src/share/vm/opto/loopTransform.cpp

Mon, 28 Jun 2010 14:54:39 -0700

author
kvn
date
Mon, 28 Jun 2010 14:54:39 -0700
changeset 1976
6027dddc26c6
parent 1907
c18cbe5936b8
child 2118
d6f45b55c972
permissions
-rw-r--r--

6677629: PhaseIterGVN::subsume_node() should call hash_delete() and add_users_to_worklist()
Summary: Use replace_node() method instead of subsume_node().
Reviewed-by: jrose, never

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_loopTransform.cpp.incl"
    28 //------------------------------is_loop_exit-----------------------------------
    29 // Given an IfNode, return the loop-exiting projection or NULL if both
    30 // arms remain in the loop.
    31 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    32   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    33   PhaseIdealLoop *phase = _phase;
    34   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    35   // we need loop unswitching instead of peeling.
    36   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    37     return iff->raw_out(0);
    38   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    39     return iff->raw_out(1);
    40   return NULL;
    41 }
    44 //=============================================================================
    47 //------------------------------record_for_igvn----------------------------
    48 // Put loop body on igvn work list
    49 void IdealLoopTree::record_for_igvn() {
    50   for( uint i = 0; i < _body.size(); i++ ) {
    51     Node *n = _body.at(i);
    52     _phase->_igvn._worklist.push(n);
    53   }
    54 }
    56 //------------------------------compute_profile_trip_cnt----------------------------
    57 // Compute loop trip count from profile data as
    58 //    (backedge_count + loop_exit_count) / loop_exit_count
    59 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
    60   if (!_head->is_CountedLoop()) {
    61     return;
    62   }
    63   CountedLoopNode* head = _head->as_CountedLoop();
    64   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
    65     return; // Already computed
    66   }
    67   float trip_cnt = (float)max_jint; // default is big
    69   Node* back = head->in(LoopNode::LoopBackControl);
    70   while (back != head) {
    71     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    72         back->in(0) &&
    73         back->in(0)->is_If() &&
    74         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
    75         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
    76       break;
    77     }
    78     back = phase->idom(back);
    79   }
    80   if (back != head) {
    81     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    82            back->in(0), "if-projection exists");
    83     IfNode* back_if = back->in(0)->as_If();
    84     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
    86     // Now compute a loop exit count
    87     float loop_exit_cnt = 0.0f;
    88     for( uint i = 0; i < _body.size(); i++ ) {
    89       Node *n = _body[i];
    90       if( n->is_If() ) {
    91         IfNode *iff = n->as_If();
    92         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
    93           Node *exit = is_loop_exit(iff);
    94           if( exit ) {
    95             float exit_prob = iff->_prob;
    96             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
    97             if (exit_prob > PROB_MIN) {
    98               float exit_cnt = iff->_fcnt * exit_prob;
    99               loop_exit_cnt += exit_cnt;
   100             }
   101           }
   102         }
   103       }
   104     }
   105     if (loop_exit_cnt > 0.0f) {
   106       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   107     } else {
   108       // No exit count so use
   109       trip_cnt = loop_back_cnt;
   110     }
   111   }
   112 #ifndef PRODUCT
   113   if (TraceProfileTripCount) {
   114     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   115   }
   116 #endif
   117   head->set_profile_trip_cnt(trip_cnt);
   118 }
   120 //---------------------is_invariant_addition-----------------------------
   121 // Return nonzero index of invariant operand for an Add or Sub
   122 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   123 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   124   int op = n->Opcode();
   125   if (op == Op_AddI || op == Op_SubI) {
   126     bool in1_invar = this->is_invariant(n->in(1));
   127     bool in2_invar = this->is_invariant(n->in(2));
   128     if (in1_invar && !in2_invar) return 1;
   129     if (!in1_invar && in2_invar) return 2;
   130   }
   131   return 0;
   132 }
   134 //---------------------reassociate_add_sub-----------------------------
   135 // Reassociate invariant add and subtract expressions:
   136 //
   137 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   138 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   139 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   140 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   141 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   142 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   143 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   144 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   145 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   146 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   147 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   148 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   149 //
   150 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   151   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   152   if (is_invariant(n1)) return NULL;
   153   int inv1_idx = is_invariant_addition(n1, phase);
   154   if (!inv1_idx) return NULL;
   155   // Don't mess with add of constant (igvn moves them to expression tree root.)
   156   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   157   Node* inv1 = n1->in(inv1_idx);
   158   Node* n2 = n1->in(3 - inv1_idx);
   159   int inv2_idx = is_invariant_addition(n2, phase);
   160   if (!inv2_idx) return NULL;
   161   Node* x    = n2->in(3 - inv2_idx);
   162   Node* inv2 = n2->in(inv2_idx);
   164   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   165   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   166   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   167   if (n1->is_Sub() && inv1_idx == 1) {
   168     neg_x    = !neg_x;
   169     neg_inv2 = !neg_inv2;
   170   }
   171   Node* inv1_c = phase->get_ctrl(inv1);
   172   Node* inv2_c = phase->get_ctrl(inv2);
   173   Node* n_inv1;
   174   if (neg_inv1) {
   175     Node *zero = phase->_igvn.intcon(0);
   176     phase->set_ctrl(zero, phase->C->root());
   177     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   178     phase->register_new_node(n_inv1, inv1_c);
   179   } else {
   180     n_inv1 = inv1;
   181   }
   182   Node* inv;
   183   if (neg_inv2) {
   184     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   185   } else {
   186     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   187   }
   188   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   190   Node* addx;
   191   if (neg_x) {
   192     addx = new (phase->C, 3) SubINode(inv, x);
   193   } else {
   194     addx = new (phase->C, 3) AddINode(x, inv);
   195   }
   196   phase->register_new_node(addx, phase->get_ctrl(x));
   197   phase->_igvn.replace_node(n1, addx);
   198   return addx;
   199 }
   201 //---------------------reassociate_invariants-----------------------------
   202 // Reassociate invariant expressions:
   203 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   204   for (int i = _body.size() - 1; i >= 0; i--) {
   205     Node *n = _body.at(i);
   206     for (int j = 0; j < 5; j++) {
   207       Node* nn = reassociate_add_sub(n, phase);
   208       if (nn == NULL) break;
   209       n = nn; // again
   210     };
   211   }
   212 }
   214 //------------------------------policy_peeling---------------------------------
   215 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   216 // make some loop-invariant test (usually a null-check) happen before the loop.
   217 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   218   Node *test = ((IdealLoopTree*)this)->tail();
   219   int  body_size = ((IdealLoopTree*)this)->_body.size();
   220   int  uniq      = phase->C->unique();
   221   // Peeling does loop cloning which can result in O(N^2) node construction
   222   if( body_size > 255 /* Prevent overflow for large body_size */
   223       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   224     return false;           // too large to safely clone
   225   }
   226   while( test != _head ) {      // Scan till run off top of loop
   227     if( test->is_If() ) {       // Test?
   228       Node *ctrl = phase->get_ctrl(test->in(1));
   229       if (ctrl->is_top())
   230         return false;           // Found dead test on live IF?  No peeling!
   231       // Standard IF only has one input value to check for loop invariance
   232       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   233       // Condition is not a member of this loop?
   234       if( !is_member(phase->get_loop(ctrl)) &&
   235           is_loop_exit(test) )
   236         return true;            // Found reason to peel!
   237     }
   238     // Walk up dominators to loop _head looking for test which is
   239     // executed on every path thru loop.
   240     test = phase->idom(test);
   241   }
   242   return false;
   243 }
   245 //------------------------------peeled_dom_test_elim---------------------------
   246 // If we got the effect of peeling, either by actually peeling or by making
   247 // a pre-loop which must execute at least once, we can remove all
   248 // loop-invariant dominated tests in the main body.
   249 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   250   bool progress = true;
   251   while( progress ) {
   252     progress = false;           // Reset for next iteration
   253     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   254     Node *test = prev->in(0);
   255     while( test != loop->_head ) { // Scan till run off top of loop
   257       int p_op = prev->Opcode();
   258       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   259           test->is_If() &&      // Test?
   260           !test->in(1)->is_Con() && // And not already obvious?
   261           // Condition is not a member of this loop?
   262           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   263         // Walk loop body looking for instances of this test
   264         for( uint i = 0; i < loop->_body.size(); i++ ) {
   265           Node *n = loop->_body.at(i);
   266           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   267             // IfNode was dominated by version in peeled loop body
   268             progress = true;
   269             dominated_by( old_new[prev->_idx], n );
   270           }
   271         }
   272       }
   273       prev = test;
   274       test = idom(test);
   275     } // End of scan tests in loop
   277   } // End of while( progress )
   278 }
   280 //------------------------------do_peeling-------------------------------------
   281 // Peel the first iteration of the given loop.
   282 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   283 //         The pre-loop illegally has 2 control users (old & new loops).
   284 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   285 //         Do this by making the old-loop fall-in edges act as if they came
   286 //         around the loopback from the prior iteration (follow the old-loop
   287 //         backedges) and then map to the new peeled iteration.  This leaves
   288 //         the pre-loop with only 1 user (the new peeled iteration), but the
   289 //         peeled-loop backedge has 2 users.
   290 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   291 //         extra backedge user.
   292 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   294   C->set_major_progress();
   295   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   296   // 'pre' loop from the main and the 'pre' can no longer have it's
   297   // iterations adjusted.  Therefore, we need to declare this loop as
   298   // no longer a 'main' loop; it will need new pre and post loops before
   299   // we can do further RCE.
   300   Node *h = loop->_head;
   301   if( h->is_CountedLoop() ) {
   302     CountedLoopNode *cl = h->as_CountedLoop();
   303     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   304     cl->set_trip_count(cl->trip_count() - 1);
   305     if( cl->is_main_loop() ) {
   306       cl->set_normal_loop();
   307 #ifndef PRODUCT
   308       if( PrintOpto && VerifyLoopOptimizations ) {
   309         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   310         loop->dump_head();
   311       }
   312 #endif
   313     }
   314   }
   316   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   317   //         The pre-loop illegally has 2 control users (old & new loops).
   318   clone_loop( loop, old_new, dom_depth(loop->_head) );
   321   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   322   //         Do this by making the old-loop fall-in edges act as if they came
   323   //         around the loopback from the prior iteration (follow the old-loop
   324   //         backedges) and then map to the new peeled iteration.  This leaves
   325   //         the pre-loop with only 1 user (the new peeled iteration), but the
   326   //         peeled-loop backedge has 2 users.
   327   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
   328     Node* old = loop->_head->fast_out(j);
   329     if( old->in(0) == loop->_head && old->req() == 3 &&
   330         (old->is_Loop() || old->is_Phi()) ) {
   331       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   332       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
   333         // Then loop body backedge value remains the same.
   334         new_exit_value = old->in(LoopNode::LoopBackControl);
   335       _igvn.hash_delete(old);
   336       old->set_req(LoopNode::EntryControl, new_exit_value);
   337     }
   338   }
   341   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   342   //         extra backedge user.
   343   Node *nnn = old_new[loop->_head->_idx];
   344   _igvn.hash_delete(nnn);
   345   nnn->set_req(LoopNode::LoopBackControl, C->top());
   346   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
   347     Node* use = nnn->fast_out(j2);
   348     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
   349       _igvn.hash_delete(use);
   350       use->set_req(LoopNode::LoopBackControl, C->top());
   351     }
   352   }
   355   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   356   int dd = dom_depth(loop->_head);
   357   set_idom(loop->_head, loop->_head->in(1), dd);
   358   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   359     Node *old = loop->_body.at(j3);
   360     Node *nnn = old_new[old->_idx];
   361     if (!has_ctrl(nnn))
   362       set_idom(nnn, idom(nnn), dd-1);
   363     // While we're at it, remove any SafePoints from the peeled code
   364     if( old->Opcode() == Op_SafePoint ) {
   365       Node *nnn = old_new[old->_idx];
   366       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   367     }
   368   }
   370   // Now force out all loop-invariant dominating tests.  The optimizer
   371   // finds some, but we _know_ they are all useless.
   372   peeled_dom_test_elim(loop,old_new);
   374   loop->record_for_igvn();
   375 }
   377 //------------------------------policy_maximally_unroll------------------------
   378 // Return exact loop trip count, or 0 if not maximally unrolling
   379 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   380   CountedLoopNode *cl = _head->as_CountedLoop();
   381   assert( cl->is_normal_loop(), "" );
   383   Node *init_n = cl->init_trip();
   384   Node *limit_n = cl->limit();
   386   // Non-constant bounds
   387   if( init_n   == NULL || !init_n->is_Con()  ||
   388       limit_n  == NULL || !limit_n->is_Con() ||
   389       // protect against stride not being a constant
   390       !cl->stride_is_con() ) {
   391     return false;
   392   }
   393   int init   = init_n->get_int();
   394   int limit  = limit_n->get_int();
   395   int span   = limit - init;
   396   int stride = cl->stride_con();
   398   if (init >= limit || stride > span) {
   399     // return a false (no maximally unroll) and the regular unroll/peel
   400     // route will make a small mess which CCP will fold away.
   401     return false;
   402   }
   403   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
   404   assert( (int)trip_count*stride == span, "must divide evenly" );
   406   // Real policy: if we maximally unroll, does it get too big?
   407   // Allow the unrolled mess to get larger than standard loop
   408   // size.  After all, it will no longer be a loop.
   409   uint body_size    = _body.size();
   410   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   411   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   412   cl->set_trip_count(trip_count);
   413   if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
   414     uint new_body_size = body_size * trip_count;
   415     if (new_body_size <= unroll_limit &&
   416         body_size == new_body_size / trip_count &&
   417         // Unrolling can result in a large amount of node construction
   418         new_body_size < MaxNodeLimit - phase->C->unique()) {
   419       return true;    // maximally unroll
   420     }
   421   }
   423   return false;               // Do not maximally unroll
   424 }
   427 //------------------------------policy_unroll----------------------------------
   428 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   429 // the loop is a CountedLoop and the body is small enough.
   430 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   432   CountedLoopNode *cl = _head->as_CountedLoop();
   433   assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
   435   // protect against stride not being a constant
   436   if( !cl->stride_is_con() ) return false;
   438   // protect against over-unrolling
   439   if( cl->trip_count() <= 1 ) return false;
   441   int future_unroll_ct = cl->unrolled_count() * 2;
   443   // Don't unroll if the next round of unrolling would push us
   444   // over the expected trip count of the loop.  One is subtracted
   445   // from the expected trip count because the pre-loop normally
   446   // executes 1 iteration.
   447   if (UnrollLimitForProfileCheck > 0 &&
   448       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   449       future_unroll_ct        > UnrollLimitForProfileCheck &&
   450       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   451     return false;
   452   }
   454   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   455   //   the residual iterations are more than 10% of the trip count
   456   //   and rounds of "unroll,optimize" are not making significant progress
   457   //   Progress defined as current size less than 20% larger than previous size.
   458   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   459       future_unroll_ct > LoopUnrollMin &&
   460       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   461       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   462     return false;
   463   }
   465   Node *init_n = cl->init_trip();
   466   Node *limit_n = cl->limit();
   467   // Non-constant bounds.
   468   // Protect against over-unrolling when init or/and limit are not constant
   469   // (so that trip_count's init value is maxint) but iv range is known.
   470   if( init_n   == NULL || !init_n->is_Con()  ||
   471       limit_n  == NULL || !limit_n->is_Con() ) {
   472     Node* phi = cl->phi();
   473     if( phi != NULL ) {
   474       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   475       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   476       int next_stride = cl->stride_con() * 2; // stride after this unroll
   477       if( next_stride > 0 ) {
   478         if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   479             iv_type->_lo + next_stride >  iv_type->_hi ) {
   480           return false;  // over-unrolling
   481         }
   482       } else if( next_stride < 0 ) {
   483         if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   484             iv_type->_hi + next_stride <  iv_type->_lo ) {
   485           return false;  // over-unrolling
   486         }
   487       }
   488     }
   489   }
   491   // Adjust body_size to determine if we unroll or not
   492   uint body_size = _body.size();
   493   // Key test to unroll CaffeineMark's Logic test
   494   int xors_in_loop = 0;
   495   // Also count ModL, DivL and MulL which expand mightly
   496   for( uint k = 0; k < _body.size(); k++ ) {
   497     switch( _body.at(k)->Opcode() ) {
   498     case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
   499     case Op_ModL: body_size += 30; break;
   500     case Op_DivL: body_size += 30; break;
   501     case Op_MulL: body_size += 10; break;
   502     }
   503   }
   505   // Check for being too big
   506   if( body_size > (uint)LoopUnrollLimit ) {
   507     if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   508     // Normal case: loop too big
   509     return false;
   510   }
   512   // Check for stride being a small enough constant
   513   if( abs(cl->stride_con()) > (1<<3) ) return false;
   515   // Unroll once!  (Each trip will soon do double iterations)
   516   return true;
   517 }
   519 //------------------------------policy_align-----------------------------------
   520 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   521 // expression that does the alignment.  Note that only one array base can be
   522 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   523 // if we vectorize short memory ops into longer memory ops, we may want to
   524 // increase alignment.
   525 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   526   return false;
   527 }
   529 //------------------------------policy_range_check-----------------------------
   530 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   531 // Actually we do iteration-splitting, a more powerful form of RCE.
   532 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   533   if( !RangeCheckElimination ) return false;
   535   CountedLoopNode *cl = _head->as_CountedLoop();
   536   // If we unrolled with no intention of doing RCE and we later
   537   // changed our minds, we got no pre-loop.  Either we need to
   538   // make a new pre-loop, or we gotta disallow RCE.
   539   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
   540   Node *trip_counter = cl->phi();
   542   // Check loop body for tests of trip-counter plus loop-invariant vs
   543   // loop-invariant.
   544   for( uint i = 0; i < _body.size(); i++ ) {
   545     Node *iff = _body[i];
   546     if( iff->Opcode() == Op_If ) { // Test?
   548       // Comparing trip+off vs limit
   549       Node *bol = iff->in(1);
   550       if( bol->req() != 2 ) continue; // dead constant test
   551       if (!bol->is_Bool()) {
   552         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   553         continue;
   554       }
   555       Node *cmp = bol->in(1);
   557       Node *rc_exp = cmp->in(1);
   558       Node *limit = cmp->in(2);
   560       Node *limit_c = phase->get_ctrl(limit);
   561       if( limit_c == phase->C->top() )
   562         return false;           // Found dead test on live IF?  No RCE!
   563       if( is_member(phase->get_loop(limit_c) ) ) {
   564         // Compare might have operands swapped; commute them
   565         rc_exp = cmp->in(2);
   566         limit  = cmp->in(1);
   567         limit_c = phase->get_ctrl(limit);
   568         if( is_member(phase->get_loop(limit_c) ) )
   569           continue;             // Both inputs are loop varying; cannot RCE
   570       }
   572       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   573         continue;
   574       }
   575       // Yeah!  Found a test like 'trip+off vs limit'
   576       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   577       // we need loop unswitching instead of iteration splitting.
   578       if( is_loop_exit(iff) )
   579         return true;            // Found reason to split iterations
   580     } // End of is IF
   581   }
   583   return false;
   584 }
   586 //------------------------------policy_peel_only-------------------------------
   587 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   588 // for unrolling loops with NO array accesses.
   589 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   591   for( uint i = 0; i < _body.size(); i++ )
   592     if( _body[i]->is_Mem() )
   593       return false;
   595   // No memory accesses at all!
   596   return true;
   597 }
   599 //------------------------------clone_up_backedge_goo--------------------------
   600 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   601 // version of n in preheader_ctrl block and return that, otherwise return n.
   602 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   603   if( get_ctrl(n) != back_ctrl ) return n;
   605   Node *x = NULL;               // If required, a clone of 'n'
   606   // Check for 'n' being pinned in the backedge.
   607   if( n->in(0) && n->in(0) == back_ctrl ) {
   608     x = n->clone();             // Clone a copy of 'n' to preheader
   609     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   610   }
   612   // Recursive fixup any other input edges into x.
   613   // If there are no changes we can just return 'n', otherwise
   614   // we need to clone a private copy and change it.
   615   for( uint i = 1; i < n->req(); i++ ) {
   616     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   617     if( g != n->in(i) ) {
   618       if( !x )
   619         x = n->clone();
   620       x->set_req(i, g);
   621     }
   622   }
   623   if( x ) {                     // x can legally float to pre-header location
   624     register_new_node( x, preheader_ctrl );
   625     return x;
   626   } else {                      // raise n to cover LCA of uses
   627     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   628   }
   629   return n;
   630 }
   632 //------------------------------insert_pre_post_loops--------------------------
   633 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   634 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   635 // alignment.  Useful to unroll loops that do no array accesses.
   636 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   638   C->set_major_progress();
   640   // Find common pieces of the loop being guarded with pre & post loops
   641   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   642   assert( main_head->is_normal_loop(), "" );
   643   CountedLoopEndNode *main_end = main_head->loopexit();
   644   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   645   uint dd_main_head = dom_depth(main_head);
   646   uint max = main_head->outcnt();
   648   Node *pre_header= main_head->in(LoopNode::EntryControl);
   649   Node *init      = main_head->init_trip();
   650   Node *incr      = main_end ->incr();
   651   Node *limit     = main_end ->limit();
   652   Node *stride    = main_end ->stride();
   653   Node *cmp       = main_end ->cmp_node();
   654   BoolTest::mask b_test = main_end->test_trip();
   656   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   657   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   658   if( bol->outcnt() != 1 ) {
   659     bol = bol->clone();
   660     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   661     _igvn.hash_delete(main_end);
   662     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   663   }
   664   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   665   if( cmp->outcnt() != 1 ) {
   666     cmp = cmp->clone();
   667     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   668     _igvn.hash_delete(bol);
   669     bol->set_req(1, cmp);
   670   }
   672   //------------------------------
   673   // Step A: Create Post-Loop.
   674   Node* main_exit = main_end->proj_out(false);
   675   assert( main_exit->Opcode() == Op_IfFalse, "" );
   676   int dd_main_exit = dom_depth(main_exit);
   678   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   679   // loop pre-header illegally has 2 control users (old & new loops).
   680   clone_loop( loop, old_new, dd_main_exit );
   681   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   682   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   683   post_head->set_post_loop(main_head);
   685   // Reduce the post-loop trip count.
   686   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   687   post_end->_prob = PROB_FAIR;
   689   // Build the main-loop normal exit.
   690   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   691   _igvn.register_new_node_with_optimizer( new_main_exit );
   692   set_idom(new_main_exit, main_end, dd_main_exit );
   693   set_loop(new_main_exit, loop->_parent);
   695   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   696   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   697   // (the main-loop trip-counter exit value) because we will be changing
   698   // the exit value (via unrolling) so we cannot constant-fold away the zero
   699   // trip guard until all unrolling is done.
   700   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   701   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   702   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   703   register_new_node( zer_opaq, new_main_exit );
   704   register_new_node( zer_cmp , new_main_exit );
   705   register_new_node( zer_bol , new_main_exit );
   707   // Build the IfNode
   708   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   709   _igvn.register_new_node_with_optimizer( zer_iff );
   710   set_idom(zer_iff, new_main_exit, dd_main_exit);
   711   set_loop(zer_iff, loop->_parent);
   713   // Plug in the false-path, taken if we need to skip post-loop
   714   _igvn.hash_delete( main_exit );
   715   main_exit->set_req(0, zer_iff);
   716   _igvn._worklist.push(main_exit);
   717   set_idom(main_exit, zer_iff, dd_main_exit);
   718   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   719   // Make the true-path, must enter the post loop
   720   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   721   _igvn.register_new_node_with_optimizer( zer_taken );
   722   set_idom(zer_taken, zer_iff, dd_main_exit);
   723   set_loop(zer_taken, loop->_parent);
   724   // Plug in the true path
   725   _igvn.hash_delete( post_head );
   726   post_head->set_req(LoopNode::EntryControl, zer_taken);
   727   set_idom(post_head, zer_taken, dd_main_exit);
   729   // Step A3: Make the fall-in values to the post-loop come from the
   730   // fall-out values of the main-loop.
   731   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   732     Node* main_phi = main_head->fast_out(i);
   733     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   734       Node *post_phi = old_new[main_phi->_idx];
   735       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   736                                               post_head->init_control(),
   737                                               main_phi->in(LoopNode::LoopBackControl));
   738       _igvn.hash_delete(post_phi);
   739       post_phi->set_req( LoopNode::EntryControl, fallmain );
   740     }
   741   }
   743   // Update local caches for next stanza
   744   main_exit = new_main_exit;
   747   //------------------------------
   748   // Step B: Create Pre-Loop.
   750   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   751   // loop pre-header illegally has 2 control users (old & new loops).
   752   clone_loop( loop, old_new, dd_main_head );
   753   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   754   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   755   pre_head->set_pre_loop(main_head);
   756   Node *pre_incr = old_new[incr->_idx];
   758   // Reduce the pre-loop trip count.
   759   pre_end->_prob = PROB_FAIR;
   761   // Find the pre-loop normal exit.
   762   Node* pre_exit = pre_end->proj_out(false);
   763   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   764   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   765   _igvn.register_new_node_with_optimizer( new_pre_exit );
   766   set_idom(new_pre_exit, pre_end, dd_main_head);
   767   set_loop(new_pre_exit, loop->_parent);
   769   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
   770   // pre-loop, the main-loop may not execute at all.  Later in life this
   771   // zero-trip guard will become the minimum-trip guard when we unroll
   772   // the main-loop.
   773   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
   774   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
   775   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
   776   register_new_node( min_opaq, new_pre_exit );
   777   register_new_node( min_cmp , new_pre_exit );
   778   register_new_node( min_bol , new_pre_exit );
   780   // Build the IfNode (assume the main-loop is executed always).
   781   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
   782   _igvn.register_new_node_with_optimizer( min_iff );
   783   set_idom(min_iff, new_pre_exit, dd_main_head);
   784   set_loop(min_iff, loop->_parent);
   786   // Plug in the false-path, taken if we need to skip main-loop
   787   _igvn.hash_delete( pre_exit );
   788   pre_exit->set_req(0, min_iff);
   789   set_idom(pre_exit, min_iff, dd_main_head);
   790   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
   791   // Make the true-path, must enter the main loop
   792   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
   793   _igvn.register_new_node_with_optimizer( min_taken );
   794   set_idom(min_taken, min_iff, dd_main_head);
   795   set_loop(min_taken, loop->_parent);
   796   // Plug in the true path
   797   _igvn.hash_delete( main_head );
   798   main_head->set_req(LoopNode::EntryControl, min_taken);
   799   set_idom(main_head, min_taken, dd_main_head);
   801   // Step B3: Make the fall-in values to the main-loop come from the
   802   // fall-out values of the pre-loop.
   803   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
   804     Node* main_phi = main_head->fast_out(i2);
   805     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
   806       Node *pre_phi = old_new[main_phi->_idx];
   807       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
   808                                              main_head->init_control(),
   809                                              pre_phi->in(LoopNode::LoopBackControl));
   810       _igvn.hash_delete(main_phi);
   811       main_phi->set_req( LoopNode::EntryControl, fallpre );
   812     }
   813   }
   815   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
   816   // RCE and alignment may change this later.
   817   Node *cmp_end = pre_end->cmp_node();
   818   assert( cmp_end->in(2) == limit, "" );
   819   Node *pre_limit = new (C, 3) AddINode( init, stride );
   821   // Save the original loop limit in this Opaque1 node for
   822   // use by range check elimination.
   823   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
   825   register_new_node( pre_limit, pre_head->in(0) );
   826   register_new_node( pre_opaq , pre_head->in(0) );
   828   // Since no other users of pre-loop compare, I can hack limit directly
   829   assert( cmp_end->outcnt() == 1, "no other users" );
   830   _igvn.hash_delete(cmp_end);
   831   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
   833   // Special case for not-equal loop bounds:
   834   // Change pre loop test, main loop test, and the
   835   // main loop guard test to use lt or gt depending on stride
   836   // direction:
   837   // positive stride use <
   838   // negative stride use >
   840   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
   842     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
   843     // Modify pre loop end condition
   844     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   845     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
   846     register_new_node( new_bol0, pre_head->in(0) );
   847     _igvn.hash_delete(pre_end);
   848     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
   849     // Modify main loop guard condition
   850     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
   851     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
   852     register_new_node( new_bol1, new_pre_exit );
   853     _igvn.hash_delete(min_iff);
   854     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
   855     // Modify main loop end condition
   856     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   857     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
   858     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
   859     _igvn.hash_delete(main_end);
   860     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
   861   }
   863   // Flag main loop
   864   main_head->set_main_loop();
   865   if( peel_only ) main_head->set_main_no_pre_loop();
   867   // It's difficult to be precise about the trip-counts
   868   // for the pre/post loops.  They are usually very short,
   869   // so guess that 4 trips is a reasonable value.
   870   post_head->set_profile_trip_cnt(4.0);
   871   pre_head->set_profile_trip_cnt(4.0);
   873   // Now force out all loop-invariant dominating tests.  The optimizer
   874   // finds some, but we _know_ they are all useless.
   875   peeled_dom_test_elim(loop,old_new);
   876 }
   878 //------------------------------is_invariant-----------------------------
   879 // Return true if n is invariant
   880 bool IdealLoopTree::is_invariant(Node* n) const {
   881   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
   882   if (n_c->is_top()) return false;
   883   return !is_member(_phase->get_loop(n_c));
   884 }
   887 //------------------------------do_unroll--------------------------------------
   888 // Unroll the loop body one step - make each trip do 2 iterations.
   889 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
   890   assert( LoopUnrollLimit, "" );
   891 #ifndef PRODUCT
   892   if( PrintOpto && VerifyLoopOptimizations ) {
   893     tty->print("Unrolling ");
   894     loop->dump_head();
   895   }
   896 #endif
   897   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
   898   CountedLoopEndNode *loop_end = loop_head->loopexit();
   899   assert( loop_end, "" );
   901   // Remember loop node count before unrolling to detect
   902   // if rounds of unroll,optimize are making progress
   903   loop_head->set_node_count_before_unroll(loop->_body.size());
   905   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
   906   Node *limit = loop_head->limit();
   907   Node *init  = loop_head->init_trip();
   908   Node *strid = loop_head->stride();
   910   Node *opaq = NULL;
   911   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
   912     assert( loop_head->is_main_loop(), "" );
   913     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
   914     Node *iff = ctrl->in(0);
   915     assert( iff->Opcode() == Op_If, "" );
   916     Node *bol = iff->in(1);
   917     assert( bol->Opcode() == Op_Bool, "" );
   918     Node *cmp = bol->in(1);
   919     assert( cmp->Opcode() == Op_CmpI, "" );
   920     opaq = cmp->in(2);
   921     // Occasionally it's possible for a pre-loop Opaque1 node to be
   922     // optimized away and then another round of loop opts attempted.
   923     // We can not optimize this particular loop in that case.
   924     if( opaq->Opcode() != Op_Opaque1 )
   925       return;                   // Cannot find pre-loop!  Bail out!
   926   }
   928   C->set_major_progress();
   930   // Adjust max trip count. The trip count is intentionally rounded
   931   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
   932   // the main, unrolled, part of the loop will never execute as it is protected
   933   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
   934   // and later determined that part of the unrolled loop was dead.
   935   loop_head->set_trip_count(loop_head->trip_count() / 2);
   937   // Double the count of original iterations in the unrolled loop body.
   938   loop_head->double_unrolled_count();
   940   // -----------
   941   // Step 2: Cut back the trip counter for an unroll amount of 2.
   942   // Loop will normally trip (limit - init)/stride_con.  Since it's a
   943   // CountedLoop this is exact (stride divides limit-init exactly).
   944   // We are going to double the loop body, so we want to knock off any
   945   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
   946   Node *span = new (C, 3) SubINode( limit, init );
   947   register_new_node( span, ctrl );
   948   Node *trip = new (C, 3) DivINode( 0, span, strid );
   949   register_new_node( trip, ctrl );
   950   Node *mtwo = _igvn.intcon(-2);
   951   set_ctrl(mtwo, C->root());
   952   Node *rond = new (C, 3) AndINode( trip, mtwo );
   953   register_new_node( rond, ctrl );
   954   Node *spn2 = new (C, 3) MulINode( rond, strid );
   955   register_new_node( spn2, ctrl );
   956   Node *lim2 = new (C, 3) AddINode( spn2, init );
   957   register_new_node( lim2, ctrl );
   959   // Hammer in the new limit
   960   Node *ctrl2 = loop_end->in(0);
   961   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
   962   register_new_node( cmp2, ctrl2 );
   963   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
   964   register_new_node( bol2, ctrl2 );
   965   _igvn.hash_delete(loop_end);
   966   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
   968   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
   969   // Make it a 1-trip test (means at least 2 trips).
   970   if( adjust_min_trip ) {
   971     // Guard test uses an 'opaque' node which is not shared.  Hence I
   972     // can edit it's inputs directly.  Hammer in the new limit for the
   973     // minimum-trip guard.
   974     assert( opaq->outcnt() == 1, "" );
   975     _igvn.hash_delete(opaq);
   976     opaq->set_req(1, lim2);
   977   }
   979   // ---------
   980   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
   981   // represents the odd iterations; since the loop trips an even number of
   982   // times its backedge is never taken.  Kill the backedge.
   983   uint dd = dom_depth(loop_head);
   984   clone_loop( loop, old_new, dd );
   986   // Make backedges of the clone equal to backedges of the original.
   987   // Make the fall-in from the original come from the fall-out of the clone.
   988   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
   989     Node* phi = loop_head->fast_out(j);
   990     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
   991       Node *newphi = old_new[phi->_idx];
   992       _igvn.hash_delete( phi );
   993       _igvn.hash_delete( newphi );
   995       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
   996       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
   997       phi   ->set_req(LoopNode::LoopBackControl, C->top());
   998     }
   999   }
  1000   Node *clone_head = old_new[loop_head->_idx];
  1001   _igvn.hash_delete( clone_head );
  1002   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1003   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1004   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1005   loop->_head = clone_head;     // New loop header
  1007   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1008   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1010   // Kill the clone's backedge
  1011   Node *newcle = old_new[loop_end->_idx];
  1012   _igvn.hash_delete( newcle );
  1013   Node *one = _igvn.intcon(1);
  1014   set_ctrl(one, C->root());
  1015   newcle->set_req(1, one);
  1016   // Force clone into same loop body
  1017   uint max = loop->_body.size();
  1018   for( uint k = 0; k < max; k++ ) {
  1019     Node *old = loop->_body.at(k);
  1020     Node *nnn = old_new[old->_idx];
  1021     loop->_body.push(nnn);
  1022     if (!has_ctrl(old))
  1023       set_loop(nnn, loop);
  1026   loop->record_for_igvn();
  1029 //------------------------------do_maximally_unroll----------------------------
  1031 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1032   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1033   assert( cl->trip_count() > 0, "");
  1035   // If loop is tripping an odd number of times, peel odd iteration
  1036   if( (cl->trip_count() & 1) == 1 ) {
  1037     do_peeling( loop, old_new );
  1040   // Now its tripping an even number of times remaining.  Double loop body.
  1041   // Do not adjust pre-guards; they are not needed and do not exist.
  1042   if( cl->trip_count() > 0 ) {
  1043     do_unroll( loop, old_new, false );
  1047 //------------------------------dominates_backedge---------------------------------
  1048 // Returns true if ctrl is executed on every complete iteration
  1049 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1050   assert(ctrl->is_CFG(), "must be control");
  1051   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1052   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1055 //------------------------------add_constraint---------------------------------
  1056 // Constrain the main loop iterations so the condition:
  1057 //    scale_con * I + offset  <  limit
  1058 // always holds true.  That is, either increase the number of iterations in
  1059 // the pre-loop or the post-loop until the condition holds true in the main
  1060 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1061 // stride and scale are constants (offset and limit often are).
  1062 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1064   // Compute "I :: (limit-offset)/scale_con"
  1065   Node *con = new (C, 3) SubINode( limit, offset );
  1066   register_new_node( con, pre_ctrl );
  1067   Node *scale = _igvn.intcon(scale_con);
  1068   set_ctrl(scale, C->root());
  1069   Node *X = new (C, 3) DivINode( 0, con, scale );
  1070   register_new_node( X, pre_ctrl );
  1072   // For positive stride, the pre-loop limit always uses a MAX function
  1073   // and the main loop a MIN function.  For negative stride these are
  1074   // reversed.
  1076   // Also for positive stride*scale the affine function is increasing, so the
  1077   // pre-loop must check for underflow and the post-loop for overflow.
  1078   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1079   // post-loop for underflow.
  1080   if( stride_con*scale_con > 0 ) {
  1081     // Compute I < (limit-offset)/scale_con
  1082     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
  1083     *main_limit = (stride_con > 0)
  1084       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
  1085       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
  1086     register_new_node( *main_limit, pre_ctrl );
  1088   } else {
  1089     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
  1090     // Add the negation of the main-loop constraint to the pre-loop.
  1091     // See footnote [++] below for a derivation of the limit expression.
  1092     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
  1093     set_ctrl(incr, C->root());
  1094     Node *adj = new (C, 3) AddINode( X, incr );
  1095     register_new_node( adj, pre_ctrl );
  1096     *pre_limit = (scale_con > 0)
  1097       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
  1098       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
  1099     register_new_node( *pre_limit, pre_ctrl );
  1101 //   [++] Here's the algebra that justifies the pre-loop limit expression:
  1102 //
  1103 //   NOT( scale_con * I + offset  <  limit )
  1104 //      ==
  1105 //   scale_con * I + offset  >=  limit
  1106 //      ==
  1107 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
  1108 //      ==
  1109 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
  1110 //      ==
  1111 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
  1112 //      ==
  1113 //   ( if (scale_con > 0) /*common case*/
  1114 //       (limit-offset)/scale_con - 1  <  I
  1115 //     else
  1116 //       (limit-offset)/scale_con + 1  >  I
  1117 //    )
  1118 //   ( if (scale_con > 0) /*common case*/
  1119 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
  1120 //     else
  1121 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
  1126 //------------------------------is_scaled_iv---------------------------------
  1127 // Return true if exp is a constant times an induction var
  1128 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1129   if (exp == iv) {
  1130     if (p_scale != NULL) {
  1131       *p_scale = 1;
  1133     return true;
  1135   int opc = exp->Opcode();
  1136   if (opc == Op_MulI) {
  1137     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1138       if (p_scale != NULL) {
  1139         *p_scale = exp->in(2)->get_int();
  1141       return true;
  1143     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1144       if (p_scale != NULL) {
  1145         *p_scale = exp->in(1)->get_int();
  1147       return true;
  1149   } else if (opc == Op_LShiftI) {
  1150     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1151       if (p_scale != NULL) {
  1152         *p_scale = 1 << exp->in(2)->get_int();
  1154       return true;
  1157   return false;
  1160 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1161 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1162 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1163   if (is_scaled_iv(exp, iv, p_scale)) {
  1164     if (p_offset != NULL) {
  1165       Node *zero = _igvn.intcon(0);
  1166       set_ctrl(zero, C->root());
  1167       *p_offset = zero;
  1169     return true;
  1171   int opc = exp->Opcode();
  1172   if (opc == Op_AddI) {
  1173     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1174       if (p_offset != NULL) {
  1175         *p_offset = exp->in(2);
  1177       return true;
  1179     if (exp->in(2)->is_Con()) {
  1180       Node* offset2 = NULL;
  1181       if (depth < 2 &&
  1182           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1183                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1184         if (p_offset != NULL) {
  1185           Node *ctrl_off2 = get_ctrl(offset2);
  1186           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1187           register_new_node(offset, ctrl_off2);
  1188           *p_offset = offset;
  1190         return true;
  1193   } else if (opc == Op_SubI) {
  1194     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1195       if (p_offset != NULL) {
  1196         Node *zero = _igvn.intcon(0);
  1197         set_ctrl(zero, C->root());
  1198         Node *ctrl_off = get_ctrl(exp->in(2));
  1199         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1200         register_new_node(offset, ctrl_off);
  1201         *p_offset = offset;
  1203       return true;
  1205     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1206       if (p_offset != NULL) {
  1207         *p_scale *= -1;
  1208         *p_offset = exp->in(1);
  1210       return true;
  1213   return false;
  1216 //------------------------------do_range_check---------------------------------
  1217 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1218 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1219 #ifndef PRODUCT
  1220   if( PrintOpto && VerifyLoopOptimizations ) {
  1221     tty->print("Range Check Elimination ");
  1222     loop->dump_head();
  1224 #endif
  1225   assert( RangeCheckElimination, "" );
  1226   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1227   assert( cl->is_main_loop(), "" );
  1229   // Find the trip counter; we are iteration splitting based on it
  1230   Node *trip_counter = cl->phi();
  1231   // Find the main loop limit; we will trim it's iterations
  1232   // to not ever trip end tests
  1233   Node *main_limit = cl->limit();
  1234   // Find the pre-loop limit; we will expand it's iterations to
  1235   // not ever trip low tests.
  1236   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1237   assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1238   Node *iffm = ctrl->in(0);
  1239   assert( iffm->Opcode() == Op_If, "" );
  1240   Node *p_f = iffm->in(0);
  1241   assert( p_f->Opcode() == Op_IfFalse, "" );
  1242   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1243   assert( pre_end->loopnode()->is_pre_loop(), "" );
  1244   Node *pre_opaq1 = pre_end->limit();
  1245   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1246   // optimized away and then another round of loop opts attempted.
  1247   // We can not optimize this particular loop in that case.
  1248   if( pre_opaq1->Opcode() != Op_Opaque1 )
  1249     return;
  1250   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1251   Node *pre_limit = pre_opaq->in(1);
  1253   // Where do we put new limit calculations
  1254   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1256   // Ensure the original loop limit is available from the
  1257   // pre-loop Opaque1 node.
  1258   Node *orig_limit = pre_opaq->original_loop_limit();
  1259   if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
  1260     return;
  1262   // Need to find the main-loop zero-trip guard
  1263   Node *bolzm = iffm->in(1);
  1264   assert( bolzm->Opcode() == Op_Bool, "" );
  1265   Node *cmpzm = bolzm->in(1);
  1266   assert( cmpzm->is_Cmp(), "" );
  1267   Node *opqzm = cmpzm->in(2);
  1268   if( opqzm->Opcode() != Op_Opaque1 )
  1269     return;
  1270   assert( opqzm->in(1) == main_limit, "do not understand situation" );
  1272   // Must know if its a count-up or count-down loop
  1274   // protect against stride not being a constant
  1275   if ( !cl->stride_is_con() ) {
  1276     return;
  1278   int stride_con = cl->stride_con();
  1279   Node *zero = _igvn.intcon(0);
  1280   Node *one  = _igvn.intcon(1);
  1281   set_ctrl(zero, C->root());
  1282   set_ctrl(one,  C->root());
  1284   // Range checks that do not dominate the loop backedge (ie.
  1285   // conditionally executed) can lengthen the pre loop limit beyond
  1286   // the original loop limit. To prevent this, the pre limit is
  1287   // (for stride > 0) MINed with the original loop limit (MAXed
  1288   // stride < 0) when some range_check (rc) is conditionally
  1289   // executed.
  1290   bool conditional_rc = false;
  1292   // Check loop body for tests of trip-counter plus loop-invariant vs
  1293   // loop-invariant.
  1294   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1295     Node *iff = loop->_body[i];
  1296     if( iff->Opcode() == Op_If ) { // Test?
  1298       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1299       // we need loop unswitching instead of iteration splitting.
  1300       Node *exit = loop->is_loop_exit(iff);
  1301       if( !exit ) continue;
  1302       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1304       // Get boolean condition to test
  1305       Node *i1 = iff->in(1);
  1306       if( !i1->is_Bool() ) continue;
  1307       BoolNode *bol = i1->as_Bool();
  1308       BoolTest b_test = bol->_test;
  1309       // Flip sense of test if exit condition is flipped
  1310       if( flip )
  1311         b_test = b_test.negate();
  1313       // Get compare
  1314       Node *cmp = bol->in(1);
  1316       // Look for trip_counter + offset vs limit
  1317       Node *rc_exp = cmp->in(1);
  1318       Node *limit  = cmp->in(2);
  1319       jint scale_con= 1;        // Assume trip counter not scaled
  1321       Node *limit_c = get_ctrl(limit);
  1322       if( loop->is_member(get_loop(limit_c) ) ) {
  1323         // Compare might have operands swapped; commute them
  1324         b_test = b_test.commute();
  1325         rc_exp = cmp->in(2);
  1326         limit  = cmp->in(1);
  1327         limit_c = get_ctrl(limit);
  1328         if( loop->is_member(get_loop(limit_c) ) )
  1329           continue;             // Both inputs are loop varying; cannot RCE
  1331       // Here we know 'limit' is loop invariant
  1333       // 'limit' maybe pinned below the zero trip test (probably from a
  1334       // previous round of rce), in which case, it can't be used in the
  1335       // zero trip test expression which must occur before the zero test's if.
  1336       if( limit_c == ctrl ) {
  1337         continue;  // Don't rce this check but continue looking for other candidates.
  1340       // Check for scaled induction variable plus an offset
  1341       Node *offset = NULL;
  1343       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1344         continue;
  1347       Node *offset_c = get_ctrl(offset);
  1348       if( loop->is_member( get_loop(offset_c) ) )
  1349         continue;               // Offset is not really loop invariant
  1350       // Here we know 'offset' is loop invariant.
  1352       // As above for the 'limit', the 'offset' maybe pinned below the
  1353       // zero trip test.
  1354       if( offset_c == ctrl ) {
  1355         continue; // Don't rce this check but continue looking for other candidates.
  1358       // At this point we have the expression as:
  1359       //   scale_con * trip_counter + offset :: limit
  1360       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1361       // monotonically increases by stride_con, a constant.  Both (or either)
  1362       // stride_con and scale_con can be negative which will flip about the
  1363       // sense of the test.
  1365       // Adjust pre and main loop limits to guard the correct iteration set
  1366       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1367         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1368           // The overflow limit: scale*I+offset < limit
  1369           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1370           // The underflow limit: 0 <= scale*I+offset.
  1371           // Some math yields: -scale*I-(offset+1) < 0
  1372           Node *plus_one = new (C, 3) AddINode( offset, one );
  1373           register_new_node( plus_one, pre_ctrl );
  1374           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
  1375           register_new_node( neg_offset, pre_ctrl );
  1376           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
  1377           if (!conditional_rc) {
  1378             conditional_rc = !loop->dominates_backedge(iff);
  1380         } else {
  1381 #ifndef PRODUCT
  1382           if( PrintOpto )
  1383             tty->print_cr("missed RCE opportunity");
  1384 #endif
  1385           continue;             // In release mode, ignore it
  1387       } else {                  // Otherwise work on normal compares
  1388         switch( b_test._test ) {
  1389         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
  1390           scale_con = -scale_con;
  1391           offset = new (C, 3) SubINode( zero, offset );
  1392           register_new_node( offset, pre_ctrl );
  1393           limit  = new (C, 3) SubINode( zero, limit  );
  1394           register_new_node( limit, pre_ctrl );
  1395           // Fall into LE case
  1396         case BoolTest::le:      // Convert X <= Y to X < Y+1
  1397           limit = new (C, 3) AddINode( limit, one );
  1398           register_new_node( limit, pre_ctrl );
  1399           // Fall into LT case
  1400         case BoolTest::lt:
  1401           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1402           if (!conditional_rc) {
  1403             conditional_rc = !loop->dominates_backedge(iff);
  1405           break;
  1406         default:
  1407 #ifndef PRODUCT
  1408           if( PrintOpto )
  1409             tty->print_cr("missed RCE opportunity");
  1410 #endif
  1411           continue;             // Unhandled case
  1415       // Kill the eliminated test
  1416       C->set_major_progress();
  1417       Node *kill_con = _igvn.intcon( 1-flip );
  1418       set_ctrl(kill_con, C->root());
  1419       _igvn.hash_delete(iff);
  1420       iff->set_req(1, kill_con);
  1421       _igvn._worklist.push(iff);
  1422       // Find surviving projection
  1423       assert(iff->is_If(), "");
  1424       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1425       // Find loads off the surviving projection; remove their control edge
  1426       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1427         Node* cd = dp->fast_out(i); // Control-dependent node
  1428         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1429           _igvn.hash_delete(cd);
  1430           // Allow the load to float around in the loop, or before it
  1431           // but NOT before the pre-loop.
  1432           cd->set_req(0, ctrl);   // ctrl, not NULL
  1433           _igvn._worklist.push(cd);
  1434           --i;
  1435           --imax;
  1439     } // End of is IF
  1443   // Update loop limits
  1444   if (conditional_rc) {
  1445     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1446                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1447     register_new_node(pre_limit, pre_ctrl);
  1449   _igvn.hash_delete(pre_opaq);
  1450   pre_opaq->set_req(1, pre_limit);
  1452   // Note:: we are making the main loop limit no longer precise;
  1453   // need to round up based on stride.
  1454   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
  1455     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1456     // Hopefully, compiler will optimize for powers of 2.
  1457     Node *ctrl = get_ctrl(main_limit);
  1458     Node *stride = cl->stride();
  1459     Node *init = cl->init_trip();
  1460     Node *span = new (C, 3) SubINode(main_limit,init);
  1461     register_new_node(span,ctrl);
  1462     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1463     Node *add = new (C, 3) AddINode(span,rndup);
  1464     register_new_node(add,ctrl);
  1465     Node *div = new (C, 3) DivINode(0,add,stride);
  1466     register_new_node(div,ctrl);
  1467     Node *mul = new (C, 3) MulINode(div,stride);
  1468     register_new_node(mul,ctrl);
  1469     Node *newlim = new (C, 3) AddINode(mul,init);
  1470     register_new_node(newlim,ctrl);
  1471     main_limit = newlim;
  1474   Node *main_cle = cl->loopexit();
  1475   Node *main_bol = main_cle->in(1);
  1476   // Hacking loop bounds; need private copies of exit test
  1477   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1478     _igvn.hash_delete(main_cle);
  1479     main_bol = main_bol->clone();// Clone a private BoolNode
  1480     register_new_node( main_bol, main_cle->in(0) );
  1481     main_cle->set_req(1,main_bol);
  1483   Node *main_cmp = main_bol->in(1);
  1484   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1485     _igvn.hash_delete(main_bol);
  1486     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1487     register_new_node( main_cmp, main_cle->in(0) );
  1488     main_bol->set_req(1,main_cmp);
  1490   // Hack the now-private loop bounds
  1491   _igvn.hash_delete(main_cmp);
  1492   main_cmp->set_req(2, main_limit);
  1493   _igvn._worklist.push(main_cmp);
  1494   // The OpaqueNode is unshared by design
  1495   _igvn.hash_delete(opqzm);
  1496   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1497   opqzm->set_req(1,main_limit);
  1498   _igvn._worklist.push(opqzm);
  1501 //------------------------------DCE_loop_body----------------------------------
  1502 // Remove simplistic dead code from loop body
  1503 void IdealLoopTree::DCE_loop_body() {
  1504   for( uint i = 0; i < _body.size(); i++ )
  1505     if( _body.at(i)->outcnt() == 0 )
  1506       _body.map( i--, _body.pop() );
  1510 //------------------------------adjust_loop_exit_prob--------------------------
  1511 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  1512 // Replace with a 1-in-10 exit guess.
  1513 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  1514   Node *test = tail();
  1515   while( test != _head ) {
  1516     uint top = test->Opcode();
  1517     if( top == Op_IfTrue || top == Op_IfFalse ) {
  1518       int test_con = ((ProjNode*)test)->_con;
  1519       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  1520       IfNode *iff = test->in(0)->as_If();
  1521       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  1522         Node *bol = iff->in(1);
  1523         if( bol && bol->req() > 1 && bol->in(1) &&
  1524             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  1525              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  1526              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  1527              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  1528              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  1529              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  1530              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  1531           return;               // Allocation loops RARELY take backedge
  1532         // Find the OTHER exit path from the IF
  1533         Node* ex = iff->proj_out(1-test_con);
  1534         float p = iff->_prob;
  1535         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  1536           if( top == Op_IfTrue ) {
  1537             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  1538               iff->_prob = PROB_STATIC_FREQUENT;
  1540           } else {
  1541             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  1542               iff->_prob = PROB_STATIC_INFREQUENT;
  1548     test = phase->idom(test);
  1553 //------------------------------policy_do_remove_empty_loop--------------------
  1554 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1555 // The 'DO' part is to replace the trip counter with the value it will
  1556 // have on the last iteration.  This will break the loop.
  1557 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1558   // Minimum size must be empty loop
  1559   if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
  1561   if( !_head->is_CountedLoop() ) return false;     // Dead loop
  1562   CountedLoopNode *cl = _head->as_CountedLoop();
  1563   if( !cl->loopexit() ) return false; // Malformed loop
  1564   if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
  1565     return false;             // Infinite loop
  1566 #ifndef PRODUCT
  1567   if( PrintOpto )
  1568     tty->print_cr("Removing empty loop");
  1569 #endif
  1570 #ifdef ASSERT
  1571   // Ensure only one phi which is the iv.
  1572   Node* iv = NULL;
  1573   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  1574     Node* n = cl->fast_out(i);
  1575     if (n->Opcode() == Op_Phi) {
  1576       assert(iv == NULL, "Too many phis" );
  1577       iv = n;
  1580   assert(iv == cl->phi(), "Wrong phi" );
  1581 #endif
  1582   // Replace the phi at loop head with the final value of the last
  1583   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  1584   // taken) and all loop-invariant uses of the exit values will be correct.
  1585   Node *phi = cl->phi();
  1586   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
  1587   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  1588   phase->_igvn.replace_node(phi,final);
  1589   phase->C->set_major_progress();
  1590   return true;
  1594 //=============================================================================
  1595 //------------------------------iteration_split_impl---------------------------
  1596 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1597   // Check and remove empty loops (spam micro-benchmarks)
  1598   if( policy_do_remove_empty_loop(phase) )
  1599     return true;  // Here we removed an empty loop
  1601   bool should_peel = policy_peeling(phase); // Should we peel?
  1603   bool should_unswitch = policy_unswitching(phase);
  1605   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1606   // This removes loop-invariant tests (usually null checks).
  1607   if( !_head->is_CountedLoop() ) { // Non-counted loop
  1608     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1609       // Partial peel succeeded so terminate this round of loop opts
  1610       return false;
  1612     if( should_peel ) {            // Should we peel?
  1613 #ifndef PRODUCT
  1614       if (PrintOpto) tty->print_cr("should_peel");
  1615 #endif
  1616       phase->do_peeling(this,old_new);
  1617     } else if( should_unswitch ) {
  1618       phase->do_unswitching(this, old_new);
  1620     return true;
  1622   CountedLoopNode *cl = _head->as_CountedLoop();
  1624   if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
  1626   // Do nothing special to pre- and post- loops
  1627   if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
  1629   // Compute loop trip count from profile data
  1630   compute_profile_trip_cnt(phase);
  1632   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1633   // to completely unroll this loop or do loop unswitching.
  1634   if( cl->is_normal_loop() ) {
  1635     if (should_unswitch) {
  1636       phase->do_unswitching(this, old_new);
  1637       return true;
  1639     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1640     if( should_maximally_unroll ) {
  1641       // Here we did some unrolling and peeling.  Eventually we will
  1642       // completely unroll this loop and it will no longer be a loop.
  1643       phase->do_maximally_unroll(this,old_new);
  1644       return true;
  1649   // Counted loops may be peeled, may need some iterations run up
  1650   // front for RCE, and may want to align loop refs to a cache
  1651   // line.  Thus we clone a full loop up front whose trip count is
  1652   // at least 1 (if peeling), but may be several more.
  1654   // The main loop will start cache-line aligned with at least 1
  1655   // iteration of the unrolled body (zero-trip test required) and
  1656   // will have some range checks removed.
  1658   // A post-loop will finish any odd iterations (leftover after
  1659   // unrolling), plus any needed for RCE purposes.
  1661   bool should_unroll = policy_unroll(phase);
  1663   bool should_rce = policy_range_check(phase);
  1665   bool should_align = policy_align(phase);
  1667   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  1668   // need a pre-loop.  We may still need to peel an initial iteration but
  1669   // we will not be needing an unknown number of pre-iterations.
  1670   //
  1671   // Basically, if may_rce_align reports FALSE first time through,
  1672   // we will not be able to later do RCE or Aligning on this loop.
  1673   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  1675   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  1676   // we switch to the pre-/main-/post-loop model.  This model also covers
  1677   // peeling.
  1678   if( should_rce || should_align || should_unroll ) {
  1679     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
  1680       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  1682     // Adjust the pre- and main-loop limits to let the pre and post loops run
  1683     // with full checks, but the main-loop with no checks.  Remove said
  1684     // checks from the main body.
  1685     if( should_rce )
  1686       phase->do_range_check(this,old_new);
  1688     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  1689     // twice as many iterations as before) and the main body limit (only do
  1690     // an even number of trips).  If we are peeling, we might enable some RCE
  1691     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  1692     // peeling.
  1693       if( should_unroll && !should_peel )
  1694         phase->do_unroll(this,old_new, true);
  1696     // Adjust the pre-loop limits to align the main body
  1697     // iterations.
  1698     if( should_align )
  1699       Unimplemented();
  1701   } else {                      // Else we have an unchanged counted loop
  1702     if( should_peel )           // Might want to peel but do nothing else
  1703       phase->do_peeling(this,old_new);
  1705   return true;
  1709 //=============================================================================
  1710 //------------------------------iteration_split--------------------------------
  1711 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  1712   // Recursively iteration split nested loops
  1713   if( _child && !_child->iteration_split( phase, old_new ))
  1714     return false;
  1716   // Clean out prior deadwood
  1717   DCE_loop_body();
  1720   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  1721   // Replace with a 1-in-10 exit guess.
  1722   if( _parent /*not the root loop*/ &&
  1723       !_irreducible &&
  1724       // Also ignore the occasional dead backedge
  1725       !tail()->is_top() ) {
  1726     adjust_loop_exit_prob(phase);
  1730   // Gate unrolling, RCE and peeling efforts.
  1731   if( !_child &&                // If not an inner loop, do not split
  1732       !_irreducible &&
  1733       _allow_optimizations &&
  1734       !tail()->is_top() ) {     // Also ignore the occasional dead backedge
  1735     if (!_has_call) {
  1736         if (!iteration_split_impl( phase, old_new )) {
  1737           return false;
  1739     } else if (policy_unswitching(phase)) {
  1740       phase->do_unswitching(this, old_new);
  1744   // Minor offset re-organization to remove loop-fallout uses of
  1745   // trip counter.
  1746   if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
  1747   if( _next && !_next->iteration_split( phase, old_new ))
  1748     return false;
  1749   return true;
  1752 //-------------------------------is_uncommon_trap_proj----------------------------
  1753 // Return true if proj is the form of "proj->[region->..]call_uct"
  1754 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate) {
  1755   int path_limit = 10;
  1756   assert(proj, "invalid argument");
  1757   Node* out = proj;
  1758   for (int ct = 0; ct < path_limit; ct++) {
  1759     out = out->unique_ctrl_out();
  1760     if (out == NULL || out->is_Root() || out->is_Start())
  1761       return false;
  1762     if (out->is_CallStaticJava()) {
  1763       int req = out->as_CallStaticJava()->uncommon_trap_request();
  1764       if (req != 0) {
  1765         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(req);
  1766         if (!must_reason_predicate || reason == Deoptimization::Reason_predicate){
  1767            return true;
  1770       return false; // don't do further after call
  1773   return false;
  1776 //-------------------------------is_uncommon_trap_if_pattern-------------------------
  1777 // Return true  for "if(test)-> proj -> ...
  1778 //                          |
  1779 //                          V
  1780 //                      other_proj->[region->..]call_uct"
  1781 //
  1782 // "must_reason_predicate" means the uct reason must be Reason_predicate
  1783 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, bool must_reason_predicate) {
  1784   Node *in0 = proj->in(0);
  1785   if (!in0->is_If()) return false;
  1786   // Variation of a dead If node.
  1787   if (in0->outcnt() < 2)  return false;
  1788   IfNode* iff = in0->as_If();
  1790   // we need "If(Conv2B(Opaque1(...)))" pattern for must_reason_predicate
  1791   if (must_reason_predicate) {
  1792     if (iff->in(1)->Opcode() != Op_Conv2B ||
  1793        iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
  1794       return false;
  1798   ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
  1799   return is_uncommon_trap_proj(other_proj, must_reason_predicate);
  1802 //------------------------------create_new_if_for_predicate------------------------
  1803 // create a new if above the uct_if_pattern for the predicate to be promoted.
  1804 //
  1805 //          before                                after
  1806 //        ----------                           ----------
  1807 //           ctrl                                 ctrl
  1808 //            |                                     |
  1809 //            |                                     |
  1810 //            v                                     v
  1811 //           iff                                 new_iff
  1812 //          /    \                                /      \
  1813 //         /      \                              /        \
  1814 //        v        v                            v          v
  1815 //  uncommon_proj cont_proj                   if_uct     if_cont
  1816 // \      |        |                           |          |
  1817 //  \     |        |                           |          |
  1818 //   v    v        v                           |          v
  1819 //     rgn       loop                          |         iff
  1820 //      |                                      |        /     \
  1821 //      |                                      |       /       \
  1822 //      v                                      |      v         v
  1823 // uncommon_trap                               | uncommon_proj cont_proj
  1824 //                                           \  \    |           |
  1825 //                                            \  \   |           |
  1826 //                                             v  v  v           v
  1827 //                                               rgn           loop
  1828 //                                                |
  1829 //                                                |
  1830 //                                                v
  1831 //                                           uncommon_trap
  1832 //
  1833 //
  1834 // We will create a region to guard the uct call if there is no one there.
  1835 // The true projecttion (if_cont) of the new_iff is returned.
  1836 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj) {
  1837   assert(is_uncommon_trap_if_pattern(cont_proj, true), "must be a uct if pattern!");
  1838   IfNode* iff = cont_proj->in(0)->as_If();
  1840   ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
  1841   Node     *rgn   = uncommon_proj->unique_ctrl_out();
  1842   assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
  1844   if (!rgn->is_Region()) { // create a region to guard the call
  1845     assert(rgn->is_Call(), "must be call uct");
  1846     CallNode* call = rgn->as_Call();
  1847     rgn = new (C, 1) RegionNode(1);
  1848     _igvn.set_type(rgn, rgn->bottom_type());
  1849     rgn->add_req(uncommon_proj);
  1850     set_idom(rgn, idom(uncommon_proj), dom_depth(uncommon_proj)+1);
  1851     _igvn.hash_delete(call);
  1852     call->set_req(0, rgn);
  1855   // Create new_iff
  1856   uint  iffdd  = dom_depth(iff);
  1857   IdealLoopTree* lp = get_loop(iff);
  1858   IfNode *new_iff = new (C, 2) IfNode(iff->in(0), NULL, iff->_prob, iff->_fcnt);
  1859   register_node(new_iff, lp, idom(iff), iffdd);
  1860   Node *if_cont = new (C, 1) IfTrueNode(new_iff);
  1861   Node *if_uct  = new (C, 1) IfFalseNode(new_iff);
  1862   if (cont_proj->is_IfFalse()) {
  1863     // Swap
  1864     Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
  1866   register_node(if_cont, lp, new_iff, iffdd);
  1867   register_node(if_uct, get_loop(rgn), new_iff, iffdd);
  1869   // if_cont to iff
  1870   _igvn.hash_delete(iff);
  1871   iff->set_req(0, if_cont);
  1872   set_idom(iff, if_cont, dom_depth(iff));
  1874   // if_uct to rgn
  1875   _igvn.hash_delete(rgn);
  1876   rgn->add_req(if_uct);
  1877   Node* ridom = idom(rgn);
  1878   Node* nrdom = dom_lca(ridom, new_iff);
  1879   set_idom(rgn, nrdom, dom_depth(rgn));
  1881   // rgn must have no phis
  1882   assert(!rgn->as_Region()->has_phi(), "region must have no phis");
  1884   return if_cont->as_Proj();
  1887 //------------------------------find_predicate_insertion_point--------------------------
  1888 // Find a good location to insert a predicate
  1889 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c) {
  1890   if (start_c == C->root() || !start_c->is_Proj())
  1891     return NULL;
  1892   if (is_uncommon_trap_if_pattern(start_c->as_Proj(), true/*Reason_Predicate*/)) {
  1893     return start_c->as_Proj();
  1895   return NULL;
  1898 //------------------------------Invariance-----------------------------------
  1899 // Helper class for loop_predication_impl to compute invariance on the fly and
  1900 // clone invariants.
  1901 class Invariance : public StackObj {
  1902   VectorSet _visited, _invariant;
  1903   Node_Stack _stack;
  1904   VectorSet _clone_visited;
  1905   Node_List _old_new; // map of old to new (clone)
  1906   IdealLoopTree* _lpt;
  1907   PhaseIdealLoop* _phase;
  1909   // Helper function to set up the invariance for invariance computation
  1910   // If n is a known invariant, set up directly. Otherwise, look up the
  1911   // the possibility to push n onto the stack for further processing.
  1912   void visit(Node* use, Node* n) {
  1913     if (_lpt->is_invariant(n)) { // known invariant
  1914       _invariant.set(n->_idx);
  1915     } else if (!n->is_CFG()) {
  1916       Node *n_ctrl = _phase->ctrl_or_self(n);
  1917       Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
  1918       if (_phase->is_dominator(n_ctrl, u_ctrl)) {
  1919         _stack.push(n, n->in(0) == NULL ? 1 : 0);
  1924   // Compute invariance for "the_node" and (possibly) all its inputs recursively
  1925   // on the fly
  1926   void compute_invariance(Node* n) {
  1927     assert(_visited.test(n->_idx), "must be");
  1928     visit(n, n);
  1929     while (_stack.is_nonempty()) {
  1930       Node*  n = _stack.node();
  1931       uint idx = _stack.index();
  1932       if (idx == n->req()) { // all inputs are processed
  1933         _stack.pop();
  1934         // n is invariant if it's inputs are all invariant
  1935         bool all_inputs_invariant = true;
  1936         for (uint i = 0; i < n->req(); i++) {
  1937           Node* in = n->in(i);
  1938           if (in == NULL) continue;
  1939           assert(_visited.test(in->_idx), "must have visited input");
  1940           if (!_invariant.test(in->_idx)) { // bad guy
  1941             all_inputs_invariant = false;
  1942             break;
  1945         if (all_inputs_invariant) {
  1946           _invariant.set(n->_idx); // I am a invariant too
  1948       } else { // process next input
  1949         _stack.set_index(idx + 1);
  1950         Node* m = n->in(idx);
  1951         if (m != NULL && !_visited.test_set(m->_idx)) {
  1952           visit(n, m);
  1958   // Helper function to set up _old_new map for clone_nodes.
  1959   // If n is a known invariant, set up directly ("clone" of n == n).
  1960   // Otherwise, push n onto the stack for real cloning.
  1961   void clone_visit(Node* n) {
  1962     assert(_invariant.test(n->_idx), "must be invariant");
  1963     if (_lpt->is_invariant(n)) { // known invariant
  1964       _old_new.map(n->_idx, n);
  1965     } else{ // to be cloned
  1966       assert (!n->is_CFG(), "should not see CFG here");
  1967       _stack.push(n, n->in(0) == NULL ? 1 : 0);
  1971   // Clone "n" and (possibly) all its inputs recursively
  1972   void clone_nodes(Node* n, Node* ctrl) {
  1973     clone_visit(n);
  1974     while (_stack.is_nonempty()) {
  1975       Node*  n = _stack.node();
  1976       uint idx = _stack.index();
  1977       if (idx == n->req()) { // all inputs processed, clone n!
  1978         _stack.pop();
  1979         // clone invariant node
  1980         Node* n_cl = n->clone();
  1981         _old_new.map(n->_idx, n_cl);
  1982         _phase->register_new_node(n_cl, ctrl);
  1983         for (uint i = 0; i < n->req(); i++) {
  1984           Node* in = n_cl->in(i);
  1985           if (in == NULL) continue;
  1986           n_cl->set_req(i, _old_new[in->_idx]);
  1988       } else { // process next input
  1989         _stack.set_index(idx + 1);
  1990         Node* m = n->in(idx);
  1991         if (m != NULL && !_clone_visited.test_set(m->_idx)) {
  1992           clone_visit(m); // visit the input
  1998  public:
  1999   Invariance(Arena* area, IdealLoopTree* lpt) :
  2000     _lpt(lpt), _phase(lpt->_phase),
  2001     _visited(area), _invariant(area), _stack(area, 10 /* guess */),
  2002     _clone_visited(area), _old_new(area)
  2003   {}
  2005   // Map old to n for invariance computation and clone
  2006   void map_ctrl(Node* old, Node* n) {
  2007     assert(old->is_CFG() && n->is_CFG(), "must be");
  2008     _old_new.map(old->_idx, n); // "clone" of old is n
  2009     _invariant.set(old->_idx);  // old is invariant
  2010     _clone_visited.set(old->_idx);
  2013   // Driver function to compute invariance
  2014   bool is_invariant(Node* n) {
  2015     if (!_visited.test_set(n->_idx))
  2016       compute_invariance(n);
  2017     return (_invariant.test(n->_idx) != 0);
  2020   // Driver function to clone invariant
  2021   Node* clone(Node* n, Node* ctrl) {
  2022     assert(ctrl->is_CFG(), "must be");
  2023     assert(_invariant.test(n->_idx), "must be an invariant");
  2024     if (!_clone_visited.test(n->_idx))
  2025       clone_nodes(n, ctrl);
  2026     return _old_new[n->_idx];
  2028 };
  2030 //------------------------------is_range_check_if -----------------------------------
  2031 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
  2032 // Note: this function is particularly designed for loop predication. We require load_range
  2033 //       and offset to be loop invariant computed on the fly by "invar"
  2034 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
  2035   if (!is_loop_exit(iff)) {
  2036     return false;
  2038   if (!iff->in(1)->is_Bool()) {
  2039     return false;
  2041   const BoolNode *bol = iff->in(1)->as_Bool();
  2042   if (bol->_test._test != BoolTest::lt) {
  2043     return false;
  2045   if (!bol->in(1)->is_Cmp()) {
  2046     return false;
  2048   const CmpNode *cmp = bol->in(1)->as_Cmp();
  2049   if (cmp->Opcode() != Op_CmpU ) {
  2050     return false;
  2052   if (cmp->in(2)->Opcode() != Op_LoadRange) {
  2053     return false;
  2055   LoadRangeNode* lr = (LoadRangeNode*)cmp->in(2);
  2056   if (!invar.is_invariant(lr)) { // loadRange must be invariant
  2057     return false;
  2059   Node *iv     = _head->as_CountedLoop()->phi();
  2060   int   scale  = 0;
  2061   Node *offset = NULL;
  2062   if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
  2063     return false;
  2065   if(offset && !invar.is_invariant(offset)) { // offset must be invariant
  2066     return false;
  2068   return true;
  2071 //------------------------------rc_predicate-----------------------------------
  2072 // Create a range check predicate
  2073 //
  2074 // for (i = init; i < limit; i += stride) {
  2075 //    a[scale*i+offset]
  2076 // }
  2077 //
  2078 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
  2079 // as "max(scale*i + offset) u< a.length".
  2080 //
  2081 // There are two cases for max(scale*i + offset):
  2082 // (1) stride*scale > 0
  2083 //   max(scale*i + offset) = scale*(limit-stride) + offset
  2084 // (2) stride*scale < 0
  2085 //   max(scale*i + offset) = scale*init + offset
  2086 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
  2087                                        int scale, Node* offset,
  2088                                        Node* init, Node* limit, Node* stride,
  2089                                        Node* range, bool upper) {
  2090   DEBUG_ONLY(ttyLocker ttyl);
  2091   if (TraceLoopPredicate) tty->print("rc_predicate ");
  2093   Node* max_idx_expr  = init;
  2094   int stride_con = stride->get_int();
  2095   if ((stride_con > 0) == (scale > 0) == upper) {
  2096     max_idx_expr = new (C, 3) SubINode(limit, stride);
  2097     register_new_node(max_idx_expr, ctrl);
  2098     if (TraceLoopPredicate) tty->print("(limit - stride) ");
  2099   } else {
  2100     if (TraceLoopPredicate) tty->print("init ");
  2103   if (scale != 1) {
  2104     ConNode* con_scale = _igvn.intcon(scale);
  2105     max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
  2106     register_new_node(max_idx_expr, ctrl);
  2107     if (TraceLoopPredicate) tty->print("* %d ", scale);
  2110   if (offset && (!offset->is_Con() || offset->get_int() != 0)){
  2111     max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
  2112     register_new_node(max_idx_expr, ctrl);
  2113     if (TraceLoopPredicate)
  2114       if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
  2115       else tty->print("+ offset ");
  2118   CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
  2119   register_new_node(cmp, ctrl);
  2120   BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
  2121   register_new_node(bol, ctrl);
  2123   if (TraceLoopPredicate) tty->print_cr("<u range");
  2124   return bol;
  2127 //------------------------------ loop_predication_impl--------------------------
  2128 // Insert loop predicates for null checks and range checks
  2129 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
  2130   if (!UseLoopPredicate) return false;
  2132   if (!loop->_head->is_Loop()) {
  2133     // Could be a simple region when irreducible loops are present.
  2134     return false;
  2137   CountedLoopNode *cl = NULL;
  2138   if (loop->_head->is_CountedLoop()) {
  2139     cl = loop->_head->as_CountedLoop();
  2140     // do nothing for iteration-splitted loops
  2141     if (!cl->is_normal_loop()) return false;
  2144   // Too many traps seen?
  2145   bool tmt = C->too_many_traps(C->method(), 0, Deoptimization::Reason_predicate);
  2146   int tc = C->trap_count(Deoptimization::Reason_predicate);
  2147   if (tmt || tc > 0) {
  2148     if (TraceLoopPredicate) {
  2149       tty->print_cr("too many predicate traps: %d", tc);
  2150       C->method()->print(); // which method has too many predicate traps
  2151       tty->print_cr("");
  2153     return false;
  2156   LoopNode *lpn  = loop->_head->as_Loop();
  2157   Node* entry = lpn->in(LoopNode::EntryControl);
  2159   ProjNode *predicate_proj = find_predicate_insertion_point(entry);
  2160   if (!predicate_proj){
  2161 #ifndef PRODUCT
  2162     if (TraceLoopPredicate) {
  2163       tty->print("missing predicate:");
  2164       loop->dump_head();
  2166 #endif
  2167     return false;
  2170   ConNode* zero = _igvn.intcon(0);
  2171   set_ctrl(zero, C->root());
  2172   Node *cond_false = new (C, 2) Conv2BNode(zero);
  2173   register_new_node(cond_false, C->root());
  2174   ConNode* one = _igvn.intcon(1);
  2175   set_ctrl(one, C->root());
  2176   Node *cond_true = new (C, 2) Conv2BNode(one);
  2177   register_new_node(cond_true, C->root());
  2179   ResourceArea *area = Thread::current()->resource_area();
  2180   Invariance invar(area, loop);
  2182   // Create list of if-projs such that a newer proj dominates all older
  2183   // projs in the list, and they all dominate loop->tail()
  2184   Node_List if_proj_list(area);
  2185   LoopNode *head  = loop->_head->as_Loop();
  2186   Node *current_proj = loop->tail(); //start from tail
  2187   while ( current_proj != head ) {
  2188     if (loop == get_loop(current_proj) && // still in the loop ?
  2189         current_proj->is_Proj()        && // is a projection  ?
  2190         current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
  2191       if_proj_list.push(current_proj);
  2193     current_proj = idom(current_proj);
  2196   bool hoisted = false; // true if at least one proj is promoted
  2197   while (if_proj_list.size() > 0) {
  2198     // Following are changed to nonnull when a predicate can be hoisted
  2199     ProjNode* new_predicate_proj = NULL;
  2201     ProjNode* proj = if_proj_list.pop()->as_Proj();
  2202     IfNode*   iff  = proj->in(0)->as_If();
  2204     if (!is_uncommon_trap_if_pattern(proj)) {
  2205       if (loop->is_loop_exit(iff)) {
  2206         // stop processing the remaining projs in the list because the execution of them
  2207         // depends on the condition of "iff" (iff->in(1)).
  2208         break;
  2209       } else {
  2210         // Both arms are inside the loop. There are two cases:
  2211         // (1) there is one backward branch. In this case, any remaining proj
  2212         //     in the if_proj list post-dominates "iff". So, the condition of "iff"
  2213         //     does not determine the execution the remining projs directly, and we
  2214         //     can safely continue.
  2215         // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
  2216         //     does not dominate loop->tail(), so it can not be in the if_proj list.
  2217         continue;
  2221     Node*     test = iff->in(1);
  2222     if (!test->is_Bool()){ //Conv2B, ...
  2223       continue;
  2225     BoolNode* bol = test->as_Bool();
  2226     if (invar.is_invariant(bol)) {
  2227       // Invariant test
  2228       new_predicate_proj = create_new_if_for_predicate(predicate_proj);
  2229       Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
  2230       BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
  2232       // Negate test if necessary
  2233       bool negated = false;
  2234       if (proj->_con != predicate_proj->_con) {
  2235         new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
  2236         register_new_node(new_predicate_bol, ctrl);
  2237         negated = true;
  2239       IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
  2240       _igvn.hash_delete(new_predicate_iff);
  2241       new_predicate_iff->set_req(1, new_predicate_bol);
  2242       if (TraceLoopPredicate) tty->print_cr("invariant if%s: %d", negated ? " negated" : "", new_predicate_iff->_idx);
  2244     } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
  2245       assert(proj->_con == predicate_proj->_con, "must match");
  2247       // Range check for counted loops
  2248       const Node*    cmp    = bol->in(1)->as_Cmp();
  2249       Node*          idx    = cmp->in(1);
  2250       assert(!invar.is_invariant(idx), "index is variant");
  2251       assert(cmp->in(2)->Opcode() == Op_LoadRange, "must be");
  2252       Node* ld_rng = cmp->in(2); // LoadRangeNode
  2253       assert(invar.is_invariant(ld_rng), "load range must be invariant");
  2254       int scale    = 1;
  2255       Node* offset = zero;
  2256       bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
  2257       assert(ok, "must be index expression");
  2259       Node* init    = cl->init_trip();
  2260       Node* limit   = cl->limit();
  2261       Node* stride  = cl->stride();
  2263       // Build if's for the upper and lower bound tests.  The
  2264       // lower_bound test will dominate the upper bound test and all
  2265       // cloned or created nodes will use the lower bound test as
  2266       // their declared control.
  2267       ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj);
  2268       ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj);
  2269       assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
  2270       Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
  2272       // Perform cloning to keep Invariance state correct since the
  2273       // late schedule will place invariant things in the loop.
  2274       ld_rng = invar.clone(ld_rng, ctrl);
  2275       if (offset && offset != zero) {
  2276         assert(invar.is_invariant(offset), "offset must be loop invariant");
  2277         offset = invar.clone(offset, ctrl);
  2280       // Test the lower bound
  2281       Node*  lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, ld_rng, false);
  2282       IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
  2283       _igvn.hash_delete(lower_bound_iff);
  2284       lower_bound_iff->set_req(1, lower_bound_bol);
  2285       if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
  2287       // Test the upper bound
  2288       Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, ld_rng, true);
  2289       IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
  2290       _igvn.hash_delete(upper_bound_iff);
  2291       upper_bound_iff->set_req(1, upper_bound_bol);
  2292       if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
  2294       // Fall through into rest of the clean up code which will move
  2295       // any dependent nodes onto the upper bound test.
  2296       new_predicate_proj = upper_bound_proj;
  2297     } else {
  2298       // The other proj of the "iff" is a uncommon trap projection, and we can assume
  2299       // the other proj will not be executed ("executed" means uct raised).
  2300       continue;
  2303     // Success - attach condition (new_predicate_bol) to predicate if
  2304     invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
  2306     // Eliminate the old if in the loop body
  2307     _igvn.hash_delete(iff);
  2308     iff->set_req(1, proj->is_IfFalse() ? cond_false : cond_true);
  2310     Node* ctrl = new_predicate_proj; // new control
  2311     ProjNode* dp = proj;     // old control
  2312     assert(get_loop(dp) == loop, "guaranteed at the time of collecting proj");
  2313     // Find nodes (depends only on the test) off the surviving projection;
  2314     // move them outside the loop with the control of proj_clone
  2315     for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  2316       Node* cd = dp->fast_out(i); // Control-dependent node
  2317       if (cd->depends_only_on_test()) {
  2318         assert(cd->in(0) == dp, "");
  2319         _igvn.hash_delete(cd);
  2320         cd->set_req(0, ctrl); // ctrl, not NULL
  2321         set_early_ctrl(cd);
  2322         _igvn._worklist.push(cd);
  2323         IdealLoopTree *new_loop = get_loop(get_ctrl(cd));
  2324         if (new_loop != loop) {
  2325           if (!loop->_child) loop->_body.yank(cd);
  2326           if (!new_loop->_child ) new_loop->_body.push(cd);
  2328         --i;
  2329         --imax;
  2333     hoisted = true;
  2334     C->set_major_progress();
  2335   } // end while
  2337 #ifndef PRODUCT
  2338   // report that the loop predication has been actually performed
  2339   // for this loop
  2340   if (TraceLoopPredicate && hoisted) {
  2341     tty->print("Loop Predication Performed:");
  2342     loop->dump_head();
  2344 #endif
  2346   return hoisted;
  2349 //------------------------------loop_predication--------------------------------
  2350 // driver routine for loop predication optimization
  2351 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
  2352   bool hoisted = false;
  2353   // Recursively promote predicates
  2354   if ( _child ) {
  2355     hoisted = _child->loop_predication( phase);
  2358   // self
  2359   if (!_irreducible && !tail()->is_top()) {
  2360     hoisted |= phase->loop_predication_impl(this);
  2363   if ( _next ) { //sibling
  2364     hoisted |= _next->loop_predication( phase);
  2367   return hoisted;

mercurial