
  1628     //  Code sequnce:
  1629     //
  1630     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1631     //  0F 85 0B 00 00 00    jne         normal_case
  1632     //  33 D2                xor         rdx,edx
  1633     //  83 F9 FF             cmp         rcx,0FFh
  1634     //  0F 84 03 00 00 00    je          done
  1635     //                  normal_case:
  1636     //  99                   cdq
  1637     //  F7 F9                idiv        rax,ecx
  1638     //                  done:
  1639     //
  1640     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1641     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1643     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1644     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1645     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1646     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1647     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1648     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1649     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1650     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1651     // normal_case:
  1652     emit_opcode(cbuf,0x99);                                         // cdq
  1653     // idiv (note: must be emitted by the user of this rule)
  1654     // normal:
  1655   %}
  1657   // Dense encoding for older common ops
  1658   enc_class Opc_plus(immI opcode, rRegI reg) %{
  1659     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1660   %}
  1663   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1664   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1665     // Check for 8-bit immediate, and set sign extend bit in opcode
  1666     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1667       emit_opcode(cbuf, $primary | 0x02);
  1669     else {                          // If 32-bit immediate
  1670       emit_opcode(cbuf, $primary);
  1672   %}
  1674   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
  1675     // Emit primary opcode and set sign-extend bit
  1676     // Check for 8-bit immediate, and set sign extend bit in opcode
  1677     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1678       emit_opcode(cbuf, $primary | 0x02);    }
  1679     else {                          // If 32-bit immediate
  1680       emit_opcode(cbuf, $primary);
  1682     // Emit r/m byte with secondary opcode, after primary opcode.
  1683     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1684   %}
  1686   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1687     // Check for 8-bit immediate, and set sign extend bit in opcode
  1688     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1689       $$$emit8$imm$$constant;
  1691     else {                          // If 32-bit immediate
  1692       // Output immediate
  1693       $$$emit32$imm$$constant;
  1695   %}
  1697   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1698     // Emit primary opcode and set sign-extend bit
  1699     // Check for 8-bit immediate, and set sign extend bit in opcode
  1700     int con = (int)$imm$$constant; // Throw away top bits
  1701     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1702     // Emit r/m byte with secondary opcode, after primary opcode.
  1703     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1704     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1705     else                               emit_d32(cbuf,con);
  1706   %}
  1708   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1709     // Emit primary opcode and set sign-extend bit
  1710     // Check for 8-bit immediate, and set sign extend bit in opcode
  1711     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1712     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1713     // Emit r/m byte with tertiary opcode, after primary opcode.
  1714     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1715     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1716     else                               emit_d32(cbuf,con);
  1717   %}
  1719   enc_class OpcSReg (rRegI dst) %{    // BSWAP
  1720     emit_cc(cbuf, $secondary, $dst$$reg );
  1721   %}
  1723   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1724     int destlo = $dst$$reg;
  1725     int desthi = HIGH_FROM_LOW(destlo);
  1726     // bswap lo
  1727     emit_opcode(cbuf, 0x0F);
  1728     emit_cc(cbuf, 0xC8, destlo);
  1729     // bswap hi
  1730     emit_opcode(cbuf, 0x0F);
  1731     emit_cc(cbuf, 0xC8, desthi);
  1732     // xchg lo and hi
  1733     emit_opcode(cbuf, 0x87);
  1734     emit_rm(cbuf, 0x3, destlo, desthi);
  1735   %}
  1737   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1738     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1739   %}
  1741   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1742     $$$emit8$primary;
  1743     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1744   %}
  1746   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
  1747     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1748     emit_d8(cbuf, op >> 8 );
  1749     emit_d8(cbuf, op & 255);
  1750   %}
  1752   // emulate a CMOV with a conditional branch around a MOV
  1753   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1754     // Invert sense of branch from sense of CMOV
  1755     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1756     emit_d8( cbuf, $brOffs$$constant );
  1757   %}
  1759   enc_class enc_PartialSubtypeCheck( ) %{
  1760     Register Redi = as_Register(EDI_enc); // result register
  1761     Register Reax = as_Register(EAX_enc); // super class
  1762     Register Recx = as_Register(ECX_enc); // killed
  1763     Register Resi = as_Register(ESI_enc); // sub class
  1764     Label miss;
  1766     MacroAssembler _masm(&cbuf);
  1767     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1768                                      NULL, &miss,
  1769                                      /*set_cond_codes:*/ true);
  1770     if ($primary) {
  1771       __ xorptr(Redi, Redi);
  1773     __ bind(miss);
  1774   %}
  1776   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1777     MacroAssembler masm(&cbuf);
  1778     int start = masm.offset();
  1779     if (UseSSE >= 2) {
  1780       if (VerifyFPU) {
  1781         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1783     } else {
  1784       // External c_calling_convention expects the FPU stack to be 'clean'.
  1785       // Compiled code leaves it dirty.  Do cleanup now.
  1786       masm.empty_FPU_stack();
  1788     if (sizeof_FFree_Float_Stack_All == -1) {
  1789       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1790     } else {
  1791       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1793   %}
  1795   enc_class Verify_FPU_For_Leaf %{
  1796     if( VerifyFPU ) {
  1797       MacroAssembler masm(&cbuf);
  1798       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1800   %}
  1802   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1803     // This is the instruction starting address for relocation info.
  1804     cbuf.set_insts_mark();
  1805     $$$emit8$primary;
  1806     // CALL directly to the runtime
  1807     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1808                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1810     if (UseSSE >= 2) {
  1811       MacroAssembler _masm(&cbuf);
  1812       BasicType rt = tf()->return_type();
  1814       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1815         // A C runtime call where the return value is unused.  In SSE2+
  1816         // mode the result needs to be removed from the FPU stack.  It's
  1817         // likely that this function call could be removed by the
  1818         // optimizer if the C function is a pure function.
  1819         __ ffree(0);
  1820       } else if (rt == T_FLOAT) {
  1821         __ lea(rsp, Address(rsp, -4));
  1822         __ fstp_s(Address(rsp, 0));
  1823         __ movflt(xmm0, Address(rsp, 0));
  1824         __ lea(rsp, Address(rsp,  4));
  1825       } else if (rt == T_DOUBLE) {
  1826         __ lea(rsp, Address(rsp, -8));
  1827         __ fstp_d(Address(rsp, 0));
  1828         __ movdbl(xmm0, Address(rsp, 0));
  1829         __ lea(rsp, Address(rsp,  8));
  1832   %}
  1835   enc_class pre_call_resets %{
  1836     // If method sets FPU control word restore it here
  1837     debug_only(int off0 = cbuf.insts_size());
  1838     if (ra_->C->in_24_bit_fp_mode()) {
  1839       MacroAssembler _masm(&cbuf);
  1840       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1842     if (ra_->C->max_vector_size() > 16) {
  1843       // Clear upper bits of YMM registers when current compiled code uses
  1844       // wide vectors to avoid AVX <-> SSE transition penalty during call.
  1845       MacroAssembler _masm(&cbuf);
  1846       __ vzeroupper();
  1848     debug_only(int off1 = cbuf.insts_size());
  1849     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
  1850   %}
  1852   enc_class post_call_FPU %{
  1853     // If method sets FPU control word do it here also
  1854     if (Compile::current()->in_24_bit_fp_mode()) {
  1855       MacroAssembler masm(&cbuf);
  1856       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1858   %}
  1860   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1861     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1862     // who we intended to call.
  1863     cbuf.set_insts_mark();
  1864     $$$emit8$primary;
  1865     if (!_method) {
  1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1867                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1868     } else if (_optimized_virtual) {
  1869       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1870                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1871     } else {
  1872       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
  1873                      static_call_Relocation::spec(), RELOC_IMM32 );
  1875     if (_method) {  // Emit stub for static call.
  1876       CompiledStaticCall::emit_to_interp_stub(cbuf);
  1878   %}
  1880   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1881     MacroAssembler _masm(&cbuf);
  1882     __ ic_call((address)$meth$$method);
  1883   %}
  1885   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1886     int disp = in_bytes(Method::from_compiled_offset());
  1887     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1889     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
  1890     cbuf.set_insts_mark();
  1891     $$$emit8$primary;
  1892     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1893     emit_d8(cbuf, disp);             // Displacement
  1895   %}
  1897 //   Following encoding is no longer used, but may be restored if calling
  1898 //   convention changes significantly.
  1899 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1900 //
  1901 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1902 //     // int ic_reg     = Matcher::inline_cache_reg();
  1903 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1904 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1905 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1906 //
  1907 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1908 //     // // so we load it immediately before the call
  1909 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1910 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1911 //
  1912 //     // xor rbp,ebp
  1913 //     emit_opcode(cbuf, 0x33);
  1914 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1915 //
  1916 //     // CALL to interpreter.
  1917 //     cbuf.set_insts_mark();
  1918 //     $$$emit8$primary;
  1919 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
  1920 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1921 //   %}
  1923   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1924     $$$emit8$primary;
  1925     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1926     $$$emit8$shift$$constant;
  1927   %}
  1929   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
  1930     // Load immediate does not have a zero or sign extended version
  1931     // for 8-bit immediates
  1932     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1933     $$$emit32$src$$constant;
  1934   %}
  1936   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
  1937     // Load immediate does not have a zero or sign extended version
  1938     // for 8-bit immediates
  1939     emit_opcode(cbuf, $primary + $dst$$reg);
  1940     $$$emit32$src$$constant;
  1941   %}
  1943   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1944     // Load immediate does not have a zero or sign extended version
  1945     // for 8-bit immediates
  1946     int dst_enc = $dst$$reg;
  1947     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1948     if (src_con == 0) {
  1949       // xor dst, dst
  1950       emit_opcode(cbuf, 0x33);
  1951       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1952     } else {
  1953       emit_opcode(cbuf, $primary + dst_enc);
  1954       emit_d32(cbuf, src_con);
  1956   %}
  1958   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1959     // Load immediate does not have a zero or sign extended version
  1960     // for 8-bit immediates
  1961     int dst_enc = $dst$$reg + 2;
  1962     int src_con = ((julong)($src$$constant)) >> 32;
  1963     if (src_con == 0) {
  1964       // xor dst, dst
  1965       emit_opcode(cbuf, 0x33);
  1966       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1967     } else {
  1968       emit_opcode(cbuf, $primary + dst_enc);
  1969       emit_d32(cbuf, src_con);
  1971   %}
  1974   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1975   enc_class enc_Copy( rRegI dst, rRegI src ) %{
  1976     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1977   %}
  1979   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
  1980     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  1981   %}
  1983   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
  1984     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1985   %}
  1987   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  1988     $$$emit8$primary;
  1989     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1990   %}
  1992   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  1993     $$$emit8$secondary;
  1994     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  1995   %}
  1997   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  1998     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1999   %}
  2001   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2002     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2003   %}
  2005   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
  2006     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2007   %}
  2009   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2010     // Output immediate
  2011     $$$emit32$src$$constant;
  2012   %}
  2014   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
  2015     // Output Float immediate bits
  2016     jfloat jf = $src$$constant;
  2017     int    jf_as_bits = jint_cast( jf );
  2018     emit_d32(cbuf, jf_as_bits);
  2019   %}
  2021   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
  2022     // Output Float immediate bits
  2023     jfloat jf = $src$$constant;
  2024     int    jf_as_bits = jint_cast( jf );
  2025     emit_d32(cbuf, jf_as_bits);
  2026   %}
  2028   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2029     // Output immediate
  2030     $$$emit16$src$$constant;
  2031   %}
  2033   enc_class Con_d32(immI src) %{
  2034     emit_d32(cbuf,$src$$constant);
  2035   %}
  2037   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2038     // Output immediate memory reference
  2039     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2040     emit_d32(cbuf, 0x00);
  2041   %}
  2043   enc_class lock_prefix( ) %{
  2044     if( os::is_MP() )
  2045       emit_opcode(cbuf,0xF0);         // [Lock]
  2046   %}
  2048   // Cmp-xchg long value.
  2049   // Note: we need to swap rbx, and rcx before and after the
  2050   //       cmpxchg8 instruction because the instruction uses
  2051   //       rcx as the high order word of the new value to store but
  2052   //       our register encoding uses rbx,.
  2053   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2055     // XCHG  rbx,ecx
  2056     emit_opcode(cbuf,0x87);
  2057     emit_opcode(cbuf,0xD9);
  2058     // [Lock]
  2059     if( os::is_MP() )
  2060       emit_opcode(cbuf,0xF0);
  2061     // CMPXCHG8 [Eptr]
  2062     emit_opcode(cbuf,0x0F);
  2063     emit_opcode(cbuf,0xC7);
  2064     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2065     // XCHG  rbx,ecx
  2066     emit_opcode(cbuf,0x87);
  2067     emit_opcode(cbuf,0xD9);
  2068   %}
  2070   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2071     // [Lock]
  2072     if( os::is_MP() )
  2073       emit_opcode(cbuf,0xF0);
  2075     // CMPXCHG [Eptr]
  2076     emit_opcode(cbuf,0x0F);
  2077     emit_opcode(cbuf,0xB1);
  2078     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2079   %}
  2081   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2082     int res_encoding = $res$$reg;
  2084     // MOV  res,0
  2085     emit_opcode( cbuf, 0xB8 + res_encoding);
  2086     emit_d32( cbuf, 0 );
  2087     // JNE,s  fail
  2088     emit_opcode(cbuf,0x75);
  2089     emit_d8(cbuf, 5 );
  2090     // MOV  res,1
  2091     emit_opcode( cbuf, 0xB8 + res_encoding);
  2092     emit_d32( cbuf, 1 );
  2093     // fail:
  2094   %}
  2096   enc_class set_instruction_start( ) %{
  2097     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
  2098   %}
  2100   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
  2101     int reg_encoding = $ereg$$reg;
  2102     int base  = $mem$$base;
  2103     int index = $mem$$index;
  2104     int scale = $mem$$scale;
  2105     int displace = $mem$$disp;
  2106     relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2107     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2108   %}
  2110   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2111     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2112     int base  = $mem$$base;
  2113     int index = $mem$$index;
  2114     int scale = $mem$$scale;
  2115     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2116     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
  2117     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
  2118   %}
  2120   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2121     int r1, r2;
  2122     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2123     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2124     emit_opcode(cbuf,0x0F);
  2125     emit_opcode(cbuf,$tertiary);
  2126     emit_rm(cbuf, 0x3, r1, r2);
  2127     emit_d8(cbuf,$cnt$$constant);
  2128     emit_d8(cbuf,$primary);
  2129     emit_rm(cbuf, 0x3, $secondary, r1);
  2130     emit_d8(cbuf,$cnt$$constant);
  2131   %}
  2133   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2134     emit_opcode( cbuf, 0x8B ); // Move
  2135     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2136     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2137       emit_d8(cbuf,$primary);
  2138       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2139       emit_d8(cbuf,$cnt$$constant-32);
  2141     emit_d8(cbuf,$primary);
  2142     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2143     emit_d8(cbuf,31);
  2144   %}
  2146   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2147     int r1, r2;
  2148     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2149     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2151     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2152     emit_rm(cbuf, 0x3, r1, r2);
  2153     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2154       emit_opcode(cbuf,$primary);
  2155       emit_rm(cbuf, 0x3, $secondary, r1);
  2156       emit_d8(cbuf,$cnt$$constant-32);
  2158     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2159     emit_rm(cbuf, 0x3, r2, r2);
  2160   %}
  2162   // Clone of RegMem but accepts an extra parameter to access each
  2163   // half of a double in memory; it never needs relocation info.
  2164   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
  2165     emit_opcode(cbuf,$opcode$$constant);
  2166     int reg_encoding = $rm_reg$$reg;
  2167     int base     = $mem$$base;
  2168     int index    = $mem$$index;
  2169     int scale    = $mem$$scale;
  2170     int displace = $mem$$disp + $disp_for_half$$constant;
  2171     relocInfo::relocType disp_reloc = relocInfo::none;
  2172     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2173   %}
  2175   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2176   //
  2177   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2178   // and it never needs relocation information.
  2179   // Frequently used to move data between FPU's Stack Top and memory.
  2180   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2181     int rm_byte_opcode = $rm_opcode$$constant;
  2182     int base     = $mem$$base;
  2183     int index    = $mem$$index;
  2184     int scale    = $mem$$scale;
  2185     int displace = $mem$$disp;
  2186     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
  2187     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
  2188   %}
  2190   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2191     int rm_byte_opcode = $rm_opcode$$constant;
  2192     int base     = $mem$$base;
  2193     int index    = $mem$$index;
  2194     int scale    = $mem$$scale;
  2195     int displace = $mem$$disp;
  2196     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2197     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  2198   %}
  2200   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
  2201     int reg_encoding = $dst$$reg;
  2202     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2203     int index        = 0x04;            // 0x04 indicates no index
  2204     int scale        = 0x00;            // 0x00 indicates no scale
  2205     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2206     relocInfo::relocType disp_reloc = relocInfo::none;
  2207     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2208   %}
  2210   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
  2211     // Compare dst,src
  2212     emit_opcode(cbuf,0x3B);
  2213     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2214     // jmp dst < src around move
  2215     emit_opcode(cbuf,0x7C);
  2216     emit_d8(cbuf,2);
  2217     // move dst,src
  2218     emit_opcode(cbuf,0x8B);
  2219     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2220   %}
  2222   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
  2223     // Compare dst,src
  2224     emit_opcode(cbuf,0x3B);
  2225     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2226     // jmp dst > src around move
  2227     emit_opcode(cbuf,0x7F);
  2228     emit_d8(cbuf,2);
  2229     // move dst,src
  2230     emit_opcode(cbuf,0x8B);
  2231     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2232   %}
  2234   enc_class enc_FPR_store(memory mem, regDPR src) %{
  2235     // If src is FPR1, we can just FST to store it.
  2236     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2237     int reg_encoding = 0x2; // Just store
  2238     int base  = $mem$$base;
  2239     int index = $mem$$index;
  2240     int scale = $mem$$scale;
  2241     int displace = $mem$$disp;
  2242     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  2243     if( $src$$reg != FPR1L_enc ) {
  2244       reg_encoding = 0x3;  // Store & pop
  2245       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2246       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2248     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
  2249     emit_opcode(cbuf,$primary);
  2250     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
  2251   %}
  2253   enc_class neg_reg(rRegI dst) %{
  2254     // NEG $dst
  2255     emit_opcode(cbuf,0xF7);
  2256     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2257   %}
  2259   enc_class setLT_reg(eCXRegI dst) %{
  2260     // SETLT $dst
  2261     emit_opcode(cbuf,0x0F);
  2262     emit_opcode(cbuf,0x9C);
  2263     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2264   %}
  2266   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2267     int tmpReg = $tmp$$reg;
  2269     // SUB $p,$q
  2270     emit_opcode(cbuf,0x2B);
  2271     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2272     // SBB $tmp,$tmp
  2273     emit_opcode(cbuf,0x1B);
  2274     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2275     // AND $tmp,$y
  2276     emit_opcode(cbuf,0x23);
  2277     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2278     // ADD $p,$tmp
  2279     emit_opcode(cbuf,0x03);
  2280     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2281   %}
  2283   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2284     // TEST shift,32
  2285     emit_opcode(cbuf,0xF7);
  2286     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2287     emit_d32(cbuf,0x20);
  2288     // JEQ,s small
  2289     emit_opcode(cbuf, 0x74);
  2290     emit_d8(cbuf, 0x04);
  2291     // MOV    $dst.hi,$dst.lo
  2292     emit_opcode( cbuf, 0x8B );
  2293     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2294     // CLR    $dst.lo
  2295     emit_opcode(cbuf, 0x33);
  2296     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2297 // small:
  2298     // SHLD   $dst.hi,$dst.lo,$shift
  2299     emit_opcode(cbuf,0x0F);
  2300     emit_opcode(cbuf,0xA5);
  2301     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2302     // SHL    $dst.lo,$shift"
  2303     emit_opcode(cbuf,0xD3);
  2304     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2305   %}
  2307   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2308     // TEST shift,32
  2309     emit_opcode(cbuf,0xF7);
  2310     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2311     emit_d32(cbuf,0x20);
  2312     // JEQ,s small
  2313     emit_opcode(cbuf, 0x74);
  2314     emit_d8(cbuf, 0x04);
  2315     // MOV    $dst.lo,$dst.hi
  2316     emit_opcode( cbuf, 0x8B );
  2317     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2318     // CLR    $dst.hi
  2319     emit_opcode(cbuf, 0x33);
  2320     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2321 // small:
  2322     // SHRD   $dst.lo,$dst.hi,$shift
  2323     emit_opcode(cbuf,0x0F);
  2324     emit_opcode(cbuf,0xAD);
  2325     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2326     // SHR    $dst.hi,$shift"
  2327     emit_opcode(cbuf,0xD3);
  2328     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2329   %}
  2331   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2332     // TEST shift,32
  2333     emit_opcode(cbuf,0xF7);
  2334     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2335     emit_d32(cbuf,0x20);
  2336     // JEQ,s small
  2337     emit_opcode(cbuf, 0x74);
  2338     emit_d8(cbuf, 0x05);
  2339     // MOV    $dst.lo,$dst.hi
  2340     emit_opcode( cbuf, 0x8B );
  2341     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2342     // SAR    $dst.hi,31
  2343     emit_opcode(cbuf, 0xC1);
  2344     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2345     emit_d8(cbuf, 0x1F );
  2346 // small:
  2347     // SHRD   $dst.lo,$dst.hi,$shift
  2348     emit_opcode(cbuf,0x0F);
  2349     emit_opcode(cbuf,0xAD);
  2350     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2351     // SAR    $dst.hi,$shift"
  2352     emit_opcode(cbuf,0xD3);
  2353     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2354   %}
  2357   // ----------------- Encodings for floating point unit -----------------
  2358   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2359   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
  2360     $$$emit8$primary;
  2361     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2362   %}
  2364   // Pop argument in FPR0 with FSTP ST(0)
  2365   enc_class PopFPU() %{
  2366     emit_opcode( cbuf, 0xDD );
  2367     emit_d8( cbuf, 0xD8 );
  2368   %}
  2370   // !!!!! equivalent to Pop_Reg_F
  2371   enc_class Pop_Reg_DPR( regDPR dst ) %{
  2372     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2373     emit_d8( cbuf, 0xD8+$dst$$reg );
  2374   %}
  2376   enc_class Push_Reg_DPR( regDPR dst ) %{
  2377     emit_opcode( cbuf, 0xD9 );
  2378     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2379   %}
  2381   enc_class strictfp_bias1( regDPR dst ) %{
  2382     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2383     emit_opcode( cbuf, 0x2D );
  2384     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2385     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2386     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2387   %}
  2389   enc_class strictfp_bias2( regDPR dst ) %{
  2390     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2391     emit_opcode( cbuf, 0x2D );
  2392     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2393     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2394     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2395   %}
  2397   // Special case for moving an integer register to a stack slot.
  2398   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2399     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2400   %}
  2402   // Special case for moving a register to a stack slot.
  2403   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
  2404     // Opcode already emitted
  2405     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2406     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2407     emit_d32(cbuf, $dst$$disp);   // Displacement
  2408   %}
  2410   // Push the integer in stackSlot 'src' onto FP-stack
  2411   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2412     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2413   %}
  2415   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2416   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2417     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2418   %}
  2420   // Same as Pop_Mem_F except for opcode
  2421   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2422   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2423     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2424   %}
  2426   enc_class Pop_Reg_FPR( regFPR dst ) %{
  2427     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2428     emit_d8( cbuf, 0xD8+$dst$$reg );
  2429   %}
  2431   enc_class Push_Reg_FPR( regFPR dst ) %{
  2432     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2433     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2434   %}
  2436   // Push FPU's float to a stack-slot, and pop FPU-stack
  2437   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
  2438     int pop = 0x02;
  2439     if ($src$$reg != FPR1L_enc) {
  2440       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2441       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2442       pop = 0x03;
  2444     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2445   %}
  2447   // Push FPU's double to a stack-slot, and pop FPU-stack
  2448   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
  2449     int pop = 0x02;
  2450     if ($src$$reg != FPR1L_enc) {
  2451       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2452       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2453       pop = 0x03;
  2455     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2456   %}
  2458   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2459   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
  2460     int pop = 0xD0 - 1; // -1 since we skip FLD
  2461     if ($src$$reg != FPR1L_enc) {
  2462       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2463       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2464       pop = 0xD8;
  2466     emit_opcode( cbuf, 0xDD );
  2467     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2468   %}
  2471   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
  2472     // load dst in FPR0
  2473     emit_opcode( cbuf, 0xD9 );
  2474     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2475     if ($src$$reg != FPR1L_enc) {
  2476       // fincstp
  2477       emit_opcode (cbuf, 0xD9);
  2478       emit_opcode (cbuf, 0xF7);
  2479       // swap src with FPR1:
  2480       // FXCH FPR1 with src
  2481       emit_opcode(cbuf, 0xD9);
  2482       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2483       // fdecstp
  2484       emit_opcode (cbuf, 0xD9);
  2485       emit_opcode (cbuf, 0xF6);
  2487   %}
  2489   enc_class Push_ModD_encoding(regD src0, regD src1) %{
  2490     MacroAssembler _masm(&cbuf);
  2491     __ subptr(rsp, 8);
  2492     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  2493     __ fld_d(Address(rsp, 0));
  2494     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  2495     __ fld_d(Address(rsp, 0));
  2496   %}
  2498   enc_class Push_ModF_encoding(regF src0, regF src1) %{
  2499     MacroAssembler _masm(&cbuf);
  2500     __ subptr(rsp, 4);
  2501     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
  2502     __ fld_s(Address(rsp, 0));
  2503     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
  2504     __ fld_s(Address(rsp, 0));
  2505   %}
  2507   enc_class Push_ResultD(regD dst) %{
  2508     MacroAssembler _masm(&cbuf);
  2509     __ fstp_d(Address(rsp, 0));
  2510     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  2511     __ addptr(rsp, 8);
  2512   %}
  2514   enc_class Push_ResultF(regF dst, immI d8) %{
  2515     MacroAssembler _masm(&cbuf);
  2516     __ fstp_s(Address(rsp, 0));
  2517     __ movflt($dst$$XMMRegister, Address(rsp, 0));
  2518     __ addptr(rsp, $d8$$constant);
  2519   %}
  2521   enc_class Push_SrcD(regD src) %{
  2522     MacroAssembler _masm(&cbuf);
  2523     __ subptr(rsp, 8);
  2524     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2525     __ fld_d(Address(rsp, 0));
  2526   %}
  2528   enc_class push_stack_temp_qword() %{
  2529     MacroAssembler _masm(&cbuf);
  2530     __ subptr(rsp, 8);
  2531   %}
  2533   enc_class pop_stack_temp_qword() %{
  2534     MacroAssembler _masm(&cbuf);
  2535     __ addptr(rsp, 8);
  2536   %}
  2538   enc_class push_xmm_to_fpr1(regD src) %{
  2539     MacroAssembler _masm(&cbuf);
  2540     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  2541     __ fld_d(Address(rsp, 0));
  2542   %}
  2544   enc_class Push_Result_Mod_DPR( regDPR src) %{
  2545     if ($src$$reg != FPR1L_enc) {
  2546       // fincstp
  2547       emit_opcode (cbuf, 0xD9);
  2548       emit_opcode (cbuf, 0xF7);
  2549       // FXCH FPR1 with src
  2550       emit_opcode(cbuf, 0xD9);
  2551       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2552       // fdecstp
  2553       emit_opcode (cbuf, 0xD9);
  2554       emit_opcode (cbuf, 0xF6);
  2556     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2557     // // FSTP   FPR$dst$$reg
  2558     // emit_opcode( cbuf, 0xDD );
  2559     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2560   %}
  2562   enc_class fnstsw_sahf_skip_parity() %{
  2563     // fnstsw ax
  2564     emit_opcode( cbuf, 0xDF );
  2565     emit_opcode( cbuf, 0xE0 );
  2566     // sahf
  2567     emit_opcode( cbuf, 0x9E );
  2568     // jnp  ::skip
  2569     emit_opcode( cbuf, 0x7B );
  2570     emit_opcode( cbuf, 0x05 );
  2571   %}
  2573   enc_class emitModDPR() %{
  2574     // fprem must be iterative
  2575     // :: loop
  2576     // fprem
  2577     emit_opcode( cbuf, 0xD9 );
  2578     emit_opcode( cbuf, 0xF8 );
  2579     // wait
  2580     emit_opcode( cbuf, 0x9b );
  2581     // fnstsw ax
  2582     emit_opcode( cbuf, 0xDF );
  2583     emit_opcode( cbuf, 0xE0 );
  2584     // sahf
  2585     emit_opcode( cbuf, 0x9E );
  2586     // jp  ::loop
  2587     emit_opcode( cbuf, 0x0F );
  2588     emit_opcode( cbuf, 0x8A );
  2589     emit_opcode( cbuf, 0xF4 );
  2590     emit_opcode( cbuf, 0xFF );
  2591     emit_opcode( cbuf, 0xFF );
  2592     emit_opcode( cbuf, 0xFF );
  2593   %}
  2595   enc_class fpu_flags() %{
  2596     // fnstsw_ax
  2597     emit_opcode( cbuf, 0xDF);
  2598     emit_opcode( cbuf, 0xE0);
  2599     // test ax,0x0400
  2600     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2601     emit_opcode( cbuf, 0xA9 );
  2602     emit_d16   ( cbuf, 0x0400 );
  2603     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2604     // // test rax,0x0400
  2605     // emit_opcode( cbuf, 0xA9 );
  2606     // emit_d32   ( cbuf, 0x00000400 );
  2607     //
  2608     // jz exit (no unordered comparison)
  2609     emit_opcode( cbuf, 0x74 );
  2610     emit_d8    ( cbuf, 0x02 );
  2611     // mov ah,1 - treat as LT case (set carry flag)
  2612     emit_opcode( cbuf, 0xB4 );
  2613     emit_d8    ( cbuf, 0x01 );
  2614     // sahf
  2615     emit_opcode( cbuf, 0x9E);
  2616   %}
  2618   enc_class cmpF_P6_fixup() %{
  2619     // Fixup the integer flags in case comparison involved a NaN
  2620     //
  2621     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2622     emit_opcode( cbuf, 0x7B );
  2623     emit_d8    ( cbuf, 0x03 );
  2624     // MOV AH,1 - treat as LT case (set carry flag)
  2625     emit_opcode( cbuf, 0xB4 );
  2626     emit_d8    ( cbuf, 0x01 );
  2627     // SAHF
  2628     emit_opcode( cbuf, 0x9E);
  2629     // NOP     // target for branch to avoid branch to branch
  2630     emit_opcode( cbuf, 0x90);
  2631   %}
  2633 //     fnstsw_ax();
  2634 //     sahf();
  2635 //     movl(dst, nan_result);
  2636 //     jcc(Assembler::parity, exit);
  2637 //     movl(dst, less_result);
  2638 //     jcc(Assembler::below, exit);
  2639 //     movl(dst, equal_result);
  2640 //     jcc(Assembler::equal, exit);
  2641 //     movl(dst, greater_result);
  2643 // less_result     =  1;
  2644 // greater_result  = -1;
  2645 // equal_result    = 0;
  2646 // nan_result      = -1;
  2648   enc_class CmpF_Result(rRegI dst) %{
  2649     // fnstsw_ax();
  2650     emit_opcode( cbuf, 0xDF);
  2651     emit_opcode( cbuf, 0xE0);
  2652     // sahf
  2653     emit_opcode( cbuf, 0x9E);
  2654     // movl(dst, nan_result);
  2655     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2656     emit_d32( cbuf, -1 );
  2657     // jcc(Assembler::parity, exit);
  2658     emit_opcode( cbuf, 0x7A );
  2659     emit_d8    ( cbuf, 0x13 );
  2660     // movl(dst, less_result);
  2661     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2662     emit_d32( cbuf, -1 );
  2663     // jcc(Assembler::below, exit);
  2664     emit_opcode( cbuf, 0x72 );
  2665     emit_d8    ( cbuf, 0x0C );
  2666     // movl(dst, equal_result);
  2667     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2668     emit_d32( cbuf, 0 );
  2669     // jcc(Assembler::equal, exit);
  2670     emit_opcode( cbuf, 0x74 );
  2671     emit_d8    ( cbuf, 0x05 );
  2672     // movl(dst, greater_result);
  2673     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2674     emit_d32( cbuf, 1 );
  2675   %}
  2678   // Compare the longs and set flags
  2679   // BROKEN!  Do Not use as-is
  2680   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2681     // CMP    $src1.hi,$src2.hi
  2682     emit_opcode( cbuf, 0x3B );
  2683     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2684     // JNE,s  done
  2685     emit_opcode(cbuf,0x75);
  2686     emit_d8(cbuf, 2 );
  2687     // CMP    $src1.lo,$src2.lo
  2688     emit_opcode( cbuf, 0x3B );
  2689     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2690 // done:
  2691   %}
  2693   enc_class convert_int_long( regL dst, rRegI src ) %{
  2694     // mov $dst.lo,$src
  2695     int dst_encoding = $dst$$reg;
  2696     int src_encoding = $src$$reg;
  2697     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2698     // mov $dst.hi,$src
  2699     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2700     // sar $dst.hi,31
  2701     emit_opcode( cbuf, 0xC1 );
  2702     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2703     emit_d8(cbuf, 0x1F );
  2704   %}
  2706   enc_class convert_long_double( eRegL src ) %{
  2707     // push $src.hi
  2708     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2709     // push $src.lo
  2710     emit_opcode(cbuf, 0x50+$src$$reg  );
  2711     // fild 64-bits at [SP]
  2712     emit_opcode(cbuf,0xdf);
  2713     emit_d8(cbuf, 0x6C);
  2714     emit_d8(cbuf, 0x24);
  2715     emit_d8(cbuf, 0x00);
  2716     // pop stack
  2717     emit_opcode(cbuf, 0x83); // add  SP, #8
  2718     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2719     emit_d8(cbuf, 0x8);
  2720   %}
  2722   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  2723     // IMUL   EDX:EAX,$src1
  2724     emit_opcode( cbuf, 0xF7 );
  2725     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  2726     // SAR    EDX,$cnt-32
  2727     int shift_count = ((int)$cnt$$constant) - 32;
  2728     if (shift_count > 0) {
  2729       emit_opcode(cbuf, 0xC1);
  2730       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  2731       emit_d8(cbuf, shift_count);
  2733   %}
  2735   // this version doesn't have add sp, 8
  2736   enc_class convert_long_double2( eRegL src ) %{
  2737     // push $src.hi
  2738     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  2739     // push $src.lo
  2740     emit_opcode(cbuf, 0x50+$src$$reg  );
  2741     // fild 64-bits at [SP]
  2742     emit_opcode(cbuf,0xdf);
  2743     emit_d8(cbuf, 0x6C);
  2744     emit_d8(cbuf, 0x24);
  2745     emit_d8(cbuf, 0x00);
  2746   %}
  2748   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  2749     // Basic idea: long = (long)int * (long)int
  2750     // IMUL EDX:EAX, src
  2751     emit_opcode( cbuf, 0xF7 );
  2752     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  2753   %}
  2755   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  2756     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  2757     // MUL EDX:EAX, src
  2758     emit_opcode( cbuf, 0xF7 );
  2759     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  2760   %}
  2762   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
  2763     // Basic idea: lo(result) = lo(x_lo * y_lo)
  2764     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  2765     // MOV    $tmp,$src.lo
  2766     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  2767     // IMUL   $tmp,EDX
  2768     emit_opcode( cbuf, 0x0F );
  2769     emit_opcode( cbuf, 0xAF );
  2770     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2771     // MOV    EDX,$src.hi
  2772     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  2773     // IMUL   EDX,EAX
  2774     emit_opcode( cbuf, 0x0F );
  2775     emit_opcode( cbuf, 0xAF );
  2776     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2777     // ADD    $tmp,EDX
  2778     emit_opcode( cbuf, 0x03 );
  2779     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2780     // MUL   EDX:EAX,$src.lo
  2781     emit_opcode( cbuf, 0xF7 );
  2782     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  2783     // ADD    EDX,ESI
  2784     emit_opcode( cbuf, 0x03 );
  2785     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  2786   %}
  2788   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
  2789     // Basic idea: lo(result) = lo(src * y_lo)
  2790     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  2791     // IMUL   $tmp,EDX,$src
  2792     emit_opcode( cbuf, 0x6B );
  2793     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  2794     emit_d8( cbuf, (int)$src$$constant );
  2795     // MOV    EDX,$src
  2796     emit_opcode(cbuf, 0xB8 + EDX_enc);
  2797     emit_d32( cbuf, (int)$src$$constant );
  2798     // MUL   EDX:EAX,EDX
  2799     emit_opcode( cbuf, 0xF7 );
  2800     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  2801     // ADD    EDX,ESI
  2802     emit_opcode( cbuf, 0x03 );
  2803     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  2804   %}
  2806   enc_class long_div( eRegL src1, eRegL src2 ) %{
  2807     // PUSH src1.hi
  2808     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2809     // PUSH src1.lo
  2810     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2811     // PUSH src2.hi
  2812     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2813     // PUSH src2.lo
  2814     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2815     // CALL directly to the runtime
  2816     cbuf.set_insts_mark();
  2817     emit_opcode(cbuf,0xE8);       // Call into runtime
  2818     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2819     // Restore stack
  2820     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2821     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2822     emit_d8(cbuf, 4*4);
  2823   %}
  2825   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  2826     // PUSH src1.hi
  2827     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  2828     // PUSH src1.lo
  2829     emit_opcode(cbuf,               0x50+$src1$$reg  );
  2830     // PUSH src2.hi
  2831     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  2832     // PUSH src2.lo
  2833     emit_opcode(cbuf,               0x50+$src2$$reg  );
  2834     // CALL directly to the runtime
  2835     cbuf.set_insts_mark();
  2836     emit_opcode(cbuf,0xE8);       // Call into runtime
  2837     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2838     // Restore stack
  2839     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  2840     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  2841     emit_d8(cbuf, 4*4);
  2842   %}
  2844   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
  2845     // MOV   $tmp,$src.lo
  2846     emit_opcode(cbuf, 0x8B);
  2847     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2848     // OR    $tmp,$src.hi
  2849     emit_opcode(cbuf, 0x0B);
  2850     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2851   %}
  2853   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  2854     // CMP    $src1.lo,$src2.lo
  2855     emit_opcode( cbuf, 0x3B );
  2856     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2857     // JNE,s  skip
  2858     emit_cc(cbuf, 0x70, 0x5);
  2859     emit_d8(cbuf,2);
  2860     // CMP    $src1.hi,$src2.hi
  2861     emit_opcode( cbuf, 0x3B );
  2862     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2863   %}
  2865   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
  2866     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  2867     emit_opcode( cbuf, 0x3B );
  2868     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2869     // MOV    $tmp,$src1.hi
  2870     emit_opcode( cbuf, 0x8B );
  2871     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  2872     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  2873     emit_opcode( cbuf, 0x1B );
  2874     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  2875   %}
  2877   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
  2878     // XOR    $tmp,$tmp
  2879     emit_opcode(cbuf,0x33);  // XOR
  2880     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  2881     // CMP    $tmp,$src.lo
  2882     emit_opcode( cbuf, 0x3B );
  2883     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  2884     // SBB    $tmp,$src.hi
  2885     emit_opcode( cbuf, 0x1B );
  2886     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  2887   %}
  2889  // Sniff, sniff... smells like Gnu Superoptimizer
  2890   enc_class neg_long( eRegL dst ) %{
  2891     emit_opcode(cbuf,0xF7);    // NEG hi
  2892     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2893     emit_opcode(cbuf,0xF7);    // NEG lo
  2894     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  2895     emit_opcode(cbuf,0x83);    // SBB hi,0
  2896     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  2897     emit_d8    (cbuf,0 );
  2898   %}
  2900   enc_class enc_pop_rdx() %{
  2901     emit_opcode(cbuf,0x5A);
  2902   %}
  2904   enc_class enc_rethrow() %{
  2905     cbuf.set_insts_mark();
  2906     emit_opcode(cbuf, 0xE9);        // jmp    entry
  2907     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
  2908                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  2909   %}
  2912   // Convert a double to an int.  Java semantics require we do complex
  2913   // manglelations in the corner cases.  So we set the rounding mode to
  2914   // 'zero', store the darned double down as an int, and reset the
  2915   // rounding mode to 'nearest'.  The hardware throws an exception which
  2916   // patches up the correct value directly to the stack.
  2917   enc_class DPR2I_encoding( regDPR src ) %{
  2918     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  2919     // exceptions here, so that a NAN or other corner-case value will
  2920     // thrown an exception (but normal values get converted at full speed).
  2921     // However, I2C adapters and other float-stack manglers leave pending
  2922     // invalid-op exceptions hanging.  We would have to clear them before
  2923     // enabling them and that is more expensive than just testing for the
  2924     // invalid value Intel stores down in the corner cases.
  2925     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  2926     emit_opcode(cbuf,0x2D);
  2927     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  2928     // Allocate a word
  2929     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2930     emit_opcode(cbuf,0xEC);
  2931     emit_d8(cbuf,0x04);
  2932     // Encoding assumes a double has been pushed into FPR0.
  2933     // Store down the double as an int, popping the FPU stack
  2934     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  2935     emit_opcode(cbuf,0x1C);
  2936     emit_d8(cbuf,0x24);
  2937     // Restore the rounding mode; mask the exception
  2938     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  2939     emit_opcode(cbuf,0x2D);
  2940     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  2941         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  2942         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  2944     // Load the converted int; adjust CPU stack
  2945     emit_opcode(cbuf,0x58);       // POP EAX
  2946     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  2947     emit_d32   (cbuf,0x80000000); //         0x80000000
  2948     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2949     emit_d8    (cbuf,0x07);       // Size of slow_call
  2950     // Push src onto stack slow-path
  2951     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  2952     emit_d8    (cbuf,0xC0-1+$src$$reg );
  2953     // CALL directly to the runtime
  2954     cbuf.set_insts_mark();
  2955     emit_opcode(cbuf,0xE8);       // Call into runtime
  2956     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2957     // Carry on here...
  2958   %}
  2960   enc_class DPR2L_encoding( regDPR src ) %{
  2961     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  2962     emit_opcode(cbuf,0x2D);
  2963     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  2964     // Allocate a word
  2965     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2966     emit_opcode(cbuf,0xEC);
  2967     emit_d8(cbuf,0x08);
  2968     // Encoding assumes a double has been pushed into FPR0.
  2969     // Store down the double as a long, popping the FPU stack
  2970     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  2971     emit_opcode(cbuf,0x3C);
  2972     emit_d8(cbuf,0x24);
  2973     // Restore the rounding mode; mask the exception
  2974     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  2975     emit_opcode(cbuf,0x2D);
  2976     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  2977         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  2978         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  2980     // Load the converted int; adjust CPU stack
  2981     emit_opcode(cbuf,0x58);       // POP EAX
  2982     emit_opcode(cbuf,0x5A);       // POP EDX
  2983     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  2984     emit_d8    (cbuf,0xFA);       // rdx
  2985     emit_d32   (cbuf,0x80000000); //         0x80000000
  2986     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2987     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  2988     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  2989     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  2990     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  2991     emit_d8    (cbuf,0x07);       // Size of slow_call
  2992     // Push src onto stack slow-path
  2993     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  2994     emit_d8    (cbuf,0xC0-1+$src$$reg );
  2995     // CALL directly to the runtime
  2996     cbuf.set_insts_mark();
  2997     emit_opcode(cbuf,0xE8);       // Call into runtime
  2998     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  2999     // Carry on here...
  3000   %}
  3002   enc_class FMul_ST_reg( eRegFPR src1 ) %{
  3003     // Operand was loaded from memory into fp ST (stack top)
  3004     // FMUL   ST,$src  /* D8 C8+i */
  3005     emit_opcode(cbuf, 0xD8);
  3006     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  3007   %}
  3009   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
  3010     // FADDP  ST,src2  /* D8 C0+i */
  3011     emit_opcode(cbuf, 0xD8);
  3012     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3013     //could use FADDP  src2,fpST  /* DE C0+i */
  3014   %}
  3016   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
  3017     // FADDP  src2,ST  /* DE C0+i */
  3018     emit_opcode(cbuf, 0xDE);
  3019     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  3020   %}
  3022   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
  3023     // Operand has been loaded into fp ST (stack top)
  3024       // FSUB   ST,$src1
  3025       emit_opcode(cbuf, 0xD8);
  3026       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  3028       // FDIV
  3029       emit_opcode(cbuf, 0xD8);
  3030       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  3031   %}
  3033   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
  3034     // Operand was loaded from memory into fp ST (stack top)
  3035     // FADD   ST,$src  /* D8 C0+i */
  3036     emit_opcode(cbuf, 0xD8);
  3037     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3039     // FMUL  ST,src2  /* D8 C*+i */
  3040     emit_opcode(cbuf, 0xD8);
  3041     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3042   %}
  3045   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
  3046     // Operand was loaded from memory into fp ST (stack top)
  3047     // FADD   ST,$src  /* D8 C0+i */
  3048     emit_opcode(cbuf, 0xD8);
  3049     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  3051     // FMULP  src2,ST  /* DE C8+i */
  3052     emit_opcode(cbuf, 0xDE);
  3053     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  3054   %}
  3056   // Atomically load the volatile long
  3057   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  3058     emit_opcode(cbuf,0xDF);
  3059     int rm_byte_opcode = 0x05;
  3060     int base     = $mem$$base;
  3061     int index    = $mem$$index;
  3062     int scale    = $mem$$scale;
  3063     int displace = $mem$$disp;
  3064     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3065     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3066     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  3067   %}
  3069   // Volatile Store Long.  Must be atomic, so move it into
  3070   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  3071   // target address before the store (for null-ptr checks)
  3072   // so the memory operand is used twice in the encoding.
  3073   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  3074     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  3075     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
  3076     emit_opcode(cbuf,0xDF);
  3077     int rm_byte_opcode = 0x07;
  3078     int base     = $mem$$base;
  3079     int index    = $mem$$index;
  3080     int scale    = $mem$$scale;
  3081     int displace = $mem$$disp;
  3082     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
  3083     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
  3084   %}
  3086   // Safepoint Poll.  This polls the safepoint page, and causes an
  3087   // exception if it is not readable. Unfortunately, it kills the condition code
  3088   // in the process
  3089   // We current use TESTL [spp],EDI
  3090   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  3092   enc_class Safepoint_Poll() %{
  3093     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
  3094     emit_opcode(cbuf,0x85);
  3095     emit_rm (cbuf, 0x0, 0x7, 0x5);
  3096     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  3097   %}
  3098 %}
  3101 //----------FRAME--------------------------------------------------------------
  3102 // Definition of frame structure and management information.
  3103 //
  3104 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3105 //                             |   (to get allocators register number
  3106 //  G  Owned by    |        |  v    add OptoReg::stack0())
  3107 //  r   CALLER     |        |
  3108 //  o     |        +--------+      pad to even-align allocators stack-slot
  3109 //  w     V        |  pad0  |        numbers; owned by CALLER
  3110 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3111 //  h     ^        |   in   |  5
  3112 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3113 //  |     |        |        |  3
  3114 //  |     |        +--------+
  3115 //  V     |        | old out|      Empty on Intel, window on Sparc
  3116 //        |    old |preserve|      Must be even aligned.
  3117 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  3118 //        |        |   in   |  3   area for Intel ret address
  3119 //     Owned by    |preserve|      Empty on Sparc.
  3120 //       SELF      +--------+
  3121 //        |        |  pad2  |  2   pad to align old SP
  3122 //        |        +--------+  1
  3123 //        |        | locks  |  0
  3124 //        |        +--------+----> OptoReg::stack0(), even aligned
  3125 //        |        |  pad1  | 11   pad to align new SP
  3126 //        |        +--------+
  3127 //        |        |        | 10
  3128 //        |        | spills |  9   spills
  3129 //        V        |        |  8   (pad0 slot for callee)
  3130 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3131 //        ^        |  out   |  7
  3132 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3133 //     Owned by    +--------+
  3134 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3135 //        |    new |preserve|      Must be even-aligned.
  3136 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3137 //        |        |        |
  3138 //
  3139 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3140 //         known from SELF's arguments and the Java calling convention.
  3141 //         Region 6-7 is determined per call site.
  3142 // Note 2: If the calling convention leaves holes in the incoming argument
  3143 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3144 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3145 //         incoming area, as the Java calling convention is completely under
  3146 //         the control of the AD file.  Doubles can be sorted and packed to
  3147 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3148 //         varargs C calling conventions.
  3149 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3150 //         even aligned with pad0 as needed.
  3151 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3152 //         region 6-11 is even aligned; it may be padded out more so that
  3153 //         the region from SP to FP meets the minimum stack alignment.
  3155 frame %{
  3156   // What direction does stack grow in (assumed to be same for C & Java)
  3157   stack_direction(TOWARDS_LOW);
  3159   // These three registers define part of the calling convention
  3160   // between compiled code and the interpreter.
  3161   inline_cache_reg(EAX);                // Inline Cache Register
  3162   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  3164   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3165   cisc_spilling_operand_name(indOffset32);
  3167   // Number of stack slots consumed by locking an object
  3168   sync_stack_slots(1);
  3170   // Compiled code's Frame Pointer
  3171   frame_pointer(ESP);
  3172   // Interpreter stores its frame pointer in a register which is
  3173   // stored to the stack by I2CAdaptors.
  3174   // I2CAdaptors convert from interpreted java to compiled java.
  3175   interpreter_frame_pointer(EBP);
  3177   // Stack alignment requirement
  3178   // Alignment size in bytes (128-bit -> 16 bytes)
  3179   stack_alignment(StackAlignmentInBytes);
  3181   // Number of stack slots between incoming argument block and the start of
  3182   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3183   // EPILOG must remove this many slots.  Intel needs one slot for
  3184   // return address and one for rbp, (must save rbp)
  3185   in_preserve_stack_slots(2+VerifyStackAtCalls);
  3187   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3188   // for calls to C.  Supports the var-args backing area for register parms.
  3189   varargs_C_out_slots_killed(0);
  3191   // The after-PROLOG location of the return address.  Location of
  3192   // return address specifies a type (REG or STACK) and a number
  3193   // representing the register number (i.e. - use a register name) or
  3194   // stack slot.
  3195   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3196   // Otherwise, it is above the locks and verification slot and alignment word
  3197   return_addr(STACK - 1 +
  3198               round_to((Compile::current()->in_preserve_stack_slots() +
  3199                         Compile::current()->fixed_slots()),
  3200                        stack_alignment_in_slots()));
  3202   // Body of function which returns an integer array locating
  3203   // arguments either in registers or in stack slots.  Passed an array
  3204   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3205   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3206   // arguments for a CALLEE.  Incoming stack arguments are
  3207   // automatically biased by the preserve_stack_slots field above.
  3208   calling_convention %{
  3209     // No difference between ingoing/outgoing just pass false
  3210     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3211   %}
  3214   // Body of function which returns an integer array locating
  3215   // arguments either in registers or in stack slots.  Passed an array
  3216   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3217   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3218   // arguments for a CALLEE.  Incoming stack arguments are
  3219   // automatically biased by the preserve_stack_slots field above.
  3220   c_calling_convention %{
  3221     // This is obviously always outgoing
  3222     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3223   %}
  3225   // Location of C & interpreter return values
  3226   c_return_value %{
  3227     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3228     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3229     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3231     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  3232     // that C functions return float and double results in XMM0.
  3233     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3234       return OptoRegPair(XMM0b_num,XMM0_num);
  3235     if( ideal_reg == Op_RegF && UseSSE>=2 )
  3236       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3238     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3239   %}
  3241   // Location of return values
  3242   return_value %{
  3243     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3244     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  3245     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  3246     if( ideal_reg == Op_RegD && UseSSE>=2 )
  3247       return OptoRegPair(XMM0b_num,XMM0_num);
  3248     if( ideal_reg == Op_RegF && UseSSE>=1 )
  3249       return OptoRegPair(OptoReg::Bad,XMM0_num);
  3250     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3251   %}
  3253 %}
  3255 //----------ATTRIBUTES---------------------------------------------------------
  3256 //----------Operand Attributes-------------------------------------------------
  3257 op_attrib op_cost(0);        // Required cost attribute
  3259 //----------Instruction Attributes---------------------------------------------
  3260 ins_attrib ins_cost(100);       // Required cost attribute
  3261 ins_attrib ins_size(8);         // Required size attribute (in bits)
  3262 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3263                                 // non-matching short branch variant of some
  3264                                                             // long branch?
  3265 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  3266                                 // specifies the alignment that some part of the instruction (not
  3267                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3268                                 // function must be provided for the instruction
  3270 //----------OPERANDS-----------------------------------------------------------
  3271 // Operand definitions must precede instruction definitions for correct parsing
  3272 // in the ADLC because operands constitute user defined types which are used in
  3273 // instruction definitions.
  3275 //----------Simple Operands----------------------------------------------------
  3276 // Immediate Operands
  3277 // Integer Immediate
  3278 operand immI() %{
  3279   match(ConI);
  3281   op_cost(10);
  3282   format %{ %}
  3283   interface(CONST_INTER);
  3284 %}
  3286 // Constant for test vs zero
  3287 operand immI0() %{
  3288   predicate(n->get_int() == 0);
  3289   match(ConI);
  3291   op_cost(0);
  3292   format %{ %}
  3293   interface(CONST_INTER);
  3294 %}
  3296 // Constant for increment
  3297 operand immI1() %{
  3298   predicate(n->get_int() == 1);
  3299   match(ConI);
  3301   op_cost(0);
  3302   format %{ %}
  3303   interface(CONST_INTER);
  3304 %}
  3306 // Constant for decrement
  3307 operand immI_M1() %{
  3308   predicate(n->get_int() == -1);
  3309   match(ConI);
  3311   op_cost(0);
  3312   format %{ %}
  3313   interface(CONST_INTER);
  3314 %}
  3316 // Valid scale values for addressing modes
  3317 operand immI2() %{
  3318   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3319   match(ConI);
  3321   format %{ %}
  3322   interface(CONST_INTER);
  3323 %}
  3325 operand immI8() %{
  3326   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3327   match(ConI);
  3329   op_cost(5);
  3330   format %{ %}
  3331   interface(CONST_INTER);
  3332 %}
  3334 operand immI16() %{
  3335   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3336   match(ConI);
  3338   op_cost(10);
  3339   format %{ %}
  3340   interface(CONST_INTER);
  3341 %}
  3343 // Int Immediate non-negative
  3344 operand immU31()
  3345 %{
  3346   predicate(n->get_int() >= 0);
  3347   match(ConI);
  3349   op_cost(0);
  3350   format %{ %}
  3351   interface(CONST_INTER);
  3352 %}
  3354 // Constant for long shifts
  3355 operand immI_32() %{
  3356   predicate( n->get_int() == 32 );
  3357   match(ConI);
  3359   op_cost(0);
  3360   format %{ %}
  3361   interface(CONST_INTER);
  3362 %}
  3364 operand immI_1_31() %{
  3365   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  3366   match(ConI);
  3368   op_cost(0);
  3369   format %{ %}
  3370   interface(CONST_INTER);
  3371 %}
  3373 operand immI_32_63() %{
  3374   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3375   match(ConI);
  3376   op_cost(0);
  3378   format %{ %}
  3379   interface(CONST_INTER);
  3380 %}
  3382 operand immI_1() %{
  3383   predicate( n->get_int() == 1 );
  3384   match(ConI);
  3386   op_cost(0);
  3387   format %{ %}
  3388   interface(CONST_INTER);
  3389 %}
  3391 operand immI_2() %{
  3392   predicate( n->get_int() == 2 );
  3393   match(ConI);
  3395   op_cost(0);
  3396   format %{ %}
  3397   interface(CONST_INTER);
  3398 %}
  3400 operand immI_3() %{
  3401   predicate( n->get_int() == 3 );
  3402   match(ConI);
  3404   op_cost(0);
  3405   format %{ %}
  3406   interface(CONST_INTER);
  3407 %}
  3409 // Pointer Immediate
  3410 operand immP() %{
  3411   match(ConP);
  3413   op_cost(10);
  3414   format %{ %}
  3415   interface(CONST_INTER);
  3416 %}
  3418 // NULL Pointer Immediate
  3419 operand immP0() %{
  3420   predicate( n->get_ptr() == 0 );
  3421   match(ConP);
  3422   op_cost(0);
  3424   format %{ %}
  3425   interface(CONST_INTER);
  3426 %}
  3428 // Long Immediate
  3429 operand immL() %{
  3430   match(ConL);
  3432   op_cost(20);
  3433   format %{ %}
  3434   interface(CONST_INTER);
  3435 %}
  3437 // Long Immediate zero
  3438 operand immL0() %{
  3439   predicate( n->get_long() == 0L );
  3440   match(ConL);
  3441   op_cost(0);
  3443   format %{ %}
  3444   interface(CONST_INTER);
  3445 %}
  3447 // Long Immediate zero
  3448 operand immL_M1() %{
  3449   predicate( n->get_long() == -1L );
  3450   match(ConL);
  3451   op_cost(0);
  3453   format %{ %}
  3454   interface(CONST_INTER);
  3455 %}
  3457 // Long immediate from 0 to 127.
  3458 // Used for a shorter form of long mul by 10.
  3459 operand immL_127() %{
  3460   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3461   match(ConL);
  3462   op_cost(0);
  3464   format %{ %}
  3465   interface(CONST_INTER);
  3466 %}
  3468 // Long Immediate: low 32-bit mask
  3469 operand immL_32bits() %{
  3470   predicate(n->get_long() == 0xFFFFFFFFL);
  3471   match(ConL);
  3472   op_cost(0);
  3474   format %{ %}
  3475   interface(CONST_INTER);
  3476 %}
  3478 // Long Immediate: low 32-bit mask
  3479 operand immL32() %{
  3480   predicate(n->get_long() == (int)(n->get_long()));
  3481   match(ConL);
  3482   op_cost(20);
  3484   format %{ %}
  3485   interface(CONST_INTER);
  3486 %}
  3488 //Double Immediate zero
  3489 operand immDPR0() %{
  3490   // Do additional (and counter-intuitive) test against NaN to work around VC++
  3491   // bug that generates code such that NaNs compare equal to 0.0
  3492   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  3493   match(ConD);
  3495   op_cost(5);
  3496   format %{ %}
  3497   interface(CONST_INTER);
  3498 %}
  3500 // Double Immediate one
  3501 operand immDPR1() %{
  3502   predicate( UseSSE<=1 && n->getd() == 1.0 );
  3503   match(ConD);
  3505   op_cost(5);
  3506   format %{ %}
  3507   interface(CONST_INTER);
  3508 %}
  3510 // Double Immediate
  3511 operand immDPR() %{
  3512   predicate(UseSSE<=1);
  3513   match(ConD);
  3515   op_cost(5);
  3516   format %{ %}
  3517   interface(CONST_INTER);
  3518 %}
  3520 operand immD() %{
  3521   predicate(UseSSE>=2);
  3522   match(ConD);
  3524   op_cost(5);
  3525   format %{ %}
  3526   interface(CONST_INTER);
  3527 %}
  3529 // Double Immediate zero
  3530 operand immD0() %{
  3531   // Do additional (and counter-intuitive) test against NaN to work around VC++
  3532   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  3533   // compare equal to -0.0.
  3534   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  3535   match(ConD);
  3537   format %{ %}
  3538   interface(CONST_INTER);
  3539 %}
  3541 // Float Immediate zero
  3542 operand immFPR0() %{
  3543   predicate(UseSSE == 0 && n->getf() == 0.0F);
  3544   match(ConF);
  3546   op_cost(5);
  3547   format %{ %}
  3548   interface(CONST_INTER);
  3549 %}
  3551 // Float Immediate one
  3552 operand immFPR1() %{
  3553   predicate(UseSSE == 0 && n->getf() == 1.0F);
  3554   match(ConF);
  3556   op_cost(5);
  3557   format %{ %}
  3558   interface(CONST_INTER);
  3559 %}
  3561 // Float Immediate
  3562 operand immFPR() %{
  3563   predicate( UseSSE == 0 );
  3564   match(ConF);
  3566   op_cost(5);
  3567   format %{ %}
  3568   interface(CONST_INTER);
  3569 %}
  3571 // Float Immediate
  3572 operand immF() %{
  3573   predicate(UseSSE >= 1);
  3574   match(ConF);
  3576   op_cost(5);
  3577   format %{ %}
  3578   interface(CONST_INTER);
  3579 %}
  3581 // Float Immediate zero.  Zero and not -0.0
  3582 operand immF0() %{
  3583   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  3584   match(ConF);
  3586   op_cost(5);
  3587   format %{ %}
  3588   interface(CONST_INTER);
  3589 %}
  3591 // Immediates for special shifts (sign extend)
  3593 // Constants for increment
  3594 operand immI_16() %{
  3595   predicate( n->get_int() == 16 );
  3596   match(ConI);
  3598   format %{ %}
  3599   interface(CONST_INTER);
  3600 %}
  3602 operand immI_24() %{
  3603   predicate( n->get_int() == 24 );
  3604   match(ConI);
  3606   format %{ %}
  3607   interface(CONST_INTER);
  3608 %}
  3610 // Constant for byte-wide masking
  3611 operand immI_255() %{
  3612   predicate( n->get_int() == 255 );
  3613   match(ConI);
  3615   format %{ %}
  3616   interface(CONST_INTER);
  3617 %}
  3619 // Constant for short-wide masking
  3620 operand immI_65535() %{
  3621   predicate(n->get_int() == 65535);
  3622   match(ConI);
  3624   format %{ %}
  3625   interface(CONST_INTER);
  3626 %}
  3628 // Register Operands
  3629 // Integer Register
  3630 operand rRegI() %{
  3631   constraint(ALLOC_IN_RC(int_reg));
  3632   match(RegI);
  3633   match(xRegI);
  3634   match(eAXRegI);
  3635   match(eBXRegI);
  3636   match(eCXRegI);
  3637   match(eDXRegI);
  3638   match(eDIRegI);
  3639   match(eSIRegI);
  3641   format %{ %}
  3642   interface(REG_INTER);
  3643 %}
  3645 // Subset of Integer Register
  3646 operand xRegI(rRegI reg) %{
  3647   constraint(ALLOC_IN_RC(int_x_reg));
  3648   match(reg);
  3649   match(eAXRegI);
  3650   match(eBXRegI);
  3651   match(eCXRegI);
  3652   match(eDXRegI);
  3654   format %{ %}
  3655   interface(REG_INTER);
  3656 %}
  3658 // Special Registers
  3659 operand eAXRegI(xRegI reg) %{
  3660   constraint(ALLOC_IN_RC(eax_reg));
  3661   match(reg);
  3662   match(rRegI);
  3664   format %{ "EAX" %}
  3665   interface(REG_INTER);
  3666 %}
  3668 // Special Registers
  3669 operand eBXRegI(xRegI reg) %{
  3670   constraint(ALLOC_IN_RC(ebx_reg));
  3671   match(reg);
  3672   match(rRegI);
  3674   format %{ "EBX" %}
  3675   interface(REG_INTER);
  3676 %}
  3678 operand eCXRegI(xRegI reg) %{
  3679   constraint(ALLOC_IN_RC(ecx_reg));
  3680   match(reg);
  3681   match(rRegI);
  3683   format %{ "ECX" %}
  3684   interface(REG_INTER);
  3685 %}
  3687 operand eDXRegI(xRegI reg) %{
  3688   constraint(ALLOC_IN_RC(edx_reg));
  3689   match(reg);
  3690   match(rRegI);
  3692   format %{ "EDX" %}
  3693   interface(REG_INTER);
  3694 %}
  3696 operand eDIRegI(xRegI reg) %{
  3697   constraint(ALLOC_IN_RC(edi_reg));
  3698   match(reg);
  3699   match(rRegI);
  3701   format %{ "EDI" %}
  3702   interface(REG_INTER);
  3703 %}
  3705 operand naxRegI() %{
  3706   constraint(ALLOC_IN_RC(nax_reg));
  3707   match(RegI);
  3708   match(eCXRegI);
  3709   match(eDXRegI);
  3710   match(eSIRegI);
  3711   match(eDIRegI);
  3713   format %{ %}
  3714   interface(REG_INTER);
  3715 %}
  3717 operand nadxRegI() %{
  3718   constraint(ALLOC_IN_RC(nadx_reg));
  3719   match(RegI);
  3720   match(eBXRegI);
  3721   match(eCXRegI);
  3722   match(eSIRegI);
  3723   match(eDIRegI);
  3725   format %{ %}
  3726   interface(REG_INTER);
  3727 %}
  3729 operand ncxRegI() %{
  3730   constraint(ALLOC_IN_RC(ncx_reg));
  3731   match(RegI);
  3732   match(eAXRegI);
  3733   match(eDXRegI);
  3734   match(eSIRegI);
  3735   match(eDIRegI);
  3737   format %{ %}
  3738   interface(REG_INTER);
  3739 %}
  3741 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  3742 // //
  3743 operand eSIRegI(xRegI reg) %{
  3744    constraint(ALLOC_IN_RC(esi_reg));
  3745    match(reg);
  3746    match(rRegI);
  3748    format %{ "ESI" %}
  3749    interface(REG_INTER);
  3750 %}
  3752 // Pointer Register
  3753 operand anyRegP() %{
  3754   constraint(ALLOC_IN_RC(any_reg));
  3755   match(RegP);
  3756   match(eAXRegP);
  3757   match(eBXRegP);
  3758   match(eCXRegP);
  3759   match(eDIRegP);
  3760   match(eRegP);
  3762   format %{ %}
  3763   interface(REG_INTER);
  3764 %}
  3766 operand eRegP() %{
  3767   constraint(ALLOC_IN_RC(int_reg));
  3768   match(RegP);
  3769   match(eAXRegP);
  3770   match(eBXRegP);
  3771   match(eCXRegP);
  3772   match(eDIRegP);
  3774   format %{ %}
  3775   interface(REG_INTER);
  3776 %}
  3778 // On windows95, EBP is not safe to use for implicit null tests.
  3779 operand eRegP_no_EBP() %{
  3780   constraint(ALLOC_IN_RC(int_reg_no_rbp));
  3781   match(RegP);
  3782   match(eAXRegP);
  3783   match(eBXRegP);
  3784   match(eCXRegP);
  3785   match(eDIRegP);
  3787   op_cost(100);
  3788   format %{ %}
  3789   interface(REG_INTER);
  3790 %}
  3792 operand naxRegP() %{
  3793   constraint(ALLOC_IN_RC(nax_reg));
  3794   match(RegP);
  3795   match(eBXRegP);
  3796   match(eDXRegP);
  3797   match(eCXRegP);
  3798   match(eSIRegP);
  3799   match(eDIRegP);
  3801   format %{ %}
  3802   interface(REG_INTER);
  3803 %}
  3805 operand nabxRegP() %{
  3806   constraint(ALLOC_IN_RC(nabx_reg));
  3807   match(RegP);
  3808   match(eCXRegP);
  3809   match(eDXRegP);
  3810   match(eSIRegP);
  3811   match(eDIRegP);
  3813   format %{ %}
  3814   interface(REG_INTER);
  3815 %}
  3817 operand pRegP() %{
  3818   constraint(ALLOC_IN_RC(p_reg));
  3819   match(RegP);
  3820   match(eBXRegP);
  3821   match(eDXRegP);
  3822   match(eSIRegP);
  3823   match(eDIRegP);
  3825   format %{ %}
  3826   interface(REG_INTER);
  3827 %}
  3829 // Special Registers
  3830 // Return a pointer value
  3831 operand eAXRegP(eRegP reg) %{
  3832   constraint(ALLOC_IN_RC(eax_reg));
  3833   match(reg);
  3834   format %{ "EAX" %}
  3835   interface(REG_INTER);
  3836 %}
  3838 // Used in AtomicAdd
  3839 operand eBXRegP(eRegP reg) %{
  3840   constraint(ALLOC_IN_RC(ebx_reg));
  3841   match(reg);
  3842   format %{ "EBX" %}
  3843   interface(REG_INTER);
  3844 %}
  3846 // Tail-call (interprocedural jump) to interpreter
  3847 operand eCXRegP(eRegP reg) %{
  3848   constraint(ALLOC_IN_RC(ecx_reg));
  3849   match(reg);
  3850   format %{ "ECX" %}
  3851   interface(REG_INTER);
  3852 %}
  3854 operand eSIRegP(eRegP reg) %{
  3855   constraint(ALLOC_IN_RC(esi_reg));
  3856   match(reg);
  3857   format %{ "ESI" %}
  3858   interface(REG_INTER);
  3859 %}
  3861 // Used in rep stosw
  3862 operand eDIRegP(eRegP reg) %{
  3863   constraint(ALLOC_IN_RC(edi_reg));
  3864   match(reg);
  3865   format %{ "EDI" %}
  3866   interface(REG_INTER);
  3867 %}
  3869 operand eBPRegP() %{
  3870   constraint(ALLOC_IN_RC(ebp_reg));
  3871   match(RegP);
  3872   format %{ "EBP" %}
  3873   interface(REG_INTER);
  3874 %}
  3876 operand eRegL() %{
  3877   constraint(ALLOC_IN_RC(long_reg));
  3878   match(RegL);
  3879   match(eADXRegL);
  3881   format %{ %}
  3882   interface(REG_INTER);
  3883 %}
  3885 operand eADXRegL( eRegL reg ) %{
  3886   constraint(ALLOC_IN_RC(eadx_reg));
  3887   match(reg);
  3889   format %{ "EDX:EAX" %}
  3890   interface(REG_INTER);
  3891 %}
  3893 operand eBCXRegL( eRegL reg ) %{
  3894   constraint(ALLOC_IN_RC(ebcx_reg));
  3895   match(reg);
  3897   format %{ "EBX:ECX" %}
  3898   interface(REG_INTER);
  3899 %}
  3901 // Special case for integer high multiply
  3902 operand eADXRegL_low_only() %{
  3903   constraint(ALLOC_IN_RC(eadx_reg));
  3904   match(RegL);
  3906   format %{ "EAX" %}
  3907   interface(REG_INTER);
  3908 %}
  3910 // Flags register, used as output of compare instructions
  3911 operand eFlagsReg() %{
  3912   constraint(ALLOC_IN_RC(int_flags));
  3913   match(RegFlags);
  3915   format %{ "EFLAGS" %}
  3916   interface(REG_INTER);
  3917 %}
  3919 // Flags register, used as output of FLOATING POINT compare instructions
  3920 operand eFlagsRegU() %{
  3921   constraint(ALLOC_IN_RC(int_flags));
  3922   match(RegFlags);
  3924   format %{ "EFLAGS_U" %}
  3925   interface(REG_INTER);
  3926 %}
  3928 operand eFlagsRegUCF() %{
  3929   constraint(ALLOC_IN_RC(int_flags));
  3930   match(RegFlags);
  3931   predicate(false);
  3933   format %{ "EFLAGS_U_CF" %}
  3934   interface(REG_INTER);
  3935 %}
  3937 // Condition Code Register used by long compare
  3938 operand flagsReg_long_LTGE() %{
  3939   constraint(ALLOC_IN_RC(int_flags));
  3940   match(RegFlags);
  3941   format %{ "FLAGS_LTGE" %}
  3942   interface(REG_INTER);
  3943 %}
  3944 operand flagsReg_long_EQNE() %{
  3945   constraint(ALLOC_IN_RC(int_flags));
  3946   match(RegFlags);
  3947   format %{ "FLAGS_EQNE" %}
  3948   interface(REG_INTER);
  3949 %}
  3950 operand flagsReg_long_LEGT() %{
  3951   constraint(ALLOC_IN_RC(int_flags));
  3952   match(RegFlags);
  3953   format %{ "FLAGS_LEGT" %}
  3954   interface(REG_INTER);
  3955 %}
  3957 // Float register operands
  3958 operand regDPR() %{
  3959   predicate( UseSSE < 2 );
  3960   constraint(ALLOC_IN_RC(fp_dbl_reg));
  3961   match(RegD);
  3962   match(regDPR1);
  3963   match(regDPR2);
  3964   format %{ %}
  3965   interface(REG_INTER);
  3966 %}
  3968 operand regDPR1(regDPR reg) %{
  3969   predicate( UseSSE < 2 );
  3970   constraint(ALLOC_IN_RC(fp_dbl_reg0));
  3971   match(reg);
  3972   format %{ "FPR1" %}
  3973   interface(REG_INTER);
  3974 %}
  3976 operand regDPR2(regDPR reg) %{
  3977   predicate( UseSSE < 2 );
  3978   constraint(ALLOC_IN_RC(fp_dbl_reg1));
  3979   match(reg);
  3980   format %{ "FPR2" %}
  3981   interface(REG_INTER);
  3982 %}
  3984 operand regnotDPR1(regDPR reg) %{
  3985   predicate( UseSSE < 2 );
  3986   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
  3987   match(reg);
  3988   format %{ %}
  3989   interface(REG_INTER);
  3990 %}
  3992 // Float register operands
  3993 operand regFPR() %{
  3994   predicate( UseSSE < 2 );
  3995   constraint(ALLOC_IN_RC(fp_flt_reg));
  3996   match(RegF);
  3997   match(regFPR1);
  3998   format %{ %}
  3999   interface(REG_INTER);
  4000 %}
  4002 // Float register operands
  4003 operand regFPR1(regFPR reg) %{
  4004   predicate( UseSSE < 2 );
  4005   constraint(ALLOC_IN_RC(fp_flt_reg0));
  4006   match(reg);
  4007   format %{ "FPR1" %}
  4008   interface(REG_INTER);
  4009 %}
  4011 // XMM Float register operands
  4012 operand regF() %{
  4013   predicate( UseSSE>=1 );
  4014   constraint(ALLOC_IN_RC(float_reg));
  4015   match(RegF);
  4016   format %{ %}
  4017   interface(REG_INTER);
  4018 %}
  4020 // XMM Double register operands
  4021 operand regD() %{
  4022   predicate( UseSSE>=2 );
  4023   constraint(ALLOC_IN_RC(double_reg));
  4024   match(RegD);
  4025   format %{ %}
  4026   interface(REG_INTER);
  4027 %}
  4030 //----------Memory Operands----------------------------------------------------
  4031 // Direct Memory Operand
  4032 operand direct(immP addr) %{
  4033   match(addr);
  4035   format %{ "[$addr]" %}
  4036   interface(MEMORY_INTER) %{
  4037     base(0xFFFFFFFF);
  4038     index(0x4);
  4039     scale(0x0);
  4040     disp($addr);
  4041   %}
  4042 %}
  4044 // Indirect Memory Operand
  4045 operand indirect(eRegP reg) %{
  4046   constraint(ALLOC_IN_RC(int_reg));
  4047   match(reg);
  4049   format %{ "[$reg]" %}
  4050   interface(MEMORY_INTER) %{
  4051     base($reg);
  4052     index(0x4);
  4053     scale(0x0);
  4054     disp(0x0);
  4055   %}
  4056 %}
  4058 // Indirect Memory Plus Short Offset Operand
  4059 operand indOffset8(eRegP reg, immI8 off) %{
  4060   match(AddP reg off);
  4062   format %{ "[$reg + $off]" %}
  4063   interface(MEMORY_INTER) %{
  4064     base($reg);
  4065     index(0x4);
  4066     scale(0x0);
  4067     disp($off);
  4068   %}
  4069 %}
  4071 // Indirect Memory Plus Long Offset Operand
  4072 operand indOffset32(eRegP reg, immI off) %{
  4073   match(AddP reg off);
  4075   format %{ "[$reg + $off]" %}
  4076   interface(MEMORY_INTER) %{
  4077     base($reg);
  4078     index(0x4);
  4079     scale(0x0);
  4080     disp($off);
  4081   %}
  4082 %}
  4084 // Indirect Memory Plus Long Offset Operand
  4085 operand indOffset32X(rRegI reg, immP off) %{
  4086   match(AddP off reg);
  4088   format %{ "[$reg + $off]" %}
  4089   interface(MEMORY_INTER) %{
  4090     base($reg);
  4091     index(0x4);
  4092     scale(0x0);
  4093     disp($off);
  4094   %}
  4095 %}
  4097 // Indirect Memory Plus Index Register Plus Offset Operand
  4098 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
  4099   match(AddP (AddP reg ireg) off);
  4101   op_cost(10);
  4102   format %{"[$reg + $off + $ireg]" %}
  4103   interface(MEMORY_INTER) %{
  4104     base($reg);
  4105     index($ireg);
  4106     scale(0x0);
  4107     disp($off);
  4108   %}
  4109 %}
  4111 // Indirect Memory Plus Index Register Plus Offset Operand
  4112 operand indIndex(eRegP reg, rRegI ireg) %{
  4113   match(AddP reg ireg);
  4115   op_cost(10);
  4116   format %{"[$reg + $ireg]" %}
  4117   interface(MEMORY_INTER) %{
  4118     base($reg);
  4119     index($ireg);
  4120     scale(0x0);
  4121     disp(0x0);
  4122   %}
  4123 %}
  4125 // // -------------------------------------------------------------------------
  4126 // // 486 architecture doesn't support "scale * index + offset" with out a base
  4127 // // -------------------------------------------------------------------------
  4128 // // Scaled Memory Operands
  4129 // // Indirect Memory Times Scale Plus Offset Operand
  4130 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
  4131 //   match(AddP off (LShiftI ireg scale));
  4132 //
  4133 //   op_cost(10);
  4134 //   format %{"[$off + $ireg << $scale]" %}
  4135 //   interface(MEMORY_INTER) %{
  4136 //     base(0x4);
  4137 //     index($ireg);
  4138 //     scale($scale);
  4139 //     disp($off);
  4140 //   %}
  4141 // %}
  4143 // Indirect Memory Times Scale Plus Index Register
  4144 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
  4145   match(AddP reg (LShiftI ireg scale));
  4147   op_cost(10);
  4148   format %{"[$reg + $ireg << $scale]" %}
  4149   interface(MEMORY_INTER) %{
  4150     base($reg);
  4151     index($ireg);
  4152     scale($scale);
  4153     disp(0x0);
  4154   %}
  4155 %}
  4157 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4158 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
  4159   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4161   op_cost(10);
  4162   format %{"[$reg + $off + $ireg << $scale]" %}
  4163   interface(MEMORY_INTER) %{
  4164     base($reg);
  4165     index($ireg);
  4166     scale($scale);
  4167     disp($off);
  4168   %}
  4169 %}
  4171 //----------Load Long Memory Operands------------------------------------------
  4172 // The load-long idiom will use it's address expression again after loading
  4173 // the first word of the long.  If the load-long destination overlaps with
  4174 // registers used in the addressing expression, the 2nd half will be loaded
  4175 // from a clobbered address.  Fix this by requiring that load-long use
  4176 // address registers that do not overlap with the load-long target.
  4178 // load-long support
  4179 operand load_long_RegP() %{
  4180   constraint(ALLOC_IN_RC(esi_reg));
  4181   match(RegP);
  4182   match(eSIRegP);
  4183   op_cost(100);
  4184   format %{  %}
  4185   interface(REG_INTER);
  4186 %}
  4188 // Indirect Memory Operand Long
  4189 operand load_long_indirect(load_long_RegP reg) %{
  4190   constraint(ALLOC_IN_RC(esi_reg));
  4191   match(reg);
  4193   format %{ "[$reg]" %}
  4194   interface(MEMORY_INTER) %{
  4195     base($reg);
  4196     index(0x4);
  4197     scale(0x0);
  4198     disp(0x0);
  4199   %}
  4200 %}
  4202 // Indirect Memory Plus Long Offset Operand
  4203 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  4204   match(AddP reg off);
  4206   format %{ "[$reg + $off]" %}
  4207   interface(MEMORY_INTER) %{
  4208     base($reg);
  4209     index(0x4);
  4210     scale(0x0);
  4211     disp($off);
  4212   %}
  4213 %}
  4215 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  4218 //----------Special Memory Operands--------------------------------------------
  4219 // Stack Slot Operand - This operand is used for loading and storing temporary
  4220 //                      values on the stack where a match requires a value to
  4221 //                      flow through memory.
  4222 operand stackSlotP(sRegP reg) %{
  4223   constraint(ALLOC_IN_RC(stack_slots));
  4224   // No match rule because this operand is only generated in matching
  4225   format %{ "[$reg]" %}
  4226   interface(MEMORY_INTER) %{
  4227     base(0x4);   // ESP
  4228     index(0x4);  // No Index
  4229     scale(0x0);  // No Scale
  4230     disp($reg);  // Stack Offset
  4231   %}
  4232 %}
  4234 operand stackSlotI(sRegI reg) %{
  4235   constraint(ALLOC_IN_RC(stack_slots));
  4236   // No match rule because this operand is only generated in matching
  4237   format %{ "[$reg]" %}
  4238   interface(MEMORY_INTER) %{
  4239     base(0x4);   // ESP
  4240     index(0x4);  // No Index
  4241     scale(0x0);  // No Scale
  4242     disp($reg);  // Stack Offset
  4243   %}
  4244 %}
  4246 operand stackSlotF(sRegF reg) %{
  4247   constraint(ALLOC_IN_RC(stack_slots));
  4248   // No match rule because this operand is only generated in matching
  4249   format %{ "[$reg]" %}
  4250   interface(MEMORY_INTER) %{
  4251     base(0x4);   // ESP
  4252     index(0x4);  // No Index
  4253     scale(0x0);  // No Scale
  4254     disp($reg);  // Stack Offset
  4255   %}
  4256 %}
  4258 operand stackSlotD(sRegD reg) %{
  4259   constraint(ALLOC_IN_RC(stack_slots));
  4260   // No match rule because this operand is only generated in matching
  4261   format %{ "[$reg]" %}
  4262   interface(MEMORY_INTER) %{
  4263     base(0x4);   // ESP
  4264     index(0x4);  // No Index
  4265     scale(0x0);  // No Scale
  4266     disp($reg);  // Stack Offset
  4267   %}
  4268 %}
  4270 operand stackSlotL(sRegL reg) %{
  4271   constraint(ALLOC_IN_RC(stack_slots));
  4272   // No match rule because this operand is only generated in matching
  4273   format %{ "[$reg]" %}
  4274   interface(MEMORY_INTER) %{
  4275     base(0x4);   // ESP
  4276     index(0x4);  // No Index
  4277     scale(0x0);  // No Scale
  4278     disp($reg);  // Stack Offset
  4279   %}
  4280 %}
  4282 //----------Memory Operands - Win95 Implicit Null Variants----------------
  4283 // Indirect Memory Operand
  4284 operand indirect_win95_safe(eRegP_no_EBP reg)
  4285 %{
  4286   constraint(ALLOC_IN_RC(int_reg));
  4287   match(reg);
  4289   op_cost(100);
  4290   format %{ "[$reg]" %}
  4291   interface(MEMORY_INTER) %{
  4292     base($reg);
  4293     index(0x4);
  4294     scale(0x0);
  4295     disp(0x0);
  4296   %}
  4297 %}
  4299 // Indirect Memory Plus Short Offset Operand
  4300 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  4301 %{
  4302   match(AddP reg off);
  4304   op_cost(100);
  4305   format %{ "[$reg + $off]" %}
  4306   interface(MEMORY_INTER) %{
  4307     base($reg);
  4308     index(0x4);
  4309     scale(0x0);
  4310     disp($off);
  4311   %}
  4312 %}
  4314 // Indirect Memory Plus Long Offset Operand
  4315 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  4316 %{
  4317   match(AddP reg off);
  4319   op_cost(100);
  4320   format %{ "[$reg + $off]" %}
  4321   interface(MEMORY_INTER) %{
  4322     base($reg);
  4323     index(0x4);
  4324     scale(0x0);
  4325     disp($off);
  4326   %}
  4327 %}
  4329 // Indirect Memory Plus Index Register Plus Offset Operand
  4330 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
  4331 %{
  4332   match(AddP (AddP reg ireg) off);
  4334   op_cost(100);
  4335   format %{"[$reg + $off + $ireg]" %}
  4336   interface(MEMORY_INTER) %{
  4337     base($reg);
  4338     index($ireg);
  4339     scale(0x0);
  4340     disp($off);
  4341   %}
  4342 %}
  4344 // Indirect Memory Times Scale Plus Index Register
  4345 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
  4346 %{
  4347   match(AddP reg (LShiftI ireg scale));
  4349   op_cost(100);
  4350   format %{"[$reg + $ireg << $scale]" %}
  4351   interface(MEMORY_INTER) %{
  4352     base($reg);
  4353     index($ireg);
  4354     scale($scale);
  4355     disp(0x0);
  4356   %}
  4357 %}
  4359 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  4360 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
  4361 %{
  4362   match(AddP (AddP reg (LShiftI ireg scale)) off);
  4364   op_cost(100);
  4365   format %{"[$reg + $off + $ireg << $scale]" %}
  4366   interface(MEMORY_INTER) %{
  4367     base($reg);
  4368     index($ireg);
  4369     scale($scale);
  4370     disp($off);
  4371   %}
  4372 %}
  4374 //----------Conditional Branch Operands----------------------------------------
  4375 // Comparison Op  - This is the operation of the comparison, and is limited to
  4376 //                  the following set of codes:
  4377 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4378 //
  4379 // Other attributes of the comparison, such as unsignedness, are specified
  4380 // by the comparison instruction that sets a condition code flags register.
  4381 // That result is represented by a flags operand whose subtype is appropriate
  4382 // to the unsignedness (etc.) of the comparison.
  4383 //
  4384 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4385 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4386 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4388 // Comparision Code
  4389 operand cmpOp() %{
  4390   match(Bool);
  4392   format %{ "" %}
  4393   interface(COND_INTER) %{
  4394     equal(0x4, "e");
  4395     not_equal(0x5, "ne");
  4396     less(0xC, "l");
  4397     greater_equal(0xD, "ge");
  4398     less_equal(0xE, "le");
  4399     greater(0xF, "g");
  4400     overflow(0x0, "o");
  4401     no_overflow(0x1, "no");
  4402   %}
  4403 %}
  4405 // Comparison Code, unsigned compare.  Used by FP also, with
  4406 // C2 (unordered) turned into GT or LT already.  The other bits
  4407 // C0 and C3 are turned into Carry & Zero flags.
  4408 operand cmpOpU() %{
  4409   match(Bool);
  4411   format %{ "" %}
  4412   interface(COND_INTER) %{
  4413     equal(0x4, "e");
  4414     not_equal(0x5, "ne");
  4415     less(0x2, "b");
  4416     greater_equal(0x3, "nb");
  4417     less_equal(0x6, "be");
  4418     greater(0x7, "nbe");
  4419     overflow(0x0, "o");
  4420     no_overflow(0x1, "no");
  4421   %}
  4422 %}
  4424 // Floating comparisons that don't require any fixup for the unordered case
  4425 operand cmpOpUCF() %{
  4426   match(Bool);
  4427   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  4428             n->as_Bool()->_test._test == BoolTest::ge ||
  4429             n->as_Bool()->_test._test == BoolTest::le ||
  4430             n->as_Bool()->_test._test == BoolTest::gt);
  4431   format %{ "" %}
  4432   interface(COND_INTER) %{
  4433     equal(0x4, "e");
  4434     not_equal(0x5, "ne");
  4435     less(0x2, "b");
  4436     greater_equal(0x3, "nb");
  4437     less_equal(0x6, "be");
  4438     greater(0x7, "nbe");
  4439     overflow(0x0, "o");
  4440     no_overflow(0x1, "no");
  4441   %}
  4442 %}
  4445 // Floating comparisons that can be fixed up with extra conditional jumps
  4446 operand cmpOpUCF2() %{
  4447   match(Bool);
  4448   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  4449             n->as_Bool()->_test._test == BoolTest::eq);
  4450   format %{ "" %}
  4451   interface(COND_INTER) %{
  4452     equal(0x4, "e");
  4453     not_equal(0x5, "ne");
  4454     less(0x2, "b");
  4455     greater_equal(0x3, "nb");
  4456     less_equal(0x6, "be");
  4457     greater(0x7, "nbe");
  4458     overflow(0x0, "o");
  4459     no_overflow(0x1, "no");
  4460   %}
  4461 %}
  4463 // Comparison Code for FP conditional move
  4464 operand cmpOp_fcmov() %{
  4465   match(Bool);
  4467   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
  4468             n->as_Bool()->_test._test != BoolTest::no_overflow);
  4469   format %{ "" %}
  4470   interface(COND_INTER) %{
  4471     equal        (0x0C8);
  4472     not_equal    (0x1C8);
  4473     less         (0x0C0);
  4474     greater_equal(0x1C0);
  4475     less_equal   (0x0D0);
  4476     greater      (0x1D0);
  4477     overflow(0x0, "o"); // not really supported by the instruction
  4478     no_overflow(0x1, "no"); // not really supported by the instruction
  4479   %}
  4480 %}
  4482 // Comparision Code used in long compares
  4483 operand cmpOp_commute() %{
  4484   match(Bool);
  4486   format %{ "" %}
  4487   interface(COND_INTER) %{
  4488     equal(0x4, "e");
  4489     not_equal(0x5, "ne");
  4490     less(0xF, "g");
  4491     greater_equal(0xE, "le");
  4492     less_equal(0xD, "ge");
  4493     greater(0xC, "l");
  4494     overflow(0x0, "o");
  4495     no_overflow(0x1, "no");
  4496   %}
  4497 %}
  4499 //----------OPERAND CLASSES----------------------------------------------------
  4500 // Operand Classes are groups of operands that are used as to simplify
  4501 // instruction definitions by not requiring the AD writer to specify separate
  4502 // instructions for every form of operand when the instruction accepts
  4503 // multiple operand types with the same basic encoding and format.  The classic
  4504 // case of this is memory operands.
  4506 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  4507                indIndex, indIndexScale, indIndexScaleOffset);
  4509 // Long memory operations are encoded in 2 instructions and a +4 offset.
  4510 // This means some kind of offset is always required and you cannot use
  4511 // an oop as the offset (done when working on static globals).
  4512 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  4513                     indIndex, indIndexScale, indIndexScaleOffset);
  4516 //----------PIPELINE-----------------------------------------------------------
  4517 // Rules which define the behavior of the target architectures pipeline.
  4518 pipeline %{
  4520 //----------ATTRIBUTES---------------------------------------------------------
  4521 attributes %{
  4522   variable_size_instructions;        // Fixed size instructions
  4523   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  4524   instruction_unit_size = 1;         // An instruction is 1 bytes long
  4525   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4526   instruction_fetch_units = 1;       // of 16 bytes
  4528   // List of nop instructions
  4529   nops( MachNop );
  4530 %}
  4532 //----------RESOURCES----------------------------------------------------------
  4533 // Resources are the functional units available to the machine
  4535 // Generic P2/P3 pipeline
  4536 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  4537 // 3 instructions decoded per cycle.
  4538 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  4539 // 2 ALU op, only ALU0 handles mul/div instructions.
  4540 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  4541            MS0, MS1, MEM = MS0 | MS1,
  4542            BR, FPU,
  4543            ALU0, ALU1, ALU = ALU0 | ALU1 );
  4545 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4546 // Pipeline Description specifies the stages in the machine's pipeline
  4548 // Generic P2/P3 pipeline
  4549 pipe_desc(S0, S1, S2, S3, S4, S5);
  4551 //----------PIPELINE CLASSES---------------------------------------------------
  4552 // Pipeline Classes describe the stages in which input and output are
  4553 // referenced by the hardware pipeline.
  4555 // Naming convention: ialu or fpu
  4556 // Then: _reg
  4557 // Then: _reg if there is a 2nd register
  4558 // Then: _long if it's a pair of instructions implementing a long
  4559 // Then: _fat if it requires the big decoder
  4560 //   Or: _mem if it requires the big decoder and a memory unit.
  4562 // Integer ALU reg operation
  4563 pipe_class ialu_reg(rRegI dst) %{
  4564     single_instruction;
  4565     dst    : S4(write);
  4566     dst    : S3(read);
  4567     DECODE : S0;        // any decoder
  4568     ALU    : S3;        // any alu
  4569 %}
  4571 // Long ALU reg operation
  4572 pipe_class ialu_reg_long(eRegL dst) %{
  4573     instruction_count(2);
  4574     dst    : S4(write);
  4575     dst    : S3(read);
  4576     DECODE : S0(2);     // any 2 decoders
  4577     ALU    : S3(2);     // both alus
  4578 %}
  4580 // Integer ALU reg operation using big decoder
  4581 pipe_class ialu_reg_fat(rRegI dst) %{
  4582     single_instruction;
  4583     dst    : S4(write);
  4584     dst    : S3(read);
  4585     D0     : S0;        // big decoder only
  4586     ALU    : S3;        // any alu
  4587 %}
  4589 // Long ALU reg operation using big decoder
  4590 pipe_class ialu_reg_long_fat(eRegL dst) %{
  4591     instruction_count(2);
  4592     dst    : S4(write);
  4593     dst    : S3(read);
  4594     D0     : S0(2);     // big decoder only; twice
  4595     ALU    : S3(2);     // any 2 alus
  4596 %}
  4598 // Integer ALU reg-reg operation
  4599 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
  4600     single_instruction;
  4601     dst    : S4(write);
  4602     src    : S3(read);
  4603     DECODE : S0;        // any decoder
  4604     ALU    : S3;        // any alu
  4605 %}
  4607 // Long ALU reg-reg operation
  4608 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  4609     instruction_count(2);
  4610     dst    : S4(write);
  4611     src    : S3(read);
  4612     DECODE : S0(2);     // any 2 decoders
  4613     ALU    : S3(2);     // both alus
  4614 %}
  4616 // Integer ALU reg-reg operation
  4617 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
  4618     single_instruction;
  4619     dst    : S4(write);
  4620     src    : S3(read);
  4621     D0     : S0;        // big decoder only
  4622     ALU    : S3;        // any alu
  4623 %}
  4625 // Long ALU reg-reg operation
  4626 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  4627     instruction_count(2);
  4628     dst    : S4(write);
  4629     src    : S3(read);
  4630     D0     : S0(2);     // big decoder only; twice
  4631     ALU    : S3(2);     // both alus
  4632 %}
  4634 // Integer ALU reg-mem operation
  4635 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
  4636     single_instruction;
  4637     dst    : S5(write);
  4638     mem    : S3(read);
  4639     D0     : S0;        // big decoder only
  4640     ALU    : S4;        // any alu
  4641     MEM    : S3;        // any mem
  4642 %}
  4644 // Long ALU reg-mem operation
  4645 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  4646     instruction_count(2);
  4647     dst    : S5(write);
  4648     mem    : S3(read);
  4649     D0     : S0(2);     // big decoder only; twice
  4650     ALU    : S4(2);     // any 2 alus
  4651     MEM    : S3(2);     // both mems
  4652 %}
  4654 // Integer mem operation (prefetch)
  4655 pipe_class ialu_mem(memory mem)
  4656 %{
  4657     single_instruction;
  4658     mem    : S3(read);
  4659     D0     : S0;        // big decoder only
  4660     MEM    : S3;        // any mem
  4661 %}
  4663 // Integer Store to Memory
  4664 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
  4665     single_instruction;
  4666     mem    : S3(read);
  4667     src    : S5(read);
  4668     D0     : S0;        // big decoder only
  4669     ALU    : S4;        // any alu
  4670     MEM    : S3;
  4671 %}
  4673 // Long Store to Memory
  4674 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  4675     instruction_count(2);
  4676     mem    : S3(read);
  4677     src    : S5(read);
  4678     D0     : S0(2);     // big decoder only; twice
  4679     ALU    : S4(2);     // any 2 alus
  4680     MEM    : S3(2);     // Both mems
  4681 %}
  4683 // Integer Store to Memory
  4684 pipe_class ialu_mem_imm(memory mem) %{
  4685     single_instruction;
  4686     mem    : S3(read);
  4687     D0     : S0;        // big decoder only
  4688     ALU    : S4;        // any alu
  4689     MEM    : S3;
  4690 %}
  4692 // Integer ALU0 reg-reg operation
  4693 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
  4694     single_instruction;
  4695     dst    : S4(write);
  4696     src    : S3(read);
  4697     D0     : S0;        // Big decoder only
  4698     ALU0   : S3;        // only alu0
  4699 %}
  4701 // Integer ALU0 reg-mem operation
  4702 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
  4703     single_instruction;
  4704     dst    : S5(write);
  4705     mem    : S3(read);
  4706     D0     : S0;        // big decoder only
  4707     ALU0   : S4;        // ALU0 only
  4708     MEM    : S3;        // any mem
  4709 %}
  4711 // Integer ALU reg-reg operation
  4712 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
  4713     single_instruction;
  4714     cr     : S4(write);
  4715     src1   : S3(read);
  4716     src2   : S3(read);
  4717     DECODE : S0;        // any decoder
  4718     ALU    : S3;        // any alu
  4719 %}
  4721 // Integer ALU reg-imm operation
  4722 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
  4723     single_instruction;
  4724     cr     : S4(write);
  4725     src1   : S3(read);
  4726     DECODE : S0;        // any decoder
  4727     ALU    : S3;        // any alu
  4728 %}
  4730 // Integer ALU reg-mem operation
  4731 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
  4732     single_instruction;
  4733     cr     : S4(write);
  4734     src1   : S3(read);
  4735     src2   : S3(read);
  4736     D0     : S0;        // big decoder only
  4737     ALU    : S4;        // any alu
  4738     MEM    : S3;
  4739 %}
  4741 // Conditional move reg-reg
  4742 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
  4743     instruction_count(4);
  4744     y      : S4(read);
  4745     q      : S3(read);
  4746     p      : S3(read);
  4747     DECODE : S0(4);     // any decoder
  4748 %}
  4750 // Conditional move reg-reg
  4751 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
  4752     single_instruction;
  4753     dst    : S4(write);
  4754     src    : S3(read);
  4755     cr     : S3(read);
  4756     DECODE : S0;        // any decoder
  4757 %}
  4759 // Conditional move reg-mem
  4760 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
  4761     single_instruction;
  4762     dst    : S4(write);
  4763     src    : S3(read);
  4764     cr     : S3(read);
  4765     DECODE : S0;        // any decoder
  4766     MEM    : S3;
  4767 %}
  4769 // Conditional move reg-reg long
  4770 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  4771     single_instruction;
  4772     dst    : S4(write);
  4773     src    : S3(read);
  4774     cr     : S3(read);
  4775     DECODE : S0(2);     // any 2 decoders
  4776 %}
  4778 // Conditional move double reg-reg
  4779 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
  4780     single_instruction;
  4781     dst    : S4(write);
  4782     src    : S3(read);
  4783     cr     : S3(read);
  4784     DECODE : S0;        // any decoder
  4785 %}
  4787 // Float reg-reg operation
  4788 pipe_class fpu_reg(regDPR dst) %{
  4789     instruction_count(2);
  4790     dst    : S3(read);
  4791     DECODE : S0(2);     // any 2 decoders
  4792     FPU    : S3;
  4793 %}
  4795 // Float reg-reg operation
  4796 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
  4797     instruction_count(2);
  4798     dst    : S4(write);
  4799     src    : S3(read);
  4800     DECODE : S0(2);     // any 2 decoders
  4801     FPU    : S3;
  4802 %}
  4804 // Float reg-reg operation
  4805 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
  4806     instruction_count(3);
  4807     dst    : S4(write);
  4808     src1   : S3(read);
  4809     src2   : S3(read);
  4810     DECODE : S0(3);     // any 3 decoders
  4811     FPU    : S3(2);
  4812 %}
  4814 // Float reg-reg operation
  4815 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
  4816     instruction_count(4);
  4817     dst    : S4(write);
  4818     src1   : S3(read);
  4819     src2   : S3(read);
  4820     src3   : S3(read);
  4821     DECODE : S0(4);     // any 3 decoders
  4822     FPU    : S3(2);
  4823 %}
  4825 // Float reg-reg operation
  4826 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
  4827     instruction_count(4);
  4828     dst    : S4(write);
  4829     src1   : S3(read);
  4830     src2   : S3(read);
  4831     src3   : S3(read);
  4832     DECODE : S1(3);     // any 3 decoders
  4833     D0     : S0;        // Big decoder only
  4834     FPU    : S3(2);
  4835     MEM    : S3;
  4836 %}
  4838 // Float reg-mem operation
  4839 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
  4840     instruction_count(2);
  4841     dst    : S5(write);
  4842     mem    : S3(read);
  4843     D0     : S0;        // big decoder only
  4844     DECODE : S1;        // any decoder for FPU POP
  4845     FPU    : S4;
  4846     MEM    : S3;        // any mem
  4847 %}
  4849 // Float reg-mem operation
  4850 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
  4851     instruction_count(3);
  4852     dst    : S5(write);
  4853     src1   : S3(read);
  4854     mem    : S3(read);
  4855     D0     : S0;        // big decoder only
  4856     DECODE : S1(2);     // any decoder for FPU POP
  4857     FPU    : S4;
  4858     MEM    : S3;        // any mem
  4859 %}
  4861 // Float mem-reg operation
  4862 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
  4863     instruction_count(2);
  4864     src    : S5(read);
  4865     mem    : S3(read);
  4866     DECODE : S0;        // any decoder for FPU PUSH
  4867     D0     : S1;        // big decoder only
  4868     FPU    : S4;
  4869     MEM    : S3;        // any mem
  4870 %}
  4872 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
  4873     instruction_count(3);
  4874     src1   : S3(read);
  4875     src2   : S3(read);
  4876     mem    : S3(read);
  4877     DECODE : S0(2);     // any decoder for FPU PUSH
  4878     D0     : S1;        // big decoder only
  4879     FPU    : S4;
  4880     MEM    : S3;        // any mem
  4881 %}
  4883 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
  4884     instruction_count(3);
  4885     src1   : S3(read);
  4886     src2   : S3(read);
  4887     mem    : S4(read);
  4888     DECODE : S0;        // any decoder for FPU PUSH
  4889     D0     : S0(2);     // big decoder only
  4890     FPU    : S4;
  4891     MEM    : S3(2);     // any mem
  4892 %}
  4894 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  4895     instruction_count(2);
  4896     src1   : S3(read);
  4897     dst    : S4(read);
  4898     D0     : S0(2);     // big decoder only
  4899     MEM    : S3(2);     // any mem
  4900 %}
  4902 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  4903     instruction_count(3);
  4904     src1   : S3(read);
  4905     src2   : S3(read);
  4906     dst    : S4(read);
  4907     D0     : S0(3);     // big decoder only
  4908     FPU    : S4;
  4909     MEM    : S3(3);     // any mem
  4910 %}
  4912 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
  4913     instruction_count(3);
  4914     src1   : S4(read);
  4915     mem    : S4(read);
  4916     DECODE : S0;        // any decoder for FPU PUSH
  4917     D0     : S0(2);     // big decoder only
  4918     FPU    : S4;
  4919     MEM    : S3(2);     // any mem
  4920 %}
  4922 // Float load constant
  4923 pipe_class fpu_reg_con(regDPR dst) %{
  4924     instruction_count(2);
  4925     dst    : S5(write);
  4926     D0     : S0;        // big decoder only for the load
  4927     DECODE : S1;        // any decoder for FPU POP
  4928     FPU    : S4;
  4929     MEM    : S3;        // any mem
  4930 %}
  4932 // Float load constant
  4933 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
  4934     instruction_count(3);
  4935     dst    : S5(write);
  4936     src    : S3(read);
  4937     D0     : S0;        // big decoder only for the load
  4938     DECODE : S1(2);     // any decoder for FPU POP
  4939     FPU    : S4;
  4940     MEM    : S3;        // any mem
  4941 %}
  4943 // UnConditional branch
  4944 pipe_class pipe_jmp( label labl ) %{
  4945     single_instruction;
  4946     BR   : S3;
  4947 %}
  4949 // Conditional branch
  4950 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  4951     single_instruction;
  4952     cr    : S1(read);
  4953     BR    : S3;
  4954 %}
  4956 // Allocation idiom
  4957 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  4958     instruction_count(1); force_serialization;
  4959     fixed_latency(6);
  4960     heap_ptr : S3(read);
  4961     DECODE   : S0(3);
  4962     D0       : S2;
  4963     MEM      : S3;
  4964     ALU      : S3(2);
  4965     dst      : S5(write);
  4966     BR       : S5;
  4967 %}
  4969 // Generic big/slow expanded idiom
  4970 pipe_class pipe_slow(  ) %{
  4971     instruction_count(10); multiple_bundles; force_serialization;
  4972     fixed_latency(100);
  4973     D0  : S0(2);
  4974     MEM : S3(2);
  4975 %}
  4977 // The real do-nothing guy
  4978 pipe_class empty( ) %{
  4979     instruction_count(0);
  4980 %}
  4982 // Define the class for the Nop node
  4983 define %{
  4984    MachNop = empty;
  4985 %}
  4987 %}
  4989 //----------INSTRUCTIONS-------------------------------------------------------
  4990 //
  4991 // match      -- States which machine-independent subtree may be replaced
  4992 //               by this instruction.
  4993 // ins_cost   -- The estimated cost of this instruction is used by instruction
  4994 //               selection to identify a minimum cost tree of machine
  4995 //               instructions that matches a tree of machine-independent
  4996 //               instructions.
  4997 // format     -- A string providing the disassembly for this instruction.
  4998 //               The value of an instruction's operand may be inserted
  4999 //               by referring to it with a '$' prefix.
  5000 // opcode     -- Three instruction opcodes may be provided.  These are referred
  5001 //               to within an encode class as $primary, $secondary, and $tertiary
  5002 //               respectively.  The primary opcode is commonly used to
  5003 //               indicate the type of machine instruction, while secondary
  5004 //               and tertiary are often used for prefix options or addressing
  5005 //               modes.
  5006 // ins_encode -- A list of encode classes with parameters. The encode class
  5007 //               name must have been defined in an 'enc_class' specification
  5008 //               in the encode section of the architecture description.
  5010 //----------BSWAP-Instruction--------------------------------------------------
  5011 instruct bytes_reverse_int(rRegI dst) %{
  5012   match(Set dst (ReverseBytesI dst));
  5014   format %{ "BSWAP  $dst" %}
  5015   opcode(0x0F, 0xC8);
  5016   ins_encode( OpcP, OpcSReg(dst) );
  5017   ins_pipe( ialu_reg );
  5018 %}
  5020 instruct bytes_reverse_long(eRegL dst) %{
  5021   match(Set dst (ReverseBytesL dst));
  5023   format %{ "BSWAP  $dst.lo\n\t"
  5024             "BSWAP  $dst.hi\n\t"
  5025             "XCHG   $dst.lo $dst.hi" %}
  5027   ins_cost(125);
  5028   ins_encode( bswap_long_bytes(dst) );
  5029   ins_pipe( ialu_reg_reg);
  5030 %}
  5032 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
  5033   match(Set dst (ReverseBytesUS dst));
  5034   effect(KILL cr);
  5036   format %{ "BSWAP  $dst\n\t" 
  5037             "SHR    $dst,16\n\t" %}
  5038   ins_encode %{
  5039     __ bswapl($dst$$Register);
  5040     __ shrl($dst$$Register, 16); 
  5041   %}
  5042   ins_pipe( ialu_reg );
  5043 %}
  5045 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
  5046   match(Set dst (ReverseBytesS dst));
  5047   effect(KILL cr);
  5049   format %{ "BSWAP  $dst\n\t" 
  5050             "SAR    $dst,16\n\t" %}
  5051   ins_encode %{
  5052     __ bswapl($dst$$Register);
  5053     __ sarl($dst$$Register, 16); 
  5054   %}
  5055   ins_pipe( ialu_reg );
  5056 %}
  5059 //---------- Zeros Count Instructions ------------------------------------------
  5061 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5062   predicate(UseCountLeadingZerosInstruction);
  5063   match(Set dst (CountLeadingZerosI src));
  5064   effect(KILL cr);
  5066   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  5067   ins_encode %{
  5068     __ lzcntl($dst$$Register, $src$$Register);
  5069   %}
  5070   ins_pipe(ialu_reg);
  5071 %}
  5073 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
  5074   predicate(!UseCountLeadingZerosInstruction);
  5075   match(Set dst (CountLeadingZerosI src));
  5076   effect(KILL cr);
  5078   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  5079             "JNZ    skip\n\t"
  5080             "MOV    $dst, -1\n"
  5081       "skip:\n\t"
  5082             "NEG    $dst\n\t"
  5083             "ADD    $dst, 31" %}
  5084   ins_encode %{
  5085     Register Rdst = $dst$$Register;
  5086     Register Rsrc = $src$$Register;
  5087     Label skip;
  5088     __ bsrl(Rdst, Rsrc);
  5089     __ jccb(Assembler::notZero, skip);
  5090     __ movl(Rdst, -1);
  5091     __ bind(skip);
  5092     __ negl(Rdst);
  5093     __ addl(Rdst, BitsPerInt - 1);
  5094   %}
  5095   ins_pipe(ialu_reg);
  5096 %}
  5098 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5099   predicate(UseCountLeadingZerosInstruction);
  5100   match(Set dst (CountLeadingZerosL src));
  5101   effect(TEMP dst, KILL cr);
  5103   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  5104             "JNC    done\n\t"
  5105             "LZCNT  $dst, $src.lo\n\t"
  5106             "ADD    $dst, 32\n"
  5107       "done:" %}
  5108   ins_encode %{
  5109     Register Rdst = $dst$$Register;
  5110     Register Rsrc = $src$$Register;
  5111     Label done;
  5112     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5113     __ jccb(Assembler::carryClear, done);
  5114     __ lzcntl(Rdst, Rsrc);
  5115     __ addl(Rdst, BitsPerInt);
  5116     __ bind(done);
  5117   %}
  5118   ins_pipe(ialu_reg);
  5119 %}
  5121 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
  5122   predicate(!UseCountLeadingZerosInstruction);
  5123   match(Set dst (CountLeadingZerosL src));
  5124   effect(TEMP dst, KILL cr);
  5126   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  5127             "JZ     msw_is_zero\n\t"
  5128             "ADD    $dst, 32\n\t"
  5129             "JMP    not_zero\n"
  5130       "msw_is_zero:\n\t"
  5131             "BSR    $dst, $src.lo\n\t"
  5132             "JNZ    not_zero\n\t"
  5133             "MOV    $dst, -1\n"
  5134       "not_zero:\n\t"
  5135             "NEG    $dst\n\t"
  5136             "ADD    $dst, 63\n" %}
  5137  ins_encode %{
  5138     Register Rdst = $dst$$Register;
  5139     Register Rsrc = $src$$Register;
  5140     Label msw_is_zero;
  5141     Label not_zero;
  5142     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  5143     __ jccb(Assembler::zero, msw_is_zero);
  5144     __ addl(Rdst, BitsPerInt);
  5145     __ jmpb(not_zero);
  5146     __ bind(msw_is_zero);
  5147     __ bsrl(Rdst, Rsrc);
  5148     __ jccb(Assembler::notZero, not_zero);
  5149     __ movl(Rdst, -1);
  5150     __ bind(not_zero);
  5151     __ negl(Rdst);
  5152     __ addl(Rdst, BitsPerLong - 1);
  5153   %}
  5154   ins_pipe(ialu_reg);
  5155 %}
  5157 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5158   predicate(UseCountTrailingZerosInstruction);
  5159   match(Set dst (CountTrailingZerosI src));
  5160   effect(KILL cr);
  5162   format %{ "TZCNT    $dst, $src\t# count trailing zeros (int)" %}
  5163   ins_encode %{
  5164     __ tzcntl($dst$$Register, $src$$Register);
  5165   %}
  5166   ins_pipe(ialu_reg);
  5167 %}
  5169 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, eFlagsReg cr) %{
  5170   predicate(!UseCountTrailingZerosInstruction);
  5171   match(Set dst (CountTrailingZerosI src));
  5172   effect(KILL cr);
  5174   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  5175             "JNZ    done\n\t"
  5176             "MOV    $dst, 32\n"
  5177       "done:" %}
  5178   ins_encode %{
  5179     Register Rdst = $dst$$Register;
  5180     Label done;
  5181     __ bsfl(Rdst, $src$$Register);
  5182     __ jccb(Assembler::notZero, done);
  5183     __ movl(Rdst, BitsPerInt);
  5184     __ bind(done);
  5185   %}
  5186   ins_pipe(ialu_reg);
  5187 %}
  5189 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
  5190   predicate(UseCountTrailingZerosInstruction);
  5191   match(Set dst (CountTrailingZerosL src));
  5192   effect(TEMP dst, KILL cr);
  5194   format %{ "TZCNT  $dst, $src.lo\t# count trailing zeros (long) \n\t"
  5195             "JNC    done\n\t"
  5196             "TZCNT  $dst, $src.hi\n\t"
  5197             "ADD    $dst, 32\n"
  5198             "done:" %}
  5199   ins_encode %{
  5200     Register Rdst = $dst$$Register;
  5201     Register Rsrc = $src$$Register;
  5202     Label done;
  5203     __ tzcntl(Rdst, Rsrc);
  5204     __ jccb(Assembler::carryClear, done);
  5205     __ tzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  5206     __ addl(Rdst, BitsPerInt);
  5207     __ bind(done);
  5208   %}
  5209   ins_pipe(ialu_reg);
  5210 %}
  5212 instruct countTrailingZerosL_bsf(rRegI dst, eRegL src, eFlagsReg cr) %{
  5213   predicate(!UseCountTrailingZerosInstruction);
  5214   match(Set dst (CountTrailingZerosL src));
  5215   effect(TEMP dst, KILL cr);
  5217   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  5218             "JNZ    done\n\t"
  5219             "BSF    $dst, $src.hi\n\t"
  5220             "JNZ    msw_not_zero\n\t"
  5221             "MOV    $dst, 32\n"
  5222       "msw_not_zero:\n\t"
  5223             "ADD    $dst, 32\n"
  5224       "done:" %}
  5225   ins_encode %{
  5226     Register Rdst = $dst$$Register;
  5227     Register Rsrc = $src$$Register;
  5228     Label msw_not_zero;
  5229     Label done;
  5230     __ bsfl(Rdst, Rsrc);
  5231     __ jccb(Assembler::notZero, done);
  5232     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  5233     __ jccb(Assembler::notZero, msw_not_zero);
  5234     __ movl(Rdst, BitsPerInt);
  5235     __ bind(msw_not_zero);
  5236     __ addl(Rdst, BitsPerInt);
  5237     __ bind(done);
  5238   %}
  5239   ins_pipe(ialu_reg);
  5240 %}
  5243 //---------- Population Count Instructions -------------------------------------
  5245 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
  5246   predicate(UsePopCountInstruction);
  5247   match(Set dst (PopCountI src));
  5248   effect(KILL cr);
  5250   format %{ "POPCNT $dst, $src" %}
  5251   ins_encode %{
  5252     __ popcntl($dst$$Register, $src$$Register);
  5253   %}
  5254   ins_pipe(ialu_reg);
  5255 %}
  5257 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
  5258   predicate(UsePopCountInstruction);
  5259   match(Set dst (PopCountI (LoadI mem)));
  5260   effect(KILL cr);
  5262   format %{ "POPCNT $dst, $mem" %}
  5263   ins_encode %{
  5264     __ popcntl($dst$$Register, $mem$$Address);
  5265   %}
  5266   ins_pipe(ialu_reg);
  5267 %}
  5269 // Note: Long.bitCount(long) returns an int.
  5270 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  5271   predicate(UsePopCountInstruction);
  5272   match(Set dst (PopCountL src));
  5273   effect(KILL cr, TEMP tmp, TEMP dst);
  5275   format %{ "POPCNT $dst, $src.lo\n\t"
  5276             "POPCNT $tmp, $src.hi\n\t"
  5277             "ADD    $dst, $tmp" %}
  5278   ins_encode %{
  5279     __ popcntl($dst$$Register, $src$$Register);
  5280     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  5281     __ addl($dst$$Register, $tmp$$Register);
  5282   %}
  5283   ins_pipe(ialu_reg);
  5284 %}
  5286 // Note: Long.bitCount(long) returns an int.
  5287 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
  5288   predicate(UsePopCountInstruction);
  5289   match(Set dst (PopCountL (LoadL mem)));
  5290   effect(KILL cr, TEMP tmp, TEMP dst);
  5292   format %{ "POPCNT $dst, $mem\n\t"
  5293             "POPCNT $tmp, $mem+4\n\t"
  5294             "ADD    $dst, $tmp" %}
  5295   ins_encode %{
  5296     //__ popcntl($dst$$Register, $mem$$Address$$first);
  5297     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  5298     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
  5299     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
  5300     __ addl($dst$$Register, $tmp$$Register);
  5301   %}
  5302   ins_pipe(ialu_reg);
  5303 %}
  5306 //----------Load/Store/Move Instructions---------------------------------------
  5307 //----------Load Instructions--------------------------------------------------
  5308 // Load Byte (8bit signed)
  5309 instruct loadB(xRegI dst, memory mem) %{
  5310   match(Set dst (LoadB mem));
  5312   ins_cost(125);
  5313   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  5315   ins_encode %{
  5316     __ movsbl($dst$$Register, $mem$$Address);
  5317   %}
  5319   ins_pipe(ialu_reg_mem);
  5320 %}
  5322 // Load Byte (8bit signed) into Long Register
  5323 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5324   match(Set dst (ConvI2L (LoadB mem)));
  5325   effect(KILL cr);
  5327   ins_cost(375);
  5328   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  5329             "MOV    $dst.hi,$dst.lo\n\t"
  5330             "SAR    $dst.hi,7" %}
  5332   ins_encode %{
  5333     __ movsbl($dst$$Register, $mem$$Address);
  5334     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5335     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  5336   %}
  5338   ins_pipe(ialu_reg_mem);
  5339 %}
  5341 // Load Unsigned Byte (8bit UNsigned)
  5342 instruct loadUB(xRegI dst, memory mem) %{
  5343   match(Set dst (LoadUB mem));
  5345   ins_cost(125);
  5346   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  5348   ins_encode %{
  5349     __ movzbl($dst$$Register, $mem$$Address);
  5350   %}
  5352   ins_pipe(ialu_reg_mem);
  5353 %}
  5355 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  5356 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5357   match(Set dst (ConvI2L (LoadUB mem)));
  5358   effect(KILL cr);
  5360   ins_cost(250);
  5361   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  5362             "XOR    $dst.hi,$dst.hi" %}
  5364   ins_encode %{
  5365     Register Rdst = $dst$$Register;
  5366     __ movzbl(Rdst, $mem$$Address);
  5367     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5368   %}
  5370   ins_pipe(ialu_reg_mem);
  5371 %}
  5373 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  5374 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  5375   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5376   effect(KILL cr);
  5378   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  5379             "XOR    $dst.hi,$dst.hi\n\t"
  5380             "AND    $dst.lo,$mask" %}
  5381   ins_encode %{
  5382     Register Rdst = $dst$$Register;
  5383     __ movzbl(Rdst, $mem$$Address);
  5384     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5385     __ andl(Rdst, $mask$$constant);
  5386   %}
  5387   ins_pipe(ialu_reg_mem);
  5388 %}
  5390 // Load Short (16bit signed)
  5391 instruct loadS(rRegI dst, memory mem) %{
  5392   match(Set dst (LoadS mem));
  5394   ins_cost(125);
  5395   format %{ "MOVSX  $dst,$mem\t# short" %}
  5397   ins_encode %{
  5398     __ movswl($dst$$Register, $mem$$Address);
  5399   %}
  5401   ins_pipe(ialu_reg_mem);
  5402 %}
  5404 // Load Short (16 bit signed) to Byte (8 bit signed)
  5405 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5406   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5408   ins_cost(125);
  5409   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  5410   ins_encode %{
  5411     __ movsbl($dst$$Register, $mem$$Address);
  5412   %}
  5413   ins_pipe(ialu_reg_mem);
  5414 %}
  5416 // Load Short (16bit signed) into Long Register
  5417 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5418   match(Set dst (ConvI2L (LoadS mem)));
  5419   effect(KILL cr);
  5421   ins_cost(375);
  5422   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  5423             "MOV    $dst.hi,$dst.lo\n\t"
  5424             "SAR    $dst.hi,15" %}
  5426   ins_encode %{
  5427     __ movswl($dst$$Register, $mem$$Address);
  5428     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5429     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  5430   %}
  5432   ins_pipe(ialu_reg_mem);
  5433 %}
  5435 // Load Unsigned Short/Char (16bit unsigned)
  5436 instruct loadUS(rRegI dst, memory mem) %{
  5437   match(Set dst (LoadUS mem));
  5439   ins_cost(125);
  5440   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  5442   ins_encode %{
  5443     __ movzwl($dst$$Register, $mem$$Address);
  5444   %}
  5446   ins_pipe(ialu_reg_mem);
  5447 %}
  5449 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5450 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5451   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5453   ins_cost(125);
  5454   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  5455   ins_encode %{
  5456     __ movsbl($dst$$Register, $mem$$Address);
  5457   %}
  5458   ins_pipe(ialu_reg_mem);
  5459 %}
  5461 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  5462 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5463   match(Set dst (ConvI2L (LoadUS mem)));
  5464   effect(KILL cr);
  5466   ins_cost(250);
  5467   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  5468             "XOR    $dst.hi,$dst.hi" %}
  5470   ins_encode %{
  5471     __ movzwl($dst$$Register, $mem$$Address);
  5472     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5473   %}
  5475   ins_pipe(ialu_reg_mem);
  5476 %}
  5478 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  5479 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5480   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5481   effect(KILL cr);
  5483   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  5484             "XOR    $dst.hi,$dst.hi" %}
  5485   ins_encode %{
  5486     Register Rdst = $dst$$Register;
  5487     __ movzbl(Rdst, $mem$$Address);
  5488     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5489   %}
  5490   ins_pipe(ialu_reg_mem);
  5491 %}
  5493 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  5494 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  5495   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5496   effect(KILL cr);
  5498   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  5499             "XOR    $dst.hi,$dst.hi\n\t"
  5500             "AND    $dst.lo,$mask" %}
  5501   ins_encode %{
  5502     Register Rdst = $dst$$Register;
  5503     __ movzwl(Rdst, $mem$$Address);
  5504     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5505     __ andl(Rdst, $mask$$constant);
  5506   %}
  5507   ins_pipe(ialu_reg_mem);
  5508 %}
  5510 // Load Integer
  5511 instruct loadI(rRegI dst, memory mem) %{
  5512   match(Set dst (LoadI mem));
  5514   ins_cost(125);
  5515   format %{ "MOV    $dst,$mem\t# int" %}
  5517   ins_encode %{
  5518     __ movl($dst$$Register, $mem$$Address);
  5519   %}
  5521   ins_pipe(ialu_reg_mem);
  5522 %}
  5524 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5525 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
  5526   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5528   ins_cost(125);
  5529   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  5530   ins_encode %{
  5531     __ movsbl($dst$$Register, $mem$$Address);
  5532   %}
  5533   ins_pipe(ialu_reg_mem);
  5534 %}
  5536 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  5537 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
  5538   match(Set dst (AndI (LoadI mem) mask));
  5540   ins_cost(125);
  5541   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  5542   ins_encode %{
  5543     __ movzbl($dst$$Register, $mem$$Address);
  5544   %}
  5545   ins_pipe(ialu_reg_mem);
  5546 %}
  5548 // Load Integer (32 bit signed) to Short (16 bit signed)
  5549 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
  5550   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5552   ins_cost(125);
  5553   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  5554   ins_encode %{
  5555     __ movswl($dst$$Register, $mem$$Address);
  5556   %}
  5557   ins_pipe(ialu_reg_mem);
  5558 %}
  5560 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  5561 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
  5562   match(Set dst (AndI (LoadI mem) mask));
  5564   ins_cost(125);
  5565   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  5566   ins_encode %{
  5567     __ movzwl($dst$$Register, $mem$$Address);
  5568   %}
  5569   ins_pipe(ialu_reg_mem);
  5570 %}
  5572 // Load Integer into Long Register
  5573 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  5574   match(Set dst (ConvI2L (LoadI mem)));
  5575   effect(KILL cr);
  5577   ins_cost(375);
  5578   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  5579             "MOV    $dst.hi,$dst.lo\n\t"
  5580             "SAR    $dst.hi,31" %}
  5582   ins_encode %{
  5583     __ movl($dst$$Register, $mem$$Address);
  5584     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  5585     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  5586   %}
  5588   ins_pipe(ialu_reg_mem);
  5589 %}
  5591 // Load Integer with mask 0xFF into Long Register
  5592 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  5593   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5594   effect(KILL cr);
  5596   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  5597             "XOR    $dst.hi,$dst.hi" %}
  5598   ins_encode %{
  5599     Register Rdst = $dst$$Register;
  5600     __ movzbl(Rdst, $mem$$Address);
  5601     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5602   %}
  5603   ins_pipe(ialu_reg_mem);
  5604 %}
  5606 // Load Integer with mask 0xFFFF into Long Register
  5607 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  5608   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5609   effect(KILL cr);
  5611   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  5612             "XOR    $dst.hi,$dst.hi" %}
  5613   ins_encode %{
  5614     Register Rdst = $dst$$Register;
  5615     __ movzwl(Rdst, $mem$$Address);
  5616     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5617   %}
  5618   ins_pipe(ialu_reg_mem);
  5619 %}
  5621 // Load Integer with 31-bit mask into Long Register
  5622 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
  5623   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5624   effect(KILL cr);
  5626   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
  5627             "XOR    $dst.hi,$dst.hi\n\t"
  5628             "AND    $dst.lo,$mask" %}
  5629   ins_encode %{
  5630     Register Rdst = $dst$$Register;
  5631     __ movl(Rdst, $mem$$Address);
  5632     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  5633     __ andl(Rdst, $mask$$constant);
  5634   %}
  5635   ins_pipe(ialu_reg_mem);
  5636 %}
  5638 // Load Unsigned Integer into Long Register
  5639 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
  5640   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5641   effect(KILL cr);
  5643   ins_cost(250);
  5644   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  5645             "XOR    $dst.hi,$dst.hi" %}
  5647   ins_encode %{
  5648     __ movl($dst$$Register, $mem$$Address);
  5649     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  5650   %}
  5652   ins_pipe(ialu_reg_mem);
  5653 %}
  5655 // Load Long.  Cannot clobber address while loading, so restrict address
  5656 // register to ESI
  5657 instruct loadL(eRegL dst, load_long_memory mem) %{
  5658   predicate(!((LoadLNode*)n)->require_atomic_access());
  5659   match(Set dst (LoadL mem));
  5661   ins_cost(250);
  5662   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  5663             "MOV    $dst.hi,$mem+4" %}
  5665   ins_encode %{
  5666     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
  5667     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
  5668     __ movl($dst$$Register, Amemlo);
  5669     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  5670   %}
  5672   ins_pipe(ialu_reg_long_mem);
  5673 %}
  5675 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  5676 // then store it down to the stack and reload on the int
  5677 // side.
  5678 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  5679   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  5680   match(Set dst (LoadL mem));
  5682   ins_cost(200);
  5683   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  5684             "FISTp  $dst" %}
  5685   ins_encode(enc_loadL_volatile(mem,dst));
  5686   ins_pipe( fpu_reg_mem );
  5687 %}
  5689 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
  5690   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  5691   match(Set dst (LoadL mem));
  5692   effect(TEMP tmp);
  5693   ins_cost(180);
  5694   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  5695             "MOVSD  $dst,$tmp" %}
  5696   ins_encode %{
  5697     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  5698     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
  5699   %}
  5700   ins_pipe( pipe_slow );
  5701 %}
  5703 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
  5704   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  5705   match(Set dst (LoadL mem));
  5706   effect(TEMP tmp);
  5707   ins_cost(160);
  5708   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  5709             "MOVD   $dst.lo,$tmp\n\t"
  5710             "PSRLQ  $tmp,32\n\t"
  5711             "MOVD   $dst.hi,$tmp" %}
  5712   ins_encode %{
  5713     __ movdbl($tmp$$XMMRegister, $mem$$Address);
  5714     __ movdl($dst$$Register, $tmp$$XMMRegister);
  5715     __ psrlq($tmp$$XMMRegister, 32);
  5716     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
  5717   %}
  5718   ins_pipe( pipe_slow );
  5719 %}
  5721 // Load Range
  5722 instruct loadRange(rRegI dst, memory mem) %{
  5723   match(Set dst (LoadRange mem));
  5725   ins_cost(125);
  5726   format %{ "MOV    $dst,$mem" %}
  5727   opcode(0x8B);
  5728   ins_encode( OpcP, RegMem(dst,mem));
  5729   ins_pipe( ialu_reg_mem );
  5730 %}
  5733 // Load Pointer
  5734 instruct loadP(eRegP dst, memory mem) %{
  5735   match(Set dst (LoadP mem));
  5737   ins_cost(125);
  5738   format %{ "MOV    $dst,$mem" %}
  5739   opcode(0x8B);
  5740   ins_encode( OpcP, RegMem(dst,mem));
  5741   ins_pipe( ialu_reg_mem );
  5742 %}
  5744 // Load Klass Pointer
  5745 instruct loadKlass(eRegP dst, memory mem) %{
  5746   match(Set dst (LoadKlass mem));
  5748   ins_cost(125);
  5749   format %{ "MOV    $dst,$mem" %}
  5750   opcode(0x8B);
  5751   ins_encode( OpcP, RegMem(dst,mem));
  5752   ins_pipe( ialu_reg_mem );
  5753 %}
  5755 // Load Double
  5756 instruct loadDPR(regDPR dst, memory mem) %{
  5757   predicate(UseSSE<=1);
  5758   match(Set dst (LoadD mem));
  5760   ins_cost(150);
  5761   format %{ "FLD_D  ST,$mem\n\t"
  5762             "FSTP   $dst" %}
  5763   opcode(0xDD);               /* DD /0 */
  5764   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  5765               Pop_Reg_DPR(dst) );
  5766   ins_pipe( fpu_reg_mem );
  5767 %}
  5769 // Load Double to XMM
  5770 instruct loadD(regD dst, memory mem) %{
  5771   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  5772   match(Set dst (LoadD mem));
  5773   ins_cost(145);
  5774   format %{ "MOVSD  $dst,$mem" %}
  5775   ins_encode %{
  5776     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  5777   %}
  5778   ins_pipe( pipe_slow );
  5779 %}
  5781 instruct loadD_partial(regD dst, memory mem) %{
  5782   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  5783   match(Set dst (LoadD mem));
  5784   ins_cost(145);
  5785   format %{ "MOVLPD $dst,$mem" %}
  5786   ins_encode %{
  5787     __ movdbl ($dst$$XMMRegister, $mem$$Address);
  5788   %}
  5789   ins_pipe( pipe_slow );
  5790 %}
  5792 // Load to XMM register (single-precision floating point)
  5793 // MOVSS instruction
  5794 instruct loadF(regF dst, memory mem) %{
  5795   predicate(UseSSE>=1);
  5796   match(Set dst (LoadF mem));
  5797   ins_cost(145);
  5798   format %{ "MOVSS  $dst,$mem" %}
  5799   ins_encode %{
  5800     __ movflt ($dst$$XMMRegister, $mem$$Address);
  5801   %}
  5802   ins_pipe( pipe_slow );
  5803 %}
  5805 // Load Float
  5806 instruct loadFPR(regFPR dst, memory mem) %{
  5807   predicate(UseSSE==0);
  5808   match(Set dst (LoadF mem));
  5810   ins_cost(150);
  5811   format %{ "FLD_S  ST,$mem\n\t"
  5812             "FSTP   $dst" %}
  5813   opcode(0xD9);               /* D9 /0 */
  5814   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  5815               Pop_Reg_FPR(dst) );
  5816   ins_pipe( fpu_reg_mem );
  5817 %}
  5819 // Load Effective Address
  5820 instruct leaP8(eRegP dst, indOffset8 mem) %{
  5821   match(Set dst mem);
  5823   ins_cost(110);
  5824   format %{ "LEA    $dst,$mem" %}
  5825   opcode(0x8D);
  5826   ins_encode( OpcP, RegMem(dst,mem));
  5827   ins_pipe( ialu_reg_reg_fat );
  5828 %}
  5830 instruct leaP32(eRegP dst, indOffset32 mem) %{
  5831   match(Set dst mem);
  5833   ins_cost(110);
  5834   format %{ "LEA    $dst,$mem" %}
  5835   opcode(0x8D);
  5836   ins_encode( OpcP, RegMem(dst,mem));
  5837   ins_pipe( ialu_reg_reg_fat );
  5838 %}
  5840 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  5841   match(Set dst mem);
  5843   ins_cost(110);
  5844   format %{ "LEA    $dst,$mem" %}
  5845   opcode(0x8D);
  5846   ins_encode( OpcP, RegMem(dst,mem));
  5847   ins_pipe( ialu_reg_reg_fat );
  5848 %}
  5850 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  5851   match(Set dst mem);
  5853   ins_cost(110);
  5854   format %{ "LEA    $dst,$mem" %}
  5855   opcode(0x8D);
  5856   ins_encode( OpcP, RegMem(dst,mem));
  5857   ins_pipe( ialu_reg_reg_fat );
  5858 %}
  5860 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  5861   match(Set dst mem);
  5863   ins_cost(110);
  5864   format %{ "LEA    $dst,$mem" %}
  5865   opcode(0x8D);
  5866   ins_encode( OpcP, RegMem(dst,mem));
  5867   ins_pipe( ialu_reg_reg_fat );
  5868 %}
  5870 // Load Constant
  5871 instruct loadConI(rRegI dst, immI src) %{
  5872   match(Set dst src);
  5874   format %{ "MOV    $dst,$src" %}
  5875   ins_encode( LdImmI(dst, src) );
  5876   ins_pipe( ialu_reg_fat );
  5877 %}
  5879 // Load Constant zero
  5880 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
  5881   match(Set dst src);
  5882   effect(KILL cr);
  5884   ins_cost(50);
  5885   format %{ "XOR    $dst,$dst" %}
  5886   opcode(0x33);  /* + rd */
  5887   ins_encode( OpcP, RegReg( dst, dst ) );
  5888   ins_pipe( ialu_reg );
  5889 %}
  5891 instruct loadConP(eRegP dst, immP src) %{
  5892   match(Set dst src);
  5894   format %{ "MOV    $dst,$src" %}
  5895   opcode(0xB8);  /* + rd */
  5896   ins_encode( LdImmP(dst, src) );
  5897   ins_pipe( ialu_reg_fat );
  5898 %}
  5900 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  5901   match(Set dst src);
  5902   effect(KILL cr);
  5903   ins_cost(200);
  5904   format %{ "MOV    $dst.lo,$src.lo\n\t"
  5905             "MOV    $dst.hi,$src.hi" %}
  5906   opcode(0xB8);
  5907   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  5908   ins_pipe( ialu_reg_long_fat );
  5909 %}
  5911 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  5912   match(Set dst src);
  5913   effect(KILL cr);
  5914   ins_cost(150);
  5915   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  5916             "XOR    $dst.hi,$dst.hi" %}
  5917   opcode(0x33,0x33);
  5918   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  5919   ins_pipe( ialu_reg_long );
  5920 %}
  5922 // The instruction usage is guarded by predicate in operand immFPR().
  5923 instruct loadConFPR(regFPR dst, immFPR con) %{
  5924   match(Set dst con);
  5925   ins_cost(125);
  5926   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
  5927             "FSTP   $dst" %}
  5928   ins_encode %{
  5929     __ fld_s($constantaddress($con));
  5930     __ fstp_d($dst$$reg);
  5931   %}
  5932   ins_pipe(fpu_reg_con);
  5933 %}
  5935 // The instruction usage is guarded by predicate in operand immFPR0().
  5936 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
  5937   match(Set dst con);
  5938   ins_cost(125);
  5939   format %{ "FLDZ   ST\n\t"
  5940             "FSTP   $dst" %}
  5941   ins_encode %{
  5942     __ fldz();
  5943     __ fstp_d($dst$$reg);
  5944   %}
  5945   ins_pipe(fpu_reg_con);
  5946 %}
  5948 // The instruction usage is guarded by predicate in operand immFPR1().
  5949 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
  5950   match(Set dst con);
  5951   ins_cost(125);
  5952   format %{ "FLD1   ST\n\t"
  5953             "FSTP   $dst" %}
  5954   ins_encode %{
  5955     __ fld1();
  5956     __ fstp_d($dst$$reg);
  5957   %}
  5958   ins_pipe(fpu_reg_con);
  5959 %}
  5961 // The instruction usage is guarded by predicate in operand immF().
  5962 instruct loadConF(regF dst, immF con) %{
  5963   match(Set dst con);
  5964   ins_cost(125);
  5965   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
  5966   ins_encode %{
  5967     __ movflt($dst$$XMMRegister, $constantaddress($con));
  5968   %}
  5969   ins_pipe(pipe_slow);
  5970 %}
  5972 // The instruction usage is guarded by predicate in operand immF0().
  5973 instruct loadConF0(regF dst, immF0 src) %{
  5974   match(Set dst src);
  5975   ins_cost(100);
  5976   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  5977   ins_encode %{
  5978     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
  5979   %}
  5980   ins_pipe(pipe_slow);
  5981 %}
  5983 // The instruction usage is guarded by predicate in operand immDPR().
  5984 instruct loadConDPR(regDPR dst, immDPR con) %{
  5985   match(Set dst con);
  5986   ins_cost(125);
  5988   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
  5989             "FSTP   $dst" %}
  5990   ins_encode %{
  5991     __ fld_d($constantaddress($con));
  5992     __ fstp_d($dst$$reg);
  5993   %}
  5994   ins_pipe(fpu_reg_con);
  5995 %}
  5997 // The instruction usage is guarded by predicate in operand immDPR0().
  5998 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
  5999   match(Set dst con);
  6000   ins_cost(125);
  6002   format %{ "FLDZ   ST\n\t"
  6003             "FSTP   $dst" %}
  6004   ins_encode %{
  6005     __ fldz();
  6006     __ fstp_d($dst$$reg);
  6007   %}
  6008   ins_pipe(fpu_reg_con);
  6009 %}
  6011 // The instruction usage is guarded by predicate in operand immDPR1().
  6012 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
  6013   match(Set dst con);
  6014   ins_cost(125);
  6016   format %{ "FLD1   ST\n\t"
  6017             "FSTP   $dst" %}
  6018   ins_encode %{
  6019     __ fld1();
  6020     __ fstp_d($dst$$reg);
  6021   %}
  6022   ins_pipe(fpu_reg_con);
  6023 %}
  6025 // The instruction usage is guarded by predicate in operand immD().
  6026 instruct loadConD(regD dst, immD con) %{
  6027   match(Set dst con);
  6028   ins_cost(125);
  6029   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
  6030   ins_encode %{
  6031     __ movdbl($dst$$XMMRegister, $constantaddress($con));
  6032   %}
  6033   ins_pipe(pipe_slow);
  6034 %}
  6036 // The instruction usage is guarded by predicate in operand immD0().
  6037 instruct loadConD0(regD dst, immD0 src) %{
  6038   match(Set dst src);
  6039   ins_cost(100);
  6040   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  6041   ins_encode %{
  6042     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
  6043   %}
  6044   ins_pipe( pipe_slow );
  6045 %}
  6047 // Load Stack Slot
  6048 instruct loadSSI(rRegI dst, stackSlotI src) %{
  6049   match(Set dst src);
  6050   ins_cost(125);
  6052   format %{ "MOV    $dst,$src" %}
  6053   opcode(0x8B);
  6054   ins_encode( OpcP, RegMem(dst,src));
  6055   ins_pipe( ialu_reg_mem );
  6056 %}
  6058 instruct loadSSL(eRegL dst, stackSlotL src) %{
  6059   match(Set dst src);
  6061   ins_cost(200);
  6062   format %{ "MOV    $dst,$src.lo\n\t"
  6063             "MOV    $dst+4,$src.hi" %}
  6064   opcode(0x8B, 0x8B);
  6065   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  6066   ins_pipe( ialu_mem_long_reg );
  6067 %}
  6069 // Load Stack Slot
  6070 instruct loadSSP(eRegP dst, stackSlotP src) %{
  6071   match(Set dst src);
  6072   ins_cost(125);
  6074   format %{ "MOV    $dst,$src" %}
  6075   opcode(0x8B);
  6076   ins_encode( OpcP, RegMem(dst,src));
  6077   ins_pipe( ialu_reg_mem );
  6078 %}
  6080 // Load Stack Slot
  6081 instruct loadSSF(regFPR dst, stackSlotF src) %{
  6082   match(Set dst src);
  6083   ins_cost(125);
  6085   format %{ "FLD_S  $src\n\t"
  6086             "FSTP   $dst" %}
  6087   opcode(0xD9);               /* D9 /0, FLD m32real */
  6088   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6089               Pop_Reg_FPR(dst) );
  6090   ins_pipe( fpu_reg_mem );
  6091 %}
  6093 // Load Stack Slot
  6094 instruct loadSSD(regDPR dst, stackSlotD src) %{
  6095   match(Set dst src);
  6096   ins_cost(125);
  6098   format %{ "FLD_D  $src\n\t"
  6099             "FSTP   $dst" %}
  6100   opcode(0xDD);               /* DD /0, FLD m64real */
  6101   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  6102               Pop_Reg_DPR(dst) );
  6103   ins_pipe( fpu_reg_mem );
  6104 %}
  6106 // Prefetch instructions.
  6107 // Must be safe to execute with invalid address (cannot fault).
  6109 instruct prefetchr0( memory mem ) %{
  6110   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6111   match(PrefetchRead mem);
  6112   ins_cost(0);
  6113   size(0);
  6114   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  6115   ins_encode();
  6116   ins_pipe(empty);
  6117 %}
  6119 instruct prefetchr( memory mem ) %{
  6120   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
  6121   match(PrefetchRead mem);
  6122   ins_cost(100);
  6124   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  6125   ins_encode %{
  6126     __ prefetchr($mem$$Address);
  6127   %}
  6128   ins_pipe(ialu_mem);
  6129 %}
  6131 instruct prefetchrNTA( memory mem ) %{
  6132   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  6133   match(PrefetchRead mem);
  6134   ins_cost(100);
  6136   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  6137   ins_encode %{
  6138     __ prefetchnta($mem$$Address);
  6139   %}
  6140   ins_pipe(ialu_mem);
  6141 %}
  6143 instruct prefetchrT0( memory mem ) %{
  6144   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  6145   match(PrefetchRead mem);
  6146   ins_cost(100);
  6148   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  6149   ins_encode %{
  6150     __ prefetcht0($mem$$Address);
  6151   %}
  6152   ins_pipe(ialu_mem);
  6153 %}
  6155 instruct prefetchrT2( memory mem ) %{
  6156   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  6157   match(PrefetchRead mem);
  6158   ins_cost(100);
  6160   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  6161   ins_encode %{
  6162     __ prefetcht2($mem$$Address);
  6163   %}
  6164   ins_pipe(ialu_mem);
  6165 %}
  6167 instruct prefetchw0( memory mem ) %{
  6168   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
  6169   match(PrefetchWrite mem);
  6170   ins_cost(0);
  6171   size(0);
  6172   format %{ "Prefetch (non-SSE is empty encoding)" %}
  6173   ins_encode();
  6174   ins_pipe(empty);
  6175 %}
  6177 instruct prefetchw( memory mem ) %{
  6178   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
  6179   match( PrefetchWrite mem );
  6180   ins_cost(100);
  6182   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  6183   ins_encode %{
  6184     __ prefetchw($mem$$Address);
  6185   %}
  6186   ins_pipe(ialu_mem);
  6187 %}
  6189 instruct prefetchwNTA( memory mem ) %{
  6190   predicate(UseSSE>=1);
  6191   match(PrefetchWrite mem);
  6192   ins_cost(100);
  6194   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  6195   ins_encode %{
  6196     __ prefetchnta($mem$$Address);
  6197   %}
  6198   ins_pipe(ialu_mem);
  6199 %}
  6201 // Prefetch instructions for allocation.
  6203 instruct prefetchAlloc0( memory mem ) %{
  6204   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
  6205   match(PrefetchAllocation mem);
  6206   ins_cost(0);
  6207   size(0);
  6208   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
  6209   ins_encode();
  6210   ins_pipe(empty);
  6211 %}
  6213 instruct prefetchAlloc( memory mem ) %{
  6214   predicate(AllocatePrefetchInstr==3);
  6215   match( PrefetchAllocation mem );
  6216   ins_cost(100);
  6218   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
  6219   ins_encode %{
  6220     __ prefetchw($mem$$Address);
  6221   %}
  6222   ins_pipe(ialu_mem);
  6223 %}
  6225 instruct prefetchAllocNTA( memory mem ) %{
  6226   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  6227   match(PrefetchAllocation mem);
  6228   ins_cost(100);
  6230   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
  6231   ins_encode %{
  6232     __ prefetchnta($mem$$Address);
  6233   %}
  6234   ins_pipe(ialu_mem);
  6235 %}
  6237 instruct prefetchAllocT0( memory mem ) %{
  6238   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  6239   match(PrefetchAllocation mem);
  6240   ins_cost(100);
  6242   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
  6243   ins_encode %{
  6244     __ prefetcht0($mem$$Address);
  6245   %}
  6246   ins_pipe(ialu_mem);
  6247 %}
  6249 instruct prefetchAllocT2( memory mem ) %{
  6250   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  6251   match(PrefetchAllocation mem);
  6252   ins_cost(100);
  6254   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
  6255   ins_encode %{
  6256     __ prefetcht2($mem$$Address);
  6257   %}
  6258   ins_pipe(ialu_mem);
  6259 %}
  6261 //----------Store Instructions-------------------------------------------------
  6263 // Store Byte
  6264 instruct storeB(memory mem, xRegI src) %{
  6265   match(Set mem (StoreB mem src));
  6267   ins_cost(125);
  6268   format %{ "MOV8   $mem,$src" %}
  6269   opcode(0x88);
  6270   ins_encode( OpcP, RegMem( src, mem ) );
  6271   ins_pipe( ialu_mem_reg );
  6272 %}
  6274 // Store Char/Short
  6275 instruct storeC(memory mem, rRegI src) %{
  6276   match(Set mem (StoreC mem src));
  6278   ins_cost(125);
  6279   format %{ "MOV16  $mem,$src" %}
  6280   opcode(0x89, 0x66);
  6281   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  6282   ins_pipe( ialu_mem_reg );
  6283 %}
  6285 // Store Integer
  6286 instruct storeI(memory mem, rRegI src) %{
  6287   match(Set mem (StoreI mem src));
  6289   ins_cost(125);
  6290   format %{ "MOV    $mem,$src" %}
  6291   opcode(0x89);
  6292   ins_encode( OpcP, RegMem( src, mem ) );
  6293   ins_pipe( ialu_mem_reg );
  6294 %}
  6296 // Store Long
  6297 instruct storeL(long_memory mem, eRegL src) %{
  6298   predicate(!((StoreLNode*)n)->require_atomic_access());
  6299   match(Set mem (StoreL mem src));
  6301   ins_cost(200);
  6302   format %{ "MOV    $mem,$src.lo\n\t"
  6303             "MOV    $mem+4,$src.hi" %}
  6304   opcode(0x89, 0x89);
  6305   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  6306   ins_pipe( ialu_mem_long_reg );
  6307 %}
  6309 // Store Long to Integer
  6310 instruct storeL2I(memory mem, eRegL src) %{
  6311   match(Set mem (StoreI mem (ConvL2I src)));
  6313   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  6314   ins_encode %{
  6315     __ movl($mem$$Address, $src$$Register);
  6316   %}
  6317   ins_pipe(ialu_mem_reg);
  6318 %}
  6320 // Volatile Store Long.  Must be atomic, so move it into
  6321 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6322 // target address before the store (for null-ptr checks)
  6323 // so the memory operand is used twice in the encoding.
  6324 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  6325   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  6326   match(Set mem (StoreL mem src));
  6327   effect( KILL cr );
  6328   ins_cost(400);
  6329   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6330             "FILD   $src\n\t"
  6331             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  6332   opcode(0x3B);
  6333   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  6334   ins_pipe( fpu_reg_mem );
  6335 %}
  6337 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
  6338   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6339   match(Set mem (StoreL mem src));
  6340   effect( TEMP tmp, KILL cr );
  6341   ins_cost(380);
  6342   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6343             "MOVSD  $tmp,$src\n\t"
  6344             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6345   ins_encode %{
  6346     __ cmpl(rax, $mem$$Address);
  6347     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
  6348     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6349   %}
  6350   ins_pipe( pipe_slow );
  6351 %}
  6353 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
  6354   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  6355   match(Set mem (StoreL mem src));
  6356   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  6357   ins_cost(360);
  6358   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  6359             "MOVD   $tmp,$src.lo\n\t"
  6360             "MOVD   $tmp2,$src.hi\n\t"
  6361             "PUNPCKLDQ $tmp,$tmp2\n\t"
  6362             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  6363   ins_encode %{
  6364     __ cmpl(rax, $mem$$Address);
  6365     __ movdl($tmp$$XMMRegister, $src$$Register);
  6366     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
  6367     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
  6368     __ movdbl($mem$$Address, $tmp$$XMMRegister);
  6369   %}
  6370   ins_pipe( pipe_slow );
  6371 %}
  6373 // Store Pointer; for storing unknown oops and raw pointers
  6374 instruct storeP(memory mem, anyRegP src) %{
  6375   match(Set mem (StoreP mem src));
  6377   ins_cost(125);
  6378   format %{ "MOV    $mem,$src" %}
  6379   opcode(0x89);
  6380   ins_encode( OpcP, RegMem( src, mem ) );
  6381   ins_pipe( ialu_mem_reg );
  6382 %}
  6384 // Store Integer Immediate
  6385 instruct storeImmI(memory mem, immI src) %{
  6386   match(Set mem (StoreI mem src));
  6388   ins_cost(150);
  6389   format %{ "MOV    $mem,$src" %}
  6390   opcode(0xC7);               /* C7 /0 */
  6391   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6392   ins_pipe( ialu_mem_imm );
  6393 %}
  6395 // Store Short/Char Immediate
  6396 instruct storeImmI16(memory mem, immI16 src) %{
  6397   predicate(UseStoreImmI16);
  6398   match(Set mem (StoreC mem src));
  6400   ins_cost(150);
  6401   format %{ "MOV16  $mem,$src" %}
  6402   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  6403   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  6404   ins_pipe( ialu_mem_imm );
  6405 %}
  6407 // Store Pointer Immediate; null pointers or constant oops that do not
  6408 // need card-mark barriers.
  6409 instruct storeImmP(memory mem, immP src) %{
  6410   match(Set mem (StoreP mem src));
  6412   ins_cost(150);
  6413   format %{ "MOV    $mem,$src" %}
  6414   opcode(0xC7);               /* C7 /0 */
  6415   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  6416   ins_pipe( ialu_mem_imm );
  6417 %}
  6419 // Store Byte Immediate
  6420 instruct storeImmB(memory mem, immI8 src) %{
  6421   match(Set mem (StoreB mem src));
  6423   ins_cost(150);
  6424   format %{ "MOV8   $mem,$src" %}
  6425   opcode(0xC6);               /* C6 /0 */
  6426   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6427   ins_pipe( ialu_mem_imm );
  6428 %}
  6430 // Store CMS card-mark Immediate
  6431 instruct storeImmCM(memory mem, immI8 src) %{
  6432   match(Set mem (StoreCM mem src));
  6434   ins_cost(150);
  6435   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  6436   opcode(0xC6);               /* C6 /0 */
  6437   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  6438   ins_pipe( ialu_mem_imm );
  6439 %}
  6441 // Store Double
  6442 instruct storeDPR( memory mem, regDPR1 src) %{
  6443   predicate(UseSSE<=1);
  6444   match(Set mem (StoreD mem src));
  6446   ins_cost(100);
  6447   format %{ "FST_D  $mem,$src" %}
  6448   opcode(0xDD);       /* DD /2 */
  6449   ins_encode( enc_FPR_store(mem,src) );
  6450   ins_pipe( fpu_mem_reg );
  6451 %}
  6453 // Store double does rounding on x86
  6454 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
  6455   predicate(UseSSE<=1);
  6456   match(Set mem (StoreD mem (RoundDouble src)));
  6458   ins_cost(100);
  6459   format %{ "FST_D  $mem,$src\t# round" %}
  6460   opcode(0xDD);       /* DD /2 */
  6461   ins_encode( enc_FPR_store(mem,src) );
  6462   ins_pipe( fpu_mem_reg );
  6463 %}
  6465 // Store XMM register to memory (double-precision floating points)
  6466 // MOVSD instruction
  6467 instruct storeD(memory mem, regD src) %{
  6468   predicate(UseSSE>=2);
  6469   match(Set mem (StoreD mem src));
  6470   ins_cost(95);
  6471   format %{ "MOVSD  $mem,$src" %}
  6472   ins_encode %{
  6473     __ movdbl($mem$$Address, $src$$XMMRegister);
  6474   %}
  6475   ins_pipe( pipe_slow );
  6476 %}
  6478 // Store XMM register to memory (single-precision floating point)
  6479 // MOVSS instruction
  6480 instruct storeF(memory mem, regF src) %{
  6481   predicate(UseSSE>=1);
  6482   match(Set mem (StoreF mem src));
  6483   ins_cost(95);
  6484   format %{ "MOVSS  $mem,$src" %}
  6485   ins_encode %{
  6486     __ movflt($mem$$Address, $src$$XMMRegister);
  6487   %}
  6488   ins_pipe( pipe_slow );
  6489 %}
  6491 // Store Float
  6492 instruct storeFPR( memory mem, regFPR1 src) %{
  6493   predicate(UseSSE==0);
  6494   match(Set mem (StoreF mem src));
  6496   ins_cost(100);
  6497   format %{ "FST_S  $mem,$src" %}
  6498   opcode(0xD9);       /* D9 /2 */
  6499   ins_encode( enc_FPR_store(mem,src) );
  6500   ins_pipe( fpu_mem_reg );
  6501 %}
  6503 // Store Float does rounding on x86
  6504 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
  6505   predicate(UseSSE==0);
  6506   match(Set mem (StoreF mem (RoundFloat src)));
  6508   ins_cost(100);
  6509   format %{ "FST_S  $mem,$src\t# round" %}
  6510   opcode(0xD9);       /* D9 /2 */
  6511   ins_encode( enc_FPR_store(mem,src) );
  6512   ins_pipe( fpu_mem_reg );
  6513 %}
  6515 // Store Float does rounding on x86
  6516 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
  6517   predicate(UseSSE<=1);
  6518   match(Set mem (StoreF mem (ConvD2F src)));
  6520   ins_cost(100);
  6521   format %{ "FST_S  $mem,$src\t# D-round" %}
  6522   opcode(0xD9);       /* D9 /2 */
  6523   ins_encode( enc_FPR_store(mem,src) );
  6524   ins_pipe( fpu_mem_reg );
  6525 %}
  6527 // Store immediate Float value (it is faster than store from FPU register)
  6528 // The instruction usage is guarded by predicate in operand immFPR().
  6529 instruct storeFPR_imm( memory mem, immFPR src) %{
  6530   match(Set mem (StoreF mem src));
  6532   ins_cost(50);
  6533   format %{ "MOV    $mem,$src\t# store float" %}
  6534   opcode(0xC7);               /* C7 /0 */
  6535   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
  6536   ins_pipe( ialu_mem_imm );
  6537 %}
  6539 // Store immediate Float value (it is faster than store from XMM register)
  6540 // The instruction usage is guarded by predicate in operand immF().
  6541 instruct storeF_imm( memory mem, immF src) %{
  6542   match(Set mem (StoreF mem src));
  6544   ins_cost(50);
  6545   format %{ "MOV    $mem,$src\t# store float" %}
  6546   opcode(0xC7);               /* C7 /0 */
  6547   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  6548   ins_pipe( ialu_mem_imm );
  6549 %}
  6551 // Store Integer to stack slot
  6552 instruct storeSSI(stackSlotI dst, rRegI src) %{
  6553   match(Set dst src);
  6555   ins_cost(100);
  6556   format %{ "MOV    $dst,$src" %}
  6557   opcode(0x89);
  6558   ins_encode( OpcPRegSS( dst, src ) );
  6559   ins_pipe( ialu_mem_reg );
  6560 %}
  6562 // Store Integer to stack slot
  6563 instruct storeSSP(stackSlotP dst, eRegP src) %{
  6564   match(Set dst src);
  6566   ins_cost(100);
  6567   format %{ "MOV    $dst,$src" %}
  6568   opcode(0x89);
  6569   ins_encode( OpcPRegSS( dst, src ) );
  6570   ins_pipe( ialu_mem_reg );
  6571 %}
  6573 // Store Long to stack slot
  6574 instruct storeSSL(stackSlotL dst, eRegL src) %{
  6575   match(Set dst src);
  6577   ins_cost(200);
  6578   format %{ "MOV    $dst,$src.lo\n\t"
  6579             "MOV    $dst+4,$src.hi" %}
  6580   opcode(0x89, 0x89);
  6581   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  6582   ins_pipe( ialu_mem_long_reg );
  6583 %}
  6585 //----------MemBar Instructions-----------------------------------------------
  6586 // Memory barrier flavors
  6588 instruct membar_acquire() %{
  6589   match(MemBarAcquire);
  6590   ins_cost(400);
  6592   size(0);
  6593   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  6594   ins_encode();
  6595   ins_pipe(empty);
  6596 %}
  6598 instruct membar_acquire_lock() %{
  6599   match(MemBarAcquireLock);
  6600   ins_cost(0);
  6602   size(0);
  6603   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  6604   ins_encode( );
  6605   ins_pipe(empty);
  6606 %}
  6608 instruct membar_release() %{
  6609   match(MemBarRelease);
  6610   ins_cost(400);
  6612   size(0);
  6613   format %{ "MEMBAR-release ! (empty encoding)" %}
  6614   ins_encode( );
  6615   ins_pipe(empty);
  6616 %}
  6618 instruct membar_release_lock() %{
  6619   match(MemBarReleaseLock);
  6620   ins_cost(0);
  6622   size(0);
  6623   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  6624   ins_encode( );
  6625   ins_pipe(empty);
  6626 %}
  6628 instruct membar_volatile(eFlagsReg cr) %{
  6629   match(MemBarVolatile);
  6630   effect(KILL cr);
  6631   ins_cost(400);
  6633   format %{ 
  6634     $$template
  6635     if (os::is_MP()) {
  6636       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  6637     } else {
  6638       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  6640   %}
  6641   ins_encode %{
  6642     __ membar(Assembler::StoreLoad);
  6643   %}
  6644   ins_pipe(pipe_slow);
  6645 %}
  6647 instruct unnecessary_membar_volatile() %{
  6648   match(MemBarVolatile);
  6649   predicate(Matcher::post_store_load_barrier(n));
  6650   ins_cost(0);
  6652   size(0);
  6653   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  6654   ins_encode( );
  6655   ins_pipe(empty);
  6656 %}
  6658 instruct membar_storestore() %{
  6659   match(MemBarStoreStore);
  6660   ins_cost(0);
  6662   size(0);
  6663   format %{ "MEMBAR-storestore (empty encoding)" %}
  6664   ins_encode( );
  6665   ins_pipe(empty);
  6666 %}
  6668 //----------Move Instructions--------------------------------------------------
  6669 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  6670   match(Set dst (CastX2P src));
  6671   format %{ "# X2P  $dst, $src" %}
  6672   ins_encode( /*empty encoding*/ );
  6673   ins_cost(0);
  6674   ins_pipe(empty);
  6675 %}
  6677 instruct castP2X(rRegI dst, eRegP src ) %{
  6678   match(Set dst (CastP2X src));
  6679   ins_cost(50);
  6680   format %{ "MOV    $dst, $src\t# CastP2X" %}
  6681   ins_encode( enc_Copy( dst, src) );
  6682   ins_pipe( ialu_reg_reg );
  6683 %}
  6685 //----------Conditional Move---------------------------------------------------
  6686 // Conditional move
  6687 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
  6688   predicate(!VM_Version::supports_cmov() );
  6689   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6690   ins_cost(200);
  6691   format %{ "J$cop,us skip\t# signed cmove\n\t"
  6692             "MOV    $dst,$src\n"
  6693       "skip:" %}
  6694   ins_encode %{
  6695     Label Lskip;
  6696     // Invert sense of branch from sense of CMOV
  6697     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  6698     __ movl($dst$$Register, $src$$Register);
  6699     __ bind(Lskip);
  6700   %}
  6701   ins_pipe( pipe_cmov_reg );
  6702 %}
  6704 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
  6705   predicate(!VM_Version::supports_cmov() );
  6706   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6707   ins_cost(200);
  6708   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
  6709             "MOV    $dst,$src\n"
  6710       "skip:" %}
  6711   ins_encode %{
  6712     Label Lskip;
  6713     // Invert sense of branch from sense of CMOV
  6714     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
  6715     __ movl($dst$$Register, $src$$Register);
  6716     __ bind(Lskip);
  6717   %}
  6718   ins_pipe( pipe_cmov_reg );
  6719 %}
  6721 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
  6722   predicate(VM_Version::supports_cmov() );
  6723   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6724   ins_cost(200);
  6725   format %{ "CMOV$cop $dst,$src" %}
  6726   opcode(0x0F,0x40);
  6727   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6728   ins_pipe( pipe_cmov_reg );
  6729 %}
  6731 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
  6732   predicate(VM_Version::supports_cmov() );
  6733   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6734   ins_cost(200);
  6735   format %{ "CMOV$cop $dst,$src" %}
  6736   opcode(0x0F,0x40);
  6737   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6738   ins_pipe( pipe_cmov_reg );
  6739 %}
  6741 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
  6742   predicate(VM_Version::supports_cmov() );
  6743   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  6744   ins_cost(200);
  6745   expand %{
  6746     cmovI_regU(cop, cr, dst, src);
  6747   %}
  6748 %}
  6750 // Conditional move
  6751 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
  6752   predicate(VM_Version::supports_cmov() );
  6753   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6754   ins_cost(250);
  6755   format %{ "CMOV$cop $dst,$src" %}
  6756   opcode(0x0F,0x40);
  6757   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6758   ins_pipe( pipe_cmov_mem );
  6759 %}
  6761 // Conditional move
  6762 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
  6763   predicate(VM_Version::supports_cmov() );
  6764   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6765   ins_cost(250);
  6766   format %{ "CMOV$cop $dst,$src" %}
  6767   opcode(0x0F,0x40);
  6768   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6769   ins_pipe( pipe_cmov_mem );
  6770 %}
  6772 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
  6773   predicate(VM_Version::supports_cmov() );
  6774   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  6775   ins_cost(250);
  6776   expand %{
  6777     cmovI_memU(cop, cr, dst, src);
  6778   %}
  6779 %}
  6781 // Conditional move
  6782 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  6783   predicate(VM_Version::supports_cmov() );
  6784   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6785   ins_cost(200);
  6786   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6787   opcode(0x0F,0x40);
  6788   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6789   ins_pipe( pipe_cmov_reg );
  6790 %}
  6792 // Conditional move (non-P6 version)
  6793 // Note:  a CMoveP is generated for  stubs and native wrappers
  6794 //        regardless of whether we are on a P6, so we
  6795 //        emulate a cmov here
  6796 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  6797   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6798   ins_cost(300);
  6799   format %{ "Jn$cop   skip\n\t"
  6800           "MOV    $dst,$src\t# pointer\n"
  6801       "skip:" %}
  6802   opcode(0x8b);
  6803   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  6804   ins_pipe( pipe_cmov_reg );
  6805 %}
  6807 // Conditional move
  6808 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  6809   predicate(VM_Version::supports_cmov() );
  6810   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6811   ins_cost(200);
  6812   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6813   opcode(0x0F,0x40);
  6814   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  6815   ins_pipe( pipe_cmov_reg );
  6816 %}
  6818 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  6819   predicate(VM_Version::supports_cmov() );
  6820   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  6821   ins_cost(200);
  6822   expand %{
  6823     cmovP_regU(cop, cr, dst, src);
  6824   %}
  6825 %}
  6827 // DISABLED: Requires the ADLC to emit a bottom_type call that
  6828 // correctly meets the two pointer arguments; one is an incoming
  6829 // register but the other is a memory operand.  ALSO appears to
  6830 // be buggy with implicit null checks.
  6831 //
  6832 //// Conditional move
  6833 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  6834 //  predicate(VM_Version::supports_cmov() );
  6835 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  6836 //  ins_cost(250);
  6837 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6838 //  opcode(0x0F,0x40);
  6839 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6840 //  ins_pipe( pipe_cmov_mem );
  6841 //%}
  6842 //
  6843 //// Conditional move
  6844 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  6845 //  predicate(VM_Version::supports_cmov() );
  6846 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  6847 //  ins_cost(250);
  6848 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  6849 //  opcode(0x0F,0x40);
  6850 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  6851 //  ins_pipe( pipe_cmov_mem );
  6852 //%}
  6854 // Conditional move
  6855 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
  6856   predicate(UseSSE<=1);
  6857   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6858   ins_cost(200);
  6859   format %{ "FCMOV$cop $dst,$src\t# double" %}
  6860   opcode(0xDA);
  6861   ins_encode( enc_cmov_dpr(cop,src) );
  6862   ins_pipe( pipe_cmovDPR_reg );
  6863 %}
  6865 // Conditional move
  6866 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
  6867   predicate(UseSSE==0);
  6868   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6869   ins_cost(200);
  6870   format %{ "FCMOV$cop $dst,$src\t# float" %}
  6871   opcode(0xDA);
  6872   ins_encode( enc_cmov_dpr(cop,src) );
  6873   ins_pipe( pipe_cmovDPR_reg );
  6874 %}
  6876 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  6877 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
  6878   predicate(UseSSE<=1);
  6879   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6880   ins_cost(200);
  6881   format %{ "Jn$cop   skip\n\t"
  6882             "MOV    $dst,$src\t# double\n"
  6883       "skip:" %}
  6884   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  6885   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
  6886   ins_pipe( pipe_cmovDPR_reg );
  6887 %}
  6889 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  6890 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
  6891   predicate(UseSSE==0);
  6892   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6893   ins_cost(200);
  6894   format %{ "Jn$cop    skip\n\t"
  6895             "MOV    $dst,$src\t# float\n"
  6896       "skip:" %}
  6897   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  6898   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
  6899   ins_pipe( pipe_cmovDPR_reg );
  6900 %}
  6902 // No CMOVE with SSE/SSE2
  6903 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  6904   predicate (UseSSE>=1);
  6905   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6906   ins_cost(200);
  6907   format %{ "Jn$cop   skip\n\t"
  6908             "MOVSS  $dst,$src\t# float\n"
  6909       "skip:" %}
  6910   ins_encode %{
  6911     Label skip;
  6912     // Invert sense of branch from sense of CMOV
  6913     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6914     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  6915     __ bind(skip);
  6916   %}
  6917   ins_pipe( pipe_slow );
  6918 %}
  6920 // No CMOVE with SSE/SSE2
  6921 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  6922   predicate (UseSSE>=2);
  6923   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6924   ins_cost(200);
  6925   format %{ "Jn$cop   skip\n\t"
  6926             "MOVSD  $dst,$src\t# float\n"
  6927       "skip:" %}
  6928   ins_encode %{
  6929     Label skip;
  6930     // Invert sense of branch from sense of CMOV
  6931     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6932     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  6933     __ bind(skip);
  6934   %}
  6935   ins_pipe( pipe_slow );
  6936 %}
  6938 // unsigned version
  6939 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
  6940   predicate (UseSSE>=1);
  6941   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6942   ins_cost(200);
  6943   format %{ "Jn$cop   skip\n\t"
  6944             "MOVSS  $dst,$src\t# float\n"
  6945       "skip:" %}
  6946   ins_encode %{
  6947     Label skip;
  6948     // Invert sense of branch from sense of CMOV
  6949     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6950     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  6951     __ bind(skip);
  6952   %}
  6953   ins_pipe( pipe_slow );
  6954 %}
  6956 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
  6957   predicate (UseSSE>=1);
  6958   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  6959   ins_cost(200);
  6960   expand %{
  6961     fcmovF_regU(cop, cr, dst, src);
  6962   %}
  6963 %}
  6965 // unsigned version
  6966 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
  6967   predicate (UseSSE>=2);
  6968   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6969   ins_cost(200);
  6970   format %{ "Jn$cop   skip\n\t"
  6971             "MOVSD  $dst,$src\t# float\n"
  6972       "skip:" %}
  6973   ins_encode %{
  6974     Label skip;
  6975     // Invert sense of branch from sense of CMOV
  6976     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  6977     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  6978     __ bind(skip);
  6979   %}
  6980   ins_pipe( pipe_slow );
  6981 %}
  6983 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
  6984   predicate (UseSSE>=2);
  6985   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  6986   ins_cost(200);
  6987   expand %{
  6988     fcmovD_regU(cop, cr, dst, src);
  6989   %}
  6990 %}
  6992 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  6993   predicate(VM_Version::supports_cmov() );
  6994   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  6995   ins_cost(200);
  6996   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  6997             "CMOV$cop $dst.hi,$src.hi" %}
  6998   opcode(0x0F,0x40);
  6999   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7000   ins_pipe( pipe_cmov_reg_long );
  7001 %}
  7003 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  7004   predicate(VM_Version::supports_cmov() );
  7005   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7006   ins_cost(200);
  7007   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  7008             "CMOV$cop $dst.hi,$src.hi" %}
  7009   opcode(0x0F,0x40);
  7010   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  7011   ins_pipe( pipe_cmov_reg_long );
  7012 %}
  7014 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  7015   predicate(VM_Version::supports_cmov() );
  7016   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7017   ins_cost(200);
  7018   expand %{
  7019     cmovL_regU(cop, cr, dst, src);
  7020   %}
  7021 %}
  7023 //----------Arithmetic Instructions--------------------------------------------
  7024 //----------Addition Instructions----------------------------------------------
  7026 // Integer Addition Instructions
  7027 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7028   match(Set dst (AddI dst src));
  7029   effect(KILL cr);
  7031   size(2);
  7032   format %{ "ADD    $dst,$src" %}
  7033   opcode(0x03);
  7034   ins_encode( OpcP, RegReg( dst, src) );
  7035   ins_pipe( ialu_reg_reg );
  7036 %}
  7038 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7039   match(Set dst (AddI dst src));
  7040   effect(KILL cr);
  7042   format %{ "ADD    $dst,$src" %}
  7043   opcode(0x81, 0x00); /* /0 id */
  7044   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7045   ins_pipe( ialu_reg );
  7046 %}
  7048 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
  7049   predicate(UseIncDec);
  7050   match(Set dst (AddI dst src));
  7051   effect(KILL cr);
  7053   size(1);
  7054   format %{ "INC    $dst" %}
  7055   opcode(0x40); /*  */
  7056   ins_encode( Opc_plus( primary, dst ) );
  7057   ins_pipe( ialu_reg );
  7058 %}
  7060 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
  7061   match(Set dst (AddI src0 src1));
  7062   ins_cost(110);
  7064   format %{ "LEA    $dst,[$src0 + $src1]" %}
  7065   opcode(0x8D); /* 0x8D /r */
  7066   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7067   ins_pipe( ialu_reg_reg );
  7068 %}
  7070 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  7071   match(Set dst (AddP src0 src1));
  7072   ins_cost(110);
  7074   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  7075   opcode(0x8D); /* 0x8D /r */
  7076   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  7077   ins_pipe( ialu_reg_reg );
  7078 %}
  7080 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
  7081   predicate(UseIncDec);
  7082   match(Set dst (AddI dst src));
  7083   effect(KILL cr);
  7085   size(1);
  7086   format %{ "DEC    $dst" %}
  7087   opcode(0x48); /*  */
  7088   ins_encode( Opc_plus( primary, dst ) );
  7089   ins_pipe( ialu_reg );
  7090 %}
  7092 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
  7093   match(Set dst (AddP dst src));
  7094   effect(KILL cr);
  7096   size(2);
  7097   format %{ "ADD    $dst,$src" %}
  7098   opcode(0x03);
  7099   ins_encode( OpcP, RegReg( dst, src) );
  7100   ins_pipe( ialu_reg_reg );
  7101 %}
  7103 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  7104   match(Set dst (AddP dst src));
  7105   effect(KILL cr);
  7107   format %{ "ADD    $dst,$src" %}
  7108   opcode(0x81,0x00); /* Opcode 81 /0 id */
  7109   // ins_encode( RegImm( dst, src) );
  7110   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7111   ins_pipe( ialu_reg );
  7112 %}
  7114 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7115   match(Set dst (AddI dst (LoadI src)));
  7116   effect(KILL cr);
  7118   ins_cost(125);
  7119   format %{ "ADD    $dst,$src" %}
  7120   opcode(0x03);
  7121   ins_encode( OpcP, RegMem( dst, src) );
  7122   ins_pipe( ialu_reg_mem );
  7123 %}
  7125 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7126   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7127   effect(KILL cr);
  7129   ins_cost(150);
  7130   format %{ "ADD    $dst,$src" %}
  7131   opcode(0x01);  /* Opcode 01 /r */
  7132   ins_encode( OpcP, RegMem( src, dst ) );
  7133   ins_pipe( ialu_mem_reg );
  7134 %}
  7136 // Add Memory with Immediate
  7137 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  7138   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7139   effect(KILL cr);
  7141   ins_cost(125);
  7142   format %{ "ADD    $dst,$src" %}
  7143   opcode(0x81);               /* Opcode 81 /0 id */
  7144   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  7145   ins_pipe( ialu_mem_imm );
  7146 %}
  7148 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  7149   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7150   effect(KILL cr);
  7152   ins_cost(125);
  7153   format %{ "INC    $dst" %}
  7154   opcode(0xFF);               /* Opcode FF /0 */
  7155   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  7156   ins_pipe( ialu_mem_imm );
  7157 %}
  7159 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  7160   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7161   effect(KILL cr);
  7163   ins_cost(125);
  7164   format %{ "DEC    $dst" %}
  7165   opcode(0xFF);               /* Opcode FF /1 */
  7166   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  7167   ins_pipe( ialu_mem_imm );
  7168 %}
  7171 instruct checkCastPP( eRegP dst ) %{
  7172   match(Set dst (CheckCastPP dst));
  7174   size(0);
  7175   format %{ "#checkcastPP of $dst" %}
  7176   ins_encode( /*empty encoding*/ );
  7177   ins_pipe( empty );
  7178 %}
  7180 instruct castPP( eRegP dst ) %{
  7181   match(Set dst (CastPP dst));
  7182   format %{ "#castPP of $dst" %}
  7183   ins_encode( /*empty encoding*/ );
  7184   ins_pipe( empty );
  7185 %}
  7187 instruct castII( rRegI dst ) %{
  7188   match(Set dst (CastII dst));
  7189   format %{ "#castII of $dst" %}
  7190   ins_encode( /*empty encoding*/ );
  7191   ins_cost(0);
  7192   ins_pipe( empty );
  7193 %}
  7196 // Load-locked - same as a regular pointer load when used with compare-swap
  7197 instruct loadPLocked(eRegP dst, memory mem) %{
  7198   match(Set dst (LoadPLocked mem));
  7200   ins_cost(125);
  7201   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  7202   opcode(0x8B);
  7203   ins_encode( OpcP, RegMem(dst,mem));
  7204   ins_pipe( ialu_reg_mem );
  7205 %}
  7207 // Conditional-store of the updated heap-top.
  7208 // Used during allocation of the shared heap.
  7209 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7210 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  7211   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7212   // EAX is killed if there is contention, but then it's also unused.
  7213   // In the common case of no contention, EAX holds the new oop address.
  7214   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  7215   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  7216   ins_pipe( pipe_cmpxchg );
  7217 %}
  7219 // Conditional-store of an int value.
  7220 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  7221 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
  7222   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7223   effect(KILL oldval);
  7224   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  7225   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  7226   ins_pipe( pipe_cmpxchg );
  7227 %}
  7229 // Conditional-store of a long value.
  7230 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  7231 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7232   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7233   effect(KILL oldval);
  7234   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  7235             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  7236             "XCHG   EBX,ECX"
  7237   %}
  7238   ins_encode %{
  7239     // Note: we need to swap rbx, and rcx before and after the
  7240     //       cmpxchg8 instruction because the instruction uses
  7241     //       rcx as the high order word of the new value to store but
  7242     //       our register encoding uses rbx.
  7243     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7244     if( os::is_MP() )
  7245       __ lock();
  7246     __ cmpxchg8($mem$$Address);
  7247     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  7248   %}
  7249   ins_pipe( pipe_cmpxchg );
  7250 %}
  7252 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7254 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  7255   predicate(VM_Version::supports_cx8());
  7256   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7257   effect(KILL cr, KILL oldval);
  7258   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7259             "MOV    $res,0\n\t"
  7260             "JNE,s  fail\n\t"
  7261             "MOV    $res,1\n"
  7262           "fail:" %}
  7263   ins_encode( enc_cmpxchg8(mem_ptr),
  7264               enc_flags_ne_to_boolean(res) );
  7265   ins_pipe( pipe_cmpxchg );
  7266 %}
  7268 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  7269   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7270   effect(KILL cr, KILL oldval);
  7271   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7272             "MOV    $res,0\n\t"
  7273             "JNE,s  fail\n\t"
  7274             "MOV    $res,1\n"
  7275           "fail:" %}
  7276   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7277   ins_pipe( pipe_cmpxchg );
  7278 %}
  7280 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  7281   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7282   effect(KILL cr, KILL oldval);
  7283   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  7284             "MOV    $res,0\n\t"
  7285             "JNE,s  fail\n\t"
  7286             "MOV    $res,1\n"
  7287           "fail:" %}
  7288   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  7289   ins_pipe( pipe_cmpxchg );
  7290 %}
  7292 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
  7293   predicate(n->as_LoadStore()->result_not_used());
  7294   match(Set dummy (GetAndAddI mem add));
  7295   effect(KILL cr);
  7296   format %{ "ADDL  [$mem],$add" %}
  7297   ins_encode %{
  7298     if (os::is_MP()) { __ lock(); }
  7299     __ addl($mem$$Address, $add$$constant);
  7300   %}
  7301   ins_pipe( pipe_cmpxchg );
  7302 %}
  7304 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
  7305   match(Set newval (GetAndAddI mem newval));
  7306   effect(KILL cr);
  7307   format %{ "XADDL  [$mem],$newval" %}
  7308   ins_encode %{
  7309     if (os::is_MP()) { __ lock(); }
  7310     __ xaddl($mem$$Address, $newval$$Register);
  7311   %}
  7312   ins_pipe( pipe_cmpxchg );
  7313 %}
  7315 instruct xchgI( memory mem, rRegI newval) %{
  7316   match(Set newval (GetAndSetI mem newval));
  7317   format %{ "XCHGL  $newval,[$mem]" %}
  7318   ins_encode %{
  7319     __ xchgl($newval$$Register, $mem$$Address);
  7320   %}
  7321   ins_pipe( pipe_cmpxchg );
  7322 %}
  7324 instruct xchgP( memory mem, pRegP newval) %{
  7325   match(Set newval (GetAndSetP mem newval));
  7326   format %{ "XCHGL  $newval,[$mem]" %}
  7327   ins_encode %{
  7328     __ xchgl($newval$$Register, $mem$$Address);
  7329   %}
  7330   ins_pipe( pipe_cmpxchg );
  7331 %}
  7333 //----------Subtraction Instructions-------------------------------------------
  7335 // Integer Subtraction Instructions
  7336 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7337   match(Set dst (SubI dst src));
  7338   effect(KILL cr);
  7340   size(2);
  7341   format %{ "SUB    $dst,$src" %}
  7342   opcode(0x2B);
  7343   ins_encode( OpcP, RegReg( dst, src) );
  7344   ins_pipe( ialu_reg_reg );
  7345 %}
  7347 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  7348   match(Set dst (SubI dst src));
  7349   effect(KILL cr);
  7351   format %{ "SUB    $dst,$src" %}
  7352   opcode(0x81,0x05);  /* Opcode 81 /5 */
  7353   // ins_encode( RegImm( dst, src) );
  7354   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  7355   ins_pipe( ialu_reg );
  7356 %}
  7358 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  7359   match(Set dst (SubI dst (LoadI src)));
  7360   effect(KILL cr);
  7362   ins_cost(125);
  7363   format %{ "SUB    $dst,$src" %}
  7364   opcode(0x2B);
  7365   ins_encode( OpcP, RegMem( dst, src) );
  7366   ins_pipe( ialu_reg_mem );
  7367 %}
  7369 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  7370   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  7371   effect(KILL cr);
  7373   ins_cost(150);
  7374   format %{ "SUB    $dst,$src" %}
  7375   opcode(0x29);  /* Opcode 29 /r */
  7376   ins_encode( OpcP, RegMem( src, dst ) );
  7377   ins_pipe( ialu_mem_reg );
  7378 %}
  7380 // Subtract from a pointer
  7381 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
  7382   match(Set dst (AddP dst (SubI zero src)));
  7383   effect(KILL cr);
  7385   size(2);
  7386   format %{ "SUB    $dst,$src" %}
  7387   opcode(0x2B);
  7388   ins_encode( OpcP, RegReg( dst, src) );
  7389   ins_pipe( ialu_reg_reg );
  7390 %}
  7392 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
  7393   match(Set dst (SubI zero dst));
  7394   effect(KILL cr);
  7396   size(2);
  7397   format %{ "NEG    $dst" %}
  7398   opcode(0xF7,0x03);  // Opcode F7 /3
  7399   ins_encode( OpcP, RegOpc( dst ) );
  7400   ins_pipe( ialu_reg );
  7401 %}
  7403 //----------Multiplication/Division Instructions-------------------------------
  7404 // Integer Multiplication Instructions
  7405 // Multiply Register
  7406 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7407   match(Set dst (MulI dst src));
  7408   effect(KILL cr);
  7410   size(3);
  7411   ins_cost(300);
  7412   format %{ "IMUL   $dst,$src" %}
  7413   opcode(0xAF, 0x0F);
  7414   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  7415   ins_pipe( ialu_reg_reg_alu0 );
  7416 %}
  7418 // Multiply 32-bit Immediate
  7419 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
  7420   match(Set dst (MulI src imm));
  7421   effect(KILL cr);
  7423   ins_cost(300);
  7424   format %{ "IMUL   $dst,$src,$imm" %}
  7425   opcode(0x69);  /* 69 /r id */
  7426   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  7427   ins_pipe( ialu_reg_reg_alu0 );
  7428 %}
  7430 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  7431   match(Set dst src);
  7432   effect(KILL cr);
  7434   // Note that this is artificially increased to make it more expensive than loadConL
  7435   ins_cost(250);
  7436   format %{ "MOV    EAX,$src\t// low word only" %}
  7437   opcode(0xB8);
  7438   ins_encode( LdImmL_Lo(dst, src) );
  7439   ins_pipe( ialu_reg_fat );
  7440 %}
  7442 // Multiply by 32-bit Immediate, taking the shifted high order results
  7443 //  (special case for shift by 32)
  7444 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  7445   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7446   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7447              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7448              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7449   effect(USE src1, KILL cr);
  7451   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7452   ins_cost(0*100 + 1*400 - 150);
  7453   format %{ "IMUL   EDX:EAX,$src1" %}
  7454   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7455   ins_pipe( pipe_slow );
  7456 %}
  7458 // Multiply by 32-bit Immediate, taking the shifted high order results
  7459 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  7460   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  7461   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  7462              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  7463              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  7464   effect(USE src1, KILL cr);
  7466   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  7467   ins_cost(1*100 + 1*400 - 150);
  7468   format %{ "IMUL   EDX:EAX,$src1\n\t"
  7469             "SAR    EDX,$cnt-32" %}
  7470   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  7471   ins_pipe( pipe_slow );
  7472 %}
  7474 // Multiply Memory 32-bit Immediate
  7475 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
  7476   match(Set dst (MulI (LoadI src) imm));
  7477   effect(KILL cr);
  7479   ins_cost(300);
  7480   format %{ "IMUL   $dst,$src,$imm" %}
  7481   opcode(0x69);  /* 69 /r id */
  7482   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  7483   ins_pipe( ialu_reg_mem_alu0 );
  7484 %}
  7486 // Multiply Memory
  7487 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
  7488   match(Set dst (MulI dst (LoadI src)));
  7489   effect(KILL cr);
  7491   ins_cost(350);
  7492   format %{ "IMUL   $dst,$src" %}
  7493   opcode(0xAF, 0x0F);
  7494   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  7495   ins_pipe( ialu_reg_mem_alu0 );
  7496 %}
  7498 // Multiply Register Int to Long
  7499 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  7500   // Basic Idea: long = (long)int * (long)int
  7501   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  7502   effect(DEF dst, USE src, USE src1, KILL flags);
  7504   ins_cost(300);
  7505   format %{ "IMUL   $dst,$src1" %}
  7507   ins_encode( long_int_multiply( dst, src1 ) );
  7508   ins_pipe( ialu_reg_reg_alu0 );
  7509 %}
  7511 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  7512   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  7513   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  7514   effect(KILL flags);
  7516   ins_cost(300);
  7517   format %{ "MUL    $dst,$src1" %}
  7519   ins_encode( long_uint_multiply(dst, src1) );
  7520   ins_pipe( ialu_reg_reg_alu0 );
  7521 %}
  7523 // Multiply Register Long
  7524 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7525   match(Set dst (MulL dst src));
  7526   effect(KILL cr, TEMP tmp);
  7527   ins_cost(4*100+3*400);
  7528 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7529 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  7530   format %{ "MOV    $tmp,$src.lo\n\t"
  7531             "IMUL   $tmp,EDX\n\t"
  7532             "MOV    EDX,$src.hi\n\t"
  7533             "IMUL   EDX,EAX\n\t"
  7534             "ADD    $tmp,EDX\n\t"
  7535             "MUL    EDX:EAX,$src.lo\n\t"
  7536             "ADD    EDX,$tmp" %}
  7537   ins_encode( long_multiply( dst, src, tmp ) );
  7538   ins_pipe( pipe_slow );
  7539 %}
  7541 // Multiply Register Long where the left operand's high 32 bits are zero
  7542 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7543   predicate(is_operand_hi32_zero(n->in(1)));
  7544   match(Set dst (MulL dst src));
  7545   effect(KILL cr, TEMP tmp);
  7546   ins_cost(2*100+2*400);
  7547 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7548 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  7549   format %{ "MOV    $tmp,$src.hi\n\t"
  7550             "IMUL   $tmp,EAX\n\t"
  7551             "MUL    EDX:EAX,$src.lo\n\t"
  7552             "ADD    EDX,$tmp" %}
  7553   ins_encode %{
  7554     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  7555     __ imull($tmp$$Register, rax);
  7556     __ mull($src$$Register);
  7557     __ addl(rdx, $tmp$$Register);
  7558   %}
  7559   ins_pipe( pipe_slow );
  7560 %}
  7562 // Multiply Register Long where the right operand's high 32 bits are zero
  7563 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
  7564   predicate(is_operand_hi32_zero(n->in(2)));
  7565   match(Set dst (MulL dst src));
  7566   effect(KILL cr, TEMP tmp);
  7567   ins_cost(2*100+2*400);
  7568 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7569 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  7570   format %{ "MOV    $tmp,$src.lo\n\t"
  7571             "IMUL   $tmp,EDX\n\t"
  7572             "MUL    EDX:EAX,$src.lo\n\t"
  7573             "ADD    EDX,$tmp" %}
  7574   ins_encode %{
  7575     __ movl($tmp$$Register, $src$$Register);
  7576     __ imull($tmp$$Register, rdx);
  7577     __ mull($src$$Register);
  7578     __ addl(rdx, $tmp$$Register);
  7579   %}
  7580   ins_pipe( pipe_slow );
  7581 %}
  7583 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  7584 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  7585   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  7586   match(Set dst (MulL dst src));
  7587   effect(KILL cr);
  7588   ins_cost(1*400);
  7589 // Basic idea: lo(result) = lo(x_lo * y_lo)
  7590 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  7591   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  7592   ins_encode %{
  7593     __ mull($src$$Register);
  7594   %}
  7595   ins_pipe( pipe_slow );
  7596 %}
  7598 // Multiply Register Long by small constant
  7599 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
  7600   match(Set dst (MulL dst src));
  7601   effect(KILL cr, TEMP tmp);
  7602   ins_cost(2*100+2*400);
  7603   size(12);
  7604 // Basic idea: lo(result) = lo(src * EAX)
  7605 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  7606   format %{ "IMUL   $tmp,EDX,$src\n\t"
  7607             "MOV    EDX,$src\n\t"
  7608             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  7609             "ADD    EDX,$tmp" %}
  7610   ins_encode( long_multiply_con( dst, src, tmp ) );
  7611   ins_pipe( pipe_slow );
  7612 %}
  7614 // Integer DIV with Register
  7615 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  7616   match(Set rax (DivI rax div));
  7617   effect(KILL rdx, KILL cr);
  7618   size(26);
  7619   ins_cost(30*100+10*100);
  7620   format %{ "CMP    EAX,0x80000000\n\t"
  7621             "JNE,s  normal\n\t"
  7622             "XOR    EDX,EDX\n\t"
  7623             "CMP    ECX,-1\n\t"
  7624             "JE,s   done\n"
  7625     "normal: CDQ\n\t"
  7626             "IDIV   $div\n\t"
  7627     "done:"        %}
  7628   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7629   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7630   ins_pipe( ialu_reg_reg_alu0 );
  7631 %}
  7633 // Divide Register Long
  7634 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  7635   match(Set dst (DivL src1 src2));
  7636   effect( KILL cr, KILL cx, KILL bx );
  7637   ins_cost(10000);
  7638   format %{ "PUSH   $src1.hi\n\t"
  7639             "PUSH   $src1.lo\n\t"
  7640             "PUSH   $src2.hi\n\t"
  7641             "PUSH   $src2.lo\n\t"
  7642             "CALL   SharedRuntime::ldiv\n\t"
  7643             "ADD    ESP,16" %}
  7644   ins_encode( long_div(src1,src2) );
  7645   ins_pipe( pipe_slow );
  7646 %}
  7648 // Integer DIVMOD with Register, both quotient and mod results
  7649 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  7650   match(DivModI rax div);
  7651   effect(KILL cr);
  7652   size(26);
  7653   ins_cost(30*100+10*100);
  7654   format %{ "CMP    EAX,0x80000000\n\t"
  7655             "JNE,s  normal\n\t"
  7656             "XOR    EDX,EDX\n\t"
  7657             "CMP    ECX,-1\n\t"
  7658             "JE,s   done\n"
  7659     "normal: CDQ\n\t"
  7660             "IDIV   $div\n\t"
  7661     "done:"        %}
  7662   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7663   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7664   ins_pipe( pipe_slow );
  7665 %}
  7667 // Integer MOD with Register
  7668 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  7669   match(Set rdx (ModI rax div));
  7670   effect(KILL rax, KILL cr);
  7672   size(26);
  7673   ins_cost(300);
  7674   format %{ "CDQ\n\t"
  7675             "IDIV   $div" %}
  7676   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  7677   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  7678   ins_pipe( ialu_reg_reg_alu0 );
  7679 %}
  7681 // Remainder Register Long
  7682 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  7683   match(Set dst (ModL src1 src2));
  7684   effect( KILL cr, KILL cx, KILL bx );
  7685   ins_cost(10000);
  7686   format %{ "PUSH   $src1.hi\n\t"
  7687             "PUSH   $src1.lo\n\t"
  7688             "PUSH   $src2.hi\n\t"
  7689             "PUSH   $src2.lo\n\t"
  7690             "CALL   SharedRuntime::lrem\n\t"
  7691             "ADD    ESP,16" %}
  7692   ins_encode( long_mod(src1,src2) );
  7693   ins_pipe( pipe_slow );
  7694 %}
  7696 // Divide Register Long (no special case since divisor != -1)
  7697 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  7698   match(Set dst (DivL dst imm));
  7699   effect( TEMP tmp, TEMP tmp2, KILL cr );
  7700   ins_cost(1000);
  7701   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
  7702             "XOR    $tmp2,$tmp2\n\t"
  7703             "CMP    $tmp,EDX\n\t"
  7704             "JA,s   fast\n\t"
  7705             "MOV    $tmp2,EAX\n\t"
  7706             "MOV    EAX,EDX\n\t"
  7707             "MOV    EDX,0\n\t"
  7708             "JLE,s  pos\n\t"
  7709             "LNEG   EAX : $tmp2\n\t"
  7710             "DIV    $tmp # unsigned division\n\t"
  7711             "XCHG   EAX,$tmp2\n\t"
  7712             "DIV    $tmp\n\t"
  7713             "LNEG   $tmp2 : EAX\n\t"
  7714             "JMP,s  done\n"
  7715     "pos:\n\t"
  7716             "DIV    $tmp\n\t"
  7717             "XCHG   EAX,$tmp2\n"
  7718     "fast:\n\t"
  7719             "DIV    $tmp\n"
  7720     "done:\n\t"
  7721             "MOV    EDX,$tmp2\n\t"
  7722             "NEG    EDX:EAX # if $imm < 0" %}
  7723   ins_encode %{
  7724     int con = (int)$imm$$constant;
  7725     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  7726     int pcon = (con > 0) ? con : -con;
  7727     Label Lfast, Lpos, Ldone;
  7729     __ movl($tmp$$Register, pcon);
  7730     __ xorl($tmp2$$Register,$tmp2$$Register);
  7731     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  7732     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
  7734     __ movl($tmp2$$Register, $dst$$Register); // save
  7735     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7736     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  7737     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  7739     // Negative dividend.
  7740     // convert value to positive to use unsigned division
  7741     __ lneg($dst$$Register, $tmp2$$Register);
  7742     __ divl($tmp$$Register);
  7743     __ xchgl($dst$$Register, $tmp2$$Register);
  7744     __ divl($tmp$$Register);
  7745     // revert result back to negative
  7746     __ lneg($tmp2$$Register, $dst$$Register);
  7747     __ jmpb(Ldone);
  7749     __ bind(Lpos);
  7750     __ divl($tmp$$Register); // Use unsigned division
  7751     __ xchgl($dst$$Register, $tmp2$$Register);
  7752     // Fallthrow for final divide, tmp2 has 32 bit hi result
  7754     __ bind(Lfast);
  7755     // fast path: src is positive
  7756     __ divl($tmp$$Register); // Use unsigned division
  7758     __ bind(Ldone);
  7759     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
  7760     if (con < 0) {
  7761       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
  7763   %}
  7764   ins_pipe( pipe_slow );
  7765 %}
  7767 // Remainder Register Long (remainder fit into 32 bits)
  7768 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
  7769   match(Set dst (ModL dst imm));
  7770   effect( TEMP tmp, TEMP tmp2, KILL cr );
  7771   ins_cost(1000);
  7772   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
  7773             "CMP    $tmp,EDX\n\t"
  7774             "JA,s   fast\n\t"
  7775             "MOV    $tmp2,EAX\n\t"
  7776             "MOV    EAX,EDX\n\t"
  7777             "MOV    EDX,0\n\t"
  7778             "JLE,s  pos\n\t"
  7779             "LNEG   EAX : $tmp2\n\t"
  7780             "DIV    $tmp # unsigned division\n\t"
  7781             "MOV    EAX,$tmp2\n\t"
  7782             "DIV    $tmp\n\t"
  7783             "NEG    EDX\n\t"
  7784             "JMP,s  done\n"
  7785     "pos:\n\t"
  7786             "DIV    $tmp\n\t"
  7787             "MOV    EAX,$tmp2\n"
  7788     "fast:\n\t"
  7789             "DIV    $tmp\n"
  7790     "done:\n\t"
  7791             "MOV    EAX,EDX\n\t"
  7792             "SAR    EDX,31\n\t" %}
  7793   ins_encode %{
  7794     int con = (int)$imm$$constant;
  7795     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
  7796     int pcon = (con > 0) ? con : -con;
  7797     Label  Lfast, Lpos, Ldone;
  7799     __ movl($tmp$$Register, pcon);
  7800     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
  7801     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
  7803     __ movl($tmp2$$Register, $dst$$Register); // save
  7804     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7805     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
  7806     __ jccb(Assembler::lessEqual, Lpos); // result is positive
  7808     // Negative dividend.
  7809     // convert value to positive to use unsigned division
  7810     __ lneg($dst$$Register, $tmp2$$Register);
  7811     __ divl($tmp$$Register);
  7812     __ movl($dst$$Register, $tmp2$$Register);
  7813     __ divl($tmp$$Register);
  7814     // revert remainder back to negative
  7815     __ negl(HIGH_FROM_LOW($dst$$Register));
  7816     __ jmpb(Ldone);
  7818     __ bind(Lpos);
  7819     __ divl($tmp$$Register);
  7820     __ movl($dst$$Register, $tmp2$$Register);
  7822     __ bind(Lfast);
  7823     // fast path: src is positive
  7824     __ divl($tmp$$Register);
  7826     __ bind(Ldone);
  7827     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
  7828     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
  7830   %}
  7831   ins_pipe( pipe_slow );
  7832 %}
  7834 // Integer Shift Instructions
  7835 // Shift Left by one
  7836 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7837   match(Set dst (LShiftI dst shift));
  7838   effect(KILL cr);
  7840   size(2);
  7841   format %{ "SHL    $dst,$shift" %}
  7842   opcode(0xD1, 0x4);  /* D1 /4 */
  7843   ins_encode( OpcP, RegOpc( dst ) );
  7844   ins_pipe( ialu_reg );
  7845 %}
  7847 // Shift Left by 8-bit immediate
  7848 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7849   match(Set dst (LShiftI dst shift));
  7850   effect(KILL cr);
  7852   size(3);
  7853   format %{ "SHL    $dst,$shift" %}
  7854   opcode(0xC1, 0x4);  /* C1 /4 ib */
  7855   ins_encode( RegOpcImm( dst, shift) );
  7856   ins_pipe( ialu_reg );
  7857 %}
  7859 // Shift Left by variable
  7860 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7861   match(Set dst (LShiftI dst shift));
  7862   effect(KILL cr);
  7864   size(2);
  7865   format %{ "SHL    $dst,$shift" %}
  7866   opcode(0xD3, 0x4);  /* D3 /4 */
  7867   ins_encode( OpcP, RegOpc( dst ) );
  7868   ins_pipe( ialu_reg_reg );
  7869 %}
  7871 // Arithmetic shift right by one
  7872 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7873   match(Set dst (RShiftI dst shift));
  7874   effect(KILL cr);
  7876   size(2);
  7877   format %{ "SAR    $dst,$shift" %}
  7878   opcode(0xD1, 0x7);  /* D1 /7 */
  7879   ins_encode( OpcP, RegOpc( dst ) );
  7880   ins_pipe( ialu_reg );
  7881 %}
  7883 // Arithmetic shift right by one
  7884 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  7885   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  7886   effect(KILL cr);
  7887   format %{ "SAR    $dst,$shift" %}
  7888   opcode(0xD1, 0x7);  /* D1 /7 */
  7889   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  7890   ins_pipe( ialu_mem_imm );
  7891 %}
  7893 // Arithmetic Shift Right by 8-bit immediate
  7894 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7895   match(Set dst (RShiftI dst shift));
  7896   effect(KILL cr);
  7898   size(3);
  7899   format %{ "SAR    $dst,$shift" %}
  7900   opcode(0xC1, 0x7);  /* C1 /7 ib */
  7901   ins_encode( RegOpcImm( dst, shift ) );
  7902   ins_pipe( ialu_mem_imm );
  7903 %}
  7905 // Arithmetic Shift Right by 8-bit immediate
  7906 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  7907   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  7908   effect(KILL cr);
  7910   format %{ "SAR    $dst,$shift" %}
  7911   opcode(0xC1, 0x7);  /* C1 /7 ib */
  7912   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  7913   ins_pipe( ialu_mem_imm );
  7914 %}
  7916 // Arithmetic Shift Right by variable
  7917 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7918   match(Set dst (RShiftI dst shift));
  7919   effect(KILL cr);
  7921   size(2);
  7922   format %{ "SAR    $dst,$shift" %}
  7923   opcode(0xD3, 0x7);  /* D3 /7 */
  7924   ins_encode( OpcP, RegOpc( dst ) );
  7925   ins_pipe( ialu_reg_reg );
  7926 %}
  7928 // Logical shift right by one
  7929 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  7930   match(Set dst (URShiftI dst shift));
  7931   effect(KILL cr);
  7933   size(2);
  7934   format %{ "SHR    $dst,$shift" %}
  7935   opcode(0xD1, 0x5);  /* D1 /5 */
  7936   ins_encode( OpcP, RegOpc( dst ) );
  7937   ins_pipe( ialu_reg );
  7938 %}
  7940 // Logical Shift Right by 8-bit immediate
  7941 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
  7942   match(Set dst (URShiftI dst shift));
  7943   effect(KILL cr);
  7945   size(3);
  7946   format %{ "SHR    $dst,$shift" %}
  7947   opcode(0xC1, 0x5);  /* C1 /5 ib */
  7948   ins_encode( RegOpcImm( dst, shift) );
  7949   ins_pipe( ialu_reg );
  7950 %}
  7953 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  7954 // This idiom is used by the compiler for the i2b bytecode.
  7955 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
  7956   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  7958   size(3);
  7959   format %{ "MOVSX  $dst,$src :8" %}
  7960   ins_encode %{
  7961     __ movsbl($dst$$Register, $src$$Register);
  7962   %}
  7963   ins_pipe(ialu_reg_reg);
  7964 %}
  7966 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  7967 // This idiom is used by the compiler the i2s bytecode.
  7968 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
  7969   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  7971   size(3);
  7972   format %{ "MOVSX  $dst,$src :16" %}
  7973   ins_encode %{
  7974     __ movswl($dst$$Register, $src$$Register);
  7975   %}
  7976   ins_pipe(ialu_reg_reg);
  7977 %}
  7980 // Logical Shift Right by variable
  7981 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
  7982   match(Set dst (URShiftI dst shift));
  7983   effect(KILL cr);
  7985   size(2);
  7986   format %{ "SHR    $dst,$shift" %}
  7987   opcode(0xD3, 0x5);  /* D3 /5 */
  7988   ins_encode( OpcP, RegOpc( dst ) );
  7989   ins_pipe( ialu_reg_reg );
  7990 %}
  7993 //----------Logical Instructions-----------------------------------------------
  7994 //----------Integer Logical Instructions---------------------------------------
  7995 // And Instructions
  7996 // And Register with Register
  7997 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  7998   match(Set dst (AndI dst src));
  7999   effect(KILL cr);
  8001   size(2);
  8002   format %{ "AND    $dst,$src" %}
  8003   opcode(0x23);
  8004   ins_encode( OpcP, RegReg( dst, src) );
  8005   ins_pipe( ialu_reg_reg );
  8006 %}
  8008 // And Register with Immediate
  8009 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8010   match(Set dst (AndI dst src));
  8011   effect(KILL cr);
  8013   format %{ "AND    $dst,$src" %}
  8014   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8015   // ins_encode( RegImm( dst, src) );
  8016   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8017   ins_pipe( ialu_reg );
  8018 %}
  8020 // And Register with Memory
  8021 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8022   match(Set dst (AndI dst (LoadI src)));
  8023   effect(KILL cr);
  8025   ins_cost(125);
  8026   format %{ "AND    $dst,$src" %}
  8027   opcode(0x23);
  8028   ins_encode( OpcP, RegMem( dst, src) );
  8029   ins_pipe( ialu_reg_mem );
  8030 %}
  8032 // And Memory with Register
  8033 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8034   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8035   effect(KILL cr);
  8037   ins_cost(150);
  8038   format %{ "AND    $dst,$src" %}
  8039   opcode(0x21);  /* Opcode 21 /r */
  8040   ins_encode( OpcP, RegMem( src, dst ) );
  8041   ins_pipe( ialu_mem_reg );
  8042 %}
  8044 // And Memory with Immediate
  8045 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8046   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8047   effect(KILL cr);
  8049   ins_cost(125);
  8050   format %{ "AND    $dst,$src" %}
  8051   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8052   // ins_encode( MemImm( dst, src) );
  8053   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8054   ins_pipe( ialu_mem_imm );
  8055 %}
  8057 // BMI1 instructions
  8058 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, eFlagsReg cr) %{
  8059   match(Set dst (AndI (XorI src1 minus_1) src2));
  8060   predicate(UseBMI1Instructions);
  8061   effect(KILL cr);
  8063   format %{ "ANDNL  $dst, $src1, $src2" %}
  8065   ins_encode %{
  8066     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
  8067   %}
  8068   ins_pipe(ialu_reg);
  8069 %}
  8071 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, eFlagsReg cr) %{
  8072   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2) ));
  8073   predicate(UseBMI1Instructions);
  8074   effect(KILL cr);
  8076   ins_cost(125);
  8077   format %{ "ANDNL  $dst, $src1, $src2" %}
  8079   ins_encode %{
  8080     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
  8081   %}
  8082   ins_pipe(ialu_reg_mem);
  8083 %}
  8085 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, eFlagsReg cr) %{
  8086   match(Set dst (AndI (SubI imm_zero src) src));
  8087   predicate(UseBMI1Instructions);
  8088   effect(KILL cr);
  8090   format %{ "BLSIL  $dst, $src" %}
  8092   ins_encode %{
  8093     __ blsil($dst$$Register, $src$$Register);
  8094   %}
  8095   ins_pipe(ialu_reg);
  8096 %}
  8098 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, eFlagsReg cr) %{
  8099   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
  8100   predicate(UseBMI1Instructions);
  8101   effect(KILL cr);
  8103   ins_cost(125);
  8104   format %{ "BLSIL  $dst, $src" %}
  8106   ins_encode %{
  8107     __ blsil($dst$$Register, $src$$Address);
  8108   %}
  8109   ins_pipe(ialu_reg_mem);
  8110 %}
  8112 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
  8113 %{
  8114   match(Set dst (XorI (AddI src minus_1) src));
  8115   predicate(UseBMI1Instructions);
  8116   effect(KILL cr);
  8118   format %{ "BLSMSKL $dst, $src" %}
  8120   ins_encode %{
  8121     __ blsmskl($dst$$Register, $src$$Register);
  8122   %}
  8124   ins_pipe(ialu_reg);
  8125 %}
  8127 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
  8128 %{
  8129   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ));
  8130   predicate(UseBMI1Instructions);
  8131   effect(KILL cr);
  8133   ins_cost(125);
  8134   format %{ "BLSMSKL $dst, $src" %}
  8136   ins_encode %{
  8137     __ blsmskl($dst$$Register, $src$$Address);
  8138   %}
  8140   ins_pipe(ialu_reg_mem);
  8141 %}
  8143 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
  8144 %{
  8145   match(Set dst (AndI (AddI src minus_1) src) );
  8146   predicate(UseBMI1Instructions);
  8147   effect(KILL cr);
  8149   format %{ "BLSRL  $dst, $src" %}
  8151   ins_encode %{
  8152     __ blsrl($dst$$Register, $src$$Register);
  8153   %}
  8155   ins_pipe(ialu_reg);
  8156 %}
  8158 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
  8159 %{
  8160   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ));
  8161   predicate(UseBMI1Instructions);
  8162   effect(KILL cr);
  8164   ins_cost(125);
  8165   format %{ "BLSRL  $dst, $src" %}
  8167   ins_encode %{
  8168     __ blsrl($dst$$Register, $src$$Address);
  8169   %}
  8171   ins_pipe(ialu_reg_mem);
  8172 %}
  8174 // Or Instructions
  8175 // Or Register with Register
  8176 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8177   match(Set dst (OrI dst src));
  8178   effect(KILL cr);
  8180   size(2);
  8181   format %{ "OR     $dst,$src" %}
  8182   opcode(0x0B);
  8183   ins_encode( OpcP, RegReg( dst, src) );
  8184   ins_pipe( ialu_reg_reg );
  8185 %}
  8187 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
  8188   match(Set dst (OrI dst (CastP2X src)));
  8189   effect(KILL cr);
  8191   size(2);
  8192   format %{ "OR     $dst,$src" %}
  8193   opcode(0x0B);
  8194   ins_encode( OpcP, RegReg( dst, src) );
  8195   ins_pipe( ialu_reg_reg );
  8196 %}
  8199 // Or Register with Immediate
  8200 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8201   match(Set dst (OrI dst src));
  8202   effect(KILL cr);
  8204   format %{ "OR     $dst,$src" %}
  8205   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  8206   // ins_encode( RegImm( dst, src) );
  8207   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8208   ins_pipe( ialu_reg );
  8209 %}
  8211 // Or Register with Memory
  8212 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8213   match(Set dst (OrI dst (LoadI src)));
  8214   effect(KILL cr);
  8216   ins_cost(125);
  8217   format %{ "OR     $dst,$src" %}
  8218   opcode(0x0B);
  8219   ins_encode( OpcP, RegMem( dst, src) );
  8220   ins_pipe( ialu_reg_mem );
  8221 %}
  8223 // Or Memory with Register
  8224 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8225   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8226   effect(KILL cr);
  8228   ins_cost(150);
  8229   format %{ "OR     $dst,$src" %}
  8230   opcode(0x09);  /* Opcode 09 /r */
  8231   ins_encode( OpcP, RegMem( src, dst ) );
  8232   ins_pipe( ialu_mem_reg );
  8233 %}
  8235 // Or Memory with Immediate
  8236 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8237   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  8238   effect(KILL cr);
  8240   ins_cost(125);
  8241   format %{ "OR     $dst,$src" %}
  8242   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  8243   // ins_encode( MemImm( dst, src) );
  8244   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8245   ins_pipe( ialu_mem_imm );
  8246 %}
  8248 // ROL/ROR
  8249 // ROL expand
  8250 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8251   effect(USE_DEF dst, USE shift, KILL cr);
  8253   format %{ "ROL    $dst, $shift" %}
  8254   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  8255   ins_encode( OpcP, RegOpc( dst ));
  8256   ins_pipe( ialu_reg );
  8257 %}
  8259 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8260   effect(USE_DEF dst, USE shift, KILL cr);
  8262   format %{ "ROL    $dst, $shift" %}
  8263   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  8264   ins_encode( RegOpcImm(dst, shift) );
  8265   ins_pipe(ialu_reg);
  8266 %}
  8268 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8269   effect(USE_DEF dst, USE shift, KILL cr);
  8271   format %{ "ROL    $dst, $shift" %}
  8272   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  8273   ins_encode(OpcP, RegOpc(dst));
  8274   ins_pipe( ialu_reg_reg );
  8275 %}
  8276 // end of ROL expand
  8278 // ROL 32bit by one once
  8279 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  8280   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8282   expand %{
  8283     rolI_eReg_imm1(dst, lshift, cr);
  8284   %}
  8285 %}
  8287 // ROL 32bit var by imm8 once
  8288 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  8289   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8290   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  8292   expand %{
  8293     rolI_eReg_imm8(dst, lshift, cr);
  8294   %}
  8295 %}
  8297 // ROL 32bit var by var once
  8298 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8299   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  8301   expand %{
  8302     rolI_eReg_CL(dst, shift, cr);
  8303   %}
  8304 %}
  8306 // ROL 32bit var by var once
  8307 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8308   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  8310   expand %{
  8311     rolI_eReg_CL(dst, shift, cr);
  8312   %}
  8313 %}
  8315 // ROR expand
  8316 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
  8317   effect(USE_DEF dst, USE shift, KILL cr);
  8319   format %{ "ROR    $dst, $shift" %}
  8320   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  8321   ins_encode( OpcP, RegOpc( dst ) );
  8322   ins_pipe( ialu_reg );
  8323 %}
  8325 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
  8326   effect (USE_DEF dst, USE shift, KILL cr);
  8328   format %{ "ROR    $dst, $shift" %}
  8329   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  8330   ins_encode( RegOpcImm(dst, shift) );
  8331   ins_pipe( ialu_reg );
  8332 %}
  8334 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  8335   effect(USE_DEF dst, USE shift, KILL cr);
  8337   format %{ "ROR    $dst, $shift" %}
  8338   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  8339   ins_encode(OpcP, RegOpc(dst));
  8340   ins_pipe( ialu_reg_reg );
  8341 %}
  8342 // end of ROR expand
  8344 // ROR right once
  8345 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  8346   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8348   expand %{
  8349     rorI_eReg_imm1(dst, rshift, cr);
  8350   %}
  8351 %}
  8353 // ROR 32bit by immI8 once
  8354 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  8355   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8356   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  8358   expand %{
  8359     rorI_eReg_imm8(dst, rshift, cr);
  8360   %}
  8361 %}
  8363 // ROR 32bit var by var once
  8364 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  8365   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  8367   expand %{
  8368     rorI_eReg_CL(dst, shift, cr);
  8369   %}
  8370 %}
  8372 // ROR 32bit var by var once
  8373 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  8374   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  8376   expand %{
  8377     rorI_eReg_CL(dst, shift, cr);
  8378   %}
  8379 %}
  8381 // Xor Instructions
  8382 // Xor Register with Register
  8383 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
  8384   match(Set dst (XorI dst src));
  8385   effect(KILL cr);
  8387   size(2);
  8388   format %{ "XOR    $dst,$src" %}
  8389   opcode(0x33);
  8390   ins_encode( OpcP, RegReg( dst, src) );
  8391   ins_pipe( ialu_reg_reg );
  8392 %}
  8394 // Xor Register with Immediate -1
  8395 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
  8396   match(Set dst (XorI dst imm));  
  8398   size(2);
  8399   format %{ "NOT    $dst" %}  
  8400   ins_encode %{
  8401      __ notl($dst$$Register);
  8402   %}
  8403   ins_pipe( ialu_reg );
  8404 %}
  8406 // Xor Register with Immediate
  8407 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
  8408   match(Set dst (XorI dst src));
  8409   effect(KILL cr);
  8411   format %{ "XOR    $dst,$src" %}
  8412   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  8413   // ins_encode( RegImm( dst, src) );
  8414   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8415   ins_pipe( ialu_reg );
  8416 %}
  8418 // Xor Register with Memory
  8419 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
  8420   match(Set dst (XorI dst (LoadI src)));
  8421   effect(KILL cr);
  8423   ins_cost(125);
  8424   format %{ "XOR    $dst,$src" %}
  8425   opcode(0x33);
  8426   ins_encode( OpcP, RegMem(dst, src) );
  8427   ins_pipe( ialu_reg_mem );
  8428 %}
  8430 // Xor Memory with Register
  8431 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
  8432   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8433   effect(KILL cr);
  8435   ins_cost(150);
  8436   format %{ "XOR    $dst,$src" %}
  8437   opcode(0x31);  /* Opcode 31 /r */
  8438   ins_encode( OpcP, RegMem( src, dst ) );
  8439   ins_pipe( ialu_mem_reg );
  8440 %}
  8442 // Xor Memory with Immediate
  8443 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8444   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  8445   effect(KILL cr);
  8447   ins_cost(125);
  8448   format %{ "XOR    $dst,$src" %}
  8449   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  8450   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8451   ins_pipe( ialu_mem_imm );
  8452 %}
  8454 //----------Convert Int to Boolean---------------------------------------------
  8456 instruct movI_nocopy(rRegI dst, rRegI src) %{
  8457   effect( DEF dst, USE src );
  8458   format %{ "MOV    $dst,$src" %}
  8459   ins_encode( enc_Copy( dst, src) );
  8460   ins_pipe( ialu_reg_reg );
  8461 %}
  8463 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8464   effect( USE_DEF dst, USE src, KILL cr );
  8466   size(4);
  8467   format %{ "NEG    $dst\n\t"
  8468             "ADC    $dst,$src" %}
  8469   ins_encode( neg_reg(dst),
  8470               OpcRegReg(0x13,dst,src) );
  8471   ins_pipe( ialu_reg_reg_long );
  8472 %}
  8474 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
  8475   match(Set dst (Conv2B src));
  8477   expand %{
  8478     movI_nocopy(dst,src);
  8479     ci2b(dst,src,cr);
  8480   %}
  8481 %}
  8483 instruct movP_nocopy(rRegI dst, eRegP src) %{
  8484   effect( DEF dst, USE src );
  8485   format %{ "MOV    $dst,$src" %}
  8486   ins_encode( enc_Copy( dst, src) );
  8487   ins_pipe( ialu_reg_reg );
  8488 %}
  8490 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8491   effect( USE_DEF dst, USE src, KILL cr );
  8492   format %{ "NEG    $dst\n\t"
  8493             "ADC    $dst,$src" %}
  8494   ins_encode( neg_reg(dst),
  8495               OpcRegReg(0x13,dst,src) );
  8496   ins_pipe( ialu_reg_reg_long );
  8497 %}
  8499 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
  8500   match(Set dst (Conv2B src));
  8502   expand %{
  8503     movP_nocopy(dst,src);
  8504     cp2b(dst,src,cr);
  8505   %}
  8506 %}
  8508 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
  8509   match(Set dst (CmpLTMask p q));
  8510   effect(KILL cr);
  8511   ins_cost(400);
  8513   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  8514   format %{ "XOR    $dst,$dst\n\t"
  8515             "CMP    $p,$q\n\t"
  8516             "SETlt  $dst\n\t"
  8517             "NEG    $dst" %}
  8518   ins_encode %{
  8519     Register Rp = $p$$Register;
  8520     Register Rq = $q$$Register;
  8521     Register Rd = $dst$$Register;
  8522     Label done;
  8523     __ xorl(Rd, Rd);
  8524     __ cmpl(Rp, Rq);
  8525     __ setb(Assembler::less, Rd);
  8526     __ negl(Rd);
  8527   %}
  8529   ins_pipe(pipe_slow);
  8530 %}
  8532 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
  8533   match(Set dst (CmpLTMask dst zero));
  8534   effect(DEF dst, KILL cr);
  8535   ins_cost(100);
  8537   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
  8538   ins_encode %{
  8539   __ sarl($dst$$Register, 31);
  8540   %}
  8541   ins_pipe(ialu_reg);
  8542 %}
  8544 /* better to save a register than avoid a branch */
  8545 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8546   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8547   effect(KILL cr);
  8548   ins_cost(400);
  8549   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
  8550             "JGE    done\n\t"
  8551             "ADD    $p,$y\n"
  8552             "done:  " %}
  8553   ins_encode %{
  8554     Register Rp = $p$$Register;
  8555     Register Rq = $q$$Register;
  8556     Register Ry = $y$$Register;
  8557     Label done;
  8558     __ subl(Rp, Rq);
  8559     __ jccb(Assembler::greaterEqual, done);
  8560     __ addl(Rp, Ry);
  8561     __ bind(done);
  8562   %}
  8564   ins_pipe(pipe_cmplt);
  8565 %}
  8567 /* better to save a register than avoid a branch */
  8568 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
  8569   match(Set y (AndI (CmpLTMask p q) y));
  8570   effect(KILL cr);
  8572   ins_cost(300);
  8574   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
  8575             "JLT      done\n\t"
  8576             "XORL     $y, $y\n"
  8577             "done:  " %}
  8578   ins_encode %{
  8579     Register Rp = $p$$Register;
  8580     Register Rq = $q$$Register;
  8581     Register Ry = $y$$Register;
  8582     Label done;
  8583     __ cmpl(Rp, Rq);
  8584     __ jccb(Assembler::less, done);
  8585     __ xorl(Ry, Ry);
  8586     __ bind(done);
  8587   %}
  8589   ins_pipe(pipe_cmplt);
  8590 %}
  8592 /* If I enable this, I encourage spilling in the inner loop of compress.
  8593 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
  8594   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  8595 */
  8596 //----------Overflow Math Instructions-----------------------------------------
  8598 instruct overflowAddI_eReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
  8599 %{
  8600   match(Set cr (OverflowAddI op1 op2));
  8601   effect(DEF cr, USE_KILL op1, USE op2);
  8603   format %{ "ADD    $op1, $op2\t# overflow check int" %}
  8605   ins_encode %{
  8606     __ addl($op1$$Register, $op2$$Register);
  8607   %}
  8608   ins_pipe(ialu_reg_reg);
  8609 %}
  8611 instruct overflowAddI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
  8612 %{
  8613   match(Set cr (OverflowAddI op1 op2));
  8614   effect(DEF cr, USE_KILL op1, USE op2);
  8616   format %{ "ADD    $op1, $op2\t# overflow check int" %}
  8618   ins_encode %{
  8619     __ addl($op1$$Register, $op2$$constant);
  8620   %}
  8621   ins_pipe(ialu_reg_reg);
  8622 %}
  8624 instruct overflowSubI_rReg(eFlagsReg cr, rRegI op1, rRegI op2)
  8625 %{
  8626   match(Set cr (OverflowSubI op1 op2));
  8628   format %{ "CMP    $op1, $op2\t# overflow check int" %}
  8629   ins_encode %{
  8630     __ cmpl($op1$$Register, $op2$$Register);
  8631   %}
  8632   ins_pipe(ialu_reg_reg);
  8633 %}
  8635 instruct overflowSubI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2)
  8636 %{
  8637   match(Set cr (OverflowSubI op1 op2));
  8639   format %{ "CMP    $op1, $op2\t# overflow check int" %}
  8640   ins_encode %{
  8641     __ cmpl($op1$$Register, $op2$$constant);
  8642   %}
  8643   ins_pipe(ialu_reg_reg);
  8644 %}
  8646 instruct overflowNegI_rReg(eFlagsReg cr, immI0 zero, eAXRegI op2)
  8647 %{
  8648   match(Set cr (OverflowSubI zero op2));
  8649   effect(DEF cr, USE_KILL op2);
  8651   format %{ "NEG    $op2\t# overflow check int" %}
  8652   ins_encode %{
  8653     __ negl($op2$$Register);
  8654   %}
  8655   ins_pipe(ialu_reg_reg);
  8656 %}
  8658 instruct overflowMulI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
  8659 %{
  8660   match(Set cr (OverflowMulI op1 op2));
  8661   effect(DEF cr, USE_KILL op1, USE op2);
  8663   format %{ "IMUL    $op1, $op2\t# overflow check int" %}
  8664   ins_encode %{
  8665     __ imull($op1$$Register, $op2$$Register);
  8666   %}
  8667   ins_pipe(ialu_reg_reg_alu0);
  8668 %}
  8670 instruct overflowMulI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
  8671 %{
  8672   match(Set cr (OverflowMulI op1 op2));
  8673   effect(DEF cr, TEMP tmp, USE op1, USE op2);
  8675   format %{ "IMUL    $tmp, $op1, $op2\t# overflow check int" %}
  8676   ins_encode %{
  8677     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
  8678   %}
  8679   ins_pipe(ialu_reg_reg_alu0);
  8680 %}
  8682 //----------Long Instructions------------------------------------------------
  8683 // Add Long Register with Register
  8684 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8685   match(Set dst (AddL dst src));
  8686   effect(KILL cr);
  8687   ins_cost(200);
  8688   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8689             "ADC    $dst.hi,$src.hi" %}
  8690   opcode(0x03, 0x13);
  8691   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8692   ins_pipe( ialu_reg_reg_long );
  8693 %}
  8695 // Add Long Register with Immediate
  8696 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8697   match(Set dst (AddL dst src));
  8698   effect(KILL cr);
  8699   format %{ "ADD    $dst.lo,$src.lo\n\t"
  8700             "ADC    $dst.hi,$src.hi" %}
  8701   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  8702   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8703   ins_pipe( ialu_reg_long );
  8704 %}
  8706 // Add Long Register with Memory
  8707 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8708   match(Set dst (AddL dst (LoadL mem)));
  8709   effect(KILL cr);
  8710   ins_cost(125);
  8711   format %{ "ADD    $dst.lo,$mem\n\t"
  8712             "ADC    $dst.hi,$mem+4" %}
  8713   opcode(0x03, 0x13);
  8714   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8715   ins_pipe( ialu_reg_long_mem );
  8716 %}
  8718 // Subtract Long Register with Register.
  8719 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8720   match(Set dst (SubL dst src));
  8721   effect(KILL cr);
  8722   ins_cost(200);
  8723   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8724             "SBB    $dst.hi,$src.hi" %}
  8725   opcode(0x2B, 0x1B);
  8726   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  8727   ins_pipe( ialu_reg_reg_long );
  8728 %}
  8730 // Subtract Long Register with Immediate
  8731 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8732   match(Set dst (SubL dst src));
  8733   effect(KILL cr);
  8734   format %{ "SUB    $dst.lo,$src.lo\n\t"
  8735             "SBB    $dst.hi,$src.hi" %}
  8736   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  8737   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8738   ins_pipe( ialu_reg_long );
  8739 %}
  8741 // Subtract Long Register with Memory
  8742 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8743   match(Set dst (SubL dst (LoadL mem)));
  8744   effect(KILL cr);
  8745   ins_cost(125);
  8746   format %{ "SUB    $dst.lo,$mem\n\t"
  8747             "SBB    $dst.hi,$mem+4" %}
  8748   opcode(0x2B, 0x1B);
  8749   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8750   ins_pipe( ialu_reg_long_mem );
  8751 %}
  8753 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  8754   match(Set dst (SubL zero dst));
  8755   effect(KILL cr);
  8756   ins_cost(300);
  8757   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  8758   ins_encode( neg_long(dst) );
  8759   ins_pipe( ialu_reg_reg_long );
  8760 %}
  8762 // And Long Register with Register
  8763 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  8764   match(Set dst (AndL dst src));
  8765   effect(KILL cr);
  8766   format %{ "AND    $dst.lo,$src.lo\n\t"
  8767             "AND    $dst.hi,$src.hi" %}
  8768   opcode(0x23,0x23);
  8769   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  8770   ins_pipe( ialu_reg_reg_long );
  8771 %}
  8773 // And Long Register with Immediate
  8774 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  8775   match(Set dst (AndL dst src));
  8776   effect(KILL cr);
  8777   format %{ "AND    $dst.lo,$src.lo\n\t"
  8778             "AND    $dst.hi,$src.hi" %}
  8779   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  8780   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  8781   ins_pipe( ialu_reg_long );
  8782 %}
  8784 // And Long Register with Memory
  8785 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  8786   match(Set dst (AndL dst (LoadL mem)));
  8787   effect(KILL cr);
  8788   ins_cost(125);
  8789   format %{ "AND    $dst.lo,$mem\n\t"
  8790             "AND    $dst.hi,$mem+4" %}
  8791   opcode(0x23, 0x23);
  8792   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  8793   ins_pipe( ialu_reg_long_mem );
  8794 %}
  8796 // BMI1 instructions
  8797 instruct andnL_eReg_eReg_eReg(eRegL dst, eRegL src1, eRegL src2, immL_M1 minus_1, eFlagsReg cr) %{
  8798   match(Set dst (AndL (XorL src1 minus_1) src2));
  8799   predicate(UseBMI1Instructions);
  8800   effect(KILL cr, TEMP dst);
  8802   format %{ "ANDNL  $dst.lo, $src1.lo, $src2.lo\n\t"
  8803             "ANDNL  $dst.hi, $src1.hi, $src2.hi"
  8804          %}
  8806   ins_encode %{
  8807     Register Rdst = $dst$$Register;
  8808     Register Rsrc1 = $src1$$Register;
  8809     Register Rsrc2 = $src2$$Register;
  8810     __ andnl(Rdst, Rsrc1, Rsrc2);
  8811     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), HIGH_FROM_LOW(Rsrc2));
  8812   %}
  8813   ins_pipe(ialu_reg_reg_long);
  8814 %}
  8816 instruct andnL_eReg_eReg_mem(eRegL dst, eRegL src1, memory src2, immL_M1 minus_1, eFlagsReg cr) %{
  8817   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2) ));
  8818   predicate(UseBMI1Instructions);
  8819   effect(KILL cr, TEMP dst);
  8821   ins_cost(125);
  8822   format %{ "ANDNL  $dst.lo, $src1.lo, $src2\n\t"
  8823             "ANDNL  $dst.hi, $src1.hi, $src2+4"
  8824          %}
  8826   ins_encode %{
  8827     Register Rdst = $dst$$Register;
  8828     Register Rsrc1 = $src1$$Register;
  8829     Address src2_hi = Address::make_raw($src2$$base, $src2$$index, $src2$$scale, $src2$$disp + 4, relocInfo::none);
  8831     __ andnl(Rdst, Rsrc1, $src2$$Address);
  8832     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), src2_hi);
  8833   %}
  8834   ins_pipe(ialu_reg_mem);
  8835 %}
  8837 instruct blsiL_eReg_eReg(eRegL dst, eRegL src, immL0 imm_zero, eFlagsReg cr) %{
  8838   match(Set dst (AndL (SubL imm_zero src) src));
  8839   predicate(UseBMI1Instructions);
  8840   effect(KILL cr, TEMP dst);
  8842   format %{ "MOVL   $dst.hi, 0\n\t"
  8843             "BLSIL  $dst.lo, $src.lo\n\t"
  8844             "JNZ    done\n\t"
  8845             "BLSIL  $dst.hi, $src.hi\n"
  8846             "done:"
  8847          %}
  8849   ins_encode %{
  8850     Label done;
  8851     Register Rdst = $dst$$Register;
  8852     Register Rsrc = $src$$Register;
  8853     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8854     __ blsil(Rdst, Rsrc);
  8855     __ jccb(Assembler::notZero, done);
  8856     __ blsil(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8857     __ bind(done);
  8858   %}
  8859   ins_pipe(ialu_reg);
  8860 %}
  8862 instruct blsiL_eReg_mem(eRegL dst, memory src, immL0 imm_zero, eFlagsReg cr) %{
  8863   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
  8864   predicate(UseBMI1Instructions);
  8865   effect(KILL cr, TEMP dst);
  8867   ins_cost(125);
  8868   format %{ "MOVL   $dst.hi, 0\n\t"
  8869             "BLSIL  $dst.lo, $src\n\t"
  8870             "JNZ    done\n\t"
  8871             "BLSIL  $dst.hi, $src+4\n"
  8872             "done:"
  8873          %}
  8875   ins_encode %{
  8876     Label done;
  8877     Register Rdst = $dst$$Register;
  8878     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8880     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8881     __ blsil(Rdst, $src$$Address);
  8882     __ jccb(Assembler::notZero, done);
  8883     __ blsil(HIGH_FROM_LOW(Rdst), src_hi);
  8884     __ bind(done);
  8885   %}
  8886   ins_pipe(ialu_reg_mem);
  8887 %}
  8889 instruct blsmskL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
  8890 %{
  8891   match(Set dst (XorL (AddL src minus_1) src));
  8892   predicate(UseBMI1Instructions);
  8893   effect(KILL cr, TEMP dst);
  8895   format %{ "MOVL    $dst.hi, 0\n\t"
  8896             "BLSMSKL $dst.lo, $src.lo\n\t"
  8897             "JNC     done\n\t"
  8898             "BLSMSKL $dst.hi, $src.hi\n"
  8899             "done:"
  8900          %}
  8902   ins_encode %{
  8903     Label done;
  8904     Register Rdst = $dst$$Register;
  8905     Register Rsrc = $src$$Register;
  8906     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8907     __ blsmskl(Rdst, Rsrc);
  8908     __ jccb(Assembler::carryClear, done);
  8909     __ blsmskl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8910     __ bind(done);
  8911   %}
  8913   ins_pipe(ialu_reg);
  8914 %}
  8916 instruct blsmskL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
  8917 %{
  8918   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ));
  8919   predicate(UseBMI1Instructions);
  8920   effect(KILL cr, TEMP dst);
  8922   ins_cost(125);
  8923   format %{ "MOVL    $dst.hi, 0\n\t"
  8924             "BLSMSKL $dst.lo, $src\n\t"
  8925             "JNC     done\n\t"
  8926             "BLSMSKL $dst.hi, $src+4\n"
  8927             "done:"
  8928          %}
  8930   ins_encode %{
  8931     Label done;
  8932     Register Rdst = $dst$$Register;
  8933     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8935     __ movl(HIGH_FROM_LOW(Rdst), 0);
  8936     __ blsmskl(Rdst, $src$$Address);
  8937     __ jccb(Assembler::carryClear, done);
  8938     __ blsmskl(HIGH_FROM_LOW(Rdst), src_hi);
  8939     __ bind(done);
  8940   %}
  8942   ins_pipe(ialu_reg_mem);
  8943 %}
  8945 instruct blsrL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
  8946 %{
  8947   match(Set dst (AndL (AddL src minus_1) src) );
  8948   predicate(UseBMI1Instructions);
  8949   effect(KILL cr, TEMP dst);
  8951   format %{ "MOVL   $dst.hi, $src.hi\n\t"
  8952             "BLSRL  $dst.lo, $src.lo\n\t"
  8953             "JNC    done\n\t"
  8954             "BLSRL  $dst.hi, $src.hi\n"
  8955             "done:"
  8956   %}
  8958   ins_encode %{
  8959     Label done;
  8960     Register Rdst = $dst$$Register;
  8961     Register Rsrc = $src$$Register;
  8962     __ movl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8963     __ blsrl(Rdst, Rsrc);
  8964     __ jccb(Assembler::carryClear, done);
  8965     __ blsrl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
  8966     __ bind(done);
  8967   %}
  8969   ins_pipe(ialu_reg);
  8970 %}
  8972 instruct blsrL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
  8973 %{
  8974   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src) ));
  8975   predicate(UseBMI1Instructions);
  8976   effect(KILL cr, TEMP dst);
  8978   ins_cost(125);
  8979   format %{ "MOVL   $dst.hi, $src+4\n\t"
  8980             "BLSRL  $dst.lo, $src\n\t"
  8981             "JNC    done\n\t"
  8982             "BLSRL  $dst.hi, $src+4\n"
  8983             "done:"
  8984   %}
  8986   ins_encode %{
  8987     Label done;
  8988     Register Rdst = $dst$$Register;
  8989     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
  8990     __ movl(HIGH_FROM_LOW(Rdst), src_hi);
  8991     __ blsrl(Rdst, $src$$Address);
  8992     __ jccb(Assembler::carryClear, done);
  8993     __ blsrl(HIGH_FROM_LOW(Rdst), src_hi);
  8994     __ bind(done);
  8995   %}
  8997   ins_pipe(ialu_reg_mem);
  8998 %}
  9000 // Or Long Register with Register
  9001 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9002   match(Set dst (OrL dst src));
  9003   effect(KILL cr);
  9004   format %{ "OR     $dst.lo,$src.lo\n\t"
  9005             "OR     $dst.hi,$src.hi" %}
  9006   opcode(0x0B,0x0B);
  9007   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9008   ins_pipe( ialu_reg_reg_long );
  9009 %}
  9011 // Or Long Register with Immediate
  9012 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9013   match(Set dst (OrL dst src));
  9014   effect(KILL cr);
  9015   format %{ "OR     $dst.lo,$src.lo\n\t"
  9016             "OR     $dst.hi,$src.hi" %}
  9017   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9018   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9019   ins_pipe( ialu_reg_long );
  9020 %}
  9022 // Or Long Register with Memory
  9023 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9024   match(Set dst (OrL dst (LoadL mem)));
  9025   effect(KILL cr);
  9026   ins_cost(125);
  9027   format %{ "OR     $dst.lo,$mem\n\t"
  9028             "OR     $dst.hi,$mem+4" %}
  9029   opcode(0x0B,0x0B);
  9030   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9031   ins_pipe( ialu_reg_long_mem );
  9032 %}
  9034 // Xor Long Register with Register
  9035 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9036   match(Set dst (XorL dst src));
  9037   effect(KILL cr);
  9038   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9039             "XOR    $dst.hi,$src.hi" %}
  9040   opcode(0x33,0x33);
  9041   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9042   ins_pipe( ialu_reg_reg_long );
  9043 %}
  9045 // Xor Long Register with Immediate -1
  9046 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9047   match(Set dst (XorL dst imm));  
  9048   format %{ "NOT    $dst.lo\n\t"
  9049             "NOT    $dst.hi" %}
  9050   ins_encode %{
  9051      __ notl($dst$$Register);
  9052      __ notl(HIGH_FROM_LOW($dst$$Register));
  9053   %}
  9054   ins_pipe( ialu_reg_long );
  9055 %}
  9057 // Xor Long Register with Immediate
  9058 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9059   match(Set dst (XorL dst src));
  9060   effect(KILL cr);
  9061   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9062             "XOR    $dst.hi,$src.hi" %}
  9063   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9064   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9065   ins_pipe( ialu_reg_long );
  9066 %}
  9068 // Xor Long Register with Memory
  9069 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9070   match(Set dst (XorL dst (LoadL mem)));
  9071   effect(KILL cr);
  9072   ins_cost(125);
  9073   format %{ "XOR    $dst.lo,$mem\n\t"
  9074             "XOR    $dst.hi,$mem+4" %}
  9075   opcode(0x33,0x33);
  9076   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9077   ins_pipe( ialu_reg_long_mem );
  9078 %}
  9080 // Shift Left Long by 1
  9081 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9082   predicate(UseNewLongLShift);
  9083   match(Set dst (LShiftL dst cnt));
  9084   effect(KILL cr);
  9085   ins_cost(100);
  9086   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9087             "ADC    $dst.hi,$dst.hi" %}
  9088   ins_encode %{
  9089     __ addl($dst$$Register,$dst$$Register);
  9090     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9091   %}
  9092   ins_pipe( ialu_reg_long );
  9093 %}
  9095 // Shift Left Long by 2
  9096 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9097   predicate(UseNewLongLShift);
  9098   match(Set dst (LShiftL dst cnt));
  9099   effect(KILL cr);
  9100   ins_cost(100);
  9101   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9102             "ADC    $dst.hi,$dst.hi\n\t" 
  9103             "ADD    $dst.lo,$dst.lo\n\t"
  9104             "ADC    $dst.hi,$dst.hi" %}
  9105   ins_encode %{
  9106     __ addl($dst$$Register,$dst$$Register);
  9107     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9108     __ addl($dst$$Register,$dst$$Register);
  9109     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9110   %}
  9111   ins_pipe( ialu_reg_long );
  9112 %}
  9114 // Shift Left Long by 3
  9115 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9116   predicate(UseNewLongLShift);
  9117   match(Set dst (LShiftL dst cnt));
  9118   effect(KILL cr);
  9119   ins_cost(100);
  9120   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9121             "ADC    $dst.hi,$dst.hi\n\t" 
  9122             "ADD    $dst.lo,$dst.lo\n\t"
  9123             "ADC    $dst.hi,$dst.hi\n\t" 
  9124             "ADD    $dst.lo,$dst.lo\n\t"
  9125             "ADC    $dst.hi,$dst.hi" %}
  9126   ins_encode %{
  9127     __ addl($dst$$Register,$dst$$Register);
  9128     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9129     __ addl($dst$$Register,$dst$$Register);
  9130     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9131     __ addl($dst$$Register,$dst$$Register);
  9132     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9133   %}
  9134   ins_pipe( ialu_reg_long );
  9135 %}
  9137 // Shift Left Long by 1-31
  9138 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9139   match(Set dst (LShiftL dst cnt));
  9140   effect(KILL cr);
  9141   ins_cost(200);
  9142   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9143             "SHL    $dst.lo,$cnt" %}
  9144   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9145   ins_encode( move_long_small_shift(dst,cnt) );
  9146   ins_pipe( ialu_reg_long );
  9147 %}
  9149 // Shift Left Long by 32-63
  9150 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9151   match(Set dst (LShiftL dst cnt));
  9152   effect(KILL cr);
  9153   ins_cost(300);
  9154   format %{ "MOV    $dst.hi,$dst.lo\n"
  9155           "\tSHL    $dst.hi,$cnt-32\n"
  9156           "\tXOR    $dst.lo,$dst.lo" %}
  9157   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9158   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9159   ins_pipe( ialu_reg_long );
  9160 %}
  9162 // Shift Left Long by variable
  9163 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9164   match(Set dst (LShiftL dst shift));
  9165   effect(KILL cr);
  9166   ins_cost(500+200);
  9167   size(17);
  9168   format %{ "TEST   $shift,32\n\t"
  9169             "JEQ,s  small\n\t"
  9170             "MOV    $dst.hi,$dst.lo\n\t"
  9171             "XOR    $dst.lo,$dst.lo\n"
  9172     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9173             "SHL    $dst.lo,$shift" %}
  9174   ins_encode( shift_left_long( dst, shift ) );
  9175   ins_pipe( pipe_slow );
  9176 %}
  9178 // Shift Right Long by 1-31
  9179 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9180   match(Set dst (URShiftL dst cnt));
  9181   effect(KILL cr);
  9182   ins_cost(200);
  9183   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9184             "SHR    $dst.hi,$cnt" %}
  9185   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9186   ins_encode( move_long_small_shift(dst,cnt) );
  9187   ins_pipe( ialu_reg_long );
  9188 %}
  9190 // Shift Right Long by 32-63
  9191 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9192   match(Set dst (URShiftL dst cnt));
  9193   effect(KILL cr);
  9194   ins_cost(300);
  9195   format %{ "MOV    $dst.lo,$dst.hi\n"
  9196           "\tSHR    $dst.lo,$cnt-32\n"
  9197           "\tXOR    $dst.hi,$dst.hi" %}
  9198   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9199   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9200   ins_pipe( ialu_reg_long );
  9201 %}
  9203 // Shift Right Long by variable
  9204 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9205   match(Set dst (URShiftL dst shift));
  9206   effect(KILL cr);
  9207   ins_cost(600);
  9208   size(17);
  9209   format %{ "TEST   $shift,32\n\t"
  9210             "JEQ,s  small\n\t"
  9211             "MOV    $dst.lo,$dst.hi\n\t"
  9212             "XOR    $dst.hi,$dst.hi\n"
  9213     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9214             "SHR    $dst.hi,$shift" %}
  9215   ins_encode( shift_right_long( dst, shift ) );
  9216   ins_pipe( pipe_slow );
  9217 %}
  9219 // Shift Right Long by 1-31
  9220 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9221   match(Set dst (RShiftL dst cnt));
  9222   effect(KILL cr);
  9223   ins_cost(200);
  9224   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9225             "SAR    $dst.hi,$cnt" %}
  9226   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9227   ins_encode( move_long_small_shift(dst,cnt) );
  9228   ins_pipe( ialu_reg_long );
  9229 %}
  9231 // Shift Right Long by 32-63
  9232 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9233   match(Set dst (RShiftL dst cnt));
  9234   effect(KILL cr);
  9235   ins_cost(300);
  9236   format %{ "MOV    $dst.lo,$dst.hi\n"
  9237           "\tSAR    $dst.lo,$cnt-32\n"
  9238           "\tSAR    $dst.hi,31" %}
  9239   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9240   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9241   ins_pipe( ialu_reg_long );
  9242 %}
  9244 // Shift Right arithmetic Long by variable
  9245 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9246   match(Set dst (RShiftL dst shift));
  9247   effect(KILL cr);
  9248   ins_cost(600);
  9249   size(18);
  9250   format %{ "TEST   $shift,32\n\t"
  9251             "JEQ,s  small\n\t"
  9252             "MOV    $dst.lo,$dst.hi\n\t"
  9253             "SAR    $dst.hi,31\n"
  9254     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9255             "SAR    $dst.hi,$shift" %}
  9256   ins_encode( shift_right_arith_long( dst, shift ) );
  9257   ins_pipe( pipe_slow );
  9258 %}
  9261 //----------Double Instructions------------------------------------------------
  9262 // Double Math
  9264 // Compare & branch
  9266 // P6 version of float compare, sets condition codes in EFLAGS
  9267 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9268   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9269   match(Set cr (CmpD src1 src2));
  9270   effect(KILL rax);
  9271   ins_cost(150);
  9272   format %{ "FLD    $src1\n\t"
  9273             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9274             "JNP    exit\n\t"
  9275             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9276             "SAHF\n"
  9277      "exit:\tNOP               // avoid branch to branch" %}
  9278   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9279   ins_encode( Push_Reg_DPR(src1),
  9280               OpcP, RegOpc(src2),
  9281               cmpF_P6_fixup );
  9282   ins_pipe( pipe_slow );
  9283 %}
  9285 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
  9286   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9287   match(Set cr (CmpD src1 src2));
  9288   ins_cost(150);
  9289   format %{ "FLD    $src1\n\t"
  9290             "FUCOMIP ST,$src2  // P6 instruction" %}
  9291   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9292   ins_encode( Push_Reg_DPR(src1),
  9293               OpcP, RegOpc(src2));
  9294   ins_pipe( pipe_slow );
  9295 %}
  9297 // Compare & branch
  9298 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
  9299   predicate(UseSSE<=1);
  9300   match(Set cr (CmpD src1 src2));
  9301   effect(KILL rax);
  9302   ins_cost(200);
  9303   format %{ "FLD    $src1\n\t"
  9304             "FCOMp  $src2\n\t"
  9305             "FNSTSW AX\n\t"
  9306             "TEST   AX,0x400\n\t"
  9307             "JZ,s   flags\n\t"
  9308             "MOV    AH,1\t# unordered treat as LT\n"
  9309     "flags:\tSAHF" %}
  9310   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9311   ins_encode( Push_Reg_DPR(src1),
  9312               OpcP, RegOpc(src2),
  9313               fpu_flags);
  9314   ins_pipe( pipe_slow );
  9315 %}
  9317 // Compare vs zero into -1,0,1
  9318 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
  9319   predicate(UseSSE<=1);
  9320   match(Set dst (CmpD3 src1 zero));
  9321   effect(KILL cr, KILL rax);
  9322   ins_cost(280);
  9323   format %{ "FTSTD  $dst,$src1" %}
  9324   opcode(0xE4, 0xD9);
  9325   ins_encode( Push_Reg_DPR(src1),
  9326               OpcS, OpcP, PopFPU,
  9327               CmpF_Result(dst));
  9328   ins_pipe( pipe_slow );
  9329 %}
  9331 // Compare into -1,0,1
  9332 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
  9333   predicate(UseSSE<=1);
  9334   match(Set dst (CmpD3 src1 src2));
  9335   effect(KILL cr, KILL rax);
  9336   ins_cost(300);
  9337   format %{ "FCMPD  $dst,$src1,$src2" %}
  9338   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9339   ins_encode( Push_Reg_DPR(src1),
  9340               OpcP, RegOpc(src2),
  9341               CmpF_Result(dst));
  9342   ins_pipe( pipe_slow );
  9343 %}
  9345 // float compare and set condition codes in EFLAGS by XMM regs
  9346 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
  9347   predicate(UseSSE>=2);
  9348   match(Set cr (CmpD src1 src2));
  9349   ins_cost(145);
  9350   format %{ "UCOMISD $src1,$src2\n\t"
  9351             "JNP,s   exit\n\t"
  9352             "PUSHF\t# saw NaN, set CF\n\t"
  9353             "AND     [rsp], #0xffffff2b\n\t"
  9354             "POPF\n"
  9355     "exit:" %}
  9356   ins_encode %{
  9357     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9358     emit_cmpfp_fixup(_masm);
  9359   %}
  9360   ins_pipe( pipe_slow );
  9361 %}
  9363 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9364   predicate(UseSSE>=2);
  9365   match(Set cr (CmpD src1 src2));
  9366   ins_cost(100);
  9367   format %{ "UCOMISD $src1,$src2" %}
  9368   ins_encode %{
  9369     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9370   %}
  9371   ins_pipe( pipe_slow );
  9372 %}
  9374 // float compare and set condition codes in EFLAGS by XMM regs
  9375 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
  9376   predicate(UseSSE>=2);
  9377   match(Set cr (CmpD src1 (LoadD src2)));
  9378   ins_cost(145);
  9379   format %{ "UCOMISD $src1,$src2\n\t"
  9380             "JNP,s   exit\n\t"
  9381             "PUSHF\t# saw NaN, set CF\n\t"
  9382             "AND     [rsp], #0xffffff2b\n\t"
  9383             "POPF\n"
  9384     "exit:" %}
  9385   ins_encode %{
  9386     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9387     emit_cmpfp_fixup(_masm);
  9388   %}
  9389   ins_pipe( pipe_slow );
  9390 %}
  9392 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
  9393   predicate(UseSSE>=2);
  9394   match(Set cr (CmpD src1 (LoadD src2)));
  9395   ins_cost(100);
  9396   format %{ "UCOMISD $src1,$src2" %}
  9397   ins_encode %{
  9398     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9399   %}
  9400   ins_pipe( pipe_slow );
  9401 %}
  9403 // Compare into -1,0,1 in XMM
  9404 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
  9405   predicate(UseSSE>=2);
  9406   match(Set dst (CmpD3 src1 src2));
  9407   effect(KILL cr);
  9408   ins_cost(255);
  9409   format %{ "UCOMISD $src1, $src2\n\t"
  9410             "MOV     $dst, #-1\n\t"
  9411             "JP,s    done\n\t"
  9412             "JB,s    done\n\t"
  9413             "SETNE   $dst\n\t"
  9414             "MOVZB   $dst, $dst\n"
  9415     "done:" %}
  9416   ins_encode %{
  9417     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9418     emit_cmpfp3(_masm, $dst$$Register);
  9419   %}
  9420   ins_pipe( pipe_slow );
  9421 %}
  9423 // Compare into -1,0,1 in XMM and memory
  9424 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
  9425   predicate(UseSSE>=2);
  9426   match(Set dst (CmpD3 src1 (LoadD src2)));
  9427   effect(KILL cr);
  9428   ins_cost(275);
  9429   format %{ "UCOMISD $src1, $src2\n\t"
  9430             "MOV     $dst, #-1\n\t"
  9431             "JP,s    done\n\t"
  9432             "JB,s    done\n\t"
  9433             "SETNE   $dst\n\t"
  9434             "MOVZB   $dst, $dst\n"
  9435     "done:" %}
  9436   ins_encode %{
  9437     __ ucomisd($src1$$XMMRegister, $src2$$Address);
  9438     emit_cmpfp3(_masm, $dst$$Register);
  9439   %}
  9440   ins_pipe( pipe_slow );
  9441 %}
  9444 instruct subDPR_reg(regDPR dst, regDPR src) %{
  9445   predicate (UseSSE <=1);
  9446   match(Set dst (SubD dst src));
  9448   format %{ "FLD    $src\n\t"
  9449             "DSUBp  $dst,ST" %}
  9450   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9451   ins_cost(150);
  9452   ins_encode( Push_Reg_DPR(src),
  9453               OpcP, RegOpc(dst) );
  9454   ins_pipe( fpu_reg_reg );
  9455 %}
  9457 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9458   predicate (UseSSE <=1);
  9459   match(Set dst (RoundDouble (SubD src1 src2)));
  9460   ins_cost(250);
  9462   format %{ "FLD    $src2\n\t"
  9463             "DSUB   ST,$src1\n\t"
  9464             "FSTP_D $dst\t# D-round" %}
  9465   opcode(0xD8, 0x5);
  9466   ins_encode( Push_Reg_DPR(src2),
  9467               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9468   ins_pipe( fpu_mem_reg_reg );
  9469 %}
  9472 instruct subDPR_reg_mem(regDPR dst, memory src) %{
  9473   predicate (UseSSE <=1);
  9474   match(Set dst (SubD dst (LoadD src)));
  9475   ins_cost(150);
  9477   format %{ "FLD    $src\n\t"
  9478             "DSUBp  $dst,ST" %}
  9479   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9480   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9481               OpcP, RegOpc(dst) );
  9482   ins_pipe( fpu_reg_mem );
  9483 %}
  9485 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
  9486   predicate (UseSSE<=1);
  9487   match(Set dst (AbsD src));
  9488   ins_cost(100);
  9489   format %{ "FABS" %}
  9490   opcode(0xE1, 0xD9);
  9491   ins_encode( OpcS, OpcP );
  9492   ins_pipe( fpu_reg_reg );
  9493 %}
  9495 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
  9496   predicate(UseSSE<=1);
  9497   match(Set dst (NegD src));
  9498   ins_cost(100);
  9499   format %{ "FCHS" %}
  9500   opcode(0xE0, 0xD9);
  9501   ins_encode( OpcS, OpcP );
  9502   ins_pipe( fpu_reg_reg );
  9503 %}
  9505 instruct addDPR_reg(regDPR dst, regDPR src) %{
  9506   predicate(UseSSE<=1);
  9507   match(Set dst (AddD dst src));
  9508   format %{ "FLD    $src\n\t"
  9509             "DADD   $dst,ST" %}
  9510   size(4);
  9511   ins_cost(150);
  9512   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
  9513   ins_encode( Push_Reg_DPR(src),
  9514               OpcP, RegOpc(dst) );
  9515   ins_pipe( fpu_reg_reg );
  9516 %}
  9519 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9520   predicate(UseSSE<=1);
  9521   match(Set dst (RoundDouble (AddD src1 src2)));
  9522   ins_cost(250);
  9524   format %{ "FLD    $src2\n\t"
  9525             "DADD   ST,$src1\n\t"
  9526             "FSTP_D $dst\t# D-round" %}
  9527   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
  9528   ins_encode( Push_Reg_DPR(src2),
  9529               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
  9530   ins_pipe( fpu_mem_reg_reg );
  9531 %}
  9534 instruct addDPR_reg_mem(regDPR dst, memory src) %{
  9535   predicate(UseSSE<=1);
  9536   match(Set dst (AddD dst (LoadD src)));
  9537   ins_cost(150);
  9539   format %{ "FLD    $src\n\t"
  9540             "DADDp  $dst,ST" %}
  9541   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9542   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9543               OpcP, RegOpc(dst) );
  9544   ins_pipe( fpu_reg_mem );
  9545 %}
  9547 // add-to-memory
  9548 instruct addDPR_mem_reg(memory dst, regDPR src) %{
  9549   predicate(UseSSE<=1);
  9550   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
  9551   ins_cost(150);
  9553   format %{ "FLD_D  $dst\n\t"
  9554             "DADD   ST,$src\n\t"
  9555             "FST_D  $dst" %}
  9556   opcode(0xDD, 0x0);
  9557   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
  9558               Opcode(0xD8), RegOpc(src),
  9559               set_instruction_start,
  9560               Opcode(0xDD), RMopc_Mem(0x03,dst) );
  9561   ins_pipe( fpu_reg_mem );
  9562 %}
  9564 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
  9565   predicate(UseSSE<=1);
  9566   match(Set dst (AddD dst con));
  9567   ins_cost(125);
  9568   format %{ "FLD1\n\t"
  9569             "DADDp  $dst,ST" %}
  9570   ins_encode %{
  9571     __ fld1();
  9572     __ faddp($dst$$reg);
  9573   %}
  9574   ins_pipe(fpu_reg);
  9575 %}
  9577 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
  9578   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9579   match(Set dst (AddD dst con));
  9580   ins_cost(200);
  9581   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9582             "DADDp  $dst,ST" %}
  9583   ins_encode %{
  9584     __ fld_d($constantaddress($con));
  9585     __ faddp($dst$$reg);
  9586   %}
  9587   ins_pipe(fpu_reg_mem);
  9588 %}
  9590 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
  9591   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
  9592   match(Set dst (RoundDouble (AddD src con)));
  9593   ins_cost(200);
  9594   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9595             "DADD   ST,$src\n\t"
  9596             "FSTP_D $dst\t# D-round" %}
  9597   ins_encode %{
  9598     __ fld_d($constantaddress($con));
  9599     __ fadd($src$$reg);
  9600     __ fstp_d(Address(rsp, $dst$$disp));
  9601   %}
  9602   ins_pipe(fpu_mem_reg_con);
  9603 %}
  9605 instruct mulDPR_reg(regDPR dst, regDPR src) %{
  9606   predicate(UseSSE<=1);
  9607   match(Set dst (MulD dst src));
  9608   format %{ "FLD    $src\n\t"
  9609             "DMULp  $dst,ST" %}
  9610   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9611   ins_cost(150);
  9612   ins_encode( Push_Reg_DPR(src),
  9613               OpcP, RegOpc(dst) );
  9614   ins_pipe( fpu_reg_reg );
  9615 %}
  9617 // Strict FP instruction biases argument before multiply then
  9618 // biases result to avoid double rounding of subnormals.
  9619 //
  9620 // scale arg1 by multiplying arg1 by 2^(-15360)
  9621 // load arg2
  9622 // multiply scaled arg1 by arg2
  9623 // rescale product by 2^(15360)
  9624 //
  9625 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9626   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9627   match(Set dst (MulD dst src));
  9628   ins_cost(1);   // Select this instruction for all strict FP double multiplies
  9630   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9631             "DMULp  $dst,ST\n\t"
  9632             "FLD    $src\n\t"
  9633             "DMULp  $dst,ST\n\t"
  9634             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9635             "DMULp  $dst,ST\n\t" %}
  9636   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
  9637   ins_encode( strictfp_bias1(dst),
  9638               Push_Reg_DPR(src),
  9639               OpcP, RegOpc(dst),
  9640               strictfp_bias2(dst) );
  9641   ins_pipe( fpu_reg_reg );
  9642 %}
  9644 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
  9645   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
  9646   match(Set dst (MulD dst con));
  9647   ins_cost(200);
  9648   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
  9649             "DMULp  $dst,ST" %}
  9650   ins_encode %{
  9651     __ fld_d($constantaddress($con));
  9652     __ fmulp($dst$$reg);
  9653   %}
  9654   ins_pipe(fpu_reg_mem);
  9655 %}
  9658 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
  9659   predicate( UseSSE<=1 );
  9660   match(Set dst (MulD dst (LoadD src)));
  9661   ins_cost(200);
  9662   format %{ "FLD_D  $src\n\t"
  9663             "DMULp  $dst,ST" %}
  9664   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
  9665   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9666               OpcP, RegOpc(dst) );
  9667   ins_pipe( fpu_reg_mem );
  9668 %}
  9670 //
  9671 // Cisc-alternate to reg-reg multiply
  9672 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
  9673   predicate( UseSSE<=1 );
  9674   match(Set dst (MulD src (LoadD mem)));
  9675   ins_cost(250);
  9676   format %{ "FLD_D  $mem\n\t"
  9677             "DMUL   ST,$src\n\t"
  9678             "FSTP_D $dst" %}
  9679   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
  9680   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
  9681               OpcReg_FPR(src),
  9682               Pop_Reg_DPR(dst) );
  9683   ins_pipe( fpu_reg_reg_mem );
  9684 %}
  9687 // MACRO3 -- addDPR a mulDPR
  9688 // This instruction is a '2-address' instruction in that the result goes
  9689 // back to src2.  This eliminates a move from the macro; possibly the
  9690 // register allocator will have to add it back (and maybe not).
  9691 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9692   predicate( UseSSE<=1 );
  9693   match(Set src2 (AddD (MulD src0 src1) src2));
  9694   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9695             "DMUL   ST,$src1\n\t"
  9696             "DADDp  $src2,ST" %}
  9697   ins_cost(250);
  9698   opcode(0xDD); /* LoadD DD /0 */
  9699   ins_encode( Push_Reg_FPR(src0),
  9700               FMul_ST_reg(src1),
  9701               FAddP_reg_ST(src2) );
  9702   ins_pipe( fpu_reg_reg_reg );
  9703 %}
  9706 // MACRO3 -- subDPR a mulDPR
  9707 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
  9708   predicate( UseSSE<=1 );
  9709   match(Set src2 (SubD (MulD src0 src1) src2));
  9710   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
  9711             "DMUL   ST,$src1\n\t"
  9712             "DSUBRp $src2,ST" %}
  9713   ins_cost(250);
  9714   ins_encode( Push_Reg_FPR(src0),
  9715               FMul_ST_reg(src1),
  9716               Opcode(0xDE), Opc_plus(0xE0,src2));
  9717   ins_pipe( fpu_reg_reg_reg );
  9718 %}
  9721 instruct divDPR_reg(regDPR dst, regDPR src) %{
  9722   predicate( UseSSE<=1 );
  9723   match(Set dst (DivD dst src));
  9725   format %{ "FLD    $src\n\t"
  9726             "FDIVp  $dst,ST" %}
  9727   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9728   ins_cost(150);
  9729   ins_encode( Push_Reg_DPR(src),
  9730               OpcP, RegOpc(dst) );
  9731   ins_pipe( fpu_reg_reg );
  9732 %}
  9734 // Strict FP instruction biases argument before division then
  9735 // biases result, to avoid double rounding of subnormals.
  9736 //
  9737 // scale dividend by multiplying dividend by 2^(-15360)
  9738 // load divisor
  9739 // divide scaled dividend by divisor
  9740 // rescale quotient by 2^(15360)
  9741 //
  9742 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
  9743   predicate (UseSSE<=1);
  9744   match(Set dst (DivD dst src));
  9745   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
  9746   ins_cost(01);
  9748   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
  9749             "DMULp  $dst,ST\n\t"
  9750             "FLD    $src\n\t"
  9751             "FDIVp  $dst,ST\n\t"
  9752             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
  9753             "DMULp  $dst,ST\n\t" %}
  9754   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
  9755   ins_encode( strictfp_bias1(dst),
  9756               Push_Reg_DPR(src),
  9757               OpcP, RegOpc(dst),
  9758               strictfp_bias2(dst) );
  9759   ins_pipe( fpu_reg_reg );
  9760 %}
  9762 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
  9763   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
  9764   match(Set dst (RoundDouble (DivD src1 src2)));
  9766   format %{ "FLD    $src1\n\t"
  9767             "FDIV   ST,$src2\n\t"
  9768             "FSTP_D $dst\t# D-round" %}
  9769   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
  9770   ins_encode( Push_Reg_DPR(src1),
  9771               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
  9772   ins_pipe( fpu_mem_reg_reg );
  9773 %}
  9776 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
  9777   predicate(UseSSE<=1);
  9778   match(Set dst (ModD dst src));
  9779   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
  9781   format %{ "DMOD   $dst,$src" %}
  9782   ins_cost(250);
  9783   ins_encode(Push_Reg_Mod_DPR(dst, src),
  9784               emitModDPR(),
  9785               Push_Result_Mod_DPR(src),
  9786               Pop_Reg_DPR(dst));
  9787   ins_pipe( pipe_slow );
  9788 %}
  9790 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
  9791   predicate(UseSSE>=2);
  9792   match(Set dst (ModD src0 src1));
  9793   effect(KILL rax, KILL cr);
  9795   format %{ "SUB    ESP,8\t # DMOD\n"
  9796           "\tMOVSD  [ESP+0],$src1\n"
  9797           "\tFLD_D  [ESP+0]\n"
  9798           "\tMOVSD  [ESP+0],$src0\n"
  9799           "\tFLD_D  [ESP+0]\n"
  9800      "loop:\tFPREM\n"
  9801           "\tFWAIT\n"
  9802           "\tFNSTSW AX\n"
  9803           "\tSAHF\n"
  9804           "\tJP     loop\n"
  9805           "\tFSTP_D [ESP+0]\n"
  9806           "\tMOVSD  $dst,[ESP+0]\n"
  9807           "\tADD    ESP,8\n"
  9808           "\tFSTP   ST0\t # Restore FPU Stack"
  9809     %}
  9810   ins_cost(250);
  9811   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
  9812   ins_pipe( pipe_slow );
  9813 %}
  9815 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
  9816   predicate (UseSSE<=1);
  9817   match(Set dst (SinD src));
  9818   ins_cost(1800);
  9819   format %{ "DSIN   $dst" %}
  9820   opcode(0xD9, 0xFE);
  9821   ins_encode( OpcP, OpcS );
  9822   ins_pipe( pipe_slow );
  9823 %}
  9825 instruct sinD_reg(regD dst, eFlagsReg cr) %{
  9826   predicate (UseSSE>=2);
  9827   match(Set dst (SinD dst));
  9828   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9829   ins_cost(1800);
  9830   format %{ "DSIN   $dst" %}
  9831   opcode(0xD9, 0xFE);
  9832   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9833   ins_pipe( pipe_slow );
  9834 %}
  9836 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
  9837   predicate (UseSSE<=1);
  9838   match(Set dst (CosD src));
  9839   ins_cost(1800);
  9840   format %{ "DCOS   $dst" %}
  9841   opcode(0xD9, 0xFF);
  9842   ins_encode( OpcP, OpcS );
  9843   ins_pipe( pipe_slow );
  9844 %}
  9846 instruct cosD_reg(regD dst, eFlagsReg cr) %{
  9847   predicate (UseSSE>=2);
  9848   match(Set dst (CosD dst));
  9849   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9850   ins_cost(1800);
  9851   format %{ "DCOS   $dst" %}
  9852   opcode(0xD9, 0xFF);
  9853   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
  9854   ins_pipe( pipe_slow );
  9855 %}
  9857 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
  9858   predicate (UseSSE<=1);
  9859   match(Set dst(TanD src));
  9860   format %{ "DTAN   $dst" %}
  9861   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
  9862               Opcode(0xDD), Opcode(0xD8));   // fstp st
  9863   ins_pipe( pipe_slow );
  9864 %}
  9866 instruct tanD_reg(regD dst, eFlagsReg cr) %{
  9867   predicate (UseSSE>=2);
  9868   match(Set dst(TanD dst));
  9869   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9870   format %{ "DTAN   $dst" %}
  9871   ins_encode( Push_SrcD(dst),
  9872               Opcode(0xD9), Opcode(0xF2),    // fptan
  9873               Opcode(0xDD), Opcode(0xD8),   // fstp st
  9874               Push_ResultD(dst) );
  9875   ins_pipe( pipe_slow );
  9876 %}
  9878 instruct atanDPR_reg(regDPR dst, regDPR src) %{
  9879   predicate (UseSSE<=1);
  9880   match(Set dst(AtanD dst src));
  9881   format %{ "DATA   $dst,$src" %}
  9882   opcode(0xD9, 0xF3);
  9883   ins_encode( Push_Reg_DPR(src),
  9884               OpcP, OpcS, RegOpc(dst) );
  9885   ins_pipe( pipe_slow );
  9886 %}
  9888 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
  9889   predicate (UseSSE>=2);
  9890   match(Set dst(AtanD dst src));
  9891   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
  9892   format %{ "DATA   $dst,$src" %}
  9893   opcode(0xD9, 0xF3);
  9894   ins_encode( Push_SrcD(src),
  9895               OpcP, OpcS, Push_ResultD(dst) );
  9896   ins_pipe( pipe_slow );
  9897 %}
  9899 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
  9900   predicate (UseSSE<=1);
  9901   match(Set dst (SqrtD src));
  9902   format %{ "DSQRT  $dst,$src" %}
  9903   opcode(0xFA, 0xD9);
  9904   ins_encode( Push_Reg_DPR(src),
  9905               OpcS, OpcP, Pop_Reg_DPR(dst) );
  9906   ins_pipe( pipe_slow );
  9907 %}
  9909 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9910   predicate (UseSSE<=1);
  9911   match(Set Y (PowD X Y));  // Raise X to the Yth power
  9912   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9913   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
  9914   ins_encode %{
  9915     __ subptr(rsp, 8);
  9916     __ fld_s($X$$reg - 1);
  9917     __ fast_pow();
  9918     __ addptr(rsp, 8);
  9919   %}
  9920   ins_pipe( pipe_slow );
  9921 %}
  9923 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9924   predicate (UseSSE>=2);
  9925   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
  9926   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
  9927   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
  9928   ins_encode %{
  9929     __ subptr(rsp, 8);
  9930     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
  9931     __ fld_d(Address(rsp, 0));
  9932     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
  9933     __ fld_d(Address(rsp, 0));
  9934     __ fast_pow();
  9935     __ fstp_d(Address(rsp, 0));
  9936     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9937     __ addptr(rsp, 8);
  9938   %}
  9939   ins_pipe( pipe_slow );
  9940 %}
  9943 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9944   predicate (UseSSE<=1);
  9945   match(Set dpr1 (ExpD dpr1));
  9946   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
  9947   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
  9948   ins_encode %{
  9949     __ fast_exp();
  9950   %}
  9951   ins_pipe( pipe_slow );
  9952 %}
  9954 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
  9955   predicate (UseSSE>=2);
  9956   match(Set dst (ExpD src));
  9957   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
  9958   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
  9959   ins_encode %{
  9960     __ subptr(rsp, 8);
  9961     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
  9962     __ fld_d(Address(rsp, 0));
  9963     __ fast_exp();
  9964     __ fstp_d(Address(rsp, 0));
  9965     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
  9966     __ addptr(rsp, 8);
  9967   %}
  9968   ins_pipe( pipe_slow );
  9969 %}
  9971 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
  9972   predicate (UseSSE<=1);
  9973   // The source Double operand on FPU stack
  9974   match(Set dst (Log10D src));
  9975   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
  9976   // fxch         ; swap ST(0) with ST(1)
  9977   // fyl2x        ; compute log_10(2) * log_2(x)
  9978   format %{ "FLDLG2 \t\t\t#Log10\n\t"
  9979             "FXCH   \n\t"
  9980             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
  9981          %}
  9982   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
  9983               Opcode(0xD9), Opcode(0xC9),   // fxch
  9984               Opcode(0xD9), Opcode(0xF1));  // fyl2x
  9986   ins_pipe( pipe_slow );
  9987 %}
  9989 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
  9990   predicate (UseSSE>=2);
  9991   effect(KILL cr);
  9992   match(Set dst (Log10D src));
  9993   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
  9994   // fyl2x        ; compute log_10(2) * log_2(x)
  9995   format %{ "FLDLG2 \t\t\t#Log10\n\t"
  9996             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
  9997          %}
  9998   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
  9999               Push_SrcD(src),
 10000               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10001               Push_ResultD(dst));
 10003   ins_pipe( pipe_slow );
 10004 %}
 10006 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
 10007   predicate (UseSSE<=1);
 10008   // The source Double operand on FPU stack
 10009   match(Set dst (LogD src));
 10010   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10011   // fxch         ; swap ST(0) with ST(1)
 10012   // fyl2x        ; compute log_e(2) * log_2(x)
 10013   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10014             "FXCH   \n\t"
 10015             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10016          %}
 10017   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10018               Opcode(0xD9), Opcode(0xC9),   // fxch
 10019               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10021   ins_pipe( pipe_slow );
 10022 %}
 10024 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
 10025   predicate (UseSSE>=2);
 10026   effect(KILL cr);
 10027   // The source and result Double operands in XMM registers
 10028   match(Set dst (LogD src));
 10029   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10030   // fyl2x        ; compute log_e(2) * log_2(x)
 10031   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10032             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10033          %}
 10034   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10035               Push_SrcD(src),
 10036               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10037               Push_ResultD(dst));
 10038   ins_pipe( pipe_slow );
 10039 %}
 10041 //-------------Float Instructions-------------------------------
 10042 // Float Math
 10044 // Code for float compare:
 10045 //     fcompp();
 10046 //     fwait(); fnstsw_ax();
 10047 //     sahf();
 10048 //     movl(dst, unordered_result);
 10049 //     jcc(Assembler::parity, exit);
 10050 //     movl(dst, less_result);
 10051 //     jcc(Assembler::below, exit);
 10052 //     movl(dst, equal_result);
 10053 //     jcc(Assembler::equal, exit);
 10054 //     movl(dst, greater_result);
 10055 //   exit:
 10057 // P6 version of float compare, sets condition codes in EFLAGS
 10058 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10059   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10060   match(Set cr (CmpF src1 src2));
 10061   effect(KILL rax);
 10062   ins_cost(150);
 10063   format %{ "FLD    $src1\n\t"
 10064             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10065             "JNP    exit\n\t"
 10066             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10067             "SAHF\n"
 10068      "exit:\tNOP               // avoid branch to branch" %}
 10069   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10070   ins_encode( Push_Reg_DPR(src1),
 10071               OpcP, RegOpc(src2),
 10072               cmpF_P6_fixup );
 10073   ins_pipe( pipe_slow );
 10074 %}
 10076 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
 10077   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10078   match(Set cr (CmpF src1 src2));
 10079   ins_cost(100);
 10080   format %{ "FLD    $src1\n\t"
 10081             "FUCOMIP ST,$src2  // P6 instruction" %}
 10082   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10083   ins_encode( Push_Reg_DPR(src1),
 10084               OpcP, RegOpc(src2));
 10085   ins_pipe( pipe_slow );
 10086 %}
 10089 // Compare & branch
 10090 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
 10091   predicate(UseSSE == 0);
 10092   match(Set cr (CmpF src1 src2));
 10093   effect(KILL rax);
 10094   ins_cost(200);
 10095   format %{ "FLD    $src1\n\t"
 10096             "FCOMp  $src2\n\t"
 10097             "FNSTSW AX\n\t"
 10098             "TEST   AX,0x400\n\t"
 10099             "JZ,s   flags\n\t"
 10100             "MOV    AH,1\t# unordered treat as LT\n"
 10101     "flags:\tSAHF" %}
 10102   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10103   ins_encode( Push_Reg_DPR(src1),
 10104               OpcP, RegOpc(src2),
 10105               fpu_flags);
 10106   ins_pipe( pipe_slow );
 10107 %}
 10109 // Compare vs zero into -1,0,1
 10110 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
 10111   predicate(UseSSE == 0);
 10112   match(Set dst (CmpF3 src1 zero));
 10113   effect(KILL cr, KILL rax);
 10114   ins_cost(280);
 10115   format %{ "FTSTF  $dst,$src1" %}
 10116   opcode(0xE4, 0xD9);
 10117   ins_encode( Push_Reg_DPR(src1),
 10118               OpcS, OpcP, PopFPU,
 10119               CmpF_Result(dst));
 10120   ins_pipe( pipe_slow );
 10121 %}
 10123 // Compare into -1,0,1
 10124 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10125   predicate(UseSSE == 0);
 10126   match(Set dst (CmpF3 src1 src2));
 10127   effect(KILL cr, KILL rax);
 10128   ins_cost(300);
 10129   format %{ "FCMPF  $dst,$src1,$src2" %}
 10130   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10131   ins_encode( Push_Reg_DPR(src1),
 10132               OpcP, RegOpc(src2),
 10133               CmpF_Result(dst));
 10134   ins_pipe( pipe_slow );
 10135 %}
 10137 // float compare and set condition codes in EFLAGS by XMM regs
 10138 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
 10139   predicate(UseSSE>=1);
 10140   match(Set cr (CmpF src1 src2));
 10141   ins_cost(145);
 10142   format %{ "UCOMISS $src1,$src2\n\t"
 10143             "JNP,s   exit\n\t"
 10144             "PUSHF\t# saw NaN, set CF\n\t"
 10145             "AND     [rsp], #0xffffff2b\n\t"
 10146             "POPF\n"
 10147     "exit:" %}
 10148   ins_encode %{
 10149     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10150     emit_cmpfp_fixup(_masm);
 10151   %}
 10152   ins_pipe( pipe_slow );
 10153 %}
 10155 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10156   predicate(UseSSE>=1);
 10157   match(Set cr (CmpF src1 src2));
 10158   ins_cost(100);
 10159   format %{ "UCOMISS $src1,$src2" %}
 10160   ins_encode %{
 10161     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10162   %}
 10163   ins_pipe( pipe_slow );
 10164 %}
 10166 // float compare and set condition codes in EFLAGS by XMM regs
 10167 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
 10168   predicate(UseSSE>=1);
 10169   match(Set cr (CmpF src1 (LoadF src2)));
 10170   ins_cost(165);
 10171   format %{ "UCOMISS $src1,$src2\n\t"
 10172             "JNP,s   exit\n\t"
 10173             "PUSHF\t# saw NaN, set CF\n\t"
 10174             "AND     [rsp], #0xffffff2b\n\t"
 10175             "POPF\n"
 10176     "exit:" %}
 10177   ins_encode %{
 10178     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10179     emit_cmpfp_fixup(_masm);
 10180   %}
 10181   ins_pipe( pipe_slow );
 10182 %}
 10184 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
 10185   predicate(UseSSE>=1);
 10186   match(Set cr (CmpF src1 (LoadF src2)));
 10187   ins_cost(100);
 10188   format %{ "UCOMISS $src1,$src2" %}
 10189   ins_encode %{
 10190     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10191   %}
 10192   ins_pipe( pipe_slow );
 10193 %}
 10195 // Compare into -1,0,1 in XMM
 10196 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
 10197   predicate(UseSSE>=1);
 10198   match(Set dst (CmpF3 src1 src2));
 10199   effect(KILL cr);
 10200   ins_cost(255);
 10201   format %{ "UCOMISS $src1, $src2\n\t"
 10202             "MOV     $dst, #-1\n\t"
 10203             "JP,s    done\n\t"
 10204             "JB,s    done\n\t"
 10205             "SETNE   $dst\n\t"
 10206             "MOVZB   $dst, $dst\n"
 10207     "done:" %}
 10208   ins_encode %{
 10209     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
 10210     emit_cmpfp3(_masm, $dst$$Register);
 10211   %}
 10212   ins_pipe( pipe_slow );
 10213 %}
 10215 // Compare into -1,0,1 in XMM and memory
 10216 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
 10217   predicate(UseSSE>=1);
 10218   match(Set dst (CmpF3 src1 (LoadF src2)));
 10219   effect(KILL cr);
 10220   ins_cost(275);
 10221   format %{ "UCOMISS $src1, $src2\n\t"
 10222             "MOV     $dst, #-1\n\t"
 10223             "JP,s    done\n\t"
 10224             "JB,s    done\n\t"
 10225             "SETNE   $dst\n\t"
 10226             "MOVZB   $dst, $dst\n"
 10227     "done:" %}
 10228   ins_encode %{
 10229     __ ucomiss($src1$$XMMRegister, $src2$$Address);
 10230     emit_cmpfp3(_masm, $dst$$Register);
 10231   %}
 10232   ins_pipe( pipe_slow );
 10233 %}
 10235 // Spill to obtain 24-bit precision
 10236 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10237   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10238   match(Set dst (SubF src1 src2));
 10240   format %{ "FSUB   $dst,$src1 - $src2" %}
 10241   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10242   ins_encode( Push_Reg_FPR(src1),
 10243               OpcReg_FPR(src2),
 10244               Pop_Mem_FPR(dst) );
 10245   ins_pipe( fpu_mem_reg_reg );
 10246 %}
 10247 //
 10248 // This instruction does not round to 24-bits
 10249 instruct subFPR_reg(regFPR dst, regFPR src) %{
 10250   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10251   match(Set dst (SubF dst src));
 10253   format %{ "FSUB   $dst,$src" %}
 10254   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10255   ins_encode( Push_Reg_FPR(src),
 10256               OpcP, RegOpc(dst) );
 10257   ins_pipe( fpu_reg_reg );
 10258 %}
 10260 // Spill to obtain 24-bit precision
 10261 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10262   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10263   match(Set dst (AddF src1 src2));
 10265   format %{ "FADD   $dst,$src1,$src2" %}
 10266   opcode(0xD8, 0x0); /* D8 C0+i */
 10267   ins_encode( Push_Reg_FPR(src2),
 10268               OpcReg_FPR(src1),
 10269               Pop_Mem_FPR(dst) );
 10270   ins_pipe( fpu_mem_reg_reg );
 10271 %}
 10272 //
 10273 // This instruction does not round to 24-bits
 10274 instruct addFPR_reg(regFPR dst, regFPR src) %{
 10275   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10276   match(Set dst (AddF dst src));
 10278   format %{ "FLD    $src\n\t"
 10279             "FADDp  $dst,ST" %}
 10280   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10281   ins_encode( Push_Reg_FPR(src),
 10282               OpcP, RegOpc(dst) );
 10283   ins_pipe( fpu_reg_reg );
 10284 %}
 10286 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
 10287   predicate(UseSSE==0);
 10288   match(Set dst (AbsF src));
 10289   ins_cost(100);
 10290   format %{ "FABS" %}
 10291   opcode(0xE1, 0xD9);
 10292   ins_encode( OpcS, OpcP );
 10293   ins_pipe( fpu_reg_reg );
 10294 %}
 10296 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
 10297   predicate(UseSSE==0);
 10298   match(Set dst (NegF src));
 10299   ins_cost(100);
 10300   format %{ "FCHS" %}
 10301   opcode(0xE0, 0xD9);
 10302   ins_encode( OpcS, OpcP );
 10303   ins_pipe( fpu_reg_reg );
 10304 %}
 10306 // Cisc-alternate to addFPR_reg
 10307 // Spill to obtain 24-bit precision
 10308 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10309   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10310   match(Set dst (AddF src1 (LoadF src2)));
 10312   format %{ "FLD    $src2\n\t"
 10313             "FADD   ST,$src1\n\t"
 10314             "FSTP_S $dst" %}
 10315   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10316   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10317               OpcReg_FPR(src1),
 10318               Pop_Mem_FPR(dst) );
 10319   ins_pipe( fpu_mem_reg_mem );
 10320 %}
 10321 //
 10322 // Cisc-alternate to addFPR_reg
 10323 // This instruction does not round to 24-bits
 10324 instruct addFPR_reg_mem(regFPR dst, memory src) %{
 10325   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10326   match(Set dst (AddF dst (LoadF src)));
 10328   format %{ "FADD   $dst,$src" %}
 10329   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 10330   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10331               OpcP, RegOpc(dst) );
 10332   ins_pipe( fpu_reg_mem );
 10333 %}
 10335 // // Following two instructions for _222_mpegaudio
 10336 // Spill to obtain 24-bit precision
 10337 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
 10338   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10339   match(Set dst (AddF src1 src2));
 10341   format %{ "FADD   $dst,$src1,$src2" %}
 10342   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10343   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 10344               OpcReg_FPR(src2),
 10345               Pop_Mem_FPR(dst) );
 10346   ins_pipe( fpu_mem_reg_mem );
 10347 %}
 10349 // Cisc-spill variant
 10350 // Spill to obtain 24-bit precision
 10351 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 10352   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10353   match(Set dst (AddF src1 (LoadF src2)));
 10355   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 10356   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 10357   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10358               set_instruction_start,
 10359               OpcP, RMopc_Mem(secondary,src1),
 10360               Pop_Mem_FPR(dst) );
 10361   ins_pipe( fpu_mem_mem_mem );
 10362 %}
 10364 // Spill to obtain 24-bit precision
 10365 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10366   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10367   match(Set dst (AddF src1 src2));
 10369   format %{ "FADD   $dst,$src1,$src2" %}
 10370   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 10371   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10372               set_instruction_start,
 10373               OpcP, RMopc_Mem(secondary,src1),
 10374               Pop_Mem_FPR(dst) );
 10375   ins_pipe( fpu_mem_mem_mem );
 10376 %}
 10379 // Spill to obtain 24-bit precision
 10380 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10381   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10382   match(Set dst (AddF src con));
 10383   format %{ "FLD    $src\n\t"
 10384             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10385             "FSTP_S $dst"  %}
 10386   ins_encode %{
 10387     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10388     __ fadd_s($constantaddress($con));
 10389     __ fstp_s(Address(rsp, $dst$$disp));
 10390   %}
 10391   ins_pipe(fpu_mem_reg_con);
 10392 %}
 10393 //
 10394 // This instruction does not round to 24-bits
 10395 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10396   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10397   match(Set dst (AddF src con));
 10398   format %{ "FLD    $src\n\t"
 10399             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10400             "FSTP   $dst"  %}
 10401   ins_encode %{
 10402     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10403     __ fadd_s($constantaddress($con));
 10404     __ fstp_d($dst$$reg);
 10405   %}
 10406   ins_pipe(fpu_reg_reg_con);
 10407 %}
 10409 // Spill to obtain 24-bit precision
 10410 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10411   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10412   match(Set dst (MulF src1 src2));
 10414   format %{ "FLD    $src1\n\t"
 10415             "FMUL   $src2\n\t"
 10416             "FSTP_S $dst"  %}
 10417   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 10418   ins_encode( Push_Reg_FPR(src1),
 10419               OpcReg_FPR(src2),
 10420               Pop_Mem_FPR(dst) );
 10421   ins_pipe( fpu_mem_reg_reg );
 10422 %}
 10423 //
 10424 // This instruction does not round to 24-bits
 10425 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
 10426   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10427   match(Set dst (MulF src1 src2));
 10429   format %{ "FLD    $src1\n\t"
 10430             "FMUL   $src2\n\t"
 10431             "FSTP_S $dst"  %}
 10432   opcode(0xD8, 0x1); /* D8 C8+i */
 10433   ins_encode( Push_Reg_FPR(src2),
 10434               OpcReg_FPR(src1),
 10435               Pop_Reg_FPR(dst) );
 10436   ins_pipe( fpu_reg_reg_reg );
 10437 %}
 10440 // Spill to obtain 24-bit precision
 10441 // Cisc-alternate to reg-reg multiply
 10442 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
 10443   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10444   match(Set dst (MulF src1 (LoadF src2)));
 10446   format %{ "FLD_S  $src2\n\t"
 10447             "FMUL   $src1\n\t"
 10448             "FSTP_S $dst"  %}
 10449   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 10450   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10451               OpcReg_FPR(src1),
 10452               Pop_Mem_FPR(dst) );
 10453   ins_pipe( fpu_mem_reg_mem );
 10454 %}
 10455 //
 10456 // This instruction does not round to 24-bits
 10457 // Cisc-alternate to reg-reg multiply
 10458 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
 10459   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10460   match(Set dst (MulF src1 (LoadF src2)));
 10462   format %{ "FMUL   $dst,$src1,$src2" %}
 10463   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 10464   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10465               OpcReg_FPR(src1),
 10466               Pop_Reg_FPR(dst) );
 10467   ins_pipe( fpu_reg_reg_mem );
 10468 %}
 10470 // Spill to obtain 24-bit precision
 10471 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 10472   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10473   match(Set dst (MulF src1 src2));
 10475   format %{ "FMUL   $dst,$src1,$src2" %}
 10476   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 10477   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 10478               set_instruction_start,
 10479               OpcP, RMopc_Mem(secondary,src1),
 10480               Pop_Mem_FPR(dst) );
 10481   ins_pipe( fpu_mem_mem_mem );
 10482 %}
 10484 // Spill to obtain 24-bit precision
 10485 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
 10486   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10487   match(Set dst (MulF src con));
 10489   format %{ "FLD    $src\n\t"
 10490             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10491             "FSTP_S $dst"  %}
 10492   ins_encode %{
 10493     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10494     __ fmul_s($constantaddress($con));
 10495     __ fstp_s(Address(rsp, $dst$$disp));
 10496   %}
 10497   ins_pipe(fpu_mem_reg_con);
 10498 %}
 10499 //
 10500 // This instruction does not round to 24-bits
 10501 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
 10502   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10503   match(Set dst (MulF src con));
 10505   format %{ "FLD    $src\n\t"
 10506             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
 10507             "FSTP   $dst"  %}
 10508   ins_encode %{
 10509     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
 10510     __ fmul_s($constantaddress($con));
 10511     __ fstp_d($dst$$reg);
 10512   %}
 10513   ins_pipe(fpu_reg_reg_con);
 10514 %}
 10517 //
 10518 // MACRO1 -- subsume unshared load into mulFPR
 10519 // This instruction does not round to 24-bits
 10520 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
 10521   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10522   match(Set dst (MulF (LoadF mem1) src));
 10524   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 10525             "FMUL   ST,$src\n\t"
 10526             "FSTP   $dst" %}
 10527   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 10528   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 10529               OpcReg_FPR(src),
 10530               Pop_Reg_FPR(dst) );
 10531   ins_pipe( fpu_reg_reg_mem );
 10532 %}
 10533 //
 10534 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
 10535 // This instruction does not round to 24-bits
 10536 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
 10537   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10538   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 10539   ins_cost(95);
 10541   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 10542             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
 10543             "FADD   ST,$src2\n\t"
 10544             "FSTP   $dst" %}
 10545   opcode(0xD9); /* LoadF D9 /0 */
 10546   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 10547               FMul_ST_reg(src1),
 10548               FAdd_ST_reg(src2),
 10549               Pop_Reg_FPR(dst) );
 10550   ins_pipe( fpu_reg_mem_reg_reg );
 10551 %}
 10553 // MACRO3 -- addFPR a mulFPR
 10554 // This instruction does not round to 24-bits.  It is a '2-address'
 10555 // instruction in that the result goes back to src2.  This eliminates
 10556 // a move from the macro; possibly the register allocator will have
 10557 // to add it back (and maybe not).
 10558 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
 10559   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10560   match(Set src2 (AddF (MulF src0 src1) src2));
 10562   format %{ "FLD    $src0     ===MACRO3===\n\t"
 10563             "FMUL   ST,$src1\n\t"
 10564             "FADDP  $src2,ST" %}
 10565   opcode(0xD9); /* LoadF D9 /0 */
 10566   ins_encode( Push_Reg_FPR(src0),
 10567               FMul_ST_reg(src1),
 10568               FAddP_reg_ST(src2) );
 10569   ins_pipe( fpu_reg_reg_reg );
 10570 %}
 10572 // MACRO4 -- divFPR subFPR
 10573 // This instruction does not round to 24-bits
 10574 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
 10575   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10576   match(Set dst (DivF (SubF src2 src1) src3));
 10578   format %{ "FLD    $src2   ===MACRO4===\n\t"
 10579             "FSUB   ST,$src1\n\t"
 10580             "FDIV   ST,$src3\n\t"
 10581             "FSTP  $dst" %}
 10582   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10583   ins_encode( Push_Reg_FPR(src2),
 10584               subFPR_divFPR_encode(src1,src3),
 10585               Pop_Reg_FPR(dst) );
 10586   ins_pipe( fpu_reg_reg_reg_reg );
 10587 %}
 10589 // Spill to obtain 24-bit precision
 10590 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
 10591   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10592   match(Set dst (DivF src1 src2));
 10594   format %{ "FDIV   $dst,$src1,$src2" %}
 10595   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 10596   ins_encode( Push_Reg_FPR(src1),
 10597               OpcReg_FPR(src2),
 10598               Pop_Mem_FPR(dst) );
 10599   ins_pipe( fpu_mem_reg_reg );
 10600 %}
 10601 //
 10602 // This instruction does not round to 24-bits
 10603 instruct divFPR_reg(regFPR dst, regFPR src) %{
 10604   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10605   match(Set dst (DivF dst src));
 10607   format %{ "FDIV   $dst,$src" %}
 10608   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10609   ins_encode( Push_Reg_FPR(src),
 10610               OpcP, RegOpc(dst) );
 10611   ins_pipe( fpu_reg_reg );
 10612 %}
 10615 // Spill to obtain 24-bit precision
 10616 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
 10617   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 10618   match(Set dst (ModF src1 src2));
 10619   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10621   format %{ "FMOD   $dst,$src1,$src2" %}
 10622   ins_encode( Push_Reg_Mod_DPR(src1, src2),
 10623               emitModDPR(),
 10624               Push_Result_Mod_DPR(src2),
 10625               Pop_Mem_FPR(dst));
 10626   ins_pipe( pipe_slow );
 10627 %}
 10628 //
 10629 // This instruction does not round to 24-bits
 10630 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
 10631   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10632   match(Set dst (ModF dst src));
 10633   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
 10635   format %{ "FMOD   $dst,$src" %}
 10636   ins_encode(Push_Reg_Mod_DPR(dst, src),
 10637               emitModDPR(),
 10638               Push_Result_Mod_DPR(src),
 10639               Pop_Reg_FPR(dst));
 10640   ins_pipe( pipe_slow );
 10641 %}
 10643 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
 10644   predicate(UseSSE>=1);
 10645   match(Set dst (ModF src0 src1));
 10646   effect(KILL rax, KILL cr);
 10647   format %{ "SUB    ESP,4\t # FMOD\n"
 10648           "\tMOVSS  [ESP+0],$src1\n"
 10649           "\tFLD_S  [ESP+0]\n"
 10650           "\tMOVSS  [ESP+0],$src0\n"
 10651           "\tFLD_S  [ESP+0]\n"
 10652      "loop:\tFPREM\n"
 10653           "\tFWAIT\n"
 10654           "\tFNSTSW AX\n"
 10655           "\tSAHF\n"
 10656           "\tJP     loop\n"
 10657           "\tFSTP_S [ESP+0]\n"
 10658           "\tMOVSS  $dst,[ESP+0]\n"
 10659           "\tADD    ESP,4\n"
 10660           "\tFSTP   ST0\t # Restore FPU Stack"
 10661     %}
 10662   ins_cost(250);
 10663   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
 10664   ins_pipe( pipe_slow );
 10665 %}
 10668 //----------Arithmetic Conversion Instructions---------------------------------
 10669 // The conversions operations are all Alpha sorted.  Please keep it that way!
 10671 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
 10672   predicate(UseSSE==0);
 10673   match(Set dst (RoundFloat src));
 10674   ins_cost(125);
 10675   format %{ "FST_S  $dst,$src\t# F-round" %}
 10676   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 10677   ins_pipe( fpu_mem_reg );
 10678 %}
 10680 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
 10681   predicate(UseSSE<=1);
 10682   match(Set dst (RoundDouble src));
 10683   ins_cost(125);
 10684   format %{ "FST_D  $dst,$src\t# D-round" %}
 10685   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 10686   ins_pipe( fpu_mem_reg );
 10687 %}
 10689 // Force rounding to 24-bit precision and 6-bit exponent
 10690 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
 10691   predicate(UseSSE==0);
 10692   match(Set dst (ConvD2F src));
 10693   format %{ "FST_S  $dst,$src\t# F-round" %}
 10694   expand %{
 10695     roundFloat_mem_reg(dst,src);
 10696   %}
 10697 %}
 10699 // Force rounding to 24-bit precision and 6-bit exponent
 10700 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
 10701   predicate(UseSSE==1);
 10702   match(Set dst (ConvD2F src));
 10703   effect( KILL cr );
 10704   format %{ "SUB    ESP,4\n\t"
 10705             "FST_S  [ESP],$src\t# F-round\n\t"
 10706             "MOVSS  $dst,[ESP]\n\t"
 10707             "ADD ESP,4" %}
 10708   ins_encode %{
 10709     __ subptr(rsp, 4);
 10710     if ($src$$reg != FPR1L_enc) {
 10711       __ fld_s($src$$reg-1);
 10712       __ fstp_s(Address(rsp, 0));
 10713     } else {
 10714       __ fst_s(Address(rsp, 0));
 10716     __ movflt($dst$$XMMRegister, Address(rsp, 0));
 10717     __ addptr(rsp, 4);
 10718   %}
 10719   ins_pipe( pipe_slow );
 10720 %}
 10722 // Force rounding double precision to single precision
 10723 instruct convD2F_reg(regF dst, regD src) %{
 10724   predicate(UseSSE>=2);
 10725   match(Set dst (ConvD2F src));
 10726   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 10727   ins_encode %{
 10728     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
 10729   %}
 10730   ins_pipe( pipe_slow );
 10731 %}
 10733 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
 10734   predicate(UseSSE==0);
 10735   match(Set dst (ConvF2D src));
 10736   format %{ "FST_S  $dst,$src\t# D-round" %}
 10737   ins_encode( Pop_Reg_Reg_DPR(dst, src));
 10738   ins_pipe( fpu_reg_reg );
 10739 %}
 10741 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
 10742   predicate(UseSSE==1);
 10743   match(Set dst (ConvF2D src));
 10744   format %{ "FST_D  $dst,$src\t# D-round" %}
 10745   expand %{
 10746     roundDouble_mem_reg(dst,src);
 10747   %}
 10748 %}
 10750 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
 10751   predicate(UseSSE==1);
 10752   match(Set dst (ConvF2D src));
 10753   effect( KILL cr );
 10754   format %{ "SUB    ESP,4\n\t"
 10755             "MOVSS  [ESP] $src\n\t"
 10756             "FLD_S  [ESP]\n\t"
 10757             "ADD    ESP,4\n\t"
 10758             "FSTP   $dst\t# D-round" %}
 10759   ins_encode %{
 10760     __ subptr(rsp, 4);
 10761     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10762     __ fld_s(Address(rsp, 0));
 10763     __ addptr(rsp, 4);
 10764     __ fstp_d($dst$$reg);
 10765   %}
 10766   ins_pipe( pipe_slow );
 10767 %}
 10769 instruct convF2D_reg(regD dst, regF src) %{
 10770   predicate(UseSSE>=2);
 10771   match(Set dst (ConvF2D src));
 10772   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 10773   ins_encode %{
 10774     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
 10775   %}
 10776   ins_pipe( pipe_slow );
 10777 %}
 10779 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10780 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
 10781   predicate(UseSSE<=1);
 10782   match(Set dst (ConvD2I src));
 10783   effect( KILL tmp, KILL cr );
 10784   format %{ "FLD    $src\t# Convert double to int \n\t"
 10785             "FLDCW  trunc mode\n\t"
 10786             "SUB    ESP,4\n\t"
 10787             "FISTp  [ESP + #0]\n\t"
 10788             "FLDCW  std/24-bit mode\n\t"
 10789             "POP    EAX\n\t"
 10790             "CMP    EAX,0x80000000\n\t"
 10791             "JNE,s  fast\n\t"
 10792             "FLD_D  $src\n\t"
 10793             "CALL   d2i_wrapper\n"
 10794       "fast:" %}
 10795   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
 10796   ins_pipe( pipe_slow );
 10797 %}
 10799 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 10800 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 10801   predicate(UseSSE>=2);
 10802   match(Set dst (ConvD2I src));
 10803   effect( KILL tmp, KILL cr );
 10804   format %{ "CVTTSD2SI $dst, $src\n\t"
 10805             "CMP    $dst,0x80000000\n\t"
 10806             "JNE,s  fast\n\t"
 10807             "SUB    ESP, 8\n\t"
 10808             "MOVSD  [ESP], $src\n\t"
 10809             "FLD_D  [ESP]\n\t"
 10810             "ADD    ESP, 8\n\t"
 10811             "CALL   d2i_wrapper\n"
 10812       "fast:" %}
 10813   ins_encode %{
 10814     Label fast;
 10815     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
 10816     __ cmpl($dst$$Register, 0x80000000);
 10817     __ jccb(Assembler::notEqual, fast);
 10818     __ subptr(rsp, 8);
 10819     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10820     __ fld_d(Address(rsp, 0));
 10821     __ addptr(rsp, 8);
 10822     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10823     __ bind(fast);
 10824   %}
 10825   ins_pipe( pipe_slow );
 10826 %}
 10828 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
 10829   predicate(UseSSE<=1);
 10830   match(Set dst (ConvD2L src));
 10831   effect( KILL cr );
 10832   format %{ "FLD    $src\t# Convert double to long\n\t"
 10833             "FLDCW  trunc mode\n\t"
 10834             "SUB    ESP,8\n\t"
 10835             "FISTp  [ESP + #0]\n\t"
 10836             "FLDCW  std/24-bit mode\n\t"
 10837             "POP    EAX\n\t"
 10838             "POP    EDX\n\t"
 10839             "CMP    EDX,0x80000000\n\t"
 10840             "JNE,s  fast\n\t"
 10841             "TEST   EAX,EAX\n\t"
 10842             "JNE,s  fast\n\t"
 10843             "FLD    $src\n\t"
 10844             "CALL   d2l_wrapper\n"
 10845       "fast:" %}
 10846   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
 10847   ins_pipe( pipe_slow );
 10848 %}
 10850 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10851 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 10852   predicate (UseSSE>=2);
 10853   match(Set dst (ConvD2L src));
 10854   effect( KILL cr );
 10855   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 10856             "MOVSD  [ESP],$src\n\t"
 10857             "FLD_D  [ESP]\n\t"
 10858             "FLDCW  trunc mode\n\t"
 10859             "FISTp  [ESP + #0]\n\t"
 10860             "FLDCW  std/24-bit mode\n\t"
 10861             "POP    EAX\n\t"
 10862             "POP    EDX\n\t"
 10863             "CMP    EDX,0x80000000\n\t"
 10864             "JNE,s  fast\n\t"
 10865             "TEST   EAX,EAX\n\t"
 10866             "JNE,s  fast\n\t"
 10867             "SUB    ESP,8\n\t"
 10868             "MOVSD  [ESP],$src\n\t"
 10869             "FLD_D  [ESP]\n\t"
 10870             "ADD    ESP,8\n\t"
 10871             "CALL   d2l_wrapper\n"
 10872       "fast:" %}
 10873   ins_encode %{
 10874     Label fast;
 10875     __ subptr(rsp, 8);
 10876     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10877     __ fld_d(Address(rsp, 0));
 10878     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 10879     __ fistp_d(Address(rsp, 0));
 10880     // Restore the rounding mode, mask the exception
 10881     if (Compile::current()->in_24_bit_fp_mode()) {
 10882       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10883     } else {
 10884       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 10886     // Load the converted long, adjust CPU stack
 10887     __ pop(rax);
 10888     __ pop(rdx);
 10889     __ cmpl(rdx, 0x80000000);
 10890     __ jccb(Assembler::notEqual, fast);
 10891     __ testl(rax, rax);
 10892     __ jccb(Assembler::notEqual, fast);
 10893     __ subptr(rsp, 8);
 10894     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
 10895     __ fld_d(Address(rsp, 0));
 10896     __ addptr(rsp, 8);
 10897     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 10898     __ bind(fast);
 10899   %}
 10900   ins_pipe( pipe_slow );
 10901 %}
 10903 // Convert a double to an int.  Java semantics require we do complex
 10904 // manglations in the corner cases.  So we set the rounding mode to
 10905 // 'zero', store the darned double down as an int, and reset the
 10906 // rounding mode to 'nearest'.  The hardware stores a flag value down
 10907 // if we would overflow or converted a NAN; we check for this and
 10908 // and go the slow path if needed.
 10909 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
 10910   predicate(UseSSE==0);
 10911   match(Set dst (ConvF2I src));
 10912   effect( KILL tmp, KILL cr );
 10913   format %{ "FLD    $src\t# Convert float to int \n\t"
 10914             "FLDCW  trunc mode\n\t"
 10915             "SUB    ESP,4\n\t"
 10916             "FISTp  [ESP + #0]\n\t"
 10917             "FLDCW  std/24-bit mode\n\t"
 10918             "POP    EAX\n\t"
 10919             "CMP    EAX,0x80000000\n\t"
 10920             "JNE,s  fast\n\t"
 10921             "FLD    $src\n\t"
 10922             "CALL   d2i_wrapper\n"
 10923       "fast:" %}
 10924   // DPR2I_encoding works for FPR2I
 10925   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
 10926   ins_pipe( pipe_slow );
 10927 %}
 10929 // Convert a float in xmm to an int reg.
 10930 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 10931   predicate(UseSSE>=1);
 10932   match(Set dst (ConvF2I src));
 10933   effect( KILL tmp, KILL cr );
 10934   format %{ "CVTTSS2SI $dst, $src\n\t"
 10935             "CMP    $dst,0x80000000\n\t"
 10936             "JNE,s  fast\n\t"
 10937             "SUB    ESP, 4\n\t"
 10938             "MOVSS  [ESP], $src\n\t"
 10939             "FLD    [ESP]\n\t"
 10940             "ADD    ESP, 4\n\t"
 10941             "CALL   d2i_wrapper\n"
 10942       "fast:" %}
 10943   ins_encode %{
 10944     Label fast;
 10945     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
 10946     __ cmpl($dst$$Register, 0x80000000);
 10947     __ jccb(Assembler::notEqual, fast);
 10948     __ subptr(rsp, 4);
 10949     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 10950     __ fld_s(Address(rsp, 0));
 10951     __ addptr(rsp, 4);
 10952     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
 10953     __ bind(fast);
 10954   %}
 10955   ins_pipe( pipe_slow );
 10956 %}
 10958 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
 10959   predicate(UseSSE==0);
 10960   match(Set dst (ConvF2L src));
 10961   effect( KILL cr );
 10962   format %{ "FLD    $src\t# Convert float to long\n\t"
 10963             "FLDCW  trunc mode\n\t"
 10964             "SUB    ESP,8\n\t"
 10965             "FISTp  [ESP + #0]\n\t"
 10966             "FLDCW  std/24-bit mode\n\t"
 10967             "POP    EAX\n\t"
 10968             "POP    EDX\n\t"
 10969             "CMP    EDX,0x80000000\n\t"
 10970             "JNE,s  fast\n\t"
 10971             "TEST   EAX,EAX\n\t"
 10972             "JNE,s  fast\n\t"
 10973             "FLD    $src\n\t"
 10974             "CALL   d2l_wrapper\n"
 10975       "fast:" %}
 10976   // DPR2L_encoding works for FPR2L
 10977   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
 10978   ins_pipe( pipe_slow );
 10979 %}
 10981 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 10982 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 10983   predicate (UseSSE>=1);
 10984   match(Set dst (ConvF2L src));
 10985   effect( KILL cr );
 10986   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 10987             "MOVSS  [ESP],$src\n\t"
 10988             "FLD_S  [ESP]\n\t"
 10989             "FLDCW  trunc mode\n\t"
 10990             "FISTp  [ESP + #0]\n\t"
 10991             "FLDCW  std/24-bit mode\n\t"
 10992             "POP    EAX\n\t"
 10993             "POP    EDX\n\t"
 10994             "CMP    EDX,0x80000000\n\t"
 10995             "JNE,s  fast\n\t"
 10996             "TEST   EAX,EAX\n\t"
 10997             "JNE,s  fast\n\t"
 10998             "SUB    ESP,4\t# Convert float to long\n\t"
 10999             "MOVSS  [ESP],$src\n\t"
 11000             "FLD_S  [ESP]\n\t"
 11001             "ADD    ESP,4\n\t"
 11002             "CALL   d2l_wrapper\n"
 11003       "fast:" %}
 11004   ins_encode %{
 11005     Label fast;
 11006     __ subptr(rsp, 8);
 11007     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11008     __ fld_s(Address(rsp, 0));
 11009     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
 11010     __ fistp_d(Address(rsp, 0));
 11011     // Restore the rounding mode, mask the exception
 11012     if (Compile::current()->in_24_bit_fp_mode()) {
 11013       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 11014     } else {
 11015       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 11017     // Load the converted long, adjust CPU stack
 11018     __ pop(rax);
 11019     __ pop(rdx);
 11020     __ cmpl(rdx, 0x80000000);
 11021     __ jccb(Assembler::notEqual, fast);
 11022     __ testl(rax, rax);
 11023     __ jccb(Assembler::notEqual, fast);
 11024     __ subptr(rsp, 4);
 11025     __ movflt(Address(rsp, 0), $src$$XMMRegister);
 11026     __ fld_s(Address(rsp, 0));
 11027     __ addptr(rsp, 4);
 11028     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
 11029     __ bind(fast);
 11030   %}
 11031   ins_pipe( pipe_slow );
 11032 %}
 11034 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
 11035   predicate( UseSSE<=1 );
 11036   match(Set dst (ConvI2D src));
 11037   format %{ "FILD   $src\n\t"
 11038             "FSTP   $dst" %}
 11039   opcode(0xDB, 0x0);  /* DB /0 */
 11040   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
 11041   ins_pipe( fpu_reg_mem );
 11042 %}
 11044 instruct convI2D_reg(regD dst, rRegI src) %{
 11045   predicate( UseSSE>=2 && !UseXmmI2D );
 11046   match(Set dst (ConvI2D src));
 11047   format %{ "CVTSI2SD $dst,$src" %}
 11048   ins_encode %{
 11049     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
 11050   %}
 11051   ins_pipe( pipe_slow );
 11052 %}
 11054 instruct convI2D_mem(regD dst, memory mem) %{
 11055   predicate( UseSSE>=2 );
 11056   match(Set dst (ConvI2D (LoadI mem)));
 11057   format %{ "CVTSI2SD $dst,$mem" %}
 11058   ins_encode %{
 11059     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
 11060   %}
 11061   ins_pipe( pipe_slow );
 11062 %}
 11064 instruct convXI2D_reg(regD dst, rRegI src)
 11065 %{
 11066   predicate( UseSSE>=2 && UseXmmI2D );
 11067   match(Set dst (ConvI2D src));
 11069   format %{ "MOVD  $dst,$src\n\t"
 11070             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11071   ins_encode %{
 11072     __ movdl($dst$$XMMRegister, $src$$Register);
 11073     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11074   %}
 11075   ins_pipe(pipe_slow); // XXX
 11076 %}
 11078 instruct convI2DPR_mem(regDPR dst, memory mem) %{
 11079   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11080   match(Set dst (ConvI2D (LoadI mem)));
 11081   format %{ "FILD   $mem\n\t"
 11082             "FSTP   $dst" %}
 11083   opcode(0xDB);      /* DB /0 */
 11084   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11085               Pop_Reg_DPR(dst));
 11086   ins_pipe( fpu_reg_mem );
 11087 %}
 11089 // Convert a byte to a float; no rounding step needed.
 11090 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
 11091   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11092   match(Set dst (ConvI2F src));
 11093   format %{ "FILD   $src\n\t"
 11094             "FSTP   $dst" %}
 11096   opcode(0xDB, 0x0);  /* DB /0 */
 11097   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
 11098   ins_pipe( fpu_reg_mem );
 11099 %}
 11101 // In 24-bit mode, force exponent rounding by storing back out
 11102 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
 11103   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11104   match(Set dst (ConvI2F src));
 11105   ins_cost(200);
 11106   format %{ "FILD   $src\n\t"
 11107             "FSTP_S $dst" %}
 11108   opcode(0xDB, 0x0);  /* DB /0 */
 11109   ins_encode( Push_Mem_I(src),
 11110               Pop_Mem_FPR(dst));
 11111   ins_pipe( fpu_mem_mem );
 11112 %}
 11114 // In 24-bit mode, force exponent rounding by storing back out
 11115 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
 11116   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11117   match(Set dst (ConvI2F (LoadI mem)));
 11118   ins_cost(200);
 11119   format %{ "FILD   $mem\n\t"
 11120             "FSTP_S $dst" %}
 11121   opcode(0xDB);  /* DB /0 */
 11122   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11123               Pop_Mem_FPR(dst));
 11124   ins_pipe( fpu_mem_mem );
 11125 %}
 11127 // This instruction does not round to 24-bits
 11128 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
 11129   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11130   match(Set dst (ConvI2F src));
 11131   format %{ "FILD   $src\n\t"
 11132             "FSTP   $dst" %}
 11133   opcode(0xDB, 0x0);  /* DB /0 */
 11134   ins_encode( Push_Mem_I(src),
 11135               Pop_Reg_FPR(dst));
 11136   ins_pipe( fpu_reg_mem );
 11137 %}
 11139 // This instruction does not round to 24-bits
 11140 instruct convI2FPR_mem(regFPR dst, memory mem) %{
 11141   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11142   match(Set dst (ConvI2F (LoadI mem)));
 11143   format %{ "FILD   $mem\n\t"
 11144             "FSTP   $dst" %}
 11145   opcode(0xDB);      /* DB /0 */
 11146   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11147               Pop_Reg_FPR(dst));
 11148   ins_pipe( fpu_reg_mem );
 11149 %}
 11151 // Convert an int to a float in xmm; no rounding step needed.
 11152 instruct convI2F_reg(regF dst, rRegI src) %{
 11153   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11154   match(Set dst (ConvI2F src));
 11155   format %{ "CVTSI2SS $dst, $src" %}
 11156   ins_encode %{
 11157     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
 11158   %}
 11159   ins_pipe( pipe_slow );
 11160 %}
 11162  instruct convXI2F_reg(regF dst, rRegI src)
 11163 %{
 11164   predicate( UseSSE>=2 && UseXmmI2F );
 11165   match(Set dst (ConvI2F src));
 11167   format %{ "MOVD  $dst,$src\n\t"
 11168             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11169   ins_encode %{
 11170     __ movdl($dst$$XMMRegister, $src$$Register);
 11171     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11172   %}
 11173   ins_pipe(pipe_slow); // XXX
 11174 %}
 11176 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
 11177   match(Set dst (ConvI2L src));
 11178   effect(KILL cr);
 11179   ins_cost(375);
 11180   format %{ "MOV    $dst.lo,$src\n\t"
 11181             "MOV    $dst.hi,$src\n\t"
 11182             "SAR    $dst.hi,31" %}
 11183   ins_encode(convert_int_long(dst,src));
 11184   ins_pipe( ialu_reg_reg_long );
 11185 %}
 11187 // Zero-extend convert int to long
 11188 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11189   match(Set dst (AndL (ConvI2L src) mask) );
 11190   effect( KILL flags );
 11191   ins_cost(250);
 11192   format %{ "MOV    $dst.lo,$src\n\t"
 11193             "XOR    $dst.hi,$dst.hi" %}
 11194   opcode(0x33); // XOR
 11195   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11196   ins_pipe( ialu_reg_reg_long );
 11197 %}
 11199 // Zero-extend long
 11200 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11201   match(Set dst (AndL src mask) );
 11202   effect( KILL flags );
 11203   ins_cost(250);
 11204   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11205             "XOR    $dst.hi,$dst.hi\n\t" %}
 11206   opcode(0x33); // XOR
 11207   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11208   ins_pipe( ialu_reg_reg_long );
 11209 %}
 11211 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11212   predicate (UseSSE<=1);
 11213   match(Set dst (ConvL2D src));
 11214   effect( KILL cr );
 11215   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11216             "PUSH   $src.lo\n\t"
 11217             "FILD   ST,[ESP + #0]\n\t"
 11218             "ADD    ESP,8\n\t"
 11219             "FSTP_D $dst\t# D-round" %}
 11220   opcode(0xDF, 0x5);  /* DF /5 */
 11221   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
 11222   ins_pipe( pipe_slow );
 11223 %}
 11225 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
 11226   predicate (UseSSE>=2);
 11227   match(Set dst (ConvL2D src));
 11228   effect( KILL cr );
 11229   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11230             "PUSH   $src.lo\n\t"
 11231             "FILD_D [ESP]\n\t"
 11232             "FSTP_D [ESP]\n\t"
 11233             "MOVSD  $dst,[ESP]\n\t"
 11234             "ADD    ESP,8" %}
 11235   opcode(0xDF, 0x5);  /* DF /5 */
 11236   ins_encode(convert_long_double2(src), Push_ResultD(dst));
 11237   ins_pipe( pipe_slow );
 11238 %}
 11240 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
 11241   predicate (UseSSE>=1);
 11242   match(Set dst (ConvL2F src));
 11243   effect( KILL cr );
 11244   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11245             "PUSH   $src.lo\n\t"
 11246             "FILD_D [ESP]\n\t"
 11247             "FSTP_S [ESP]\n\t"
 11248             "MOVSS  $dst,[ESP]\n\t"
 11249             "ADD    ESP,8" %}
 11250   opcode(0xDF, 0x5);  /* DF /5 */
 11251   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
 11252   ins_pipe( pipe_slow );
 11253 %}
 11255 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 11256   match(Set dst (ConvL2F src));
 11257   effect( KILL cr );
 11258   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 11259             "PUSH   $src.lo\n\t"
 11260             "FILD   ST,[ESP + #0]\n\t"
 11261             "ADD    ESP,8\n\t"
 11262             "FSTP_S $dst\t# F-round" %}
 11263   opcode(0xDF, 0x5);  /* DF /5 */
 11264   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
 11265   ins_pipe( pipe_slow );
 11266 %}
 11268 instruct convL2I_reg( rRegI dst, eRegL src ) %{
 11269   match(Set dst (ConvL2I src));
 11270   effect( DEF dst, USE src );
 11271   format %{ "MOV    $dst,$src.lo" %}
 11272   ins_encode(enc_CopyL_Lo(dst,src));
 11273   ins_pipe( ialu_reg_reg );
 11274 %}
 11277 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 11278   match(Set dst (MoveF2I src));
 11279   effect( DEF dst, USE src );
 11280   ins_cost(100);
 11281   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 11282   ins_encode %{
 11283     __ movl($dst$$Register, Address(rsp, $src$$disp));
 11284   %}
 11285   ins_pipe( ialu_reg_mem );
 11286 %}
 11288 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
 11289   predicate(UseSSE==0);
 11290   match(Set dst (MoveF2I src));
 11291   effect( DEF dst, USE src );
 11293   ins_cost(125);
 11294   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 11295   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
 11296   ins_pipe( fpu_mem_reg );
 11297 %}
 11299 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
 11300   predicate(UseSSE>=1);
 11301   match(Set dst (MoveF2I src));
 11302   effect( DEF dst, USE src );
 11304   ins_cost(95);
 11305   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 11306   ins_encode %{
 11307     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11308   %}
 11309   ins_pipe( pipe_slow );
 11310 %}
 11312 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
 11313   predicate(UseSSE>=2);
 11314   match(Set dst (MoveF2I src));
 11315   effect( DEF dst, USE src );
 11316   ins_cost(85);
 11317   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 11318   ins_encode %{
 11319     __ movdl($dst$$Register, $src$$XMMRegister);
 11320   %}
 11321   ins_pipe( pipe_slow );
 11322 %}
 11324 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 11325   match(Set dst (MoveI2F src));
 11326   effect( DEF dst, USE src );
 11328   ins_cost(100);
 11329   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 11330   ins_encode %{
 11331     __ movl(Address(rsp, $dst$$disp), $src$$Register);
 11332   %}
 11333   ins_pipe( ialu_mem_reg );
 11334 %}
 11337 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
 11338   predicate(UseSSE==0);
 11339   match(Set dst (MoveI2F src));
 11340   effect(DEF dst, USE src);
 11342   ins_cost(125);
 11343   format %{ "FLD_S  $src\n\t"
 11344             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 11345   opcode(0xD9);               /* D9 /0, FLD m32real */
 11346   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11347               Pop_Reg_FPR(dst) );
 11348   ins_pipe( fpu_reg_mem );
 11349 %}
 11351 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
 11352   predicate(UseSSE>=1);
 11353   match(Set dst (MoveI2F src));
 11354   effect( DEF dst, USE src );
 11356   ins_cost(95);
 11357   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 11358   ins_encode %{
 11359     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
 11360   %}
 11361   ins_pipe( pipe_slow );
 11362 %}
 11364 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
 11365   predicate(UseSSE>=2);
 11366   match(Set dst (MoveI2F src));
 11367   effect( DEF dst, USE src );
 11369   ins_cost(85);
 11370   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 11371   ins_encode %{
 11372     __ movdl($dst$$XMMRegister, $src$$Register);
 11373   %}
 11374   ins_pipe( pipe_slow );
 11375 %}
 11377 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 11378   match(Set dst (MoveD2L src));
 11379   effect(DEF dst, USE src);
 11381   ins_cost(250);
 11382   format %{ "MOV    $dst.lo,$src\n\t"
 11383             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 11384   opcode(0x8B, 0x8B);
 11385   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 11386   ins_pipe( ialu_mem_long_reg );
 11387 %}
 11389 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
 11390   predicate(UseSSE<=1);
 11391   match(Set dst (MoveD2L src));
 11392   effect(DEF dst, USE src);
 11394   ins_cost(125);
 11395   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 11396   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
 11397   ins_pipe( fpu_mem_reg );
 11398 %}
 11400 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
 11401   predicate(UseSSE>=2);
 11402   match(Set dst (MoveD2L src));
 11403   effect(DEF dst, USE src);
 11404   ins_cost(95);
 11405   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 11406   ins_encode %{
 11407     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
 11408   %}
 11409   ins_pipe( pipe_slow );
 11410 %}
 11412 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
 11413   predicate(UseSSE>=2);
 11414   match(Set dst (MoveD2L src));
 11415   effect(DEF dst, USE src, TEMP tmp);
 11416   ins_cost(85);
 11417   format %{ "MOVD   $dst.lo,$src\n\t"
 11418             "PSHUFLW $tmp,$src,0x4E\n\t"
 11419             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 11420   ins_encode %{
 11421     __ movdl($dst$$Register, $src$$XMMRegister);
 11422     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
 11423     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
 11424   %}
 11425   ins_pipe( pipe_slow );
 11426 %}
 11428 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 11429   match(Set dst (MoveL2D src));
 11430   effect(DEF dst, USE src);
 11432   ins_cost(200);
 11433   format %{ "MOV    $dst,$src.lo\n\t"
 11434             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 11435   opcode(0x89, 0x89);
 11436   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 11437   ins_pipe( ialu_mem_long_reg );
 11438 %}
 11441 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
 11442   predicate(UseSSE<=1);
 11443   match(Set dst (MoveL2D src));
 11444   effect(DEF dst, USE src);
 11445   ins_cost(125);
 11447   format %{ "FLD_D  $src\n\t"
 11448             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 11449   opcode(0xDD);               /* DD /0, FLD m64real */
 11450   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 11451               Pop_Reg_DPR(dst) );
 11452   ins_pipe( fpu_reg_mem );
 11453 %}
 11456 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
 11457   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 11458   match(Set dst (MoveL2D src));
 11459   effect(DEF dst, USE src);
 11461   ins_cost(95);
 11462   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11463   ins_encode %{
 11464     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11465   %}
 11466   ins_pipe( pipe_slow );
 11467 %}
 11469 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
 11470   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 11471   match(Set dst (MoveL2D src));
 11472   effect(DEF dst, USE src);
 11474   ins_cost(95);
 11475   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 11476   ins_encode %{
 11477     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
 11478   %}
 11479   ins_pipe( pipe_slow );
 11480 %}
 11482 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
 11483   predicate(UseSSE>=2);
 11484   match(Set dst (MoveL2D src));
 11485   effect(TEMP dst, USE src, TEMP tmp);
 11486   ins_cost(85);
 11487   format %{ "MOVD   $dst,$src.lo\n\t"
 11488             "MOVD   $tmp,$src.hi\n\t"
 11489             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 11490   ins_encode %{
 11491     __ movdl($dst$$XMMRegister, $src$$Register);
 11492     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
 11493     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
 11494   %}
 11495   ins_pipe( pipe_slow );
 11496 %}
 11499 // =======================================================================
 11500 // fast clearing of an array
 11501 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11502   predicate(!UseFastStosb);
 11503   match(Set dummy (ClearArray cnt base));
 11504   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11505   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11506             "SHL    ECX,1\t# Convert doublewords to words\n\t"
 11507             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 11508   ins_encode %{ 
 11509     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11510   %}
 11511   ins_pipe( pipe_slow );
 11512 %}
 11514 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 11515   predicate(UseFastStosb);
 11516   match(Set dummy (ClearArray cnt base));
 11517   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11518   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
 11519             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
 11520             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
 11521   ins_encode %{ 
 11522     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
 11523   %}
 11524   ins_pipe( pipe_slow );
 11525 %}
 11527 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
 11528                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
 11529   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11530   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 11532   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
 11533   ins_encode %{
 11534     __ string_compare($str1$$Register, $str2$$Register,
 11535                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 11536                       $tmp1$$XMMRegister);
 11537   %}
 11538   ins_pipe( pipe_slow );
 11539 %}
 11541 // fast string equals
 11542 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 11543                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 11544   match(Set result (StrEquals (Binary str1 str2) cnt));
 11545   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 11547   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 11548   ins_encode %{
 11549     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 11550                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 11551                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11552   %}
 11553   ins_pipe( pipe_slow );
 11554 %}
 11556 // fast search of substring with known size.
 11557 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
 11558                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
 11559   predicate(UseSSE42Intrinsics);
 11560   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
 11561   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
 11563   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
 11564   ins_encode %{
 11565     int icnt2 = (int)$int_cnt2$$constant;
 11566     if (icnt2 >= 8) {
 11567       // IndexOf for constant substrings with size >= 8 elements
 11568       // which don't need to be loaded through stack.
 11569       __ string_indexofC8($str1$$Register, $str2$$Register,
 11570                           $cnt1$$Register, $cnt2$$Register,
 11571                           icnt2, $result$$Register,
 11572                           $vec$$XMMRegister, $tmp$$Register);
 11573     } else {
 11574       // Small strings are loaded through stack if they cross page boundary.
 11575       __ string_indexof($str1$$Register, $str2$$Register,
 11576                         $cnt1$$Register, $cnt2$$Register,
 11577                         icnt2, $result$$Register,
 11578                         $vec$$XMMRegister, $tmp$$Register);
 11580   %}
 11581   ins_pipe( pipe_slow );
 11582 %}
 11584 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 11585                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
 11586   predicate(UseSSE42Intrinsics);
 11587   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 11588   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
 11590   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
 11591   ins_encode %{
 11592     __ string_indexof($str1$$Register, $str2$$Register,
 11593                       $cnt1$$Register, $cnt2$$Register,
 11594                       (-1), $result$$Register,
 11595                       $vec$$XMMRegister, $tmp$$Register);
 11596   %}
 11597   ins_pipe( pipe_slow );
 11598 %}
 11600 // fast array equals
 11601 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 11602                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 11603 %{
 11604   match(Set result (AryEq ary1 ary2));
 11605   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 11606   //ins_cost(300);
 11608   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 11609   ins_encode %{
 11610     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 11611                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 11612                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 11613   %}
 11614   ins_pipe( pipe_slow );
 11615 %}
 11617 // encode char[] to byte[] in ISO_8859_1
 11618 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
 11619                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
 11620                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
 11621   match(Set result (EncodeISOArray src (Binary dst len)));
 11622   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
 11624   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
 11625   ins_encode %{
 11626     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
 11627                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
 11628                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
 11629   %}
 11630   ins_pipe( pipe_slow );
 11631 %}
 11634 //----------Control Flow Instructions------------------------------------------
 11635 // Signed compare Instructions
 11636 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
 11637   match(Set cr (CmpI op1 op2));
 11638   effect( DEF cr, USE op1, USE op2 );
 11639   format %{ "CMP    $op1,$op2" %}
 11640   opcode(0x3B);  /* Opcode 3B /r */
 11641   ins_encode( OpcP, RegReg( op1, op2) );
 11642   ins_pipe( ialu_cr_reg_reg );
 11643 %}
 11645 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
 11646   match(Set cr (CmpI op1 op2));
 11647   effect( DEF cr, USE op1 );
 11648   format %{ "CMP    $op1,$op2" %}
 11649   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11650   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 11651   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11652   ins_pipe( ialu_cr_reg_imm );
 11653 %}
 11655 // Cisc-spilled version of cmpI_eReg
 11656 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
 11657   match(Set cr (CmpI op1 (LoadI op2)));
 11659   format %{ "CMP    $op1,$op2" %}
 11660   ins_cost(500);
 11661   opcode(0x3B);  /* Opcode 3B /r */
 11662   ins_encode( OpcP, RegMem( op1, op2) );
 11663   ins_pipe( ialu_cr_reg_mem );
 11664 %}
 11666 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
 11667   match(Set cr (CmpI src zero));
 11668   effect( DEF cr, USE src );
 11670   format %{ "TEST   $src,$src" %}
 11671   opcode(0x85);
 11672   ins_encode( OpcP, RegReg( src, src ) );
 11673   ins_pipe( ialu_cr_reg_imm );
 11674 %}
 11676 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
 11677   match(Set cr (CmpI (AndI src con) zero));
 11679   format %{ "TEST   $src,$con" %}
 11680   opcode(0xF7,0x00);
 11681   ins_encode( OpcP, RegOpc(src), Con32(con) );
 11682   ins_pipe( ialu_cr_reg_imm );
 11683 %}
 11685 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
 11686   match(Set cr (CmpI (AndI src mem) zero));
 11688   format %{ "TEST   $src,$mem" %}
 11689   opcode(0x85);
 11690   ins_encode( OpcP, RegMem( src, mem ) );
 11691   ins_pipe( ialu_cr_reg_mem );
 11692 %}
 11694 // Unsigned compare Instructions; really, same as signed except they
 11695 // produce an eFlagsRegU instead of eFlagsReg.
 11696 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
 11697   match(Set cr (CmpU op1 op2));
 11699   format %{ "CMPu   $op1,$op2" %}
 11700   opcode(0x3B);  /* Opcode 3B /r */
 11701   ins_encode( OpcP, RegReg( op1, op2) );
 11702   ins_pipe( ialu_cr_reg_reg );
 11703 %}
 11705 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
 11706   match(Set cr (CmpU op1 op2));
 11708   format %{ "CMPu   $op1,$op2" %}
 11709   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11710   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11711   ins_pipe( ialu_cr_reg_imm );
 11712 %}
 11714 // // Cisc-spilled version of cmpU_eReg
 11715 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
 11716   match(Set cr (CmpU op1 (LoadI op2)));
 11718   format %{ "CMPu   $op1,$op2" %}
 11719   ins_cost(500);
 11720   opcode(0x3B);  /* Opcode 3B /r */
 11721   ins_encode( OpcP, RegMem( op1, op2) );
 11722   ins_pipe( ialu_cr_reg_mem );
 11723 %}
 11725 // // Cisc-spilled version of cmpU_eReg
 11726 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
 11727 //  match(Set cr (CmpU (LoadI op1) op2));
 11728 //
 11729 //  format %{ "CMPu   $op1,$op2" %}
 11730 //  ins_cost(500);
 11731 //  opcode(0x39);  /* Opcode 39 /r */
 11732 //  ins_encode( OpcP, RegMem( op1, op2) );
 11733 //%}
 11735 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
 11736   match(Set cr (CmpU src zero));
 11738   format %{ "TESTu  $src,$src" %}
 11739   opcode(0x85);
 11740   ins_encode( OpcP, RegReg( src, src ) );
 11741   ins_pipe( ialu_cr_reg_imm );
 11742 %}
 11744 // Unsigned pointer compare Instructions
 11745 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 11746   match(Set cr (CmpP op1 op2));
 11748   format %{ "CMPu   $op1,$op2" %}
 11749   opcode(0x3B);  /* Opcode 3B /r */
 11750   ins_encode( OpcP, RegReg( op1, op2) );
 11751   ins_pipe( ialu_cr_reg_reg );
 11752 %}
 11754 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 11755   match(Set cr (CmpP op1 op2));
 11757   format %{ "CMPu   $op1,$op2" %}
 11758   opcode(0x81,0x07);  /* Opcode 81 /7 */
 11759   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 11760   ins_pipe( ialu_cr_reg_imm );
 11761 %}
 11763 // // Cisc-spilled version of cmpP_eReg
 11764 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 11765   match(Set cr (CmpP op1 (LoadP op2)));
 11767   format %{ "CMPu   $op1,$op2" %}
 11768   ins_cost(500);
 11769   opcode(0x3B);  /* Opcode 3B /r */
 11770   ins_encode( OpcP, RegMem( op1, op2) );
 11771   ins_pipe( ialu_cr_reg_mem );
 11772 %}
 11774 // // Cisc-spilled version of cmpP_eReg
 11775 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 11776 //  match(Set cr (CmpP (LoadP op1) op2));
 11777 //
 11778 //  format %{ "CMPu   $op1,$op2" %}
 11779 //  ins_cost(500);
 11780 //  opcode(0x39);  /* Opcode 39 /r */
 11781 //  ins_encode( OpcP, RegMem( op1, op2) );
 11782 //%}
 11784 // Compare raw pointer (used in out-of-heap check).
 11785 // Only works because non-oop pointers must be raw pointers
 11786 // and raw pointers have no anti-dependencies.
 11787 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 11788   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
 11789   match(Set cr (CmpP op1 (LoadP op2)));
 11791   format %{ "CMPu   $op1,$op2" %}
 11792   opcode(0x3B);  /* Opcode 3B /r */
 11793   ins_encode( OpcP, RegMem( op1, op2) );
 11794   ins_pipe( ialu_cr_reg_mem );
 11795 %}
 11797 //
 11798 // This will generate a signed flags result. This should be ok
 11799 // since any compare to a zero should be eq/neq.
 11800 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 11801   match(Set cr (CmpP src zero));
 11803   format %{ "TEST   $src,$src" %}
 11804   opcode(0x85);
 11805   ins_encode( OpcP, RegReg( src, src ) );
 11806   ins_pipe( ialu_cr_reg_imm );
 11807 %}
 11809 // Cisc-spilled version of testP_reg
 11810 // This will generate a signed flags result. This should be ok
 11811 // since any compare to a zero should be eq/neq.
 11812 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 11813   match(Set cr (CmpP (LoadP op) zero));
 11815   format %{ "TEST   $op,0xFFFFFFFF" %}
 11816   ins_cost(500);
 11817   opcode(0xF7);               /* Opcode F7 /0 */
 11818   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 11819   ins_pipe( ialu_cr_reg_imm );
 11820 %}
 11822 // Yanked all unsigned pointer compare operations.
 11823 // Pointer compares are done with CmpP which is already unsigned.
 11825 //----------Max and Min--------------------------------------------------------
 11826 // Min Instructions
 11827 ////
 11828 //   *** Min and Max using the conditional move are slower than the
 11829 //   *** branch version on a Pentium III.
 11830 // // Conditional move for min
 11831 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11832 //  effect( USE_DEF op2, USE op1, USE cr );
 11833 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 11834 //  opcode(0x4C,0x0F);
 11835 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11836 //  ins_pipe( pipe_cmov_reg );
 11837 //%}
 11838 //
 11839 //// Min Register with Register (P6 version)
 11840 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11841 //  predicate(VM_Version::supports_cmov() );
 11842 //  match(Set op2 (MinI op1 op2));
 11843 //  ins_cost(200);
 11844 //  expand %{
 11845 //    eFlagsReg cr;
 11846 //    compI_eReg(cr,op1,op2);
 11847 //    cmovI_reg_lt(op2,op1,cr);
 11848 //  %}
 11849 //%}
 11851 // Min Register with Register (generic version)
 11852 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11853   match(Set dst (MinI dst src));
 11854   effect(KILL flags);
 11855   ins_cost(300);
 11857   format %{ "MIN    $dst,$src" %}
 11858   opcode(0xCC);
 11859   ins_encode( min_enc(dst,src) );
 11860   ins_pipe( pipe_slow );
 11861 %}
 11863 // Max Register with Register
 11864 //   *** Min and Max using the conditional move are slower than the
 11865 //   *** branch version on a Pentium III.
 11866 // // Conditional move for max
 11867 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
 11868 //  effect( USE_DEF op2, USE op1, USE cr );
 11869 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 11870 //  opcode(0x4F,0x0F);
 11871 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 11872 //  ins_pipe( pipe_cmov_reg );
 11873 //%}
 11874 //
 11875 // // Max Register with Register (P6 version)
 11876 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
 11877 //  predicate(VM_Version::supports_cmov() );
 11878 //  match(Set op2 (MaxI op1 op2));
 11879 //  ins_cost(200);
 11880 //  expand %{
 11881 //    eFlagsReg cr;
 11882 //    compI_eReg(cr,op1,op2);
 11883 //    cmovI_reg_gt(op2,op1,cr);
 11884 //  %}
 11885 //%}
 11887 // Max Register with Register (generic version)
 11888 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
 11889   match(Set dst (MaxI dst src));
 11890   effect(KILL flags);
 11891   ins_cost(300);
 11893   format %{ "MAX    $dst,$src" %}
 11894   opcode(0xCC);
 11895   ins_encode( max_enc(dst,src) );
 11896   ins_pipe( pipe_slow );
 11897 %}
 11899 // ============================================================================
 11900 // Counted Loop limit node which represents exact final iterator value.
 11901 // Note: the resulting value should fit into integer range since
 11902 // counted loops have limit check on overflow.
 11903 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
 11904   match(Set limit (LoopLimit (Binary init limit) stride));
 11905   effect(TEMP limit_hi, TEMP tmp, KILL flags);
 11906   ins_cost(300);
 11908   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
 11909   ins_encode %{
 11910     int strd = (int)$stride$$constant;
 11911     assert(strd != 1 && strd != -1, "sanity");
 11912     int m1 = (strd > 0) ? 1 : -1;
 11913     // Convert limit to long (EAX:EDX)
 11914     __ cdql();
 11915     // Convert init to long (init:tmp)
 11916     __ movl($tmp$$Register, $init$$Register);
 11917     __ sarl($tmp$$Register, 31);
 11918     // $limit - $init
 11919     __ subl($limit$$Register, $init$$Register);
 11920     __ sbbl($limit_hi$$Register, $tmp$$Register);
 11921     // + ($stride - 1)
 11922     if (strd > 0) {
 11923       __ addl($limit$$Register, (strd - 1));
 11924       __ adcl($limit_hi$$Register, 0);
 11925       __ movl($tmp$$Register, strd);
 11926     } else {
 11927       __ addl($limit$$Register, (strd + 1));
 11928       __ adcl($limit_hi$$Register, -1);
 11929       __ lneg($limit_hi$$Register, $limit$$Register);
 11930       __ movl($tmp$$Register, -strd);
 11932     // signed devision: (EAX:EDX) / pos_stride
 11933     __ idivl($tmp$$Register);
 11934     if (strd < 0) {
 11935       // restore sign
 11936       __ negl($tmp$$Register);
 11938     // (EAX) * stride
 11939     __ mull($tmp$$Register);
 11940     // + init (ignore upper bits)
 11941     __ addl($limit$$Register, $init$$Register);
 11942   %}
 11943   ins_pipe( pipe_slow );
 11944 %}
 11946 // ============================================================================
 11947 // Branch Instructions
 11948 // Jump Table
 11949 instruct jumpXtnd(rRegI switch_val) %{
 11950   match(Jump switch_val);
 11951   ins_cost(350);
 11952   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
 11953   ins_encode %{
 11954     // Jump to Address(table_base + switch_reg)
 11955     Address index(noreg, $switch_val$$Register, Address::times_1);
 11956     __ jump(ArrayAddress($constantaddress, index));
 11957   %}
 11958   ins_pipe(pipe_jmp);
 11959 %}
 11961 // Jump Direct - Label defines a relative address from JMP+1
 11962 instruct jmpDir(label labl) %{
 11963   match(Goto);
 11964   effect(USE labl);
 11966   ins_cost(300);
 11967   format %{ "JMP    $labl" %}
 11968   size(5);
 11969   ins_encode %{
 11970     Label* L = $labl$$label;
 11971     __ jmp(*L, false); // Always long jump
 11972   %}
 11973   ins_pipe( pipe_jmp );
 11974 %}
 11976 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11977 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 11978   match(If cop cr);
 11979   effect(USE labl);
 11981   ins_cost(300);
 11982   format %{ "J$cop    $labl" %}
 11983   size(6);
 11984   ins_encode %{
 11985     Label* L = $labl$$label;
 11986     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 11987   %}
 11988   ins_pipe( pipe_jcc );
 11989 %}
 11991 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11992 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 11993   match(CountedLoopEnd cop cr);
 11994   effect(USE labl);
 11996   ins_cost(300);
 11997   format %{ "J$cop    $labl\t# Loop end" %}
 11998   size(6);
 11999   ins_encode %{
 12000     Label* L = $labl$$label;
 12001     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12002   %}
 12003   ins_pipe( pipe_jcc );
 12004 %}
 12006 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12007 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12008   match(CountedLoopEnd cop cmp);
 12009   effect(USE labl);
 12011   ins_cost(300);
 12012   format %{ "J$cop,u  $labl\t# Loop end" %}
 12013   size(6);
 12014   ins_encode %{
 12015     Label* L = $labl$$label;
 12016     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12017   %}
 12018   ins_pipe( pipe_jcc );
 12019 %}
 12021 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12022   match(CountedLoopEnd cop cmp);
 12023   effect(USE labl);
 12025   ins_cost(200);
 12026   format %{ "J$cop,u  $labl\t# Loop end" %}
 12027   size(6);
 12028   ins_encode %{
 12029     Label* L = $labl$$label;
 12030     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12031   %}
 12032   ins_pipe( pipe_jcc );
 12033 %}
 12035 // Jump Direct Conditional - using unsigned comparison
 12036 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12037   match(If cop cmp);
 12038   effect(USE labl);
 12040   ins_cost(300);
 12041   format %{ "J$cop,u  $labl" %}
 12042   size(6);
 12043   ins_encode %{
 12044     Label* L = $labl$$label;
 12045     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12046   %}
 12047   ins_pipe(pipe_jcc);
 12048 %}
 12050 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12051   match(If cop cmp);
 12052   effect(USE labl);
 12054   ins_cost(200);
 12055   format %{ "J$cop,u  $labl" %}
 12056   size(6);
 12057   ins_encode %{
 12058     Label* L = $labl$$label;
 12059     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
 12060   %}
 12061   ins_pipe(pipe_jcc);
 12062 %}
 12064 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12065   match(If cop cmp);
 12066   effect(USE labl);
 12068   ins_cost(200);
 12069   format %{ $$template
 12070     if ($cop$$cmpcode == Assembler::notEqual) {
 12071       $$emit$$"JP,u   $labl\n\t"
 12072       $$emit$$"J$cop,u   $labl"
 12073     } else {
 12074       $$emit$$"JP,u   done\n\t"
 12075       $$emit$$"J$cop,u   $labl\n\t"
 12076       $$emit$$"done:"
 12078   %}
 12079   ins_encode %{
 12080     Label* l = $labl$$label;
 12081     if ($cop$$cmpcode == Assembler::notEqual) {
 12082       __ jcc(Assembler::parity, *l, false);
 12083       __ jcc(Assembler::notEqual, *l, false);
 12084     } else if ($cop$$cmpcode == Assembler::equal) {
 12085       Label done;
 12086       __ jccb(Assembler::parity, done);
 12087       __ jcc(Assembler::equal, *l, false);
 12088       __ bind(done);
 12089     } else {
 12090        ShouldNotReachHere();
 12092   %}
 12093   ins_pipe(pipe_jcc);
 12094 %}
 12096 // ============================================================================
 12097 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12098 // array for an instance of the superklass.  Set a hidden internal cache on a
 12099 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12100 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12101 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12102   match(Set result (PartialSubtypeCheck sub super));
 12103   effect( KILL rcx, KILL cr );
 12105   ins_cost(1100);  // slightly larger than the next version
 12106   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12107             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12108             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12109             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12110             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12111             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12112             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12113      "miss:\t" %}
 12115   opcode(0x1); // Force a XOR of EDI
 12116   ins_encode( enc_PartialSubtypeCheck() );
 12117   ins_pipe( pipe_slow );
 12118 %}
 12120 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12121   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12122   effect( KILL rcx, KILL result );
 12124   ins_cost(1000);
 12125   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12126             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
 12127             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12128             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12129             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12130             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12131      "miss:\t" %}
 12133   opcode(0x0);  // No need to XOR EDI
 12134   ins_encode( enc_PartialSubtypeCheck() );
 12135   ins_pipe( pipe_slow );
 12136 %}
 12138 // ============================================================================
 12139 // Branch Instructions -- short offset versions
 12140 //
 12141 // These instructions are used to replace jumps of a long offset (the default
 12142 // match) with jumps of a shorter offset.  These instructions are all tagged
 12143 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12144 // match rules in general matching.  Instead, the ADLC generates a conversion
 12145 // method in the MachNode which can be used to do in-place replacement of the
 12146 // long variant with the shorter variant.  The compiler will determine if a
 12147 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12148 // specific code section of the file.
 12150 // Jump Direct - Label defines a relative address from JMP+1
 12151 instruct jmpDir_short(label labl) %{
 12152   match(Goto);
 12153   effect(USE labl);
 12155   ins_cost(300);
 12156   format %{ "JMP,s  $labl" %}
 12157   size(2);
 12158   ins_encode %{
 12159     Label* L = $labl$$label;
 12160     __ jmpb(*L);
 12161   %}
 12162   ins_pipe( pipe_jmp );
 12163   ins_short_branch(1);
 12164 %}
 12166 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12167 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12168   match(If cop cr);
 12169   effect(USE labl);
 12171   ins_cost(300);
 12172   format %{ "J$cop,s  $labl" %}
 12173   size(2);
 12174   ins_encode %{
 12175     Label* L = $labl$$label;
 12176     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12177   %}
 12178   ins_pipe( pipe_jcc );
 12179   ins_short_branch(1);
 12180 %}
 12182 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12183 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12184   match(CountedLoopEnd cop cr);
 12185   effect(USE labl);
 12187   ins_cost(300);
 12188   format %{ "J$cop,s  $labl\t# Loop end" %}
 12189   size(2);
 12190   ins_encode %{
 12191     Label* L = $labl$$label;
 12192     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12193   %}
 12194   ins_pipe( pipe_jcc );
 12195   ins_short_branch(1);
 12196 %}
 12198 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12199 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12200   match(CountedLoopEnd cop cmp);
 12201   effect(USE labl);
 12203   ins_cost(300);
 12204   format %{ "J$cop,us $labl\t# Loop end" %}
 12205   size(2);
 12206   ins_encode %{
 12207     Label* L = $labl$$label;
 12208     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12209   %}
 12210   ins_pipe( pipe_jcc );
 12211   ins_short_branch(1);
 12212 %}
 12214 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12215   match(CountedLoopEnd cop cmp);
 12216   effect(USE labl);
 12218   ins_cost(300);
 12219   format %{ "J$cop,us $labl\t# Loop end" %}
 12220   size(2);
 12221   ins_encode %{
 12222     Label* L = $labl$$label;
 12223     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12224   %}
 12225   ins_pipe( pipe_jcc );
 12226   ins_short_branch(1);
 12227 %}
 12229 // Jump Direct Conditional - using unsigned comparison
 12230 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12231   match(If cop cmp);
 12232   effect(USE labl);
 12234   ins_cost(300);
 12235   format %{ "J$cop,us $labl" %}
 12236   size(2);
 12237   ins_encode %{
 12238     Label* L = $labl$$label;
 12239     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12240   %}
 12241   ins_pipe( pipe_jcc );
 12242   ins_short_branch(1);
 12243 %}
 12245 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12246   match(If cop cmp);
 12247   effect(USE labl);
 12249   ins_cost(300);
 12250   format %{ "J$cop,us $labl" %}
 12251   size(2);
 12252   ins_encode %{
 12253     Label* L = $labl$$label;
 12254     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
 12255   %}
 12256   ins_pipe( pipe_jcc );
 12257   ins_short_branch(1);
 12258 %}
 12260 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12261   match(If cop cmp);
 12262   effect(USE labl);
 12264   ins_cost(300);
 12265   format %{ $$template
 12266     if ($cop$$cmpcode == Assembler::notEqual) {
 12267       $$emit$$"JP,u,s   $labl\n\t"
 12268       $$emit$$"J$cop,u,s   $labl"
 12269     } else {
 12270       $$emit$$"JP,u,s   done\n\t"
 12271       $$emit$$"J$cop,u,s  $labl\n\t"
 12272       $$emit$$"done:"
 12274   %}
 12275   size(4);
 12276   ins_encode %{
 12277     Label* l = $labl$$label;
 12278     if ($cop$$cmpcode == Assembler::notEqual) {
 12279       __ jccb(Assembler::parity, *l);
 12280       __ jccb(Assembler::notEqual, *l);
 12281     } else if ($cop$$cmpcode == Assembler::equal) {
 12282       Label done;
 12283       __ jccb(Assembler::parity, done);
 12284       __ jccb(Assembler::equal, *l);
 12285       __ bind(done);
 12286     } else {
 12287        ShouldNotReachHere();
 12289   %}
 12290   ins_pipe(pipe_jcc);
 12291   ins_short_branch(1);
 12292 %}
 12294 // ============================================================================
 12295 // Long Compare
 12296 //
 12297 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 12298 // is tricky.  The flavor of compare used depends on whether we are testing
 12299 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 12300 // The GE test is the negated LT test.  The LE test can be had by commuting
 12301 // the operands (yielding a GE test) and then negating; negate again for the
 12302 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 12303 // NE test is negated from that.
 12305 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 12306 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 12307 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 12308 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 12309 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 12310 // foo match ends up with the wrong leaf.  One fix is to not match both
 12311 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 12312 // both forms beat the trinary form of long-compare and both are very useful
 12313 // on Intel which has so few registers.
 12315 // Manifest a CmpL result in an integer register.  Very painful.
 12316 // This is the test to avoid.
 12317 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 12318   match(Set dst (CmpL3 src1 src2));
 12319   effect( KILL flags );
 12320   ins_cost(1000);
 12321   format %{ "XOR    $dst,$dst\n\t"
 12322             "CMP    $src1.hi,$src2.hi\n\t"
 12323             "JLT,s  m_one\n\t"
 12324             "JGT,s  p_one\n\t"
 12325             "CMP    $src1.lo,$src2.lo\n\t"
 12326             "JB,s   m_one\n\t"
 12327             "JEQ,s  done\n"
 12328     "p_one:\tINC    $dst\n\t"
 12329             "JMP,s  done\n"
 12330     "m_one:\tDEC    $dst\n"
 12331      "done:" %}
 12332   ins_encode %{
 12333     Label p_one, m_one, done;
 12334     __ xorptr($dst$$Register, $dst$$Register);
 12335     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 12336     __ jccb(Assembler::less,    m_one);
 12337     __ jccb(Assembler::greater, p_one);
 12338     __ cmpl($src1$$Register, $src2$$Register);
 12339     __ jccb(Assembler::below,   m_one);
 12340     __ jccb(Assembler::equal,   done);
 12341     __ bind(p_one);
 12342     __ incrementl($dst$$Register);
 12343     __ jmpb(done);
 12344     __ bind(m_one);
 12345     __ decrementl($dst$$Register);
 12346     __ bind(done);
 12347   %}
 12348   ins_pipe( pipe_slow );
 12349 %}
 12351 //======
 12352 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12353 // compares.  Can be used for LE or GT compares by reversing arguments.
 12354 // NOT GOOD FOR EQ/NE tests.
 12355 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 12356   match( Set flags (CmpL src zero ));
 12357   ins_cost(100);
 12358   format %{ "TEST   $src.hi,$src.hi" %}
 12359   opcode(0x85);
 12360   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 12361   ins_pipe( ialu_cr_reg_reg );
 12362 %}
 12364 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 12365 // compares.  Can be used for LE or GT compares by reversing arguments.
 12366 // NOT GOOD FOR EQ/NE tests.
 12367 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12368   match( Set flags (CmpL src1 src2 ));
 12369   effect( TEMP tmp );
 12370   ins_cost(300);
 12371   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12372             "MOV    $tmp,$src1.hi\n\t"
 12373             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 12374   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 12375   ins_pipe( ialu_cr_reg_reg );
 12376 %}
 12378 // Long compares reg < zero/req OR reg >= zero/req.
 12379 // Just a wrapper for a normal branch, plus the predicate test.
 12380 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 12381   match(If cmp flags);
 12382   effect(USE labl);
 12383   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12384   expand %{
 12385     jmpCon(cmp,flags,labl);    // JLT or JGE...
 12386   %}
 12387 %}
 12389 // Compare 2 longs and CMOVE longs.
 12390 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 12391   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12392   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12393   ins_cost(400);
 12394   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12395             "CMOV$cmp $dst.hi,$src.hi" %}
 12396   opcode(0x0F,0x40);
 12397   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12398   ins_pipe( pipe_cmov_reg_long );
 12399 %}
 12401 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 12402   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12403   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12404   ins_cost(500);
 12405   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12406             "CMOV$cmp $dst.hi,$src.hi" %}
 12407   opcode(0x0F,0x40);
 12408   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12409   ins_pipe( pipe_cmov_reg_long );
 12410 %}
 12412 // Compare 2 longs and CMOVE ints.
 12413 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
 12414   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12415   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12416   ins_cost(200);
 12417   format %{ "CMOV$cmp $dst,$src" %}
 12418   opcode(0x0F,0x40);
 12419   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12420   ins_pipe( pipe_cmov_reg );
 12421 %}
 12423 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
 12424   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12425   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12426   ins_cost(250);
 12427   format %{ "CMOV$cmp $dst,$src" %}
 12428   opcode(0x0F,0x40);
 12429   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12430   ins_pipe( pipe_cmov_mem );
 12431 %}
 12433 // Compare 2 longs and CMOVE ints.
 12434 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 12435   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 12436   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12437   ins_cost(200);
 12438   format %{ "CMOV$cmp $dst,$src" %}
 12439   opcode(0x0F,0x40);
 12440   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12441   ins_pipe( pipe_cmov_reg );
 12442 %}
 12444 // Compare 2 longs and CMOVE doubles
 12445 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
 12446   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12447   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12448   ins_cost(200);
 12449   expand %{
 12450     fcmovDPR_regS(cmp,flags,dst,src);
 12451   %}
 12452 %}
 12454 // Compare 2 longs and CMOVE doubles
 12455 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 12456   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12457   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12458   ins_cost(200);
 12459   expand %{
 12460     fcmovD_regS(cmp,flags,dst,src);
 12461   %}
 12462 %}
 12464 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
 12465   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12466   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12467   ins_cost(200);
 12468   expand %{
 12469     fcmovFPR_regS(cmp,flags,dst,src);
 12470   %}
 12471 %}
 12473 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 12474   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 12475   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12476   ins_cost(200);
 12477   expand %{
 12478     fcmovF_regS(cmp,flags,dst,src);
 12479   %}
 12480 %}
 12482 //======
 12483 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12484 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12485   match( Set flags (CmpL src zero ));
 12486   effect(TEMP tmp);
 12487   ins_cost(200);
 12488   format %{ "MOV    $tmp,$src.lo\n\t"
 12489             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 12490   ins_encode( long_cmp_flags0( src, tmp ) );
 12491   ins_pipe( ialu_reg_reg_long );
 12492 %}
 12494 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 12495 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 12496   match( Set flags (CmpL src1 src2 ));
 12497   ins_cost(200+300);
 12498   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 12499             "JNE,s  skip\n\t"
 12500             "CMP    $src1.hi,$src2.hi\n\t"
 12501      "skip:\t" %}
 12502   ins_encode( long_cmp_flags1( src1, src2 ) );
 12503   ins_pipe( ialu_cr_reg_reg );
 12504 %}
 12506 // Long compare reg == zero/reg OR reg != zero/reg
 12507 // Just a wrapper for a normal branch, plus the predicate test.
 12508 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 12509   match(If cmp flags);
 12510   effect(USE labl);
 12511   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12512   expand %{
 12513     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 12514   %}
 12515 %}
 12517 // Compare 2 longs and CMOVE longs.
 12518 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 12519   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12520   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12521   ins_cost(400);
 12522   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12523             "CMOV$cmp $dst.hi,$src.hi" %}
 12524   opcode(0x0F,0x40);
 12525   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12526   ins_pipe( pipe_cmov_reg_long );
 12527 %}
 12529 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 12530   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12531   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12532   ins_cost(500);
 12533   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12534             "CMOV$cmp $dst.hi,$src.hi" %}
 12535   opcode(0x0F,0x40);
 12536   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12537   ins_pipe( pipe_cmov_reg_long );
 12538 %}
 12540 // Compare 2 longs and CMOVE ints.
 12541 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
 12542   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12543   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12544   ins_cost(200);
 12545   format %{ "CMOV$cmp $dst,$src" %}
 12546   opcode(0x0F,0x40);
 12547   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12548   ins_pipe( pipe_cmov_reg );
 12549 %}
 12551 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
 12552   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12553   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12554   ins_cost(250);
 12555   format %{ "CMOV$cmp $dst,$src" %}
 12556   opcode(0x0F,0x40);
 12557   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12558   ins_pipe( pipe_cmov_mem );
 12559 %}
 12561 // Compare 2 longs and CMOVE ints.
 12562 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 12563   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 12564   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12565   ins_cost(200);
 12566   format %{ "CMOV$cmp $dst,$src" %}
 12567   opcode(0x0F,0x40);
 12568   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12569   ins_pipe( pipe_cmov_reg );
 12570 %}
 12572 // Compare 2 longs and CMOVE doubles
 12573 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
 12574   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12575   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12576   ins_cost(200);
 12577   expand %{
 12578     fcmovDPR_regS(cmp,flags,dst,src);
 12579   %}
 12580 %}
 12582 // Compare 2 longs and CMOVE doubles
 12583 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 12584   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12585   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12586   ins_cost(200);
 12587   expand %{
 12588     fcmovD_regS(cmp,flags,dst,src);
 12589   %}
 12590 %}
 12592 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
 12593   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12594   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12595   ins_cost(200);
 12596   expand %{
 12597     fcmovFPR_regS(cmp,flags,dst,src);
 12598   %}
 12599 %}
 12601 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 12602   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 12603   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12604   ins_cost(200);
 12605   expand %{
 12606     fcmovF_regS(cmp,flags,dst,src);
 12607   %}
 12608 %}
 12610 //======
 12611 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12612 // Same as cmpL_reg_flags_LEGT except must negate src
 12613 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
 12614   match( Set flags (CmpL src zero ));
 12615   effect( TEMP tmp );
 12616   ins_cost(300);
 12617   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 12618             "CMP    $tmp,$src.lo\n\t"
 12619             "SBB    $tmp,$src.hi\n\t" %}
 12620   ins_encode( long_cmp_flags3(src, tmp) );
 12621   ins_pipe( ialu_reg_reg_long );
 12622 %}
 12624 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 12625 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 12626 // requires a commuted test to get the same result.
 12627 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
 12628   match( Set flags (CmpL src1 src2 ));
 12629   effect( TEMP tmp );
 12630   ins_cost(300);
 12631   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 12632             "MOV    $tmp,$src2.hi\n\t"
 12633             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 12634   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 12635   ins_pipe( ialu_cr_reg_reg );
 12636 %}
 12638 // Long compares reg < zero/req OR reg >= zero/req.
 12639 // Just a wrapper for a normal branch, plus the predicate test
 12640 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 12641   match(If cmp flags);
 12642   effect(USE labl);
 12643   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 12644   ins_cost(300);
 12645   expand %{
 12646     jmpCon(cmp,flags,labl);    // JGT or JLE...
 12647   %}
 12648 %}
 12650 // Compare 2 longs and CMOVE longs.
 12651 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 12652   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 12653   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12654   ins_cost(400);
 12655   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12656             "CMOV$cmp $dst.hi,$src.hi" %}
 12657   opcode(0x0F,0x40);
 12658   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 12659   ins_pipe( pipe_cmov_reg_long );
 12660 %}
 12662 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 12663   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 12664   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12665   ins_cost(500);
 12666   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 12667             "CMOV$cmp $dst.hi,$src.hi+4" %}
 12668   opcode(0x0F,0x40);
 12669   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 12670   ins_pipe( pipe_cmov_reg_long );
 12671 %}
 12673 // Compare 2 longs and CMOVE ints.
 12674 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
 12675   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12676   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 12677   ins_cost(200);
 12678   format %{ "CMOV$cmp $dst,$src" %}
 12679   opcode(0x0F,0x40);
 12680   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12681   ins_pipe( pipe_cmov_reg );
 12682 %}
 12684 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
 12685   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12686   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 12687   ins_cost(250);
 12688   format %{ "CMOV$cmp $dst,$src" %}
 12689   opcode(0x0F,0x40);
 12690   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 12691   ins_pipe( pipe_cmov_mem );
 12692 %}
 12694 // Compare 2 longs and CMOVE ptrs.
 12695 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 12696   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 12697   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 12698   ins_cost(200);
 12699   format %{ "CMOV$cmp $dst,$src" %}
 12700   opcode(0x0F,0x40);
 12701   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 12702   ins_pipe( pipe_cmov_reg );
 12703 %}
 12705 // Compare 2 longs and CMOVE doubles
 12706 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
 12707   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12708   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12709   ins_cost(200);
 12710   expand %{
 12711     fcmovDPR_regS(cmp,flags,dst,src);
 12712   %}
 12713 %}
 12715 // Compare 2 longs and CMOVE doubles
 12716 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 12717   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12718   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 12719   ins_cost(200);
 12720   expand %{
 12721     fcmovD_regS(cmp,flags,dst,src);
 12722   %}
 12723 %}
 12725 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
 12726   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12727   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12728   ins_cost(200);
 12729   expand %{
 12730     fcmovFPR_regS(cmp,flags,dst,src);
 12731   %}
 12732 %}
 12735 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 12736   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 12737   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 12738   ins_cost(200);
 12739   expand %{
 12740     fcmovF_regS(cmp,flags,dst,src);
 12741   %}
 12742 %}
 12745 // ============================================================================
 12746 // Procedure Call/Return Instructions
 12747 // Call Java Static Instruction
 12748 // Note: If this code changes, the corresponding ret_addr_offset() and
 12749 //       compute_padding() functions will have to be adjusted.
 12750 instruct CallStaticJavaDirect(method meth) %{
 12751   match(CallStaticJava);
 12752   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12753   effect(USE meth);
 12755   ins_cost(300);
 12756   format %{ "CALL,static " %}
 12757   opcode(0xE8); /* E8 cd */
 12758   ins_encode( pre_call_resets,
 12759               Java_Static_Call( meth ),
 12760               call_epilog,
 12761               post_call_FPU );
 12762   ins_pipe( pipe_slow );
 12763   ins_alignment(4);
 12764 %}
 12766 // Call Java Static Instruction (method handle version)
 12767 // Note: If this code changes, the corresponding ret_addr_offset() and
 12768 //       compute_padding() functions will have to be adjusted.
 12769 instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
 12770   match(CallStaticJava);
 12771   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 12772   effect(USE meth);
 12773   // EBP is saved by all callees (for interpreter stack correction).
 12774   // We use it here for a similar purpose, in {preserve,restore}_SP.
 12776   ins_cost(300);
 12777   format %{ "CALL,static/MethodHandle " %}
 12778   opcode(0xE8); /* E8 cd */
 12779   ins_encode( pre_call_resets,
 12780               preserve_SP,
 12781               Java_Static_Call( meth ),
 12782               restore_SP,
 12783               call_epilog,
 12784               post_call_FPU );
 12785   ins_pipe( pipe_slow );
 12786   ins_alignment(4);
 12787 %}
 12789 // Call Java Dynamic Instruction
 12790 // Note: If this code changes, the corresponding ret_addr_offset() and
 12791 //       compute_padding() functions will have to be adjusted.
 12792 instruct CallDynamicJavaDirect(method meth) %{
 12793   match(CallDynamicJava);
 12794   effect(USE meth);
 12796   ins_cost(300);
 12797   format %{ "MOV    EAX,(oop)-1\n\t"
 12798             "CALL,dynamic" %}
 12799   opcode(0xE8); /* E8 cd */
 12800   ins_encode( pre_call_resets,
 12801               Java_Dynamic_Call( meth ),
 12802               call_epilog,
 12803               post_call_FPU );
 12804   ins_pipe( pipe_slow );
 12805   ins_alignment(4);
 12806 %}
 12808 // Call Runtime Instruction
 12809 instruct CallRuntimeDirect(method meth) %{
 12810   match(CallRuntime );
 12811   effect(USE meth);
 12813   ins_cost(300);
 12814   format %{ "CALL,runtime " %}
 12815   opcode(0xE8); /* E8 cd */
 12816   // Use FFREEs to clear entries in float stack
 12817   ins_encode( pre_call_resets,
 12818               FFree_Float_Stack_All,
 12819               Java_To_Runtime( meth ),
 12820               post_call_FPU );
 12821   ins_pipe( pipe_slow );
 12822 %}
 12824 // Call runtime without safepoint
 12825 instruct CallLeafDirect(method meth) %{
 12826   match(CallLeaf);
 12827   effect(USE meth);
 12829   ins_cost(300);
 12830   format %{ "CALL_LEAF,runtime " %}
 12831   opcode(0xE8); /* E8 cd */
 12832   ins_encode( pre_call_resets,
 12833               FFree_Float_Stack_All,
 12834               Java_To_Runtime( meth ),
 12835               Verify_FPU_For_Leaf, post_call_FPU );
 12836   ins_pipe( pipe_slow );
 12837 %}
 12839 instruct CallLeafNoFPDirect(method meth) %{
 12840   match(CallLeafNoFP);
 12841   effect(USE meth);
 12843   ins_cost(300);
 12844   format %{ "CALL_LEAF_NOFP,runtime " %}
 12845   opcode(0xE8); /* E8 cd */
 12846   ins_encode(Java_To_Runtime(meth));
 12847   ins_pipe( pipe_slow );
 12848 %}
 12851 // Return Instruction
 12852 // Remove the return address & jump to it.
 12853 instruct Ret() %{
 12854   match(Return);
 12855   format %{ "RET" %}
 12856   opcode(0xC3);
 12857   ins_encode(OpcP);
 12858   ins_pipe( pipe_jmp );
 12859 %}
 12861 // Tail Call; Jump from runtime stub to Java code.
 12862 // Also known as an 'interprocedural jump'.
 12863 // Target of jump will eventually return to caller.
 12864 // TailJump below removes the return address.
 12865 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 12866   match(TailCall jump_target method_oop );
 12867   ins_cost(300);
 12868   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 12869   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12870   ins_encode( OpcP, RegOpc(jump_target) );
 12871   ins_pipe( pipe_jmp );
 12872 %}
 12875 // Tail Jump; remove the return address; jump to target.
 12876 // TailCall above leaves the return address around.
 12877 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 12878   match( TailJump jump_target ex_oop );
 12879   ins_cost(300);
 12880   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 12881             "JMP    $jump_target " %}
 12882   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 12883   ins_encode( enc_pop_rdx,
 12884               OpcP, RegOpc(jump_target) );
 12885   ins_pipe( pipe_jmp );
 12886 %}
 12888 // Create exception oop: created by stack-crawling runtime code.
 12889 // Created exception is now available to this handler, and is setup
 12890 // just prior to jumping to this handler.  No code emitted.
 12891 instruct CreateException( eAXRegP ex_oop )
 12892 %{
 12893   match(Set ex_oop (CreateEx));
 12895   size(0);
 12896   // use the following format syntax
 12897   format %{ "# exception oop is in EAX; no code emitted" %}
 12898   ins_encode();
 12899   ins_pipe( empty );
 12900 %}
 12903 // Rethrow exception:
 12904 // The exception oop will come in the first argument position.
 12905 // Then JUMP (not call) to the rethrow stub code.
 12906 instruct RethrowException()
 12907 %{
 12908   match(Rethrow);
 12910   // use the following format syntax
 12911   format %{ "JMP    rethrow_stub" %}
 12912   ins_encode(enc_rethrow);
 12913   ins_pipe( pipe_jmp );
 12914 %}
 12916 // inlined locking and unlocking
 12918 instruct cmpFastLockRTM(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eDXRegI scr, rRegI cx1, rRegI cx2) %{
 12919   predicate(Compile::current()->use_rtm());
 12920   match(Set cr (FastLock object box));
 12921   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
 12922   ins_cost(300);
 12923   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
 12924   ins_encode %{
 12925     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
 12926                  $scr$$Register, $cx1$$Register, $cx2$$Register,
 12927                  _counters, _rtm_counters, _stack_rtm_counters,
 12928                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
 12929                  true, ra_->C->profile_rtm());
 12930   %}
 12931   ins_pipe(pipe_slow);
 12932 %}
 12934 instruct cmpFastLock(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
 12935   predicate(!Compile::current()->use_rtm());
 12936   match(Set cr (FastLock object box));
 12937   effect(TEMP tmp, TEMP scr, USE_KILL box);
 12938   ins_cost(300);
 12939   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
 12940   ins_encode %{
 12941     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
 12942                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
 12943   %}
 12944   ins_pipe(pipe_slow);
 12945 %}
 12947 instruct cmpFastUnlock(eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 12948   match(Set cr (FastUnlock object box));
 12949   effect(TEMP tmp, USE_KILL box);
 12950   ins_cost(300);
 12951   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
 12952   ins_encode %{
 12953     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
 12954   %}
 12955   ins_pipe(pipe_slow);
 12956 %}
 12960 // ============================================================================
 12961 // Safepoint Instruction
 12962 instruct safePoint_poll(eFlagsReg cr) %{
 12963   match(SafePoint);
 12964   effect(KILL cr);
 12966   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 12967   // On SPARC that might be acceptable as we can generate the address with
 12968   // just a sethi, saving an or.  By polling at offset 0 we can end up
 12969   // putting additional pressure on the index-0 in the D$.  Because of
 12970   // alignment (just like the situation at hand) the lower indices tend
 12971   // to see more traffic.  It'd be better to change the polling address
 12972   // to offset 0 of the last $line in the polling page.
 12974   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 12975   ins_cost(125);
 12976   size(6) ;
 12977   ins_encode( Safepoint_Poll() );
 12978   ins_pipe( ialu_reg_mem );
 12979 %}
 12982 // ============================================================================
 12983 // This name is KNOWN by the ADLC and cannot be changed.
 12984 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
 12985 // for this guy.
 12986 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
 12987   match(Set dst (ThreadLocal));
 12988   effect(DEF dst, KILL cr);
 12990   format %{ "MOV    $dst, Thread::current()" %}
 12991   ins_encode %{
 12992     Register dstReg = as_Register($dst$$reg);
 12993     __ get_thread(dstReg);
 12994   %}
 12995   ins_pipe( ialu_reg_fat );
 12996 %}
 13000 //----------PEEPHOLE RULES-----------------------------------------------------
 13001 // These must follow all instruction definitions as they use the names
 13002 // defined in the instructions definitions.
 13003 //
 13004 // peepmatch ( root_instr_name [preceding_instruction]* );
 13005 //
 13006 // peepconstraint %{
 13007 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13008 //  [, ...] );
 13009 // // instruction numbers are zero-based using left to right order in peepmatch
 13010 //
 13011 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13012 // // provide an instruction_number.operand_name for each operand that appears
 13013 // // in the replacement instruction's match rule
 13014 //
 13015 // ---------VM FLAGS---------------------------------------------------------
 13016 //
 13017 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13018 //
 13019 // Each peephole rule is given an identifying number starting with zero and
 13020 // increasing by one in the order seen by the parser.  An individual peephole
 13021 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13022 // on the command-line.
 13023 //
 13024 // ---------CURRENT LIMITATIONS----------------------------------------------
 13025 //
 13026 // Only match adjacent instructions in same basic block
 13027 // Only equality constraints
 13028 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13029 // Only one replacement instruction
 13030 //
 13031 // ---------EXAMPLE----------------------------------------------------------
 13032 //
 13033 // // pertinent parts of existing instructions in architecture description
 13034 // instruct movI(rRegI dst, rRegI src) %{
 13035 //   match(Set dst (CopyI src));
 13036 // %}
 13037 //
 13038 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
 13039 //   match(Set dst (AddI dst src));
 13040 //   effect(KILL cr);
 13041 // %}
 13042 //
 13043 // // Change (inc mov) to lea
 13044 // peephole %{
 13045 //   // increment preceeded by register-register move
 13046 //   peepmatch ( incI_eReg movI );
 13047 //   // require that the destination register of the increment
 13048 //   // match the destination register of the move
 13049 //   peepconstraint ( 0.dst == 1.dst );
 13050 //   // construct a replacement instruction that sets
 13051 //   // the destination to ( move's source register + one )
 13052 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13053 // %}
 13054 //
 13055 // Implementation no longer uses movX instructions since
 13056 // machine-independent system no longer uses CopyX nodes.
 13057 //
 13058 // peephole %{
 13059 //   peepmatch ( incI_eReg movI );
 13060 //   peepconstraint ( 0.dst == 1.dst );
 13061 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13062 // %}
 13063 //
 13064 // peephole %{
 13065 //   peepmatch ( decI_eReg movI );
 13066 //   peepconstraint ( 0.dst == 1.dst );
 13067 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13068 // %}
 13069 //
 13070 // peephole %{
 13071 //   peepmatch ( addI_eReg_imm movI );
 13072 //   peepconstraint ( 0.dst == 1.dst );
 13073 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13074 // %}
 13075 //
 13076 // peephole %{
 13077 //   peepmatch ( addP_eReg_imm movP );
 13078 //   peepconstraint ( 0.dst == 1.dst );
 13079 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13080 // %}
 13082 // // Change load of spilled value to only a spill
 13083 // instruct storeI(memory mem, rRegI src) %{
 13084 //   match(Set mem (StoreI mem src));
 13085 // %}
 13086 //
 13087 // instruct loadI(rRegI dst, memory mem) %{
 13088 //   match(Set dst (LoadI mem));
 13089 // %}
 13090 //
 13091 peephole %{
 13092   peepmatch ( loadI storeI );
 13093   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13094   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13095 %}
 13097 //----------SMARTSPILL RULES---------------------------------------------------
 13098 // These must follow all instruction definitions as they use the names
 13099 // defined in the instructions definitions.

mercurial