src/cpu/x86/vm/vm_version_x86.cpp

Thu, 20 Mar 2014 17:49:27 -0700

author
kvn
date
Thu, 20 Mar 2014 17:49:27 -0700
changeset 6429
606acabe7b5c
parent 6388
98af1e198e73
child 6537
0118c8c7b80f
permissions
-rw-r--r--

8031320: Use Intel RTM instructions for locks
Summary: Use RTM for inflated locks and stack locks.
Reviewed-by: iveresov, twisti, roland, dcubed

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "memory/resourceArea.hpp"
    29 #include "runtime/java.hpp"
    30 #include "runtime/stubCodeGenerator.hpp"
    31 #include "vm_version_x86.hpp"
    32 #ifdef TARGET_OS_FAMILY_linux
    33 # include "os_linux.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_FAMILY_solaris
    36 # include "os_solaris.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_FAMILY_windows
    39 # include "os_windows.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_FAMILY_bsd
    42 # include "os_bsd.inline.hpp"
    43 #endif
    46 int VM_Version::_cpu;
    47 int VM_Version::_model;
    48 int VM_Version::_stepping;
    49 int VM_Version::_cpuFeatures;
    50 const char*           VM_Version::_features_str = "";
    51 VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };
    53 // Address of instruction which causes SEGV
    54 address VM_Version::_cpuinfo_segv_addr = 0;
    55 // Address of instruction after the one which causes SEGV
    56 address VM_Version::_cpuinfo_cont_addr = 0;
    58 static BufferBlob* stub_blob;
    59 static const int stub_size = 600;
    61 extern "C" {
    62   typedef void (*getPsrInfo_stub_t)(void*);
    63 }
    64 static getPsrInfo_stub_t getPsrInfo_stub = NULL;
    67 class VM_Version_StubGenerator: public StubCodeGenerator {
    68  public:
    70   VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
    72   address generate_getPsrInfo() {
    73     // Flags to test CPU type.
    74     const uint32_t HS_EFL_AC           = 0x40000;
    75     const uint32_t HS_EFL_ID           = 0x200000;
    76     // Values for when we don't have a CPUID instruction.
    77     const int      CPU_FAMILY_SHIFT = 8;
    78     const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    79     const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);
    81     Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4;
    82     Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done;
    84     StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
    85 #   define __ _masm->
    87     address start = __ pc();
    89     //
    90     // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    91     //
    92     // LP64: rcx and rdx are first and second argument registers on windows
    94     __ push(rbp);
    95 #ifdef _LP64
    96     __ mov(rbp, c_rarg0); // cpuid_info address
    97 #else
    98     __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    99 #endif
   100     __ push(rbx);
   101     __ push(rsi);
   102     __ pushf();          // preserve rbx, and flags
   103     __ pop(rax);
   104     __ push(rax);
   105     __ mov(rcx, rax);
   106     //
   107     // if we are unable to change the AC flag, we have a 386
   108     //
   109     __ xorl(rax, HS_EFL_AC);
   110     __ push(rax);
   111     __ popf();
   112     __ pushf();
   113     __ pop(rax);
   114     __ cmpptr(rax, rcx);
   115     __ jccb(Assembler::notEqual, detect_486);
   117     __ movl(rax, CPU_FAMILY_386);
   118     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   119     __ jmp(done);
   121     //
   122     // If we are unable to change the ID flag, we have a 486 which does
   123     // not support the "cpuid" instruction.
   124     //
   125     __ bind(detect_486);
   126     __ mov(rax, rcx);
   127     __ xorl(rax, HS_EFL_ID);
   128     __ push(rax);
   129     __ popf();
   130     __ pushf();
   131     __ pop(rax);
   132     __ cmpptr(rcx, rax);
   133     __ jccb(Assembler::notEqual, detect_586);
   135     __ bind(cpu486);
   136     __ movl(rax, CPU_FAMILY_486);
   137     __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
   138     __ jmp(done);
   140     //
   141     // At this point, we have a chip which supports the "cpuid" instruction
   142     //
   143     __ bind(detect_586);
   144     __ xorl(rax, rax);
   145     __ cpuid();
   146     __ orl(rax, rax);
   147     __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
   148                                         // value of at least 1, we give up and
   149                                         // assume a 486
   150     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
   151     __ movl(Address(rsi, 0), rax);
   152     __ movl(Address(rsi, 4), rbx);
   153     __ movl(Address(rsi, 8), rcx);
   154     __ movl(Address(rsi,12), rdx);
   156     __ cmpl(rax, 0xa);                  // Is cpuid(0xB) supported?
   157     __ jccb(Assembler::belowEqual, std_cpuid4);
   159     //
   160     // cpuid(0xB) Processor Topology
   161     //
   162     __ movl(rax, 0xb);
   163     __ xorl(rcx, rcx);   // Threads level
   164     __ cpuid();
   166     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset())));
   167     __ movl(Address(rsi, 0), rax);
   168     __ movl(Address(rsi, 4), rbx);
   169     __ movl(Address(rsi, 8), rcx);
   170     __ movl(Address(rsi,12), rdx);
   172     __ movl(rax, 0xb);
   173     __ movl(rcx, 1);     // Cores level
   174     __ cpuid();
   175     __ push(rax);
   176     __ andl(rax, 0x1f);  // Determine if valid topology level
   177     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   178     __ andl(rax, 0xffff);
   179     __ pop(rax);
   180     __ jccb(Assembler::equal, std_cpuid4);
   182     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset())));
   183     __ movl(Address(rsi, 0), rax);
   184     __ movl(Address(rsi, 4), rbx);
   185     __ movl(Address(rsi, 8), rcx);
   186     __ movl(Address(rsi,12), rdx);
   188     __ movl(rax, 0xb);
   189     __ movl(rcx, 2);     // Packages level
   190     __ cpuid();
   191     __ push(rax);
   192     __ andl(rax, 0x1f);  // Determine if valid topology level
   193     __ orl(rax, rbx);    // eax[4:0] | ebx[0:15] == 0 indicates invalid level
   194     __ andl(rax, 0xffff);
   195     __ pop(rax);
   196     __ jccb(Assembler::equal, std_cpuid4);
   198     __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset())));
   199     __ movl(Address(rsi, 0), rax);
   200     __ movl(Address(rsi, 4), rbx);
   201     __ movl(Address(rsi, 8), rcx);
   202     __ movl(Address(rsi,12), rdx);
   204     //
   205     // cpuid(0x4) Deterministic cache params
   206     //
   207     __ bind(std_cpuid4);
   208     __ movl(rax, 4);
   209     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported?
   210     __ jccb(Assembler::greater, std_cpuid1);
   212     __ xorl(rcx, rcx);   // L1 cache
   213     __ cpuid();
   214     __ push(rax);
   215     __ andl(rax, 0x1f);  // Determine if valid cache parameters used
   216     __ orl(rax, rax);    // eax[4:0] == 0 indicates invalid cache
   217     __ pop(rax);
   218     __ jccb(Assembler::equal, std_cpuid1);
   220     __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
   221     __ movl(Address(rsi, 0), rax);
   222     __ movl(Address(rsi, 4), rbx);
   223     __ movl(Address(rsi, 8), rcx);
   224     __ movl(Address(rsi,12), rdx);
   226     //
   227     // Standard cpuid(0x1)
   228     //
   229     __ bind(std_cpuid1);
   230     __ movl(rax, 1);
   231     __ cpuid();
   232     __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
   233     __ movl(Address(rsi, 0), rax);
   234     __ movl(Address(rsi, 4), rbx);
   235     __ movl(Address(rsi, 8), rcx);
   236     __ movl(Address(rsi,12), rdx);
   238     //
   239     // Check if OS has enabled XGETBV instruction to access XCR0
   240     // (OSXSAVE feature flag) and CPU supports AVX
   241     //
   242     __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx
   243     __ cmpl(rcx, 0x18000000);
   244     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
   246     //
   247     // XCR0, XFEATURE_ENABLED_MASK register
   248     //
   249     __ xorl(rcx, rcx);   // zero for XCR0 register
   250     __ xgetbv();
   251     __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset())));
   252     __ movl(Address(rsi, 0), rax);
   253     __ movl(Address(rsi, 4), rdx);
   255     __ andl(rax, 0x6); // xcr0 bits sse | ymm
   256     __ cmpl(rax, 0x6);
   257     __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported
   259     //
   260     // Some OSs have a bug when upper 128bits of YMM
   261     // registers are not restored after a signal processing.
   262     // Generate SEGV here (reference through NULL)
   263     // and check upper YMM bits after it.
   264     //
   265     VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts
   267     // load value into all 32 bytes of ymm7 register
   268     __ movl(rcx, VM_Version::ymm_test_value());
   270     __ movdl(xmm0, rcx);
   271     __ pshufd(xmm0, xmm0, 0x00);
   272     __ vinsertf128h(xmm0, xmm0, xmm0);
   273     __ vmovdqu(xmm7, xmm0);
   274 #ifdef _LP64
   275     __ vmovdqu(xmm8,  xmm0);
   276     __ vmovdqu(xmm15, xmm0);
   277 #endif
   279     __ xorl(rsi, rsi);
   280     VM_Version::set_cpuinfo_segv_addr( __ pc() );
   281     // Generate SEGV
   282     __ movl(rax, Address(rsi, 0));
   284     VM_Version::set_cpuinfo_cont_addr( __ pc() );
   285     // Returns here after signal. Save xmm0 to check it later.
   286     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset())));
   287     __ vmovdqu(Address(rsi,  0), xmm0);
   288     __ vmovdqu(Address(rsi, 32), xmm7);
   289 #ifdef _LP64
   290     __ vmovdqu(Address(rsi, 64), xmm8);
   291     __ vmovdqu(Address(rsi, 96), xmm15);
   292 #endif
   294     VM_Version::clean_cpuFeatures();
   296     //
   297     // cpuid(0x7) Structured Extended Features
   298     //
   299     __ bind(sef_cpuid);
   300     __ movl(rax, 7);
   301     __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported?
   302     __ jccb(Assembler::greater, ext_cpuid);
   304     __ xorl(rcx, rcx);
   305     __ cpuid();
   306     __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset())));
   307     __ movl(Address(rsi, 0), rax);
   308     __ movl(Address(rsi, 4), rbx);
   310     //
   311     // Extended cpuid(0x80000000)
   312     //
   313     __ bind(ext_cpuid);
   314     __ movl(rax, 0x80000000);
   315     __ cpuid();
   316     __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
   317     __ jcc(Assembler::belowEqual, done);
   318     __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
   319     __ jccb(Assembler::belowEqual, ext_cpuid1);
   320     __ cmpl(rax, 0x80000006);     // Is cpuid(0x80000007) supported?
   321     __ jccb(Assembler::belowEqual, ext_cpuid5);
   322     __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
   323     __ jccb(Assembler::belowEqual, ext_cpuid7);
   324     //
   325     // Extended cpuid(0x80000008)
   326     //
   327     __ movl(rax, 0x80000008);
   328     __ cpuid();
   329     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
   330     __ movl(Address(rsi, 0), rax);
   331     __ movl(Address(rsi, 4), rbx);
   332     __ movl(Address(rsi, 8), rcx);
   333     __ movl(Address(rsi,12), rdx);
   335     //
   336     // Extended cpuid(0x80000007)
   337     //
   338     __ bind(ext_cpuid7);
   339     __ movl(rax, 0x80000007);
   340     __ cpuid();
   341     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset())));
   342     __ movl(Address(rsi, 0), rax);
   343     __ movl(Address(rsi, 4), rbx);
   344     __ movl(Address(rsi, 8), rcx);
   345     __ movl(Address(rsi,12), rdx);
   347     //
   348     // Extended cpuid(0x80000005)
   349     //
   350     __ bind(ext_cpuid5);
   351     __ movl(rax, 0x80000005);
   352     __ cpuid();
   353     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
   354     __ movl(Address(rsi, 0), rax);
   355     __ movl(Address(rsi, 4), rbx);
   356     __ movl(Address(rsi, 8), rcx);
   357     __ movl(Address(rsi,12), rdx);
   359     //
   360     // Extended cpuid(0x80000001)
   361     //
   362     __ bind(ext_cpuid1);
   363     __ movl(rax, 0x80000001);
   364     __ cpuid();
   365     __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
   366     __ movl(Address(rsi, 0), rax);
   367     __ movl(Address(rsi, 4), rbx);
   368     __ movl(Address(rsi, 8), rcx);
   369     __ movl(Address(rsi,12), rdx);
   371     //
   372     // return
   373     //
   374     __ bind(done);
   375     __ popf();
   376     __ pop(rsi);
   377     __ pop(rbx);
   378     __ pop(rbp);
   379     __ ret(0);
   381 #   undef __
   383     return start;
   384   };
   385 };
   388 void VM_Version::get_processor_features() {
   390   _cpu = 4; // 486 by default
   391   _model = 0;
   392   _stepping = 0;
   393   _cpuFeatures = 0;
   394   _logical_processors_per_package = 1;
   396   if (!Use486InstrsOnly) {
   397     // Get raw processor info
   398     getPsrInfo_stub(&_cpuid_info);
   399     assert_is_initialized();
   400     _cpu = extended_cpu_family();
   401     _model = extended_cpu_model();
   402     _stepping = cpu_stepping();
   404     if (cpu_family() > 4) { // it supports CPUID
   405       _cpuFeatures = feature_flags();
   406       // Logical processors are only available on P4s and above,
   407       // and only if hyperthreading is available.
   408       _logical_processors_per_package = logical_processor_count();
   409     }
   410   }
   412   _supports_cx8 = supports_cmpxchg8();
   413   // xchg and xadd instructions
   414   _supports_atomic_getset4 = true;
   415   _supports_atomic_getadd4 = true;
   416   LP64_ONLY(_supports_atomic_getset8 = true);
   417   LP64_ONLY(_supports_atomic_getadd8 = true);
   419 #ifdef _LP64
   420   // OS should support SSE for x64 and hardware should support at least SSE2.
   421   if (!VM_Version::supports_sse2()) {
   422     vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
   423   }
   424   // in 64 bit the use of SSE2 is the minimum
   425   if (UseSSE < 2) UseSSE = 2;
   426 #endif
   428 #ifdef AMD64
   429   // flush_icache_stub have to be generated first.
   430   // That is why Icache line size is hard coded in ICache class,
   431   // see icache_x86.hpp. It is also the reason why we can't use
   432   // clflush instruction in 32-bit VM since it could be running
   433   // on CPU which does not support it.
   434   //
   435   // The only thing we can do is to verify that flushed
   436   // ICache::line_size has correct value.
   437   guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported");
   438   // clflush_size is size in quadwords (8 bytes).
   439   guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported");
   440 #endif
   442   // If the OS doesn't support SSE, we can't use this feature even if the HW does
   443   if (!os::supports_sse())
   444     _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
   446   if (UseSSE < 4) {
   447     _cpuFeatures &= ~CPU_SSE4_1;
   448     _cpuFeatures &= ~CPU_SSE4_2;
   449   }
   451   if (UseSSE < 3) {
   452     _cpuFeatures &= ~CPU_SSE3;
   453     _cpuFeatures &= ~CPU_SSSE3;
   454     _cpuFeatures &= ~CPU_SSE4A;
   455   }
   457   if (UseSSE < 2)
   458     _cpuFeatures &= ~CPU_SSE2;
   460   if (UseSSE < 1)
   461     _cpuFeatures &= ~CPU_SSE;
   463   if (UseAVX < 2)
   464     _cpuFeatures &= ~CPU_AVX2;
   466   if (UseAVX < 1)
   467     _cpuFeatures &= ~CPU_AVX;
   469   if (!UseAES && !FLAG_IS_DEFAULT(UseAES))
   470     _cpuFeatures &= ~CPU_AES;
   472   if (logical_processors_per_package() == 1) {
   473     // HT processor could be installed on a system which doesn't support HT.
   474     _cpuFeatures &= ~CPU_HT;
   475   }
   477   char buf[256];
   478   jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
   479                cores_per_cpu(), threads_per_core(),
   480                cpu_family(), _model, _stepping,
   481                (supports_cmov() ? ", cmov" : ""),
   482                (supports_cmpxchg8() ? ", cx8" : ""),
   483                (supports_fxsr() ? ", fxsr" : ""),
   484                (supports_mmx()  ? ", mmx"  : ""),
   485                (supports_sse()  ? ", sse"  : ""),
   486                (supports_sse2() ? ", sse2" : ""),
   487                (supports_sse3() ? ", sse3" : ""),
   488                (supports_ssse3()? ", ssse3": ""),
   489                (supports_sse4_1() ? ", sse4.1" : ""),
   490                (supports_sse4_2() ? ", sse4.2" : ""),
   491                (supports_popcnt() ? ", popcnt" : ""),
   492                (supports_avx()    ? ", avx" : ""),
   493                (supports_avx2()   ? ", avx2" : ""),
   494                (supports_aes()    ? ", aes" : ""),
   495                (supports_clmul()  ? ", clmul" : ""),
   496                (supports_erms()   ? ", erms" : ""),
   497                (supports_rtm()    ? ", rtm" : ""),
   498                (supports_mmx_ext() ? ", mmxext" : ""),
   499                (supports_3dnow_prefetch() ? ", 3dnowpref" : ""),
   500                (supports_lzcnt()   ? ", lzcnt": ""),
   501                (supports_sse4a()   ? ", sse4a": ""),
   502                (supports_ht() ? ", ht": ""),
   503                (supports_tsc() ? ", tsc": ""),
   504                (supports_tscinv_bit() ? ", tscinvbit": ""),
   505                (supports_tscinv() ? ", tscinv": ""),
   506                (supports_bmi1() ? ", bmi1" : ""),
   507                (supports_bmi2() ? ", bmi2" : ""));
   508   _features_str = strdup(buf);
   510   // UseSSE is set to the smaller of what hardware supports and what
   511   // the command line requires.  I.e., you cannot set UseSSE to 2 on
   512   // older Pentiums which do not support it.
   513   if (UseSSE > 4) UseSSE=4;
   514   if (UseSSE < 0) UseSSE=0;
   515   if (!supports_sse4_1()) // Drop to 3 if no SSE4 support
   516     UseSSE = MIN2((intx)3,UseSSE);
   517   if (!supports_sse3()) // Drop to 2 if no SSE3 support
   518     UseSSE = MIN2((intx)2,UseSSE);
   519   if (!supports_sse2()) // Drop to 1 if no SSE2 support
   520     UseSSE = MIN2((intx)1,UseSSE);
   521   if (!supports_sse ()) // Drop to 0 if no SSE  support
   522     UseSSE = 0;
   524   if (UseAVX > 2) UseAVX=2;
   525   if (UseAVX < 0) UseAVX=0;
   526   if (!supports_avx2()) // Drop to 1 if no AVX2 support
   527     UseAVX = MIN2((intx)1,UseAVX);
   528   if (!supports_avx ()) // Drop to 0 if no AVX  support
   529     UseAVX = 0;
   531   // Use AES instructions if available.
   532   if (supports_aes()) {
   533     if (FLAG_IS_DEFAULT(UseAES)) {
   534       UseAES = true;
   535     }
   536   } else if (UseAES) {
   537     if (!FLAG_IS_DEFAULT(UseAES))
   538       warning("AES instructions are not available on this CPU");
   539     FLAG_SET_DEFAULT(UseAES, false);
   540   }
   542   // Use CLMUL instructions if available.
   543   if (supports_clmul()) {
   544     if (FLAG_IS_DEFAULT(UseCLMUL)) {
   545       UseCLMUL = true;
   546     }
   547   } else if (UseCLMUL) {
   548     if (!FLAG_IS_DEFAULT(UseCLMUL))
   549       warning("CLMUL instructions not available on this CPU (AVX may also be required)");
   550     FLAG_SET_DEFAULT(UseCLMUL, false);
   551   }
   553   if (UseCLMUL && (UseAVX > 0) && (UseSSE > 2)) {
   554     if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
   555       UseCRC32Intrinsics = true;
   556     }
   557   } else if (UseCRC32Intrinsics) {
   558     if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
   559       warning("CRC32 Intrinsics requires AVX and CLMUL instructions (not available on this CPU)");
   560     FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
   561   }
   563   // The AES intrinsic stubs require AES instruction support (of course)
   564   // but also require sse3 mode for instructions it use.
   565   if (UseAES && (UseSSE > 2)) {
   566     if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
   567       UseAESIntrinsics = true;
   568     }
   569   } else if (UseAESIntrinsics) {
   570     if (!FLAG_IS_DEFAULT(UseAESIntrinsics))
   571       warning("AES intrinsics are not available on this CPU");
   572     FLAG_SET_DEFAULT(UseAESIntrinsics, false);
   573   }
   575   // Adjust RTM (Restricted Transactional Memory) flags
   576   if (!supports_rtm() && UseRTMLocking) {
   577     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
   578     // setting during arguments processing. See use_biased_locking().
   579     // VM_Version_init() is executed after UseBiasedLocking is used
   580     // in Thread::allocate().
   581     vm_exit_during_initialization("RTM instructions are not available on this CPU");
   582   }
   584 #if INCLUDE_RTM_OPT
   585   if (UseRTMLocking) {
   586     if (!FLAG_IS_CMDLINE(UseRTMLocking)) {
   587       // RTM locking should be used only for applications with
   588       // high lock contention. For now we do not use it by default.
   589       vm_exit_during_initialization("UseRTMLocking flag should be only set on command line");
   590     }
   591     if (!is_power_of_2(RTMTotalCountIncrRate)) {
   592       warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64");
   593       FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64);
   594     }
   595     if (RTMAbortRatio < 0 || RTMAbortRatio > 100) {
   596       warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50");
   597       FLAG_SET_DEFAULT(RTMAbortRatio, 50);
   598     }
   599   } else { // !UseRTMLocking
   600     if (UseRTMForStackLocks) {
   601       if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) {
   602         warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off");
   603       }
   604       FLAG_SET_DEFAULT(UseRTMForStackLocks, false);
   605     }
   606     if (UseRTMDeopt) {
   607       FLAG_SET_DEFAULT(UseRTMDeopt, false);
   608     }
   609     if (PrintPreciseRTMLockingStatistics) {
   610       FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false);
   611     }
   612   }
   613 #else
   614   if (UseRTMLocking) {
   615     // Only C2 does RTM locking optimization.
   616     // Can't continue because UseRTMLocking affects UseBiasedLocking flag
   617     // setting during arguments processing. See use_biased_locking().
   618     vm_exit_during_initialization("RTM locking optimization is not supported in this VM");
   619   }
   620 #endif
   622 #ifdef COMPILER2
   623   if (UseFPUForSpilling) {
   624     if (UseSSE < 2) {
   625       // Only supported with SSE2+
   626       FLAG_SET_DEFAULT(UseFPUForSpilling, false);
   627     }
   628   }
   629   if (MaxVectorSize > 0) {
   630     if (!is_power_of_2(MaxVectorSize)) {
   631       warning("MaxVectorSize must be a power of 2");
   632       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   633     }
   634     if (MaxVectorSize > 32) {
   635       FLAG_SET_DEFAULT(MaxVectorSize, 32);
   636     }
   637     if (MaxVectorSize > 16 && (UseAVX == 0 || !os_supports_avx_vectors())) {
   638       // 32 bytes vectors (in YMM) are only supported with AVX+
   639       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   640     }
   641     if (UseSSE < 2) {
   642       // Vectors (in XMM) are only supported with SSE2+
   643       FLAG_SET_DEFAULT(MaxVectorSize, 0);
   644     }
   645 #ifdef ASSERT
   646     if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) {
   647       tty->print_cr("State of YMM registers after signal handle:");
   648       int nreg = 2 LP64_ONLY(+2);
   649       const char* ymm_name[4] = {"0", "7", "8", "15"};
   650       for (int i = 0; i < nreg; i++) {
   651         tty->print("YMM%s:", ymm_name[i]);
   652         for (int j = 7; j >=0; j--) {
   653           tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]);
   654         }
   655         tty->cr();
   656       }
   657     }
   658 #endif
   659   }
   660 #endif
   662   // On new cpus instructions which update whole XMM register should be used
   663   // to prevent partial register stall due to dependencies on high half.
   664   //
   665   // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
   666   // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
   667   // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
   668   // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).
   670   if( is_amd() ) { // AMD cpus specific settings
   671     if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
   672       // Use it on new AMD cpus starting from Opteron.
   673       UseAddressNop = true;
   674     }
   675     if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
   676       // Use it on new AMD cpus starting from Opteron.
   677       UseNewLongLShift = true;
   678     }
   679     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   680       if( supports_sse4a() ) {
   681         UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
   682       } else {
   683         UseXmmLoadAndClearUpper = false;
   684       }
   685     }
   686     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   687       if( supports_sse4a() ) {
   688         UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
   689       } else {
   690         UseXmmRegToRegMoveAll = false;
   691       }
   692     }
   693     if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
   694       if( supports_sse4a() ) {
   695         UseXmmI2F = true;
   696       } else {
   697         UseXmmI2F = false;
   698       }
   699     }
   700     if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
   701       if( supports_sse4a() ) {
   702         UseXmmI2D = true;
   703       } else {
   704         UseXmmI2D = false;
   705       }
   706     }
   707     if( FLAG_IS_DEFAULT(UseSSE42Intrinsics) ) {
   708       if( supports_sse4_2() && UseSSE >= 4 ) {
   709         UseSSE42Intrinsics = true;
   710       }
   711     }
   713     // some defaults for AMD family 15h
   714     if ( cpu_family() == 0x15 ) {
   715       // On family 15h processors default is no sw prefetch
   716       if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
   717         AllocatePrefetchStyle = 0;
   718       }
   719       // Also, if some other prefetch style is specified, default instruction type is PREFETCHW
   720       if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) {
   721         AllocatePrefetchInstr = 3;
   722       }
   723       // On family 15h processors use XMM and UnalignedLoadStores for Array Copy
   724       if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   725         UseXMMForArrayCopy = true;
   726       }
   727       if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   728         UseUnalignedLoadStores = true;
   729       }
   730     }
   732 #ifdef COMPILER2
   733     if (MaxVectorSize > 16) {
   734       // Limit vectors size to 16 bytes on current AMD cpus.
   735       FLAG_SET_DEFAULT(MaxVectorSize, 16);
   736     }
   737 #endif // COMPILER2
   738   }
   740   if( is_intel() ) { // Intel cpus specific settings
   741     if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
   742       UseStoreImmI16 = false; // don't use it on Intel cpus
   743     }
   744     if( cpu_family() == 6 || cpu_family() == 15 ) {
   745       if( FLAG_IS_DEFAULT(UseAddressNop) ) {
   746         // Use it on all Intel cpus starting from PentiumPro
   747         UseAddressNop = true;
   748       }
   749     }
   750     if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
   751       UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
   752     }
   753     if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
   754       if( supports_sse3() ) {
   755         UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
   756       } else {
   757         UseXmmRegToRegMoveAll = false;
   758       }
   759     }
   760     if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
   761 #ifdef COMPILER2
   762       if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
   763         // For new Intel cpus do the next optimization:
   764         // don't align the beginning of a loop if there are enough instructions
   765         // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
   766         // in current fetch line (OptoLoopAlignment) or the padding
   767         // is big (> MaxLoopPad).
   768         // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
   769         // generated NOP instructions. 11 is the largest size of one
   770         // address NOP instruction '0F 1F' (see Assembler::nop(i)).
   771         MaxLoopPad = 11;
   772       }
   773 #endif // COMPILER2
   774       if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) {
   775         UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
   776       }
   777       if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus
   778         if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) {
   779           UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
   780         }
   781       }
   782       if (supports_sse4_2() && UseSSE >= 4) {
   783         if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) {
   784           UseSSE42Intrinsics = true;
   785         }
   786       }
   787     }
   788   }
   790   // Use count leading zeros count instruction if available.
   791   if (supports_lzcnt()) {
   792     if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) {
   793       UseCountLeadingZerosInstruction = true;
   794     }
   795    } else if (UseCountLeadingZerosInstruction) {
   796     warning("lzcnt instruction is not available on this CPU");
   797     FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false);
   798   }
   800   if (supports_bmi1()) {
   801     if (FLAG_IS_DEFAULT(UseBMI1Instructions)) {
   802       UseBMI1Instructions = true;
   803     }
   804   } else if (UseBMI1Instructions) {
   805     warning("BMI1 instructions are not available on this CPU");
   806     FLAG_SET_DEFAULT(UseBMI1Instructions, false);
   807   }
   809   // Use count trailing zeros instruction if available
   810   if (supports_bmi1()) {
   811     if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) {
   812       UseCountTrailingZerosInstruction = UseBMI1Instructions;
   813     }
   814   } else if (UseCountTrailingZerosInstruction) {
   815     warning("tzcnt instruction is not available on this CPU");
   816     FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false);
   817   }
   819   // Use population count instruction if available.
   820   if (supports_popcnt()) {
   821     if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
   822       UsePopCountInstruction = true;
   823     }
   824   } else if (UsePopCountInstruction) {
   825     warning("POPCNT instruction is not available on this CPU");
   826     FLAG_SET_DEFAULT(UsePopCountInstruction, false);
   827   }
   829   // Use fast-string operations if available.
   830   if (supports_erms()) {
   831     if (FLAG_IS_DEFAULT(UseFastStosb)) {
   832       UseFastStosb = true;
   833     }
   834   } else if (UseFastStosb) {
   835     warning("fast-string operations are not available on this CPU");
   836     FLAG_SET_DEFAULT(UseFastStosb, false);
   837   }
   839 #ifdef COMPILER2
   840   if (FLAG_IS_DEFAULT(AlignVector)) {
   841     // Modern processors allow misaligned memory operations for vectors.
   842     AlignVector = !UseUnalignedLoadStores;
   843   }
   844 #endif // COMPILER2
   846   assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
   847   assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
   849   // set valid Prefetch instruction
   850   if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
   851   if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
   852   if( ReadPrefetchInstr == 3 && !supports_3dnow_prefetch() ) ReadPrefetchInstr = 0;
   853   if( !supports_sse() && supports_3dnow_prefetch() ) ReadPrefetchInstr = 3;
   855   if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
   856   if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
   857   if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0;
   858   if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3;
   860   // Allocation prefetch settings
   861   intx cache_line_size = prefetch_data_size();
   862   if( cache_line_size > AllocatePrefetchStepSize )
   863     AllocatePrefetchStepSize = cache_line_size;
   865   assert(AllocatePrefetchLines > 0, "invalid value");
   866   if( AllocatePrefetchLines < 1 )     // set valid value in product VM
   867     AllocatePrefetchLines = 3;
   868   assert(AllocateInstancePrefetchLines > 0, "invalid value");
   869   if( AllocateInstancePrefetchLines < 1 ) // set valid value in product VM
   870     AllocateInstancePrefetchLines = 1;
   872   AllocatePrefetchDistance = allocate_prefetch_distance();
   873   AllocatePrefetchStyle    = allocate_prefetch_style();
   875   if( is_intel() && cpu_family() == 6 && supports_sse3() ) {
   876     if( AllocatePrefetchStyle == 2 ) { // watermark prefetching on Core
   877 #ifdef _LP64
   878       AllocatePrefetchDistance = 384;
   879 #else
   880       AllocatePrefetchDistance = 320;
   881 #endif
   882     }
   883     if( supports_sse4_2() && supports_ht() ) { // Nehalem based cpus
   884       AllocatePrefetchDistance = 192;
   885       AllocatePrefetchLines = 4;
   886 #ifdef COMPILER2
   887       if (AggressiveOpts && FLAG_IS_DEFAULT(UseFPUForSpilling)) {
   888         FLAG_SET_DEFAULT(UseFPUForSpilling, true);
   889       }
   890 #endif
   891     }
   892   }
   893   assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
   895 #ifdef _LP64
   896   // Prefetch settings
   897   PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
   898   PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
   899   PrefetchFieldsAhead         = prefetch_fields_ahead();
   900 #endif
   902   if (FLAG_IS_DEFAULT(ContendedPaddingWidth) &&
   903      (cache_line_size > ContendedPaddingWidth))
   904      ContendedPaddingWidth = cache_line_size;
   906 #ifndef PRODUCT
   907   if (PrintMiscellaneous && Verbose) {
   908     tty->print_cr("Logical CPUs per core: %u",
   909                   logical_processors_per_package());
   910     tty->print("UseSSE=%d",UseSSE);
   911     if (UseAVX > 0) {
   912       tty->print("  UseAVX=%d",UseAVX);
   913     }
   914     if (UseAES) {
   915       tty->print("  UseAES=1");
   916     }
   917 #ifdef COMPILER2
   918     if (MaxVectorSize > 0) {
   919       tty->print("  MaxVectorSize=%d", MaxVectorSize);
   920     }
   921 #endif
   922     tty->cr();
   923     tty->print("Allocation");
   924     if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) {
   925       tty->print_cr(": no prefetching");
   926     } else {
   927       tty->print(" prefetching: ");
   928       if (UseSSE == 0 && supports_3dnow_prefetch()) {
   929         tty->print("PREFETCHW");
   930       } else if (UseSSE >= 1) {
   931         if (AllocatePrefetchInstr == 0) {
   932           tty->print("PREFETCHNTA");
   933         } else if (AllocatePrefetchInstr == 1) {
   934           tty->print("PREFETCHT0");
   935         } else if (AllocatePrefetchInstr == 2) {
   936           tty->print("PREFETCHT2");
   937         } else if (AllocatePrefetchInstr == 3) {
   938           tty->print("PREFETCHW");
   939         }
   940       }
   941       if (AllocatePrefetchLines > 1) {
   942         tty->print_cr(" at distance %d, %d lines of %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
   943       } else {
   944         tty->print_cr(" at distance %d, one line of %d bytes", AllocatePrefetchDistance, AllocatePrefetchStepSize);
   945       }
   946     }
   948     if (PrefetchCopyIntervalInBytes > 0) {
   949       tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
   950     }
   951     if (PrefetchScanIntervalInBytes > 0) {
   952       tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
   953     }
   954     if (PrefetchFieldsAhead > 0) {
   955       tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
   956     }
   957     if (ContendedPaddingWidth > 0) {
   958       tty->print_cr("ContendedPaddingWidth %d", ContendedPaddingWidth);
   959     }
   960   }
   961 #endif // !PRODUCT
   962 }
   964 bool VM_Version::use_biased_locking() {
   965 #if INCLUDE_RTM_OPT
   966   // RTM locking is most useful when there is high lock contention and
   967   // low data contention.  With high lock contention the lock is usually
   968   // inflated and biased locking is not suitable for that case.
   969   // RTM locking code requires that biased locking is off.
   970   // Note: we can't switch off UseBiasedLocking in get_processor_features()
   971   // because it is used by Thread::allocate() which is called before
   972   // VM_Version::initialize().
   973   if (UseRTMLocking && UseBiasedLocking) {
   974     if (FLAG_IS_DEFAULT(UseBiasedLocking)) {
   975       FLAG_SET_DEFAULT(UseBiasedLocking, false);
   976     } else {
   977       warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." );
   978       UseBiasedLocking = false;
   979     }
   980   }
   981 #endif
   982   return UseBiasedLocking;
   983 }
   985 void VM_Version::initialize() {
   986   ResourceMark rm;
   987   // Making this stub must be FIRST use of assembler
   989   stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
   990   if (stub_blob == NULL) {
   991     vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
   992   }
   993   CodeBuffer c(stub_blob);
   994   VM_Version_StubGenerator g(&c);
   995   getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
   996                                    g.generate_getPsrInfo());
   998   get_processor_features();
   999 }

mercurial