src/cpu/x86/vm/assembler_x86.cpp

Thu, 20 Mar 2014 17:49:27 -0700

author
kvn
date
Thu, 20 Mar 2014 17:49:27 -0700
changeset 6429
606acabe7b5c
parent 6378
8a8ff6b577ed
child 6435
eb6b3ac64f0e
permissions
-rw-r--r--

8031320: Use Intel RTM instructions for locks
Summary: Use RTM for inflated locks and stack locks.
Reviewed-by: iveresov, twisti, roland, dcubed

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "utilities/macros.hpp"
    40 #if INCLUDE_ALL_GCS
    41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #include "gc_implementation/g1/heapRegion.hpp"
    44 #endif // INCLUDE_ALL_GCS
    46 #ifdef PRODUCT
    47 #define BLOCK_COMMENT(str) /* nothing */
    48 #define STOP(error) stop(error)
    49 #else
    50 #define BLOCK_COMMENT(str) block_comment(str)
    51 #define STOP(error) block_comment(error); stop(error)
    52 #endif
    54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    55 // Implementation of AddressLiteral
    57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    58   _is_lval = false;
    59   _target = target;
    60   switch (rtype) {
    61   case relocInfo::oop_type:
    62   case relocInfo::metadata_type:
    63     // Oops are a special case. Normally they would be their own section
    64     // but in cases like icBuffer they are literals in the code stream that
    65     // we don't have a section for. We use none so that we get a literal address
    66     // which is always patchable.
    67     break;
    68   case relocInfo::external_word_type:
    69     _rspec = external_word_Relocation::spec(target);
    70     break;
    71   case relocInfo::internal_word_type:
    72     _rspec = internal_word_Relocation::spec(target);
    73     break;
    74   case relocInfo::opt_virtual_call_type:
    75     _rspec = opt_virtual_call_Relocation::spec();
    76     break;
    77   case relocInfo::static_call_type:
    78     _rspec = static_call_Relocation::spec();
    79     break;
    80   case relocInfo::runtime_call_type:
    81     _rspec = runtime_call_Relocation::spec();
    82     break;
    83   case relocInfo::poll_type:
    84   case relocInfo::poll_return_type:
    85     _rspec = Relocation::spec_simple(rtype);
    86     break;
    87   case relocInfo::none:
    88     break;
    89   default:
    90     ShouldNotReachHere();
    91     break;
    92   }
    93 }
    95 // Implementation of Address
    97 #ifdef _LP64
    99 Address Address::make_array(ArrayAddress adr) {
   100   // Not implementable on 64bit machines
   101   // Should have been handled higher up the call chain.
   102   ShouldNotReachHere();
   103   return Address();
   104 }
   106 // exceedingly dangerous constructor
   107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   108   _base  = noreg;
   109   _index = noreg;
   110   _scale = no_scale;
   111   _disp  = disp;
   112   switch (rtype) {
   113     case relocInfo::external_word_type:
   114       _rspec = external_word_Relocation::spec(loc);
   115       break;
   116     case relocInfo::internal_word_type:
   117       _rspec = internal_word_Relocation::spec(loc);
   118       break;
   119     case relocInfo::runtime_call_type:
   120       // HMM
   121       _rspec = runtime_call_Relocation::spec();
   122       break;
   123     case relocInfo::poll_type:
   124     case relocInfo::poll_return_type:
   125       _rspec = Relocation::spec_simple(rtype);
   126       break;
   127     case relocInfo::none:
   128       break;
   129     default:
   130       ShouldNotReachHere();
   131   }
   132 }
   133 #else // LP64
   135 Address Address::make_array(ArrayAddress adr) {
   136   AddressLiteral base = adr.base();
   137   Address index = adr.index();
   138   assert(index._disp == 0, "must not have disp"); // maybe it can?
   139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   140   array._rspec = base._rspec;
   141   return array;
   142 }
   144 // exceedingly dangerous constructor
   145 Address::Address(address loc, RelocationHolder spec) {
   146   _base  = noreg;
   147   _index = noreg;
   148   _scale = no_scale;
   149   _disp  = (intptr_t) loc;
   150   _rspec = spec;
   151 }
   153 #endif // _LP64
   157 // Convert the raw encoding form into the form expected by the constructor for
   158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   159 // that to noreg for the Address constructor.
   160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   161   RelocationHolder rspec;
   162   if (disp_reloc != relocInfo::none) {
   163     rspec = Relocation::spec_simple(disp_reloc);
   164   }
   165   bool valid_index = index != rsp->encoding();
   166   if (valid_index) {
   167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   168     madr._rspec = rspec;
   169     return madr;
   170   } else {
   171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   172     madr._rspec = rspec;
   173     return madr;
   174   }
   175 }
   177 // Implementation of Assembler
   179 int AbstractAssembler::code_fill_byte() {
   180   return (u_char)'\xF4'; // hlt
   181 }
   183 // make this go away someday
   184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   185   if (rtype == relocInfo::none)
   186         emit_int32(data);
   187   else  emit_data(data, Relocation::spec_simple(rtype), format);
   188 }
   190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   191   assert(imm_operand == 0, "default format must be immediate in this file");
   192   assert(inst_mark() != NULL, "must be inside InstructionMark");
   193   if (rspec.type() !=  relocInfo::none) {
   194     #ifdef ASSERT
   195       check_relocation(rspec, format);
   196     #endif
   197     // Do not use AbstractAssembler::relocate, which is not intended for
   198     // embedded words.  Instead, relocate to the enclosing instruction.
   200     // hack. call32 is too wide for mask so use disp32
   201     if (format == call32_operand)
   202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   203     else
   204       code_section()->relocate(inst_mark(), rspec, format);
   205   }
   206   emit_int32(data);
   207 }
   209 static int encode(Register r) {
   210   int enc = r->encoding();
   211   if (enc >= 8) {
   212     enc -= 8;
   213   }
   214   return enc;
   215 }
   217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   218   assert(dst->has_byte_register(), "must have byte register");
   219   assert(isByte(op1) && isByte(op2), "wrong opcode");
   220   assert(isByte(imm8), "not a byte");
   221   assert((op1 & 0x01) == 0, "should be 8bit operation");
   222   emit_int8(op1);
   223   emit_int8(op2 | encode(dst));
   224   emit_int8(imm8);
   225 }
   228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   229   assert(isByte(op1) && isByte(op2), "wrong opcode");
   230   assert((op1 & 0x01) == 1, "should be 32bit operation");
   231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   232   if (is8bit(imm32)) {
   233     emit_int8(op1 | 0x02); // set sign bit
   234     emit_int8(op2 | encode(dst));
   235     emit_int8(imm32 & 0xFF);
   236   } else {
   237     emit_int8(op1);
   238     emit_int8(op2 | encode(dst));
   239     emit_int32(imm32);
   240   }
   241 }
   243 // Force generation of a 4 byte immediate value even if it fits into 8bit
   244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   245   assert(isByte(op1) && isByte(op2), "wrong opcode");
   246   assert((op1 & 0x01) == 1, "should be 32bit operation");
   247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   248   emit_int8(op1);
   249   emit_int8(op2 | encode(dst));
   250   emit_int32(imm32);
   251 }
   253 // immediate-to-memory forms
   254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   255   assert((op1 & 0x01) == 1, "should be 32bit operation");
   256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   257   if (is8bit(imm32)) {
   258     emit_int8(op1 | 0x02); // set sign bit
   259     emit_operand(rm, adr, 1);
   260     emit_int8(imm32 & 0xFF);
   261   } else {
   262     emit_int8(op1);
   263     emit_operand(rm, adr, 4);
   264     emit_int32(imm32);
   265   }
   266 }
   269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   270   assert(isByte(op1) && isByte(op2), "wrong opcode");
   271   emit_int8(op1);
   272   emit_int8(op2 | encode(dst) << 3 | encode(src));
   273 }
   276 void Assembler::emit_operand(Register reg, Register base, Register index,
   277                              Address::ScaleFactor scale, int disp,
   278                              RelocationHolder const& rspec,
   279                              int rip_relative_correction) {
   280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   282   // Encode the registers as needed in the fields they are used in
   284   int regenc = encode(reg) << 3;
   285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   286   int baseenc = base->is_valid() ? encode(base) : 0;
   288   if (base->is_valid()) {
   289     if (index->is_valid()) {
   290       assert(scale != Address::no_scale, "inconsistent address");
   291       // [base + index*scale + disp]
   292       if (disp == 0 && rtype == relocInfo::none  &&
   293           base != rbp LP64_ONLY(&& base != r13)) {
   294         // [base + index*scale]
   295         // [00 reg 100][ss index base]
   296         assert(index != rsp, "illegal addressing mode");
   297         emit_int8(0x04 | regenc);
   298         emit_int8(scale << 6 | indexenc | baseenc);
   299       } else if (is8bit(disp) && rtype == relocInfo::none) {
   300         // [base + index*scale + imm8]
   301         // [01 reg 100][ss index base] imm8
   302         assert(index != rsp, "illegal addressing mode");
   303         emit_int8(0x44 | regenc);
   304         emit_int8(scale << 6 | indexenc | baseenc);
   305         emit_int8(disp & 0xFF);
   306       } else {
   307         // [base + index*scale + disp32]
   308         // [10 reg 100][ss index base] disp32
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_int8(0x84 | regenc);
   311         emit_int8(scale << 6 | indexenc | baseenc);
   312         emit_data(disp, rspec, disp32_operand);
   313       }
   314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   315       // [rsp + disp]
   316       if (disp == 0 && rtype == relocInfo::none) {
   317         // [rsp]
   318         // [00 reg 100][00 100 100]
   319         emit_int8(0x04 | regenc);
   320         emit_int8(0x24);
   321       } else if (is8bit(disp) && rtype == relocInfo::none) {
   322         // [rsp + imm8]
   323         // [01 reg 100][00 100 100] disp8
   324         emit_int8(0x44 | regenc);
   325         emit_int8(0x24);
   326         emit_int8(disp & 0xFF);
   327       } else {
   328         // [rsp + imm32]
   329         // [10 reg 100][00 100 100] disp32
   330         emit_int8(0x84 | regenc);
   331         emit_int8(0x24);
   332         emit_data(disp, rspec, disp32_operand);
   333       }
   334     } else {
   335       // [base + disp]
   336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   337       if (disp == 0 && rtype == relocInfo::none &&
   338           base != rbp LP64_ONLY(&& base != r13)) {
   339         // [base]
   340         // [00 reg base]
   341         emit_int8(0x00 | regenc | baseenc);
   342       } else if (is8bit(disp) && rtype == relocInfo::none) {
   343         // [base + disp8]
   344         // [01 reg base] disp8
   345         emit_int8(0x40 | regenc | baseenc);
   346         emit_int8(disp & 0xFF);
   347       } else {
   348         // [base + disp32]
   349         // [10 reg base] disp32
   350         emit_int8(0x80 | regenc | baseenc);
   351         emit_data(disp, rspec, disp32_operand);
   352       }
   353     }
   354   } else {
   355     if (index->is_valid()) {
   356       assert(scale != Address::no_scale, "inconsistent address");
   357       // [index*scale + disp]
   358       // [00 reg 100][ss index 101] disp32
   359       assert(index != rsp, "illegal addressing mode");
   360       emit_int8(0x04 | regenc);
   361       emit_int8(scale << 6 | indexenc | 0x05);
   362       emit_data(disp, rspec, disp32_operand);
   363     } else if (rtype != relocInfo::none ) {
   364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   365       // [00 000 101] disp32
   367       emit_int8(0x05 | regenc);
   368       // Note that the RIP-rel. correction applies to the generated
   369       // disp field, but _not_ to the target address in the rspec.
   371       // disp was created by converting the target address minus the pc
   372       // at the start of the instruction. That needs more correction here.
   373       // intptr_t disp = target - next_ip;
   374       assert(inst_mark() != NULL, "must be inside InstructionMark");
   375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   376       int64_t adjusted = disp;
   377       // Do rip-rel adjustment for 64bit
   378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   379       assert(is_simm32(adjusted),
   380              "must be 32bit offset (RIP relative address)");
   381       emit_data((int32_t) adjusted, rspec, disp32_operand);
   383     } else {
   384       // 32bit never did this, did everything as the rip-rel/disp code above
   385       // [disp] ABSOLUTE
   386       // [00 reg 100][00 100 101] disp32
   387       emit_int8(0x04 | regenc);
   388       emit_int8(0x25);
   389       emit_data(disp, rspec, disp32_operand);
   390     }
   391   }
   392 }
   394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   395                              Address::ScaleFactor scale, int disp,
   396                              RelocationHolder const& rspec) {
   397   emit_operand((Register)reg, base, index, scale, disp, rspec);
   398 }
   400 // Secret local extension to Assembler::WhichOperand:
   401 #define end_pc_operand (_WhichOperand_limit)
   403 address Assembler::locate_operand(address inst, WhichOperand which) {
   404   // Decode the given instruction, and return the address of
   405   // an embedded 32-bit operand word.
   407   // If "which" is disp32_operand, selects the displacement portion
   408   // of an effective address specifier.
   409   // If "which" is imm64_operand, selects the trailing immediate constant.
   410   // If "which" is call32_operand, selects the displacement of a call or jump.
   411   // Caller is responsible for ensuring that there is such an operand,
   412   // and that it is 32/64 bits wide.
   414   // If "which" is end_pc_operand, find the end of the instruction.
   416   address ip = inst;
   417   bool is_64bit = false;
   419   debug_only(bool has_disp32 = false);
   420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   422   again_after_prefix:
   423   switch (0xFF & *ip++) {
   425   // These convenience macros generate groups of "case" labels for the switch.
   426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   429 #define REP16(x) REP8((x)+0): \
   430               case REP8((x)+8)
   432   case CS_segment:
   433   case SS_segment:
   434   case DS_segment:
   435   case ES_segment:
   436   case FS_segment:
   437   case GS_segment:
   438     // Seems dubious
   439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   440     assert(ip == inst+1, "only one prefix allowed");
   441     goto again_after_prefix;
   443   case 0x67:
   444   case REX:
   445   case REX_B:
   446   case REX_X:
   447   case REX_XB:
   448   case REX_R:
   449   case REX_RB:
   450   case REX_RX:
   451   case REX_RXB:
   452     NOT_LP64(assert(false, "64bit prefixes"));
   453     goto again_after_prefix;
   455   case REX_W:
   456   case REX_WB:
   457   case REX_WX:
   458   case REX_WXB:
   459   case REX_WR:
   460   case REX_WRB:
   461   case REX_WRX:
   462   case REX_WRXB:
   463     NOT_LP64(assert(false, "64bit prefixes"));
   464     is_64bit = true;
   465     goto again_after_prefix;
   467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   468   case 0x88: // movb a, r
   469   case 0x89: // movl a, r
   470   case 0x8A: // movb r, a
   471   case 0x8B: // movl r, a
   472   case 0x8F: // popl a
   473     debug_only(has_disp32 = true);
   474     break;
   476   case 0x68: // pushq #32
   477     if (which == end_pc_operand) {
   478       return ip + 4;
   479     }
   480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   481     return ip;                  // not produced by emit_operand
   483   case 0x66: // movw ... (size prefix)
   484     again_after_size_prefix2:
   485     switch (0xFF & *ip++) {
   486     case REX:
   487     case REX_B:
   488     case REX_X:
   489     case REX_XB:
   490     case REX_R:
   491     case REX_RB:
   492     case REX_RX:
   493     case REX_RXB:
   494     case REX_W:
   495     case REX_WB:
   496     case REX_WX:
   497     case REX_WXB:
   498     case REX_WR:
   499     case REX_WRB:
   500     case REX_WRX:
   501     case REX_WRXB:
   502       NOT_LP64(assert(false, "64bit prefix found"));
   503       goto again_after_size_prefix2;
   504     case 0x8B: // movw r, a
   505     case 0x89: // movw a, r
   506       debug_only(has_disp32 = true);
   507       break;
   508     case 0xC7: // movw a, #16
   509       debug_only(has_disp32 = true);
   510       tail_size = 2;  // the imm16
   511       break;
   512     case 0x0F: // several SSE/SSE2 variants
   513       ip--;    // reparse the 0x0F
   514       goto again_after_prefix;
   515     default:
   516       ShouldNotReachHere();
   517     }
   518     break;
   520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   522     // these asserts are somewhat nonsensical
   523 #ifndef _LP64
   524     assert(which == imm_operand || which == disp32_operand,
   525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   526 #else
   527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   528            which == narrow_oop_operand && !is_64bit,
   529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   530 #endif // _LP64
   531     return ip;
   533   case 0x69: // imul r, a, #32
   534   case 0xC7: // movl a, #32(oop?)
   535     tail_size = 4;
   536     debug_only(has_disp32 = true); // has both kinds of operands!
   537     break;
   539   case 0x0F: // movx..., etc.
   540     switch (0xFF & *ip++) {
   541     case 0x3A: // pcmpestri
   542       tail_size = 1;
   543     case 0x38: // ptest, pmovzxbw
   544       ip++; // skip opcode
   545       debug_only(has_disp32 = true); // has both kinds of operands!
   546       break;
   548     case 0x70: // pshufd r, r/a, #8
   549       debug_only(has_disp32 = true); // has both kinds of operands!
   550     case 0x73: // psrldq r, #8
   551       tail_size = 1;
   552       break;
   554     case 0x12: // movlps
   555     case 0x28: // movaps
   556     case 0x2E: // ucomiss
   557     case 0x2F: // comiss
   558     case 0x54: // andps
   559     case 0x55: // andnps
   560     case 0x56: // orps
   561     case 0x57: // xorps
   562     case 0x6E: // movd
   563     case 0x7E: // movd
   564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   565       debug_only(has_disp32 = true);
   566       break;
   568     case 0xAD: // shrd r, a, %cl
   569     case 0xAF: // imul r, a
   570     case 0xBE: // movsbl r, a (movsxb)
   571     case 0xBF: // movswl r, a (movsxw)
   572     case 0xB6: // movzbl r, a (movzxb)
   573     case 0xB7: // movzwl r, a (movzxw)
   574     case REP16(0x40): // cmovl cc, r, a
   575     case 0xB0: // cmpxchgb
   576     case 0xB1: // cmpxchg
   577     case 0xC1: // xaddl
   578     case 0xC7: // cmpxchg8
   579     case REP16(0x90): // setcc a
   580       debug_only(has_disp32 = true);
   581       // fall out of the switch to decode the address
   582       break;
   584     case 0xC4: // pinsrw r, a, #8
   585       debug_only(has_disp32 = true);
   586     case 0xC5: // pextrw r, r, #8
   587       tail_size = 1;  // the imm8
   588       break;
   590     case 0xAC: // shrd r, a, #8
   591       debug_only(has_disp32 = true);
   592       tail_size = 1;  // the imm8
   593       break;
   595     case REP16(0x80): // jcc rdisp32
   596       if (which == end_pc_operand)  return ip + 4;
   597       assert(which == call32_operand, "jcc has no disp32 or imm");
   598       return ip;
   599     default:
   600       ShouldNotReachHere();
   601     }
   602     break;
   604   case 0x81: // addl a, #32; addl r, #32
   605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   606     // on 32bit in the case of cmpl, the imm might be an oop
   607     tail_size = 4;
   608     debug_only(has_disp32 = true); // has both kinds of operands!
   609     break;
   611   case 0x83: // addl a, #8; addl r, #8
   612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   613     debug_only(has_disp32 = true); // has both kinds of operands!
   614     tail_size = 1;
   615     break;
   617   case 0x9B:
   618     switch (0xFF & *ip++) {
   619     case 0xD9: // fnstcw a
   620       debug_only(has_disp32 = true);
   621       break;
   622     default:
   623       ShouldNotReachHere();
   624     }
   625     break;
   627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   628   case REP4(0x10): // adc...
   629   case REP4(0x20): // and...
   630   case REP4(0x30): // xor...
   631   case REP4(0x08): // or...
   632   case REP4(0x18): // sbb...
   633   case REP4(0x28): // sub...
   634   case 0xF7: // mull a
   635   case 0x8D: // lea r, a
   636   case 0x87: // xchg r, a
   637   case REP4(0x38): // cmp...
   638   case 0x85: // test r, a
   639     debug_only(has_disp32 = true); // has both kinds of operands!
   640     break;
   642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   643   case 0xC6: // movb a, #8
   644   case 0x80: // cmpb a, #8
   645   case 0x6B: // imul r, a, #8
   646     debug_only(has_disp32 = true); // has both kinds of operands!
   647     tail_size = 1; // the imm8
   648     break;
   650   case 0xC4: // VEX_3bytes
   651   case 0xC5: // VEX_2bytes
   652     assert((UseAVX > 0), "shouldn't have VEX prefix");
   653     assert(ip == inst+1, "no prefixes allowed");
   654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   655     // but they have prefix 0x0F and processed when 0x0F processed above.
   656     //
   657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   658     // instructions (these instructions are not supported in 64-bit mode).
   659     // To distinguish them bits [7:6] are set in the VEX second byte since
   660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   661     // those VEX bits REX and vvvv bits are inverted.
   662     //
   663     // Fortunately C2 doesn't generate these instructions so we don't need
   664     // to check for them in product version.
   666     // Check second byte
   667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   669     // First byte
   670     if ((0xFF & *inst) == VEX_3bytes) {
   671       ip++; // third byte
   672       is_64bit = ((VEX_W & *ip) == VEX_W);
   673     }
   674     ip++; // opcode
   675     // To find the end of instruction (which == end_pc_operand).
   676     switch (0xFF & *ip) {
   677     case 0x61: // pcmpestri r, r/a, #8
   678     case 0x70: // pshufd r, r/a, #8
   679     case 0x73: // psrldq r, #8
   680       tail_size = 1;  // the imm8
   681       break;
   682     default:
   683       break;
   684     }
   685     ip++; // skip opcode
   686     debug_only(has_disp32 = true); // has both kinds of operands!
   687     break;
   689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   692   case 0xDD: // fld_d a; fst_d a; fstp_d a
   693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   694   case 0xDF: // fild_d a; fistp_d a
   695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   698     debug_only(has_disp32 = true);
   699     break;
   701   case 0xE8: // call rdisp32
   702   case 0xE9: // jmp  rdisp32
   703     if (which == end_pc_operand)  return ip + 4;
   704     assert(which == call32_operand, "call has no disp32 or imm");
   705     return ip;
   707   case 0xF0:                    // Lock
   708     assert(os::is_MP(), "only on MP");
   709     goto again_after_prefix;
   711   case 0xF3:                    // For SSE
   712   case 0xF2:                    // For SSE2
   713     switch (0xFF & *ip++) {
   714     case REX:
   715     case REX_B:
   716     case REX_X:
   717     case REX_XB:
   718     case REX_R:
   719     case REX_RB:
   720     case REX_RX:
   721     case REX_RXB:
   722     case REX_W:
   723     case REX_WB:
   724     case REX_WX:
   725     case REX_WXB:
   726     case REX_WR:
   727     case REX_WRB:
   728     case REX_WRX:
   729     case REX_WRXB:
   730       NOT_LP64(assert(false, "found 64bit prefix"));
   731       ip++;
   732     default:
   733       ip++;
   734     }
   735     debug_only(has_disp32 = true); // has both kinds of operands!
   736     break;
   738   default:
   739     ShouldNotReachHere();
   741 #undef REP8
   742 #undef REP16
   743   }
   745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   746 #ifdef _LP64
   747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   748 #else
   749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   751 #endif // LP64
   752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   754   // parse the output of emit_operand
   755   int op2 = 0xFF & *ip++;
   756   int base = op2 & 0x07;
   757   int op3 = -1;
   758   const int b100 = 4;
   759   const int b101 = 5;
   760   if (base == b100 && (op2 >> 6) != 3) {
   761     op3 = 0xFF & *ip++;
   762     base = op3 & 0x07;   // refetch the base
   763   }
   764   // now ip points at the disp (if any)
   766   switch (op2 >> 6) {
   767   case 0:
   768     // [00 reg  100][ss index base]
   769     // [00 reg  100][00   100  esp]
   770     // [00 reg base]
   771     // [00 reg  100][ss index  101][disp32]
   772     // [00 reg  101]               [disp32]
   774     if (base == b101) {
   775       if (which == disp32_operand)
   776         return ip;              // caller wants the disp32
   777       ip += 4;                  // skip the disp32
   778     }
   779     break;
   781   case 1:
   782     // [01 reg  100][ss index base][disp8]
   783     // [01 reg  100][00   100  esp][disp8]
   784     // [01 reg base]               [disp8]
   785     ip += 1;                    // skip the disp8
   786     break;
   788   case 2:
   789     // [10 reg  100][ss index base][disp32]
   790     // [10 reg  100][00   100  esp][disp32]
   791     // [10 reg base]               [disp32]
   792     if (which == disp32_operand)
   793       return ip;                // caller wants the disp32
   794     ip += 4;                    // skip the disp32
   795     break;
   797   case 3:
   798     // [11 reg base]  (not a memory addressing mode)
   799     break;
   800   }
   802   if (which == end_pc_operand) {
   803     return ip + tail_size;
   804   }
   806 #ifdef _LP64
   807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   808 #else
   809   assert(which == imm_operand, "instruction has only an imm field");
   810 #endif // LP64
   811   return ip;
   812 }
   814 address Assembler::locate_next_instruction(address inst) {
   815   // Secretly share code with locate_operand:
   816   return locate_operand(inst, end_pc_operand);
   817 }
   820 #ifdef ASSERT
   821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   822   address inst = inst_mark();
   823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   824   address opnd;
   826   Relocation* r = rspec.reloc();
   827   if (r->type() == relocInfo::none) {
   828     return;
   829   } else if (r->is_call() || format == call32_operand) {
   830     // assert(format == imm32_operand, "cannot specify a nonzero format");
   831     opnd = locate_operand(inst, call32_operand);
   832   } else if (r->is_data()) {
   833     assert(format == imm_operand || format == disp32_operand
   834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   835     opnd = locate_operand(inst, (WhichOperand)format);
   836   } else {
   837     assert(format == imm_operand, "cannot specify a format");
   838     return;
   839   }
   840   assert(opnd == pc(), "must put operand where relocs can find it");
   841 }
   842 #endif // ASSERT
   844 void Assembler::emit_operand32(Register reg, Address adr) {
   845   assert(reg->encoding() < 8, "no extended registers");
   846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   848                adr._rspec);
   849 }
   851 void Assembler::emit_operand(Register reg, Address adr,
   852                              int rip_relative_correction) {
   853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   854                adr._rspec,
   855                rip_relative_correction);
   856 }
   858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   860                adr._rspec);
   861 }
   863 // MMX operations
   864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   867 }
   869 // work around gcc (3.2.1-7a) bug
   870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   873 }
   876 void Assembler::emit_farith(int b1, int b2, int i) {
   877   assert(isByte(b1) && isByte(b2), "wrong opcode");
   878   assert(0 <= i &&  i < 8, "illegal stack offset");
   879   emit_int8(b1);
   880   emit_int8(b2 + i);
   881 }
   884 // Now the Assembler instructions (identical for 32/64 bits)
   886 void Assembler::adcl(Address dst, int32_t imm32) {
   887   InstructionMark im(this);
   888   prefix(dst);
   889   emit_arith_operand(0x81, rdx, dst, imm32);
   890 }
   892 void Assembler::adcl(Address dst, Register src) {
   893   InstructionMark im(this);
   894   prefix(dst, src);
   895   emit_int8(0x11);
   896   emit_operand(src, dst);
   897 }
   899 void Assembler::adcl(Register dst, int32_t imm32) {
   900   prefix(dst);
   901   emit_arith(0x81, 0xD0, dst, imm32);
   902 }
   904 void Assembler::adcl(Register dst, Address src) {
   905   InstructionMark im(this);
   906   prefix(src, dst);
   907   emit_int8(0x13);
   908   emit_operand(dst, src);
   909 }
   911 void Assembler::adcl(Register dst, Register src) {
   912   (void) prefix_and_encode(dst->encoding(), src->encoding());
   913   emit_arith(0x13, 0xC0, dst, src);
   914 }
   916 void Assembler::addl(Address dst, int32_t imm32) {
   917   InstructionMark im(this);
   918   prefix(dst);
   919   emit_arith_operand(0x81, rax, dst, imm32);
   920 }
   922 void Assembler::addl(Address dst, Register src) {
   923   InstructionMark im(this);
   924   prefix(dst, src);
   925   emit_int8(0x01);
   926   emit_operand(src, dst);
   927 }
   929 void Assembler::addl(Register dst, int32_t imm32) {
   930   prefix(dst);
   931   emit_arith(0x81, 0xC0, dst, imm32);
   932 }
   934 void Assembler::addl(Register dst, Address src) {
   935   InstructionMark im(this);
   936   prefix(src, dst);
   937   emit_int8(0x03);
   938   emit_operand(dst, src);
   939 }
   941 void Assembler::addl(Register dst, Register src) {
   942   (void) prefix_and_encode(dst->encoding(), src->encoding());
   943   emit_arith(0x03, 0xC0, dst, src);
   944 }
   946 void Assembler::addr_nop_4() {
   947   assert(UseAddressNop, "no CPU support");
   948   // 4 bytes: NOP DWORD PTR [EAX+0]
   949   emit_int8(0x0F);
   950   emit_int8(0x1F);
   951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   952   emit_int8(0);    // 8-bits offset (1 byte)
   953 }
   955 void Assembler::addr_nop_5() {
   956   assert(UseAddressNop, "no CPU support");
   957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   958   emit_int8(0x0F);
   959   emit_int8(0x1F);
   960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   962   emit_int8(0);    // 8-bits offset (1 byte)
   963 }
   965 void Assembler::addr_nop_7() {
   966   assert(UseAddressNop, "no CPU support");
   967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   968   emit_int8(0x0F);
   969   emit_int8(0x1F);
   970   emit_int8((unsigned char)0x80);
   971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   972   emit_int32(0);   // 32-bits offset (4 bytes)
   973 }
   975 void Assembler::addr_nop_8() {
   976   assert(UseAddressNop, "no CPU support");
   977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   978   emit_int8(0x0F);
   979   emit_int8(0x1F);
   980   emit_int8((unsigned char)0x84);
   981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   983   emit_int32(0);   // 32-bits offset (4 bytes)
   984 }
   986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   989 }
   991 void Assembler::addsd(XMMRegister dst, Address src) {
   992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   994 }
   996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
   999 }
  1001 void Assembler::addss(XMMRegister dst, Address src) {
  1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1006 void Assembler::aesdec(XMMRegister dst, Address src) {
  1007   assert(VM_Version::supports_aes(), "");
  1008   InstructionMark im(this);
  1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1010   emit_int8((unsigned char)0xDE);
  1011   emit_operand(dst, src);
  1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  1015   assert(VM_Version::supports_aes(), "");
  1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1017   emit_int8((unsigned char)0xDE);
  1018   emit_int8(0xC0 | encode);
  1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
  1022   assert(VM_Version::supports_aes(), "");
  1023   InstructionMark im(this);
  1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1025   emit_int8((unsigned char)0xDF);
  1026   emit_operand(dst, src);
  1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  1030   assert(VM_Version::supports_aes(), "");
  1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1032   emit_int8((unsigned char)0xDF);
  1033   emit_int8((unsigned char)(0xC0 | encode));
  1036 void Assembler::aesenc(XMMRegister dst, Address src) {
  1037   assert(VM_Version::supports_aes(), "");
  1038   InstructionMark im(this);
  1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1040   emit_int8((unsigned char)0xDC);
  1041   emit_operand(dst, src);
  1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  1045   assert(VM_Version::supports_aes(), "");
  1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1047   emit_int8((unsigned char)0xDC);
  1048   emit_int8(0xC0 | encode);
  1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
  1052   assert(VM_Version::supports_aes(), "");
  1053   InstructionMark im(this);
  1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1055   emit_int8((unsigned char)0xDD);
  1056   emit_operand(dst, src);
  1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  1060   assert(VM_Version::supports_aes(), "");
  1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1062   emit_int8((unsigned char)0xDD);
  1063   emit_int8((unsigned char)(0xC0 | encode));
  1067 void Assembler::andl(Address dst, int32_t imm32) {
  1068   InstructionMark im(this);
  1069   prefix(dst);
  1070   emit_int8((unsigned char)0x81);
  1071   emit_operand(rsp, dst, 4);
  1072   emit_int32(imm32);
  1075 void Assembler::andl(Register dst, int32_t imm32) {
  1076   prefix(dst);
  1077   emit_arith(0x81, 0xE0, dst, imm32);
  1080 void Assembler::andl(Register dst, Address src) {
  1081   InstructionMark im(this);
  1082   prefix(src, dst);
  1083   emit_int8(0x23);
  1084   emit_operand(dst, src);
  1087 void Assembler::andl(Register dst, Register src) {
  1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1089   emit_arith(0x23, 0xC0, dst, src);
  1092 void Assembler::andnl(Register dst, Register src1, Register src2) {
  1093   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1094   int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
  1095   emit_int8((unsigned char)0xF2);
  1096   emit_int8((unsigned char)(0xC0 | encode));
  1099 void Assembler::andnl(Register dst, Register src1, Address src2) {
  1100   InstructionMark im(this);
  1101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1102   vex_prefix_0F38(dst, src1, src2);
  1103   emit_int8((unsigned char)0xF2);
  1104   emit_operand(dst, src2);
  1107 void Assembler::bsfl(Register dst, Register src) {
  1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1109   emit_int8(0x0F);
  1110   emit_int8((unsigned char)0xBC);
  1111   emit_int8((unsigned char)(0xC0 | encode));
  1114 void Assembler::bsrl(Register dst, Register src) {
  1115   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1116   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1117   emit_int8(0x0F);
  1118   emit_int8((unsigned char)0xBD);
  1119   emit_int8((unsigned char)(0xC0 | encode));
  1122 void Assembler::bswapl(Register reg) { // bswap
  1123   int encode = prefix_and_encode(reg->encoding());
  1124   emit_int8(0x0F);
  1125   emit_int8((unsigned char)(0xC8 | encode));
  1128 void Assembler::blsil(Register dst, Register src) {
  1129   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1130   int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
  1131   emit_int8((unsigned char)0xF3);
  1132   emit_int8((unsigned char)(0xC0 | encode));
  1135 void Assembler::blsil(Register dst, Address src) {
  1136   InstructionMark im(this);
  1137   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1138   vex_prefix_0F38(rbx, dst, src);
  1139   emit_int8((unsigned char)0xF3);
  1140   emit_operand(rbx, src);
  1143 void Assembler::blsmskl(Register dst, Register src) {
  1144   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1145   int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
  1146   emit_int8((unsigned char)0xF3);
  1147   emit_int8((unsigned char)(0xC0 | encode));
  1150 void Assembler::blsmskl(Register dst, Address src) {
  1151   InstructionMark im(this);
  1152   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1153   vex_prefix_0F38(rdx, dst, src);
  1154   emit_int8((unsigned char)0xF3);
  1155   emit_operand(rdx, src);
  1158 void Assembler::blsrl(Register dst, Register src) {
  1159   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1160   int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
  1161   emit_int8((unsigned char)0xF3);
  1162   emit_int8((unsigned char)(0xC0 | encode));
  1165 void Assembler::blsrl(Register dst, Address src) {
  1166   InstructionMark im(this);
  1167   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  1168   vex_prefix_0F38(rcx, dst, src);
  1169   emit_int8((unsigned char)0xF3);
  1170   emit_operand(rcx, src);
  1173 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1174   // suspect disp32 is always good
  1175   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1177   if (L.is_bound()) {
  1178     const int long_size = 5;
  1179     int offs = (int)( target(L) - pc() );
  1180     assert(offs <= 0, "assembler error");
  1181     InstructionMark im(this);
  1182     // 1110 1000 #32-bit disp
  1183     emit_int8((unsigned char)0xE8);
  1184     emit_data(offs - long_size, rtype, operand);
  1185   } else {
  1186     InstructionMark im(this);
  1187     // 1110 1000 #32-bit disp
  1188     L.add_patch_at(code(), locator());
  1190     emit_int8((unsigned char)0xE8);
  1191     emit_data(int(0), rtype, operand);
  1195 void Assembler::call(Register dst) {
  1196   int encode = prefix_and_encode(dst->encoding());
  1197   emit_int8((unsigned char)0xFF);
  1198   emit_int8((unsigned char)(0xD0 | encode));
  1202 void Assembler::call(Address adr) {
  1203   InstructionMark im(this);
  1204   prefix(adr);
  1205   emit_int8((unsigned char)0xFF);
  1206   emit_operand(rdx, adr);
  1209 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1210   assert(entry != NULL, "call most probably wrong");
  1211   InstructionMark im(this);
  1212   emit_int8((unsigned char)0xE8);
  1213   intptr_t disp = entry - (pc() + sizeof(int32_t));
  1214   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1215   // Technically, should use call32_operand, but this format is
  1216   // implied by the fact that we're emitting a call instruction.
  1218   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1219   emit_data((int) disp, rspec, operand);
  1222 void Assembler::cdql() {
  1223   emit_int8((unsigned char)0x99);
  1226 void Assembler::cld() {
  1227   emit_int8((unsigned char)0xFC);
  1230 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1231   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1232   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1233   emit_int8(0x0F);
  1234   emit_int8(0x40 | cc);
  1235   emit_int8((unsigned char)(0xC0 | encode));
  1239 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1240   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1241   prefix(src, dst);
  1242   emit_int8(0x0F);
  1243   emit_int8(0x40 | cc);
  1244   emit_operand(dst, src);
  1247 void Assembler::cmpb(Address dst, int imm8) {
  1248   InstructionMark im(this);
  1249   prefix(dst);
  1250   emit_int8((unsigned char)0x80);
  1251   emit_operand(rdi, dst, 1);
  1252   emit_int8(imm8);
  1255 void Assembler::cmpl(Address dst, int32_t imm32) {
  1256   InstructionMark im(this);
  1257   prefix(dst);
  1258   emit_int8((unsigned char)0x81);
  1259   emit_operand(rdi, dst, 4);
  1260   emit_int32(imm32);
  1263 void Assembler::cmpl(Register dst, int32_t imm32) {
  1264   prefix(dst);
  1265   emit_arith(0x81, 0xF8, dst, imm32);
  1268 void Assembler::cmpl(Register dst, Register src) {
  1269   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1270   emit_arith(0x3B, 0xC0, dst, src);
  1274 void Assembler::cmpl(Register dst, Address  src) {
  1275   InstructionMark im(this);
  1276   prefix(src, dst);
  1277   emit_int8((unsigned char)0x3B);
  1278   emit_operand(dst, src);
  1281 void Assembler::cmpw(Address dst, int imm16) {
  1282   InstructionMark im(this);
  1283   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1284   emit_int8(0x66);
  1285   emit_int8((unsigned char)0x81);
  1286   emit_operand(rdi, dst, 2);
  1287   emit_int16(imm16);
  1290 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1291 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1292 // The ZF is set if the compared values were equal, and cleared otherwise.
  1293 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1294   InstructionMark im(this);
  1295   prefix(adr, reg);
  1296   emit_int8(0x0F);
  1297   emit_int8((unsigned char)0xB1);
  1298   emit_operand(reg, adr);
  1301 void Assembler::comisd(XMMRegister dst, Address src) {
  1302   // NOTE: dbx seems to decode this as comiss even though the
  1303   // 0x66 is there. Strangly ucomisd comes out correct
  1304   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1305   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1308 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1309   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1310   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1313 void Assembler::comiss(XMMRegister dst, Address src) {
  1314   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1315   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1318 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1319   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1320   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1323 void Assembler::cpuid() {
  1324   emit_int8(0x0F);
  1325   emit_int8((unsigned char)0xA2);
  1328 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1330   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1333 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1334   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1335   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1338 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1339   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1340   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1343 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1345   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1348 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1350   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1351   emit_int8(0x2A);
  1352   emit_int8((unsigned char)(0xC0 | encode));
  1355 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1356   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1357   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1360 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1361   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1362   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1363   emit_int8(0x2A);
  1364   emit_int8((unsigned char)(0xC0 | encode));
  1367 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1368   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1369   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1372 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1373   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1374   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1377 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1378   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1379   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1383 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1384   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1385   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1386   emit_int8(0x2C);
  1387   emit_int8((unsigned char)(0xC0 | encode));
  1390 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1391   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1392   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1393   emit_int8(0x2C);
  1394   emit_int8((unsigned char)(0xC0 | encode));
  1397 void Assembler::decl(Address dst) {
  1398   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1399   InstructionMark im(this);
  1400   prefix(dst);
  1401   emit_int8((unsigned char)0xFF);
  1402   emit_operand(rcx, dst);
  1405 void Assembler::divsd(XMMRegister dst, Address src) {
  1406   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1407   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1410 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1412   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1415 void Assembler::divss(XMMRegister dst, Address src) {
  1416   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1417   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1420 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1421   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1422   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1425 void Assembler::emms() {
  1426   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1427   emit_int8(0x0F);
  1428   emit_int8(0x77);
  1431 void Assembler::hlt() {
  1432   emit_int8((unsigned char)0xF4);
  1435 void Assembler::idivl(Register src) {
  1436   int encode = prefix_and_encode(src->encoding());
  1437   emit_int8((unsigned char)0xF7);
  1438   emit_int8((unsigned char)(0xF8 | encode));
  1441 void Assembler::divl(Register src) { // Unsigned
  1442   int encode = prefix_and_encode(src->encoding());
  1443   emit_int8((unsigned char)0xF7);
  1444   emit_int8((unsigned char)(0xF0 | encode));
  1447 void Assembler::imull(Register dst, Register src) {
  1448   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1449   emit_int8(0x0F);
  1450   emit_int8((unsigned char)0xAF);
  1451   emit_int8((unsigned char)(0xC0 | encode));
  1455 void Assembler::imull(Register dst, Register src, int value) {
  1456   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1457   if (is8bit(value)) {
  1458     emit_int8(0x6B);
  1459     emit_int8((unsigned char)(0xC0 | encode));
  1460     emit_int8(value & 0xFF);
  1461   } else {
  1462     emit_int8(0x69);
  1463     emit_int8((unsigned char)(0xC0 | encode));
  1464     emit_int32(value);
  1468 void Assembler::imull(Register dst, Address src) {
  1469   InstructionMark im(this);
  1470   prefix(src, dst);
  1471   emit_int8(0x0F);
  1472   emit_int8((unsigned char) 0xAF);
  1473   emit_operand(dst, src);
  1477 void Assembler::incl(Address dst) {
  1478   // Don't use it directly. Use MacroAssembler::increment() instead.
  1479   InstructionMark im(this);
  1480   prefix(dst);
  1481   emit_int8((unsigned char)0xFF);
  1482   emit_operand(rax, dst);
  1485 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1486   InstructionMark im(this);
  1487   assert((0 <= cc) && (cc < 16), "illegal cc");
  1488   if (L.is_bound()) {
  1489     address dst = target(L);
  1490     assert(dst != NULL, "jcc most probably wrong");
  1492     const int short_size = 2;
  1493     const int long_size = 6;
  1494     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
  1495     if (maybe_short && is8bit(offs - short_size)) {
  1496       // 0111 tttn #8-bit disp
  1497       emit_int8(0x70 | cc);
  1498       emit_int8((offs - short_size) & 0xFF);
  1499     } else {
  1500       // 0000 1111 1000 tttn #32-bit disp
  1501       assert(is_simm32(offs - long_size),
  1502              "must be 32bit offset (call4)");
  1503       emit_int8(0x0F);
  1504       emit_int8((unsigned char)(0x80 | cc));
  1505       emit_int32(offs - long_size);
  1507   } else {
  1508     // Note: could eliminate cond. jumps to this jump if condition
  1509     //       is the same however, seems to be rather unlikely case.
  1510     // Note: use jccb() if label to be bound is very close to get
  1511     //       an 8-bit displacement
  1512     L.add_patch_at(code(), locator());
  1513     emit_int8(0x0F);
  1514     emit_int8((unsigned char)(0x80 | cc));
  1515     emit_int32(0);
  1519 void Assembler::jccb(Condition cc, Label& L) {
  1520   if (L.is_bound()) {
  1521     const int short_size = 2;
  1522     address entry = target(L);
  1523 #ifdef ASSERT
  1524     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1525     intptr_t delta = short_branch_delta();
  1526     if (delta != 0) {
  1527       dist += (dist < 0 ? (-delta) :delta);
  1529     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1530 #endif
  1531     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
  1532     // 0111 tttn #8-bit disp
  1533     emit_int8(0x70 | cc);
  1534     emit_int8((offs - short_size) & 0xFF);
  1535   } else {
  1536     InstructionMark im(this);
  1537     L.add_patch_at(code(), locator());
  1538     emit_int8(0x70 | cc);
  1539     emit_int8(0);
  1543 void Assembler::jmp(Address adr) {
  1544   InstructionMark im(this);
  1545   prefix(adr);
  1546   emit_int8((unsigned char)0xFF);
  1547   emit_operand(rsp, adr);
  1550 void Assembler::jmp(Label& L, bool maybe_short) {
  1551   if (L.is_bound()) {
  1552     address entry = target(L);
  1553     assert(entry != NULL, "jmp most probably wrong");
  1554     InstructionMark im(this);
  1555     const int short_size = 2;
  1556     const int long_size = 5;
  1557     intptr_t offs = entry - pc();
  1558     if (maybe_short && is8bit(offs - short_size)) {
  1559       emit_int8((unsigned char)0xEB);
  1560       emit_int8((offs - short_size) & 0xFF);
  1561     } else {
  1562       emit_int8((unsigned char)0xE9);
  1563       emit_int32(offs - long_size);
  1565   } else {
  1566     // By default, forward jumps are always 32-bit displacements, since
  1567     // we can't yet know where the label will be bound.  If you're sure that
  1568     // the forward jump will not run beyond 256 bytes, use jmpb to
  1569     // force an 8-bit displacement.
  1570     InstructionMark im(this);
  1571     L.add_patch_at(code(), locator());
  1572     emit_int8((unsigned char)0xE9);
  1573     emit_int32(0);
  1577 void Assembler::jmp(Register entry) {
  1578   int encode = prefix_and_encode(entry->encoding());
  1579   emit_int8((unsigned char)0xFF);
  1580   emit_int8((unsigned char)(0xE0 | encode));
  1583 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1584   InstructionMark im(this);
  1585   emit_int8((unsigned char)0xE9);
  1586   assert(dest != NULL, "must have a target");
  1587   intptr_t disp = dest - (pc() + sizeof(int32_t));
  1588   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1589   emit_data(disp, rspec.reloc(), call32_operand);
  1592 void Assembler::jmpb(Label& L) {
  1593   if (L.is_bound()) {
  1594     const int short_size = 2;
  1595     address entry = target(L);
  1596     assert(entry != NULL, "jmp most probably wrong");
  1597 #ifdef ASSERT
  1598     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1599     intptr_t delta = short_branch_delta();
  1600     if (delta != 0) {
  1601       dist += (dist < 0 ? (-delta) :delta);
  1603     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1604 #endif
  1605     intptr_t offs = entry - pc();
  1606     emit_int8((unsigned char)0xEB);
  1607     emit_int8((offs - short_size) & 0xFF);
  1608   } else {
  1609     InstructionMark im(this);
  1610     L.add_patch_at(code(), locator());
  1611     emit_int8((unsigned char)0xEB);
  1612     emit_int8(0);
  1616 void Assembler::ldmxcsr( Address src) {
  1617   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1618   InstructionMark im(this);
  1619   prefix(src);
  1620   emit_int8(0x0F);
  1621   emit_int8((unsigned char)0xAE);
  1622   emit_operand(as_Register(2), src);
  1625 void Assembler::leal(Register dst, Address src) {
  1626   InstructionMark im(this);
  1627 #ifdef _LP64
  1628   emit_int8(0x67); // addr32
  1629   prefix(src, dst);
  1630 #endif // LP64
  1631   emit_int8((unsigned char)0x8D);
  1632   emit_operand(dst, src);
  1635 void Assembler::lfence() {
  1636   emit_int8(0x0F);
  1637   emit_int8((unsigned char)0xAE);
  1638   emit_int8((unsigned char)0xE8);
  1641 void Assembler::lock() {
  1642   emit_int8((unsigned char)0xF0);
  1645 void Assembler::lzcntl(Register dst, Register src) {
  1646   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1647   emit_int8((unsigned char)0xF3);
  1648   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1649   emit_int8(0x0F);
  1650   emit_int8((unsigned char)0xBD);
  1651   emit_int8((unsigned char)(0xC0 | encode));
  1654 // Emit mfence instruction
  1655 void Assembler::mfence() {
  1656   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1657   emit_int8(0x0F);
  1658   emit_int8((unsigned char)0xAE);
  1659   emit_int8((unsigned char)0xF0);
  1662 void Assembler::mov(Register dst, Register src) {
  1663   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1666 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1668   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1671 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1672   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1673   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1676 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1677   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1678   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1679   emit_int8(0x16);
  1680   emit_int8((unsigned char)(0xC0 | encode));
  1683 void Assembler::movb(Register dst, Address src) {
  1684   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1685   InstructionMark im(this);
  1686   prefix(src, dst, true);
  1687   emit_int8((unsigned char)0x8A);
  1688   emit_operand(dst, src);
  1692 void Assembler::movb(Address dst, int imm8) {
  1693   InstructionMark im(this);
  1694    prefix(dst);
  1695   emit_int8((unsigned char)0xC6);
  1696   emit_operand(rax, dst, 1);
  1697   emit_int8(imm8);
  1701 void Assembler::movb(Address dst, Register src) {
  1702   assert(src->has_byte_register(), "must have byte register");
  1703   InstructionMark im(this);
  1704   prefix(dst, src, true);
  1705   emit_int8((unsigned char)0x88);
  1706   emit_operand(src, dst);
  1709 void Assembler::movdl(XMMRegister dst, Register src) {
  1710   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1711   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1712   emit_int8(0x6E);
  1713   emit_int8((unsigned char)(0xC0 | encode));
  1716 void Assembler::movdl(Register dst, XMMRegister src) {
  1717   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1718   // swap src/dst to get correct prefix
  1719   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1720   emit_int8(0x7E);
  1721   emit_int8((unsigned char)(0xC0 | encode));
  1724 void Assembler::movdl(XMMRegister dst, Address src) {
  1725   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1726   InstructionMark im(this);
  1727   simd_prefix(dst, src, VEX_SIMD_66);
  1728   emit_int8(0x6E);
  1729   emit_operand(dst, src);
  1732 void Assembler::movdl(Address dst, XMMRegister src) {
  1733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1734   InstructionMark im(this);
  1735   simd_prefix(dst, src, VEX_SIMD_66);
  1736   emit_int8(0x7E);
  1737   emit_operand(src, dst);
  1740 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1741   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1742   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1745 void Assembler::movdqa(XMMRegister dst, Address src) {
  1746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1747   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1750 void Assembler::movdqu(XMMRegister dst, Address src) {
  1751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1752   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1755 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1757   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1760 void Assembler::movdqu(Address dst, XMMRegister src) {
  1761   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1762   InstructionMark im(this);
  1763   simd_prefix(dst, src, VEX_SIMD_F3);
  1764   emit_int8(0x7F);
  1765   emit_operand(src, dst);
  1768 // Move Unaligned 256bit Vector
  1769 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1770   assert(UseAVX, "");
  1771   bool vector256 = true;
  1772   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1773   emit_int8(0x6F);
  1774   emit_int8((unsigned char)(0xC0 | encode));
  1777 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1778   assert(UseAVX, "");
  1779   InstructionMark im(this);
  1780   bool vector256 = true;
  1781   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1782   emit_int8(0x6F);
  1783   emit_operand(dst, src);
  1786 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1787   assert(UseAVX, "");
  1788   InstructionMark im(this);
  1789   bool vector256 = true;
  1790   // swap src<->dst for encoding
  1791   assert(src != xnoreg, "sanity");
  1792   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1793   emit_int8(0x7F);
  1794   emit_operand(src, dst);
  1797 // Uses zero extension on 64bit
  1799 void Assembler::movl(Register dst, int32_t imm32) {
  1800   int encode = prefix_and_encode(dst->encoding());
  1801   emit_int8((unsigned char)(0xB8 | encode));
  1802   emit_int32(imm32);
  1805 void Assembler::movl(Register dst, Register src) {
  1806   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1807   emit_int8((unsigned char)0x8B);
  1808   emit_int8((unsigned char)(0xC0 | encode));
  1811 void Assembler::movl(Register dst, Address src) {
  1812   InstructionMark im(this);
  1813   prefix(src, dst);
  1814   emit_int8((unsigned char)0x8B);
  1815   emit_operand(dst, src);
  1818 void Assembler::movl(Address dst, int32_t imm32) {
  1819   InstructionMark im(this);
  1820   prefix(dst);
  1821   emit_int8((unsigned char)0xC7);
  1822   emit_operand(rax, dst, 4);
  1823   emit_int32(imm32);
  1826 void Assembler::movl(Address dst, Register src) {
  1827   InstructionMark im(this);
  1828   prefix(dst, src);
  1829   emit_int8((unsigned char)0x89);
  1830   emit_operand(src, dst);
  1833 // New cpus require to use movsd and movss to avoid partial register stall
  1834 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1835 // The selection is done in MacroAssembler::movdbl() and movflt().
  1836 void Assembler::movlpd(XMMRegister dst, Address src) {
  1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1838   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1841 void Assembler::movq( MMXRegister dst, Address src ) {
  1842   assert( VM_Version::supports_mmx(), "" );
  1843   emit_int8(0x0F);
  1844   emit_int8(0x6F);
  1845   emit_operand(dst, src);
  1848 void Assembler::movq( Address dst, MMXRegister src ) {
  1849   assert( VM_Version::supports_mmx(), "" );
  1850   emit_int8(0x0F);
  1851   emit_int8(0x7F);
  1852   // workaround gcc (3.2.1-7a) bug
  1853   // In that version of gcc with only an emit_operand(MMX, Address)
  1854   // gcc will tail jump and try and reverse the parameters completely
  1855   // obliterating dst in the process. By having a version available
  1856   // that doesn't need to swap the args at the tail jump the bug is
  1857   // avoided.
  1858   emit_operand(dst, src);
  1861 void Assembler::movq(XMMRegister dst, Address src) {
  1862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1863   InstructionMark im(this);
  1864   simd_prefix(dst, src, VEX_SIMD_F3);
  1865   emit_int8(0x7E);
  1866   emit_operand(dst, src);
  1869 void Assembler::movq(Address dst, XMMRegister src) {
  1870   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1871   InstructionMark im(this);
  1872   simd_prefix(dst, src, VEX_SIMD_66);
  1873   emit_int8((unsigned char)0xD6);
  1874   emit_operand(src, dst);
  1877 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1878   InstructionMark im(this);
  1879   prefix(src, dst);
  1880   emit_int8(0x0F);
  1881   emit_int8((unsigned char)0xBE);
  1882   emit_operand(dst, src);
  1885 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1886   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1887   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1888   emit_int8(0x0F);
  1889   emit_int8((unsigned char)0xBE);
  1890   emit_int8((unsigned char)(0xC0 | encode));
  1893 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1895   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1898 void Assembler::movsd(XMMRegister dst, Address src) {
  1899   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1900   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1903 void Assembler::movsd(Address dst, XMMRegister src) {
  1904   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1905   InstructionMark im(this);
  1906   simd_prefix(dst, src, VEX_SIMD_F2);
  1907   emit_int8(0x11);
  1908   emit_operand(src, dst);
  1911 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1912   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1913   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1916 void Assembler::movss(XMMRegister dst, Address src) {
  1917   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1918   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1921 void Assembler::movss(Address dst, XMMRegister src) {
  1922   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1923   InstructionMark im(this);
  1924   simd_prefix(dst, src, VEX_SIMD_F3);
  1925   emit_int8(0x11);
  1926   emit_operand(src, dst);
  1929 void Assembler::movswl(Register dst, Address src) { // movsxw
  1930   InstructionMark im(this);
  1931   prefix(src, dst);
  1932   emit_int8(0x0F);
  1933   emit_int8((unsigned char)0xBF);
  1934   emit_operand(dst, src);
  1937 void Assembler::movswl(Register dst, Register src) { // movsxw
  1938   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1939   emit_int8(0x0F);
  1940   emit_int8((unsigned char)0xBF);
  1941   emit_int8((unsigned char)(0xC0 | encode));
  1944 void Assembler::movw(Address dst, int imm16) {
  1945   InstructionMark im(this);
  1947   emit_int8(0x66); // switch to 16-bit mode
  1948   prefix(dst);
  1949   emit_int8((unsigned char)0xC7);
  1950   emit_operand(rax, dst, 2);
  1951   emit_int16(imm16);
  1954 void Assembler::movw(Register dst, Address src) {
  1955   InstructionMark im(this);
  1956   emit_int8(0x66);
  1957   prefix(src, dst);
  1958   emit_int8((unsigned char)0x8B);
  1959   emit_operand(dst, src);
  1962 void Assembler::movw(Address dst, Register src) {
  1963   InstructionMark im(this);
  1964   emit_int8(0x66);
  1965   prefix(dst, src);
  1966   emit_int8((unsigned char)0x89);
  1967   emit_operand(src, dst);
  1970 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1971   InstructionMark im(this);
  1972   prefix(src, dst);
  1973   emit_int8(0x0F);
  1974   emit_int8((unsigned char)0xB6);
  1975   emit_operand(dst, src);
  1978 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1979   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1980   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1981   emit_int8(0x0F);
  1982   emit_int8((unsigned char)0xB6);
  1983   emit_int8(0xC0 | encode);
  1986 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1987   InstructionMark im(this);
  1988   prefix(src, dst);
  1989   emit_int8(0x0F);
  1990   emit_int8((unsigned char)0xB7);
  1991   emit_operand(dst, src);
  1994 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1995   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1996   emit_int8(0x0F);
  1997   emit_int8((unsigned char)0xB7);
  1998   emit_int8(0xC0 | encode);
  2001 void Assembler::mull(Address src) {
  2002   InstructionMark im(this);
  2003   prefix(src);
  2004   emit_int8((unsigned char)0xF7);
  2005   emit_operand(rsp, src);
  2008 void Assembler::mull(Register src) {
  2009   int encode = prefix_and_encode(src->encoding());
  2010   emit_int8((unsigned char)0xF7);
  2011   emit_int8((unsigned char)(0xE0 | encode));
  2014 void Assembler::mulsd(XMMRegister dst, Address src) {
  2015   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2016   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  2019 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  2020   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2021   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  2024 void Assembler::mulss(XMMRegister dst, Address src) {
  2025   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2026   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  2029 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  2030   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2031   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  2034 void Assembler::negl(Register dst) {
  2035   int encode = prefix_and_encode(dst->encoding());
  2036   emit_int8((unsigned char)0xF7);
  2037   emit_int8((unsigned char)(0xD8 | encode));
  2040 void Assembler::nop(int i) {
  2041 #ifdef ASSERT
  2042   assert(i > 0, " ");
  2043   // The fancy nops aren't currently recognized by debuggers making it a
  2044   // pain to disassemble code while debugging. If asserts are on clearly
  2045   // speed is not an issue so simply use the single byte traditional nop
  2046   // to do alignment.
  2048   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
  2049   return;
  2051 #endif // ASSERT
  2053   if (UseAddressNop && VM_Version::is_intel()) {
  2054     //
  2055     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  2056     //  1: 0x90
  2057     //  2: 0x66 0x90
  2058     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2059     //  4: 0x0F 0x1F 0x40 0x00
  2060     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2061     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2062     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2063     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2064     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2065     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2066     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2068     // The rest coding is Intel specific - don't use consecutive address nops
  2070     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2071     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2072     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2073     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2075     while(i >= 15) {
  2076       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2077       i -= 15;
  2078       emit_int8(0x66);   // size prefix
  2079       emit_int8(0x66);   // size prefix
  2080       emit_int8(0x66);   // size prefix
  2081       addr_nop_8();
  2082       emit_int8(0x66);   // size prefix
  2083       emit_int8(0x66);   // size prefix
  2084       emit_int8(0x66);   // size prefix
  2085       emit_int8((unsigned char)0x90);
  2086                          // nop
  2088     switch (i) {
  2089       case 14:
  2090         emit_int8(0x66); // size prefix
  2091       case 13:
  2092         emit_int8(0x66); // size prefix
  2093       case 12:
  2094         addr_nop_8();
  2095         emit_int8(0x66); // size prefix
  2096         emit_int8(0x66); // size prefix
  2097         emit_int8(0x66); // size prefix
  2098         emit_int8((unsigned char)0x90);
  2099                          // nop
  2100         break;
  2101       case 11:
  2102         emit_int8(0x66); // size prefix
  2103       case 10:
  2104         emit_int8(0x66); // size prefix
  2105       case 9:
  2106         emit_int8(0x66); // size prefix
  2107       case 8:
  2108         addr_nop_8();
  2109         break;
  2110       case 7:
  2111         addr_nop_7();
  2112         break;
  2113       case 6:
  2114         emit_int8(0x66); // size prefix
  2115       case 5:
  2116         addr_nop_5();
  2117         break;
  2118       case 4:
  2119         addr_nop_4();
  2120         break;
  2121       case 3:
  2122         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2123         emit_int8(0x66); // size prefix
  2124       case 2:
  2125         emit_int8(0x66); // size prefix
  2126       case 1:
  2127         emit_int8((unsigned char)0x90);
  2128                          // nop
  2129         break;
  2130       default:
  2131         assert(i == 0, " ");
  2133     return;
  2135   if (UseAddressNop && VM_Version::is_amd()) {
  2136     //
  2137     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2138     //  1: 0x90
  2139     //  2: 0x66 0x90
  2140     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2141     //  4: 0x0F 0x1F 0x40 0x00
  2142     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2143     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2144     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2145     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2146     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2147     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2148     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2150     // The rest coding is AMD specific - use consecutive address nops
  2152     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2153     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2154     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2155     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2156     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2157     //     Size prefixes (0x66) are added for larger sizes
  2159     while(i >= 22) {
  2160       i -= 11;
  2161       emit_int8(0x66); // size prefix
  2162       emit_int8(0x66); // size prefix
  2163       emit_int8(0x66); // size prefix
  2164       addr_nop_8();
  2166     // Generate first nop for size between 21-12
  2167     switch (i) {
  2168       case 21:
  2169         i -= 1;
  2170         emit_int8(0x66); // size prefix
  2171       case 20:
  2172       case 19:
  2173         i -= 1;
  2174         emit_int8(0x66); // size prefix
  2175       case 18:
  2176       case 17:
  2177         i -= 1;
  2178         emit_int8(0x66); // size prefix
  2179       case 16:
  2180       case 15:
  2181         i -= 8;
  2182         addr_nop_8();
  2183         break;
  2184       case 14:
  2185       case 13:
  2186         i -= 7;
  2187         addr_nop_7();
  2188         break;
  2189       case 12:
  2190         i -= 6;
  2191         emit_int8(0x66); // size prefix
  2192         addr_nop_5();
  2193         break;
  2194       default:
  2195         assert(i < 12, " ");
  2198     // Generate second nop for size between 11-1
  2199     switch (i) {
  2200       case 11:
  2201         emit_int8(0x66); // size prefix
  2202       case 10:
  2203         emit_int8(0x66); // size prefix
  2204       case 9:
  2205         emit_int8(0x66); // size prefix
  2206       case 8:
  2207         addr_nop_8();
  2208         break;
  2209       case 7:
  2210         addr_nop_7();
  2211         break;
  2212       case 6:
  2213         emit_int8(0x66); // size prefix
  2214       case 5:
  2215         addr_nop_5();
  2216         break;
  2217       case 4:
  2218         addr_nop_4();
  2219         break;
  2220       case 3:
  2221         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2222         emit_int8(0x66); // size prefix
  2223       case 2:
  2224         emit_int8(0x66); // size prefix
  2225       case 1:
  2226         emit_int8((unsigned char)0x90);
  2227                          // nop
  2228         break;
  2229       default:
  2230         assert(i == 0, " ");
  2232     return;
  2235   // Using nops with size prefixes "0x66 0x90".
  2236   // From AMD Optimization Guide:
  2237   //  1: 0x90
  2238   //  2: 0x66 0x90
  2239   //  3: 0x66 0x66 0x90
  2240   //  4: 0x66 0x66 0x66 0x90
  2241   //  5: 0x66 0x66 0x90 0x66 0x90
  2242   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2243   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2244   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2245   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2246   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2247   //
  2248   while(i > 12) {
  2249     i -= 4;
  2250     emit_int8(0x66); // size prefix
  2251     emit_int8(0x66);
  2252     emit_int8(0x66);
  2253     emit_int8((unsigned char)0x90);
  2254                      // nop
  2256   // 1 - 12 nops
  2257   if(i > 8) {
  2258     if(i > 9) {
  2259       i -= 1;
  2260       emit_int8(0x66);
  2262     i -= 3;
  2263     emit_int8(0x66);
  2264     emit_int8(0x66);
  2265     emit_int8((unsigned char)0x90);
  2267   // 1 - 8 nops
  2268   if(i > 4) {
  2269     if(i > 6) {
  2270       i -= 1;
  2271       emit_int8(0x66);
  2273     i -= 3;
  2274     emit_int8(0x66);
  2275     emit_int8(0x66);
  2276     emit_int8((unsigned char)0x90);
  2278   switch (i) {
  2279     case 4:
  2280       emit_int8(0x66);
  2281     case 3:
  2282       emit_int8(0x66);
  2283     case 2:
  2284       emit_int8(0x66);
  2285     case 1:
  2286       emit_int8((unsigned char)0x90);
  2287       break;
  2288     default:
  2289       assert(i == 0, " ");
  2293 void Assembler::notl(Register dst) {
  2294   int encode = prefix_and_encode(dst->encoding());
  2295   emit_int8((unsigned char)0xF7);
  2296   emit_int8((unsigned char)(0xD0 | encode));
  2299 void Assembler::orl(Address dst, int32_t imm32) {
  2300   InstructionMark im(this);
  2301   prefix(dst);
  2302   emit_arith_operand(0x81, rcx, dst, imm32);
  2305 void Assembler::orl(Register dst, int32_t imm32) {
  2306   prefix(dst);
  2307   emit_arith(0x81, 0xC8, dst, imm32);
  2310 void Assembler::orl(Register dst, Address src) {
  2311   InstructionMark im(this);
  2312   prefix(src, dst);
  2313   emit_int8(0x0B);
  2314   emit_operand(dst, src);
  2317 void Assembler::orl(Register dst, Register src) {
  2318   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2319   emit_arith(0x0B, 0xC0, dst, src);
  2322 void Assembler::packuswb(XMMRegister dst, Address src) {
  2323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2324   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2325   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2328 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2329   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2330   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2333 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2334   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  2335   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
  2338 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
  2339   assert(VM_Version::supports_avx2(), "");
  2340   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
  2341   emit_int8(0x00);
  2342   emit_int8(0xC0 | encode);
  2343   emit_int8(imm8);
  2346 void Assembler::pause() {
  2347   emit_int8((unsigned char)0xF3);
  2348   emit_int8((unsigned char)0x90);
  2351 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2352   assert(VM_Version::supports_sse4_2(), "");
  2353   InstructionMark im(this);
  2354   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2355   emit_int8(0x61);
  2356   emit_operand(dst, src);
  2357   emit_int8(imm8);
  2360 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2361   assert(VM_Version::supports_sse4_2(), "");
  2362   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2363   emit_int8(0x61);
  2364   emit_int8((unsigned char)(0xC0 | encode));
  2365   emit_int8(imm8);
  2368 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
  2369   assert(VM_Version::supports_sse4_1(), "");
  2370   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  2371   emit_int8(0x16);
  2372   emit_int8((unsigned char)(0xC0 | encode));
  2373   emit_int8(imm8);
  2376 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
  2377   assert(VM_Version::supports_sse4_1(), "");
  2378   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  2379   emit_int8(0x16);
  2380   emit_int8((unsigned char)(0xC0 | encode));
  2381   emit_int8(imm8);
  2384 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
  2385   assert(VM_Version::supports_sse4_1(), "");
  2386   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  2387   emit_int8(0x22);
  2388   emit_int8((unsigned char)(0xC0 | encode));
  2389   emit_int8(imm8);
  2392 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
  2393   assert(VM_Version::supports_sse4_1(), "");
  2394   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  2395   emit_int8(0x22);
  2396   emit_int8((unsigned char)(0xC0 | encode));
  2397   emit_int8(imm8);
  2400 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2401   assert(VM_Version::supports_sse4_1(), "");
  2402   InstructionMark im(this);
  2403   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2404   emit_int8(0x30);
  2405   emit_operand(dst, src);
  2408 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2409   assert(VM_Version::supports_sse4_1(), "");
  2410   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2411   emit_int8(0x30);
  2412   emit_int8((unsigned char)(0xC0 | encode));
  2415 // generic
  2416 void Assembler::pop(Register dst) {
  2417   int encode = prefix_and_encode(dst->encoding());
  2418   emit_int8(0x58 | encode);
  2421 void Assembler::popcntl(Register dst, Address src) {
  2422   assert(VM_Version::supports_popcnt(), "must support");
  2423   InstructionMark im(this);
  2424   emit_int8((unsigned char)0xF3);
  2425   prefix(src, dst);
  2426   emit_int8(0x0F);
  2427   emit_int8((unsigned char)0xB8);
  2428   emit_operand(dst, src);
  2431 void Assembler::popcntl(Register dst, Register src) {
  2432   assert(VM_Version::supports_popcnt(), "must support");
  2433   emit_int8((unsigned char)0xF3);
  2434   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2435   emit_int8(0x0F);
  2436   emit_int8((unsigned char)0xB8);
  2437   emit_int8((unsigned char)(0xC0 | encode));
  2440 void Assembler::popf() {
  2441   emit_int8((unsigned char)0x9D);
  2444 #ifndef _LP64 // no 32bit push/pop on amd64
  2445 void Assembler::popl(Address dst) {
  2446   // NOTE: this will adjust stack by 8byte on 64bits
  2447   InstructionMark im(this);
  2448   prefix(dst);
  2449   emit_int8((unsigned char)0x8F);
  2450   emit_operand(rax, dst);
  2452 #endif
  2454 void Assembler::prefetch_prefix(Address src) {
  2455   prefix(src);
  2456   emit_int8(0x0F);
  2459 void Assembler::prefetchnta(Address src) {
  2460   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2461   InstructionMark im(this);
  2462   prefetch_prefix(src);
  2463   emit_int8(0x18);
  2464   emit_operand(rax, src); // 0, src
  2467 void Assembler::prefetchr(Address src) {
  2468   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2469   InstructionMark im(this);
  2470   prefetch_prefix(src);
  2471   emit_int8(0x0D);
  2472   emit_operand(rax, src); // 0, src
  2475 void Assembler::prefetcht0(Address src) {
  2476   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2477   InstructionMark im(this);
  2478   prefetch_prefix(src);
  2479   emit_int8(0x18);
  2480   emit_operand(rcx, src); // 1, src
  2483 void Assembler::prefetcht1(Address src) {
  2484   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2485   InstructionMark im(this);
  2486   prefetch_prefix(src);
  2487   emit_int8(0x18);
  2488   emit_operand(rdx, src); // 2, src
  2491 void Assembler::prefetcht2(Address src) {
  2492   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2493   InstructionMark im(this);
  2494   prefetch_prefix(src);
  2495   emit_int8(0x18);
  2496   emit_operand(rbx, src); // 3, src
  2499 void Assembler::prefetchw(Address src) {
  2500   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2501   InstructionMark im(this);
  2502   prefetch_prefix(src);
  2503   emit_int8(0x0D);
  2504   emit_operand(rcx, src); // 1, src
  2507 void Assembler::prefix(Prefix p) {
  2508   emit_int8(p);
  2511 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  2512   assert(VM_Version::supports_ssse3(), "");
  2513   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2514   emit_int8(0x00);
  2515   emit_int8((unsigned char)(0xC0 | encode));
  2518 void Assembler::pshufb(XMMRegister dst, Address src) {
  2519   assert(VM_Version::supports_ssse3(), "");
  2520   InstructionMark im(this);
  2521   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2522   emit_int8(0x00);
  2523   emit_operand(dst, src);
  2526 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2527   assert(isByte(mode), "invalid value");
  2528   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2529   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2530   emit_int8(mode & 0xFF);
  2534 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2535   assert(isByte(mode), "invalid value");
  2536   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2537   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2538   InstructionMark im(this);
  2539   simd_prefix(dst, src, VEX_SIMD_66);
  2540   emit_int8(0x70);
  2541   emit_operand(dst, src);
  2542   emit_int8(mode & 0xFF);
  2545 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2546   assert(isByte(mode), "invalid value");
  2547   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2548   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2549   emit_int8(mode & 0xFF);
  2552 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2553   assert(isByte(mode), "invalid value");
  2554   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2555   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2556   InstructionMark im(this);
  2557   simd_prefix(dst, src, VEX_SIMD_F2);
  2558   emit_int8(0x70);
  2559   emit_operand(dst, src);
  2560   emit_int8(mode & 0xFF);
  2563 void Assembler::psrldq(XMMRegister dst, int shift) {
  2564   // Shift 128 bit value in xmm register by number of bytes.
  2565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2566   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2567   emit_int8(0x73);
  2568   emit_int8((unsigned char)(0xC0 | encode));
  2569   emit_int8(shift);
  2572 void Assembler::ptest(XMMRegister dst, Address src) {
  2573   assert(VM_Version::supports_sse4_1(), "");
  2574   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2575   InstructionMark im(this);
  2576   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2577   emit_int8(0x17);
  2578   emit_operand(dst, src);
  2581 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2582   assert(VM_Version::supports_sse4_1(), "");
  2583   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2584   emit_int8(0x17);
  2585   emit_int8((unsigned char)(0xC0 | encode));
  2588 void Assembler::vptest(XMMRegister dst, Address src) {
  2589   assert(VM_Version::supports_avx(), "");
  2590   InstructionMark im(this);
  2591   bool vector256 = true;
  2592   assert(dst != xnoreg, "sanity");
  2593   int dst_enc = dst->encoding();
  2594   // swap src<->dst for encoding
  2595   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  2596   emit_int8(0x17);
  2597   emit_operand(dst, src);
  2600 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  2601   assert(VM_Version::supports_avx(), "");
  2602   bool vector256 = true;
  2603   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  2604   emit_int8(0x17);
  2605   emit_int8((unsigned char)(0xC0 | encode));
  2608 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2610   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2611   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2614 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2615   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2616   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2619 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2621   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2622   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2625 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2627   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2630 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2632   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2635 void Assembler::push(int32_t imm32) {
  2636   // in 64bits we push 64bits onto the stack but only
  2637   // take a 32bit immediate
  2638   emit_int8(0x68);
  2639   emit_int32(imm32);
  2642 void Assembler::push(Register src) {
  2643   int encode = prefix_and_encode(src->encoding());
  2645   emit_int8(0x50 | encode);
  2648 void Assembler::pushf() {
  2649   emit_int8((unsigned char)0x9C);
  2652 #ifndef _LP64 // no 32bit push/pop on amd64
  2653 void Assembler::pushl(Address src) {
  2654   // Note this will push 64bit on 64bit
  2655   InstructionMark im(this);
  2656   prefix(src);
  2657   emit_int8((unsigned char)0xFF);
  2658   emit_operand(rsi, src);
  2660 #endif
  2662 void Assembler::rcll(Register dst, int imm8) {
  2663   assert(isShiftCount(imm8), "illegal shift count");
  2664   int encode = prefix_and_encode(dst->encoding());
  2665   if (imm8 == 1) {
  2666     emit_int8((unsigned char)0xD1);
  2667     emit_int8((unsigned char)(0xD0 | encode));
  2668   } else {
  2669     emit_int8((unsigned char)0xC1);
  2670     emit_int8((unsigned char)0xD0 | encode);
  2671     emit_int8(imm8);
  2675 void Assembler::rdtsc() {
  2676   emit_int8((unsigned char)0x0F);
  2677   emit_int8((unsigned char)0x31);
  2680 // copies data from [esi] to [edi] using rcx pointer sized words
  2681 // generic
  2682 void Assembler::rep_mov() {
  2683   emit_int8((unsigned char)0xF3);
  2684   // MOVSQ
  2685   LP64_ONLY(prefix(REX_W));
  2686   emit_int8((unsigned char)0xA5);
  2689 // sets rcx bytes with rax, value at [edi]
  2690 void Assembler::rep_stosb() {
  2691   emit_int8((unsigned char)0xF3); // REP
  2692   LP64_ONLY(prefix(REX_W));
  2693   emit_int8((unsigned char)0xAA); // STOSB
  2696 // sets rcx pointer sized words with rax, value at [edi]
  2697 // generic
  2698 void Assembler::rep_stos() {
  2699   emit_int8((unsigned char)0xF3); // REP
  2700   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
  2701   emit_int8((unsigned char)0xAB);
  2704 // scans rcx pointer sized words at [edi] for occurance of rax,
  2705 // generic
  2706 void Assembler::repne_scan() { // repne_scan
  2707   emit_int8((unsigned char)0xF2);
  2708   // SCASQ
  2709   LP64_ONLY(prefix(REX_W));
  2710   emit_int8((unsigned char)0xAF);
  2713 #ifdef _LP64
  2714 // scans rcx 4 byte words at [edi] for occurance of rax,
  2715 // generic
  2716 void Assembler::repne_scanl() { // repne_scan
  2717   emit_int8((unsigned char)0xF2);
  2718   // SCASL
  2719   emit_int8((unsigned char)0xAF);
  2721 #endif
  2723 void Assembler::ret(int imm16) {
  2724   if (imm16 == 0) {
  2725     emit_int8((unsigned char)0xC3);
  2726   } else {
  2727     emit_int8((unsigned char)0xC2);
  2728     emit_int16(imm16);
  2732 void Assembler::sahf() {
  2733 #ifdef _LP64
  2734   // Not supported in 64bit mode
  2735   ShouldNotReachHere();
  2736 #endif
  2737   emit_int8((unsigned char)0x9E);
  2740 void Assembler::sarl(Register dst, int imm8) {
  2741   int encode = prefix_and_encode(dst->encoding());
  2742   assert(isShiftCount(imm8), "illegal shift count");
  2743   if (imm8 == 1) {
  2744     emit_int8((unsigned char)0xD1);
  2745     emit_int8((unsigned char)(0xF8 | encode));
  2746   } else {
  2747     emit_int8((unsigned char)0xC1);
  2748     emit_int8((unsigned char)(0xF8 | encode));
  2749     emit_int8(imm8);
  2753 void Assembler::sarl(Register dst) {
  2754   int encode = prefix_and_encode(dst->encoding());
  2755   emit_int8((unsigned char)0xD3);
  2756   emit_int8((unsigned char)(0xF8 | encode));
  2759 void Assembler::sbbl(Address dst, int32_t imm32) {
  2760   InstructionMark im(this);
  2761   prefix(dst);
  2762   emit_arith_operand(0x81, rbx, dst, imm32);
  2765 void Assembler::sbbl(Register dst, int32_t imm32) {
  2766   prefix(dst);
  2767   emit_arith(0x81, 0xD8, dst, imm32);
  2771 void Assembler::sbbl(Register dst, Address src) {
  2772   InstructionMark im(this);
  2773   prefix(src, dst);
  2774   emit_int8(0x1B);
  2775   emit_operand(dst, src);
  2778 void Assembler::sbbl(Register dst, Register src) {
  2779   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2780   emit_arith(0x1B, 0xC0, dst, src);
  2783 void Assembler::setb(Condition cc, Register dst) {
  2784   assert(0 <= cc && cc < 16, "illegal cc");
  2785   int encode = prefix_and_encode(dst->encoding(), true);
  2786   emit_int8(0x0F);
  2787   emit_int8((unsigned char)0x90 | cc);
  2788   emit_int8((unsigned char)(0xC0 | encode));
  2791 void Assembler::shll(Register dst, int imm8) {
  2792   assert(isShiftCount(imm8), "illegal shift count");
  2793   int encode = prefix_and_encode(dst->encoding());
  2794   if (imm8 == 1 ) {
  2795     emit_int8((unsigned char)0xD1);
  2796     emit_int8((unsigned char)(0xE0 | encode));
  2797   } else {
  2798     emit_int8((unsigned char)0xC1);
  2799     emit_int8((unsigned char)(0xE0 | encode));
  2800     emit_int8(imm8);
  2804 void Assembler::shll(Register dst) {
  2805   int encode = prefix_and_encode(dst->encoding());
  2806   emit_int8((unsigned char)0xD3);
  2807   emit_int8((unsigned char)(0xE0 | encode));
  2810 void Assembler::shrl(Register dst, int imm8) {
  2811   assert(isShiftCount(imm8), "illegal shift count");
  2812   int encode = prefix_and_encode(dst->encoding());
  2813   emit_int8((unsigned char)0xC1);
  2814   emit_int8((unsigned char)(0xE8 | encode));
  2815   emit_int8(imm8);
  2818 void Assembler::shrl(Register dst) {
  2819   int encode = prefix_and_encode(dst->encoding());
  2820   emit_int8((unsigned char)0xD3);
  2821   emit_int8((unsigned char)(0xE8 | encode));
  2824 // copies a single word from [esi] to [edi]
  2825 void Assembler::smovl() {
  2826   emit_int8((unsigned char)0xA5);
  2829 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2831   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2834 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2836   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2839 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2840   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2841   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2844 void Assembler::std() {
  2845   emit_int8((unsigned char)0xFD);
  2848 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2849   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2850   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2853 void Assembler::stmxcsr( Address dst) {
  2854   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2855   InstructionMark im(this);
  2856   prefix(dst);
  2857   emit_int8(0x0F);
  2858   emit_int8((unsigned char)0xAE);
  2859   emit_operand(as_Register(3), dst);
  2862 void Assembler::subl(Address dst, int32_t imm32) {
  2863   InstructionMark im(this);
  2864   prefix(dst);
  2865   emit_arith_operand(0x81, rbp, dst, imm32);
  2868 void Assembler::subl(Address dst, Register src) {
  2869   InstructionMark im(this);
  2870   prefix(dst, src);
  2871   emit_int8(0x29);
  2872   emit_operand(src, dst);
  2875 void Assembler::subl(Register dst, int32_t imm32) {
  2876   prefix(dst);
  2877   emit_arith(0x81, 0xE8, dst, imm32);
  2880 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2881 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2882   prefix(dst);
  2883   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2886 void Assembler::subl(Register dst, Address src) {
  2887   InstructionMark im(this);
  2888   prefix(src, dst);
  2889   emit_int8(0x2B);
  2890   emit_operand(dst, src);
  2893 void Assembler::subl(Register dst, Register src) {
  2894   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2895   emit_arith(0x2B, 0xC0, dst, src);
  2898 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2899   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2900   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2903 void Assembler::subsd(XMMRegister dst, Address src) {
  2904   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2905   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2908 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2909   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2910   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2913 void Assembler::subss(XMMRegister dst, Address src) {
  2914   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2915   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2918 void Assembler::testb(Register dst, int imm8) {
  2919   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2920   (void) prefix_and_encode(dst->encoding(), true);
  2921   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2924 void Assembler::testl(Register dst, int32_t imm32) {
  2925   // not using emit_arith because test
  2926   // doesn't support sign-extension of
  2927   // 8bit operands
  2928   int encode = dst->encoding();
  2929   if (encode == 0) {
  2930     emit_int8((unsigned char)0xA9);
  2931   } else {
  2932     encode = prefix_and_encode(encode);
  2933     emit_int8((unsigned char)0xF7);
  2934     emit_int8((unsigned char)(0xC0 | encode));
  2936   emit_int32(imm32);
  2939 void Assembler::testl(Register dst, Register src) {
  2940   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2941   emit_arith(0x85, 0xC0, dst, src);
  2944 void Assembler::testl(Register dst, Address  src) {
  2945   InstructionMark im(this);
  2946   prefix(src, dst);
  2947   emit_int8((unsigned char)0x85);
  2948   emit_operand(dst, src);
  2951 void Assembler::tzcntl(Register dst, Register src) {
  2952   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
  2953   emit_int8((unsigned char)0xF3);
  2954   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2955   emit_int8(0x0F);
  2956   emit_int8((unsigned char)0xBC);
  2957   emit_int8((unsigned char)0xC0 | encode);
  2960 void Assembler::tzcntq(Register dst, Register src) {
  2961   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
  2962   emit_int8((unsigned char)0xF3);
  2963   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2964   emit_int8(0x0F);
  2965   emit_int8((unsigned char)0xBC);
  2966   emit_int8((unsigned char)(0xC0 | encode));
  2969 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2970   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2971   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2974 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2976   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2979 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2980   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2981   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2984 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2985   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2986   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2989 void Assembler::xabort(int8_t imm8) {
  2990   emit_int8((unsigned char)0xC6);
  2991   emit_int8((unsigned char)0xF8);
  2992   emit_int8((unsigned char)(imm8 & 0xFF));
  2995 void Assembler::xaddl(Address dst, Register src) {
  2996   InstructionMark im(this);
  2997   prefix(dst, src);
  2998   emit_int8(0x0F);
  2999   emit_int8((unsigned char)0xC1);
  3000   emit_operand(src, dst);
  3003 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
  3004   InstructionMark im(this);
  3005   relocate(rtype);
  3006   if (abort.is_bound()) {
  3007     address entry = target(abort);
  3008     assert(entry != NULL, "abort entry NULL");
  3009     intptr_t offset = entry - pc();
  3010     emit_int8((unsigned char)0xC7);
  3011     emit_int8((unsigned char)0xF8);
  3012     emit_int32(offset - 6); // 2 opcode + 4 address
  3013   } else {
  3014     abort.add_patch_at(code(), locator());
  3015     emit_int8((unsigned char)0xC7);
  3016     emit_int8((unsigned char)0xF8);
  3017     emit_int32(0);
  3021 void Assembler::xchgl(Register dst, Address src) { // xchg
  3022   InstructionMark im(this);
  3023   prefix(src, dst);
  3024   emit_int8((unsigned char)0x87);
  3025   emit_operand(dst, src);
  3028 void Assembler::xchgl(Register dst, Register src) {
  3029   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  3030   emit_int8((unsigned char)0x87);
  3031   emit_int8((unsigned char)(0xC0 | encode));
  3034 void Assembler::xend() {
  3035   emit_int8((unsigned char)0x0F);
  3036   emit_int8((unsigned char)0x01);
  3037   emit_int8((unsigned char)0xD5);
  3040 void Assembler::xgetbv() {
  3041   emit_int8(0x0F);
  3042   emit_int8(0x01);
  3043   emit_int8((unsigned char)0xD0);
  3046 void Assembler::xorl(Register dst, int32_t imm32) {
  3047   prefix(dst);
  3048   emit_arith(0x81, 0xF0, dst, imm32);
  3051 void Assembler::xorl(Register dst, Address src) {
  3052   InstructionMark im(this);
  3053   prefix(src, dst);
  3054   emit_int8(0x33);
  3055   emit_operand(dst, src);
  3058 void Assembler::xorl(Register dst, Register src) {
  3059   (void) prefix_and_encode(dst->encoding(), src->encoding());
  3060   emit_arith(0x33, 0xC0, dst, src);
  3064 // AVX 3-operands scalar float-point arithmetic instructions
  3066 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  3067   assert(VM_Version::supports_avx(), "");
  3068   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3071 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3072   assert(VM_Version::supports_avx(), "");
  3073   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3076 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  3077   assert(VM_Version::supports_avx(), "");
  3078   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3081 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3082   assert(VM_Version::supports_avx(), "");
  3083   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3086 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  3087   assert(VM_Version::supports_avx(), "");
  3088   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3091 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3092   assert(VM_Version::supports_avx(), "");
  3093   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3096 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  3097   assert(VM_Version::supports_avx(), "");
  3098   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3101 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3102   assert(VM_Version::supports_avx(), "");
  3103   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3106 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  3107   assert(VM_Version::supports_avx(), "");
  3108   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3111 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3112   assert(VM_Version::supports_avx(), "");
  3113   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3116 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3117   assert(VM_Version::supports_avx(), "");
  3118   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3121 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3122   assert(VM_Version::supports_avx(), "");
  3123   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3126 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3127   assert(VM_Version::supports_avx(), "");
  3128   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3131 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3132   assert(VM_Version::supports_avx(), "");
  3133   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3136 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3137   assert(VM_Version::supports_avx(), "");
  3138   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3141 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3142   assert(VM_Version::supports_avx(), "");
  3143   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3146 //====================VECTOR ARITHMETIC=====================================
  3148 // Float-point vector arithmetic
  3150 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  3151   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3152   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  3155 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  3156   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3157   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  3160 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3161   assert(VM_Version::supports_avx(), "");
  3162   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3165 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3166   assert(VM_Version::supports_avx(), "");
  3167   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3170 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3171   assert(VM_Version::supports_avx(), "");
  3172   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3175 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3176   assert(VM_Version::supports_avx(), "");
  3177   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3180 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  3181   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3182   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  3185 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  3186   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3187   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  3190 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3191   assert(VM_Version::supports_avx(), "");
  3192   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3195 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3196   assert(VM_Version::supports_avx(), "");
  3197   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3200 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3201   assert(VM_Version::supports_avx(), "");
  3202   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3205 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3206   assert(VM_Version::supports_avx(), "");
  3207   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3210 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  3211   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3212   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  3215 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  3216   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3217   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  3220 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3221   assert(VM_Version::supports_avx(), "");
  3222   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3225 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3226   assert(VM_Version::supports_avx(), "");
  3227   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3230 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3231   assert(VM_Version::supports_avx(), "");
  3232   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3235 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3236   assert(VM_Version::supports_avx(), "");
  3237   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3240 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  3241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3242   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  3245 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  3246   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3247   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  3250 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3251   assert(VM_Version::supports_avx(), "");
  3252   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3255 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3256   assert(VM_Version::supports_avx(), "");
  3257   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3260 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3261   assert(VM_Version::supports_avx(), "");
  3262   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3265 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3266   assert(VM_Version::supports_avx(), "");
  3267   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3270 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  3271   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3272   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3275 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3276   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3277   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3280 void Assembler::andps(XMMRegister dst, Address src) {
  3281   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3282   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3285 void Assembler::andpd(XMMRegister dst, Address src) {
  3286   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3287   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3290 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3291   assert(VM_Version::supports_avx(), "");
  3292   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3295 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3296   assert(VM_Version::supports_avx(), "");
  3297   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3300 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3301   assert(VM_Version::supports_avx(), "");
  3302   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3305 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3306   assert(VM_Version::supports_avx(), "");
  3307   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3310 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3311   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3312   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3315 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3316   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3317   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3320 void Assembler::xorpd(XMMRegister dst, Address src) {
  3321   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3322   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3325 void Assembler::xorps(XMMRegister dst, Address src) {
  3326   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3327   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3330 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3331   assert(VM_Version::supports_avx(), "");
  3332   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3335 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3336   assert(VM_Version::supports_avx(), "");
  3337   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3340 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3341   assert(VM_Version::supports_avx(), "");
  3342   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3345 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3346   assert(VM_Version::supports_avx(), "");
  3347   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3351 // Integer vector arithmetic
  3352 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3354   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3357 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3359   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3362 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3363   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3364   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3367 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3368   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3369   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3372 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3373   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3374   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3377 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3378   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3379   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3382 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3383   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3384   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3387 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3388   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3389   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3392 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3393   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3394   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3397 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3398   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3399   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3402 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3403   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3404   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3407 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3408   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3409   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3412 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3413   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3414   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3417 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3418   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3419   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3422 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3423   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3424   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3427 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3428   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3429   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3432 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3433   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3434   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3437 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3438   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3439   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3442 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3443   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3444   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3447 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3448   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3449   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3452 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3453   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3454   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3457 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3458   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3459   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3462 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3463   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3464   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3467 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3468   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3469   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3472 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3474   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3477 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3478   assert(VM_Version::supports_sse4_1(), "");
  3479   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3480   emit_int8(0x40);
  3481   emit_int8((unsigned char)(0xC0 | encode));
  3484 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3485   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3486   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3489 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3490   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3491   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3492   emit_int8(0x40);
  3493   emit_int8((unsigned char)(0xC0 | encode));
  3496 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3497   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3498   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3501 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3502   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3503   InstructionMark im(this);
  3504   int dst_enc = dst->encoding();
  3505   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3506   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3507   emit_int8(0x40);
  3508   emit_operand(dst, src);
  3511 // Shift packed integers left by specified number of bits.
  3512 void Assembler::psllw(XMMRegister dst, int shift) {
  3513   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3514   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3515   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3516   emit_int8(0x71);
  3517   emit_int8((unsigned char)(0xC0 | encode));
  3518   emit_int8(shift & 0xFF);
  3521 void Assembler::pslld(XMMRegister dst, int shift) {
  3522   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3523   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3524   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3525   emit_int8(0x72);
  3526   emit_int8((unsigned char)(0xC0 | encode));
  3527   emit_int8(shift & 0xFF);
  3530 void Assembler::psllq(XMMRegister dst, int shift) {
  3531   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3532   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3533   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3534   emit_int8(0x73);
  3535   emit_int8((unsigned char)(0xC0 | encode));
  3536   emit_int8(shift & 0xFF);
  3539 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3540   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3541   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3544 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3545   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3546   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3549 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3550   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3551   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3554 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3555   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3556   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3557   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3558   emit_int8(shift & 0xFF);
  3561 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3562   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3563   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3564   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3565   emit_int8(shift & 0xFF);
  3568 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3569   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3570   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3571   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3572   emit_int8(shift & 0xFF);
  3575 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3576   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3577   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3580 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3581   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3582   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3585 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3586   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3587   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3590 // Shift packed integers logically right by specified number of bits.
  3591 void Assembler::psrlw(XMMRegister dst, int shift) {
  3592   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3593   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3594   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3595   emit_int8(0x71);
  3596   emit_int8((unsigned char)(0xC0 | encode));
  3597   emit_int8(shift & 0xFF);
  3600 void Assembler::psrld(XMMRegister dst, int shift) {
  3601   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3602   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3603   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3604   emit_int8(0x72);
  3605   emit_int8((unsigned char)(0xC0 | encode));
  3606   emit_int8(shift & 0xFF);
  3609 void Assembler::psrlq(XMMRegister dst, int shift) {
  3610   // Do not confuse it with psrldq SSE2 instruction which
  3611   // shifts 128 bit value in xmm register by number of bytes.
  3612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3613   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3614   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3615   emit_int8(0x73);
  3616   emit_int8((unsigned char)(0xC0 | encode));
  3617   emit_int8(shift & 0xFF);
  3620 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3622   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3625 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3627   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3630 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3632   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3635 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3636   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3637   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3638   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3639   emit_int8(shift & 0xFF);
  3642 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3643   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3644   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3645   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3646   emit_int8(shift & 0xFF);
  3649 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3650   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3651   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3652   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3653   emit_int8(shift & 0xFF);
  3656 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3657   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3658   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3661 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3662   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3663   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3666 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3667   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3668   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3671 // Shift packed integers arithmetically right by specified number of bits.
  3672 void Assembler::psraw(XMMRegister dst, int shift) {
  3673   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3674   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3675   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3676   emit_int8(0x71);
  3677   emit_int8((unsigned char)(0xC0 | encode));
  3678   emit_int8(shift & 0xFF);
  3681 void Assembler::psrad(XMMRegister dst, int shift) {
  3682   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3683   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3684   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3685   emit_int8(0x72);
  3686   emit_int8((unsigned char)(0xC0 | encode));
  3687   emit_int8(shift & 0xFF);
  3690 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3691   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3692   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3695 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3696   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3697   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3700 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3701   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3702   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3703   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3704   emit_int8(shift & 0xFF);
  3707 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3708   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3709   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3710   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3711   emit_int8(shift & 0xFF);
  3714 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3715   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3716   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3719 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3720   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3721   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3725 // AND packed integers
  3726 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3727   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3728   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3731 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3732   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3733   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3736 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3737   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3738   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3741 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3743   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3746 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3747   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3748   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3751 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3752   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3753   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3756 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3757   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3758   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3761 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3762   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3763   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3766 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3767   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3768   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3772 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3773   assert(VM_Version::supports_avx(), "");
  3774   bool vector256 = true;
  3775   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3776   emit_int8(0x18);
  3777   emit_int8((unsigned char)(0xC0 | encode));
  3778   // 0x00 - insert into lower 128 bits
  3779   // 0x01 - insert into upper 128 bits
  3780   emit_int8(0x01);
  3783 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3784   assert(VM_Version::supports_avx(), "");
  3785   InstructionMark im(this);
  3786   bool vector256 = true;
  3787   assert(dst != xnoreg, "sanity");
  3788   int dst_enc = dst->encoding();
  3789   // swap src<->dst for encoding
  3790   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3791   emit_int8(0x18);
  3792   emit_operand(dst, src);
  3793   // 0x01 - insert into upper 128 bits
  3794   emit_int8(0x01);
  3797 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3798   assert(VM_Version::supports_avx(), "");
  3799   InstructionMark im(this);
  3800   bool vector256 = true;
  3801   assert(src != xnoreg, "sanity");
  3802   int src_enc = src->encoding();
  3803   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3804   emit_int8(0x19);
  3805   emit_operand(src, dst);
  3806   // 0x01 - extract from upper 128 bits
  3807   emit_int8(0x01);
  3810 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3811   assert(VM_Version::supports_avx2(), "");
  3812   bool vector256 = true;
  3813   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3814   emit_int8(0x38);
  3815   emit_int8((unsigned char)(0xC0 | encode));
  3816   // 0x00 - insert into lower 128 bits
  3817   // 0x01 - insert into upper 128 bits
  3818   emit_int8(0x01);
  3821 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3822   assert(VM_Version::supports_avx2(), "");
  3823   InstructionMark im(this);
  3824   bool vector256 = true;
  3825   assert(dst != xnoreg, "sanity");
  3826   int dst_enc = dst->encoding();
  3827   // swap src<->dst for encoding
  3828   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3829   emit_int8(0x38);
  3830   emit_operand(dst, src);
  3831   // 0x01 - insert into upper 128 bits
  3832   emit_int8(0x01);
  3835 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3836   assert(VM_Version::supports_avx2(), "");
  3837   InstructionMark im(this);
  3838   bool vector256 = true;
  3839   assert(src != xnoreg, "sanity");
  3840   int src_enc = src->encoding();
  3841   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3842   emit_int8(0x39);
  3843   emit_operand(src, dst);
  3844   // 0x01 - extract from upper 128 bits
  3845   emit_int8(0x01);
  3848 // duplicate 4-bytes integer data from src into 8 locations in dest
  3849 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  3850   assert(VM_Version::supports_avx2(), "");
  3851   bool vector256 = true;
  3852   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3853   emit_int8(0x58);
  3854   emit_int8((unsigned char)(0xC0 | encode));
  3857 // Carry-Less Multiplication Quadword
  3858 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
  3859   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
  3860   bool vector256 = false;
  3861   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3862   emit_int8(0x44);
  3863   emit_int8((unsigned char)(0xC0 | encode));
  3864   emit_int8((unsigned char)mask);
  3867 void Assembler::vzeroupper() {
  3868   assert(VM_Version::supports_avx(), "");
  3869   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3870   emit_int8(0x77);
  3874 #ifndef _LP64
  3875 // 32bit only pieces of the assembler
  3877 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3878   // NO PREFIX AS NEVER 64BIT
  3879   InstructionMark im(this);
  3880   emit_int8((unsigned char)0x81);
  3881   emit_int8((unsigned char)(0xF8 | src1->encoding()));
  3882   emit_data(imm32, rspec, 0);
  3885 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3886   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3887   InstructionMark im(this);
  3888   emit_int8((unsigned char)0x81);
  3889   emit_operand(rdi, src1);
  3890   emit_data(imm32, rspec, 0);
  3893 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3894 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3895 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3896 void Assembler::cmpxchg8(Address adr) {
  3897   InstructionMark im(this);
  3898   emit_int8(0x0F);
  3899   emit_int8((unsigned char)0xC7);
  3900   emit_operand(rcx, adr);
  3903 void Assembler::decl(Register dst) {
  3904   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3905  emit_int8(0x48 | dst->encoding());
  3908 #endif // _LP64
  3910 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3912 void Assembler::fabs() {
  3913   emit_int8((unsigned char)0xD9);
  3914   emit_int8((unsigned char)0xE1);
  3917 void Assembler::fadd(int i) {
  3918   emit_farith(0xD8, 0xC0, i);
  3921 void Assembler::fadd_d(Address src) {
  3922   InstructionMark im(this);
  3923   emit_int8((unsigned char)0xDC);
  3924   emit_operand32(rax, src);
  3927 void Assembler::fadd_s(Address src) {
  3928   InstructionMark im(this);
  3929   emit_int8((unsigned char)0xD8);
  3930   emit_operand32(rax, src);
  3933 void Assembler::fadda(int i) {
  3934   emit_farith(0xDC, 0xC0, i);
  3937 void Assembler::faddp(int i) {
  3938   emit_farith(0xDE, 0xC0, i);
  3941 void Assembler::fchs() {
  3942   emit_int8((unsigned char)0xD9);
  3943   emit_int8((unsigned char)0xE0);
  3946 void Assembler::fcom(int i) {
  3947   emit_farith(0xD8, 0xD0, i);
  3950 void Assembler::fcomp(int i) {
  3951   emit_farith(0xD8, 0xD8, i);
  3954 void Assembler::fcomp_d(Address src) {
  3955   InstructionMark im(this);
  3956   emit_int8((unsigned char)0xDC);
  3957   emit_operand32(rbx, src);
  3960 void Assembler::fcomp_s(Address src) {
  3961   InstructionMark im(this);
  3962   emit_int8((unsigned char)0xD8);
  3963   emit_operand32(rbx, src);
  3966 void Assembler::fcompp() {
  3967   emit_int8((unsigned char)0xDE);
  3968   emit_int8((unsigned char)0xD9);
  3971 void Assembler::fcos() {
  3972   emit_int8((unsigned char)0xD9);
  3973   emit_int8((unsigned char)0xFF);
  3976 void Assembler::fdecstp() {
  3977   emit_int8((unsigned char)0xD9);
  3978   emit_int8((unsigned char)0xF6);
  3981 void Assembler::fdiv(int i) {
  3982   emit_farith(0xD8, 0xF0, i);
  3985 void Assembler::fdiv_d(Address src) {
  3986   InstructionMark im(this);
  3987   emit_int8((unsigned char)0xDC);
  3988   emit_operand32(rsi, src);
  3991 void Assembler::fdiv_s(Address src) {
  3992   InstructionMark im(this);
  3993   emit_int8((unsigned char)0xD8);
  3994   emit_operand32(rsi, src);
  3997 void Assembler::fdiva(int i) {
  3998   emit_farith(0xDC, 0xF8, i);
  4001 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  4002 //       is erroneous for some of the floating-point instructions below.
  4004 void Assembler::fdivp(int i) {
  4005   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  4008 void Assembler::fdivr(int i) {
  4009   emit_farith(0xD8, 0xF8, i);
  4012 void Assembler::fdivr_d(Address src) {
  4013   InstructionMark im(this);
  4014   emit_int8((unsigned char)0xDC);
  4015   emit_operand32(rdi, src);
  4018 void Assembler::fdivr_s(Address src) {
  4019   InstructionMark im(this);
  4020   emit_int8((unsigned char)0xD8);
  4021   emit_operand32(rdi, src);
  4024 void Assembler::fdivra(int i) {
  4025   emit_farith(0xDC, 0xF0, i);
  4028 void Assembler::fdivrp(int i) {
  4029   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  4032 void Assembler::ffree(int i) {
  4033   emit_farith(0xDD, 0xC0, i);
  4036 void Assembler::fild_d(Address adr) {
  4037   InstructionMark im(this);
  4038   emit_int8((unsigned char)0xDF);
  4039   emit_operand32(rbp, adr);
  4042 void Assembler::fild_s(Address adr) {
  4043   InstructionMark im(this);
  4044   emit_int8((unsigned char)0xDB);
  4045   emit_operand32(rax, adr);
  4048 void Assembler::fincstp() {
  4049   emit_int8((unsigned char)0xD9);
  4050   emit_int8((unsigned char)0xF7);
  4053 void Assembler::finit() {
  4054   emit_int8((unsigned char)0x9B);
  4055   emit_int8((unsigned char)0xDB);
  4056   emit_int8((unsigned char)0xE3);
  4059 void Assembler::fist_s(Address adr) {
  4060   InstructionMark im(this);
  4061   emit_int8((unsigned char)0xDB);
  4062   emit_operand32(rdx, adr);
  4065 void Assembler::fistp_d(Address adr) {
  4066   InstructionMark im(this);
  4067   emit_int8((unsigned char)0xDF);
  4068   emit_operand32(rdi, adr);
  4071 void Assembler::fistp_s(Address adr) {
  4072   InstructionMark im(this);
  4073   emit_int8((unsigned char)0xDB);
  4074   emit_operand32(rbx, adr);
  4077 void Assembler::fld1() {
  4078   emit_int8((unsigned char)0xD9);
  4079   emit_int8((unsigned char)0xE8);
  4082 void Assembler::fld_d(Address adr) {
  4083   InstructionMark im(this);
  4084   emit_int8((unsigned char)0xDD);
  4085   emit_operand32(rax, adr);
  4088 void Assembler::fld_s(Address adr) {
  4089   InstructionMark im(this);
  4090   emit_int8((unsigned char)0xD9);
  4091   emit_operand32(rax, adr);
  4095 void Assembler::fld_s(int index) {
  4096   emit_farith(0xD9, 0xC0, index);
  4099 void Assembler::fld_x(Address adr) {
  4100   InstructionMark im(this);
  4101   emit_int8((unsigned char)0xDB);
  4102   emit_operand32(rbp, adr);
  4105 void Assembler::fldcw(Address src) {
  4106   InstructionMark im(this);
  4107   emit_int8((unsigned char)0xD9);
  4108   emit_operand32(rbp, src);
  4111 void Assembler::fldenv(Address src) {
  4112   InstructionMark im(this);
  4113   emit_int8((unsigned char)0xD9);
  4114   emit_operand32(rsp, src);
  4117 void Assembler::fldlg2() {
  4118   emit_int8((unsigned char)0xD9);
  4119   emit_int8((unsigned char)0xEC);
  4122 void Assembler::fldln2() {
  4123   emit_int8((unsigned char)0xD9);
  4124   emit_int8((unsigned char)0xED);
  4127 void Assembler::fldz() {
  4128   emit_int8((unsigned char)0xD9);
  4129   emit_int8((unsigned char)0xEE);
  4132 void Assembler::flog() {
  4133   fldln2();
  4134   fxch();
  4135   fyl2x();
  4138 void Assembler::flog10() {
  4139   fldlg2();
  4140   fxch();
  4141   fyl2x();
  4144 void Assembler::fmul(int i) {
  4145   emit_farith(0xD8, 0xC8, i);
  4148 void Assembler::fmul_d(Address src) {
  4149   InstructionMark im(this);
  4150   emit_int8((unsigned char)0xDC);
  4151   emit_operand32(rcx, src);
  4154 void Assembler::fmul_s(Address src) {
  4155   InstructionMark im(this);
  4156   emit_int8((unsigned char)0xD8);
  4157   emit_operand32(rcx, src);
  4160 void Assembler::fmula(int i) {
  4161   emit_farith(0xDC, 0xC8, i);
  4164 void Assembler::fmulp(int i) {
  4165   emit_farith(0xDE, 0xC8, i);
  4168 void Assembler::fnsave(Address dst) {
  4169   InstructionMark im(this);
  4170   emit_int8((unsigned char)0xDD);
  4171   emit_operand32(rsi, dst);
  4174 void Assembler::fnstcw(Address src) {
  4175   InstructionMark im(this);
  4176   emit_int8((unsigned char)0x9B);
  4177   emit_int8((unsigned char)0xD9);
  4178   emit_operand32(rdi, src);
  4181 void Assembler::fnstsw_ax() {
  4182   emit_int8((unsigned char)0xDF);
  4183   emit_int8((unsigned char)0xE0);
  4186 void Assembler::fprem() {
  4187   emit_int8((unsigned char)0xD9);
  4188   emit_int8((unsigned char)0xF8);
  4191 void Assembler::fprem1() {
  4192   emit_int8((unsigned char)0xD9);
  4193   emit_int8((unsigned char)0xF5);
  4196 void Assembler::frstor(Address src) {
  4197   InstructionMark im(this);
  4198   emit_int8((unsigned char)0xDD);
  4199   emit_operand32(rsp, src);
  4202 void Assembler::fsin() {
  4203   emit_int8((unsigned char)0xD9);
  4204   emit_int8((unsigned char)0xFE);
  4207 void Assembler::fsqrt() {
  4208   emit_int8((unsigned char)0xD9);
  4209   emit_int8((unsigned char)0xFA);
  4212 void Assembler::fst_d(Address adr) {
  4213   InstructionMark im(this);
  4214   emit_int8((unsigned char)0xDD);
  4215   emit_operand32(rdx, adr);
  4218 void Assembler::fst_s(Address adr) {
  4219   InstructionMark im(this);
  4220   emit_int8((unsigned char)0xD9);
  4221   emit_operand32(rdx, adr);
  4224 void Assembler::fstp_d(Address adr) {
  4225   InstructionMark im(this);
  4226   emit_int8((unsigned char)0xDD);
  4227   emit_operand32(rbx, adr);
  4230 void Assembler::fstp_d(int index) {
  4231   emit_farith(0xDD, 0xD8, index);
  4234 void Assembler::fstp_s(Address adr) {
  4235   InstructionMark im(this);
  4236   emit_int8((unsigned char)0xD9);
  4237   emit_operand32(rbx, adr);
  4240 void Assembler::fstp_x(Address adr) {
  4241   InstructionMark im(this);
  4242   emit_int8((unsigned char)0xDB);
  4243   emit_operand32(rdi, adr);
  4246 void Assembler::fsub(int i) {
  4247   emit_farith(0xD8, 0xE0, i);
  4250 void Assembler::fsub_d(Address src) {
  4251   InstructionMark im(this);
  4252   emit_int8((unsigned char)0xDC);
  4253   emit_operand32(rsp, src);
  4256 void Assembler::fsub_s(Address src) {
  4257   InstructionMark im(this);
  4258   emit_int8((unsigned char)0xD8);
  4259   emit_operand32(rsp, src);
  4262 void Assembler::fsuba(int i) {
  4263   emit_farith(0xDC, 0xE8, i);
  4266 void Assembler::fsubp(int i) {
  4267   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  4270 void Assembler::fsubr(int i) {
  4271   emit_farith(0xD8, 0xE8, i);
  4274 void Assembler::fsubr_d(Address src) {
  4275   InstructionMark im(this);
  4276   emit_int8((unsigned char)0xDC);
  4277   emit_operand32(rbp, src);
  4280 void Assembler::fsubr_s(Address src) {
  4281   InstructionMark im(this);
  4282   emit_int8((unsigned char)0xD8);
  4283   emit_operand32(rbp, src);
  4286 void Assembler::fsubra(int i) {
  4287   emit_farith(0xDC, 0xE0, i);
  4290 void Assembler::fsubrp(int i) {
  4291   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  4294 void Assembler::ftan() {
  4295   emit_int8((unsigned char)0xD9);
  4296   emit_int8((unsigned char)0xF2);
  4297   emit_int8((unsigned char)0xDD);
  4298   emit_int8((unsigned char)0xD8);
  4301 void Assembler::ftst() {
  4302   emit_int8((unsigned char)0xD9);
  4303   emit_int8((unsigned char)0xE4);
  4306 void Assembler::fucomi(int i) {
  4307   // make sure the instruction is supported (introduced for P6, together with cmov)
  4308   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4309   emit_farith(0xDB, 0xE8, i);
  4312 void Assembler::fucomip(int i) {
  4313   // make sure the instruction is supported (introduced for P6, together with cmov)
  4314   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4315   emit_farith(0xDF, 0xE8, i);
  4318 void Assembler::fwait() {
  4319   emit_int8((unsigned char)0x9B);
  4322 void Assembler::fxch(int i) {
  4323   emit_farith(0xD9, 0xC8, i);
  4326 void Assembler::fyl2x() {
  4327   emit_int8((unsigned char)0xD9);
  4328   emit_int8((unsigned char)0xF1);
  4331 void Assembler::frndint() {
  4332   emit_int8((unsigned char)0xD9);
  4333   emit_int8((unsigned char)0xFC);
  4336 void Assembler::f2xm1() {
  4337   emit_int8((unsigned char)0xD9);
  4338   emit_int8((unsigned char)0xF0);
  4341 void Assembler::fldl2e() {
  4342   emit_int8((unsigned char)0xD9);
  4343   emit_int8((unsigned char)0xEA);
  4346 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4347 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4348 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4349 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4351 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4352 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4353   if (pre > 0) {
  4354     emit_int8(simd_pre[pre]);
  4356   if (rex_w) {
  4357     prefixq(adr, xreg);
  4358   } else {
  4359     prefix(adr, xreg);
  4361   if (opc > 0) {
  4362     emit_int8(0x0F);
  4363     int opc2 = simd_opc[opc];
  4364     if (opc2 > 0) {
  4365       emit_int8(opc2);
  4370 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4371   if (pre > 0) {
  4372     emit_int8(simd_pre[pre]);
  4374   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4375                           prefix_and_encode(dst_enc, src_enc);
  4376   if (opc > 0) {
  4377     emit_int8(0x0F);
  4378     int opc2 = simd_opc[opc];
  4379     if (opc2 > 0) {
  4380       emit_int8(opc2);
  4383   return encode;
  4387 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4388   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4389     prefix(VEX_3bytes);
  4391     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4392     byte1 = (~byte1) & 0xE0;
  4393     byte1 |= opc;
  4394     emit_int8(byte1);
  4396     int byte2 = ((~nds_enc) & 0xf) << 3;
  4397     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4398     emit_int8(byte2);
  4399   } else {
  4400     prefix(VEX_2bytes);
  4402     int byte1 = vex_r ? VEX_R : 0;
  4403     byte1 = (~byte1) & 0x80;
  4404     byte1 |= ((~nds_enc) & 0xf) << 3;
  4405     byte1 |= (vector256 ? 4 : 0) | pre;
  4406     emit_int8(byte1);
  4410 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4411   bool vex_r = (xreg_enc >= 8);
  4412   bool vex_b = adr.base_needs_rex();
  4413   bool vex_x = adr.index_needs_rex();
  4414   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4417 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4418   bool vex_r = (dst_enc >= 8);
  4419   bool vex_b = (src_enc >= 8);
  4420   bool vex_x = false;
  4421   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4422   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4426 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4427   if (UseAVX > 0) {
  4428     int xreg_enc = xreg->encoding();
  4429     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4430     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4431   } else {
  4432     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4433     rex_prefix(adr, xreg, pre, opc, rex_w);
  4437 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4438   int dst_enc = dst->encoding();
  4439   int src_enc = src->encoding();
  4440   if (UseAVX > 0) {
  4441     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4442     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4443   } else {
  4444     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4445     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4449 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4450   InstructionMark im(this);
  4451   simd_prefix(dst, dst, src, pre);
  4452   emit_int8(opcode);
  4453   emit_operand(dst, src);
  4456 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4457   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4458   emit_int8(opcode);
  4459   emit_int8((unsigned char)(0xC0 | encode));
  4462 // Versions with no second source register (non-destructive source).
  4463 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4464   InstructionMark im(this);
  4465   simd_prefix(dst, xnoreg, src, pre);
  4466   emit_int8(opcode);
  4467   emit_operand(dst, src);
  4470 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4471   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4472   emit_int8(opcode);
  4473   emit_int8((unsigned char)(0xC0 | encode));
  4476 // 3-operands AVX instructions
  4477 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4478                                Address src, VexSimdPrefix pre, bool vector256) {
  4479   InstructionMark im(this);
  4480   vex_prefix(dst, nds, src, pre, vector256);
  4481   emit_int8(opcode);
  4482   emit_operand(dst, src);
  4485 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4486                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4487   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4488   emit_int8(opcode);
  4489   emit_int8((unsigned char)(0xC0 | encode));
  4492 #ifndef _LP64
  4494 void Assembler::incl(Register dst) {
  4495   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4496   emit_int8(0x40 | dst->encoding());
  4499 void Assembler::lea(Register dst, Address src) {
  4500   leal(dst, src);
  4503 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4504   InstructionMark im(this);
  4505   emit_int8((unsigned char)0xC7);
  4506   emit_operand(rax, dst);
  4507   emit_data((int)imm32, rspec, 0);
  4510 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4511   InstructionMark im(this);
  4512   int encode = prefix_and_encode(dst->encoding());
  4513   emit_int8((unsigned char)(0xB8 | encode));
  4514   emit_data((int)imm32, rspec, 0);
  4517 void Assembler::popa() { // 32bit
  4518   emit_int8(0x61);
  4521 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4522   InstructionMark im(this);
  4523   emit_int8(0x68);
  4524   emit_data(imm32, rspec, 0);
  4527 void Assembler::pusha() { // 32bit
  4528   emit_int8(0x60);
  4531 void Assembler::set_byte_if_not_zero(Register dst) {
  4532   emit_int8(0x0F);
  4533   emit_int8((unsigned char)0x95);
  4534   emit_int8((unsigned char)(0xE0 | dst->encoding()));
  4537 void Assembler::shldl(Register dst, Register src) {
  4538   emit_int8(0x0F);
  4539   emit_int8((unsigned char)0xA5);
  4540   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4543 void Assembler::shrdl(Register dst, Register src) {
  4544   emit_int8(0x0F);
  4545   emit_int8((unsigned char)0xAD);
  4546   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4549 #else // LP64
  4551 void Assembler::set_byte_if_not_zero(Register dst) {
  4552   int enc = prefix_and_encode(dst->encoding(), true);
  4553   emit_int8(0x0F);
  4554   emit_int8((unsigned char)0x95);
  4555   emit_int8((unsigned char)(0xE0 | enc));
  4558 // 64bit only pieces of the assembler
  4559 // This should only be used by 64bit instructions that can use rip-relative
  4560 // it cannot be used by instructions that want an immediate value.
  4562 bool Assembler::reachable(AddressLiteral adr) {
  4563   int64_t disp;
  4564   // None will force a 64bit literal to the code stream. Likely a placeholder
  4565   // for something that will be patched later and we need to certain it will
  4566   // always be reachable.
  4567   if (adr.reloc() == relocInfo::none) {
  4568     return false;
  4570   if (adr.reloc() == relocInfo::internal_word_type) {
  4571     // This should be rip relative and easily reachable.
  4572     return true;
  4574   if (adr.reloc() == relocInfo::virtual_call_type ||
  4575       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4576       adr.reloc() == relocInfo::static_call_type ||
  4577       adr.reloc() == relocInfo::static_stub_type ) {
  4578     // This should be rip relative within the code cache and easily
  4579     // reachable until we get huge code caches. (At which point
  4580     // ic code is going to have issues).
  4581     return true;
  4583   if (adr.reloc() != relocInfo::external_word_type &&
  4584       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4585       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4586       adr.reloc() != relocInfo::runtime_call_type ) {
  4587     return false;
  4590   // Stress the correction code
  4591   if (ForceUnreachable) {
  4592     // Must be runtimecall reloc, see if it is in the codecache
  4593     // Flipping stuff in the codecache to be unreachable causes issues
  4594     // with things like inline caches where the additional instructions
  4595     // are not handled.
  4596     if (CodeCache::find_blob(adr._target) == NULL) {
  4597       return false;
  4600   // For external_word_type/runtime_call_type if it is reachable from where we
  4601   // are now (possibly a temp buffer) and where we might end up
  4602   // anywhere in the codeCache then we are always reachable.
  4603   // This would have to change if we ever save/restore shared code
  4604   // to be more pessimistic.
  4605   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4606   if (!is_simm32(disp)) return false;
  4607   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4608   if (!is_simm32(disp)) return false;
  4610   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
  4612   // Because rip relative is a disp + address_of_next_instruction and we
  4613   // don't know the value of address_of_next_instruction we apply a fudge factor
  4614   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4615   // We don't have to fudge the checks above here because they are already worst case.
  4617   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4618   // + 4 because better safe than sorry.
  4619   const int fudge = 12 + 4;
  4620   if (disp < 0) {
  4621     disp -= fudge;
  4622   } else {
  4623     disp += fudge;
  4625   return is_simm32(disp);
  4628 // Check if the polling page is not reachable from the code cache using rip-relative
  4629 // addressing.
  4630 bool Assembler::is_polling_page_far() {
  4631   intptr_t addr = (intptr_t)os::get_polling_page();
  4632   return ForceUnreachable ||
  4633          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4634          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4637 void Assembler::emit_data64(jlong data,
  4638                             relocInfo::relocType rtype,
  4639                             int format) {
  4640   if (rtype == relocInfo::none) {
  4641     emit_int64(data);
  4642   } else {
  4643     emit_data64(data, Relocation::spec_simple(rtype), format);
  4647 void Assembler::emit_data64(jlong data,
  4648                             RelocationHolder const& rspec,
  4649                             int format) {
  4650   assert(imm_operand == 0, "default format must be immediate in this file");
  4651   assert(imm_operand == format, "must be immediate");
  4652   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4653   // Do not use AbstractAssembler::relocate, which is not intended for
  4654   // embedded words.  Instead, relocate to the enclosing instruction.
  4655   code_section()->relocate(inst_mark(), rspec, format);
  4656 #ifdef ASSERT
  4657   check_relocation(rspec, format);
  4658 #endif
  4659   emit_int64(data);
  4662 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4663   if (reg_enc >= 8) {
  4664     prefix(REX_B);
  4665     reg_enc -= 8;
  4666   } else if (byteinst && reg_enc >= 4) {
  4667     prefix(REX);
  4669   return reg_enc;
  4672 int Assembler::prefixq_and_encode(int reg_enc) {
  4673   if (reg_enc < 8) {
  4674     prefix(REX_W);
  4675   } else {
  4676     prefix(REX_WB);
  4677     reg_enc -= 8;
  4679   return reg_enc;
  4682 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4683   if (dst_enc < 8) {
  4684     if (src_enc >= 8) {
  4685       prefix(REX_B);
  4686       src_enc -= 8;
  4687     } else if (byteinst && src_enc >= 4) {
  4688       prefix(REX);
  4690   } else {
  4691     if (src_enc < 8) {
  4692       prefix(REX_R);
  4693     } else {
  4694       prefix(REX_RB);
  4695       src_enc -= 8;
  4697     dst_enc -= 8;
  4699   return dst_enc << 3 | src_enc;
  4702 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4703   if (dst_enc < 8) {
  4704     if (src_enc < 8) {
  4705       prefix(REX_W);
  4706     } else {
  4707       prefix(REX_WB);
  4708       src_enc -= 8;
  4710   } else {
  4711     if (src_enc < 8) {
  4712       prefix(REX_WR);
  4713     } else {
  4714       prefix(REX_WRB);
  4715       src_enc -= 8;
  4717     dst_enc -= 8;
  4719   return dst_enc << 3 | src_enc;
  4722 void Assembler::prefix(Register reg) {
  4723   if (reg->encoding() >= 8) {
  4724     prefix(REX_B);
  4728 void Assembler::prefix(Address adr) {
  4729   if (adr.base_needs_rex()) {
  4730     if (adr.index_needs_rex()) {
  4731       prefix(REX_XB);
  4732     } else {
  4733       prefix(REX_B);
  4735   } else {
  4736     if (adr.index_needs_rex()) {
  4737       prefix(REX_X);
  4742 void Assembler::prefixq(Address adr) {
  4743   if (adr.base_needs_rex()) {
  4744     if (adr.index_needs_rex()) {
  4745       prefix(REX_WXB);
  4746     } else {
  4747       prefix(REX_WB);
  4749   } else {
  4750     if (adr.index_needs_rex()) {
  4751       prefix(REX_WX);
  4752     } else {
  4753       prefix(REX_W);
  4759 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4760   if (reg->encoding() < 8) {
  4761     if (adr.base_needs_rex()) {
  4762       if (adr.index_needs_rex()) {
  4763         prefix(REX_XB);
  4764       } else {
  4765         prefix(REX_B);
  4767     } else {
  4768       if (adr.index_needs_rex()) {
  4769         prefix(REX_X);
  4770       } else if (byteinst && reg->encoding() >= 4 ) {
  4771         prefix(REX);
  4774   } else {
  4775     if (adr.base_needs_rex()) {
  4776       if (adr.index_needs_rex()) {
  4777         prefix(REX_RXB);
  4778       } else {
  4779         prefix(REX_RB);
  4781     } else {
  4782       if (adr.index_needs_rex()) {
  4783         prefix(REX_RX);
  4784       } else {
  4785         prefix(REX_R);
  4791 void Assembler::prefixq(Address adr, Register src) {
  4792   if (src->encoding() < 8) {
  4793     if (adr.base_needs_rex()) {
  4794       if (adr.index_needs_rex()) {
  4795         prefix(REX_WXB);
  4796       } else {
  4797         prefix(REX_WB);
  4799     } else {
  4800       if (adr.index_needs_rex()) {
  4801         prefix(REX_WX);
  4802       } else {
  4803         prefix(REX_W);
  4806   } else {
  4807     if (adr.base_needs_rex()) {
  4808       if (adr.index_needs_rex()) {
  4809         prefix(REX_WRXB);
  4810       } else {
  4811         prefix(REX_WRB);
  4813     } else {
  4814       if (adr.index_needs_rex()) {
  4815         prefix(REX_WRX);
  4816       } else {
  4817         prefix(REX_WR);
  4823 void Assembler::prefix(Address adr, XMMRegister reg) {
  4824   if (reg->encoding() < 8) {
  4825     if (adr.base_needs_rex()) {
  4826       if (adr.index_needs_rex()) {
  4827         prefix(REX_XB);
  4828       } else {
  4829         prefix(REX_B);
  4831     } else {
  4832       if (adr.index_needs_rex()) {
  4833         prefix(REX_X);
  4836   } else {
  4837     if (adr.base_needs_rex()) {
  4838       if (adr.index_needs_rex()) {
  4839         prefix(REX_RXB);
  4840       } else {
  4841         prefix(REX_RB);
  4843     } else {
  4844       if (adr.index_needs_rex()) {
  4845         prefix(REX_RX);
  4846       } else {
  4847         prefix(REX_R);
  4853 void Assembler::prefixq(Address adr, XMMRegister src) {
  4854   if (src->encoding() < 8) {
  4855     if (adr.base_needs_rex()) {
  4856       if (adr.index_needs_rex()) {
  4857         prefix(REX_WXB);
  4858       } else {
  4859         prefix(REX_WB);
  4861     } else {
  4862       if (adr.index_needs_rex()) {
  4863         prefix(REX_WX);
  4864       } else {
  4865         prefix(REX_W);
  4868   } else {
  4869     if (adr.base_needs_rex()) {
  4870       if (adr.index_needs_rex()) {
  4871         prefix(REX_WRXB);
  4872       } else {
  4873         prefix(REX_WRB);
  4875     } else {
  4876       if (adr.index_needs_rex()) {
  4877         prefix(REX_WRX);
  4878       } else {
  4879         prefix(REX_WR);
  4885 void Assembler::adcq(Register dst, int32_t imm32) {
  4886   (void) prefixq_and_encode(dst->encoding());
  4887   emit_arith(0x81, 0xD0, dst, imm32);
  4890 void Assembler::adcq(Register dst, Address src) {
  4891   InstructionMark im(this);
  4892   prefixq(src, dst);
  4893   emit_int8(0x13);
  4894   emit_operand(dst, src);
  4897 void Assembler::adcq(Register dst, Register src) {
  4898   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4899   emit_arith(0x13, 0xC0, dst, src);
  4902 void Assembler::addq(Address dst, int32_t imm32) {
  4903   InstructionMark im(this);
  4904   prefixq(dst);
  4905   emit_arith_operand(0x81, rax, dst,imm32);
  4908 void Assembler::addq(Address dst, Register src) {
  4909   InstructionMark im(this);
  4910   prefixq(dst, src);
  4911   emit_int8(0x01);
  4912   emit_operand(src, dst);
  4915 void Assembler::addq(Register dst, int32_t imm32) {
  4916   (void) prefixq_and_encode(dst->encoding());
  4917   emit_arith(0x81, 0xC0, dst, imm32);
  4920 void Assembler::addq(Register dst, Address src) {
  4921   InstructionMark im(this);
  4922   prefixq(src, dst);
  4923   emit_int8(0x03);
  4924   emit_operand(dst, src);
  4927 void Assembler::addq(Register dst, Register src) {
  4928   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4929   emit_arith(0x03, 0xC0, dst, src);
  4932 void Assembler::andq(Address dst, int32_t imm32) {
  4933   InstructionMark im(this);
  4934   prefixq(dst);
  4935   emit_int8((unsigned char)0x81);
  4936   emit_operand(rsp, dst, 4);
  4937   emit_int32(imm32);
  4940 void Assembler::andq(Register dst, int32_t imm32) {
  4941   (void) prefixq_and_encode(dst->encoding());
  4942   emit_arith(0x81, 0xE0, dst, imm32);
  4945 void Assembler::andq(Register dst, Address src) {
  4946   InstructionMark im(this);
  4947   prefixq(src, dst);
  4948   emit_int8(0x23);
  4949   emit_operand(dst, src);
  4952 void Assembler::andq(Register dst, Register src) {
  4953   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4954   emit_arith(0x23, 0xC0, dst, src);
  4957 void Assembler::andnq(Register dst, Register src1, Register src2) {
  4958   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4959   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
  4960   emit_int8((unsigned char)0xF2);
  4961   emit_int8((unsigned char)(0xC0 | encode));
  4964 void Assembler::andnq(Register dst, Register src1, Address src2) {
  4965   InstructionMark im(this);
  4966   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4967   vex_prefix_0F38_q(dst, src1, src2);
  4968   emit_int8((unsigned char)0xF2);
  4969   emit_operand(dst, src2);
  4972 void Assembler::bsfq(Register dst, Register src) {
  4973   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4974   emit_int8(0x0F);
  4975   emit_int8((unsigned char)0xBC);
  4976   emit_int8((unsigned char)(0xC0 | encode));
  4979 void Assembler::bsrq(Register dst, Register src) {
  4980   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4981   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4982   emit_int8(0x0F);
  4983   emit_int8((unsigned char)0xBD);
  4984   emit_int8((unsigned char)(0xC0 | encode));
  4987 void Assembler::bswapq(Register reg) {
  4988   int encode = prefixq_and_encode(reg->encoding());
  4989   emit_int8(0x0F);
  4990   emit_int8((unsigned char)(0xC8 | encode));
  4993 void Assembler::blsiq(Register dst, Register src) {
  4994   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  4995   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
  4996   emit_int8((unsigned char)0xF3);
  4997   emit_int8((unsigned char)(0xC0 | encode));
  5000 void Assembler::blsiq(Register dst, Address src) {
  5001   InstructionMark im(this);
  5002   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5003   vex_prefix_0F38_q(rbx, dst, src);
  5004   emit_int8((unsigned char)0xF3);
  5005   emit_operand(rbx, src);
  5008 void Assembler::blsmskq(Register dst, Register src) {
  5009   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5010   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
  5011   emit_int8((unsigned char)0xF3);
  5012   emit_int8((unsigned char)(0xC0 | encode));
  5015 void Assembler::blsmskq(Register dst, Address src) {
  5016   InstructionMark im(this);
  5017   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5018   vex_prefix_0F38_q(rdx, dst, src);
  5019   emit_int8((unsigned char)0xF3);
  5020   emit_operand(rdx, src);
  5023 void Assembler::blsrq(Register dst, Register src) {
  5024   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5025   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
  5026   emit_int8((unsigned char)0xF3);
  5027   emit_int8((unsigned char)(0xC0 | encode));
  5030 void Assembler::blsrq(Register dst, Address src) {
  5031   InstructionMark im(this);
  5032   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
  5033   vex_prefix_0F38_q(rcx, dst, src);
  5034   emit_int8((unsigned char)0xF3);
  5035   emit_operand(rcx, src);
  5038 void Assembler::cdqq() {
  5039   prefix(REX_W);
  5040   emit_int8((unsigned char)0x99);
  5043 void Assembler::clflush(Address adr) {
  5044   prefix(adr);
  5045   emit_int8(0x0F);
  5046   emit_int8((unsigned char)0xAE);
  5047   emit_operand(rdi, adr);
  5050 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  5051   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5052   emit_int8(0x0F);
  5053   emit_int8(0x40 | cc);
  5054   emit_int8((unsigned char)(0xC0 | encode));
  5057 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  5058   InstructionMark im(this);
  5059   prefixq(src, dst);
  5060   emit_int8(0x0F);
  5061   emit_int8(0x40 | cc);
  5062   emit_operand(dst, src);
  5065 void Assembler::cmpq(Address dst, int32_t imm32) {
  5066   InstructionMark im(this);
  5067   prefixq(dst);
  5068   emit_int8((unsigned char)0x81);
  5069   emit_operand(rdi, dst, 4);
  5070   emit_int32(imm32);
  5073 void Assembler::cmpq(Register dst, int32_t imm32) {
  5074   (void) prefixq_and_encode(dst->encoding());
  5075   emit_arith(0x81, 0xF8, dst, imm32);
  5078 void Assembler::cmpq(Address dst, Register src) {
  5079   InstructionMark im(this);
  5080   prefixq(dst, src);
  5081   emit_int8(0x3B);
  5082   emit_operand(src, dst);
  5085 void Assembler::cmpq(Register dst, Register src) {
  5086   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5087   emit_arith(0x3B, 0xC0, dst, src);
  5090 void Assembler::cmpq(Register dst, Address  src) {
  5091   InstructionMark im(this);
  5092   prefixq(src, dst);
  5093   emit_int8(0x3B);
  5094   emit_operand(dst, src);
  5097 void Assembler::cmpxchgq(Register reg, Address adr) {
  5098   InstructionMark im(this);
  5099   prefixq(adr, reg);
  5100   emit_int8(0x0F);
  5101   emit_int8((unsigned char)0xB1);
  5102   emit_operand(reg, adr);
  5105 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  5106   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5107   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  5108   emit_int8(0x2A);
  5109   emit_int8((unsigned char)(0xC0 | encode));
  5112 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  5113   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5114   InstructionMark im(this);
  5115   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  5116   emit_int8(0x2A);
  5117   emit_operand(dst, src);
  5120 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  5121   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5122   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  5123   emit_int8(0x2A);
  5124   emit_int8((unsigned char)(0xC0 | encode));
  5127 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  5128   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5129   InstructionMark im(this);
  5130   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  5131   emit_int8(0x2A);
  5132   emit_operand(dst, src);
  5135 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  5136   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5137   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  5138   emit_int8(0x2C);
  5139   emit_int8((unsigned char)(0xC0 | encode));
  5142 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  5143   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  5144   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  5145   emit_int8(0x2C);
  5146   emit_int8((unsigned char)(0xC0 | encode));
  5149 void Assembler::decl(Register dst) {
  5150   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  5151   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  5152   int encode = prefix_and_encode(dst->encoding());
  5153   emit_int8((unsigned char)0xFF);
  5154   emit_int8((unsigned char)(0xC8 | encode));
  5157 void Assembler::decq(Register dst) {
  5158   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  5159   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5160   int encode = prefixq_and_encode(dst->encoding());
  5161   emit_int8((unsigned char)0xFF);
  5162   emit_int8(0xC8 | encode);
  5165 void Assembler::decq(Address dst) {
  5166   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  5167   InstructionMark im(this);
  5168   prefixq(dst);
  5169   emit_int8((unsigned char)0xFF);
  5170   emit_operand(rcx, dst);
  5173 void Assembler::fxrstor(Address src) {
  5174   prefixq(src);
  5175   emit_int8(0x0F);
  5176   emit_int8((unsigned char)0xAE);
  5177   emit_operand(as_Register(1), src);
  5180 void Assembler::fxsave(Address dst) {
  5181   prefixq(dst);
  5182   emit_int8(0x0F);
  5183   emit_int8((unsigned char)0xAE);
  5184   emit_operand(as_Register(0), dst);
  5187 void Assembler::idivq(Register src) {
  5188   int encode = prefixq_and_encode(src->encoding());
  5189   emit_int8((unsigned char)0xF7);
  5190   emit_int8((unsigned char)(0xF8 | encode));
  5193 void Assembler::imulq(Register dst, Register src) {
  5194   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5195   emit_int8(0x0F);
  5196   emit_int8((unsigned char)0xAF);
  5197   emit_int8((unsigned char)(0xC0 | encode));
  5200 void Assembler::imulq(Register dst, Register src, int value) {
  5201   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5202   if (is8bit(value)) {
  5203     emit_int8(0x6B);
  5204     emit_int8((unsigned char)(0xC0 | encode));
  5205     emit_int8(value & 0xFF);
  5206   } else {
  5207     emit_int8(0x69);
  5208     emit_int8((unsigned char)(0xC0 | encode));
  5209     emit_int32(value);
  5213 void Assembler::imulq(Register dst, Address src) {
  5214   InstructionMark im(this);
  5215   prefixq(src, dst);
  5216   emit_int8(0x0F);
  5217   emit_int8((unsigned char) 0xAF);
  5218   emit_operand(dst, src);
  5221 void Assembler::incl(Register dst) {
  5222   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  5223   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5224   int encode = prefix_and_encode(dst->encoding());
  5225   emit_int8((unsigned char)0xFF);
  5226   emit_int8((unsigned char)(0xC0 | encode));
  5229 void Assembler::incq(Register dst) {
  5230   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5231   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5232   int encode = prefixq_and_encode(dst->encoding());
  5233   emit_int8((unsigned char)0xFF);
  5234   emit_int8((unsigned char)(0xC0 | encode));
  5237 void Assembler::incq(Address dst) {
  5238   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5239   InstructionMark im(this);
  5240   prefixq(dst);
  5241   emit_int8((unsigned char)0xFF);
  5242   emit_operand(rax, dst);
  5245 void Assembler::lea(Register dst, Address src) {
  5246   leaq(dst, src);
  5249 void Assembler::leaq(Register dst, Address src) {
  5250   InstructionMark im(this);
  5251   prefixq(src, dst);
  5252   emit_int8((unsigned char)0x8D);
  5253   emit_operand(dst, src);
  5256 void Assembler::mov64(Register dst, int64_t imm64) {
  5257   InstructionMark im(this);
  5258   int encode = prefixq_and_encode(dst->encoding());
  5259   emit_int8((unsigned char)(0xB8 | encode));
  5260   emit_int64(imm64);
  5263 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  5264   InstructionMark im(this);
  5265   int encode = prefixq_and_encode(dst->encoding());
  5266   emit_int8(0xB8 | encode);
  5267   emit_data64(imm64, rspec);
  5270 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  5271   InstructionMark im(this);
  5272   int encode = prefix_and_encode(dst->encoding());
  5273   emit_int8((unsigned char)(0xB8 | encode));
  5274   emit_data((int)imm32, rspec, narrow_oop_operand);
  5277 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  5278   InstructionMark im(this);
  5279   prefix(dst);
  5280   emit_int8((unsigned char)0xC7);
  5281   emit_operand(rax, dst, 4);
  5282   emit_data((int)imm32, rspec, narrow_oop_operand);
  5285 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  5286   InstructionMark im(this);
  5287   int encode = prefix_and_encode(src1->encoding());
  5288   emit_int8((unsigned char)0x81);
  5289   emit_int8((unsigned char)(0xF8 | encode));
  5290   emit_data((int)imm32, rspec, narrow_oop_operand);
  5293 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  5294   InstructionMark im(this);
  5295   prefix(src1);
  5296   emit_int8((unsigned char)0x81);
  5297   emit_operand(rax, src1, 4);
  5298   emit_data((int)imm32, rspec, narrow_oop_operand);
  5301 void Assembler::lzcntq(Register dst, Register src) {
  5302   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  5303   emit_int8((unsigned char)0xF3);
  5304   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5305   emit_int8(0x0F);
  5306   emit_int8((unsigned char)0xBD);
  5307   emit_int8((unsigned char)(0xC0 | encode));
  5310 void Assembler::movdq(XMMRegister dst, Register src) {
  5311   // table D-1 says MMX/SSE2
  5312   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5313   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  5314   emit_int8(0x6E);
  5315   emit_int8((unsigned char)(0xC0 | encode));
  5318 void Assembler::movdq(Register dst, XMMRegister src) {
  5319   // table D-1 says MMX/SSE2
  5320   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5321   // swap src/dst to get correct prefix
  5322   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  5323   emit_int8(0x7E);
  5324   emit_int8((unsigned char)(0xC0 | encode));
  5327 void Assembler::movq(Register dst, Register src) {
  5328   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5329   emit_int8((unsigned char)0x8B);
  5330   emit_int8((unsigned char)(0xC0 | encode));
  5333 void Assembler::movq(Register dst, Address src) {
  5334   InstructionMark im(this);
  5335   prefixq(src, dst);
  5336   emit_int8((unsigned char)0x8B);
  5337   emit_operand(dst, src);
  5340 void Assembler::movq(Address dst, Register src) {
  5341   InstructionMark im(this);
  5342   prefixq(dst, src);
  5343   emit_int8((unsigned char)0x89);
  5344   emit_operand(src, dst);
  5347 void Assembler::movsbq(Register dst, Address src) {
  5348   InstructionMark im(this);
  5349   prefixq(src, dst);
  5350   emit_int8(0x0F);
  5351   emit_int8((unsigned char)0xBE);
  5352   emit_operand(dst, src);
  5355 void Assembler::movsbq(Register dst, Register src) {
  5356   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5357   emit_int8(0x0F);
  5358   emit_int8((unsigned char)0xBE);
  5359   emit_int8((unsigned char)(0xC0 | encode));
  5362 void Assembler::movslq(Register dst, int32_t imm32) {
  5363   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  5364   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  5365   // as a result we shouldn't use until tested at runtime...
  5366   ShouldNotReachHere();
  5367   InstructionMark im(this);
  5368   int encode = prefixq_and_encode(dst->encoding());
  5369   emit_int8((unsigned char)(0xC7 | encode));
  5370   emit_int32(imm32);
  5373 void Assembler::movslq(Address dst, int32_t imm32) {
  5374   assert(is_simm32(imm32), "lost bits");
  5375   InstructionMark im(this);
  5376   prefixq(dst);
  5377   emit_int8((unsigned char)0xC7);
  5378   emit_operand(rax, dst, 4);
  5379   emit_int32(imm32);
  5382 void Assembler::movslq(Register dst, Address src) {
  5383   InstructionMark im(this);
  5384   prefixq(src, dst);
  5385   emit_int8(0x63);
  5386   emit_operand(dst, src);
  5389 void Assembler::movslq(Register dst, Register src) {
  5390   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5391   emit_int8(0x63);
  5392   emit_int8((unsigned char)(0xC0 | encode));
  5395 void Assembler::movswq(Register dst, Address src) {
  5396   InstructionMark im(this);
  5397   prefixq(src, dst);
  5398   emit_int8(0x0F);
  5399   emit_int8((unsigned char)0xBF);
  5400   emit_operand(dst, src);
  5403 void Assembler::movswq(Register dst, Register src) {
  5404   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5405   emit_int8((unsigned char)0x0F);
  5406   emit_int8((unsigned char)0xBF);
  5407   emit_int8((unsigned char)(0xC0 | encode));
  5410 void Assembler::movzbq(Register dst, Address src) {
  5411   InstructionMark im(this);
  5412   prefixq(src, dst);
  5413   emit_int8((unsigned char)0x0F);
  5414   emit_int8((unsigned char)0xB6);
  5415   emit_operand(dst, src);
  5418 void Assembler::movzbq(Register dst, Register src) {
  5419   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5420   emit_int8(0x0F);
  5421   emit_int8((unsigned char)0xB6);
  5422   emit_int8(0xC0 | encode);
  5425 void Assembler::movzwq(Register dst, Address src) {
  5426   InstructionMark im(this);
  5427   prefixq(src, dst);
  5428   emit_int8((unsigned char)0x0F);
  5429   emit_int8((unsigned char)0xB7);
  5430   emit_operand(dst, src);
  5433 void Assembler::movzwq(Register dst, Register src) {
  5434   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5435   emit_int8((unsigned char)0x0F);
  5436   emit_int8((unsigned char)0xB7);
  5437   emit_int8((unsigned char)(0xC0 | encode));
  5440 void Assembler::negq(Register dst) {
  5441   int encode = prefixq_and_encode(dst->encoding());
  5442   emit_int8((unsigned char)0xF7);
  5443   emit_int8((unsigned char)(0xD8 | encode));
  5446 void Assembler::notq(Register dst) {
  5447   int encode = prefixq_and_encode(dst->encoding());
  5448   emit_int8((unsigned char)0xF7);
  5449   emit_int8((unsigned char)(0xD0 | encode));
  5452 void Assembler::orq(Address dst, int32_t imm32) {
  5453   InstructionMark im(this);
  5454   prefixq(dst);
  5455   emit_int8((unsigned char)0x81);
  5456   emit_operand(rcx, dst, 4);
  5457   emit_int32(imm32);
  5460 void Assembler::orq(Register dst, int32_t imm32) {
  5461   (void) prefixq_and_encode(dst->encoding());
  5462   emit_arith(0x81, 0xC8, dst, imm32);
  5465 void Assembler::orq(Register dst, Address src) {
  5466   InstructionMark im(this);
  5467   prefixq(src, dst);
  5468   emit_int8(0x0B);
  5469   emit_operand(dst, src);
  5472 void Assembler::orq(Register dst, Register src) {
  5473   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5474   emit_arith(0x0B, 0xC0, dst, src);
  5477 void Assembler::popa() { // 64bit
  5478   movq(r15, Address(rsp, 0));
  5479   movq(r14, Address(rsp, wordSize));
  5480   movq(r13, Address(rsp, 2 * wordSize));
  5481   movq(r12, Address(rsp, 3 * wordSize));
  5482   movq(r11, Address(rsp, 4 * wordSize));
  5483   movq(r10, Address(rsp, 5 * wordSize));
  5484   movq(r9,  Address(rsp, 6 * wordSize));
  5485   movq(r8,  Address(rsp, 7 * wordSize));
  5486   movq(rdi, Address(rsp, 8 * wordSize));
  5487   movq(rsi, Address(rsp, 9 * wordSize));
  5488   movq(rbp, Address(rsp, 10 * wordSize));
  5489   // skip rsp
  5490   movq(rbx, Address(rsp, 12 * wordSize));
  5491   movq(rdx, Address(rsp, 13 * wordSize));
  5492   movq(rcx, Address(rsp, 14 * wordSize));
  5493   movq(rax, Address(rsp, 15 * wordSize));
  5495   addq(rsp, 16 * wordSize);
  5498 void Assembler::popcntq(Register dst, Address src) {
  5499   assert(VM_Version::supports_popcnt(), "must support");
  5500   InstructionMark im(this);
  5501   emit_int8((unsigned char)0xF3);
  5502   prefixq(src, dst);
  5503   emit_int8((unsigned char)0x0F);
  5504   emit_int8((unsigned char)0xB8);
  5505   emit_operand(dst, src);
  5508 void Assembler::popcntq(Register dst, Register src) {
  5509   assert(VM_Version::supports_popcnt(), "must support");
  5510   emit_int8((unsigned char)0xF3);
  5511   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5512   emit_int8((unsigned char)0x0F);
  5513   emit_int8((unsigned char)0xB8);
  5514   emit_int8((unsigned char)(0xC0 | encode));
  5517 void Assembler::popq(Address dst) {
  5518   InstructionMark im(this);
  5519   prefixq(dst);
  5520   emit_int8((unsigned char)0x8F);
  5521   emit_operand(rax, dst);
  5524 void Assembler::pusha() { // 64bit
  5525   // we have to store original rsp.  ABI says that 128 bytes
  5526   // below rsp are local scratch.
  5527   movq(Address(rsp, -5 * wordSize), rsp);
  5529   subq(rsp, 16 * wordSize);
  5531   movq(Address(rsp, 15 * wordSize), rax);
  5532   movq(Address(rsp, 14 * wordSize), rcx);
  5533   movq(Address(rsp, 13 * wordSize), rdx);
  5534   movq(Address(rsp, 12 * wordSize), rbx);
  5535   // skip rsp
  5536   movq(Address(rsp, 10 * wordSize), rbp);
  5537   movq(Address(rsp, 9 * wordSize), rsi);
  5538   movq(Address(rsp, 8 * wordSize), rdi);
  5539   movq(Address(rsp, 7 * wordSize), r8);
  5540   movq(Address(rsp, 6 * wordSize), r9);
  5541   movq(Address(rsp, 5 * wordSize), r10);
  5542   movq(Address(rsp, 4 * wordSize), r11);
  5543   movq(Address(rsp, 3 * wordSize), r12);
  5544   movq(Address(rsp, 2 * wordSize), r13);
  5545   movq(Address(rsp, wordSize), r14);
  5546   movq(Address(rsp, 0), r15);
  5549 void Assembler::pushq(Address src) {
  5550   InstructionMark im(this);
  5551   prefixq(src);
  5552   emit_int8((unsigned char)0xFF);
  5553   emit_operand(rsi, src);
  5556 void Assembler::rclq(Register dst, int imm8) {
  5557   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5558   int encode = prefixq_and_encode(dst->encoding());
  5559   if (imm8 == 1) {
  5560     emit_int8((unsigned char)0xD1);
  5561     emit_int8((unsigned char)(0xD0 | encode));
  5562   } else {
  5563     emit_int8((unsigned char)0xC1);
  5564     emit_int8((unsigned char)(0xD0 | encode));
  5565     emit_int8(imm8);
  5568 void Assembler::sarq(Register dst, int imm8) {
  5569   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5570   int encode = prefixq_and_encode(dst->encoding());
  5571   if (imm8 == 1) {
  5572     emit_int8((unsigned char)0xD1);
  5573     emit_int8((unsigned char)(0xF8 | encode));
  5574   } else {
  5575     emit_int8((unsigned char)0xC1);
  5576     emit_int8((unsigned char)(0xF8 | encode));
  5577     emit_int8(imm8);
  5581 void Assembler::sarq(Register dst) {
  5582   int encode = prefixq_and_encode(dst->encoding());
  5583   emit_int8((unsigned char)0xD3);
  5584   emit_int8((unsigned char)(0xF8 | encode));
  5587 void Assembler::sbbq(Address dst, int32_t imm32) {
  5588   InstructionMark im(this);
  5589   prefixq(dst);
  5590   emit_arith_operand(0x81, rbx, dst, imm32);
  5593 void Assembler::sbbq(Register dst, int32_t imm32) {
  5594   (void) prefixq_and_encode(dst->encoding());
  5595   emit_arith(0x81, 0xD8, dst, imm32);
  5598 void Assembler::sbbq(Register dst, Address src) {
  5599   InstructionMark im(this);
  5600   prefixq(src, dst);
  5601   emit_int8(0x1B);
  5602   emit_operand(dst, src);
  5605 void Assembler::sbbq(Register dst, Register src) {
  5606   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5607   emit_arith(0x1B, 0xC0, dst, src);
  5610 void Assembler::shlq(Register dst, int imm8) {
  5611   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5612   int encode = prefixq_and_encode(dst->encoding());
  5613   if (imm8 == 1) {
  5614     emit_int8((unsigned char)0xD1);
  5615     emit_int8((unsigned char)(0xE0 | encode));
  5616   } else {
  5617     emit_int8((unsigned char)0xC1);
  5618     emit_int8((unsigned char)(0xE0 | encode));
  5619     emit_int8(imm8);
  5623 void Assembler::shlq(Register dst) {
  5624   int encode = prefixq_and_encode(dst->encoding());
  5625   emit_int8((unsigned char)0xD3);
  5626   emit_int8((unsigned char)(0xE0 | encode));
  5629 void Assembler::shrq(Register dst, int imm8) {
  5630   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5631   int encode = prefixq_and_encode(dst->encoding());
  5632   emit_int8((unsigned char)0xC1);
  5633   emit_int8((unsigned char)(0xE8 | encode));
  5634   emit_int8(imm8);
  5637 void Assembler::shrq(Register dst) {
  5638   int encode = prefixq_and_encode(dst->encoding());
  5639   emit_int8((unsigned char)0xD3);
  5640   emit_int8(0xE8 | encode);
  5643 void Assembler::subq(Address dst, int32_t imm32) {
  5644   InstructionMark im(this);
  5645   prefixq(dst);
  5646   emit_arith_operand(0x81, rbp, dst, imm32);
  5649 void Assembler::subq(Address dst, Register src) {
  5650   InstructionMark im(this);
  5651   prefixq(dst, src);
  5652   emit_int8(0x29);
  5653   emit_operand(src, dst);
  5656 void Assembler::subq(Register dst, int32_t imm32) {
  5657   (void) prefixq_and_encode(dst->encoding());
  5658   emit_arith(0x81, 0xE8, dst, imm32);
  5661 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5662 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5663   (void) prefixq_and_encode(dst->encoding());
  5664   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5667 void Assembler::subq(Register dst, Address src) {
  5668   InstructionMark im(this);
  5669   prefixq(src, dst);
  5670   emit_int8(0x2B);
  5671   emit_operand(dst, src);
  5674 void Assembler::subq(Register dst, Register src) {
  5675   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5676   emit_arith(0x2B, 0xC0, dst, src);
  5679 void Assembler::testq(Register dst, int32_t imm32) {
  5680   // not using emit_arith because test
  5681   // doesn't support sign-extension of
  5682   // 8bit operands
  5683   int encode = dst->encoding();
  5684   if (encode == 0) {
  5685     prefix(REX_W);
  5686     emit_int8((unsigned char)0xA9);
  5687   } else {
  5688     encode = prefixq_and_encode(encode);
  5689     emit_int8((unsigned char)0xF7);
  5690     emit_int8((unsigned char)(0xC0 | encode));
  5692   emit_int32(imm32);
  5695 void Assembler::testq(Register dst, Register src) {
  5696   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5697   emit_arith(0x85, 0xC0, dst, src);
  5700 void Assembler::xaddq(Address dst, Register src) {
  5701   InstructionMark im(this);
  5702   prefixq(dst, src);
  5703   emit_int8(0x0F);
  5704   emit_int8((unsigned char)0xC1);
  5705   emit_operand(src, dst);
  5708 void Assembler::xchgq(Register dst, Address src) {
  5709   InstructionMark im(this);
  5710   prefixq(src, dst);
  5711   emit_int8((unsigned char)0x87);
  5712   emit_operand(dst, src);
  5715 void Assembler::xchgq(Register dst, Register src) {
  5716   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5717   emit_int8((unsigned char)0x87);
  5718   emit_int8((unsigned char)(0xc0 | encode));
  5721 void Assembler::xorq(Register dst, Register src) {
  5722   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5723   emit_arith(0x33, 0xC0, dst, src);
  5726 void Assembler::xorq(Register dst, Address src) {
  5727   InstructionMark im(this);
  5728   prefixq(src, dst);
  5729   emit_int8(0x33);
  5730   emit_operand(dst, src);
  5733 #endif // !LP64

mercurial