src/cpu/sparc/vm/sparc.ad

Tue, 07 Dec 2010 11:00:02 -0800

author
kvn
date
Tue, 07 Dec 2010 11:00:02 -0800
changeset 2354
5fe0781a8560
parent 2350
2f644f85485d
child 2399
7737fa7ec2b5
permissions
-rw-r--r--

7004925: CTW: assert(nbits == 32 || -(1 << nbits-1) <= x && x < ( 1 << nbits-1)) failed: value out of range
Summary: Set offset in register if it does not fit 13 bits.
Reviewed-by: iveresov

     1 //
     2 // Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   int offset = NativeCall::instruction_size;  // call; delay slot
   538   if (_method_handle_invoke)
   539     offset += 4;  // restore SP
   540   return offset;
   541 }
   543 int MachCallDynamicJavaNode::ret_addr_offset() {
   544   int vtable_index = this->_vtable_index;
   545   if (vtable_index < 0) {
   546     // must be invalid_vtable_index, not nonvirtual_vtable_index
   547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   548     return (NativeMovConstReg::instruction_size +
   549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   550   } else {
   551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   554     int klass_load_size;
   555     if (UseCompressedOops) {
   556       assert(Universe::heap() != NULL, "java heap should be initialized");
   557       if (Universe::narrow_oop_base() == NULL)
   558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   559       else
   560         klass_load_size = 3*BytesPerInstWord;
   561     } else {
   562       klass_load_size = 1*BytesPerInstWord;
   563     }
   564     if( Assembler::is_simm13(v_off) ) {
   565       return klass_load_size +
   566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   567              NativeCall::instruction_size);  // call; delay slot
   568     } else {
   569       return klass_load_size +
   570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   571              NativeCall::instruction_size);  // call; delay slot
   572     }
   573   }
   574 }
   576 int MachCallRuntimeNode::ret_addr_offset() {
   577 #ifdef _LP64
   578   return NativeFarCall::instruction_size;  // farcall; delay slot
   579 #else
   580   return NativeCall::instruction_size;  // call; delay slot
   581 #endif
   582 }
   584 // Indicate if the safepoint node needs the polling page as an input.
   585 // Since Sparc does not have absolute addressing, it does.
   586 bool SafePointNode::needs_polling_address_input() {
   587   return true;
   588 }
   590 // emit an interrupt that is caught by the debugger (for debugging compiler)
   591 void emit_break(CodeBuffer &cbuf) {
   592   MacroAssembler _masm(&cbuf);
   593   __ breakpoint_trap();
   594 }
   596 #ifndef PRODUCT
   597 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   598   st->print("TA");
   599 }
   600 #endif
   602 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   603   emit_break(cbuf);
   604 }
   606 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   607   return MachNode::size(ra_);
   608 }
   610 // Traceable jump
   611 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   612   MacroAssembler _masm(&cbuf);
   613   Register rdest = reg_to_register_object(jump_target);
   614   __ JMP(rdest, 0);
   615   __ delayed()->nop();
   616 }
   618 // Traceable jump and set exception pc
   619 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   620   MacroAssembler _masm(&cbuf);
   621   Register rdest = reg_to_register_object(jump_target);
   622   __ JMP(rdest, 0);
   623   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   624 }
   626 void emit_nop(CodeBuffer &cbuf) {
   627   MacroAssembler _masm(&cbuf);
   628   __ nop();
   629 }
   631 void emit_illtrap(CodeBuffer &cbuf) {
   632   MacroAssembler _masm(&cbuf);
   633   __ illtrap(0);
   634 }
   637 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   638   assert(n->rule() != loadUB_rule, "");
   640   intptr_t offset = 0;
   641   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   642   const Node* addr = n->get_base_and_disp(offset, adr_type);
   643   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   644   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   645   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   646   atype = atype->add_offset(offset);
   647   assert(disp32 == offset, "wrong disp32");
   648   return atype->_offset;
   649 }
   652 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   653   assert(n->rule() != loadUB_rule, "");
   655   intptr_t offset = 0;
   656   Node* addr = n->in(2);
   657   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   658   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   659     Node* a = addr->in(2/*AddPNode::Address*/);
   660     Node* o = addr->in(3/*AddPNode::Offset*/);
   661     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   662     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   663     assert(atype->isa_oop_ptr(), "still an oop");
   664   }
   665   offset = atype->is_ptr()->_offset;
   666   if (offset != Type::OffsetBot)  offset += disp32;
   667   return offset;
   668 }
   670 static inline jdouble replicate_immI(int con, int count, int width) {
   671   // Load a constant replicated "count" times with width "width"
   672   int bit_width = width * 8;
   673   jlong elt_val = con;
   674   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   675   jlong val = elt_val;
   676   for (int i = 0; i < count - 1; i++) {
   677     val <<= bit_width;
   678     val |= elt_val;
   679   }
   680   jdouble dval = *((jdouble*) &val);  // coerce to double type
   681   return dval;
   682 }
   684 // Standard Sparc opcode form2 field breakdown
   685 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   686   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   687   int op = (f30 << 30) |
   688            (f29 << 29) |
   689            (f25 << 25) |
   690            (f22 << 22) |
   691            (f20 << 20) |
   692            (f19 << 19) |
   693            (f0  <<  0);
   694   cbuf.insts()->emit_int32(op);
   695 }
   697 // Standard Sparc opcode form2 field breakdown
   698 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   699   f0 >>= 10;           // Drop 10 bits
   700   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   701   int op = (f30 << 30) |
   702            (f25 << 25) |
   703            (f22 << 22) |
   704            (f0  <<  0);
   705   cbuf.insts()->emit_int32(op);
   706 }
   708 // Standard Sparc opcode form3 field breakdown
   709 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   710   int op = (f30 << 30) |
   711            (f25 << 25) |
   712            (f19 << 19) |
   713            (f14 << 14) |
   714            (f5  <<  5) |
   715            (f0  <<  0);
   716   cbuf.insts()->emit_int32(op);
   717 }
   719 // Standard Sparc opcode form3 field breakdown
   720 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   721   simm13 &= (1<<13)-1; // Mask to 13 bits
   722   int op = (f30 << 30) |
   723            (f25 << 25) |
   724            (f19 << 19) |
   725            (f14 << 14) |
   726            (1   << 13) | // bit to indicate immediate-mode
   727            (simm13<<0);
   728   cbuf.insts()->emit_int32(op);
   729 }
   731 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   732   simm10 &= (1<<10)-1; // Mask to 10 bits
   733   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   734 }
   736 #ifdef ASSERT
   737 // Helper function for VerifyOops in emit_form3_mem_reg
   738 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   739   warning("VerifyOops encountered unexpected instruction:");
   740   n->dump(2);
   741   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   742 }
   743 #endif
   746 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   747                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   749 #ifdef ASSERT
   750   // The following code implements the +VerifyOops feature.
   751   // It verifies oop values which are loaded into or stored out of
   752   // the current method activation.  +VerifyOops complements techniques
   753   // like ScavengeALot, because it eagerly inspects oops in transit,
   754   // as they enter or leave the stack, as opposed to ScavengeALot,
   755   // which inspects oops "at rest", in the stack or heap, at safepoints.
   756   // For this reason, +VerifyOops can sometimes detect bugs very close
   757   // to their point of creation.  It can also serve as a cross-check
   758   // on the validity of oop maps, when used toegether with ScavengeALot.
   760   // It would be good to verify oops at other points, especially
   761   // when an oop is used as a base pointer for a load or store.
   762   // This is presently difficult, because it is hard to know when
   763   // a base address is biased or not.  (If we had such information,
   764   // it would be easy and useful to make a two-argument version of
   765   // verify_oop which unbiases the base, and performs verification.)
   767   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   768   bool is_verified_oop_base  = false;
   769   bool is_verified_oop_load  = false;
   770   bool is_verified_oop_store = false;
   771   int tmp_enc = -1;
   772   if (VerifyOops && src1_enc != R_SP_enc) {
   773     // classify the op, mainly for an assert check
   774     int st_op = 0, ld_op = 0;
   775     switch (primary) {
   776     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   777     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   778     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   779     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   780     case Assembler::std_op3:  st_op = Op_StoreL; break;
   781     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   782     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   784     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   785     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   786     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   787     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   788     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   789     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   790     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   791     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   792     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   793     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   794     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   796     default: ShouldNotReachHere();
   797     }
   798     if (tertiary == REGP_OP) {
   799       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   800       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   801       else                          ShouldNotReachHere();
   802       if (st_op) {
   803         // a store
   804         // inputs are (0:control, 1:memory, 2:address, 3:value)
   805         Node* n2 = n->in(3);
   806         if (n2 != NULL) {
   807           const Type* t = n2->bottom_type();
   808           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   809         }
   810       } else {
   811         // a load
   812         const Type* t = n->bottom_type();
   813         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   814       }
   815     }
   817     if (ld_op) {
   818       // a Load
   819       // inputs are (0:control, 1:memory, 2:address)
   820       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   821           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   822           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   823           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   824           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   825           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   826           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   827           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   828           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   829           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   830           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   831           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   832           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   833           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   834           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   835           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   836           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   837           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   838           !(n->rule() == loadUB_rule)) {
   839         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   840       }
   841     } else if (st_op) {
   842       // a Store
   843       // inputs are (0:control, 1:memory, 2:address, 3:value)
   844       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   845           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   846           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   847           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   848           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   849           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   850           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   851           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   852           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   853         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   854       }
   855     }
   857     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   858       Node* addr = n->in(2);
   859       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   860         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   861         if (atype != NULL) {
   862           intptr_t offset = get_offset_from_base(n, atype, disp32);
   863           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   864           if (offset != offset_2) {
   865             get_offset_from_base(n, atype, disp32);
   866             get_offset_from_base_2(n, atype, disp32);
   867           }
   868           assert(offset == offset_2, "different offsets");
   869           if (offset == disp32) {
   870             // we now know that src1 is a true oop pointer
   871             is_verified_oop_base = true;
   872             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   873               if( primary == Assembler::ldd_op3 ) {
   874                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   875               } else {
   876                 tmp_enc = dst_enc;
   877                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   878                 assert(src1_enc != dst_enc, "");
   879               }
   880             }
   881           }
   882           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   883                        || offset == oopDesc::mark_offset_in_bytes())) {
   884                       // loading the mark should not be allowed either, but
   885                       // we don't check this since it conflicts with InlineObjectHash
   886                       // usage of LoadINode to get the mark. We could keep the
   887                       // check if we create a new LoadMarkNode
   888             // but do not verify the object before its header is initialized
   889             ShouldNotReachHere();
   890           }
   891         }
   892       }
   893     }
   894   }
   895 #endif
   897   uint instr;
   898   instr = (Assembler::ldst_op << 30)
   899         | (dst_enc        << 25)
   900         | (primary        << 19)
   901         | (src1_enc       << 14);
   903   uint index = src2_enc;
   904   int disp = disp32;
   906   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   907     disp += STACK_BIAS;
   909   // We should have a compiler bailout here rather than a guarantee.
   910   // Better yet would be some mechanism to handle variable-size matches correctly.
   911   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   913   if( disp == 0 ) {
   914     // use reg-reg form
   915     // bit 13 is already zero
   916     instr |= index;
   917   } else {
   918     // use reg-imm form
   919     instr |= 0x00002000;          // set bit 13 to one
   920     instr |= disp & 0x1FFF;
   921   }
   923   cbuf.insts()->emit_int32(instr);
   925 #ifdef ASSERT
   926   {
   927     MacroAssembler _masm(&cbuf);
   928     if (is_verified_oop_base) {
   929       __ verify_oop(reg_to_register_object(src1_enc));
   930     }
   931     if (is_verified_oop_store) {
   932       __ verify_oop(reg_to_register_object(dst_enc));
   933     }
   934     if (tmp_enc != -1) {
   935       __ mov(O7, reg_to_register_object(tmp_enc));
   936     }
   937     if (is_verified_oop_load) {
   938       __ verify_oop(reg_to_register_object(dst_enc));
   939     }
   940   }
   941 #endif
   942 }
   944 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   945   // The method which records debug information at every safepoint
   946   // expects the call to be the first instruction in the snippet as
   947   // it creates a PcDesc structure which tracks the offset of a call
   948   // from the start of the codeBlob. This offset is computed as
   949   // code_end() - code_begin() of the code which has been emitted
   950   // so far.
   951   // In this particular case we have skirted around the problem by
   952   // putting the "mov" instruction in the delay slot but the problem
   953   // may bite us again at some other point and a cleaner/generic
   954   // solution using relocations would be needed.
   955   MacroAssembler _masm(&cbuf);
   956   __ set_inst_mark();
   958   // We flush the current window just so that there is a valid stack copy
   959   // the fact that the current window becomes active again instantly is
   960   // not a problem there is nothing live in it.
   962 #ifdef ASSERT
   963   int startpos = __ offset();
   964 #endif /* ASSERT */
   966 #ifdef _LP64
   967   // Calls to the runtime or native may not be reachable from compiled code,
   968   // so we generate the far call sequence on 64 bit sparc.
   969   // This code sequence is relocatable to any address, even on LP64.
   970   if ( force_far_call ) {
   971     __ relocate(rtype);
   972     AddressLiteral dest(entry_point);
   973     __ jumpl_to(dest, O7, O7);
   974   }
   975   else
   976 #endif
   977   {
   978      __ call((address)entry_point, rtype);
   979   }
   981   if (preserve_g2)   __ delayed()->mov(G2, L7);
   982   else __ delayed()->nop();
   984   if (preserve_g2)   __ mov(L7, G2);
   986 #ifdef ASSERT
   987   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   988 #ifdef _LP64
   989     // Trash argument dump slots.
   990     __ set(0xb0b8ac0db0b8ac0d, G1);
   991     __ mov(G1, G5);
   992     __ stx(G1, SP, STACK_BIAS + 0x80);
   993     __ stx(G1, SP, STACK_BIAS + 0x88);
   994     __ stx(G1, SP, STACK_BIAS + 0x90);
   995     __ stx(G1, SP, STACK_BIAS + 0x98);
   996     __ stx(G1, SP, STACK_BIAS + 0xA0);
   997     __ stx(G1, SP, STACK_BIAS + 0xA8);
   998 #else // _LP64
   999     // this is also a native call, so smash the first 7 stack locations,
  1000     // and the various registers
  1002     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1003     // while [SP+0x44..0x58] are the argument dump slots.
  1004     __ set((intptr_t)0xbaadf00d, G1);
  1005     __ mov(G1, G5);
  1006     __ sllx(G1, 32, G1);
  1007     __ or3(G1, G5, G1);
  1008     __ mov(G1, G5);
  1009     __ stx(G1, SP, 0x40);
  1010     __ stx(G1, SP, 0x48);
  1011     __ stx(G1, SP, 0x50);
  1012     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1013 #endif // _LP64
  1015 #endif /*ASSERT*/
  1018 //=============================================================================
  1019 // REQUIRED FUNCTIONALITY for encoding
  1020 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1021 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1024 //=============================================================================
  1025 const bool Matcher::constant_table_absolute_addressing = false;
  1026 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
  1028 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1029   Compile* C = ra_->C;
  1030   Compile::ConstantTable& constant_table = C->constant_table();
  1031   MacroAssembler _masm(&cbuf);
  1033   Register r = as_Register(ra_->get_encode(this));
  1034   CodeSection* cs = __ code()->consts();
  1035   int consts_size = cs->align_at_start(cs->size());
  1037   if (UseRDPCForConstantTableBase) {
  1038     // For the following RDPC logic to work correctly the consts
  1039     // section must be allocated right before the insts section.  This
  1040     // assert checks for that.  The layout and the SECT_* constants
  1041     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1042     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1043     int offset = __ offset();
  1044     int disp;
  1046     // If the displacement from the current PC to the constant table
  1047     // base fits into simm13 we set the constant table base to the
  1048     // current PC.
  1049     if (__ is_simm13(-(consts_size + offset))) {
  1050       constant_table.set_table_base_offset(-(consts_size + offset));
  1051       disp = 0;
  1052     } else {
  1053       // If the offset of the top constant (last entry in the table)
  1054       // fits into simm13 we set the constant table base to the actual
  1055       // table base.
  1056       if (__ is_simm13(constant_table.top_offset())) {
  1057         constant_table.set_table_base_offset(0);
  1058         disp = consts_size + offset;
  1059       } else {
  1060         // Otherwise we set the constant table base in the middle of the
  1061         // constant table.
  1062         int half_consts_size = consts_size / 2;
  1063         assert(half_consts_size * 2 == consts_size, "sanity");
  1064         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
  1065         disp = half_consts_size + offset;
  1069     __ rdpc(r);
  1071     if (disp != 0) {
  1072       assert(r != O7, "need temporary");
  1073       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1076   else {
  1077     // Materialize the constant table base.
  1078     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1079     address baseaddr = cs->start() + -(constant_table.table_base_offset());
  1080     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1081     AddressLiteral base(baseaddr, rspec);
  1082     __ set(base, r);
  1086 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1087   if (UseRDPCForConstantTableBase) {
  1088     // This is really the worst case but generally it's only 1 instruction.
  1089     return 4 /*rdpc*/ + 4 /*sub*/ + MacroAssembler::worst_case_size_of_set();
  1090   } else {
  1091     return MacroAssembler::worst_case_size_of_set();
  1095 #ifndef PRODUCT
  1096 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1097   char reg[128];
  1098   ra_->dump_register(this, reg);
  1099   if (UseRDPCForConstantTableBase) {
  1100     st->print("RDPC   %s\t! constant table base", reg);
  1101   } else {
  1102     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1105 #endif
  1108 //=============================================================================
  1110 #ifndef PRODUCT
  1111 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1112   Compile* C = ra_->C;
  1114   for (int i = 0; i < OptoPrologueNops; i++) {
  1115     st->print_cr("NOP"); st->print("\t");
  1118   if( VerifyThread ) {
  1119     st->print_cr("Verify_Thread"); st->print("\t");
  1122   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1124   // Calls to C2R adapters often do not accept exceptional returns.
  1125   // We require that their callers must bang for them.  But be careful, because
  1126   // some VM calls (such as call site linkage) can use several kilobytes of
  1127   // stack.  But the stack safety zone should account for that.
  1128   // See bugs 4446381, 4468289, 4497237.
  1129   if (C->need_stack_bang(framesize)) {
  1130     st->print_cr("! stack bang"); st->print("\t");
  1133   if (Assembler::is_simm13(-framesize)) {
  1134     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1135   } else {
  1136     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1137     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1138     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1142 #endif
  1144 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1145   Compile* C = ra_->C;
  1146   MacroAssembler _masm(&cbuf);
  1148   for (int i = 0; i < OptoPrologueNops; i++) {
  1149     __ nop();
  1152   __ verify_thread();
  1154   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1155   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1156   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1158   // Calls to C2R adapters often do not accept exceptional returns.
  1159   // We require that their callers must bang for them.  But be careful, because
  1160   // some VM calls (such as call site linkage) can use several kilobytes of
  1161   // stack.  But the stack safety zone should account for that.
  1162   // See bugs 4446381, 4468289, 4497237.
  1163   if (C->need_stack_bang(framesize)) {
  1164     __ generate_stack_overflow_check(framesize);
  1167   if (Assembler::is_simm13(-framesize)) {
  1168     __ save(SP, -framesize, SP);
  1169   } else {
  1170     __ sethi(-framesize & ~0x3ff, G3);
  1171     __ add(G3, -framesize & 0x3ff, G3);
  1172     __ save(SP, G3, SP);
  1174   C->set_frame_complete( __ offset() );
  1177 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1178   return MachNode::size(ra_);
  1181 int MachPrologNode::reloc() const {
  1182   return 10; // a large enough number
  1185 //=============================================================================
  1186 #ifndef PRODUCT
  1187 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1188   Compile* C = ra_->C;
  1190   if( do_polling() && ra_->C->is_method_compilation() ) {
  1191     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1192 #ifdef _LP64
  1193     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1194 #else
  1195     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1196 #endif
  1199   if( do_polling() )
  1200     st->print("RET\n\t");
  1202   st->print("RESTORE");
  1204 #endif
  1206 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1207   MacroAssembler _masm(&cbuf);
  1208   Compile* C = ra_->C;
  1210   __ verify_thread();
  1212   // If this does safepoint polling, then do it here
  1213   if( do_polling() && ra_->C->is_method_compilation() ) {
  1214     AddressLiteral polling_page(os::get_polling_page());
  1215     __ sethi(polling_page, L0);
  1216     __ relocate(relocInfo::poll_return_type);
  1217     __ ld_ptr( L0, 0, G0 );
  1220   // If this is a return, then stuff the restore in the delay slot
  1221   if( do_polling() ) {
  1222     __ ret();
  1223     __ delayed()->restore();
  1224   } else {
  1225     __ restore();
  1229 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1230   return MachNode::size(ra_);
  1233 int MachEpilogNode::reloc() const {
  1234   return 16; // a large enough number
  1237 const Pipeline * MachEpilogNode::pipeline() const {
  1238   return MachNode::pipeline_class();
  1241 int MachEpilogNode::safepoint_offset() const {
  1242   assert( do_polling(), "no return for this epilog node");
  1243   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1246 //=============================================================================
  1248 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1249 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1250 static enum RC rc_class( OptoReg::Name reg ) {
  1251   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1252   if (OptoReg::is_stack(reg)) return rc_stack;
  1253   VMReg r = OptoReg::as_VMReg(reg);
  1254   if (r->is_Register()) return rc_int;
  1255   assert(r->is_FloatRegister(), "must be");
  1256   return rc_float;
  1259 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1260   if( cbuf ) {
  1261     // Better yet would be some mechanism to handle variable-size matches correctly
  1262     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1263       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1264     } else {
  1265       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1268 #ifndef PRODUCT
  1269   else if( !do_size ) {
  1270     if( size != 0 ) st->print("\n\t");
  1271     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1272     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1274 #endif
  1275   return size+4;
  1278 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1279   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1280 #ifndef PRODUCT
  1281   else if( !do_size ) {
  1282     if( size != 0 ) st->print("\n\t");
  1283     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1285 #endif
  1286   return size+4;
  1289 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1290                                         PhaseRegAlloc *ra_,
  1291                                         bool do_size,
  1292                                         outputStream* st ) const {
  1293   // Get registers to move
  1294   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1295   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1296   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1297   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1299   enum RC src_second_rc = rc_class(src_second);
  1300   enum RC src_first_rc = rc_class(src_first);
  1301   enum RC dst_second_rc = rc_class(dst_second);
  1302   enum RC dst_first_rc = rc_class(dst_first);
  1304   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1306   // Generate spill code!
  1307   int size = 0;
  1309   if( src_first == dst_first && src_second == dst_second )
  1310     return size;            // Self copy, no move
  1312   // --------------------------------------
  1313   // Check for mem-mem move.  Load into unused float registers and fall into
  1314   // the float-store case.
  1315   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1316     int offset = ra_->reg2offset(src_first);
  1317     // Further check for aligned-adjacent pair, so we can use a double load
  1318     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1319       src_second    = OptoReg::Name(R_F31_num);
  1320       src_second_rc = rc_float;
  1321       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1322     } else {
  1323       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1325     src_first    = OptoReg::Name(R_F30_num);
  1326     src_first_rc = rc_float;
  1329   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1330     int offset = ra_->reg2offset(src_second);
  1331     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1332     src_second    = OptoReg::Name(R_F31_num);
  1333     src_second_rc = rc_float;
  1336   // --------------------------------------
  1337   // Check for float->int copy; requires a trip through memory
  1338   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1339     int offset = frame::register_save_words*wordSize;
  1340     if( cbuf ) {
  1341       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1342       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1343       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1344       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1346 #ifndef PRODUCT
  1347     else if( !do_size ) {
  1348       if( size != 0 ) st->print("\n\t");
  1349       st->print(  "SUB    R_SP,16,R_SP\n");
  1350       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1351       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1352       st->print("\tADD    R_SP,16,R_SP\n");
  1354 #endif
  1355     size += 16;
  1358   // --------------------------------------
  1359   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1360   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1361   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1362   // there.  Misaligned sources only come from native-long-returns (handled
  1363   // special below).
  1364 #ifndef _LP64
  1365   if( src_first_rc == rc_int &&     // source is already big-endian
  1366       src_second_rc != rc_bad &&    // 64-bit move
  1367       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1368     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1369     // Do the big-endian flop.
  1370     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1371     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1373 #endif
  1375   // --------------------------------------
  1376   // Check for integer reg-reg copy
  1377   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1378 #ifndef _LP64
  1379     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1380       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1381       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1382       //       operand contains the least significant word of the 64-bit value and vice versa.
  1383       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1384       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1385       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1386       if( cbuf ) {
  1387         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1388         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1389         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1390 #ifndef PRODUCT
  1391       } else if( !do_size ) {
  1392         if( size != 0 ) st->print("\n\t");
  1393         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1394         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1395         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1396 #endif
  1398       return size+12;
  1400     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1401       // returning a long value in I0/I1
  1402       // a SpillCopy must be able to target a return instruction's reg_class
  1403       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1404       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1405       //       operand contains the least significant word of the 64-bit value and vice versa.
  1406       OptoReg::Name tdest = dst_first;
  1408       if (src_first == dst_first) {
  1409         tdest = OptoReg::Name(R_O7_num);
  1410         size += 4;
  1413       if( cbuf ) {
  1414         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1415         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1416         // ShrL_reg_imm6
  1417         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1418         // ShrR_reg_imm6  src, 0, dst
  1419         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1420         if (tdest != dst_first) {
  1421           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1424 #ifndef PRODUCT
  1425       else if( !do_size ) {
  1426         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1427         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1428         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1429         if (tdest != dst_first) {
  1430           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1433 #endif // PRODUCT
  1434       return size+8;
  1436 #endif // !_LP64
  1437     // Else normal reg-reg copy
  1438     assert( src_second != dst_first, "smashed second before evacuating it" );
  1439     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1440     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1441     // This moves an aligned adjacent pair.
  1442     // See if we are done.
  1443     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1444       return size;
  1447   // Check for integer store
  1448   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1449     int offset = ra_->reg2offset(dst_first);
  1450     // Further check for aligned-adjacent pair, so we can use a double store
  1451     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1452       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1453     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1456   // Check for integer load
  1457   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1458     int offset = ra_->reg2offset(src_first);
  1459     // Further check for aligned-adjacent pair, so we can use a double load
  1460     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1461       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1462     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1465   // Check for float reg-reg copy
  1466   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1467     // Further check for aligned-adjacent pair, so we can use a double move
  1468     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1469       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1470     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1473   // Check for float store
  1474   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1475     int offset = ra_->reg2offset(dst_first);
  1476     // Further check for aligned-adjacent pair, so we can use a double store
  1477     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1478       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1479     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1482   // Check for float load
  1483   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1484     int offset = ra_->reg2offset(src_first);
  1485     // Further check for aligned-adjacent pair, so we can use a double load
  1486     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1487       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1488     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1491   // --------------------------------------------------------------------
  1492   // Check for hi bits still needing moving.  Only happens for misaligned
  1493   // arguments to native calls.
  1494   if( src_second == dst_second )
  1495     return size;               // Self copy; no move
  1496   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1498 #ifndef _LP64
  1499   // In the LP64 build, all registers can be moved as aligned/adjacent
  1500   // pairs, so there's never any need to move the high bits separately.
  1501   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1502   // all sorts of silly alignment problems.
  1504   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1505   // 32-bits of a 64-bit register, but are needed in low bits of another
  1506   // register (else it's a hi-bits-to-hi-bits copy which should have
  1507   // happened already as part of a 64-bit move)
  1508   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1509     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1510     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1511     // Shift src_second down to dst_second's low bits.
  1512     if( cbuf ) {
  1513       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1514 #ifndef PRODUCT
  1515     } else if( !do_size ) {
  1516       if( size != 0 ) st->print("\n\t");
  1517       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1518 #endif
  1520     return size+4;
  1523   // Check for high word integer store.  Must down-shift the hi bits
  1524   // into a temp register, then fall into the case of storing int bits.
  1525   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1526     // Shift src_second down to dst_second's low bits.
  1527     if( cbuf ) {
  1528       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1529 #ifndef PRODUCT
  1530     } else if( !do_size ) {
  1531       if( size != 0 ) st->print("\n\t");
  1532       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1533 #endif
  1535     size+=4;
  1536     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1539   // Check for high word integer load
  1540   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1541     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1543   // Check for high word integer store
  1544   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1545     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1547   // Check for high word float store
  1548   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1549     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1551 #endif // !_LP64
  1553   Unimplemented();
  1556 #ifndef PRODUCT
  1557 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1558   implementation( NULL, ra_, false, st );
  1560 #endif
  1562 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1563   implementation( &cbuf, ra_, false, NULL );
  1566 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1567   return implementation( NULL, ra_, true, NULL );
  1570 //=============================================================================
  1571 #ifndef PRODUCT
  1572 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1573   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1575 #endif
  1577 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1578   MacroAssembler _masm(&cbuf);
  1579   for(int i = 0; i < _count; i += 1) {
  1580     __ nop();
  1584 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1585   return 4 * _count;
  1589 //=============================================================================
  1590 #ifndef PRODUCT
  1591 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1592   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1593   int reg = ra_->get_reg_first(this);
  1594   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1596 #endif
  1598 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1599   MacroAssembler _masm(&cbuf);
  1600   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1601   int reg = ra_->get_encode(this);
  1603   if (Assembler::is_simm13(offset)) {
  1604      __ add(SP, offset, reg_to_register_object(reg));
  1605   } else {
  1606      __ set(offset, O7);
  1607      __ add(SP, O7, reg_to_register_object(reg));
  1611 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1612   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1613   assert(ra_ == ra_->C->regalloc(), "sanity");
  1614   return ra_->C->scratch_emit_size(this);
  1617 //=============================================================================
  1619 // emit call stub, compiled java to interpretor
  1620 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1622   // Stub is fixed up when the corresponding call is converted from calling
  1623   // compiled code to calling interpreted code.
  1624   // set (empty), G5
  1625   // jmp -1
  1627   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1629   MacroAssembler _masm(&cbuf);
  1631   address base =
  1632   __ start_a_stub(Compile::MAX_stubs_size);
  1633   if (base == NULL)  return;  // CodeBuffer::expand failed
  1635   // static stub relocation stores the instruction address of the call
  1636   __ relocate(static_stub_Relocation::spec(mark));
  1638   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1640   __ set_inst_mark();
  1641   AddressLiteral addrlit(-1);
  1642   __ JUMP(addrlit, G3, 0);
  1644   __ delayed()->nop();
  1646   // Update current stubs pointer and restore code_end.
  1647   __ end_a_stub();
  1650 // size of call stub, compiled java to interpretor
  1651 uint size_java_to_interp() {
  1652   // This doesn't need to be accurate but it must be larger or equal to
  1653   // the real size of the stub.
  1654   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1655           NativeJump::instruction_size + // sethi; jmp; nop
  1656           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1658 // relocation entries for call stub, compiled java to interpretor
  1659 uint reloc_java_to_interp() {
  1660   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1664 //=============================================================================
  1665 #ifndef PRODUCT
  1666 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1667   st->print_cr("\nUEP:");
  1668 #ifdef    _LP64
  1669   if (UseCompressedOops) {
  1670     assert(Universe::heap() != NULL, "java heap should be initialized");
  1671     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1672     st->print_cr("\tSLL    R_G5,3,R_G5");
  1673     if (Universe::narrow_oop_base() != NULL)
  1674       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1675   } else {
  1676     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1678   st->print_cr("\tCMP    R_G5,R_G3" );
  1679   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1680 #else  // _LP64
  1681   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1682   st->print_cr("\tCMP    R_G5,R_G3" );
  1683   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1684 #endif // _LP64
  1686 #endif
  1688 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1689   MacroAssembler _masm(&cbuf);
  1690   Label L;
  1691   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1692   Register temp_reg   = G3;
  1693   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1695   // Load klass from receiver
  1696   __ load_klass(O0, temp_reg);
  1697   // Compare against expected klass
  1698   __ cmp(temp_reg, G5_ic_reg);
  1699   // Branch to miss code, checks xcc or icc depending
  1700   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1703 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1704   return MachNode::size(ra_);
  1708 //=============================================================================
  1710 uint size_exception_handler() {
  1711   if (TraceJumps) {
  1712     return (400); // just a guess
  1714   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1717 uint size_deopt_handler() {
  1718   if (TraceJumps) {
  1719     return (400); // just a guess
  1721   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1724 // Emit exception handler code.
  1725 int emit_exception_handler(CodeBuffer& cbuf) {
  1726   Register temp_reg = G3;
  1727   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1728   MacroAssembler _masm(&cbuf);
  1730   address base =
  1731   __ start_a_stub(size_exception_handler());
  1732   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1734   int offset = __ offset();
  1736   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1737   __ delayed()->nop();
  1739   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1741   __ end_a_stub();
  1743   return offset;
  1746 int emit_deopt_handler(CodeBuffer& cbuf) {
  1747   // Can't use any of the current frame's registers as we may have deopted
  1748   // at a poll and everything (including G3) can be live.
  1749   Register temp_reg = L0;
  1750   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1751   MacroAssembler _masm(&cbuf);
  1753   address base =
  1754   __ start_a_stub(size_deopt_handler());
  1755   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1757   int offset = __ offset();
  1758   __ save_frame(0);
  1759   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1760   __ delayed()->restore();
  1762   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1764   __ end_a_stub();
  1765   return offset;
  1769 // Given a register encoding, produce a Integer Register object
  1770 static Register reg_to_register_object(int register_encoding) {
  1771   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1772   return as_Register(register_encoding);
  1775 // Given a register encoding, produce a single-precision Float Register object
  1776 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1777   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1778   return as_SingleFloatRegister(register_encoding);
  1781 // Given a register encoding, produce a double-precision Float Register object
  1782 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1783   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1784   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1785   return as_DoubleFloatRegister(register_encoding);
  1788 const bool Matcher::match_rule_supported(int opcode) {
  1789   if (!has_match_rule(opcode))
  1790     return false;
  1792   switch (opcode) {
  1793   case Op_CountLeadingZerosI:
  1794   case Op_CountLeadingZerosL:
  1795   case Op_CountTrailingZerosI:
  1796   case Op_CountTrailingZerosL:
  1797     if (!UsePopCountInstruction)
  1798       return false;
  1799     break;
  1802   return true;  // Per default match rules are supported.
  1805 int Matcher::regnum_to_fpu_offset(int regnum) {
  1806   return regnum - 32; // The FP registers are in the second chunk
  1809 #ifdef ASSERT
  1810 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1811 #endif
  1813 // Vector width in bytes
  1814 const uint Matcher::vector_width_in_bytes(void) {
  1815   return 8;
  1818 // Vector ideal reg
  1819 const uint Matcher::vector_ideal_reg(void) {
  1820   return Op_RegD;
  1823 // USII supports fxtof through the whole range of number, USIII doesn't
  1824 const bool Matcher::convL2FSupported(void) {
  1825   return VM_Version::has_fast_fxtof();
  1828 // Is this branch offset short enough that a short branch can be used?
  1829 //
  1830 // NOTE: If the platform does not provide any short branch variants, then
  1831 //       this method should return false for offset 0.
  1832 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1833   return false;
  1836 const bool Matcher::isSimpleConstant64(jlong value) {
  1837   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1838   // Depends on optimizations in MacroAssembler::setx.
  1839   int hi = (int)(value >> 32);
  1840   int lo = (int)(value & ~0);
  1841   return (hi == 0) || (hi == -1) || (lo == 0);
  1844 // No scaling for the parameter the ClearArray node.
  1845 const bool Matcher::init_array_count_is_in_bytes = true;
  1847 // Threshold size for cleararray.
  1848 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1850 // Should the Matcher clone shifts on addressing modes, expecting them to
  1851 // be subsumed into complex addressing expressions or compute them into
  1852 // registers?  True for Intel but false for most RISCs
  1853 const bool Matcher::clone_shift_expressions = false;
  1855 bool Matcher::narrow_oop_use_complex_address() {
  1856   NOT_LP64(ShouldNotCallThis());
  1857   assert(UseCompressedOops, "only for compressed oops code");
  1858   return false;
  1861 // Is it better to copy float constants, or load them directly from memory?
  1862 // Intel can load a float constant from a direct address, requiring no
  1863 // extra registers.  Most RISCs will have to materialize an address into a
  1864 // register first, so they would do better to copy the constant from stack.
  1865 const bool Matcher::rematerialize_float_constants = false;
  1867 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1868 // needed.  Else we split the double into 2 integer pieces and move it
  1869 // piece-by-piece.  Only happens when passing doubles into C code as the
  1870 // Java calling convention forces doubles to be aligned.
  1871 #ifdef _LP64
  1872 const bool Matcher::misaligned_doubles_ok = true;
  1873 #else
  1874 const bool Matcher::misaligned_doubles_ok = false;
  1875 #endif
  1877 // No-op on SPARC.
  1878 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1881 // Advertise here if the CPU requires explicit rounding operations
  1882 // to implement the UseStrictFP mode.
  1883 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1885 // Are floats conerted to double when stored to stack during deoptimization?
  1886 // Sparc does not handle callee-save floats.
  1887 bool Matcher::float_in_double() { return false; }
  1889 // Do ints take an entire long register or just half?
  1890 // Note that we if-def off of _LP64.
  1891 // The relevant question is how the int is callee-saved.  In _LP64
  1892 // the whole long is written but de-opt'ing will have to extract
  1893 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1894 #ifdef _LP64
  1895 const bool Matcher::int_in_long = true;
  1896 #else
  1897 const bool Matcher::int_in_long = false;
  1898 #endif
  1900 // Return whether or not this register is ever used as an argument.  This
  1901 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1902 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1903 // arguments in those registers not be available to the callee.
  1904 bool Matcher::can_be_java_arg( int reg ) {
  1905   // Standard sparc 6 args in registers
  1906   if( reg == R_I0_num ||
  1907       reg == R_I1_num ||
  1908       reg == R_I2_num ||
  1909       reg == R_I3_num ||
  1910       reg == R_I4_num ||
  1911       reg == R_I5_num ) return true;
  1912 #ifdef _LP64
  1913   // 64-bit builds can pass 64-bit pointers and longs in
  1914   // the high I registers
  1915   if( reg == R_I0H_num ||
  1916       reg == R_I1H_num ||
  1917       reg == R_I2H_num ||
  1918       reg == R_I3H_num ||
  1919       reg == R_I4H_num ||
  1920       reg == R_I5H_num ) return true;
  1922   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1923     return true;
  1926 #else
  1927   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1928   // Longs cannot be passed in O regs, because O regs become I regs
  1929   // after a 'save' and I regs get their high bits chopped off on
  1930   // interrupt.
  1931   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1932   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1933 #endif
  1934   // A few float args in registers
  1935   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1937   return false;
  1940 bool Matcher::is_spillable_arg( int reg ) {
  1941   return can_be_java_arg(reg);
  1944 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1945   // Use hardware SDIVX instruction when it is
  1946   // faster than a code which use multiply.
  1947   return VM_Version::has_fast_idiv();
  1950 // Register for DIVI projection of divmodI
  1951 RegMask Matcher::divI_proj_mask() {
  1952   ShouldNotReachHere();
  1953   return RegMask();
  1956 // Register for MODI projection of divmodI
  1957 RegMask Matcher::modI_proj_mask() {
  1958   ShouldNotReachHere();
  1959   return RegMask();
  1962 // Register for DIVL projection of divmodL
  1963 RegMask Matcher::divL_proj_mask() {
  1964   ShouldNotReachHere();
  1965   return RegMask();
  1968 // Register for MODL projection of divmodL
  1969 RegMask Matcher::modL_proj_mask() {
  1970   ShouldNotReachHere();
  1971   return RegMask();
  1974 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1975   return L7_REGP_mask;
  1978 %}
  1981 // The intptr_t operand types, defined by textual substitution.
  1982 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1983 #ifdef _LP64
  1984 #define immX      immL
  1985 #define immX13    immL13
  1986 #define immX13m7  immL13m7
  1987 #define iRegX     iRegL
  1988 #define g1RegX    g1RegL
  1989 #else
  1990 #define immX      immI
  1991 #define immX13    immI13
  1992 #define immX13m7  immI13m7
  1993 #define iRegX     iRegI
  1994 #define g1RegX    g1RegI
  1995 #endif
  1997 //----------ENCODING BLOCK-----------------------------------------------------
  1998 // This block specifies the encoding classes used by the compiler to output
  1999 // byte streams.  Encoding classes are parameterized macros used by
  2000 // Machine Instruction Nodes in order to generate the bit encoding of the
  2001 // instruction.  Operands specify their base encoding interface with the
  2002 // interface keyword.  There are currently supported four interfaces,
  2003 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2004 // operand to generate a function which returns its register number when
  2005 // queried.   CONST_INTER causes an operand to generate a function which
  2006 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2007 // operand to generate four functions which return the Base Register, the
  2008 // Index Register, the Scale Value, and the Offset Value of the operand when
  2009 // queried.  COND_INTER causes an operand to generate six functions which
  2010 // return the encoding code (ie - encoding bits for the instruction)
  2011 // associated with each basic boolean condition for a conditional instruction.
  2012 //
  2013 // Instructions specify two basic values for encoding.  Again, a function
  2014 // is available to check if the constant displacement is an oop. They use the
  2015 // ins_encode keyword to specify their encoding classes (which must be
  2016 // a sequence of enc_class names, and their parameters, specified in
  2017 // the encoding block), and they use the
  2018 // opcode keyword to specify, in order, their primary, secondary, and
  2019 // tertiary opcode.  Only the opcode sections which a particular instruction
  2020 // needs for encoding need to be specified.
  2021 encode %{
  2022   enc_class enc_untested %{
  2023 #ifdef ASSERT
  2024     MacroAssembler _masm(&cbuf);
  2025     __ untested("encoding");
  2026 #endif
  2027   %}
  2029   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2030     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2031                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2032   %}
  2034   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2035     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2036                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2037   %}
  2039   enc_class form3_mem_prefetch_read( memory mem ) %{
  2040     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2041                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2042   %}
  2044   enc_class form3_mem_prefetch_write( memory mem ) %{
  2045     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2046                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2047   %}
  2049   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2050     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2051     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2052     guarantee($mem$$index == R_G0_enc, "double index?");
  2053     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2054     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2055     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2056     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2057   %}
  2059   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2060     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2061     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2062     guarantee($mem$$index == R_G0_enc, "double index?");
  2063     // Load long with 2 instructions
  2064     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2065     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2066   %}
  2068   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2069   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2070     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2071     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2072   %}
  2074   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2075     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2076     if( $rs2$$reg != $rd$$reg )
  2077       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2078   %}
  2080   // Target lo half of long
  2081   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2082     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2083     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2084       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2085   %}
  2087   // Source lo half of long
  2088   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2089     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2090     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2091       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2092   %}
  2094   // Target hi half of long
  2095   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2096     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2097   %}
  2099   // Source lo half of long, and leave it sign extended.
  2100   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2101     // Sign extend low half
  2102     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2103   %}
  2105   // Source hi half of long, and leave it sign extended.
  2106   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2107     // Shift high half to low half
  2108     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2109   %}
  2111   // Source hi half of long
  2112   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2113     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2114     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2115       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2116   %}
  2118   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2119     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2120   %}
  2122   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2123     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2124     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2125   %}
  2127   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2128     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2129     // clear if nothing else is happening
  2130     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2131     // blt,a,pn done
  2132     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2133     // mov dst,-1 in delay slot
  2134     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2135   %}
  2137   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2138     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2139   %}
  2141   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2142     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2143   %}
  2145   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2146     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2147   %}
  2149   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2150     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2151   %}
  2153   enc_class move_return_pc_to_o1() %{
  2154     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2155   %}
  2157 #ifdef _LP64
  2158   /* %%% merge with enc_to_bool */
  2159   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2160     MacroAssembler _masm(&cbuf);
  2162     Register   src_reg = reg_to_register_object($src$$reg);
  2163     Register   dst_reg = reg_to_register_object($dst$$reg);
  2164     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2165   %}
  2166 #endif
  2168   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2169     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2170     MacroAssembler _masm(&cbuf);
  2172     Register   p_reg = reg_to_register_object($p$$reg);
  2173     Register   q_reg = reg_to_register_object($q$$reg);
  2174     Register   y_reg = reg_to_register_object($y$$reg);
  2175     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2177     __ subcc( p_reg, q_reg,   p_reg );
  2178     __ add  ( p_reg, y_reg, tmp_reg );
  2179     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2180   %}
  2182   enc_class form_d2i_helper(regD src, regF dst) %{
  2183     // fcmp %fcc0,$src,$src
  2184     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2185     // branch %fcc0 not-nan, predict taken
  2186     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2187     // fdtoi $src,$dst
  2188     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2189     // fitos $dst,$dst (if nan)
  2190     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2191     // clear $dst (if nan)
  2192     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2193     // carry on here...
  2194   %}
  2196   enc_class form_d2l_helper(regD src, regD dst) %{
  2197     // fcmp %fcc0,$src,$src  check for NAN
  2198     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2199     // branch %fcc0 not-nan, predict taken
  2200     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2201     // fdtox $src,$dst   convert in delay slot
  2202     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2203     // fxtod $dst,$dst  (if nan)
  2204     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2205     // clear $dst (if nan)
  2206     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2207     // carry on here...
  2208   %}
  2210   enc_class form_f2i_helper(regF src, regF dst) %{
  2211     // fcmps %fcc0,$src,$src
  2212     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2213     // branch %fcc0 not-nan, predict taken
  2214     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2215     // fstoi $src,$dst
  2216     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2217     // fitos $dst,$dst (if nan)
  2218     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2219     // clear $dst (if nan)
  2220     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2221     // carry on here...
  2222   %}
  2224   enc_class form_f2l_helper(regF src, regD dst) %{
  2225     // fcmps %fcc0,$src,$src
  2226     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2227     // branch %fcc0 not-nan, predict taken
  2228     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2229     // fstox $src,$dst
  2230     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2231     // fxtod $dst,$dst (if nan)
  2232     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2233     // clear $dst (if nan)
  2234     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2235     // carry on here...
  2236   %}
  2238   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2239   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2240   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2241   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2243   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2245   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2246   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2248   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2249     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2250   %}
  2252   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2253     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2254   %}
  2256   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2257     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2258   %}
  2260   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2261     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2262   %}
  2264   enc_class form3_convI2F(regF rs2, regF rd) %{
  2265     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2266   %}
  2268   // Encloding class for traceable jumps
  2269   enc_class form_jmpl(g3RegP dest) %{
  2270     emit_jmpl(cbuf, $dest$$reg);
  2271   %}
  2273   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2274     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2275   %}
  2277   enc_class form2_nop() %{
  2278     emit_nop(cbuf);
  2279   %}
  2281   enc_class form2_illtrap() %{
  2282     emit_illtrap(cbuf);
  2283   %}
  2286   // Compare longs and convert into -1, 0, 1.
  2287   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2288     // CMP $src1,$src2
  2289     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2290     // blt,a,pn done
  2291     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2292     // mov dst,-1 in delay slot
  2293     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2294     // bgt,a,pn done
  2295     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2296     // mov dst,1 in delay slot
  2297     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2298     // CLR    $dst
  2299     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2300   %}
  2302   enc_class enc_PartialSubtypeCheck() %{
  2303     MacroAssembler _masm(&cbuf);
  2304     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2305     __ delayed()->nop();
  2306   %}
  2308   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2309     MacroAssembler _masm(&cbuf);
  2310     Label &L = *($labl$$label);
  2311     Assembler::Predict predict_taken =
  2312       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2314     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2315     __ delayed()->nop();
  2316   %}
  2318   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2319     MacroAssembler _masm(&cbuf);
  2320     Label &L = *($labl$$label);
  2321     Assembler::Predict predict_taken =
  2322       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2324     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2325     __ delayed()->nop();
  2326   %}
  2328   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2329     MacroAssembler _masm(&cbuf);
  2330     Label &L = *($labl$$label);
  2331     Assembler::Predict predict_taken =
  2332       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2334     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2335     __ delayed()->nop();
  2336   %}
  2338   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2339     MacroAssembler _masm(&cbuf);
  2340     Label &L = *($labl$$label);
  2341     Assembler::Predict predict_taken =
  2342       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2344     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2345     __ delayed()->nop();
  2346   %}
  2348   enc_class enc_ba( Label labl ) %{
  2349     MacroAssembler _masm(&cbuf);
  2350     Label &L = *($labl$$label);
  2351     __ ba(false, L);
  2352     __ delayed()->nop();
  2353   %}
  2355   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2356     MacroAssembler _masm(&cbuf);
  2357     Label &L = *$labl$$label;
  2358     Assembler::Predict predict_taken =
  2359       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2361     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2362     __ delayed()->nop();
  2363   %}
  2365   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2366     int op = (Assembler::arith_op << 30) |
  2367              ($dst$$reg << 25) |
  2368              (Assembler::movcc_op3 << 19) |
  2369              (1 << 18) |                    // cc2 bit for 'icc'
  2370              ($cmp$$cmpcode << 14) |
  2371              (0 << 13) |                    // select register move
  2372              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2373              ($src$$reg << 0);
  2374     cbuf.insts()->emit_int32(op);
  2375   %}
  2377   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2378     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2379     int op = (Assembler::arith_op << 30) |
  2380              ($dst$$reg << 25) |
  2381              (Assembler::movcc_op3 << 19) |
  2382              (1 << 18) |                    // cc2 bit for 'icc'
  2383              ($cmp$$cmpcode << 14) |
  2384              (1 << 13) |                    // select immediate move
  2385              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2386              (simm11 << 0);
  2387     cbuf.insts()->emit_int32(op);
  2388   %}
  2390   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2391     int op = (Assembler::arith_op << 30) |
  2392              ($dst$$reg << 25) |
  2393              (Assembler::movcc_op3 << 19) |
  2394              (0 << 18) |                    // cc2 bit for 'fccX'
  2395              ($cmp$$cmpcode << 14) |
  2396              (0 << 13) |                    // select register move
  2397              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2398              ($src$$reg << 0);
  2399     cbuf.insts()->emit_int32(op);
  2400   %}
  2402   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2403     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2404     int op = (Assembler::arith_op << 30) |
  2405              ($dst$$reg << 25) |
  2406              (Assembler::movcc_op3 << 19) |
  2407              (0 << 18) |                    // cc2 bit for 'fccX'
  2408              ($cmp$$cmpcode << 14) |
  2409              (1 << 13) |                    // select immediate move
  2410              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2411              (simm11 << 0);
  2412     cbuf.insts()->emit_int32(op);
  2413   %}
  2415   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2416     int op = (Assembler::arith_op << 30) |
  2417              ($dst$$reg << 25) |
  2418              (Assembler::fpop2_op3 << 19) |
  2419              (0 << 18) |
  2420              ($cmp$$cmpcode << 14) |
  2421              (1 << 13) |                    // select register move
  2422              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2423              ($primary << 5) |              // select single, double or quad
  2424              ($src$$reg << 0);
  2425     cbuf.insts()->emit_int32(op);
  2426   %}
  2428   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2429     int op = (Assembler::arith_op << 30) |
  2430              ($dst$$reg << 25) |
  2431              (Assembler::fpop2_op3 << 19) |
  2432              (0 << 18) |
  2433              ($cmp$$cmpcode << 14) |
  2434              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2435              ($primary << 5) |              // select single, double or quad
  2436              ($src$$reg << 0);
  2437     cbuf.insts()->emit_int32(op);
  2438   %}
  2440   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2441   // the condition comes from opcode-field instead of an argument.
  2442   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2443     int op = (Assembler::arith_op << 30) |
  2444              ($dst$$reg << 25) |
  2445              (Assembler::movcc_op3 << 19) |
  2446              (1 << 18) |                    // cc2 bit for 'icc'
  2447              ($primary << 14) |
  2448              (0 << 13) |                    // select register move
  2449              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2450              ($src$$reg << 0);
  2451     cbuf.insts()->emit_int32(op);
  2452   %}
  2454   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2455     int op = (Assembler::arith_op << 30) |
  2456              ($dst$$reg << 25) |
  2457              (Assembler::movcc_op3 << 19) |
  2458              (6 << 16) |                    // cc2 bit for 'xcc'
  2459              ($primary << 14) |
  2460              (0 << 13) |                    // select register move
  2461              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2462              ($src$$reg << 0);
  2463     cbuf.insts()->emit_int32(op);
  2464   %}
  2466   enc_class Set13( immI13 src, iRegI rd ) %{
  2467     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2468   %}
  2470   enc_class SetHi22( immI src, iRegI rd ) %{
  2471     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2472   %}
  2474   enc_class Set32( immI src, iRegI rd ) %{
  2475     MacroAssembler _masm(&cbuf);
  2476     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2477   %}
  2479   enc_class call_epilog %{
  2480     if( VerifyStackAtCalls ) {
  2481       MacroAssembler _masm(&cbuf);
  2482       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2483       Register temp_reg = G3;
  2484       __ add(SP, framesize, temp_reg);
  2485       __ cmp(temp_reg, FP);
  2486       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2488   %}
  2490   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2491   // to G1 so the register allocator will not have to deal with the misaligned register
  2492   // pair.
  2493   enc_class adjust_long_from_native_call %{
  2494 #ifndef _LP64
  2495     if (returns_long()) {
  2496       //    sllx  O0,32,O0
  2497       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2498       //    srl   O1,0,O1
  2499       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2500       //    or    O0,O1,G1
  2501       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2503 #endif
  2504   %}
  2506   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2507     // CALL directly to the runtime
  2508     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2509     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2510                     /*preserve_g2=*/true, /*force far call*/true);
  2511   %}
  2513   enc_class preserve_SP %{
  2514     MacroAssembler _masm(&cbuf);
  2515     __ mov(SP, L7_mh_SP_save);
  2516   %}
  2518   enc_class restore_SP %{
  2519     MacroAssembler _masm(&cbuf);
  2520     __ mov(L7_mh_SP_save, SP);
  2521   %}
  2523   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2524     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2525     // who we intended to call.
  2526     if ( !_method ) {
  2527       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2528     } else if (_optimized_virtual) {
  2529       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2530     } else {
  2531       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2533     if( _method ) {  // Emit stub for static call
  2534       emit_java_to_interp(cbuf);
  2536   %}
  2538   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2539     MacroAssembler _masm(&cbuf);
  2540     __ set_inst_mark();
  2541     int vtable_index = this->_vtable_index;
  2542     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2543     if (vtable_index < 0) {
  2544       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2545       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2546       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2547       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2548       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2549       // !!!!!
  2550       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2551       // emit_call_dynamic_prologue( cbuf );
  2552       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2554       address  virtual_call_oop_addr = __ inst_mark();
  2555       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2556       // who we intended to call.
  2557       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2558       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2559     } else {
  2560       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2561       // Just go thru the vtable
  2562       // get receiver klass (receiver already checked for non-null)
  2563       // If we end up going thru a c2i adapter interpreter expects method in G5
  2564       int off = __ offset();
  2565       __ load_klass(O0, G3_scratch);
  2566       int klass_load_size;
  2567       if (UseCompressedOops) {
  2568         assert(Universe::heap() != NULL, "java heap should be initialized");
  2569         if (Universe::narrow_oop_base() == NULL)
  2570           klass_load_size = 2*BytesPerInstWord;
  2571         else
  2572           klass_load_size = 3*BytesPerInstWord;
  2573       } else {
  2574         klass_load_size = 1*BytesPerInstWord;
  2576       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2577       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2578       if( __ is_simm13(v_off) ) {
  2579         __ ld_ptr(G3, v_off, G5_method);
  2580       } else {
  2581         // Generate 2 instructions
  2582         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2583         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2584         // ld_ptr, set_hi, set
  2585         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2586                "Unexpected instruction size(s)");
  2587         __ ld_ptr(G3, G5_method, G5_method);
  2589       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2590       // However it may very well end up in handle_wrong_method if the
  2591       // method is abstract for the particular class.
  2592       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2593       // jump to target (either compiled code or c2iadapter)
  2594       __ jmpl(G3_scratch, G0, O7);
  2595       __ delayed()->nop();
  2597   %}
  2599   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2600     MacroAssembler _masm(&cbuf);
  2602     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2603     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2604                               // we might be calling a C2I adapter which needs it.
  2606     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2607     // Load nmethod
  2608     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2610     // CALL to compiled java, indirect the contents of G3
  2611     __ set_inst_mark();
  2612     __ callr(temp_reg, G0);
  2613     __ delayed()->nop();
  2614   %}
  2616 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2617     MacroAssembler _masm(&cbuf);
  2618     Register Rdividend = reg_to_register_object($src1$$reg);
  2619     Register Rdivisor = reg_to_register_object($src2$$reg);
  2620     Register Rresult = reg_to_register_object($dst$$reg);
  2622     __ sra(Rdivisor, 0, Rdivisor);
  2623     __ sra(Rdividend, 0, Rdividend);
  2624     __ sdivx(Rdividend, Rdivisor, Rresult);
  2625 %}
  2627 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2628     MacroAssembler _masm(&cbuf);
  2630     Register Rdividend = reg_to_register_object($src1$$reg);
  2631     int divisor = $imm$$constant;
  2632     Register Rresult = reg_to_register_object($dst$$reg);
  2634     __ sra(Rdividend, 0, Rdividend);
  2635     __ sdivx(Rdividend, divisor, Rresult);
  2636 %}
  2638 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2639     MacroAssembler _masm(&cbuf);
  2640     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2641     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2642     Register Rdst  = reg_to_register_object($dst$$reg);
  2644     __ sra( Rsrc1, 0, Rsrc1 );
  2645     __ sra( Rsrc2, 0, Rsrc2 );
  2646     __ mulx( Rsrc1, Rsrc2, Rdst );
  2647     __ srlx( Rdst, 32, Rdst );
  2648 %}
  2650 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2651     MacroAssembler _masm(&cbuf);
  2652     Register Rdividend = reg_to_register_object($src1$$reg);
  2653     Register Rdivisor = reg_to_register_object($src2$$reg);
  2654     Register Rresult = reg_to_register_object($dst$$reg);
  2655     Register Rscratch = reg_to_register_object($scratch$$reg);
  2657     assert(Rdividend != Rscratch, "");
  2658     assert(Rdivisor  != Rscratch, "");
  2660     __ sra(Rdividend, 0, Rdividend);
  2661     __ sra(Rdivisor, 0, Rdivisor);
  2662     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2663     __ mulx(Rscratch, Rdivisor, Rscratch);
  2664     __ sub(Rdividend, Rscratch, Rresult);
  2665 %}
  2667 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2668     MacroAssembler _masm(&cbuf);
  2670     Register Rdividend = reg_to_register_object($src1$$reg);
  2671     int divisor = $imm$$constant;
  2672     Register Rresult = reg_to_register_object($dst$$reg);
  2673     Register Rscratch = reg_to_register_object($scratch$$reg);
  2675     assert(Rdividend != Rscratch, "");
  2677     __ sra(Rdividend, 0, Rdividend);
  2678     __ sdivx(Rdividend, divisor, Rscratch);
  2679     __ mulx(Rscratch, divisor, Rscratch);
  2680     __ sub(Rdividend, Rscratch, Rresult);
  2681 %}
  2683 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2684     MacroAssembler _masm(&cbuf);
  2686     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2687     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2689     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2690 %}
  2692 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2693     MacroAssembler _masm(&cbuf);
  2695     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2696     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2698     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2699 %}
  2701 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2702     MacroAssembler _masm(&cbuf);
  2704     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2705     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2707     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2708 %}
  2710 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2711     MacroAssembler _masm(&cbuf);
  2713     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2714     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2716     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2717 %}
  2719 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2720     MacroAssembler _masm(&cbuf);
  2722     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2723     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2725     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2726 %}
  2728 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2729     MacroAssembler _masm(&cbuf);
  2731     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2732     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2734     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2735 %}
  2737 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2738     MacroAssembler _masm(&cbuf);
  2740     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2741     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2743     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2744 %}
  2746 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2747     MacroAssembler _masm(&cbuf);
  2749     Register Roop  = reg_to_register_object($oop$$reg);
  2750     Register Rbox  = reg_to_register_object($box$$reg);
  2751     Register Rscratch = reg_to_register_object($scratch$$reg);
  2752     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2754     assert(Roop  != Rscratch, "");
  2755     assert(Roop  != Rmark, "");
  2756     assert(Rbox  != Rscratch, "");
  2757     assert(Rbox  != Rmark, "");
  2759     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2760 %}
  2762 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2763     MacroAssembler _masm(&cbuf);
  2765     Register Roop  = reg_to_register_object($oop$$reg);
  2766     Register Rbox  = reg_to_register_object($box$$reg);
  2767     Register Rscratch = reg_to_register_object($scratch$$reg);
  2768     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2770     assert(Roop  != Rscratch, "");
  2771     assert(Roop  != Rmark, "");
  2772     assert(Rbox  != Rscratch, "");
  2773     assert(Rbox  != Rmark, "");
  2775     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2776   %}
  2778   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2779     MacroAssembler _masm(&cbuf);
  2780     Register Rmem = reg_to_register_object($mem$$reg);
  2781     Register Rold = reg_to_register_object($old$$reg);
  2782     Register Rnew = reg_to_register_object($new$$reg);
  2784     // casx_under_lock picks 1 of 3 encodings:
  2785     // For 32-bit pointers you get a 32-bit CAS
  2786     // For 64-bit pointers you get a 64-bit CASX
  2787     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2788     __ cmp( Rold, Rnew );
  2789   %}
  2791   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2792     Register Rmem = reg_to_register_object($mem$$reg);
  2793     Register Rold = reg_to_register_object($old$$reg);
  2794     Register Rnew = reg_to_register_object($new$$reg);
  2796     MacroAssembler _masm(&cbuf);
  2797     __ mov(Rnew, O7);
  2798     __ casx(Rmem, Rold, O7);
  2799     __ cmp( Rold, O7 );
  2800   %}
  2802   // raw int cas, used for compareAndSwap
  2803   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2804     Register Rmem = reg_to_register_object($mem$$reg);
  2805     Register Rold = reg_to_register_object($old$$reg);
  2806     Register Rnew = reg_to_register_object($new$$reg);
  2808     MacroAssembler _masm(&cbuf);
  2809     __ mov(Rnew, O7);
  2810     __ cas(Rmem, Rold, O7);
  2811     __ cmp( Rold, O7 );
  2812   %}
  2814   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2815     Register Rres = reg_to_register_object($res$$reg);
  2817     MacroAssembler _masm(&cbuf);
  2818     __ mov(1, Rres);
  2819     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2820   %}
  2822   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2823     Register Rres = reg_to_register_object($res$$reg);
  2825     MacroAssembler _masm(&cbuf);
  2826     __ mov(1, Rres);
  2827     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2828   %}
  2830   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2831     MacroAssembler _masm(&cbuf);
  2832     Register Rdst = reg_to_register_object($dst$$reg);
  2833     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2834                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2835     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2836                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2838     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2839     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2840   %}
  2842   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2843   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2844     MacroAssembler _masm(&cbuf);
  2845     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2846     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2847     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2849     Label loop;
  2850     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2852     // Loop and clear, walking backwards through the array.
  2853     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2854     __ bind(loop);
  2855     __ deccc(nof_bytes_tmp, 8);
  2856     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2857     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2858     // %%%% this mini-loop must not cross a cache boundary!
  2859   %}
  2862   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2863     Label Ldone, Lloop;
  2864     MacroAssembler _masm(&cbuf);
  2866     Register   str1_reg = reg_to_register_object($str1$$reg);
  2867     Register   str2_reg = reg_to_register_object($str2$$reg);
  2868     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2869     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2870     Register result_reg = reg_to_register_object($result$$reg);
  2872     assert(result_reg != str1_reg &&
  2873            result_reg != str2_reg &&
  2874            result_reg != cnt1_reg &&
  2875            result_reg != cnt2_reg ,
  2876            "need different registers");
  2878     // Compute the minimum of the string lengths(str1_reg) and the
  2879     // difference of the string lengths (stack)
  2881     // See if the lengths are different, and calculate min in str1_reg.
  2882     // Stash diff in O7 in case we need it for a tie-breaker.
  2883     Label Lskip;
  2884     __ subcc(cnt1_reg, cnt2_reg, O7);
  2885     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2886     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2887     // cnt2 is shorter, so use its count:
  2888     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2889     __ bind(Lskip);
  2891     // reallocate cnt1_reg, cnt2_reg, result_reg
  2892     // Note:  limit_reg holds the string length pre-scaled by 2
  2893     Register limit_reg =   cnt1_reg;
  2894     Register  chr2_reg =   cnt2_reg;
  2895     Register  chr1_reg = result_reg;
  2896     // str{12} are the base pointers
  2898     // Is the minimum length zero?
  2899     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2900     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2901     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2903     // Load first characters
  2904     __ lduh(str1_reg, 0, chr1_reg);
  2905     __ lduh(str2_reg, 0, chr2_reg);
  2907     // Compare first characters
  2908     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2909     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2910     assert(chr1_reg == result_reg, "result must be pre-placed");
  2911     __ delayed()->nop();
  2914       // Check after comparing first character to see if strings are equivalent
  2915       Label LSkip2;
  2916       // Check if the strings start at same location
  2917       __ cmp(str1_reg, str2_reg);
  2918       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2919       __ delayed()->nop();
  2921       // Check if the length difference is zero (in O7)
  2922       __ cmp(G0, O7);
  2923       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2924       __ delayed()->mov(G0, result_reg);  // result is zero
  2926       // Strings might not be equal
  2927       __ bind(LSkip2);
  2930     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2931     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2932     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2934     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2935     __ add(str1_reg, limit_reg, str1_reg);
  2936     __ add(str2_reg, limit_reg, str2_reg);
  2937     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2939     // Compare the rest of the characters
  2940     __ lduh(str1_reg, limit_reg, chr1_reg);
  2941     __ bind(Lloop);
  2942     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2943     __ lduh(str2_reg, limit_reg, chr2_reg);
  2944     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2945     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2946     assert(chr1_reg == result_reg, "result must be pre-placed");
  2947     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2948     // annul LDUH if branch is not taken to prevent access past end of string
  2949     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2950     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2952     // If strings are equal up to min length, return the length difference.
  2953     __ mov(O7, result_reg);
  2955     // Otherwise, return the difference between the first mismatched chars.
  2956     __ bind(Ldone);
  2957   %}
  2959 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2960     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2961     MacroAssembler _masm(&cbuf);
  2963     Register   str1_reg = reg_to_register_object($str1$$reg);
  2964     Register   str2_reg = reg_to_register_object($str2$$reg);
  2965     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2966     Register   tmp1_reg = O7;
  2967     Register result_reg = reg_to_register_object($result$$reg);
  2969     assert(result_reg != str1_reg &&
  2970            result_reg != str2_reg &&
  2971            result_reg !=  cnt_reg &&
  2972            result_reg != tmp1_reg ,
  2973            "need different registers");
  2975     __ cmp(str1_reg, str2_reg); //same char[] ?
  2976     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2977     __ delayed()->add(G0, 1, result_reg);
  2979     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
  2980     __ delayed()->add(G0, 1, result_reg); // count == 0
  2982     //rename registers
  2983     Register limit_reg =    cnt_reg;
  2984     Register  chr1_reg = result_reg;
  2985     Register  chr2_reg =   tmp1_reg;
  2987     //check for alignment and position the pointers to the ends
  2988     __ or3(str1_reg, str2_reg, chr1_reg);
  2989     __ andcc(chr1_reg, 0x3, chr1_reg);
  2990     // notZero means at least one not 4-byte aligned.
  2991     // We could optimize the case when both arrays are not aligned
  2992     // but it is not frequent case and it requires additional checks.
  2993     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2994     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2996     // Compare char[] arrays aligned to 4 bytes.
  2997     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2998                           chr1_reg, chr2_reg, Ldone);
  2999     __ ba(false,Ldone);
  3000     __ delayed()->add(G0, 1, result_reg);
  3002     // char by char compare
  3003     __ bind(Lchar);
  3004     __ add(str1_reg, limit_reg, str1_reg);
  3005     __ add(str2_reg, limit_reg, str2_reg);
  3006     __ neg(limit_reg); //negate count
  3008     __ lduh(str1_reg, limit_reg, chr1_reg);
  3009     // Lchar_loop
  3010     __ bind(Lchar_loop);
  3011     __ lduh(str2_reg, limit_reg, chr2_reg);
  3012     __ cmp(chr1_reg, chr2_reg);
  3013     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3014     __ delayed()->mov(G0, result_reg); //not equal
  3015     __ inccc(limit_reg, sizeof(jchar));
  3016     // annul LDUH if branch is not taken to prevent access past end of string
  3017     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3018     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3020     __ add(G0, 1, result_reg);  //equal
  3022     __ bind(Ldone);
  3023   %}
  3025 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3026     Label Lvector, Ldone, Lloop;
  3027     MacroAssembler _masm(&cbuf);
  3029     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3030     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3031     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3032     Register   tmp2_reg = O7;
  3033     Register result_reg = reg_to_register_object($result$$reg);
  3035     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3036     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3038     // return true if the same array
  3039     __ cmp(ary1_reg, ary2_reg);
  3040     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3041     __ delayed()->add(G0, 1, result_reg); // equal
  3043     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3044     __ delayed()->mov(G0, result_reg);    // not equal
  3046     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3047     __ delayed()->mov(G0, result_reg);    // not equal
  3049     //load the lengths of arrays
  3050     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3051     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3053     // return false if the two arrays are not equal length
  3054     __ cmp(tmp1_reg, tmp2_reg);
  3055     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3056     __ delayed()->mov(G0, result_reg);     // not equal
  3058     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
  3059     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3061     // load array addresses
  3062     __ add(ary1_reg, base_offset, ary1_reg);
  3063     __ add(ary2_reg, base_offset, ary2_reg);
  3065     // renaming registers
  3066     Register chr1_reg  =  result_reg; // for characters in ary1
  3067     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3068     Register limit_reg =  tmp1_reg;   // length
  3070     // set byte count
  3071     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3073     // Compare char[] arrays aligned to 4 bytes.
  3074     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3075                           chr1_reg, chr2_reg, Ldone);
  3076     __ add(G0, 1, result_reg); // equals
  3078     __ bind(Ldone);
  3079   %}
  3081   enc_class enc_rethrow() %{
  3082     cbuf.set_insts_mark();
  3083     Register temp_reg = G3;
  3084     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3085     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3086     MacroAssembler _masm(&cbuf);
  3087 #ifdef ASSERT
  3088     __ save_frame(0);
  3089     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3090     __ sethi(last_rethrow_addrlit, L1);
  3091     Address addr(L1, last_rethrow_addrlit.low10());
  3092     __ get_pc(L2);
  3093     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3094     __ st_ptr(L2, addr);
  3095     __ restore();
  3096 #endif
  3097     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3098     __ delayed()->nop();
  3099   %}
  3101   enc_class emit_mem_nop() %{
  3102     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3103     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3104   %}
  3106   enc_class emit_fadd_nop() %{
  3107     // Generates the instruction FMOVS f31,f31
  3108     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3109   %}
  3111   enc_class emit_br_nop() %{
  3112     // Generates the instruction BPN,PN .
  3113     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3114   %}
  3116   enc_class enc_membar_acquire %{
  3117     MacroAssembler _masm(&cbuf);
  3118     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3119   %}
  3121   enc_class enc_membar_release %{
  3122     MacroAssembler _masm(&cbuf);
  3123     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3124   %}
  3126   enc_class enc_membar_volatile %{
  3127     MacroAssembler _masm(&cbuf);
  3128     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3129   %}
  3131   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3132     MacroAssembler _masm(&cbuf);
  3133     Register src_reg = reg_to_register_object($src$$reg);
  3134     Register dst_reg = reg_to_register_object($dst$$reg);
  3135     __ sllx(src_reg, 56, dst_reg);
  3136     __ srlx(dst_reg,  8, O7);
  3137     __ or3 (dst_reg, O7, dst_reg);
  3138     __ srlx(dst_reg, 16, O7);
  3139     __ or3 (dst_reg, O7, dst_reg);
  3140     __ srlx(dst_reg, 32, O7);
  3141     __ or3 (dst_reg, O7, dst_reg);
  3142   %}
  3144   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3145     MacroAssembler _masm(&cbuf);
  3146     Register src_reg = reg_to_register_object($src$$reg);
  3147     Register dst_reg = reg_to_register_object($dst$$reg);
  3148     __ sll(src_reg, 24, dst_reg);
  3149     __ srl(dst_reg,  8, O7);
  3150     __ or3(dst_reg, O7, dst_reg);
  3151     __ srl(dst_reg, 16, O7);
  3152     __ or3(dst_reg, O7, dst_reg);
  3153   %}
  3155   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3156     MacroAssembler _masm(&cbuf);
  3157     Register src_reg = reg_to_register_object($src$$reg);
  3158     Register dst_reg = reg_to_register_object($dst$$reg);
  3159     __ sllx(src_reg, 48, dst_reg);
  3160     __ srlx(dst_reg, 16, O7);
  3161     __ or3 (dst_reg, O7, dst_reg);
  3162     __ srlx(dst_reg, 32, O7);
  3163     __ or3 (dst_reg, O7, dst_reg);
  3164   %}
  3166   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3167     MacroAssembler _masm(&cbuf);
  3168     Register src_reg = reg_to_register_object($src$$reg);
  3169     Register dst_reg = reg_to_register_object($dst$$reg);
  3170     __ sllx(src_reg, 32, dst_reg);
  3171     __ srlx(dst_reg, 32, O7);
  3172     __ or3 (dst_reg, O7, dst_reg);
  3173   %}
  3175 %}
  3177 //----------FRAME--------------------------------------------------------------
  3178 // Definition of frame structure and management information.
  3179 //
  3180 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3181 //                             |   (to get allocators register number
  3182 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3183 //  r   CALLER     |        |
  3184 //  o     |        +--------+      pad to even-align allocators stack-slot
  3185 //  w     V        |  pad0  |        numbers; owned by CALLER
  3186 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3187 //  h     ^        |   in   |  5
  3188 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3189 //  |     |        |        |  3
  3190 //  |     |        +--------+
  3191 //  V     |        | old out|      Empty on Intel, window on Sparc
  3192 //        |    old |preserve|      Must be even aligned.
  3193 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3194 //        |        |   in   |  3   area for Intel ret address
  3195 //     Owned by    |preserve|      Empty on Sparc.
  3196 //       SELF      +--------+
  3197 //        |        |  pad2  |  2   pad to align old SP
  3198 //        |        +--------+  1
  3199 //        |        | locks  |  0
  3200 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3201 //        |        |  pad1  | 11   pad to align new SP
  3202 //        |        +--------+
  3203 //        |        |        | 10
  3204 //        |        | spills |  9   spills
  3205 //        V        |        |  8   (pad0 slot for callee)
  3206 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3207 //        ^        |  out   |  7
  3208 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3209 //     Owned by    +--------+
  3210 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3211 //        |    new |preserve|      Must be even-aligned.
  3212 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3213 //        |        |        |
  3214 //
  3215 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3216 //         known from SELF's arguments and the Java calling convention.
  3217 //         Region 6-7 is determined per call site.
  3218 // Note 2: If the calling convention leaves holes in the incoming argument
  3219 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3220 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3221 //         incoming area, as the Java calling convention is completely under
  3222 //         the control of the AD file.  Doubles can be sorted and packed to
  3223 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3224 //         varargs C calling conventions.
  3225 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3226 //         even aligned with pad0 as needed.
  3227 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3228 //         region 6-11 is even aligned; it may be padded out more so that
  3229 //         the region from SP to FP meets the minimum stack alignment.
  3231 frame %{
  3232   // What direction does stack grow in (assumed to be same for native & Java)
  3233   stack_direction(TOWARDS_LOW);
  3235   // These two registers define part of the calling convention
  3236   // between compiled code and the interpreter.
  3237   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3238   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3240   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3241   cisc_spilling_operand_name(indOffset);
  3243   // Number of stack slots consumed by a Monitor enter
  3244 #ifdef _LP64
  3245   sync_stack_slots(2);
  3246 #else
  3247   sync_stack_slots(1);
  3248 #endif
  3250   // Compiled code's Frame Pointer
  3251   frame_pointer(R_SP);
  3253   // Stack alignment requirement
  3254   stack_alignment(StackAlignmentInBytes);
  3255   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3256   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3258   // Number of stack slots between incoming argument block and the start of
  3259   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3260   // EPILOG must remove this many slots.
  3261   in_preserve_stack_slots(0);
  3263   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3264   // for calls to C.  Supports the var-args backing area for register parms.
  3265   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3266 #ifdef _LP64
  3267   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3268   varargs_C_out_slots_killed(12);
  3269 #else
  3270   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3271   varargs_C_out_slots_killed( 7);
  3272 #endif
  3274   // The after-PROLOG location of the return address.  Location of
  3275   // return address specifies a type (REG or STACK) and a number
  3276   // representing the register number (i.e. - use a register name) or
  3277   // stack slot.
  3278   return_addr(REG R_I7);          // Ret Addr is in register I7
  3280   // Body of function which returns an OptoRegs array locating
  3281   // arguments either in registers or in stack slots for calling
  3282   // java
  3283   calling_convention %{
  3284     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3286   %}
  3288   // Body of function which returns an OptoRegs array locating
  3289   // arguments either in registers or in stack slots for callin
  3290   // C.
  3291   c_calling_convention %{
  3292     // This is obviously always outgoing
  3293     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3294   %}
  3296   // Location of native (C/C++) and interpreter return values.  This is specified to
  3297   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3298   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3299   // to and from the register pairs is done by the appropriate call and epilog
  3300   // opcodes.  This simplifies the register allocator.
  3301   c_return_value %{
  3302     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3303 #ifdef     _LP64
  3304     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3305     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3306     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3307     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3308 #else  // !_LP64
  3309     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3310     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3311     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3312     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3313 #endif
  3314     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3315                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3316   %}
  3318   // Location of compiled Java return values.  Same as C
  3319   return_value %{
  3320     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3321 #ifdef     _LP64
  3322     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3323     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3324     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3325     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3326 #else  // !_LP64
  3327     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3328     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3329     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3330     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3331 #endif
  3332     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3333                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3334   %}
  3336 %}
  3339 //----------ATTRIBUTES---------------------------------------------------------
  3340 //----------Operand Attributes-------------------------------------------------
  3341 op_attrib op_cost(1);          // Required cost attribute
  3343 //----------Instruction Attributes---------------------------------------------
  3344 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3345 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3346 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3347 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3348                                 // non-matching short branch variant of some
  3349                                                             // long branch?
  3351 //----------OPERANDS-----------------------------------------------------------
  3352 // Operand definitions must precede instruction definitions for correct parsing
  3353 // in the ADLC because operands constitute user defined types which are used in
  3354 // instruction definitions.
  3356 //----------Simple Operands----------------------------------------------------
  3357 // Immediate Operands
  3358 // Integer Immediate: 32-bit
  3359 operand immI() %{
  3360   match(ConI);
  3362   op_cost(0);
  3363   // formats are generated automatically for constants and base registers
  3364   format %{ %}
  3365   interface(CONST_INTER);
  3366 %}
  3368 // Integer Immediate: 8-bit
  3369 operand immI8() %{
  3370   predicate(Assembler::is_simm(n->get_int(), 8));
  3371   match(ConI);
  3372   op_cost(0);
  3373   format %{ %}
  3374   interface(CONST_INTER);
  3375 %}
  3377 // Integer Immediate: 13-bit
  3378 operand immI13() %{
  3379   predicate(Assembler::is_simm13(n->get_int()));
  3380   match(ConI);
  3381   op_cost(0);
  3383   format %{ %}
  3384   interface(CONST_INTER);
  3385 %}
  3387 // Integer Immediate: 13-bit minus 7
  3388 operand immI13m7() %{
  3389   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3390   match(ConI);
  3391   op_cost(0);
  3393   format %{ %}
  3394   interface(CONST_INTER);
  3395 %}
  3397 // Integer Immediate: 16-bit
  3398 operand immI16() %{
  3399   predicate(Assembler::is_simm(n->get_int(), 16));
  3400   match(ConI);
  3401   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Unsigned (positive) Integer Immediate: 13-bit
  3407 operand immU13() %{
  3408   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3409   match(ConI);
  3410   op_cost(0);
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 // Integer Immediate: 6-bit
  3417 operand immU6() %{
  3418   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3419   match(ConI);
  3420   op_cost(0);
  3421   format %{ %}
  3422   interface(CONST_INTER);
  3423 %}
  3425 // Integer Immediate: 11-bit
  3426 operand immI11() %{
  3427   predicate(Assembler::is_simm(n->get_int(),11));
  3428   match(ConI);
  3429   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 // Integer Immediate: 0-bit
  3435 operand immI0() %{
  3436   predicate(n->get_int() == 0);
  3437   match(ConI);
  3438   op_cost(0);
  3440   format %{ %}
  3441   interface(CONST_INTER);
  3442 %}
  3444 // Integer Immediate: the value 10
  3445 operand immI10() %{
  3446   predicate(n->get_int() == 10);
  3447   match(ConI);
  3448   op_cost(0);
  3450   format %{ %}
  3451   interface(CONST_INTER);
  3452 %}
  3454 // Integer Immediate: the values 0-31
  3455 operand immU5() %{
  3456   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3457   match(ConI);
  3458   op_cost(0);
  3460   format %{ %}
  3461   interface(CONST_INTER);
  3462 %}
  3464 // Integer Immediate: the values 1-31
  3465 operand immI_1_31() %{
  3466   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3467   match(ConI);
  3468   op_cost(0);
  3470   format %{ %}
  3471   interface(CONST_INTER);
  3472 %}
  3474 // Integer Immediate: the values 32-63
  3475 operand immI_32_63() %{
  3476   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3477   match(ConI);
  3478   op_cost(0);
  3480   format %{ %}
  3481   interface(CONST_INTER);
  3482 %}
  3484 // Immediates for special shifts (sign extend)
  3486 // Integer Immediate: the value 16
  3487 operand immI_16() %{
  3488   predicate(n->get_int() == 16);
  3489   match(ConI);
  3490   op_cost(0);
  3492   format %{ %}
  3493   interface(CONST_INTER);
  3494 %}
  3496 // Integer Immediate: the value 24
  3497 operand immI_24() %{
  3498   predicate(n->get_int() == 24);
  3499   match(ConI);
  3500   op_cost(0);
  3502   format %{ %}
  3503   interface(CONST_INTER);
  3504 %}
  3506 // Integer Immediate: the value 255
  3507 operand immI_255() %{
  3508   predicate( n->get_int() == 255 );
  3509   match(ConI);
  3510   op_cost(0);
  3512   format %{ %}
  3513   interface(CONST_INTER);
  3514 %}
  3516 // Integer Immediate: the value 65535
  3517 operand immI_65535() %{
  3518   predicate(n->get_int() == 65535);
  3519   match(ConI);
  3520   op_cost(0);
  3522   format %{ %}
  3523   interface(CONST_INTER);
  3524 %}
  3526 // Long Immediate: the value FF
  3527 operand immL_FF() %{
  3528   predicate( n->get_long() == 0xFFL );
  3529   match(ConL);
  3530   op_cost(0);
  3532   format %{ %}
  3533   interface(CONST_INTER);
  3534 %}
  3536 // Long Immediate: the value FFFF
  3537 operand immL_FFFF() %{
  3538   predicate( n->get_long() == 0xFFFFL );
  3539   match(ConL);
  3540   op_cost(0);
  3542   format %{ %}
  3543   interface(CONST_INTER);
  3544 %}
  3546 // Pointer Immediate: 32 or 64-bit
  3547 operand immP() %{
  3548   match(ConP);
  3550   op_cost(5);
  3551   // formats are generated automatically for constants and base registers
  3552   format %{ %}
  3553   interface(CONST_INTER);
  3554 %}
  3556 // Pointer Immediate: 32 or 64-bit
  3557 operand immP_set() %{
  3558   predicate(!VM_Version::is_niagara1_plus());
  3559   match(ConP);
  3561   op_cost(5);
  3562   // formats are generated automatically for constants and base registers
  3563   format %{ %}
  3564   interface(CONST_INTER);
  3565 %}
  3567 // Pointer Immediate: 32 or 64-bit
  3568 // From Niagara2 processors on a load should be better than materializing.
  3569 operand immP_load() %{
  3570   predicate(VM_Version::is_niagara1_plus());
  3571   match(ConP);
  3573   op_cost(5);
  3574   // formats are generated automatically for constants and base registers
  3575   format %{ %}
  3576   interface(CONST_INTER);
  3577 %}
  3579 operand immP13() %{
  3580   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3581   match(ConP);
  3582   op_cost(0);
  3584   format %{ %}
  3585   interface(CONST_INTER);
  3586 %}
  3588 operand immP0() %{
  3589   predicate(n->get_ptr() == 0);
  3590   match(ConP);
  3591   op_cost(0);
  3593   format %{ %}
  3594   interface(CONST_INTER);
  3595 %}
  3597 operand immP_poll() %{
  3598   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3599   match(ConP);
  3601   // formats are generated automatically for constants and base registers
  3602   format %{ %}
  3603   interface(CONST_INTER);
  3604 %}
  3606 // Pointer Immediate
  3607 operand immN()
  3608 %{
  3609   match(ConN);
  3611   op_cost(10);
  3612   format %{ %}
  3613   interface(CONST_INTER);
  3614 %}
  3616 // NULL Pointer Immediate
  3617 operand immN0()
  3618 %{
  3619   predicate(n->get_narrowcon() == 0);
  3620   match(ConN);
  3622   op_cost(0);
  3623   format %{ %}
  3624   interface(CONST_INTER);
  3625 %}
  3627 operand immL() %{
  3628   match(ConL);
  3629   op_cost(40);
  3630   // formats are generated automatically for constants and base registers
  3631   format %{ %}
  3632   interface(CONST_INTER);
  3633 %}
  3635 operand immL0() %{
  3636   predicate(n->get_long() == 0L);
  3637   match(ConL);
  3638   op_cost(0);
  3639   // formats are generated automatically for constants and base registers
  3640   format %{ %}
  3641   interface(CONST_INTER);
  3642 %}
  3644 // Long Immediate: 13-bit
  3645 operand immL13() %{
  3646   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3647   match(ConL);
  3648   op_cost(0);
  3650   format %{ %}
  3651   interface(CONST_INTER);
  3652 %}
  3654 // Long Immediate: 13-bit minus 7
  3655 operand immL13m7() %{
  3656   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3657   match(ConL);
  3658   op_cost(0);
  3660   format %{ %}
  3661   interface(CONST_INTER);
  3662 %}
  3664 // Long Immediate: low 32-bit mask
  3665 operand immL_32bits() %{
  3666   predicate(n->get_long() == 0xFFFFFFFFL);
  3667   match(ConL);
  3668   op_cost(0);
  3670   format %{ %}
  3671   interface(CONST_INTER);
  3672 %}
  3674 // Long Immediate: cheap (materialize in <= 3 instructions)
  3675 operand immL_cheap() %{
  3676   predicate(!VM_Version::is_niagara1_plus() || MacroAssembler::size_of_set64(n->get_long()) <= 3);
  3677   match(ConL);
  3678   op_cost(0);
  3680   format %{ %}
  3681   interface(CONST_INTER);
  3682 %}
  3684 // Long Immediate: expensive (materialize in > 3 instructions)
  3685 operand immL_expensive() %{
  3686   predicate(VM_Version::is_niagara1_plus() && MacroAssembler::size_of_set64(n->get_long()) > 3);
  3687   match(ConL);
  3688   op_cost(0);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 // Double Immediate
  3695 operand immD() %{
  3696   match(ConD);
  3698   op_cost(40);
  3699   format %{ %}
  3700   interface(CONST_INTER);
  3701 %}
  3703 operand immD0() %{
  3704 #ifdef _LP64
  3705   // on 64-bit architectures this comparision is faster
  3706   predicate(jlong_cast(n->getd()) == 0);
  3707 #else
  3708   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3709 #endif
  3710   match(ConD);
  3712   op_cost(0);
  3713   format %{ %}
  3714   interface(CONST_INTER);
  3715 %}
  3717 // Float Immediate
  3718 operand immF() %{
  3719   match(ConF);
  3721   op_cost(20);
  3722   format %{ %}
  3723   interface(CONST_INTER);
  3724 %}
  3726 // Float Immediate: 0
  3727 operand immF0() %{
  3728   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3729   match(ConF);
  3731   op_cost(0);
  3732   format %{ %}
  3733   interface(CONST_INTER);
  3734 %}
  3736 // Integer Register Operands
  3737 // Integer Register
  3738 operand iRegI() %{
  3739   constraint(ALLOC_IN_RC(int_reg));
  3740   match(RegI);
  3742   match(notemp_iRegI);
  3743   match(g1RegI);
  3744   match(o0RegI);
  3745   match(iRegIsafe);
  3747   format %{ %}
  3748   interface(REG_INTER);
  3749 %}
  3751 operand notemp_iRegI() %{
  3752   constraint(ALLOC_IN_RC(notemp_int_reg));
  3753   match(RegI);
  3755   match(o0RegI);
  3757   format %{ %}
  3758   interface(REG_INTER);
  3759 %}
  3761 operand o0RegI() %{
  3762   constraint(ALLOC_IN_RC(o0_regI));
  3763   match(iRegI);
  3765   format %{ %}
  3766   interface(REG_INTER);
  3767 %}
  3769 // Pointer Register
  3770 operand iRegP() %{
  3771   constraint(ALLOC_IN_RC(ptr_reg));
  3772   match(RegP);
  3774   match(lock_ptr_RegP);
  3775   match(g1RegP);
  3776   match(g2RegP);
  3777   match(g3RegP);
  3778   match(g4RegP);
  3779   match(i0RegP);
  3780   match(o0RegP);
  3781   match(o1RegP);
  3782   match(l7RegP);
  3784   format %{ %}
  3785   interface(REG_INTER);
  3786 %}
  3788 operand sp_ptr_RegP() %{
  3789   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3790   match(RegP);
  3791   match(iRegP);
  3793   format %{ %}
  3794   interface(REG_INTER);
  3795 %}
  3797 operand lock_ptr_RegP() %{
  3798   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3799   match(RegP);
  3800   match(i0RegP);
  3801   match(o0RegP);
  3802   match(o1RegP);
  3803   match(l7RegP);
  3805   format %{ %}
  3806   interface(REG_INTER);
  3807 %}
  3809 operand g1RegP() %{
  3810   constraint(ALLOC_IN_RC(g1_regP));
  3811   match(iRegP);
  3813   format %{ %}
  3814   interface(REG_INTER);
  3815 %}
  3817 operand g2RegP() %{
  3818   constraint(ALLOC_IN_RC(g2_regP));
  3819   match(iRegP);
  3821   format %{ %}
  3822   interface(REG_INTER);
  3823 %}
  3825 operand g3RegP() %{
  3826   constraint(ALLOC_IN_RC(g3_regP));
  3827   match(iRegP);
  3829   format %{ %}
  3830   interface(REG_INTER);
  3831 %}
  3833 operand g1RegI() %{
  3834   constraint(ALLOC_IN_RC(g1_regI));
  3835   match(iRegI);
  3837   format %{ %}
  3838   interface(REG_INTER);
  3839 %}
  3841 operand g3RegI() %{
  3842   constraint(ALLOC_IN_RC(g3_regI));
  3843   match(iRegI);
  3845   format %{ %}
  3846   interface(REG_INTER);
  3847 %}
  3849 operand g4RegI() %{
  3850   constraint(ALLOC_IN_RC(g4_regI));
  3851   match(iRegI);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand g4RegP() %{
  3858   constraint(ALLOC_IN_RC(g4_regP));
  3859   match(iRegP);
  3861   format %{ %}
  3862   interface(REG_INTER);
  3863 %}
  3865 operand i0RegP() %{
  3866   constraint(ALLOC_IN_RC(i0_regP));
  3867   match(iRegP);
  3869   format %{ %}
  3870   interface(REG_INTER);
  3871 %}
  3873 operand o0RegP() %{
  3874   constraint(ALLOC_IN_RC(o0_regP));
  3875   match(iRegP);
  3877   format %{ %}
  3878   interface(REG_INTER);
  3879 %}
  3881 operand o1RegP() %{
  3882   constraint(ALLOC_IN_RC(o1_regP));
  3883   match(iRegP);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 operand o2RegP() %{
  3890   constraint(ALLOC_IN_RC(o2_regP));
  3891   match(iRegP);
  3893   format %{ %}
  3894   interface(REG_INTER);
  3895 %}
  3897 operand o7RegP() %{
  3898   constraint(ALLOC_IN_RC(o7_regP));
  3899   match(iRegP);
  3901   format %{ %}
  3902   interface(REG_INTER);
  3903 %}
  3905 operand l7RegP() %{
  3906   constraint(ALLOC_IN_RC(l7_regP));
  3907   match(iRegP);
  3909   format %{ %}
  3910   interface(REG_INTER);
  3911 %}
  3913 operand o7RegI() %{
  3914   constraint(ALLOC_IN_RC(o7_regI));
  3915   match(iRegI);
  3917   format %{ %}
  3918   interface(REG_INTER);
  3919 %}
  3921 operand iRegN() %{
  3922   constraint(ALLOC_IN_RC(int_reg));
  3923   match(RegN);
  3925   format %{ %}
  3926   interface(REG_INTER);
  3927 %}
  3929 // Long Register
  3930 operand iRegL() %{
  3931   constraint(ALLOC_IN_RC(long_reg));
  3932   match(RegL);
  3934   format %{ %}
  3935   interface(REG_INTER);
  3936 %}
  3938 operand o2RegL() %{
  3939   constraint(ALLOC_IN_RC(o2_regL));
  3940   match(iRegL);
  3942   format %{ %}
  3943   interface(REG_INTER);
  3944 %}
  3946 operand o7RegL() %{
  3947   constraint(ALLOC_IN_RC(o7_regL));
  3948   match(iRegL);
  3950   format %{ %}
  3951   interface(REG_INTER);
  3952 %}
  3954 operand g1RegL() %{
  3955   constraint(ALLOC_IN_RC(g1_regL));
  3956   match(iRegL);
  3958   format %{ %}
  3959   interface(REG_INTER);
  3960 %}
  3962 operand g3RegL() %{
  3963   constraint(ALLOC_IN_RC(g3_regL));
  3964   match(iRegL);
  3966   format %{ %}
  3967   interface(REG_INTER);
  3968 %}
  3970 // Int Register safe
  3971 // This is 64bit safe
  3972 operand iRegIsafe() %{
  3973   constraint(ALLOC_IN_RC(long_reg));
  3975   match(iRegI);
  3977   format %{ %}
  3978   interface(REG_INTER);
  3979 %}
  3981 // Condition Code Flag Register
  3982 operand flagsReg() %{
  3983   constraint(ALLOC_IN_RC(int_flags));
  3984   match(RegFlags);
  3986   format %{ "ccr" %} // both ICC and XCC
  3987   interface(REG_INTER);
  3988 %}
  3990 // Condition Code Register, unsigned comparisons.
  3991 operand flagsRegU() %{
  3992   constraint(ALLOC_IN_RC(int_flags));
  3993   match(RegFlags);
  3995   format %{ "icc_U" %}
  3996   interface(REG_INTER);
  3997 %}
  3999 // Condition Code Register, pointer comparisons.
  4000 operand flagsRegP() %{
  4001   constraint(ALLOC_IN_RC(int_flags));
  4002   match(RegFlags);
  4004 #ifdef _LP64
  4005   format %{ "xcc_P" %}
  4006 #else
  4007   format %{ "icc_P" %}
  4008 #endif
  4009   interface(REG_INTER);
  4010 %}
  4012 // Condition Code Register, long comparisons.
  4013 operand flagsRegL() %{
  4014   constraint(ALLOC_IN_RC(int_flags));
  4015   match(RegFlags);
  4017   format %{ "xcc_L" %}
  4018   interface(REG_INTER);
  4019 %}
  4021 // Condition Code Register, floating comparisons, unordered same as "less".
  4022 operand flagsRegF() %{
  4023   constraint(ALLOC_IN_RC(float_flags));
  4024   match(RegFlags);
  4025   match(flagsRegF0);
  4027   format %{ %}
  4028   interface(REG_INTER);
  4029 %}
  4031 operand flagsRegF0() %{
  4032   constraint(ALLOC_IN_RC(float_flag0));
  4033   match(RegFlags);
  4035   format %{ %}
  4036   interface(REG_INTER);
  4037 %}
  4040 // Condition Code Flag Register used by long compare
  4041 operand flagsReg_long_LTGE() %{
  4042   constraint(ALLOC_IN_RC(int_flags));
  4043   match(RegFlags);
  4044   format %{ "icc_LTGE" %}
  4045   interface(REG_INTER);
  4046 %}
  4047 operand flagsReg_long_EQNE() %{
  4048   constraint(ALLOC_IN_RC(int_flags));
  4049   match(RegFlags);
  4050   format %{ "icc_EQNE" %}
  4051   interface(REG_INTER);
  4052 %}
  4053 operand flagsReg_long_LEGT() %{
  4054   constraint(ALLOC_IN_RC(int_flags));
  4055   match(RegFlags);
  4056   format %{ "icc_LEGT" %}
  4057   interface(REG_INTER);
  4058 %}
  4061 operand regD() %{
  4062   constraint(ALLOC_IN_RC(dflt_reg));
  4063   match(RegD);
  4065   match(regD_low);
  4067   format %{ %}
  4068   interface(REG_INTER);
  4069 %}
  4071 operand regF() %{
  4072   constraint(ALLOC_IN_RC(sflt_reg));
  4073   match(RegF);
  4075   format %{ %}
  4076   interface(REG_INTER);
  4077 %}
  4079 operand regD_low() %{
  4080   constraint(ALLOC_IN_RC(dflt_low_reg));
  4081   match(regD);
  4083   format %{ %}
  4084   interface(REG_INTER);
  4085 %}
  4087 // Special Registers
  4089 // Method Register
  4090 operand inline_cache_regP(iRegP reg) %{
  4091   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4092   match(reg);
  4093   format %{ %}
  4094   interface(REG_INTER);
  4095 %}
  4097 operand interpreter_method_oop_regP(iRegP reg) %{
  4098   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4099   match(reg);
  4100   format %{ %}
  4101   interface(REG_INTER);
  4102 %}
  4105 //----------Complex Operands---------------------------------------------------
  4106 // Indirect Memory Reference
  4107 operand indirect(sp_ptr_RegP reg) %{
  4108   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4109   match(reg);
  4111   op_cost(100);
  4112   format %{ "[$reg]" %}
  4113   interface(MEMORY_INTER) %{
  4114     base($reg);
  4115     index(0x0);
  4116     scale(0x0);
  4117     disp(0x0);
  4118   %}
  4119 %}
  4121 // Indirect with simm13 Offset
  4122 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4123   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4124   match(AddP reg offset);
  4126   op_cost(100);
  4127   format %{ "[$reg + $offset]" %}
  4128   interface(MEMORY_INTER) %{
  4129     base($reg);
  4130     index(0x0);
  4131     scale(0x0);
  4132     disp($offset);
  4133   %}
  4134 %}
  4136 // Indirect with simm13 Offset minus 7
  4137 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4138   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4139   match(AddP reg offset);
  4141   op_cost(100);
  4142   format %{ "[$reg + $offset]" %}
  4143   interface(MEMORY_INTER) %{
  4144     base($reg);
  4145     index(0x0);
  4146     scale(0x0);
  4147     disp($offset);
  4148   %}
  4149 %}
  4151 // Note:  Intel has a swapped version also, like this:
  4152 //operand indOffsetX(iRegI reg, immP offset) %{
  4153 //  constraint(ALLOC_IN_RC(int_reg));
  4154 //  match(AddP offset reg);
  4155 //
  4156 //  op_cost(100);
  4157 //  format %{ "[$reg + $offset]" %}
  4158 //  interface(MEMORY_INTER) %{
  4159 //    base($reg);
  4160 //    index(0x0);
  4161 //    scale(0x0);
  4162 //    disp($offset);
  4163 //  %}
  4164 //%}
  4165 //// However, it doesn't make sense for SPARC, since
  4166 // we have no particularly good way to embed oops in
  4167 // single instructions.
  4169 // Indirect with Register Index
  4170 operand indIndex(iRegP addr, iRegX index) %{
  4171   constraint(ALLOC_IN_RC(ptr_reg));
  4172   match(AddP addr index);
  4174   op_cost(100);
  4175   format %{ "[$addr + $index]" %}
  4176   interface(MEMORY_INTER) %{
  4177     base($addr);
  4178     index($index);
  4179     scale(0x0);
  4180     disp(0x0);
  4181   %}
  4182 %}
  4184 //----------Special Memory Operands--------------------------------------------
  4185 // Stack Slot Operand - This operand is used for loading and storing temporary
  4186 //                      values on the stack where a match requires a value to
  4187 //                      flow through memory.
  4188 operand stackSlotI(sRegI reg) %{
  4189   constraint(ALLOC_IN_RC(stack_slots));
  4190   op_cost(100);
  4191   //match(RegI);
  4192   format %{ "[$reg]" %}
  4193   interface(MEMORY_INTER) %{
  4194     base(0xE);   // R_SP
  4195     index(0x0);
  4196     scale(0x0);
  4197     disp($reg);  // Stack Offset
  4198   %}
  4199 %}
  4201 operand stackSlotP(sRegP reg) %{
  4202   constraint(ALLOC_IN_RC(stack_slots));
  4203   op_cost(100);
  4204   //match(RegP);
  4205   format %{ "[$reg]" %}
  4206   interface(MEMORY_INTER) %{
  4207     base(0xE);   // R_SP
  4208     index(0x0);
  4209     scale(0x0);
  4210     disp($reg);  // Stack Offset
  4211   %}
  4212 %}
  4214 operand stackSlotF(sRegF reg) %{
  4215   constraint(ALLOC_IN_RC(stack_slots));
  4216   op_cost(100);
  4217   //match(RegF);
  4218   format %{ "[$reg]" %}
  4219   interface(MEMORY_INTER) %{
  4220     base(0xE);   // R_SP
  4221     index(0x0);
  4222     scale(0x0);
  4223     disp($reg);  // Stack Offset
  4224   %}
  4225 %}
  4226 operand stackSlotD(sRegD reg) %{
  4227   constraint(ALLOC_IN_RC(stack_slots));
  4228   op_cost(100);
  4229   //match(RegD);
  4230   format %{ "[$reg]" %}
  4231   interface(MEMORY_INTER) %{
  4232     base(0xE);   // R_SP
  4233     index(0x0);
  4234     scale(0x0);
  4235     disp($reg);  // Stack Offset
  4236   %}
  4237 %}
  4238 operand stackSlotL(sRegL reg) %{
  4239   constraint(ALLOC_IN_RC(stack_slots));
  4240   op_cost(100);
  4241   //match(RegL);
  4242   format %{ "[$reg]" %}
  4243   interface(MEMORY_INTER) %{
  4244     base(0xE);   // R_SP
  4245     index(0x0);
  4246     scale(0x0);
  4247     disp($reg);  // Stack Offset
  4248   %}
  4249 %}
  4251 // Operands for expressing Control Flow
  4252 // NOTE:  Label is a predefined operand which should not be redefined in
  4253 //        the AD file.  It is generically handled within the ADLC.
  4255 //----------Conditional Branch Operands----------------------------------------
  4256 // Comparison Op  - This is the operation of the comparison, and is limited to
  4257 //                  the following set of codes:
  4258 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4259 //
  4260 // Other attributes of the comparison, such as unsignedness, are specified
  4261 // by the comparison instruction that sets a condition code flags register.
  4262 // That result is represented by a flags operand whose subtype is appropriate
  4263 // to the unsignedness (etc.) of the comparison.
  4264 //
  4265 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4266 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4267 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4269 operand cmpOp() %{
  4270   match(Bool);
  4272   format %{ "" %}
  4273   interface(COND_INTER) %{
  4274     equal(0x1);
  4275     not_equal(0x9);
  4276     less(0x3);
  4277     greater_equal(0xB);
  4278     less_equal(0x2);
  4279     greater(0xA);
  4280   %}
  4281 %}
  4283 // Comparison Op, unsigned
  4284 operand cmpOpU() %{
  4285   match(Bool);
  4287   format %{ "u" %}
  4288   interface(COND_INTER) %{
  4289     equal(0x1);
  4290     not_equal(0x9);
  4291     less(0x5);
  4292     greater_equal(0xD);
  4293     less_equal(0x4);
  4294     greater(0xC);
  4295   %}
  4296 %}
  4298 // Comparison Op, pointer (same as unsigned)
  4299 operand cmpOpP() %{
  4300   match(Bool);
  4302   format %{ "p" %}
  4303   interface(COND_INTER) %{
  4304     equal(0x1);
  4305     not_equal(0x9);
  4306     less(0x5);
  4307     greater_equal(0xD);
  4308     less_equal(0x4);
  4309     greater(0xC);
  4310   %}
  4311 %}
  4313 // Comparison Op, branch-register encoding
  4314 operand cmpOp_reg() %{
  4315   match(Bool);
  4317   format %{ "" %}
  4318   interface(COND_INTER) %{
  4319     equal        (0x1);
  4320     not_equal    (0x5);
  4321     less         (0x3);
  4322     greater_equal(0x7);
  4323     less_equal   (0x2);
  4324     greater      (0x6);
  4325   %}
  4326 %}
  4328 // Comparison Code, floating, unordered same as less
  4329 operand cmpOpF() %{
  4330   match(Bool);
  4332   format %{ "fl" %}
  4333   interface(COND_INTER) %{
  4334     equal(0x9);
  4335     not_equal(0x1);
  4336     less(0x3);
  4337     greater_equal(0xB);
  4338     less_equal(0xE);
  4339     greater(0x6);
  4340   %}
  4341 %}
  4343 // Used by long compare
  4344 operand cmpOp_commute() %{
  4345   match(Bool);
  4347   format %{ "" %}
  4348   interface(COND_INTER) %{
  4349     equal(0x1);
  4350     not_equal(0x9);
  4351     less(0xA);
  4352     greater_equal(0x2);
  4353     less_equal(0xB);
  4354     greater(0x3);
  4355   %}
  4356 %}
  4358 //----------OPERAND CLASSES----------------------------------------------------
  4359 // Operand Classes are groups of operands that are used to simplify
  4360 // instruction definitions by not requiring the AD writer to specify separate
  4361 // instructions for every form of operand when the instruction accepts
  4362 // multiple operand types with the same basic encoding and format.  The classic
  4363 // case of this is memory operands.
  4364 opclass memory( indirect, indOffset13, indIndex );
  4365 opclass indIndexMemory( indIndex );
  4367 //----------PIPELINE-----------------------------------------------------------
  4368 pipeline %{
  4370 //----------ATTRIBUTES---------------------------------------------------------
  4371 attributes %{
  4372   fixed_size_instructions;           // Fixed size instructions
  4373   branch_has_delay_slot;             // Branch has delay slot following
  4374   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4375   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4376   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4377   instruction_fetch_units = 1;       // of 16 bytes
  4379   // List of nop instructions
  4380   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4381 %}
  4383 //----------RESOURCES----------------------------------------------------------
  4384 // Resources are the functional units available to the machine
  4385 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4387 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4388 // Pipeline Description specifies the stages in the machine's pipeline
  4390 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4392 //----------PIPELINE CLASSES---------------------------------------------------
  4393 // Pipeline Classes describe the stages in which input and output are
  4394 // referenced by the hardware pipeline.
  4396 // Integer ALU reg-reg operation
  4397 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4398     single_instruction;
  4399     dst   : E(write);
  4400     src1  : R(read);
  4401     src2  : R(read);
  4402     IALU  : R;
  4403 %}
  4405 // Integer ALU reg-reg long operation
  4406 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4407     instruction_count(2);
  4408     dst   : E(write);
  4409     src1  : R(read);
  4410     src2  : R(read);
  4411     IALU  : R;
  4412     IALU  : R;
  4413 %}
  4415 // Integer ALU reg-reg long dependent operation
  4416 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4417     instruction_count(1); multiple_bundles;
  4418     dst   : E(write);
  4419     src1  : R(read);
  4420     src2  : R(read);
  4421     cr    : E(write);
  4422     IALU  : R(2);
  4423 %}
  4425 // Integer ALU reg-imm operaion
  4426 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4427     single_instruction;
  4428     dst   : E(write);
  4429     src1  : R(read);
  4430     IALU  : R;
  4431 %}
  4433 // Integer ALU reg-reg operation with condition code
  4434 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4435     single_instruction;
  4436     dst   : E(write);
  4437     cr    : E(write);
  4438     src1  : R(read);
  4439     src2  : R(read);
  4440     IALU  : R;
  4441 %}
  4443 // Integer ALU reg-imm operation with condition code
  4444 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4445     single_instruction;
  4446     dst   : E(write);
  4447     cr    : E(write);
  4448     src1  : R(read);
  4449     IALU  : R;
  4450 %}
  4452 // Integer ALU zero-reg operation
  4453 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4454     single_instruction;
  4455     dst   : E(write);
  4456     src2  : R(read);
  4457     IALU  : R;
  4458 %}
  4460 // Integer ALU zero-reg operation with condition code only
  4461 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4462     single_instruction;
  4463     cr    : E(write);
  4464     src   : R(read);
  4465     IALU  : R;
  4466 %}
  4468 // Integer ALU reg-reg operation with condition code only
  4469 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4470     single_instruction;
  4471     cr    : E(write);
  4472     src1  : R(read);
  4473     src2  : R(read);
  4474     IALU  : R;
  4475 %}
  4477 // Integer ALU reg-imm operation with condition code only
  4478 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4479     single_instruction;
  4480     cr    : E(write);
  4481     src1  : R(read);
  4482     IALU  : R;
  4483 %}
  4485 // Integer ALU reg-reg-zero operation with condition code only
  4486 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4487     single_instruction;
  4488     cr    : E(write);
  4489     src1  : R(read);
  4490     src2  : R(read);
  4491     IALU  : R;
  4492 %}
  4494 // Integer ALU reg-imm-zero operation with condition code only
  4495 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4496     single_instruction;
  4497     cr    : E(write);
  4498     src1  : R(read);
  4499     IALU  : R;
  4500 %}
  4502 // Integer ALU reg-reg operation with condition code, src1 modified
  4503 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4504     single_instruction;
  4505     cr    : E(write);
  4506     src1  : E(write);
  4507     src1  : R(read);
  4508     src2  : R(read);
  4509     IALU  : R;
  4510 %}
  4512 // Integer ALU reg-imm operation with condition code, src1 modified
  4513 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4514     single_instruction;
  4515     cr    : E(write);
  4516     src1  : E(write);
  4517     src1  : R(read);
  4518     IALU  : R;
  4519 %}
  4521 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4522     multiple_bundles;
  4523     dst   : E(write)+4;
  4524     cr    : E(write);
  4525     src1  : R(read);
  4526     src2  : R(read);
  4527     IALU  : R(3);
  4528     BR    : R(2);
  4529 %}
  4531 // Integer ALU operation
  4532 pipe_class ialu_none(iRegI dst) %{
  4533     single_instruction;
  4534     dst   : E(write);
  4535     IALU  : R;
  4536 %}
  4538 // Integer ALU reg operation
  4539 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4540     single_instruction; may_have_no_code;
  4541     dst   : E(write);
  4542     src   : R(read);
  4543     IALU  : R;
  4544 %}
  4546 // Integer ALU reg conditional operation
  4547 // This instruction has a 1 cycle stall, and cannot execute
  4548 // in the same cycle as the instruction setting the condition
  4549 // code. We kludge this by pretending to read the condition code
  4550 // 1 cycle earlier, and by marking the functional units as busy
  4551 // for 2 cycles with the result available 1 cycle later than
  4552 // is really the case.
  4553 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4554     single_instruction;
  4555     op2_out : C(write);
  4556     op1     : R(read);
  4557     cr      : R(read);       // This is really E, with a 1 cycle stall
  4558     BR      : R(2);
  4559     MS      : R(2);
  4560 %}
  4562 #ifdef _LP64
  4563 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4564     instruction_count(1); multiple_bundles;
  4565     dst     : C(write)+1;
  4566     src     : R(read)+1;
  4567     IALU    : R(1);
  4568     BR      : E(2);
  4569     MS      : E(2);
  4570 %}
  4571 #endif
  4573 // Integer ALU reg operation
  4574 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4575     single_instruction; may_have_no_code;
  4576     dst   : E(write);
  4577     src   : R(read);
  4578     IALU  : R;
  4579 %}
  4580 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4581     single_instruction; may_have_no_code;
  4582     dst   : E(write);
  4583     src   : R(read);
  4584     IALU  : R;
  4585 %}
  4587 // Two integer ALU reg operations
  4588 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4589     instruction_count(2);
  4590     dst   : E(write);
  4591     src   : R(read);
  4592     A0    : R;
  4593     A1    : R;
  4594 %}
  4596 // Two integer ALU reg operations
  4597 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4598     instruction_count(2); may_have_no_code;
  4599     dst   : E(write);
  4600     src   : R(read);
  4601     A0    : R;
  4602     A1    : R;
  4603 %}
  4605 // Integer ALU imm operation
  4606 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4607     single_instruction;
  4608     dst   : E(write);
  4609     IALU  : R;
  4610 %}
  4612 // Integer ALU reg-reg with carry operation
  4613 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4614     single_instruction;
  4615     dst   : E(write);
  4616     src1  : R(read);
  4617     src2  : R(read);
  4618     IALU  : R;
  4619 %}
  4621 // Integer ALU cc operation
  4622 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4623     single_instruction;
  4624     dst   : E(write);
  4625     cc    : R(read);
  4626     IALU  : R;
  4627 %}
  4629 // Integer ALU cc / second IALU operation
  4630 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4631     instruction_count(1); multiple_bundles;
  4632     dst   : E(write)+1;
  4633     src   : R(read);
  4634     IALU  : R;
  4635 %}
  4637 // Integer ALU cc / second IALU operation
  4638 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4639     instruction_count(1); multiple_bundles;
  4640     dst   : E(write)+1;
  4641     p     : R(read);
  4642     q     : R(read);
  4643     IALU  : R;
  4644 %}
  4646 // Integer ALU hi-lo-reg operation
  4647 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4648     instruction_count(1); multiple_bundles;
  4649     dst   : E(write)+1;
  4650     IALU  : R(2);
  4651 %}
  4653 // Float ALU hi-lo-reg operation (with temp)
  4654 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4655     instruction_count(1); multiple_bundles;
  4656     dst   : E(write)+1;
  4657     IALU  : R(2);
  4658 %}
  4660 // Long Constant
  4661 pipe_class loadConL( iRegL dst, immL src ) %{
  4662     instruction_count(2); multiple_bundles;
  4663     dst   : E(write)+1;
  4664     IALU  : R(2);
  4665     IALU  : R(2);
  4666 %}
  4668 // Pointer Constant
  4669 pipe_class loadConP( iRegP dst, immP src ) %{
  4670     instruction_count(0); multiple_bundles;
  4671     fixed_latency(6);
  4672 %}
  4674 // Polling Address
  4675 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4676 #ifdef _LP64
  4677     instruction_count(0); multiple_bundles;
  4678     fixed_latency(6);
  4679 #else
  4680     dst   : E(write);
  4681     IALU  : R;
  4682 #endif
  4683 %}
  4685 // Long Constant small
  4686 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4687     instruction_count(2);
  4688     dst   : E(write);
  4689     IALU  : R;
  4690     IALU  : R;
  4691 %}
  4693 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4694 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4695     instruction_count(1); multiple_bundles;
  4696     src   : R(read);
  4697     dst   : M(write)+1;
  4698     IALU  : R;
  4699     MS    : E;
  4700 %}
  4702 // Integer ALU nop operation
  4703 pipe_class ialu_nop() %{
  4704     single_instruction;
  4705     IALU  : R;
  4706 %}
  4708 // Integer ALU nop operation
  4709 pipe_class ialu_nop_A0() %{
  4710     single_instruction;
  4711     A0    : R;
  4712 %}
  4714 // Integer ALU nop operation
  4715 pipe_class ialu_nop_A1() %{
  4716     single_instruction;
  4717     A1    : R;
  4718 %}
  4720 // Integer Multiply reg-reg operation
  4721 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4722     single_instruction;
  4723     dst   : E(write);
  4724     src1  : R(read);
  4725     src2  : R(read);
  4726     MS    : R(5);
  4727 %}
  4729 // Integer Multiply reg-imm operation
  4730 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4731     single_instruction;
  4732     dst   : E(write);
  4733     src1  : R(read);
  4734     MS    : R(5);
  4735 %}
  4737 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4738     single_instruction;
  4739     dst   : E(write)+4;
  4740     src1  : R(read);
  4741     src2  : R(read);
  4742     MS    : R(6);
  4743 %}
  4745 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4746     single_instruction;
  4747     dst   : E(write)+4;
  4748     src1  : R(read);
  4749     MS    : R(6);
  4750 %}
  4752 // Integer Divide reg-reg
  4753 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4754     instruction_count(1); multiple_bundles;
  4755     dst   : E(write);
  4756     temp  : E(write);
  4757     src1  : R(read);
  4758     src2  : R(read);
  4759     temp  : R(read);
  4760     MS    : R(38);
  4761 %}
  4763 // Integer Divide reg-imm
  4764 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4765     instruction_count(1); multiple_bundles;
  4766     dst   : E(write);
  4767     temp  : E(write);
  4768     src1  : R(read);
  4769     temp  : R(read);
  4770     MS    : R(38);
  4771 %}
  4773 // Long Divide
  4774 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4775     dst  : E(write)+71;
  4776     src1 : R(read);
  4777     src2 : R(read)+1;
  4778     MS   : R(70);
  4779 %}
  4781 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4782     dst  : E(write)+71;
  4783     src1 : R(read);
  4784     MS   : R(70);
  4785 %}
  4787 // Floating Point Add Float
  4788 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4789     single_instruction;
  4790     dst   : X(write);
  4791     src1  : E(read);
  4792     src2  : E(read);
  4793     FA    : R;
  4794 %}
  4796 // Floating Point Add Double
  4797 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4798     single_instruction;
  4799     dst   : X(write);
  4800     src1  : E(read);
  4801     src2  : E(read);
  4802     FA    : R;
  4803 %}
  4805 // Floating Point Conditional Move based on integer flags
  4806 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4807     single_instruction;
  4808     dst   : X(write);
  4809     src   : E(read);
  4810     cr    : R(read);
  4811     FA    : R(2);
  4812     BR    : R(2);
  4813 %}
  4815 // Floating Point Conditional Move based on integer flags
  4816 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4817     single_instruction;
  4818     dst   : X(write);
  4819     src   : E(read);
  4820     cr    : R(read);
  4821     FA    : R(2);
  4822     BR    : R(2);
  4823 %}
  4825 // Floating Point Multiply Float
  4826 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4827     single_instruction;
  4828     dst   : X(write);
  4829     src1  : E(read);
  4830     src2  : E(read);
  4831     FM    : R;
  4832 %}
  4834 // Floating Point Multiply Double
  4835 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4836     single_instruction;
  4837     dst   : X(write);
  4838     src1  : E(read);
  4839     src2  : E(read);
  4840     FM    : R;
  4841 %}
  4843 // Floating Point Divide Float
  4844 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4845     single_instruction;
  4846     dst   : X(write);
  4847     src1  : E(read);
  4848     src2  : E(read);
  4849     FM    : R;
  4850     FDIV  : C(14);
  4851 %}
  4853 // Floating Point Divide Double
  4854 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4855     single_instruction;
  4856     dst   : X(write);
  4857     src1  : E(read);
  4858     src2  : E(read);
  4859     FM    : R;
  4860     FDIV  : C(17);
  4861 %}
  4863 // Floating Point Move/Negate/Abs Float
  4864 pipe_class faddF_reg(regF dst, regF src) %{
  4865     single_instruction;
  4866     dst   : W(write);
  4867     src   : E(read);
  4868     FA    : R(1);
  4869 %}
  4871 // Floating Point Move/Negate/Abs Double
  4872 pipe_class faddD_reg(regD dst, regD src) %{
  4873     single_instruction;
  4874     dst   : W(write);
  4875     src   : E(read);
  4876     FA    : R;
  4877 %}
  4879 // Floating Point Convert F->D
  4880 pipe_class fcvtF2D(regD dst, regF src) %{
  4881     single_instruction;
  4882     dst   : X(write);
  4883     src   : E(read);
  4884     FA    : R;
  4885 %}
  4887 // Floating Point Convert I->D
  4888 pipe_class fcvtI2D(regD dst, regF src) %{
  4889     single_instruction;
  4890     dst   : X(write);
  4891     src   : E(read);
  4892     FA    : R;
  4893 %}
  4895 // Floating Point Convert LHi->D
  4896 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4897     single_instruction;
  4898     dst   : X(write);
  4899     src   : E(read);
  4900     FA    : R;
  4901 %}
  4903 // Floating Point Convert L->D
  4904 pipe_class fcvtL2D(regD dst, regF src) %{
  4905     single_instruction;
  4906     dst   : X(write);
  4907     src   : E(read);
  4908     FA    : R;
  4909 %}
  4911 // Floating Point Convert L->F
  4912 pipe_class fcvtL2F(regD dst, regF src) %{
  4913     single_instruction;
  4914     dst   : X(write);
  4915     src   : E(read);
  4916     FA    : R;
  4917 %}
  4919 // Floating Point Convert D->F
  4920 pipe_class fcvtD2F(regD dst, regF src) %{
  4921     single_instruction;
  4922     dst   : X(write);
  4923     src   : E(read);
  4924     FA    : R;
  4925 %}
  4927 // Floating Point Convert I->L
  4928 pipe_class fcvtI2L(regD dst, regF src) %{
  4929     single_instruction;
  4930     dst   : X(write);
  4931     src   : E(read);
  4932     FA    : R;
  4933 %}
  4935 // Floating Point Convert D->F
  4936 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4937     instruction_count(1); multiple_bundles;
  4938     dst   : X(write)+6;
  4939     src   : E(read);
  4940     FA    : R;
  4941 %}
  4943 // Floating Point Convert D->L
  4944 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4945     instruction_count(1); multiple_bundles;
  4946     dst   : X(write)+6;
  4947     src   : E(read);
  4948     FA    : R;
  4949 %}
  4951 // Floating Point Convert F->I
  4952 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4953     instruction_count(1); multiple_bundles;
  4954     dst   : X(write)+6;
  4955     src   : E(read);
  4956     FA    : R;
  4957 %}
  4959 // Floating Point Convert F->L
  4960 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4961     instruction_count(1); multiple_bundles;
  4962     dst   : X(write)+6;
  4963     src   : E(read);
  4964     FA    : R;
  4965 %}
  4967 // Floating Point Convert I->F
  4968 pipe_class fcvtI2F(regF dst, regF src) %{
  4969     single_instruction;
  4970     dst   : X(write);
  4971     src   : E(read);
  4972     FA    : R;
  4973 %}
  4975 // Floating Point Compare
  4976 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4977     single_instruction;
  4978     cr    : X(write);
  4979     src1  : E(read);
  4980     src2  : E(read);
  4981     FA    : R;
  4982 %}
  4984 // Floating Point Compare
  4985 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4986     single_instruction;
  4987     cr    : X(write);
  4988     src1  : E(read);
  4989     src2  : E(read);
  4990     FA    : R;
  4991 %}
  4993 // Floating Add Nop
  4994 pipe_class fadd_nop() %{
  4995     single_instruction;
  4996     FA  : R;
  4997 %}
  4999 // Integer Store to Memory
  5000 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5001     single_instruction;
  5002     mem   : R(read);
  5003     src   : C(read);
  5004     MS    : R;
  5005 %}
  5007 // Integer Store to Memory
  5008 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5009     single_instruction;
  5010     mem   : R(read);
  5011     src   : C(read);
  5012     MS    : R;
  5013 %}
  5015 // Integer Store Zero to Memory
  5016 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5017     single_instruction;
  5018     mem   : R(read);
  5019     MS    : R;
  5020 %}
  5022 // Special Stack Slot Store
  5023 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5024     single_instruction;
  5025     stkSlot : R(read);
  5026     src     : C(read);
  5027     MS      : R;
  5028 %}
  5030 // Special Stack Slot Store
  5031 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5032     instruction_count(2); multiple_bundles;
  5033     stkSlot : R(read);
  5034     src     : C(read);
  5035     MS      : R(2);
  5036 %}
  5038 // Float Store
  5039 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5040     single_instruction;
  5041     mem : R(read);
  5042     src : C(read);
  5043     MS  : R;
  5044 %}
  5046 // Float Store
  5047 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5048     single_instruction;
  5049     mem : R(read);
  5050     MS  : R;
  5051 %}
  5053 // Double Store
  5054 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5055     instruction_count(1);
  5056     mem : R(read);
  5057     src : C(read);
  5058     MS  : R;
  5059 %}
  5061 // Double Store
  5062 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5063     single_instruction;
  5064     mem : R(read);
  5065     MS  : R;
  5066 %}
  5068 // Special Stack Slot Float Store
  5069 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5070     single_instruction;
  5071     stkSlot : R(read);
  5072     src     : C(read);
  5073     MS      : R;
  5074 %}
  5076 // Special Stack Slot Double Store
  5077 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5078     single_instruction;
  5079     stkSlot : R(read);
  5080     src     : C(read);
  5081     MS      : R;
  5082 %}
  5084 // Integer Load (when sign bit propagation not needed)
  5085 pipe_class iload_mem(iRegI dst, memory mem) %{
  5086     single_instruction;
  5087     mem : R(read);
  5088     dst : C(write);
  5089     MS  : R;
  5090 %}
  5092 // Integer Load from stack operand
  5093 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5094     single_instruction;
  5095     mem : R(read);
  5096     dst : C(write);
  5097     MS  : R;
  5098 %}
  5100 // Integer Load (when sign bit propagation or masking is needed)
  5101 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5102     single_instruction;
  5103     mem : R(read);
  5104     dst : M(write);
  5105     MS  : R;
  5106 %}
  5108 // Float Load
  5109 pipe_class floadF_mem(regF dst, memory mem) %{
  5110     single_instruction;
  5111     mem : R(read);
  5112     dst : M(write);
  5113     MS  : R;
  5114 %}
  5116 // Float Load
  5117 pipe_class floadD_mem(regD dst, memory mem) %{
  5118     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5119     mem : R(read);
  5120     dst : M(write);
  5121     MS  : R;
  5122 %}
  5124 // Float Load
  5125 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5126     single_instruction;
  5127     stkSlot : R(read);
  5128     dst : M(write);
  5129     MS  : R;
  5130 %}
  5132 // Float Load
  5133 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5134     single_instruction;
  5135     stkSlot : R(read);
  5136     dst : M(write);
  5137     MS  : R;
  5138 %}
  5140 // Memory Nop
  5141 pipe_class mem_nop() %{
  5142     single_instruction;
  5143     MS  : R;
  5144 %}
  5146 pipe_class sethi(iRegP dst, immI src) %{
  5147     single_instruction;
  5148     dst  : E(write);
  5149     IALU : R;
  5150 %}
  5152 pipe_class loadPollP(iRegP poll) %{
  5153     single_instruction;
  5154     poll : R(read);
  5155     MS   : R;
  5156 %}
  5158 pipe_class br(Universe br, label labl) %{
  5159     single_instruction_with_delay_slot;
  5160     BR  : R;
  5161 %}
  5163 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5164     single_instruction_with_delay_slot;
  5165     cr    : E(read);
  5166     BR    : R;
  5167 %}
  5169 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5170     single_instruction_with_delay_slot;
  5171     op1 : E(read);
  5172     BR  : R;
  5173     MS  : R;
  5174 %}
  5176 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5177     single_instruction_with_delay_slot;
  5178     cr    : E(read);
  5179     BR    : R;
  5180 %}
  5182 pipe_class br_nop() %{
  5183     single_instruction;
  5184     BR  : R;
  5185 %}
  5187 pipe_class simple_call(method meth) %{
  5188     instruction_count(2); multiple_bundles; force_serialization;
  5189     fixed_latency(100);
  5190     BR  : R(1);
  5191     MS  : R(1);
  5192     A0  : R(1);
  5193 %}
  5195 pipe_class compiled_call(method meth) %{
  5196     instruction_count(1); multiple_bundles; force_serialization;
  5197     fixed_latency(100);
  5198     MS  : R(1);
  5199 %}
  5201 pipe_class call(method meth) %{
  5202     instruction_count(0); multiple_bundles; force_serialization;
  5203     fixed_latency(100);
  5204 %}
  5206 pipe_class tail_call(Universe ignore, label labl) %{
  5207     single_instruction; has_delay_slot;
  5208     fixed_latency(100);
  5209     BR  : R(1);
  5210     MS  : R(1);
  5211 %}
  5213 pipe_class ret(Universe ignore) %{
  5214     single_instruction; has_delay_slot;
  5215     BR  : R(1);
  5216     MS  : R(1);
  5217 %}
  5219 pipe_class ret_poll(g3RegP poll) %{
  5220     instruction_count(3); has_delay_slot;
  5221     poll : E(read);
  5222     MS   : R;
  5223 %}
  5225 // The real do-nothing guy
  5226 pipe_class empty( ) %{
  5227     instruction_count(0);
  5228 %}
  5230 pipe_class long_memory_op() %{
  5231     instruction_count(0); multiple_bundles; force_serialization;
  5232     fixed_latency(25);
  5233     MS  : R(1);
  5234 %}
  5236 // Check-cast
  5237 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5238     array : R(read);
  5239     match  : R(read);
  5240     IALU   : R(2);
  5241     BR     : R(2);
  5242     MS     : R;
  5243 %}
  5245 // Convert FPU flags into +1,0,-1
  5246 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5247     src1  : E(read);
  5248     src2  : E(read);
  5249     dst   : E(write);
  5250     FA    : R;
  5251     MS    : R(2);
  5252     BR    : R(2);
  5253 %}
  5255 // Compare for p < q, and conditionally add y
  5256 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5257     p     : E(read);
  5258     q     : E(read);
  5259     y     : E(read);
  5260     IALU  : R(3)
  5261 %}
  5263 // Perform a compare, then move conditionally in a branch delay slot.
  5264 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5265     src2   : E(read);
  5266     srcdst : E(read);
  5267     IALU   : R;
  5268     BR     : R;
  5269 %}
  5271 // Define the class for the Nop node
  5272 define %{
  5273    MachNop = ialu_nop;
  5274 %}
  5276 %}
  5278 //----------INSTRUCTIONS-------------------------------------------------------
  5280 //------------Special Stack Slot instructions - no match rules-----------------
  5281 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5282   // No match rule to avoid chain rule match.
  5283   effect(DEF dst, USE src);
  5284   ins_cost(MEMORY_REF_COST);
  5285   size(4);
  5286   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5287   opcode(Assembler::ldf_op3);
  5288   ins_encode(simple_form3_mem_reg(src, dst));
  5289   ins_pipe(floadF_stk);
  5290 %}
  5292 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5293   // No match rule to avoid chain rule match.
  5294   effect(DEF dst, USE src);
  5295   ins_cost(MEMORY_REF_COST);
  5296   size(4);
  5297   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5298   opcode(Assembler::lddf_op3);
  5299   ins_encode(simple_form3_mem_reg(src, dst));
  5300   ins_pipe(floadD_stk);
  5301 %}
  5303 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5304   // No match rule to avoid chain rule match.
  5305   effect(DEF dst, USE src);
  5306   ins_cost(MEMORY_REF_COST);
  5307   size(4);
  5308   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5309   opcode(Assembler::stf_op3);
  5310   ins_encode(simple_form3_mem_reg(dst, src));
  5311   ins_pipe(fstoreF_stk_reg);
  5312 %}
  5314 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5315   // No match rule to avoid chain rule match.
  5316   effect(DEF dst, USE src);
  5317   ins_cost(MEMORY_REF_COST);
  5318   size(4);
  5319   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5320   opcode(Assembler::stdf_op3);
  5321   ins_encode(simple_form3_mem_reg(dst, src));
  5322   ins_pipe(fstoreD_stk_reg);
  5323 %}
  5325 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5326   effect(DEF dst, USE src);
  5327   ins_cost(MEMORY_REF_COST*2);
  5328   size(8);
  5329   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5330             "STW    R_G0,$dst.lo" %}
  5331   opcode(Assembler::stw_op3);
  5332   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5333   ins_pipe(lstoreI_stk_reg);
  5334 %}
  5336 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5337   // No match rule to avoid chain rule match.
  5338   effect(DEF dst, USE src);
  5339   ins_cost(MEMORY_REF_COST);
  5340   size(4);
  5341   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5342   opcode(Assembler::stx_op3);
  5343   ins_encode(simple_form3_mem_reg( dst, src ) );
  5344   ins_pipe(istore_stk_reg);
  5345 %}
  5347 //---------- Chain stack slots between similar types --------
  5349 // Load integer from stack slot
  5350 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5351   match(Set dst src);
  5352   ins_cost(MEMORY_REF_COST);
  5354   size(4);
  5355   format %{ "LDUW   $src,$dst\t!stk" %}
  5356   opcode(Assembler::lduw_op3);
  5357   ins_encode(simple_form3_mem_reg( src, dst ) );
  5358   ins_pipe(iload_mem);
  5359 %}
  5361 // Store integer to stack slot
  5362 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5363   match(Set dst src);
  5364   ins_cost(MEMORY_REF_COST);
  5366   size(4);
  5367   format %{ "STW    $src,$dst\t!stk" %}
  5368   opcode(Assembler::stw_op3);
  5369   ins_encode(simple_form3_mem_reg( dst, src ) );
  5370   ins_pipe(istore_mem_reg);
  5371 %}
  5373 // Load long from stack slot
  5374 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5375   match(Set dst src);
  5377   ins_cost(MEMORY_REF_COST);
  5378   size(4);
  5379   format %{ "LDX    $src,$dst\t! long" %}
  5380   opcode(Assembler::ldx_op3);
  5381   ins_encode(simple_form3_mem_reg( src, dst ) );
  5382   ins_pipe(iload_mem);
  5383 %}
  5385 // Store long to stack slot
  5386 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5387   match(Set dst src);
  5389   ins_cost(MEMORY_REF_COST);
  5390   size(4);
  5391   format %{ "STX    $src,$dst\t! long" %}
  5392   opcode(Assembler::stx_op3);
  5393   ins_encode(simple_form3_mem_reg( dst, src ) );
  5394   ins_pipe(istore_mem_reg);
  5395 %}
  5397 #ifdef _LP64
  5398 // Load pointer from stack slot, 64-bit encoding
  5399 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5400   match(Set dst src);
  5401   ins_cost(MEMORY_REF_COST);
  5402   size(4);
  5403   format %{ "LDX    $src,$dst\t!ptr" %}
  5404   opcode(Assembler::ldx_op3);
  5405   ins_encode(simple_form3_mem_reg( src, dst ) );
  5406   ins_pipe(iload_mem);
  5407 %}
  5409 // Store pointer to stack slot
  5410 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5411   match(Set dst src);
  5412   ins_cost(MEMORY_REF_COST);
  5413   size(4);
  5414   format %{ "STX    $src,$dst\t!ptr" %}
  5415   opcode(Assembler::stx_op3);
  5416   ins_encode(simple_form3_mem_reg( dst, src ) );
  5417   ins_pipe(istore_mem_reg);
  5418 %}
  5419 #else // _LP64
  5420 // Load pointer from stack slot, 32-bit encoding
  5421 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5422   match(Set dst src);
  5423   ins_cost(MEMORY_REF_COST);
  5424   format %{ "LDUW   $src,$dst\t!ptr" %}
  5425   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5426   ins_encode(simple_form3_mem_reg( src, dst ) );
  5427   ins_pipe(iload_mem);
  5428 %}
  5430 // Store pointer to stack slot
  5431 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5432   match(Set dst src);
  5433   ins_cost(MEMORY_REF_COST);
  5434   format %{ "STW    $src,$dst\t!ptr" %}
  5435   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5436   ins_encode(simple_form3_mem_reg( dst, src ) );
  5437   ins_pipe(istore_mem_reg);
  5438 %}
  5439 #endif // _LP64
  5441 //------------Special Nop instructions for bundling - no match rules-----------
  5442 // Nop using the A0 functional unit
  5443 instruct Nop_A0() %{
  5444   ins_cost(0);
  5446   format %{ "NOP    ! Alu Pipeline" %}
  5447   opcode(Assembler::or_op3, Assembler::arith_op);
  5448   ins_encode( form2_nop() );
  5449   ins_pipe(ialu_nop_A0);
  5450 %}
  5452 // Nop using the A1 functional unit
  5453 instruct Nop_A1( ) %{
  5454   ins_cost(0);
  5456   format %{ "NOP    ! Alu Pipeline" %}
  5457   opcode(Assembler::or_op3, Assembler::arith_op);
  5458   ins_encode( form2_nop() );
  5459   ins_pipe(ialu_nop_A1);
  5460 %}
  5462 // Nop using the memory functional unit
  5463 instruct Nop_MS( ) %{
  5464   ins_cost(0);
  5466   format %{ "NOP    ! Memory Pipeline" %}
  5467   ins_encode( emit_mem_nop );
  5468   ins_pipe(mem_nop);
  5469 %}
  5471 // Nop using the floating add functional unit
  5472 instruct Nop_FA( ) %{
  5473   ins_cost(0);
  5475   format %{ "NOP    ! Floating Add Pipeline" %}
  5476   ins_encode( emit_fadd_nop );
  5477   ins_pipe(fadd_nop);
  5478 %}
  5480 // Nop using the branch functional unit
  5481 instruct Nop_BR( ) %{
  5482   ins_cost(0);
  5484   format %{ "NOP    ! Branch Pipeline" %}
  5485   ins_encode( emit_br_nop );
  5486   ins_pipe(br_nop);
  5487 %}
  5489 //----------Load/Store/Move Instructions---------------------------------------
  5490 //----------Load Instructions--------------------------------------------------
  5491 // Load Byte (8bit signed)
  5492 instruct loadB(iRegI dst, memory mem) %{
  5493   match(Set dst (LoadB mem));
  5494   ins_cost(MEMORY_REF_COST);
  5496   size(4);
  5497   format %{ "LDSB   $mem,$dst\t! byte" %}
  5498   ins_encode %{
  5499     __ ldsb($mem$$Address, $dst$$Register);
  5500   %}
  5501   ins_pipe(iload_mask_mem);
  5502 %}
  5504 // Load Byte (8bit signed) into a Long Register
  5505 instruct loadB2L(iRegL dst, memory mem) %{
  5506   match(Set dst (ConvI2L (LoadB mem)));
  5507   ins_cost(MEMORY_REF_COST);
  5509   size(4);
  5510   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5511   ins_encode %{
  5512     __ ldsb($mem$$Address, $dst$$Register);
  5513   %}
  5514   ins_pipe(iload_mask_mem);
  5515 %}
  5517 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5518 instruct loadUB(iRegI dst, memory mem) %{
  5519   match(Set dst (LoadUB mem));
  5520   ins_cost(MEMORY_REF_COST);
  5522   size(4);
  5523   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5524   ins_encode %{
  5525     __ ldub($mem$$Address, $dst$$Register);
  5526   %}
  5527   ins_pipe(iload_mem);
  5528 %}
  5530 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5531 instruct loadUB2L(iRegL dst, memory mem) %{
  5532   match(Set dst (ConvI2L (LoadUB mem)));
  5533   ins_cost(MEMORY_REF_COST);
  5535   size(4);
  5536   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5537   ins_encode %{
  5538     __ ldub($mem$$Address, $dst$$Register);
  5539   %}
  5540   ins_pipe(iload_mem);
  5541 %}
  5543 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5544 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5545   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5546   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5548   size(2*4);
  5549   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5550             "AND    $dst,$mask,$dst" %}
  5551   ins_encode %{
  5552     __ ldub($mem$$Address, $dst$$Register);
  5553     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5554   %}
  5555   ins_pipe(iload_mem);
  5556 %}
  5558 // Load Short (16bit signed)
  5559 instruct loadS(iRegI dst, memory mem) %{
  5560   match(Set dst (LoadS mem));
  5561   ins_cost(MEMORY_REF_COST);
  5563   size(4);
  5564   format %{ "LDSH   $mem,$dst\t! short" %}
  5565   ins_encode %{
  5566     __ ldsh($mem$$Address, $dst$$Register);
  5567   %}
  5568   ins_pipe(iload_mask_mem);
  5569 %}
  5571 // Load Short (16 bit signed) to Byte (8 bit signed)
  5572 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5573   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5574   ins_cost(MEMORY_REF_COST);
  5576   size(4);
  5578   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5579   ins_encode %{
  5580     __ ldsb($mem$$Address, $dst$$Register, 1);
  5581   %}
  5582   ins_pipe(iload_mask_mem);
  5583 %}
  5585 // Load Short (16bit signed) into a Long Register
  5586 instruct loadS2L(iRegL dst, memory mem) %{
  5587   match(Set dst (ConvI2L (LoadS mem)));
  5588   ins_cost(MEMORY_REF_COST);
  5590   size(4);
  5591   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5592   ins_encode %{
  5593     __ ldsh($mem$$Address, $dst$$Register);
  5594   %}
  5595   ins_pipe(iload_mask_mem);
  5596 %}
  5598 // Load Unsigned Short/Char (16bit UNsigned)
  5599 instruct loadUS(iRegI dst, memory mem) %{
  5600   match(Set dst (LoadUS mem));
  5601   ins_cost(MEMORY_REF_COST);
  5603   size(4);
  5604   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5605   ins_encode %{
  5606     __ lduh($mem$$Address, $dst$$Register);
  5607   %}
  5608   ins_pipe(iload_mem);
  5609 %}
  5611 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5612 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5613   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5614   ins_cost(MEMORY_REF_COST);
  5616   size(4);
  5617   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5618   ins_encode %{
  5619     __ ldsb($mem$$Address, $dst$$Register, 1);
  5620   %}
  5621   ins_pipe(iload_mask_mem);
  5622 %}
  5624 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5625 instruct loadUS2L(iRegL dst, memory mem) %{
  5626   match(Set dst (ConvI2L (LoadUS mem)));
  5627   ins_cost(MEMORY_REF_COST);
  5629   size(4);
  5630   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5631   ins_encode %{
  5632     __ lduh($mem$$Address, $dst$$Register);
  5633   %}
  5634   ins_pipe(iload_mem);
  5635 %}
  5637 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5638 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5639   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5640   ins_cost(MEMORY_REF_COST);
  5642   size(4);
  5643   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5644   ins_encode %{
  5645     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5646   %}
  5647   ins_pipe(iload_mem);
  5648 %}
  5650 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5651 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5652   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5653   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5655   size(2*4);
  5656   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5657             "AND    $dst,$mask,$dst" %}
  5658   ins_encode %{
  5659     Register Rdst = $dst$$Register;
  5660     __ lduh($mem$$Address, Rdst);
  5661     __ and3(Rdst, $mask$$constant, Rdst);
  5662   %}
  5663   ins_pipe(iload_mem);
  5664 %}
  5666 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5667 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5668   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5669   effect(TEMP dst, TEMP tmp);
  5670   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5672   size((3+1)*4);  // set may use two instructions.
  5673   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5674             "SET    $mask,$tmp\n\t"
  5675             "AND    $dst,$tmp,$dst" %}
  5676   ins_encode %{
  5677     Register Rdst = $dst$$Register;
  5678     Register Rtmp = $tmp$$Register;
  5679     __ lduh($mem$$Address, Rdst);
  5680     __ set($mask$$constant, Rtmp);
  5681     __ and3(Rdst, Rtmp, Rdst);
  5682   %}
  5683   ins_pipe(iload_mem);
  5684 %}
  5686 // Load Integer
  5687 instruct loadI(iRegI dst, memory mem) %{
  5688   match(Set dst (LoadI mem));
  5689   ins_cost(MEMORY_REF_COST);
  5691   size(4);
  5692   format %{ "LDUW   $mem,$dst\t! int" %}
  5693   ins_encode %{
  5694     __ lduw($mem$$Address, $dst$$Register);
  5695   %}
  5696   ins_pipe(iload_mem);
  5697 %}
  5699 // Load Integer to Byte (8 bit signed)
  5700 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5701   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5702   ins_cost(MEMORY_REF_COST);
  5704   size(4);
  5706   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5707   ins_encode %{
  5708     __ ldsb($mem$$Address, $dst$$Register, 3);
  5709   %}
  5710   ins_pipe(iload_mask_mem);
  5711 %}
  5713 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5714 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5715   match(Set dst (AndI (LoadI mem) mask));
  5716   ins_cost(MEMORY_REF_COST);
  5718   size(4);
  5720   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5721   ins_encode %{
  5722     __ ldub($mem$$Address, $dst$$Register, 3);
  5723   %}
  5724   ins_pipe(iload_mask_mem);
  5725 %}
  5727 // Load Integer to Short (16 bit signed)
  5728 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5729   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5730   ins_cost(MEMORY_REF_COST);
  5732   size(4);
  5734   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5735   ins_encode %{
  5736     __ ldsh($mem$$Address, $dst$$Register, 2);
  5737   %}
  5738   ins_pipe(iload_mask_mem);
  5739 %}
  5741 // Load Integer to Unsigned Short (16 bit UNsigned)
  5742 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5743   match(Set dst (AndI (LoadI mem) mask));
  5744   ins_cost(MEMORY_REF_COST);
  5746   size(4);
  5748   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5749   ins_encode %{
  5750     __ lduh($mem$$Address, $dst$$Register, 2);
  5751   %}
  5752   ins_pipe(iload_mask_mem);
  5753 %}
  5755 // Load Integer into a Long Register
  5756 instruct loadI2L(iRegL dst, memory mem) %{
  5757   match(Set dst (ConvI2L (LoadI mem)));
  5758   ins_cost(MEMORY_REF_COST);
  5760   size(4);
  5761   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5762   ins_encode %{
  5763     __ ldsw($mem$$Address, $dst$$Register);
  5764   %}
  5765   ins_pipe(iload_mask_mem);
  5766 %}
  5768 // Load Integer with mask 0xFF into a Long Register
  5769 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5770   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5771   ins_cost(MEMORY_REF_COST);
  5773   size(4);
  5774   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5775   ins_encode %{
  5776     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5777   %}
  5778   ins_pipe(iload_mem);
  5779 %}
  5781 // Load Integer with mask 0xFFFF into a Long Register
  5782 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5783   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5784   ins_cost(MEMORY_REF_COST);
  5786   size(4);
  5787   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5788   ins_encode %{
  5789     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5790   %}
  5791   ins_pipe(iload_mem);
  5792 %}
  5794 // Load Integer with a 13-bit mask into a Long Register
  5795 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5796   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5797   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5799   size(2*4);
  5800   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5801             "AND    $dst,$mask,$dst" %}
  5802   ins_encode %{
  5803     Register Rdst = $dst$$Register;
  5804     __ lduw($mem$$Address, Rdst);
  5805     __ and3(Rdst, $mask$$constant, Rdst);
  5806   %}
  5807   ins_pipe(iload_mem);
  5808 %}
  5810 // Load Integer with a 32-bit mask into a Long Register
  5811 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5812   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5813   effect(TEMP dst, TEMP tmp);
  5814   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5816   size((3+1)*4);  // set may use two instructions.
  5817   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5818             "SET    $mask,$tmp\n\t"
  5819             "AND    $dst,$tmp,$dst" %}
  5820   ins_encode %{
  5821     Register Rdst = $dst$$Register;
  5822     Register Rtmp = $tmp$$Register;
  5823     __ lduw($mem$$Address, Rdst);
  5824     __ set($mask$$constant, Rtmp);
  5825     __ and3(Rdst, Rtmp, Rdst);
  5826   %}
  5827   ins_pipe(iload_mem);
  5828 %}
  5830 // Load Unsigned Integer into a Long Register
  5831 instruct loadUI2L(iRegL dst, memory mem) %{
  5832   match(Set dst (LoadUI2L mem));
  5833   ins_cost(MEMORY_REF_COST);
  5835   size(4);
  5836   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5837   ins_encode %{
  5838     __ lduw($mem$$Address, $dst$$Register);
  5839   %}
  5840   ins_pipe(iload_mem);
  5841 %}
  5843 // Load Long - aligned
  5844 instruct loadL(iRegL dst, memory mem ) %{
  5845   match(Set dst (LoadL mem));
  5846   ins_cost(MEMORY_REF_COST);
  5848   size(4);
  5849   format %{ "LDX    $mem,$dst\t! long" %}
  5850   ins_encode %{
  5851     __ ldx($mem$$Address, $dst$$Register);
  5852   %}
  5853   ins_pipe(iload_mem);
  5854 %}
  5856 // Load Long - UNaligned
  5857 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5858   match(Set dst (LoadL_unaligned mem));
  5859   effect(KILL tmp);
  5860   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5861   size(16);
  5862   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5863           "\tLDUW   $mem  ,$dst\n"
  5864           "\tSLLX   #32, $dst, $dst\n"
  5865           "\tOR     $dst, R_O7, $dst" %}
  5866   opcode(Assembler::lduw_op3);
  5867   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5868   ins_pipe(iload_mem);
  5869 %}
  5871 // Load Aligned Packed Byte into a Double Register
  5872 instruct loadA8B(regD dst, memory mem) %{
  5873   match(Set dst (Load8B mem));
  5874   ins_cost(MEMORY_REF_COST);
  5875   size(4);
  5876   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5877   opcode(Assembler::lddf_op3);
  5878   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5879   ins_pipe(floadD_mem);
  5880 %}
  5882 // Load Aligned Packed Char into a Double Register
  5883 instruct loadA4C(regD dst, memory mem) %{
  5884   match(Set dst (Load4C mem));
  5885   ins_cost(MEMORY_REF_COST);
  5886   size(4);
  5887   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5888   opcode(Assembler::lddf_op3);
  5889   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5890   ins_pipe(floadD_mem);
  5891 %}
  5893 // Load Aligned Packed Short into a Double Register
  5894 instruct loadA4S(regD dst, memory mem) %{
  5895   match(Set dst (Load4S mem));
  5896   ins_cost(MEMORY_REF_COST);
  5897   size(4);
  5898   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5899   opcode(Assembler::lddf_op3);
  5900   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5901   ins_pipe(floadD_mem);
  5902 %}
  5904 // Load Aligned Packed Int into a Double Register
  5905 instruct loadA2I(regD dst, memory mem) %{
  5906   match(Set dst (Load2I mem));
  5907   ins_cost(MEMORY_REF_COST);
  5908   size(4);
  5909   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5910   opcode(Assembler::lddf_op3);
  5911   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5912   ins_pipe(floadD_mem);
  5913 %}
  5915 // Load Range
  5916 instruct loadRange(iRegI dst, memory mem) %{
  5917   match(Set dst (LoadRange mem));
  5918   ins_cost(MEMORY_REF_COST);
  5920   size(4);
  5921   format %{ "LDUW   $mem,$dst\t! range" %}
  5922   opcode(Assembler::lduw_op3);
  5923   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5924   ins_pipe(iload_mem);
  5925 %}
  5927 // Load Integer into %f register (for fitos/fitod)
  5928 instruct loadI_freg(regF dst, memory mem) %{
  5929   match(Set dst (LoadI mem));
  5930   ins_cost(MEMORY_REF_COST);
  5931   size(4);
  5933   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5934   opcode(Assembler::ldf_op3);
  5935   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5936   ins_pipe(floadF_mem);
  5937 %}
  5939 // Load Pointer
  5940 instruct loadP(iRegP dst, memory mem) %{
  5941   match(Set dst (LoadP mem));
  5942   ins_cost(MEMORY_REF_COST);
  5943   size(4);
  5945 #ifndef _LP64
  5946   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5947   ins_encode %{
  5948     __ lduw($mem$$Address, $dst$$Register);
  5949   %}
  5950 #else
  5951   format %{ "LDX    $mem,$dst\t! ptr" %}
  5952   ins_encode %{
  5953     __ ldx($mem$$Address, $dst$$Register);
  5954   %}
  5955 #endif
  5956   ins_pipe(iload_mem);
  5957 %}
  5959 // Load Compressed Pointer
  5960 instruct loadN(iRegN dst, memory mem) %{
  5961   match(Set dst (LoadN mem));
  5962   ins_cost(MEMORY_REF_COST);
  5963   size(4);
  5965   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5966   ins_encode %{
  5967     __ lduw($mem$$Address, $dst$$Register);
  5968   %}
  5969   ins_pipe(iload_mem);
  5970 %}
  5972 // Load Klass Pointer
  5973 instruct loadKlass(iRegP dst, memory mem) %{
  5974   match(Set dst (LoadKlass mem));
  5975   ins_cost(MEMORY_REF_COST);
  5976   size(4);
  5978 #ifndef _LP64
  5979   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5980   ins_encode %{
  5981     __ lduw($mem$$Address, $dst$$Register);
  5982   %}
  5983 #else
  5984   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5985   ins_encode %{
  5986     __ ldx($mem$$Address, $dst$$Register);
  5987   %}
  5988 #endif
  5989   ins_pipe(iload_mem);
  5990 %}
  5992 // Load narrow Klass Pointer
  5993 instruct loadNKlass(iRegN dst, memory mem) %{
  5994   match(Set dst (LoadNKlass mem));
  5995   ins_cost(MEMORY_REF_COST);
  5996   size(4);
  5998   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5999   ins_encode %{
  6000     __ lduw($mem$$Address, $dst$$Register);
  6001   %}
  6002   ins_pipe(iload_mem);
  6003 %}
  6005 // Load Double
  6006 instruct loadD(regD dst, memory mem) %{
  6007   match(Set dst (LoadD mem));
  6008   ins_cost(MEMORY_REF_COST);
  6010   size(4);
  6011   format %{ "LDDF   $mem,$dst" %}
  6012   opcode(Assembler::lddf_op3);
  6013   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6014   ins_pipe(floadD_mem);
  6015 %}
  6017 // Load Double - UNaligned
  6018 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6019   match(Set dst (LoadD_unaligned mem));
  6020   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6021   size(8);
  6022   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6023           "\tLDF    $mem+4,$dst.lo\t!" %}
  6024   opcode(Assembler::ldf_op3);
  6025   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6026   ins_pipe(iload_mem);
  6027 %}
  6029 // Load Float
  6030 instruct loadF(regF dst, memory mem) %{
  6031   match(Set dst (LoadF mem));
  6032   ins_cost(MEMORY_REF_COST);
  6034   size(4);
  6035   format %{ "LDF    $mem,$dst" %}
  6036   opcode(Assembler::ldf_op3);
  6037   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6038   ins_pipe(floadF_mem);
  6039 %}
  6041 // Load Constant
  6042 instruct loadConI( iRegI dst, immI src ) %{
  6043   match(Set dst src);
  6044   ins_cost(DEFAULT_COST * 3/2);
  6045   format %{ "SET    $src,$dst" %}
  6046   ins_encode( Set32(src, dst) );
  6047   ins_pipe(ialu_hi_lo_reg);
  6048 %}
  6050 instruct loadConI13( iRegI dst, immI13 src ) %{
  6051   match(Set dst src);
  6053   size(4);
  6054   format %{ "MOV    $src,$dst" %}
  6055   ins_encode( Set13( src, dst ) );
  6056   ins_pipe(ialu_imm);
  6057 %}
  6059 #ifndef _LP64
  6060 instruct loadConP(iRegP dst, immP con) %{
  6061   match(Set dst con);
  6062   ins_cost(DEFAULT_COST * 3/2);
  6063   format %{ "SET    $con,$dst\t!ptr" %}
  6064   ins_encode %{
  6065     // [RGV] This next line should be generated from ADLC
  6066     if (_opnds[1]->constant_is_oop()) {
  6067       intptr_t val = $con$$constant;
  6068       __ set_oop_constant((jobject) val, $dst$$Register);
  6069     } else {          // non-oop pointers, e.g. card mark base, heap top
  6070       __ set($con$$constant, $dst$$Register);
  6072   %}
  6073   ins_pipe(loadConP);
  6074 %}
  6075 #else
  6076 instruct loadConP_set(iRegP dst, immP_set con) %{
  6077   match(Set dst con);
  6078   ins_cost(DEFAULT_COST * 3/2);
  6079   format %{ "SET    $con,$dst\t! ptr" %}
  6080   ins_encode %{
  6081     // [RGV] This next line should be generated from ADLC
  6082     if (_opnds[1]->constant_is_oop()) {
  6083       intptr_t val = $con$$constant;
  6084       __ set_oop_constant((jobject) val, $dst$$Register);
  6085     } else {          // non-oop pointers, e.g. card mark base, heap top
  6086       __ set($con$$constant, $dst$$Register);
  6088   %}
  6089   ins_pipe(loadConP);
  6090 %}
  6092 instruct loadConP_load(iRegP dst, immP_load con) %{
  6093   match(Set dst con);
  6094   ins_cost(MEMORY_REF_COST);
  6095   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6096   ins_encode %{
  6097       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6098      __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6099   %}
  6100   ins_pipe(loadConP);
  6101 %}
  6102 #endif // _LP64
  6104 instruct loadConP0(iRegP dst, immP0 src) %{
  6105   match(Set dst src);
  6107   size(4);
  6108   format %{ "CLR    $dst\t!ptr" %}
  6109   ins_encode %{
  6110     __ clr($dst$$Register);
  6111   %}
  6112   ins_pipe(ialu_imm);
  6113 %}
  6115 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6116   match(Set dst src);
  6117   ins_cost(DEFAULT_COST);
  6118   format %{ "SET    $src,$dst\t!ptr" %}
  6119   ins_encode %{
  6120     AddressLiteral polling_page(os::get_polling_page());
  6121     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6122   %}
  6123   ins_pipe(loadConP_poll);
  6124 %}
  6126 instruct loadConN0(iRegN dst, immN0 src) %{
  6127   match(Set dst src);
  6129   size(4);
  6130   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6131   ins_encode %{
  6132     __ clr($dst$$Register);
  6133   %}
  6134   ins_pipe(ialu_imm);
  6135 %}
  6137 instruct loadConN(iRegN dst, immN src) %{
  6138   match(Set dst src);
  6139   ins_cost(DEFAULT_COST * 3/2);
  6140   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6141   ins_encode %{
  6142     Register dst = $dst$$Register;
  6143     __ set_narrow_oop((jobject)$src$$constant, dst);
  6144   %}
  6145   ins_pipe(ialu_hi_lo_reg);
  6146 %}
  6148 // Materialize long value (predicated by immL_cheap).
  6149 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6150   match(Set dst con);
  6151   effect(KILL tmp);
  6152   ins_cost(DEFAULT_COST * 3);
  6153   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6154   ins_encode %{
  6155     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6156   %}
  6157   ins_pipe(loadConL);
  6158 %}
  6160 // Load long value from constant table (predicated by immL_expensive).
  6161 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6162   match(Set dst con);
  6163   ins_cost(MEMORY_REF_COST);
  6164   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6165   ins_encode %{
  6166       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6167     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6168   %}
  6169   ins_pipe(loadConL);
  6170 %}
  6172 instruct loadConL0( iRegL dst, immL0 src ) %{
  6173   match(Set dst src);
  6174   ins_cost(DEFAULT_COST);
  6175   size(4);
  6176   format %{ "CLR    $dst\t! long" %}
  6177   ins_encode( Set13( src, dst ) );
  6178   ins_pipe(ialu_imm);
  6179 %}
  6181 instruct loadConL13( iRegL dst, immL13 src ) %{
  6182   match(Set dst src);
  6183   ins_cost(DEFAULT_COST * 2);
  6185   size(4);
  6186   format %{ "MOV    $src,$dst\t! long" %}
  6187   ins_encode( Set13( src, dst ) );
  6188   ins_pipe(ialu_imm);
  6189 %}
  6191 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6192   match(Set dst con);
  6193   effect(KILL tmp);
  6194   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6195   ins_encode %{
  6196       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6197     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6198   %}
  6199   ins_pipe(loadConFD);
  6200 %}
  6202 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6203   match(Set dst con);
  6204   effect(KILL tmp);
  6205   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6206   ins_encode %{
  6207     // XXX This is a quick fix for 6833573.
  6208     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6209     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6210     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6211   %}
  6212   ins_pipe(loadConFD);
  6213 %}
  6215 // Prefetch instructions.
  6216 // Must be safe to execute with invalid address (cannot fault).
  6218 instruct prefetchr( memory mem ) %{
  6219   match( PrefetchRead mem );
  6220   ins_cost(MEMORY_REF_COST);
  6222   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6223   opcode(Assembler::prefetch_op3);
  6224   ins_encode( form3_mem_prefetch_read( mem ) );
  6225   ins_pipe(iload_mem);
  6226 %}
  6228 instruct prefetchw( memory mem ) %{
  6229   predicate(AllocatePrefetchStyle != 3 );
  6230   match( PrefetchWrite mem );
  6231   ins_cost(MEMORY_REF_COST);
  6233   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6234   opcode(Assembler::prefetch_op3);
  6235   ins_encode( form3_mem_prefetch_write( mem ) );
  6236   ins_pipe(iload_mem);
  6237 %}
  6239 // Use BIS instruction to prefetch.
  6240 instruct prefetchw_bis( memory mem ) %{
  6241   predicate(AllocatePrefetchStyle == 3);
  6242   match( PrefetchWrite mem );
  6243   ins_cost(MEMORY_REF_COST);
  6245   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6246   ins_encode %{
  6247      Register base = as_Register($mem$$base);
  6248      int disp = $mem$$disp;
  6249      if (disp != 0) {
  6250        __ add(base, AllocatePrefetchStepSize, base);
  6252      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6253   %}
  6254   ins_pipe(istore_mem_reg);
  6255 %}
  6257 //----------Store Instructions-------------------------------------------------
  6258 // Store Byte
  6259 instruct storeB(memory mem, iRegI src) %{
  6260   match(Set mem (StoreB mem src));
  6261   ins_cost(MEMORY_REF_COST);
  6263   size(4);
  6264   format %{ "STB    $src,$mem\t! byte" %}
  6265   opcode(Assembler::stb_op3);
  6266   ins_encode(simple_form3_mem_reg( mem, src ) );
  6267   ins_pipe(istore_mem_reg);
  6268 %}
  6270 instruct storeB0(memory mem, immI0 src) %{
  6271   match(Set mem (StoreB mem src));
  6272   ins_cost(MEMORY_REF_COST);
  6274   size(4);
  6275   format %{ "STB    $src,$mem\t! byte" %}
  6276   opcode(Assembler::stb_op3);
  6277   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6278   ins_pipe(istore_mem_zero);
  6279 %}
  6281 instruct storeCM0(memory mem, immI0 src) %{
  6282   match(Set mem (StoreCM mem src));
  6283   ins_cost(MEMORY_REF_COST);
  6285   size(4);
  6286   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6287   opcode(Assembler::stb_op3);
  6288   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6289   ins_pipe(istore_mem_zero);
  6290 %}
  6292 // Store Char/Short
  6293 instruct storeC(memory mem, iRegI src) %{
  6294   match(Set mem (StoreC mem src));
  6295   ins_cost(MEMORY_REF_COST);
  6297   size(4);
  6298   format %{ "STH    $src,$mem\t! short" %}
  6299   opcode(Assembler::sth_op3);
  6300   ins_encode(simple_form3_mem_reg( mem, src ) );
  6301   ins_pipe(istore_mem_reg);
  6302 %}
  6304 instruct storeC0(memory mem, immI0 src) %{
  6305   match(Set mem (StoreC mem src));
  6306   ins_cost(MEMORY_REF_COST);
  6308   size(4);
  6309   format %{ "STH    $src,$mem\t! short" %}
  6310   opcode(Assembler::sth_op3);
  6311   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6312   ins_pipe(istore_mem_zero);
  6313 %}
  6315 // Store Integer
  6316 instruct storeI(memory mem, iRegI src) %{
  6317   match(Set mem (StoreI mem src));
  6318   ins_cost(MEMORY_REF_COST);
  6320   size(4);
  6321   format %{ "STW    $src,$mem" %}
  6322   opcode(Assembler::stw_op3);
  6323   ins_encode(simple_form3_mem_reg( mem, src ) );
  6324   ins_pipe(istore_mem_reg);
  6325 %}
  6327 // Store Long
  6328 instruct storeL(memory mem, iRegL src) %{
  6329   match(Set mem (StoreL mem src));
  6330   ins_cost(MEMORY_REF_COST);
  6331   size(4);
  6332   format %{ "STX    $src,$mem\t! long" %}
  6333   opcode(Assembler::stx_op3);
  6334   ins_encode(simple_form3_mem_reg( mem, src ) );
  6335   ins_pipe(istore_mem_reg);
  6336 %}
  6338 instruct storeI0(memory mem, immI0 src) %{
  6339   match(Set mem (StoreI mem src));
  6340   ins_cost(MEMORY_REF_COST);
  6342   size(4);
  6343   format %{ "STW    $src,$mem" %}
  6344   opcode(Assembler::stw_op3);
  6345   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6346   ins_pipe(istore_mem_zero);
  6347 %}
  6349 instruct storeL0(memory mem, immL0 src) %{
  6350   match(Set mem (StoreL mem src));
  6351   ins_cost(MEMORY_REF_COST);
  6353   size(4);
  6354   format %{ "STX    $src,$mem" %}
  6355   opcode(Assembler::stx_op3);
  6356   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6357   ins_pipe(istore_mem_zero);
  6358 %}
  6360 // Store Integer from float register (used after fstoi)
  6361 instruct storeI_Freg(memory mem, regF src) %{
  6362   match(Set mem (StoreI mem src));
  6363   ins_cost(MEMORY_REF_COST);
  6365   size(4);
  6366   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6367   opcode(Assembler::stf_op3);
  6368   ins_encode(simple_form3_mem_reg( mem, src ) );
  6369   ins_pipe(fstoreF_mem_reg);
  6370 %}
  6372 // Store Pointer
  6373 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6374   match(Set dst (StoreP dst src));
  6375   ins_cost(MEMORY_REF_COST);
  6376   size(4);
  6378 #ifndef _LP64
  6379   format %{ "STW    $src,$dst\t! ptr" %}
  6380   opcode(Assembler::stw_op3, 0, REGP_OP);
  6381 #else
  6382   format %{ "STX    $src,$dst\t! ptr" %}
  6383   opcode(Assembler::stx_op3, 0, REGP_OP);
  6384 #endif
  6385   ins_encode( form3_mem_reg( dst, src ) );
  6386   ins_pipe(istore_mem_spORreg);
  6387 %}
  6389 instruct storeP0(memory dst, immP0 src) %{
  6390   match(Set dst (StoreP dst src));
  6391   ins_cost(MEMORY_REF_COST);
  6392   size(4);
  6394 #ifndef _LP64
  6395   format %{ "STW    $src,$dst\t! ptr" %}
  6396   opcode(Assembler::stw_op3, 0, REGP_OP);
  6397 #else
  6398   format %{ "STX    $src,$dst\t! ptr" %}
  6399   opcode(Assembler::stx_op3, 0, REGP_OP);
  6400 #endif
  6401   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6402   ins_pipe(istore_mem_zero);
  6403 %}
  6405 // Store Compressed Pointer
  6406 instruct storeN(memory dst, iRegN src) %{
  6407    match(Set dst (StoreN dst src));
  6408    ins_cost(MEMORY_REF_COST);
  6409    size(4);
  6411    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6412    ins_encode %{
  6413      Register base = as_Register($dst$$base);
  6414      Register index = as_Register($dst$$index);
  6415      Register src = $src$$Register;
  6416      if (index != G0) {
  6417        __ stw(src, base, index);
  6418      } else {
  6419        __ stw(src, base, $dst$$disp);
  6421    %}
  6422    ins_pipe(istore_mem_spORreg);
  6423 %}
  6425 instruct storeN0(memory dst, immN0 src) %{
  6426    match(Set dst (StoreN dst src));
  6427    ins_cost(MEMORY_REF_COST);
  6428    size(4);
  6430    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6431    ins_encode %{
  6432      Register base = as_Register($dst$$base);
  6433      Register index = as_Register($dst$$index);
  6434      if (index != G0) {
  6435        __ stw(0, base, index);
  6436      } else {
  6437        __ stw(0, base, $dst$$disp);
  6439    %}
  6440    ins_pipe(istore_mem_zero);
  6441 %}
  6443 // Store Double
  6444 instruct storeD( memory mem, regD src) %{
  6445   match(Set mem (StoreD mem src));
  6446   ins_cost(MEMORY_REF_COST);
  6448   size(4);
  6449   format %{ "STDF   $src,$mem" %}
  6450   opcode(Assembler::stdf_op3);
  6451   ins_encode(simple_form3_mem_reg( mem, src ) );
  6452   ins_pipe(fstoreD_mem_reg);
  6453 %}
  6455 instruct storeD0( memory mem, immD0 src) %{
  6456   match(Set mem (StoreD mem src));
  6457   ins_cost(MEMORY_REF_COST);
  6459   size(4);
  6460   format %{ "STX    $src,$mem" %}
  6461   opcode(Assembler::stx_op3);
  6462   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6463   ins_pipe(fstoreD_mem_zero);
  6464 %}
  6466 // Store Float
  6467 instruct storeF( memory mem, regF src) %{
  6468   match(Set mem (StoreF mem src));
  6469   ins_cost(MEMORY_REF_COST);
  6471   size(4);
  6472   format %{ "STF    $src,$mem" %}
  6473   opcode(Assembler::stf_op3);
  6474   ins_encode(simple_form3_mem_reg( mem, src ) );
  6475   ins_pipe(fstoreF_mem_reg);
  6476 %}
  6478 instruct storeF0( memory mem, immF0 src) %{
  6479   match(Set mem (StoreF mem src));
  6480   ins_cost(MEMORY_REF_COST);
  6482   size(4);
  6483   format %{ "STW    $src,$mem\t! storeF0" %}
  6484   opcode(Assembler::stw_op3);
  6485   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6486   ins_pipe(fstoreF_mem_zero);
  6487 %}
  6489 // Store Aligned Packed Bytes in Double register to memory
  6490 instruct storeA8B(memory mem, regD src) %{
  6491   match(Set mem (Store8B mem src));
  6492   ins_cost(MEMORY_REF_COST);
  6493   size(4);
  6494   format %{ "STDF   $src,$mem\t! packed8B" %}
  6495   opcode(Assembler::stdf_op3);
  6496   ins_encode(simple_form3_mem_reg( mem, src ) );
  6497   ins_pipe(fstoreD_mem_reg);
  6498 %}
  6500 // Convert oop pointer into compressed form
  6501 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6502   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6503   match(Set dst (EncodeP src));
  6504   format %{ "encode_heap_oop $src, $dst" %}
  6505   ins_encode %{
  6506     __ encode_heap_oop($src$$Register, $dst$$Register);
  6507   %}
  6508   ins_pipe(ialu_reg);
  6509 %}
  6511 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6512   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6513   match(Set dst (EncodeP src));
  6514   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6515   ins_encode %{
  6516     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6517   %}
  6518   ins_pipe(ialu_reg);
  6519 %}
  6521 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6522   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6523             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6524   match(Set dst (DecodeN src));
  6525   format %{ "decode_heap_oop $src, $dst" %}
  6526   ins_encode %{
  6527     __ decode_heap_oop($src$$Register, $dst$$Register);
  6528   %}
  6529   ins_pipe(ialu_reg);
  6530 %}
  6532 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6533   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6534             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6535   match(Set dst (DecodeN src));
  6536   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6537   ins_encode %{
  6538     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6539   %}
  6540   ins_pipe(ialu_reg);
  6541 %}
  6544 // Store Zero into Aligned Packed Bytes
  6545 instruct storeA8B0(memory mem, immI0 zero) %{
  6546   match(Set mem (Store8B mem zero));
  6547   ins_cost(MEMORY_REF_COST);
  6548   size(4);
  6549   format %{ "STX    $zero,$mem\t! packed8B" %}
  6550   opcode(Assembler::stx_op3);
  6551   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6552   ins_pipe(fstoreD_mem_zero);
  6553 %}
  6555 // Store Aligned Packed Chars/Shorts in Double register to memory
  6556 instruct storeA4C(memory mem, regD src) %{
  6557   match(Set mem (Store4C mem src));
  6558   ins_cost(MEMORY_REF_COST);
  6559   size(4);
  6560   format %{ "STDF   $src,$mem\t! packed4C" %}
  6561   opcode(Assembler::stdf_op3);
  6562   ins_encode(simple_form3_mem_reg( mem, src ) );
  6563   ins_pipe(fstoreD_mem_reg);
  6564 %}
  6566 // Store Zero into Aligned Packed Chars/Shorts
  6567 instruct storeA4C0(memory mem, immI0 zero) %{
  6568   match(Set mem (Store4C mem (Replicate4C zero)));
  6569   ins_cost(MEMORY_REF_COST);
  6570   size(4);
  6571   format %{ "STX    $zero,$mem\t! packed4C" %}
  6572   opcode(Assembler::stx_op3);
  6573   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6574   ins_pipe(fstoreD_mem_zero);
  6575 %}
  6577 // Store Aligned Packed Ints in Double register to memory
  6578 instruct storeA2I(memory mem, regD src) %{
  6579   match(Set mem (Store2I mem src));
  6580   ins_cost(MEMORY_REF_COST);
  6581   size(4);
  6582   format %{ "STDF   $src,$mem\t! packed2I" %}
  6583   opcode(Assembler::stdf_op3);
  6584   ins_encode(simple_form3_mem_reg( mem, src ) );
  6585   ins_pipe(fstoreD_mem_reg);
  6586 %}
  6588 // Store Zero into Aligned Packed Ints
  6589 instruct storeA2I0(memory mem, immI0 zero) %{
  6590   match(Set mem (Store2I mem zero));
  6591   ins_cost(MEMORY_REF_COST);
  6592   size(4);
  6593   format %{ "STX    $zero,$mem\t! packed2I" %}
  6594   opcode(Assembler::stx_op3);
  6595   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6596   ins_pipe(fstoreD_mem_zero);
  6597 %}
  6600 //----------MemBar Instructions-----------------------------------------------
  6601 // Memory barrier flavors
  6603 instruct membar_acquire() %{
  6604   match(MemBarAcquire);
  6605   ins_cost(4*MEMORY_REF_COST);
  6607   size(0);
  6608   format %{ "MEMBAR-acquire" %}
  6609   ins_encode( enc_membar_acquire );
  6610   ins_pipe(long_memory_op);
  6611 %}
  6613 instruct membar_acquire_lock() %{
  6614   match(MemBarAcquire);
  6615   predicate(Matcher::prior_fast_lock(n));
  6616   ins_cost(0);
  6618   size(0);
  6619   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6620   ins_encode( );
  6621   ins_pipe(empty);
  6622 %}
  6624 instruct membar_release() %{
  6625   match(MemBarRelease);
  6626   ins_cost(4*MEMORY_REF_COST);
  6628   size(0);
  6629   format %{ "MEMBAR-release" %}
  6630   ins_encode( enc_membar_release );
  6631   ins_pipe(long_memory_op);
  6632 %}
  6634 instruct membar_release_lock() %{
  6635   match(MemBarRelease);
  6636   predicate(Matcher::post_fast_unlock(n));
  6637   ins_cost(0);
  6639   size(0);
  6640   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6641   ins_encode( );
  6642   ins_pipe(empty);
  6643 %}
  6645 instruct membar_volatile() %{
  6646   match(MemBarVolatile);
  6647   ins_cost(4*MEMORY_REF_COST);
  6649   size(4);
  6650   format %{ "MEMBAR-volatile" %}
  6651   ins_encode( enc_membar_volatile );
  6652   ins_pipe(long_memory_op);
  6653 %}
  6655 instruct unnecessary_membar_volatile() %{
  6656   match(MemBarVolatile);
  6657   predicate(Matcher::post_store_load_barrier(n));
  6658   ins_cost(0);
  6660   size(0);
  6661   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6662   ins_encode( );
  6663   ins_pipe(empty);
  6664 %}
  6666 //----------Register Move Instructions-----------------------------------------
  6667 instruct roundDouble_nop(regD dst) %{
  6668   match(Set dst (RoundDouble dst));
  6669   ins_cost(0);
  6670   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6671   ins_encode( );
  6672   ins_pipe(empty);
  6673 %}
  6676 instruct roundFloat_nop(regF dst) %{
  6677   match(Set dst (RoundFloat dst));
  6678   ins_cost(0);
  6679   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6680   ins_encode( );
  6681   ins_pipe(empty);
  6682 %}
  6685 // Cast Index to Pointer for unsafe natives
  6686 instruct castX2P(iRegX src, iRegP dst) %{
  6687   match(Set dst (CastX2P src));
  6689   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6690   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6691   ins_pipe(ialu_reg);
  6692 %}
  6694 // Cast Pointer to Index for unsafe natives
  6695 instruct castP2X(iRegP src, iRegX dst) %{
  6696   match(Set dst (CastP2X src));
  6698   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6699   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6700   ins_pipe(ialu_reg);
  6701 %}
  6703 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6704   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6705   match(Set stkSlot src);   // chain rule
  6706   ins_cost(MEMORY_REF_COST);
  6707   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6708   opcode(Assembler::stdf_op3);
  6709   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6710   ins_pipe(fstoreD_stk_reg);
  6711 %}
  6713 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6714   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6715   match(Set dst stkSlot);   // chain rule
  6716   ins_cost(MEMORY_REF_COST);
  6717   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6718   opcode(Assembler::lddf_op3);
  6719   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6720   ins_pipe(floadD_stk);
  6721 %}
  6723 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6724   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6725   match(Set stkSlot src);   // chain rule
  6726   ins_cost(MEMORY_REF_COST);
  6727   format %{ "STF   $src,$stkSlot\t!stk" %}
  6728   opcode(Assembler::stf_op3);
  6729   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6730   ins_pipe(fstoreF_stk_reg);
  6731 %}
  6733 //----------Conditional Move---------------------------------------------------
  6734 // Conditional move
  6735 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6736   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6737   ins_cost(150);
  6738   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6739   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6740   ins_pipe(ialu_reg);
  6741 %}
  6743 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6744   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6745   ins_cost(140);
  6746   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6747   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6748   ins_pipe(ialu_imm);
  6749 %}
  6751 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6752   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6753   ins_cost(150);
  6754   size(4);
  6755   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6756   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6757   ins_pipe(ialu_reg);
  6758 %}
  6760 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6761   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6762   ins_cost(140);
  6763   size(4);
  6764   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6765   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6766   ins_pipe(ialu_imm);
  6767 %}
  6769 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6770   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6771   ins_cost(150);
  6772   size(4);
  6773   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6774   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6775   ins_pipe(ialu_reg);
  6776 %}
  6778 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6779   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6780   ins_cost(140);
  6781   size(4);
  6782   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6783   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6784   ins_pipe(ialu_imm);
  6785 %}
  6787 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6788   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6789   ins_cost(150);
  6790   size(4);
  6791   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6792   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6793   ins_pipe(ialu_reg);
  6794 %}
  6796 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6797   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6798   ins_cost(140);
  6799   size(4);
  6800   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6801   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6802   ins_pipe(ialu_imm);
  6803 %}
  6805 // Conditional move for RegN. Only cmov(reg,reg).
  6806 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6807   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6808   ins_cost(150);
  6809   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6810   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6811   ins_pipe(ialu_reg);
  6812 %}
  6814 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6815 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6816   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6817   ins_cost(150);
  6818   size(4);
  6819   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6820   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6821   ins_pipe(ialu_reg);
  6822 %}
  6824 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6825 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6826   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6827   ins_cost(150);
  6828   size(4);
  6829   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6830   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6831   ins_pipe(ialu_reg);
  6832 %}
  6834 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6835   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6836   ins_cost(150);
  6837   size(4);
  6838   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6839   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6840   ins_pipe(ialu_reg);
  6841 %}
  6843 // Conditional move
  6844 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6845   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6846   ins_cost(150);
  6847   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6848   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6849   ins_pipe(ialu_reg);
  6850 %}
  6852 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6853   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6854   ins_cost(140);
  6855   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6856   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6857   ins_pipe(ialu_imm);
  6858 %}
  6860 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6861 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6862   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6863   ins_cost(150);
  6865   size(4);
  6866   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6867   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6868   ins_pipe(ialu_reg);
  6869 %}
  6871 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6872   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6873   ins_cost(150);
  6875   size(4);
  6876   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6877   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6878   ins_pipe(ialu_reg);
  6879 %}
  6881 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6882   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6883   ins_cost(140);
  6885   size(4);
  6886   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6887   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6888   ins_pipe(ialu_imm);
  6889 %}
  6891 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6892   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6893   ins_cost(140);
  6895   size(4);
  6896   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6897   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6898   ins_pipe(ialu_imm);
  6899 %}
  6901 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6902   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6903   ins_cost(150);
  6904   size(4);
  6905   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6906   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6907   ins_pipe(ialu_imm);
  6908 %}
  6910 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6911   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6912   ins_cost(140);
  6913   size(4);
  6914   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6915   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6916   ins_pipe(ialu_imm);
  6917 %}
  6919 // Conditional move
  6920 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6921   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6922   ins_cost(150);
  6923   opcode(0x101);
  6924   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6925   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6926   ins_pipe(int_conditional_float_move);
  6927 %}
  6929 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6930   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6931   ins_cost(150);
  6933   size(4);
  6934   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6935   opcode(0x101);
  6936   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6937   ins_pipe(int_conditional_float_move);
  6938 %}
  6940 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6941   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6942   ins_cost(150);
  6944   size(4);
  6945   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6946   opcode(0x101);
  6947   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6948   ins_pipe(int_conditional_float_move);
  6949 %}
  6951 // Conditional move,
  6952 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6953   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6954   ins_cost(150);
  6955   size(4);
  6956   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6957   opcode(0x1);
  6958   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6959   ins_pipe(int_conditional_double_move);
  6960 %}
  6962 // Conditional move
  6963 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6964   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6965   ins_cost(150);
  6966   size(4);
  6967   opcode(0x102);
  6968   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6969   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6970   ins_pipe(int_conditional_double_move);
  6971 %}
  6973 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6974   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6975   ins_cost(150);
  6977   size(4);
  6978   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6979   opcode(0x102);
  6980   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6981   ins_pipe(int_conditional_double_move);
  6982 %}
  6984 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6985   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6986   ins_cost(150);
  6988   size(4);
  6989   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6990   opcode(0x102);
  6991   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6992   ins_pipe(int_conditional_double_move);
  6993 %}
  6995 // Conditional move,
  6996 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6997   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6998   ins_cost(150);
  6999   size(4);
  7000   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7001   opcode(0x2);
  7002   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7003   ins_pipe(int_conditional_double_move);
  7004 %}
  7006 // Conditional move
  7007 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7008   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7009   ins_cost(150);
  7010   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7011   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7012   ins_pipe(ialu_reg);
  7013 %}
  7015 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7016   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7017   ins_cost(140);
  7018   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7019   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7020   ins_pipe(ialu_imm);
  7021 %}
  7023 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7024   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7025   ins_cost(150);
  7027   size(4);
  7028   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7029   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7030   ins_pipe(ialu_reg);
  7031 %}
  7034 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7035   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7036   ins_cost(150);
  7038   size(4);
  7039   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7040   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7041   ins_pipe(ialu_reg);
  7042 %}
  7045 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7046   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7047   ins_cost(150);
  7049   size(4);
  7050   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7051   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7052   ins_pipe(ialu_reg);
  7053 %}
  7057 //----------OS and Locking Instructions----------------------------------------
  7059 // This name is KNOWN by the ADLC and cannot be changed.
  7060 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7061 // for this guy.
  7062 instruct tlsLoadP(g2RegP dst) %{
  7063   match(Set dst (ThreadLocal));
  7065   size(0);
  7066   ins_cost(0);
  7067   format %{ "# TLS is in G2" %}
  7068   ins_encode( /*empty encoding*/ );
  7069   ins_pipe(ialu_none);
  7070 %}
  7072 instruct checkCastPP( iRegP dst ) %{
  7073   match(Set dst (CheckCastPP dst));
  7075   size(0);
  7076   format %{ "# checkcastPP of $dst" %}
  7077   ins_encode( /*empty encoding*/ );
  7078   ins_pipe(empty);
  7079 %}
  7082 instruct castPP( iRegP dst ) %{
  7083   match(Set dst (CastPP dst));
  7084   format %{ "# castPP of $dst" %}
  7085   ins_encode( /*empty encoding*/ );
  7086   ins_pipe(empty);
  7087 %}
  7089 instruct castII( iRegI dst ) %{
  7090   match(Set dst (CastII dst));
  7091   format %{ "# castII of $dst" %}
  7092   ins_encode( /*empty encoding*/ );
  7093   ins_cost(0);
  7094   ins_pipe(empty);
  7095 %}
  7097 //----------Arithmetic Instructions--------------------------------------------
  7098 // Addition Instructions
  7099 // Register Addition
  7100 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7101   match(Set dst (AddI src1 src2));
  7103   size(4);
  7104   format %{ "ADD    $src1,$src2,$dst" %}
  7105   ins_encode %{
  7106     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7107   %}
  7108   ins_pipe(ialu_reg_reg);
  7109 %}
  7111 // Immediate Addition
  7112 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7113   match(Set dst (AddI src1 src2));
  7115   size(4);
  7116   format %{ "ADD    $src1,$src2,$dst" %}
  7117   opcode(Assembler::add_op3, Assembler::arith_op);
  7118   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7119   ins_pipe(ialu_reg_imm);
  7120 %}
  7122 // Pointer Register Addition
  7123 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7124   match(Set dst (AddP src1 src2));
  7126   size(4);
  7127   format %{ "ADD    $src1,$src2,$dst" %}
  7128   opcode(Assembler::add_op3, Assembler::arith_op);
  7129   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7130   ins_pipe(ialu_reg_reg);
  7131 %}
  7133 // Pointer Immediate Addition
  7134 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7135   match(Set dst (AddP src1 src2));
  7137   size(4);
  7138   format %{ "ADD    $src1,$src2,$dst" %}
  7139   opcode(Assembler::add_op3, Assembler::arith_op);
  7140   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7141   ins_pipe(ialu_reg_imm);
  7142 %}
  7144 // Long Addition
  7145 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7146   match(Set dst (AddL src1 src2));
  7148   size(4);
  7149   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7150   opcode(Assembler::add_op3, Assembler::arith_op);
  7151   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7152   ins_pipe(ialu_reg_reg);
  7153 %}
  7155 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7156   match(Set dst (AddL src1 con));
  7158   size(4);
  7159   format %{ "ADD    $src1,$con,$dst" %}
  7160   opcode(Assembler::add_op3, Assembler::arith_op);
  7161   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7162   ins_pipe(ialu_reg_imm);
  7163 %}
  7165 //----------Conditional_store--------------------------------------------------
  7166 // Conditional-store of the updated heap-top.
  7167 // Used during allocation of the shared heap.
  7168 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7170 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7171 instruct loadPLocked(iRegP dst, memory mem) %{
  7172   match(Set dst (LoadPLocked mem));
  7173   ins_cost(MEMORY_REF_COST);
  7175 #ifndef _LP64
  7176   size(4);
  7177   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7178   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7179 #else
  7180   format %{ "LDX    $mem,$dst\t! ptr" %}
  7181   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7182 #endif
  7183   ins_encode( form3_mem_reg( mem, dst ) );
  7184   ins_pipe(iload_mem);
  7185 %}
  7187 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7188 instruct loadLLocked(iRegL dst, memory mem) %{
  7189   match(Set dst (LoadLLocked mem));
  7190   ins_cost(MEMORY_REF_COST);
  7191   size(4);
  7192   format %{ "LDX    $mem,$dst\t! long" %}
  7193   opcode(Assembler::ldx_op3);
  7194   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7195   ins_pipe(iload_mem);
  7196 %}
  7198 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7199   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7200   effect( KILL newval );
  7201   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7202             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7203   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7204   ins_pipe( long_memory_op );
  7205 %}
  7207 // Conditional-store of an int value.
  7208 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7209   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7210   effect( KILL newval );
  7211   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7212             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7213   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7214   ins_pipe( long_memory_op );
  7215 %}
  7217 // Conditional-store of a long value.
  7218 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7219   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7220   effect( KILL newval );
  7221   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7222             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7223   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7224   ins_pipe( long_memory_op );
  7225 %}
  7227 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7229 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7230   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7231   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7232   format %{
  7233             "MOV    $newval,O7\n\t"
  7234             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7235             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7236             "MOV    1,$res\n\t"
  7237             "MOVne  xcc,R_G0,$res"
  7238   %}
  7239   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7240               enc_lflags_ne_to_boolean(res) );
  7241   ins_pipe( long_memory_op );
  7242 %}
  7245 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7246   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7247   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7248   format %{
  7249             "MOV    $newval,O7\n\t"
  7250             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7251             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7252             "MOV    1,$res\n\t"
  7253             "MOVne  icc,R_G0,$res"
  7254   %}
  7255   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7256               enc_iflags_ne_to_boolean(res) );
  7257   ins_pipe( long_memory_op );
  7258 %}
  7260 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7261   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7262   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7263   format %{
  7264             "MOV    $newval,O7\n\t"
  7265             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7266             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7267             "MOV    1,$res\n\t"
  7268             "MOVne  xcc,R_G0,$res"
  7269   %}
  7270 #ifdef _LP64
  7271   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7272               enc_lflags_ne_to_boolean(res) );
  7273 #else
  7274   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7275               enc_iflags_ne_to_boolean(res) );
  7276 #endif
  7277   ins_pipe( long_memory_op );
  7278 %}
  7280 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7281   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7282   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7283   format %{
  7284             "MOV    $newval,O7\n\t"
  7285             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7286             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7287             "MOV    1,$res\n\t"
  7288             "MOVne  icc,R_G0,$res"
  7289   %}
  7290   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7291               enc_iflags_ne_to_boolean(res) );
  7292   ins_pipe( long_memory_op );
  7293 %}
  7295 //---------------------
  7296 // Subtraction Instructions
  7297 // Register Subtraction
  7298 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7299   match(Set dst (SubI src1 src2));
  7301   size(4);
  7302   format %{ "SUB    $src1,$src2,$dst" %}
  7303   opcode(Assembler::sub_op3, Assembler::arith_op);
  7304   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7305   ins_pipe(ialu_reg_reg);
  7306 %}
  7308 // Immediate Subtraction
  7309 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7310   match(Set dst (SubI src1 src2));
  7312   size(4);
  7313   format %{ "SUB    $src1,$src2,$dst" %}
  7314   opcode(Assembler::sub_op3, Assembler::arith_op);
  7315   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7316   ins_pipe(ialu_reg_imm);
  7317 %}
  7319 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7320   match(Set dst (SubI zero src2));
  7322   size(4);
  7323   format %{ "NEG    $src2,$dst" %}
  7324   opcode(Assembler::sub_op3, Assembler::arith_op);
  7325   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7326   ins_pipe(ialu_zero_reg);
  7327 %}
  7329 // Long subtraction
  7330 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7331   match(Set dst (SubL src1 src2));
  7333   size(4);
  7334   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7335   opcode(Assembler::sub_op3, Assembler::arith_op);
  7336   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7337   ins_pipe(ialu_reg_reg);
  7338 %}
  7340 // Immediate Subtraction
  7341 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7342   match(Set dst (SubL src1 con));
  7344   size(4);
  7345   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7346   opcode(Assembler::sub_op3, Assembler::arith_op);
  7347   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7348   ins_pipe(ialu_reg_imm);
  7349 %}
  7351 // Long negation
  7352 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7353   match(Set dst (SubL zero src2));
  7355   size(4);
  7356   format %{ "NEG    $src2,$dst\t! long" %}
  7357   opcode(Assembler::sub_op3, Assembler::arith_op);
  7358   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7359   ins_pipe(ialu_zero_reg);
  7360 %}
  7362 // Multiplication Instructions
  7363 // Integer Multiplication
  7364 // Register Multiplication
  7365 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7366   match(Set dst (MulI src1 src2));
  7368   size(4);
  7369   format %{ "MULX   $src1,$src2,$dst" %}
  7370   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7371   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7372   ins_pipe(imul_reg_reg);
  7373 %}
  7375 // Immediate Multiplication
  7376 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7377   match(Set dst (MulI src1 src2));
  7379   size(4);
  7380   format %{ "MULX   $src1,$src2,$dst" %}
  7381   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7382   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7383   ins_pipe(imul_reg_imm);
  7384 %}
  7386 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7387   match(Set dst (MulL src1 src2));
  7388   ins_cost(DEFAULT_COST * 5);
  7389   size(4);
  7390   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7391   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7392   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7393   ins_pipe(mulL_reg_reg);
  7394 %}
  7396 // Immediate Multiplication
  7397 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7398   match(Set dst (MulL src1 src2));
  7399   ins_cost(DEFAULT_COST * 5);
  7400   size(4);
  7401   format %{ "MULX   $src1,$src2,$dst" %}
  7402   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7403   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7404   ins_pipe(mulL_reg_imm);
  7405 %}
  7407 // Integer Division
  7408 // Register Division
  7409 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7410   match(Set dst (DivI src1 src2));
  7411   ins_cost((2+71)*DEFAULT_COST);
  7413   format %{ "SRA     $src2,0,$src2\n\t"
  7414             "SRA     $src1,0,$src1\n\t"
  7415             "SDIVX   $src1,$src2,$dst" %}
  7416   ins_encode( idiv_reg( src1, src2, dst ) );
  7417   ins_pipe(sdiv_reg_reg);
  7418 %}
  7420 // Immediate Division
  7421 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7422   match(Set dst (DivI src1 src2));
  7423   ins_cost((2+71)*DEFAULT_COST);
  7425   format %{ "SRA     $src1,0,$src1\n\t"
  7426             "SDIVX   $src1,$src2,$dst" %}
  7427   ins_encode( idiv_imm( src1, src2, dst ) );
  7428   ins_pipe(sdiv_reg_imm);
  7429 %}
  7431 //----------Div-By-10-Expansion------------------------------------------------
  7432 // Extract hi bits of a 32x32->64 bit multiply.
  7433 // Expand rule only, not matched
  7434 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7435   effect( DEF dst, USE src1, USE src2 );
  7436   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7437             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7438   ins_encode( enc_mul_hi(dst,src1,src2));
  7439   ins_pipe(sdiv_reg_reg);
  7440 %}
  7442 // Magic constant, reciprocal of 10
  7443 instruct loadConI_x66666667(iRegIsafe dst) %{
  7444   effect( DEF dst );
  7446   size(8);
  7447   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7448   ins_encode( Set32(0x66666667, dst) );
  7449   ins_pipe(ialu_hi_lo_reg);
  7450 %}
  7452 // Register Shift Right Arithmetic Long by 32-63
  7453 instruct sra_31( iRegI dst, iRegI src ) %{
  7454   effect( DEF dst, USE src );
  7455   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7456   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7457   ins_pipe(ialu_reg_reg);
  7458 %}
  7460 // Arithmetic Shift Right by 8-bit immediate
  7461 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7462   effect( DEF dst, USE src );
  7463   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7464   opcode(Assembler::sra_op3, Assembler::arith_op);
  7465   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7466   ins_pipe(ialu_reg_imm);
  7467 %}
  7469 // Integer DIV with 10
  7470 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7471   match(Set dst (DivI src div));
  7472   ins_cost((6+6)*DEFAULT_COST);
  7473   expand %{
  7474     iRegIsafe tmp1;               // Killed temps;
  7475     iRegIsafe tmp2;               // Killed temps;
  7476     iRegI tmp3;                   // Killed temps;
  7477     iRegI tmp4;                   // Killed temps;
  7478     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7479     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7480     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7481     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7482     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7483   %}
  7484 %}
  7486 // Register Long Division
  7487 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7488   match(Set dst (DivL src1 src2));
  7489   ins_cost(DEFAULT_COST*71);
  7490   size(4);
  7491   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7492   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7493   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7494   ins_pipe(divL_reg_reg);
  7495 %}
  7497 // Register Long Division
  7498 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7499   match(Set dst (DivL src1 src2));
  7500   ins_cost(DEFAULT_COST*71);
  7501   size(4);
  7502   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7503   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7504   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7505   ins_pipe(divL_reg_imm);
  7506 %}
  7508 // Integer Remainder
  7509 // Register Remainder
  7510 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7511   match(Set dst (ModI src1 src2));
  7512   effect( KILL ccr, KILL temp);
  7514   format %{ "SREM   $src1,$src2,$dst" %}
  7515   ins_encode( irem_reg(src1, src2, dst, temp) );
  7516   ins_pipe(sdiv_reg_reg);
  7517 %}
  7519 // Immediate Remainder
  7520 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7521   match(Set dst (ModI src1 src2));
  7522   effect( KILL ccr, KILL temp);
  7524   format %{ "SREM   $src1,$src2,$dst" %}
  7525   ins_encode( irem_imm(src1, src2, dst, temp) );
  7526   ins_pipe(sdiv_reg_imm);
  7527 %}
  7529 // Register Long Remainder
  7530 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7531   effect(DEF dst, USE src1, USE src2);
  7532   size(4);
  7533   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7534   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7535   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7536   ins_pipe(divL_reg_reg);
  7537 %}
  7539 // Register Long Division
  7540 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7541   effect(DEF dst, USE src1, USE src2);
  7542   size(4);
  7543   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7544   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7545   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7546   ins_pipe(divL_reg_imm);
  7547 %}
  7549 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7550   effect(DEF dst, USE src1, USE src2);
  7551   size(4);
  7552   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7553   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7554   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7555   ins_pipe(mulL_reg_reg);
  7556 %}
  7558 // Immediate Multiplication
  7559 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7560   effect(DEF dst, USE src1, USE src2);
  7561   size(4);
  7562   format %{ "MULX   $src1,$src2,$dst" %}
  7563   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7564   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7565   ins_pipe(mulL_reg_imm);
  7566 %}
  7568 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7569   effect(DEF dst, USE src1, USE src2);
  7570   size(4);
  7571   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7572   opcode(Assembler::sub_op3, Assembler::arith_op);
  7573   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7574   ins_pipe(ialu_reg_reg);
  7575 %}
  7577 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7578   effect(DEF dst, USE src1, USE src2);
  7579   size(4);
  7580   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7581   opcode(Assembler::sub_op3, Assembler::arith_op);
  7582   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7583   ins_pipe(ialu_reg_reg);
  7584 %}
  7586 // Register Long Remainder
  7587 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7588   match(Set dst (ModL src1 src2));
  7589   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7590   expand %{
  7591     iRegL tmp1;
  7592     iRegL tmp2;
  7593     divL_reg_reg_1(tmp1, src1, src2);
  7594     mulL_reg_reg_1(tmp2, tmp1, src2);
  7595     subL_reg_reg_1(dst,  src1, tmp2);
  7596   %}
  7597 %}
  7599 // Register Long Remainder
  7600 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7601   match(Set dst (ModL src1 src2));
  7602   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7603   expand %{
  7604     iRegL tmp1;
  7605     iRegL tmp2;
  7606     divL_reg_imm13_1(tmp1, src1, src2);
  7607     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7608     subL_reg_reg_2  (dst,  src1, tmp2);
  7609   %}
  7610 %}
  7612 // Integer Shift Instructions
  7613 // Register Shift Left
  7614 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7615   match(Set dst (LShiftI src1 src2));
  7617   size(4);
  7618   format %{ "SLL    $src1,$src2,$dst" %}
  7619   opcode(Assembler::sll_op3, Assembler::arith_op);
  7620   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7621   ins_pipe(ialu_reg_reg);
  7622 %}
  7624 // Register Shift Left Immediate
  7625 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7626   match(Set dst (LShiftI src1 src2));
  7628   size(4);
  7629   format %{ "SLL    $src1,$src2,$dst" %}
  7630   opcode(Assembler::sll_op3, Assembler::arith_op);
  7631   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7632   ins_pipe(ialu_reg_imm);
  7633 %}
  7635 // Register Shift Left
  7636 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7637   match(Set dst (LShiftL src1 src2));
  7639   size(4);
  7640   format %{ "SLLX   $src1,$src2,$dst" %}
  7641   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7642   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7643   ins_pipe(ialu_reg_reg);
  7644 %}
  7646 // Register Shift Left Immediate
  7647 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7648   match(Set dst (LShiftL src1 src2));
  7650   size(4);
  7651   format %{ "SLLX   $src1,$src2,$dst" %}
  7652   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7653   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7654   ins_pipe(ialu_reg_imm);
  7655 %}
  7657 // Register Arithmetic Shift Right
  7658 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7659   match(Set dst (RShiftI src1 src2));
  7660   size(4);
  7661   format %{ "SRA    $src1,$src2,$dst" %}
  7662   opcode(Assembler::sra_op3, Assembler::arith_op);
  7663   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7664   ins_pipe(ialu_reg_reg);
  7665 %}
  7667 // Register Arithmetic Shift Right Immediate
  7668 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7669   match(Set dst (RShiftI src1 src2));
  7671   size(4);
  7672   format %{ "SRA    $src1,$src2,$dst" %}
  7673   opcode(Assembler::sra_op3, Assembler::arith_op);
  7674   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7675   ins_pipe(ialu_reg_imm);
  7676 %}
  7678 // Register Shift Right Arithmatic Long
  7679 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7680   match(Set dst (RShiftL src1 src2));
  7682   size(4);
  7683   format %{ "SRAX   $src1,$src2,$dst" %}
  7684   opcode(Assembler::srax_op3, Assembler::arith_op);
  7685   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7686   ins_pipe(ialu_reg_reg);
  7687 %}
  7689 // Register Shift Left Immediate
  7690 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7691   match(Set dst (RShiftL src1 src2));
  7693   size(4);
  7694   format %{ "SRAX   $src1,$src2,$dst" %}
  7695   opcode(Assembler::srax_op3, Assembler::arith_op);
  7696   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7697   ins_pipe(ialu_reg_imm);
  7698 %}
  7700 // Register Shift Right
  7701 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7702   match(Set dst (URShiftI src1 src2));
  7704   size(4);
  7705   format %{ "SRL    $src1,$src2,$dst" %}
  7706   opcode(Assembler::srl_op3, Assembler::arith_op);
  7707   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7708   ins_pipe(ialu_reg_reg);
  7709 %}
  7711 // Register Shift Right Immediate
  7712 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7713   match(Set dst (URShiftI src1 src2));
  7715   size(4);
  7716   format %{ "SRL    $src1,$src2,$dst" %}
  7717   opcode(Assembler::srl_op3, Assembler::arith_op);
  7718   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7719   ins_pipe(ialu_reg_imm);
  7720 %}
  7722 // Register Shift Right
  7723 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7724   match(Set dst (URShiftL src1 src2));
  7726   size(4);
  7727   format %{ "SRLX   $src1,$src2,$dst" %}
  7728   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7729   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7730   ins_pipe(ialu_reg_reg);
  7731 %}
  7733 // Register Shift Right Immediate
  7734 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7735   match(Set dst (URShiftL src1 src2));
  7737   size(4);
  7738   format %{ "SRLX   $src1,$src2,$dst" %}
  7739   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7740   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7741   ins_pipe(ialu_reg_imm);
  7742 %}
  7744 // Register Shift Right Immediate with a CastP2X
  7745 #ifdef _LP64
  7746 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7747   match(Set dst (URShiftL (CastP2X src1) src2));
  7748   size(4);
  7749   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7750   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7751   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7752   ins_pipe(ialu_reg_imm);
  7753 %}
  7754 #else
  7755 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7756   match(Set dst (URShiftI (CastP2X src1) src2));
  7757   size(4);
  7758   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7759   opcode(Assembler::srl_op3, Assembler::arith_op);
  7760   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7761   ins_pipe(ialu_reg_imm);
  7762 %}
  7763 #endif
  7766 //----------Floating Point Arithmetic Instructions-----------------------------
  7768 //  Add float single precision
  7769 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7770   match(Set dst (AddF src1 src2));
  7772   size(4);
  7773   format %{ "FADDS  $src1,$src2,$dst" %}
  7774   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7775   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7776   ins_pipe(faddF_reg_reg);
  7777 %}
  7779 //  Add float double precision
  7780 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7781   match(Set dst (AddD src1 src2));
  7783   size(4);
  7784   format %{ "FADDD  $src1,$src2,$dst" %}
  7785   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7786   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7787   ins_pipe(faddD_reg_reg);
  7788 %}
  7790 //  Sub float single precision
  7791 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7792   match(Set dst (SubF src1 src2));
  7794   size(4);
  7795   format %{ "FSUBS  $src1,$src2,$dst" %}
  7796   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7797   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7798   ins_pipe(faddF_reg_reg);
  7799 %}
  7801 //  Sub float double precision
  7802 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7803   match(Set dst (SubD src1 src2));
  7805   size(4);
  7806   format %{ "FSUBD  $src1,$src2,$dst" %}
  7807   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7808   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7809   ins_pipe(faddD_reg_reg);
  7810 %}
  7812 //  Mul float single precision
  7813 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7814   match(Set dst (MulF src1 src2));
  7816   size(4);
  7817   format %{ "FMULS  $src1,$src2,$dst" %}
  7818   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7819   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7820   ins_pipe(fmulF_reg_reg);
  7821 %}
  7823 //  Mul float double precision
  7824 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7825   match(Set dst (MulD src1 src2));
  7827   size(4);
  7828   format %{ "FMULD  $src1,$src2,$dst" %}
  7829   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7830   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7831   ins_pipe(fmulD_reg_reg);
  7832 %}
  7834 //  Div float single precision
  7835 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7836   match(Set dst (DivF src1 src2));
  7838   size(4);
  7839   format %{ "FDIVS  $src1,$src2,$dst" %}
  7840   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7841   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7842   ins_pipe(fdivF_reg_reg);
  7843 %}
  7845 //  Div float double precision
  7846 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7847   match(Set dst (DivD src1 src2));
  7849   size(4);
  7850   format %{ "FDIVD  $src1,$src2,$dst" %}
  7851   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7852   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7853   ins_pipe(fdivD_reg_reg);
  7854 %}
  7856 //  Absolute float double precision
  7857 instruct absD_reg(regD dst, regD src) %{
  7858   match(Set dst (AbsD src));
  7860   format %{ "FABSd  $src,$dst" %}
  7861   ins_encode(fabsd(dst, src));
  7862   ins_pipe(faddD_reg);
  7863 %}
  7865 //  Absolute float single precision
  7866 instruct absF_reg(regF dst, regF src) %{
  7867   match(Set dst (AbsF src));
  7869   format %{ "FABSs  $src,$dst" %}
  7870   ins_encode(fabss(dst, src));
  7871   ins_pipe(faddF_reg);
  7872 %}
  7874 instruct negF_reg(regF dst, regF src) %{
  7875   match(Set dst (NegF src));
  7877   size(4);
  7878   format %{ "FNEGs  $src,$dst" %}
  7879   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7880   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7881   ins_pipe(faddF_reg);
  7882 %}
  7884 instruct negD_reg(regD dst, regD src) %{
  7885   match(Set dst (NegD src));
  7887   format %{ "FNEGd  $src,$dst" %}
  7888   ins_encode(fnegd(dst, src));
  7889   ins_pipe(faddD_reg);
  7890 %}
  7892 //  Sqrt float double precision
  7893 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7894   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7896   size(4);
  7897   format %{ "FSQRTS $src,$dst" %}
  7898   ins_encode(fsqrts(dst, src));
  7899   ins_pipe(fdivF_reg_reg);
  7900 %}
  7902 //  Sqrt float double precision
  7903 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7904   match(Set dst (SqrtD src));
  7906   size(4);
  7907   format %{ "FSQRTD $src,$dst" %}
  7908   ins_encode(fsqrtd(dst, src));
  7909   ins_pipe(fdivD_reg_reg);
  7910 %}
  7912 //----------Logical Instructions-----------------------------------------------
  7913 // And Instructions
  7914 // Register And
  7915 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7916   match(Set dst (AndI src1 src2));
  7918   size(4);
  7919   format %{ "AND    $src1,$src2,$dst" %}
  7920   opcode(Assembler::and_op3, Assembler::arith_op);
  7921   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7922   ins_pipe(ialu_reg_reg);
  7923 %}
  7925 // Immediate And
  7926 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7927   match(Set dst (AndI src1 src2));
  7929   size(4);
  7930   format %{ "AND    $src1,$src2,$dst" %}
  7931   opcode(Assembler::and_op3, Assembler::arith_op);
  7932   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7933   ins_pipe(ialu_reg_imm);
  7934 %}
  7936 // Register And Long
  7937 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7938   match(Set dst (AndL src1 src2));
  7940   ins_cost(DEFAULT_COST);
  7941   size(4);
  7942   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7943   opcode(Assembler::and_op3, Assembler::arith_op);
  7944   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7945   ins_pipe(ialu_reg_reg);
  7946 %}
  7948 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7949   match(Set dst (AndL src1 con));
  7951   ins_cost(DEFAULT_COST);
  7952   size(4);
  7953   format %{ "AND    $src1,$con,$dst\t! long" %}
  7954   opcode(Assembler::and_op3, Assembler::arith_op);
  7955   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7956   ins_pipe(ialu_reg_imm);
  7957 %}
  7959 // Or Instructions
  7960 // Register Or
  7961 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7962   match(Set dst (OrI src1 src2));
  7964   size(4);
  7965   format %{ "OR     $src1,$src2,$dst" %}
  7966   opcode(Assembler::or_op3, Assembler::arith_op);
  7967   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7968   ins_pipe(ialu_reg_reg);
  7969 %}
  7971 // Immediate Or
  7972 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7973   match(Set dst (OrI src1 src2));
  7975   size(4);
  7976   format %{ "OR     $src1,$src2,$dst" %}
  7977   opcode(Assembler::or_op3, Assembler::arith_op);
  7978   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7979   ins_pipe(ialu_reg_imm);
  7980 %}
  7982 // Register Or Long
  7983 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7984   match(Set dst (OrL src1 src2));
  7986   ins_cost(DEFAULT_COST);
  7987   size(4);
  7988   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7989   opcode(Assembler::or_op3, Assembler::arith_op);
  7990   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7991   ins_pipe(ialu_reg_reg);
  7992 %}
  7994 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7995   match(Set dst (OrL src1 con));
  7996   ins_cost(DEFAULT_COST*2);
  7998   ins_cost(DEFAULT_COST);
  7999   size(4);
  8000   format %{ "OR     $src1,$con,$dst\t! long" %}
  8001   opcode(Assembler::or_op3, Assembler::arith_op);
  8002   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8003   ins_pipe(ialu_reg_imm);
  8004 %}
  8006 #ifndef _LP64
  8008 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8009 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8010   match(Set dst (OrI src1 (CastP2X src2)));
  8012   size(4);
  8013   format %{ "OR     $src1,$src2,$dst" %}
  8014   opcode(Assembler::or_op3, Assembler::arith_op);
  8015   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8016   ins_pipe(ialu_reg_reg);
  8017 %}
  8019 #else
  8021 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8022   match(Set dst (OrL src1 (CastP2X src2)));
  8024   ins_cost(DEFAULT_COST);
  8025   size(4);
  8026   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8027   opcode(Assembler::or_op3, Assembler::arith_op);
  8028   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8029   ins_pipe(ialu_reg_reg);
  8030 %}
  8032 #endif
  8034 // Xor Instructions
  8035 // Register Xor
  8036 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8037   match(Set dst (XorI src1 src2));
  8039   size(4);
  8040   format %{ "XOR    $src1,$src2,$dst" %}
  8041   opcode(Assembler::xor_op3, Assembler::arith_op);
  8042   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8043   ins_pipe(ialu_reg_reg);
  8044 %}
  8046 // Immediate Xor
  8047 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8048   match(Set dst (XorI src1 src2));
  8050   size(4);
  8051   format %{ "XOR    $src1,$src2,$dst" %}
  8052   opcode(Assembler::xor_op3, Assembler::arith_op);
  8053   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8054   ins_pipe(ialu_reg_imm);
  8055 %}
  8057 // Register Xor Long
  8058 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8059   match(Set dst (XorL src1 src2));
  8061   ins_cost(DEFAULT_COST);
  8062   size(4);
  8063   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8064   opcode(Assembler::xor_op3, Assembler::arith_op);
  8065   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8066   ins_pipe(ialu_reg_reg);
  8067 %}
  8069 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8070   match(Set dst (XorL src1 con));
  8072   ins_cost(DEFAULT_COST);
  8073   size(4);
  8074   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8075   opcode(Assembler::xor_op3, Assembler::arith_op);
  8076   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8077   ins_pipe(ialu_reg_imm);
  8078 %}
  8080 //----------Convert to Boolean-------------------------------------------------
  8081 // Nice hack for 32-bit tests but doesn't work for
  8082 // 64-bit pointers.
  8083 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8084   match(Set dst (Conv2B src));
  8085   effect( KILL ccr );
  8086   ins_cost(DEFAULT_COST*2);
  8087   format %{ "CMP    R_G0,$src\n\t"
  8088             "ADDX   R_G0,0,$dst" %}
  8089   ins_encode( enc_to_bool( src, dst ) );
  8090   ins_pipe(ialu_reg_ialu);
  8091 %}
  8093 #ifndef _LP64
  8094 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8095   match(Set dst (Conv2B src));
  8096   effect( KILL ccr );
  8097   ins_cost(DEFAULT_COST*2);
  8098   format %{ "CMP    R_G0,$src\n\t"
  8099             "ADDX   R_G0,0,$dst" %}
  8100   ins_encode( enc_to_bool( src, dst ) );
  8101   ins_pipe(ialu_reg_ialu);
  8102 %}
  8103 #else
  8104 instruct convP2B( iRegI dst, iRegP src ) %{
  8105   match(Set dst (Conv2B src));
  8106   ins_cost(DEFAULT_COST*2);
  8107   format %{ "MOV    $src,$dst\n\t"
  8108             "MOVRNZ $src,1,$dst" %}
  8109   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8110   ins_pipe(ialu_clr_and_mover);
  8111 %}
  8112 #endif
  8114 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8115   match(Set dst (CmpLTMask p q));
  8116   effect( KILL ccr );
  8117   ins_cost(DEFAULT_COST*4);
  8118   format %{ "CMP    $p,$q\n\t"
  8119             "MOV    #0,$dst\n\t"
  8120             "BLT,a  .+8\n\t"
  8121             "MOV    #-1,$dst" %}
  8122   ins_encode( enc_ltmask(p,q,dst) );
  8123   ins_pipe(ialu_reg_reg_ialu);
  8124 %}
  8126 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8127   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8128   effect(KILL ccr, TEMP tmp);
  8129   ins_cost(DEFAULT_COST*3);
  8131   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8132             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8133             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8134   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8135   ins_pipe( cadd_cmpltmask );
  8136 %}
  8138 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8139   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  8140   effect( KILL ccr, TEMP tmp);
  8141   ins_cost(DEFAULT_COST*3);
  8143   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8144             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8145             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8146   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8147   ins_pipe( cadd_cmpltmask );
  8148 %}
  8150 //----------Arithmetic Conversion Instructions---------------------------------
  8151 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8153 instruct convD2F_reg(regF dst, regD src) %{
  8154   match(Set dst (ConvD2F src));
  8155   size(4);
  8156   format %{ "FDTOS  $src,$dst" %}
  8157   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8158   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8159   ins_pipe(fcvtD2F);
  8160 %}
  8163 // Convert a double to an int in a float register.
  8164 // If the double is a NAN, stuff a zero in instead.
  8165 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8166   effect(DEF dst, USE src, KILL fcc0);
  8167   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8168             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8169             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8170             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8171             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8172       "skip:" %}
  8173   ins_encode(form_d2i_helper(src,dst));
  8174   ins_pipe(fcvtD2I);
  8175 %}
  8177 instruct convD2I_reg(stackSlotI dst, regD src) %{
  8178   match(Set dst (ConvD2I src));
  8179   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8180   expand %{
  8181     regF tmp;
  8182     convD2I_helper(tmp, src);
  8183     regF_to_stkI(dst, tmp);
  8184   %}
  8185 %}
  8187 // Convert a double to a long in a double register.
  8188 // If the double is a NAN, stuff a zero in instead.
  8189 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8190   effect(DEF dst, USE src, KILL fcc0);
  8191   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8192             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8193             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8194             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8195             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8196       "skip:" %}
  8197   ins_encode(form_d2l_helper(src,dst));
  8198   ins_pipe(fcvtD2L);
  8199 %}
  8202 // Double to Long conversion
  8203 instruct convD2L_reg(stackSlotL dst, regD src) %{
  8204   match(Set dst (ConvD2L src));
  8205   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8206   expand %{
  8207     regD tmp;
  8208     convD2L_helper(tmp, src);
  8209     regD_to_stkL(dst, tmp);
  8210   %}
  8211 %}
  8214 instruct convF2D_reg(regD dst, regF src) %{
  8215   match(Set dst (ConvF2D src));
  8216   format %{ "FSTOD  $src,$dst" %}
  8217   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8218   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8219   ins_pipe(fcvtF2D);
  8220 %}
  8223 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8224   effect(DEF dst, USE src, KILL fcc0);
  8225   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8226             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8227             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8228             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8229             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8230       "skip:" %}
  8231   ins_encode(form_f2i_helper(src,dst));
  8232   ins_pipe(fcvtF2I);
  8233 %}
  8235 instruct convF2I_reg(stackSlotI dst, regF src) %{
  8236   match(Set dst (ConvF2I src));
  8237   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8238   expand %{
  8239     regF tmp;
  8240     convF2I_helper(tmp, src);
  8241     regF_to_stkI(dst, tmp);
  8242   %}
  8243 %}
  8246 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8247   effect(DEF dst, USE src, KILL fcc0);
  8248   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8249             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8250             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8251             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8252             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8253       "skip:" %}
  8254   ins_encode(form_f2l_helper(src,dst));
  8255   ins_pipe(fcvtF2L);
  8256 %}
  8258 // Float to Long conversion
  8259 instruct convF2L_reg(stackSlotL dst, regF src) %{
  8260   match(Set dst (ConvF2L src));
  8261   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8262   expand %{
  8263     regD tmp;
  8264     convF2L_helper(tmp, src);
  8265     regD_to_stkL(dst, tmp);
  8266   %}
  8267 %}
  8270 instruct convI2D_helper(regD dst, regF tmp) %{
  8271   effect(USE tmp, DEF dst);
  8272   format %{ "FITOD  $tmp,$dst" %}
  8273   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8274   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8275   ins_pipe(fcvtI2D);
  8276 %}
  8278 instruct convI2D_reg(stackSlotI src, regD dst) %{
  8279   match(Set dst (ConvI2D src));
  8280   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8281   expand %{
  8282     regF tmp;
  8283     stkI_to_regF( tmp, src);
  8284     convI2D_helper( dst, tmp);
  8285   %}
  8286 %}
  8288 instruct convI2D_mem( regD_low dst, memory mem ) %{
  8289   match(Set dst (ConvI2D (LoadI mem)));
  8290   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8291   size(8);
  8292   format %{ "LDF    $mem,$dst\n\t"
  8293             "FITOD  $dst,$dst" %}
  8294   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8295   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8296   ins_pipe(floadF_mem);
  8297 %}
  8300 instruct convI2F_helper(regF dst, regF tmp) %{
  8301   effect(DEF dst, USE tmp);
  8302   format %{ "FITOS  $tmp,$dst" %}
  8303   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8304   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8305   ins_pipe(fcvtI2F);
  8306 %}
  8308 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  8309   match(Set dst (ConvI2F src));
  8310   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8311   expand %{
  8312     regF tmp;
  8313     stkI_to_regF(tmp,src);
  8314     convI2F_helper(dst, tmp);
  8315   %}
  8316 %}
  8318 instruct convI2F_mem( regF dst, memory mem ) %{
  8319   match(Set dst (ConvI2F (LoadI mem)));
  8320   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8321   size(8);
  8322   format %{ "LDF    $mem,$dst\n\t"
  8323             "FITOS  $dst,$dst" %}
  8324   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8325   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8326   ins_pipe(floadF_mem);
  8327 %}
  8330 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8331   match(Set dst (ConvI2L src));
  8332   size(4);
  8333   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8334   opcode(Assembler::sra_op3, Assembler::arith_op);
  8335   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8336   ins_pipe(ialu_reg_reg);
  8337 %}
  8339 // Zero-extend convert int to long
  8340 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8341   match(Set dst (AndL (ConvI2L src) mask) );
  8342   size(4);
  8343   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8344   opcode(Assembler::srl_op3, Assembler::arith_op);
  8345   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8346   ins_pipe(ialu_reg_reg);
  8347 %}
  8349 // Zero-extend long
  8350 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8351   match(Set dst (AndL src mask) );
  8352   size(4);
  8353   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8354   opcode(Assembler::srl_op3, Assembler::arith_op);
  8355   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8356   ins_pipe(ialu_reg_reg);
  8357 %}
  8359 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8360   match(Set dst (MoveF2I src));
  8361   effect(DEF dst, USE src);
  8362   ins_cost(MEMORY_REF_COST);
  8364   size(4);
  8365   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8366   opcode(Assembler::lduw_op3);
  8367   ins_encode(simple_form3_mem_reg( src, dst ) );
  8368   ins_pipe(iload_mem);
  8369 %}
  8371 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8372   match(Set dst (MoveI2F src));
  8373   effect(DEF dst, USE src);
  8374   ins_cost(MEMORY_REF_COST);
  8376   size(4);
  8377   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8378   opcode(Assembler::ldf_op3);
  8379   ins_encode(simple_form3_mem_reg(src, dst));
  8380   ins_pipe(floadF_stk);
  8381 %}
  8383 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8384   match(Set dst (MoveD2L src));
  8385   effect(DEF dst, USE src);
  8386   ins_cost(MEMORY_REF_COST);
  8388   size(4);
  8389   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8390   opcode(Assembler::ldx_op3);
  8391   ins_encode(simple_form3_mem_reg( src, dst ) );
  8392   ins_pipe(iload_mem);
  8393 %}
  8395 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8396   match(Set dst (MoveL2D src));
  8397   effect(DEF dst, USE src);
  8398   ins_cost(MEMORY_REF_COST);
  8400   size(4);
  8401   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8402   opcode(Assembler::lddf_op3);
  8403   ins_encode(simple_form3_mem_reg(src, dst));
  8404   ins_pipe(floadD_stk);
  8405 %}
  8407 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8408   match(Set dst (MoveF2I src));
  8409   effect(DEF dst, USE src);
  8410   ins_cost(MEMORY_REF_COST);
  8412   size(4);
  8413   format %{ "STF   $src,$dst\t!MoveF2I" %}
  8414   opcode(Assembler::stf_op3);
  8415   ins_encode(simple_form3_mem_reg(dst, src));
  8416   ins_pipe(fstoreF_stk_reg);
  8417 %}
  8419 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8420   match(Set dst (MoveI2F src));
  8421   effect(DEF dst, USE src);
  8422   ins_cost(MEMORY_REF_COST);
  8424   size(4);
  8425   format %{ "STW    $src,$dst\t!MoveI2F" %}
  8426   opcode(Assembler::stw_op3);
  8427   ins_encode(simple_form3_mem_reg( dst, src ) );
  8428   ins_pipe(istore_mem_reg);
  8429 %}
  8431 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8432   match(Set dst (MoveD2L src));
  8433   effect(DEF dst, USE src);
  8434   ins_cost(MEMORY_REF_COST);
  8436   size(4);
  8437   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  8438   opcode(Assembler::stdf_op3);
  8439   ins_encode(simple_form3_mem_reg(dst, src));
  8440   ins_pipe(fstoreD_stk_reg);
  8441 %}
  8443 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8444   match(Set dst (MoveL2D src));
  8445   effect(DEF dst, USE src);
  8446   ins_cost(MEMORY_REF_COST);
  8448   size(4);
  8449   format %{ "STX    $src,$dst\t!MoveL2D" %}
  8450   opcode(Assembler::stx_op3);
  8451   ins_encode(simple_form3_mem_reg( dst, src ) );
  8452   ins_pipe(istore_mem_reg);
  8453 %}
  8456 //-----------
  8457 // Long to Double conversion using V8 opcodes.
  8458 // Still useful because cheetah traps and becomes
  8459 // amazingly slow for some common numbers.
  8461 // Magic constant, 0x43300000
  8462 instruct loadConI_x43300000(iRegI dst) %{
  8463   effect(DEF dst);
  8464   size(4);
  8465   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8466   ins_encode(SetHi22(0x43300000, dst));
  8467   ins_pipe(ialu_none);
  8468 %}
  8470 // Magic constant, 0x41f00000
  8471 instruct loadConI_x41f00000(iRegI dst) %{
  8472   effect(DEF dst);
  8473   size(4);
  8474   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8475   ins_encode(SetHi22(0x41f00000, dst));
  8476   ins_pipe(ialu_none);
  8477 %}
  8479 // Construct a double from two float halves
  8480 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8481   effect(DEF dst, USE src1, USE src2);
  8482   size(8);
  8483   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8484             "FMOVS  $src2.lo,$dst.lo" %}
  8485   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8486   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8487   ins_pipe(faddD_reg_reg);
  8488 %}
  8490 // Convert integer in high half of a double register (in the lower half of
  8491 // the double register file) to double
  8492 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8493   effect(DEF dst, USE src);
  8494   size(4);
  8495   format %{ "FITOD  $src,$dst" %}
  8496   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8497   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8498   ins_pipe(fcvtLHi2D);
  8499 %}
  8501 // Add float double precision
  8502 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8503   effect(DEF dst, USE src1, USE src2);
  8504   size(4);
  8505   format %{ "FADDD  $src1,$src2,$dst" %}
  8506   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8507   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8508   ins_pipe(faddD_reg_reg);
  8509 %}
  8511 // Sub float double precision
  8512 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8513   effect(DEF dst, USE src1, USE src2);
  8514   size(4);
  8515   format %{ "FSUBD  $src1,$src2,$dst" %}
  8516   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8517   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8518   ins_pipe(faddD_reg_reg);
  8519 %}
  8521 // Mul float double precision
  8522 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8523   effect(DEF dst, USE src1, USE src2);
  8524   size(4);
  8525   format %{ "FMULD  $src1,$src2,$dst" %}
  8526   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8527   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8528   ins_pipe(fmulD_reg_reg);
  8529 %}
  8531 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8532   match(Set dst (ConvL2D src));
  8533   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8535   expand %{
  8536     regD_low   tmpsrc;
  8537     iRegI      ix43300000;
  8538     iRegI      ix41f00000;
  8539     stackSlotL lx43300000;
  8540     stackSlotL lx41f00000;
  8541     regD_low   dx43300000;
  8542     regD       dx41f00000;
  8543     regD       tmp1;
  8544     regD_low   tmp2;
  8545     regD       tmp3;
  8546     regD       tmp4;
  8548     stkL_to_regD(tmpsrc, src);
  8550     loadConI_x43300000(ix43300000);
  8551     loadConI_x41f00000(ix41f00000);
  8552     regI_to_stkLHi(lx43300000, ix43300000);
  8553     regI_to_stkLHi(lx41f00000, ix41f00000);
  8554     stkL_to_regD(dx43300000, lx43300000);
  8555     stkL_to_regD(dx41f00000, lx41f00000);
  8557     convI2D_regDHi_regD(tmp1, tmpsrc);
  8558     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8559     subD_regD_regD(tmp3, tmp2, dx43300000);
  8560     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8561     addD_regD_regD(dst, tmp3, tmp4);
  8562   %}
  8563 %}
  8565 // Long to Double conversion using fast fxtof
  8566 instruct convL2D_helper(regD dst, regD tmp) %{
  8567   effect(DEF dst, USE tmp);
  8568   size(4);
  8569   format %{ "FXTOD  $tmp,$dst" %}
  8570   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8571   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8572   ins_pipe(fcvtL2D);
  8573 %}
  8575 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8576   predicate(VM_Version::has_fast_fxtof());
  8577   match(Set dst (ConvL2D src));
  8578   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8579   expand %{
  8580     regD tmp;
  8581     stkL_to_regD(tmp, src);
  8582     convL2D_helper(dst, tmp);
  8583   %}
  8584 %}
  8586 //-----------
  8587 // Long to Float conversion using V8 opcodes.
  8588 // Still useful because cheetah traps and becomes
  8589 // amazingly slow for some common numbers.
  8591 // Long to Float conversion using fast fxtof
  8592 instruct convL2F_helper(regF dst, regD tmp) %{
  8593   effect(DEF dst, USE tmp);
  8594   size(4);
  8595   format %{ "FXTOS  $tmp,$dst" %}
  8596   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8597   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8598   ins_pipe(fcvtL2F);
  8599 %}
  8601 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8602   match(Set dst (ConvL2F src));
  8603   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8604   expand %{
  8605     regD tmp;
  8606     stkL_to_regD(tmp, src);
  8607     convL2F_helper(dst, tmp);
  8608   %}
  8609 %}
  8610 //-----------
  8612 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8613   match(Set dst (ConvL2I src));
  8614 #ifndef _LP64
  8615   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8616   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8617   ins_pipe(ialu_move_reg_I_to_L);
  8618 #else
  8619   size(4);
  8620   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8621   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8622   ins_pipe(ialu_reg);
  8623 #endif
  8624 %}
  8626 // Register Shift Right Immediate
  8627 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8628   match(Set dst (ConvL2I (RShiftL src cnt)));
  8630   size(4);
  8631   format %{ "SRAX   $src,$cnt,$dst" %}
  8632   opcode(Assembler::srax_op3, Assembler::arith_op);
  8633   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8634   ins_pipe(ialu_reg_imm);
  8635 %}
  8637 // Replicate scalar to packed byte values in Double register
  8638 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8639   effect(DEF dst, USE src);
  8640   format %{ "SLLX  $src,56,$dst\n\t"
  8641             "SRLX  $dst, 8,O7\n\t"
  8642             "OR    $dst,O7,$dst\n\t"
  8643             "SRLX  $dst,16,O7\n\t"
  8644             "OR    $dst,O7,$dst\n\t"
  8645             "SRLX  $dst,32,O7\n\t"
  8646             "OR    $dst,O7,$dst\t! replicate8B" %}
  8647   ins_encode( enc_repl8b(src, dst));
  8648   ins_pipe(ialu_reg);
  8649 %}
  8651 // Replicate scalar to packed byte values in Double register
  8652 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8653   match(Set dst (Replicate8B src));
  8654   expand %{
  8655     iRegL tmp;
  8656     Repl8B_reg_helper(tmp, src);
  8657     regL_to_stkD(dst, tmp);
  8658   %}
  8659 %}
  8661 // Replicate scalar constant to packed byte values in Double register
  8662 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8663   match(Set dst (Replicate8B con));
  8664   effect(KILL tmp);
  8665   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8666   ins_encode %{
  8667     // XXX This is a quick fix for 6833573.
  8668     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8669     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8670     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8671   %}
  8672   ins_pipe(loadConFD);
  8673 %}
  8675 // Replicate scalar to packed char values into stack slot
  8676 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8677   effect(DEF dst, USE src);
  8678   format %{ "SLLX  $src,48,$dst\n\t"
  8679             "SRLX  $dst,16,O7\n\t"
  8680             "OR    $dst,O7,$dst\n\t"
  8681             "SRLX  $dst,32,O7\n\t"
  8682             "OR    $dst,O7,$dst\t! replicate4C" %}
  8683   ins_encode( enc_repl4s(src, dst) );
  8684   ins_pipe(ialu_reg);
  8685 %}
  8687 // Replicate scalar to packed char values into stack slot
  8688 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8689   match(Set dst (Replicate4C src));
  8690   expand %{
  8691     iRegL tmp;
  8692     Repl4C_reg_helper(tmp, src);
  8693     regL_to_stkD(dst, tmp);
  8694   %}
  8695 %}
  8697 // Replicate scalar constant to packed char values in Double register
  8698 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8699   match(Set dst (Replicate4C con));
  8700   effect(KILL tmp);
  8701   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8702   ins_encode %{
  8703     // XXX This is a quick fix for 6833573.
  8704     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8705     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8706     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8707   %}
  8708   ins_pipe(loadConFD);
  8709 %}
  8711 // Replicate scalar to packed short values into stack slot
  8712 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8713   effect(DEF dst, USE src);
  8714   format %{ "SLLX  $src,48,$dst\n\t"
  8715             "SRLX  $dst,16,O7\n\t"
  8716             "OR    $dst,O7,$dst\n\t"
  8717             "SRLX  $dst,32,O7\n\t"
  8718             "OR    $dst,O7,$dst\t! replicate4S" %}
  8719   ins_encode( enc_repl4s(src, dst) );
  8720   ins_pipe(ialu_reg);
  8721 %}
  8723 // Replicate scalar to packed short values into stack slot
  8724 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8725   match(Set dst (Replicate4S src));
  8726   expand %{
  8727     iRegL tmp;
  8728     Repl4S_reg_helper(tmp, src);
  8729     regL_to_stkD(dst, tmp);
  8730   %}
  8731 %}
  8733 // Replicate scalar constant to packed short values in Double register
  8734 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8735   match(Set dst (Replicate4S con));
  8736   effect(KILL tmp);
  8737   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8738   ins_encode %{
  8739     // XXX This is a quick fix for 6833573.
  8740     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8741     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8742     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8743   %}
  8744   ins_pipe(loadConFD);
  8745 %}
  8747 // Replicate scalar to packed int values in Double register
  8748 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8749   effect(DEF dst, USE src);
  8750   format %{ "SLLX  $src,32,$dst\n\t"
  8751             "SRLX  $dst,32,O7\n\t"
  8752             "OR    $dst,O7,$dst\t! replicate2I" %}
  8753   ins_encode( enc_repl2i(src, dst));
  8754   ins_pipe(ialu_reg);
  8755 %}
  8757 // Replicate scalar to packed int values in Double register
  8758 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8759   match(Set dst (Replicate2I src));
  8760   expand %{
  8761     iRegL tmp;
  8762     Repl2I_reg_helper(tmp, src);
  8763     regL_to_stkD(dst, tmp);
  8764   %}
  8765 %}
  8767 // Replicate scalar zero constant to packed int values in Double register
  8768 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  8769   match(Set dst (Replicate2I con));
  8770   effect(KILL tmp);
  8771   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  8772   ins_encode %{
  8773     // XXX This is a quick fix for 6833573.
  8774     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  8775     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  8776     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8777   %}
  8778   ins_pipe(loadConFD);
  8779 %}
  8781 //----------Control Flow Instructions------------------------------------------
  8782 // Compare Instructions
  8783 // Compare Integers
  8784 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8785   match(Set icc (CmpI op1 op2));
  8786   effect( DEF icc, USE op1, USE op2 );
  8788   size(4);
  8789   format %{ "CMP    $op1,$op2" %}
  8790   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8791   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8792   ins_pipe(ialu_cconly_reg_reg);
  8793 %}
  8795 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8796   match(Set icc (CmpU op1 op2));
  8798   size(4);
  8799   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8800   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8801   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8802   ins_pipe(ialu_cconly_reg_reg);
  8803 %}
  8805 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8806   match(Set icc (CmpI op1 op2));
  8807   effect( DEF icc, USE op1 );
  8809   size(4);
  8810   format %{ "CMP    $op1,$op2" %}
  8811   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8812   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8813   ins_pipe(ialu_cconly_reg_imm);
  8814 %}
  8816 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8817   match(Set icc (CmpI (AndI op1 op2) zero));
  8819   size(4);
  8820   format %{ "BTST   $op2,$op1" %}
  8821   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8822   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8823   ins_pipe(ialu_cconly_reg_reg_zero);
  8824 %}
  8826 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8827   match(Set icc (CmpI (AndI op1 op2) zero));
  8829   size(4);
  8830   format %{ "BTST   $op2,$op1" %}
  8831   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8832   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8833   ins_pipe(ialu_cconly_reg_imm_zero);
  8834 %}
  8836 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8837   match(Set xcc (CmpL op1 op2));
  8838   effect( DEF xcc, USE op1, USE op2 );
  8840   size(4);
  8841   format %{ "CMP    $op1,$op2\t\t! long" %}
  8842   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8843   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8844   ins_pipe(ialu_cconly_reg_reg);
  8845 %}
  8847 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8848   match(Set xcc (CmpL op1 con));
  8849   effect( DEF xcc, USE op1, USE con );
  8851   size(4);
  8852   format %{ "CMP    $op1,$con\t\t! long" %}
  8853   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8854   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8855   ins_pipe(ialu_cconly_reg_reg);
  8856 %}
  8858 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8859   match(Set xcc (CmpL (AndL op1 op2) zero));
  8860   effect( DEF xcc, USE op1, USE op2 );
  8862   size(4);
  8863   format %{ "BTST   $op1,$op2\t\t! long" %}
  8864   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8865   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8866   ins_pipe(ialu_cconly_reg_reg);
  8867 %}
  8869 // useful for checking the alignment of a pointer:
  8870 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8871   match(Set xcc (CmpL (AndL op1 con) zero));
  8872   effect( DEF xcc, USE op1, USE con );
  8874   size(4);
  8875   format %{ "BTST   $op1,$con\t\t! long" %}
  8876   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8877   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8878   ins_pipe(ialu_cconly_reg_reg);
  8879 %}
  8881 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8882   match(Set icc (CmpU op1 op2));
  8884   size(4);
  8885   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8886   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8887   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8888   ins_pipe(ialu_cconly_reg_imm);
  8889 %}
  8891 // Compare Pointers
  8892 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8893   match(Set pcc (CmpP op1 op2));
  8895   size(4);
  8896   format %{ "CMP    $op1,$op2\t! ptr" %}
  8897   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8898   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8899   ins_pipe(ialu_cconly_reg_reg);
  8900 %}
  8902 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8903   match(Set pcc (CmpP op1 op2));
  8905   size(4);
  8906   format %{ "CMP    $op1,$op2\t! ptr" %}
  8907   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8908   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8909   ins_pipe(ialu_cconly_reg_imm);
  8910 %}
  8912 // Compare Narrow oops
  8913 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8914   match(Set icc (CmpN op1 op2));
  8916   size(4);
  8917   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8918   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8919   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8920   ins_pipe(ialu_cconly_reg_reg);
  8921 %}
  8923 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8924   match(Set icc (CmpN op1 op2));
  8926   size(4);
  8927   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8928   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8929   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8930   ins_pipe(ialu_cconly_reg_imm);
  8931 %}
  8933 //----------Max and Min--------------------------------------------------------
  8934 // Min Instructions
  8935 // Conditional move for min
  8936 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8937   effect( USE_DEF op2, USE op1, USE icc );
  8939   size(4);
  8940   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8941   opcode(Assembler::less);
  8942   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8943   ins_pipe(ialu_reg_flags);
  8944 %}
  8946 // Min Register with Register.
  8947 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8948   match(Set op2 (MinI op1 op2));
  8949   ins_cost(DEFAULT_COST*2);
  8950   expand %{
  8951     flagsReg icc;
  8952     compI_iReg(icc,op1,op2);
  8953     cmovI_reg_lt(op2,op1,icc);
  8954   %}
  8955 %}
  8957 // Max Instructions
  8958 // Conditional move for max
  8959 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8960   effect( USE_DEF op2, USE op1, USE icc );
  8961   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8962   opcode(Assembler::greater);
  8963   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8964   ins_pipe(ialu_reg_flags);
  8965 %}
  8967 // Max Register with Register
  8968 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8969   match(Set op2 (MaxI op1 op2));
  8970   ins_cost(DEFAULT_COST*2);
  8971   expand %{
  8972     flagsReg icc;
  8973     compI_iReg(icc,op1,op2);
  8974     cmovI_reg_gt(op2,op1,icc);
  8975   %}
  8976 %}
  8979 //----------Float Compares----------------------------------------------------
  8980 // Compare floating, generate condition code
  8981 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8982   match(Set fcc (CmpF src1 src2));
  8984   size(4);
  8985   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8986   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8987   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8988   ins_pipe(faddF_fcc_reg_reg_zero);
  8989 %}
  8991 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8992   match(Set fcc (CmpD src1 src2));
  8994   size(4);
  8995   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8996   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8997   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8998   ins_pipe(faddD_fcc_reg_reg_zero);
  8999 %}
  9002 // Compare floating, generate -1,0,1
  9003 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9004   match(Set dst (CmpF3 src1 src2));
  9005   effect(KILL fcc0);
  9006   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9007   format %{ "fcmpl  $dst,$src1,$src2" %}
  9008   // Primary = float
  9009   opcode( true );
  9010   ins_encode( floating_cmp( dst, src1, src2 ) );
  9011   ins_pipe( floating_cmp );
  9012 %}
  9014 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9015   match(Set dst (CmpD3 src1 src2));
  9016   effect(KILL fcc0);
  9017   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9018   format %{ "dcmpl  $dst,$src1,$src2" %}
  9019   // Primary = double (not float)
  9020   opcode( false );
  9021   ins_encode( floating_cmp( dst, src1, src2 ) );
  9022   ins_pipe( floating_cmp );
  9023 %}
  9025 //----------Branches---------------------------------------------------------
  9026 // Jump
  9027 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9028 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9029   match(Jump switch_val);
  9031   ins_cost(350);
  9033   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9034              "LD     [O7 + $switch_val], O7\n\t"
  9035              "JUMP   O7"
  9036          %}
  9037   ins_encode %{
  9038     // Calculate table address into a register.
  9039     Register table_reg;
  9040     Register label_reg = O7;
  9041     if (constant_offset() == 0) {
  9042       table_reg = $constanttablebase;
  9043     } else {
  9044       table_reg = O7;
  9045       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9046       __ add($constanttablebase, con_offset, table_reg);
  9049     // Jump to base address + switch value
  9050     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9051     __ jmp(label_reg, G0);
  9052     __ delayed()->nop();
  9053   %}
  9054   ins_pc_relative(1);
  9055   ins_pipe(ialu_reg_reg);
  9056 %}
  9058 // Direct Branch.  Use V8 version with longer range.
  9059 instruct branch(label labl) %{
  9060   match(Goto);
  9061   effect(USE labl);
  9063   size(8);
  9064   ins_cost(BRANCH_COST);
  9065   format %{ "BA     $labl" %}
  9066   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  9067   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  9068   ins_encode( enc_ba( labl ) );
  9069   ins_pc_relative(1);
  9070   ins_pipe(br);
  9071 %}
  9073 // Conditional Direct Branch
  9074 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9075   match(If cmp icc);
  9076   effect(USE labl);
  9078   size(8);
  9079   ins_cost(BRANCH_COST);
  9080   format %{ "BP$cmp   $icc,$labl" %}
  9081   // Prim = bits 24-22, Secnd = bits 31-30
  9082   ins_encode( enc_bp( labl, cmp, icc ) );
  9083   ins_pc_relative(1);
  9084   ins_pipe(br_cc);
  9085 %}
  9087 // Branch-on-register tests all 64 bits.  We assume that values
  9088 // in 64-bit registers always remains zero or sign extended
  9089 // unless our code munges the high bits.  Interrupts can chop
  9090 // the high order bits to zero or sign at any time.
  9091 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9092   match(If cmp (CmpI op1 zero));
  9093   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9094   effect(USE labl);
  9096   size(8);
  9097   ins_cost(BRANCH_COST);
  9098   format %{ "BR$cmp   $op1,$labl" %}
  9099   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9100   ins_pc_relative(1);
  9101   ins_pipe(br_reg);
  9102 %}
  9104 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9105   match(If cmp (CmpP op1 null));
  9106   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9107   effect(USE labl);
  9109   size(8);
  9110   ins_cost(BRANCH_COST);
  9111   format %{ "BR$cmp   $op1,$labl" %}
  9112   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9113   ins_pc_relative(1);
  9114   ins_pipe(br_reg);
  9115 %}
  9117 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9118   match(If cmp (CmpL op1 zero));
  9119   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9120   effect(USE labl);
  9122   size(8);
  9123   ins_cost(BRANCH_COST);
  9124   format %{ "BR$cmp   $op1,$labl" %}
  9125   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9126   ins_pc_relative(1);
  9127   ins_pipe(br_reg);
  9128 %}
  9130 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9131   match(If cmp icc);
  9132   effect(USE labl);
  9134   format %{ "BP$cmp  $icc,$labl" %}
  9135   // Prim = bits 24-22, Secnd = bits 31-30
  9136   ins_encode( enc_bp( labl, cmp, icc ) );
  9137   ins_pc_relative(1);
  9138   ins_pipe(br_cc);
  9139 %}
  9141 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9142   match(If cmp pcc);
  9143   effect(USE labl);
  9145   size(8);
  9146   ins_cost(BRANCH_COST);
  9147   format %{ "BP$cmp  $pcc,$labl" %}
  9148   // Prim = bits 24-22, Secnd = bits 31-30
  9149   ins_encode( enc_bpx( labl, cmp, pcc ) );
  9150   ins_pc_relative(1);
  9151   ins_pipe(br_cc);
  9152 %}
  9154 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9155   match(If cmp fcc);
  9156   effect(USE labl);
  9158   size(8);
  9159   ins_cost(BRANCH_COST);
  9160   format %{ "FBP$cmp $fcc,$labl" %}
  9161   // Prim = bits 24-22, Secnd = bits 31-30
  9162   ins_encode( enc_fbp( labl, cmp, fcc ) );
  9163   ins_pc_relative(1);
  9164   ins_pipe(br_fcc);
  9165 %}
  9167 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9168   match(CountedLoopEnd cmp icc);
  9169   effect(USE labl);
  9171   size(8);
  9172   ins_cost(BRANCH_COST);
  9173   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9174   // Prim = bits 24-22, Secnd = bits 31-30
  9175   ins_encode( enc_bp( labl, cmp, icc ) );
  9176   ins_pc_relative(1);
  9177   ins_pipe(br_cc);
  9178 %}
  9180 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9181   match(CountedLoopEnd cmp icc);
  9182   effect(USE labl);
  9184   size(8);
  9185   ins_cost(BRANCH_COST);
  9186   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9187   // Prim = bits 24-22, Secnd = bits 31-30
  9188   ins_encode( enc_bp( labl, cmp, icc ) );
  9189   ins_pc_relative(1);
  9190   ins_pipe(br_cc);
  9191 %}
  9193 // ============================================================================
  9194 // Long Compare
  9195 //
  9196 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9197 // is tricky.  The flavor of compare used depends on whether we are testing
  9198 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9199 // The GE test is the negated LT test.  The LE test can be had by commuting
  9200 // the operands (yielding a GE test) and then negating; negate again for the
  9201 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9202 // NE test is negated from that.
  9204 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9205 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9206 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9207 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9208 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9209 // foo match ends up with the wrong leaf.  One fix is to not match both
  9210 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9211 // both forms beat the trinary form of long-compare and both are very useful
  9212 // on Intel which has so few registers.
  9214 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9215   match(If cmp xcc);
  9216   effect(USE labl);
  9218   size(8);
  9219   ins_cost(BRANCH_COST);
  9220   format %{ "BP$cmp   $xcc,$labl" %}
  9221   // Prim = bits 24-22, Secnd = bits 31-30
  9222   ins_encode( enc_bpl( labl, cmp, xcc ) );
  9223   ins_pc_relative(1);
  9224   ins_pipe(br_cc);
  9225 %}
  9227 // Manifest a CmpL3 result in an integer register.  Very painful.
  9228 // This is the test to avoid.
  9229 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9230   match(Set dst (CmpL3 src1 src2) );
  9231   effect( KILL ccr );
  9232   ins_cost(6*DEFAULT_COST);
  9233   size(24);
  9234   format %{ "CMP    $src1,$src2\t\t! long\n"
  9235           "\tBLT,a,pn done\n"
  9236           "\tMOV    -1,$dst\t! delay slot\n"
  9237           "\tBGT,a,pn done\n"
  9238           "\tMOV    1,$dst\t! delay slot\n"
  9239           "\tCLR    $dst\n"
  9240     "done:"     %}
  9241   ins_encode( cmpl_flag(src1,src2,dst) );
  9242   ins_pipe(cmpL_reg);
  9243 %}
  9245 // Conditional move
  9246 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9247   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9248   ins_cost(150);
  9249   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9250   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9251   ins_pipe(ialu_reg);
  9252 %}
  9254 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9255   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9256   ins_cost(140);
  9257   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9258   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9259   ins_pipe(ialu_imm);
  9260 %}
  9262 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9263   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9264   ins_cost(150);
  9265   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9266   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9267   ins_pipe(ialu_reg);
  9268 %}
  9270 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9271   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9272   ins_cost(140);
  9273   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9274   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9275   ins_pipe(ialu_imm);
  9276 %}
  9278 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9279   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9280   ins_cost(150);
  9281   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9282   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9283   ins_pipe(ialu_reg);
  9284 %}
  9286 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9287   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9288   ins_cost(150);
  9289   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9290   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9291   ins_pipe(ialu_reg);
  9292 %}
  9294 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9295   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9296   ins_cost(140);
  9297   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9298   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9299   ins_pipe(ialu_imm);
  9300 %}
  9302 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9303   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9304   ins_cost(150);
  9305   opcode(0x101);
  9306   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9307   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9308   ins_pipe(int_conditional_float_move);
  9309 %}
  9311 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9312   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9313   ins_cost(150);
  9314   opcode(0x102);
  9315   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9316   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9317   ins_pipe(int_conditional_float_move);
  9318 %}
  9320 // ============================================================================
  9321 // Safepoint Instruction
  9322 instruct safePoint_poll(iRegP poll) %{
  9323   match(SafePoint poll);
  9324   effect(USE poll);
  9326   size(4);
  9327 #ifdef _LP64
  9328   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9329 #else
  9330   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9331 #endif
  9332   ins_encode %{
  9333     __ relocate(relocInfo::poll_type);
  9334     __ ld_ptr($poll$$Register, 0, G0);
  9335   %}
  9336   ins_pipe(loadPollP);
  9337 %}
  9339 // ============================================================================
  9340 // Call Instructions
  9341 // Call Java Static Instruction
  9342 instruct CallStaticJavaDirect( method meth ) %{
  9343   match(CallStaticJava);
  9344   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9345   effect(USE meth);
  9347   size(8);
  9348   ins_cost(CALL_COST);
  9349   format %{ "CALL,static  ; NOP ==> " %}
  9350   ins_encode( Java_Static_Call( meth ), call_epilog );
  9351   ins_pc_relative(1);
  9352   ins_pipe(simple_call);
  9353 %}
  9355 // Call Java Static Instruction (method handle version)
  9356 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9357   match(CallStaticJava);
  9358   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9359   effect(USE meth, KILL l7_mh_SP_save);
  9361   size(8);
  9362   ins_cost(CALL_COST);
  9363   format %{ "CALL,static/MethodHandle" %}
  9364   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9365   ins_pc_relative(1);
  9366   ins_pipe(simple_call);
  9367 %}
  9369 // Call Java Dynamic Instruction
  9370 instruct CallDynamicJavaDirect( method meth ) %{
  9371   match(CallDynamicJava);
  9372   effect(USE meth);
  9374   ins_cost(CALL_COST);
  9375   format %{ "SET    (empty),R_G5\n\t"
  9376             "CALL,dynamic  ; NOP ==> " %}
  9377   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9378   ins_pc_relative(1);
  9379   ins_pipe(call);
  9380 %}
  9382 // Call Runtime Instruction
  9383 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9384   match(CallRuntime);
  9385   effect(USE meth, KILL l7);
  9386   ins_cost(CALL_COST);
  9387   format %{ "CALL,runtime" %}
  9388   ins_encode( Java_To_Runtime( meth ),
  9389               call_epilog, adjust_long_from_native_call );
  9390   ins_pc_relative(1);
  9391   ins_pipe(simple_call);
  9392 %}
  9394 // Call runtime without safepoint - same as CallRuntime
  9395 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9396   match(CallLeaf);
  9397   effect(USE meth, KILL l7);
  9398   ins_cost(CALL_COST);
  9399   format %{ "CALL,runtime leaf" %}
  9400   ins_encode( Java_To_Runtime( meth ),
  9401               call_epilog,
  9402               adjust_long_from_native_call );
  9403   ins_pc_relative(1);
  9404   ins_pipe(simple_call);
  9405 %}
  9407 // Call runtime without safepoint - same as CallLeaf
  9408 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9409   match(CallLeafNoFP);
  9410   effect(USE meth, KILL l7);
  9411   ins_cost(CALL_COST);
  9412   format %{ "CALL,runtime leaf nofp" %}
  9413   ins_encode( Java_To_Runtime( meth ),
  9414               call_epilog,
  9415               adjust_long_from_native_call );
  9416   ins_pc_relative(1);
  9417   ins_pipe(simple_call);
  9418 %}
  9420 // Tail Call; Jump from runtime stub to Java code.
  9421 // Also known as an 'interprocedural jump'.
  9422 // Target of jump will eventually return to caller.
  9423 // TailJump below removes the return address.
  9424 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9425   match(TailCall jump_target method_oop );
  9427   ins_cost(CALL_COST);
  9428   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9429   ins_encode(form_jmpl(jump_target));
  9430   ins_pipe(tail_call);
  9431 %}
  9434 // Return Instruction
  9435 instruct Ret() %{
  9436   match(Return);
  9438   // The epilogue node did the ret already.
  9439   size(0);
  9440   format %{ "! return" %}
  9441   ins_encode();
  9442   ins_pipe(empty);
  9443 %}
  9446 // Tail Jump; remove the return address; jump to target.
  9447 // TailCall above leaves the return address around.
  9448 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9449 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9450 // "restore" before this instruction (in Epilogue), we need to materialize it
  9451 // in %i0.
  9452 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9453   match( TailJump jump_target ex_oop );
  9454   ins_cost(CALL_COST);
  9455   format %{ "! discard R_O7\n\t"
  9456             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9457   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9458   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9459   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9460   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9461   ins_pipe(tail_call);
  9462 %}
  9464 // Create exception oop: created by stack-crawling runtime code.
  9465 // Created exception is now available to this handler, and is setup
  9466 // just prior to jumping to this handler.  No code emitted.
  9467 instruct CreateException( o0RegP ex_oop )
  9468 %{
  9469   match(Set ex_oop (CreateEx));
  9470   ins_cost(0);
  9472   size(0);
  9473   // use the following format syntax
  9474   format %{ "! exception oop is in R_O0; no code emitted" %}
  9475   ins_encode();
  9476   ins_pipe(empty);
  9477 %}
  9480 // Rethrow exception:
  9481 // The exception oop will come in the first argument position.
  9482 // Then JUMP (not call) to the rethrow stub code.
  9483 instruct RethrowException()
  9484 %{
  9485   match(Rethrow);
  9486   ins_cost(CALL_COST);
  9488   // use the following format syntax
  9489   format %{ "Jmp    rethrow_stub" %}
  9490   ins_encode(enc_rethrow);
  9491   ins_pipe(tail_call);
  9492 %}
  9495 // Die now
  9496 instruct ShouldNotReachHere( )
  9497 %{
  9498   match(Halt);
  9499   ins_cost(CALL_COST);
  9501   size(4);
  9502   // Use the following format syntax
  9503   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9504   ins_encode( form2_illtrap() );
  9505   ins_pipe(tail_call);
  9506 %}
  9508 // ============================================================================
  9509 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9510 // array for an instance of the superklass.  Set a hidden internal cache on a
  9511 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9512 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9513 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9514   match(Set index (PartialSubtypeCheck sub super));
  9515   effect( KILL pcc, KILL o7 );
  9516   ins_cost(DEFAULT_COST*10);
  9517   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9518   ins_encode( enc_PartialSubtypeCheck() );
  9519   ins_pipe(partial_subtype_check_pipe);
  9520 %}
  9522 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9523   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9524   effect( KILL idx, KILL o7 );
  9525   ins_cost(DEFAULT_COST*10);
  9526   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9527   ins_encode( enc_PartialSubtypeCheck() );
  9528   ins_pipe(partial_subtype_check_pipe);
  9529 %}
  9532 // ============================================================================
  9533 // inlined locking and unlocking
  9535 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9536   match(Set pcc (FastLock object box));
  9538   effect(KILL scratch, TEMP scratch2);
  9539   ins_cost(100);
  9541   size(4*112);       // conservative overestimation ...
  9542   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9543   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9544   ins_pipe(long_memory_op);
  9545 %}
  9548 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9549   match(Set pcc (FastUnlock object box));
  9550   effect(KILL scratch, TEMP scratch2);
  9551   ins_cost(100);
  9553   size(4*120);       // conservative overestimation ...
  9554   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9555   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9556   ins_pipe(long_memory_op);
  9557 %}
  9559 // Count and Base registers are fixed because the allocator cannot
  9560 // kill unknown registers.  The encodings are generic.
  9561 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9562   match(Set dummy (ClearArray cnt base));
  9563   effect(TEMP temp, KILL ccr);
  9564   ins_cost(300);
  9565   format %{ "MOV    $cnt,$temp\n"
  9566     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9567     "        BRge   loop\t\t! Clearing loop\n"
  9568     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9569   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9570   ins_pipe(long_memory_op);
  9571 %}
  9573 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
  9574                         o7RegI tmp, flagsReg ccr) %{
  9575   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9576   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
  9577   ins_cost(300);
  9578   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  9579   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
  9580   ins_pipe(long_memory_op);
  9581 %}
  9583 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
  9584                        o7RegI tmp, flagsReg ccr) %{
  9585   match(Set result (StrEquals (Binary str1 str2) cnt));
  9586   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
  9587   ins_cost(300);
  9588   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  9589   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
  9590   ins_pipe(long_memory_op);
  9591 %}
  9593 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
  9594                       o7RegI tmp2, flagsReg ccr) %{
  9595   match(Set result (AryEq ary1 ary2));
  9596   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9597   ins_cost(300);
  9598   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  9599   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
  9600   ins_pipe(long_memory_op);
  9601 %}
  9604 //---------- Zeros Count Instructions ------------------------------------------
  9606 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  9607   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9608   match(Set dst (CountLeadingZerosI src));
  9609   effect(TEMP dst, TEMP tmp, KILL cr);
  9611   // x |= (x >> 1);
  9612   // x |= (x >> 2);
  9613   // x |= (x >> 4);
  9614   // x |= (x >> 8);
  9615   // x |= (x >> 16);
  9616   // return (WORDBITS - popc(x));
  9617   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
  9618             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
  9619             "OR      $dst,$tmp,$dst\n\t"
  9620             "SRL     $dst,2,$tmp\n\t"
  9621             "OR      $dst,$tmp,$dst\n\t"
  9622             "SRL     $dst,4,$tmp\n\t"
  9623             "OR      $dst,$tmp,$dst\n\t"
  9624             "SRL     $dst,8,$tmp\n\t"
  9625             "OR      $dst,$tmp,$dst\n\t"
  9626             "SRL     $dst,16,$tmp\n\t"
  9627             "OR      $dst,$tmp,$dst\n\t"
  9628             "POPC    $dst,$dst\n\t"
  9629             "MOV     32,$tmp\n\t"
  9630             "SUB     $tmp,$dst,$dst" %}
  9631   ins_encode %{
  9632     Register Rdst = $dst$$Register;
  9633     Register Rsrc = $src$$Register;
  9634     Register Rtmp = $tmp$$Register;
  9635     __ srl(Rsrc, 1,    Rtmp);
  9636     __ srl(Rsrc, 0,    Rdst);
  9637     __ or3(Rdst, Rtmp, Rdst);
  9638     __ srl(Rdst, 2,    Rtmp);
  9639     __ or3(Rdst, Rtmp, Rdst);
  9640     __ srl(Rdst, 4,    Rtmp);
  9641     __ or3(Rdst, Rtmp, Rdst);
  9642     __ srl(Rdst, 8,    Rtmp);
  9643     __ or3(Rdst, Rtmp, Rdst);
  9644     __ srl(Rdst, 16,   Rtmp);
  9645     __ or3(Rdst, Rtmp, Rdst);
  9646     __ popc(Rdst, Rdst);
  9647     __ mov(BitsPerInt, Rtmp);
  9648     __ sub(Rtmp, Rdst, Rdst);
  9649   %}
  9650   ins_pipe(ialu_reg);
  9651 %}
  9653 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
  9654   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9655   match(Set dst (CountLeadingZerosL src));
  9656   effect(TEMP dst, TEMP tmp, KILL cr);
  9658   // x |= (x >> 1);
  9659   // x |= (x >> 2);
  9660   // x |= (x >> 4);
  9661   // x |= (x >> 8);
  9662   // x |= (x >> 16);
  9663   // x |= (x >> 32);
  9664   // return (WORDBITS - popc(x));
  9665   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
  9666             "OR      $src,$tmp,$dst\n\t"
  9667             "SRLX    $dst,2,$tmp\n\t"
  9668             "OR      $dst,$tmp,$dst\n\t"
  9669             "SRLX    $dst,4,$tmp\n\t"
  9670             "OR      $dst,$tmp,$dst\n\t"
  9671             "SRLX    $dst,8,$tmp\n\t"
  9672             "OR      $dst,$tmp,$dst\n\t"
  9673             "SRLX    $dst,16,$tmp\n\t"
  9674             "OR      $dst,$tmp,$dst\n\t"
  9675             "SRLX    $dst,32,$tmp\n\t"
  9676             "OR      $dst,$tmp,$dst\n\t"
  9677             "POPC    $dst,$dst\n\t"
  9678             "MOV     64,$tmp\n\t"
  9679             "SUB     $tmp,$dst,$dst" %}
  9680   ins_encode %{
  9681     Register Rdst = $dst$$Register;
  9682     Register Rsrc = $src$$Register;
  9683     Register Rtmp = $tmp$$Register;
  9684     __ srlx(Rsrc, 1,    Rtmp);
  9685     __ or3( Rsrc, Rtmp, Rdst);
  9686     __ srlx(Rdst, 2,    Rtmp);
  9687     __ or3( Rdst, Rtmp, Rdst);
  9688     __ srlx(Rdst, 4,    Rtmp);
  9689     __ or3( Rdst, Rtmp, Rdst);
  9690     __ srlx(Rdst, 8,    Rtmp);
  9691     __ or3( Rdst, Rtmp, Rdst);
  9692     __ srlx(Rdst, 16,   Rtmp);
  9693     __ or3( Rdst, Rtmp, Rdst);
  9694     __ srlx(Rdst, 32,   Rtmp);
  9695     __ or3( Rdst, Rtmp, Rdst);
  9696     __ popc(Rdst, Rdst);
  9697     __ mov(BitsPerLong, Rtmp);
  9698     __ sub(Rtmp, Rdst, Rdst);
  9699   %}
  9700   ins_pipe(ialu_reg);
  9701 %}
  9703 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  9704   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9705   match(Set dst (CountTrailingZerosI src));
  9706   effect(TEMP dst, KILL cr);
  9708   // return popc(~x & (x - 1));
  9709   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
  9710             "ANDN    $dst,$src,$dst\n\t"
  9711             "SRL     $dst,R_G0,$dst\n\t"
  9712             "POPC    $dst,$dst" %}
  9713   ins_encode %{
  9714     Register Rdst = $dst$$Register;
  9715     Register Rsrc = $src$$Register;
  9716     __ sub(Rsrc, 1, Rdst);
  9717     __ andn(Rdst, Rsrc, Rdst);
  9718     __ srl(Rdst, G0, Rdst);
  9719     __ popc(Rdst, Rdst);
  9720   %}
  9721   ins_pipe(ialu_reg);
  9722 %}
  9724 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
  9725   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9726   match(Set dst (CountTrailingZerosL src));
  9727   effect(TEMP dst, KILL cr);
  9729   // return popc(~x & (x - 1));
  9730   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
  9731             "ANDN    $dst,$src,$dst\n\t"
  9732             "POPC    $dst,$dst" %}
  9733   ins_encode %{
  9734     Register Rdst = $dst$$Register;
  9735     Register Rsrc = $src$$Register;
  9736     __ sub(Rsrc, 1, Rdst);
  9737     __ andn(Rdst, Rsrc, Rdst);
  9738     __ popc(Rdst, Rdst);
  9739   %}
  9740   ins_pipe(ialu_reg);
  9741 %}
  9744 //---------- Population Count Instructions -------------------------------------
  9746 instruct popCountI(iRegI dst, iRegI src) %{
  9747   predicate(UsePopCountInstruction);
  9748   match(Set dst (PopCountI src));
  9750   format %{ "POPC   $src, $dst" %}
  9751   ins_encode %{
  9752     __ popc($src$$Register, $dst$$Register);
  9753   %}
  9754   ins_pipe(ialu_reg);
  9755 %}
  9757 // Note: Long.bitCount(long) returns an int.
  9758 instruct popCountL(iRegI dst, iRegL src) %{
  9759   predicate(UsePopCountInstruction);
  9760   match(Set dst (PopCountL src));
  9762   format %{ "POPC   $src, $dst" %}
  9763   ins_encode %{
  9764     __ popc($src$$Register, $dst$$Register);
  9765   %}
  9766   ins_pipe(ialu_reg);
  9767 %}
  9770 // ============================================================================
  9771 //------------Bytes reverse--------------------------------------------------
  9773 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9774   match(Set dst (ReverseBytesI src));
  9776   // Op cost is artificially doubled to make sure that load or store
  9777   // instructions are preferred over this one which requires a spill
  9778   // onto a stack slot.
  9779   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9780   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9782   ins_encode %{
  9783     __ set($src$$disp + STACK_BIAS, O7);
  9784     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9785   %}
  9786   ins_pipe( iload_mem );
  9787 %}
  9789 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9790   match(Set dst (ReverseBytesL src));
  9792   // Op cost is artificially doubled to make sure that load or store
  9793   // instructions are preferred over this one which requires a spill
  9794   // onto a stack slot.
  9795   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9796   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9798   ins_encode %{
  9799     __ set($src$$disp + STACK_BIAS, O7);
  9800     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9801   %}
  9802   ins_pipe( iload_mem );
  9803 %}
  9805 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  9806   match(Set dst (ReverseBytesUS src));
  9808   // Op cost is artificially doubled to make sure that load or store
  9809   // instructions are preferred over this one which requires a spill
  9810   // onto a stack slot.
  9811   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9812   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
  9814   ins_encode %{
  9815     // the value was spilled as an int so bias the load
  9816     __ set($src$$disp + STACK_BIAS + 2, O7);
  9817     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9818   %}
  9819   ins_pipe( iload_mem );
  9820 %}
  9822 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  9823   match(Set dst (ReverseBytesS src));
  9825   // Op cost is artificially doubled to make sure that load or store
  9826   // instructions are preferred over this one which requires a spill
  9827   // onto a stack slot.
  9828   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9829   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
  9831   ins_encode %{
  9832     // the value was spilled as an int so bias the load
  9833     __ set($src$$disp + STACK_BIAS + 2, O7);
  9834     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9835   %}
  9836   ins_pipe( iload_mem );
  9837 %}
  9839 // Load Integer reversed byte order
  9840 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
  9841   match(Set dst (ReverseBytesI (LoadI src)));
  9843   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9844   size(4);
  9845   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9847   ins_encode %{
  9848     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9849   %}
  9850   ins_pipe(iload_mem);
  9851 %}
  9853 // Load Long - aligned and reversed
  9854 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
  9855   match(Set dst (ReverseBytesL (LoadL src)));
  9857   ins_cost(MEMORY_REF_COST);
  9858   size(4);
  9859   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9861   ins_encode %{
  9862     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9863   %}
  9864   ins_pipe(iload_mem);
  9865 %}
  9867 // Load unsigned short / char reversed byte order
  9868 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
  9869   match(Set dst (ReverseBytesUS (LoadUS src)));
  9871   ins_cost(MEMORY_REF_COST);
  9872   size(4);
  9873   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
  9875   ins_encode %{
  9876     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9877   %}
  9878   ins_pipe(iload_mem);
  9879 %}
  9881 // Load short reversed byte order
  9882 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
  9883   match(Set dst (ReverseBytesS (LoadS src)));
  9885   ins_cost(MEMORY_REF_COST);
  9886   size(4);
  9887   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
  9889   ins_encode %{
  9890     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9891   %}
  9892   ins_pipe(iload_mem);
  9893 %}
  9895 // Store Integer reversed byte order
  9896 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
  9897   match(Set dst (StoreI dst (ReverseBytesI src)));
  9899   ins_cost(MEMORY_REF_COST);
  9900   size(4);
  9901   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9903   ins_encode %{
  9904     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9905   %}
  9906   ins_pipe(istore_mem_reg);
  9907 %}
  9909 // Store Long reversed byte order
  9910 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
  9911   match(Set dst (StoreL dst (ReverseBytesL src)));
  9913   ins_cost(MEMORY_REF_COST);
  9914   size(4);
  9915   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9917   ins_encode %{
  9918     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9919   %}
  9920   ins_pipe(istore_mem_reg);
  9921 %}
  9923 // Store unsighed short/char reversed byte order
  9924 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
  9925   match(Set dst (StoreC dst (ReverseBytesUS src)));
  9927   ins_cost(MEMORY_REF_COST);
  9928   size(4);
  9929   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9931   ins_encode %{
  9932     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9933   %}
  9934   ins_pipe(istore_mem_reg);
  9935 %}
  9937 // Store short reversed byte order
  9938 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
  9939   match(Set dst (StoreC dst (ReverseBytesS src)));
  9941   ins_cost(MEMORY_REF_COST);
  9942   size(4);
  9943   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9945   ins_encode %{
  9946     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9947   %}
  9948   ins_pipe(istore_mem_reg);
  9949 %}
  9951 //----------PEEPHOLE RULES-----------------------------------------------------
  9952 // These must follow all instruction definitions as they use the names
  9953 // defined in the instructions definitions.
  9954 //
  9955 // peepmatch ( root_instr_name [preceding_instruction]* );
  9956 //
  9957 // peepconstraint %{
  9958 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9959 //  [, ...] );
  9960 // // instruction numbers are zero-based using left to right order in peepmatch
  9961 //
  9962 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9963 // // provide an instruction_number.operand_name for each operand that appears
  9964 // // in the replacement instruction's match rule
  9965 //
  9966 // ---------VM FLAGS---------------------------------------------------------
  9967 //
  9968 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9969 //
  9970 // Each peephole rule is given an identifying number starting with zero and
  9971 // increasing by one in the order seen by the parser.  An individual peephole
  9972 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9973 // on the command-line.
  9974 //
  9975 // ---------CURRENT LIMITATIONS----------------------------------------------
  9976 //
  9977 // Only match adjacent instructions in same basic block
  9978 // Only equality constraints
  9979 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9980 // Only one replacement instruction
  9981 //
  9982 // ---------EXAMPLE----------------------------------------------------------
  9983 //
  9984 // // pertinent parts of existing instructions in architecture description
  9985 // instruct movI(eRegI dst, eRegI src) %{
  9986 //   match(Set dst (CopyI src));
  9987 // %}
  9988 //
  9989 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9990 //   match(Set dst (AddI dst src));
  9991 //   effect(KILL cr);
  9992 // %}
  9993 //
  9994 // // Change (inc mov) to lea
  9995 // peephole %{
  9996 //   // increment preceeded by register-register move
  9997 //   peepmatch ( incI_eReg movI );
  9998 //   // require that the destination register of the increment
  9999 //   // match the destination register of the move
 10000 //   peepconstraint ( 0.dst == 1.dst );
 10001 //   // construct a replacement instruction that sets
 10002 //   // the destination to ( move's source register + one )
 10003 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10004 // %}
 10005 //
 10007 // // Change load of spilled value to only a spill
 10008 // instruct storeI(memory mem, eRegI src) %{
 10009 //   match(Set mem (StoreI mem src));
 10010 // %}
 10011 //
 10012 // instruct loadI(eRegI dst, memory mem) %{
 10013 //   match(Set dst (LoadI mem));
 10014 // %}
 10015 //
 10016 // peephole %{
 10017 //   peepmatch ( loadI storeI );
 10018 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10019 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10020 // %}
 10022 //----------SMARTSPILL RULES---------------------------------------------------
 10023 // These must follow all instruction definitions as they use the names
 10024 // defined in the instructions definitions.
 10025 //
 10026 // SPARC will probably not have any of these rules due to RISC instruction set.
 10028 //----------PIPELINE-----------------------------------------------------------
 10029 // Rules which define the behavior of the target architectures pipeline.

mercurial