src/share/vm/gc_implementation/g1/heapRegion.cpp

Mon, 09 Aug 2010 05:41:05 -0700

author
jcoomes
date
Mon, 09 Aug 2010 05:41:05 -0700
changeset 2064
5f429ee79634
parent 2060
2d160770d2e5
child 2073
bb847e31b836
permissions
-rw-r--r--

6966222: G1: simplify TaskQueue overflow handling
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_heapRegion.cpp.incl"
    28 int HeapRegion::LogOfHRGrainBytes = 0;
    29 int HeapRegion::LogOfHRGrainWords = 0;
    30 int HeapRegion::GrainBytes        = 0;
    31 int HeapRegion::GrainWords        = 0;
    32 int HeapRegion::CardsPerRegion    = 0;
    34 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    35                                  HeapRegion* hr, OopClosure* cl,
    36                                  CardTableModRefBS::PrecisionStyle precision,
    37                                  FilterKind fk) :
    38   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    39   _hr(hr), _fk(fk), _g1(g1)
    40 {}
    42 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    43                                                    OopClosure* oc) :
    44   _r_bottom(r->bottom()), _r_end(r->end()),
    45   _oc(oc), _out_of_region(0)
    46 {}
    48 class VerifyLiveClosure: public OopClosure {
    49 private:
    50   G1CollectedHeap* _g1h;
    51   CardTableModRefBS* _bs;
    52   oop _containing_obj;
    53   bool _failures;
    54   int _n_failures;
    55   bool _use_prev_marking;
    56 public:
    57   // use_prev_marking == true  -> use "prev" marking information,
    58   // use_prev_marking == false -> use "next" marking information
    59   VerifyLiveClosure(G1CollectedHeap* g1h, bool use_prev_marking) :
    60     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
    61     _failures(false), _n_failures(0), _use_prev_marking(use_prev_marking)
    62   {
    63     BarrierSet* bs = _g1h->barrier_set();
    64     if (bs->is_a(BarrierSet::CardTableModRef))
    65       _bs = (CardTableModRefBS*)bs;
    66   }
    68   void set_containing_obj(oop obj) {
    69     _containing_obj = obj;
    70   }
    72   bool failures() { return _failures; }
    73   int n_failures() { return _n_failures; }
    75   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
    76   virtual void do_oop(      oop* p) { do_oop_work(p); }
    78   void print_object(outputStream* out, oop obj) {
    79 #ifdef PRODUCT
    80     klassOop k = obj->klass();
    81     const char* class_name = instanceKlass::cast(k)->external_name();
    82     out->print_cr("class name %s", class_name);
    83 #else // PRODUCT
    84     obj->print_on(out);
    85 #endif // PRODUCT
    86   }
    88   template <class T> void do_oop_work(T* p) {
    89     assert(_containing_obj != NULL, "Precondition");
    90     assert(!_g1h->is_obj_dead_cond(_containing_obj, _use_prev_marking),
    91            "Precondition");
    92     T heap_oop = oopDesc::load_heap_oop(p);
    93     if (!oopDesc::is_null(heap_oop)) {
    94       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
    95       bool failed = false;
    96       if (!_g1h->is_in_closed_subset(obj) ||
    97           _g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
    98         if (!_failures) {
    99           gclog_or_tty->print_cr("");
   100           gclog_or_tty->print_cr("----------");
   101         }
   102         if (!_g1h->is_in_closed_subset(obj)) {
   103           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   104           gclog_or_tty->print_cr("Field "PTR_FORMAT
   105                                  " of live obj "PTR_FORMAT" in region "
   106                                  "["PTR_FORMAT", "PTR_FORMAT")",
   107                                  p, (void*) _containing_obj,
   108                                  from->bottom(), from->end());
   109           print_object(gclog_or_tty, _containing_obj);
   110           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   111                                  (void*) obj);
   112         } else {
   113           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   114           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   115           gclog_or_tty->print_cr("Field "PTR_FORMAT
   116                                  " of live obj "PTR_FORMAT" in region "
   117                                  "["PTR_FORMAT", "PTR_FORMAT")",
   118                                  p, (void*) _containing_obj,
   119                                  from->bottom(), from->end());
   120           print_object(gclog_or_tty, _containing_obj);
   121           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   122                                  "["PTR_FORMAT", "PTR_FORMAT")",
   123                                  (void*) obj, to->bottom(), to->end());
   124           print_object(gclog_or_tty, obj);
   125         }
   126         gclog_or_tty->print_cr("----------");
   127         _failures = true;
   128         failed = true;
   129         _n_failures++;
   130       }
   132       if (!_g1h->full_collection()) {
   133         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   134         HeapRegion* to   = _g1h->heap_region_containing(obj);
   135         if (from != NULL && to != NULL &&
   136             from != to &&
   137             !to->isHumongous()) {
   138           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   139           jbyte cv_field = *_bs->byte_for_const(p);
   140           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   142           bool is_bad = !(from->is_young()
   143                           || to->rem_set()->contains_reference(p)
   144                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   145                               (_containing_obj->is_objArray() ?
   146                                   cv_field == dirty
   147                                : cv_obj == dirty || cv_field == dirty));
   148           if (is_bad) {
   149             if (!_failures) {
   150               gclog_or_tty->print_cr("");
   151               gclog_or_tty->print_cr("----------");
   152             }
   153             gclog_or_tty->print_cr("Missing rem set entry:");
   154             gclog_or_tty->print_cr("Field "PTR_FORMAT
   155                           " of obj "PTR_FORMAT
   156                           ", in region %d ["PTR_FORMAT
   157                           ", "PTR_FORMAT"),",
   158                           p, (void*) _containing_obj,
   159                           from->hrs_index(),
   160                           from->bottom(),
   161                           from->end());
   162             _containing_obj->print_on(gclog_or_tty);
   163             gclog_or_tty->print_cr("points to obj "PTR_FORMAT
   164                           " in region %d ["PTR_FORMAT
   165                           ", "PTR_FORMAT").",
   166                           (void*) obj, to->hrs_index(),
   167                           to->bottom(), to->end());
   168             obj->print_on(gclog_or_tty);
   169             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   170                           cv_obj, cv_field);
   171             gclog_or_tty->print_cr("----------");
   172             _failures = true;
   173             if (!failed) _n_failures++;
   174           }
   175         }
   176       }
   177     }
   178   }
   179 };
   181 template<class ClosureType>
   182 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
   183                                HeapRegion* hr,
   184                                HeapWord* cur, HeapWord* top) {
   185   oop cur_oop = oop(cur);
   186   int oop_size = cur_oop->size();
   187   HeapWord* next_obj = cur + oop_size;
   188   while (next_obj < top) {
   189     // Keep filtering the remembered set.
   190     if (!g1h->is_obj_dead(cur_oop, hr)) {
   191       // Bottom lies entirely below top, so we can call the
   192       // non-memRegion version of oop_iterate below.
   193       cur_oop->oop_iterate(cl);
   194     }
   195     cur = next_obj;
   196     cur_oop = oop(cur);
   197     oop_size = cur_oop->size();
   198     next_obj = cur + oop_size;
   199   }
   200   return cur;
   201 }
   203 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
   204                                               HeapWord* bottom,
   205                                               HeapWord* top,
   206                                               OopClosure* cl) {
   207   G1CollectedHeap* g1h = _g1;
   209   int oop_size;
   211   OopClosure* cl2 = cl;
   212   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
   213   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
   214   switch (_fk) {
   215   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
   216   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
   217   }
   219   // Start filtering what we add to the remembered set. If the object is
   220   // not considered dead, either because it is marked (in the mark bitmap)
   221   // or it was allocated after marking finished, then we add it. Otherwise
   222   // we can safely ignore the object.
   223   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   224     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   225   } else {
   226     oop_size = oop(bottom)->size();
   227   }
   229   bottom += oop_size;
   231   if (bottom < top) {
   232     // We replicate the loop below for several kinds of possible filters.
   233     switch (_fk) {
   234     case NoFilterKind:
   235       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   236       break;
   237     case IntoCSFilterKind: {
   238       FilterIntoCSClosure filt(this, g1h, cl);
   239       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   240       break;
   241     }
   242     case OutOfRegionFilterKind: {
   243       FilterOutOfRegionClosure filt(_hr, cl);
   244       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   245       break;
   246     }
   247     default:
   248       ShouldNotReachHere();
   249     }
   251     // Last object. Need to do dead-obj filtering here too.
   252     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   253       oop(bottom)->oop_iterate(cl2, mr);
   254     }
   255   }
   256 }
   258 // Minimum region size; we won't go lower than that.
   259 // We might want to decrease this in the future, to deal with small
   260 // heaps a bit more efficiently.
   261 #define MIN_REGION_SIZE  (      1024 * 1024 )
   263 // Maximum region size; we don't go higher than that. There's a good
   264 // reason for having an upper bound. We don't want regions to get too
   265 // large, otherwise cleanup's effectiveness would decrease as there
   266 // will be fewer opportunities to find totally empty regions after
   267 // marking.
   268 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   270 // The automatic region size calculation will try to have around this
   271 // many regions in the heap (based on the min heap size).
   272 #define TARGET_REGION_NUMBER          2048
   274 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
   275   // region_size in bytes
   276   uintx region_size = G1HeapRegionSize;
   277   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   278     // We base the automatic calculation on the min heap size. This
   279     // can be problematic if the spread between min and max is quite
   280     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
   281     // the max size, the region size might be way too large for the
   282     // min size. Either way, some users might have to set the region
   283     // size manually for some -Xms / -Xmx combos.
   285     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
   286                        (uintx) MIN_REGION_SIZE);
   287   }
   289   int region_size_log = log2_long((jlong) region_size);
   290   // Recalculate the region size to make sure it's a power of
   291   // 2. This means that region_size is the largest power of 2 that's
   292   // <= what we've calculated so far.
   293   region_size = ((uintx)1 << region_size_log);
   295   // Now make sure that we don't go over or under our limits.
   296   if (region_size < MIN_REGION_SIZE) {
   297     region_size = MIN_REGION_SIZE;
   298   } else if (region_size > MAX_REGION_SIZE) {
   299     region_size = MAX_REGION_SIZE;
   300   }
   302   // And recalculate the log.
   303   region_size_log = log2_long((jlong) region_size);
   305   // Now, set up the globals.
   306   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   307   LogOfHRGrainBytes = region_size_log;
   309   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   310   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   312   guarantee(GrainBytes == 0, "we should only set it once");
   313   // The cast to int is safe, given that we've bounded region_size by
   314   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   315   GrainBytes = (int) region_size;
   317   guarantee(GrainWords == 0, "we should only set it once");
   318   GrainWords = GrainBytes >> LogHeapWordSize;
   319   guarantee(1 << LogOfHRGrainWords == GrainWords, "sanity");
   321   guarantee(CardsPerRegion == 0, "we should only set it once");
   322   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   323 }
   325 void HeapRegion::reset_after_compaction() {
   326   G1OffsetTableContigSpace::reset_after_compaction();
   327   // After a compaction the mark bitmap is invalid, so we must
   328   // treat all objects as being inside the unmarked area.
   329   zero_marked_bytes();
   330   init_top_at_mark_start();
   331 }
   333 DirtyCardToOopClosure*
   334 HeapRegion::new_dcto_closure(OopClosure* cl,
   335                              CardTableModRefBS::PrecisionStyle precision,
   336                              HeapRegionDCTOC::FilterKind fk) {
   337   return new HeapRegionDCTOC(G1CollectedHeap::heap(),
   338                              this, cl, precision, fk);
   339 }
   341 void HeapRegion::hr_clear(bool par, bool clear_space) {
   342   _humongous_type = NotHumongous;
   343   _humongous_start_region = NULL;
   344   _in_collection_set = false;
   345   _is_gc_alloc_region = false;
   347   // Age stuff (if parallel, this will be done separately, since it needs
   348   // to be sequential).
   349   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   351   set_young_index_in_cset(-1);
   352   uninstall_surv_rate_group();
   353   set_young_type(NotYoung);
   355   // In case it had been the start of a humongous sequence, reset its end.
   356   set_end(_orig_end);
   358   if (!par) {
   359     // If this is parallel, this will be done later.
   360     HeapRegionRemSet* hrrs = rem_set();
   361     if (hrrs != NULL) hrrs->clear();
   362     _claimed = InitialClaimValue;
   363   }
   364   zero_marked_bytes();
   365   set_sort_index(-1);
   367   _offsets.resize(HeapRegion::GrainWords);
   368   init_top_at_mark_start();
   369   if (clear_space) clear(SpaceDecorator::Mangle);
   370 }
   372 // <PREDICTION>
   373 void HeapRegion::calc_gc_efficiency() {
   374   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   375   _gc_efficiency = (double) garbage_bytes() /
   376                             g1h->predict_region_elapsed_time_ms(this, false);
   377 }
   378 // </PREDICTION>
   380 void HeapRegion::set_startsHumongous() {
   381   _humongous_type = StartsHumongous;
   382   _humongous_start_region = this;
   383   assert(end() == _orig_end, "Should be normal before alloc.");
   384 }
   386 bool HeapRegion::claimHeapRegion(jint claimValue) {
   387   jint current = _claimed;
   388   if (current != claimValue) {
   389     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   390     if (res == current) {
   391       return true;
   392     }
   393   }
   394   return false;
   395 }
   397 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   398   HeapWord* low = addr;
   399   HeapWord* high = end();
   400   while (low < high) {
   401     size_t diff = pointer_delta(high, low);
   402     // Must add one below to bias toward the high amount.  Otherwise, if
   403   // "high" were at the desired value, and "low" were one less, we
   404     // would not converge on "high".  This is not symmetric, because
   405     // we set "high" to a block start, which might be the right one,
   406     // which we don't do for "low".
   407     HeapWord* middle = low + (diff+1)/2;
   408     if (middle == high) return high;
   409     HeapWord* mid_bs = block_start_careful(middle);
   410     if (mid_bs < addr) {
   411       low = middle;
   412     } else {
   413       high = mid_bs;
   414     }
   415   }
   416   assert(low == high && low >= addr, "Didn't work.");
   417   return low;
   418 }
   420 void HeapRegion::set_next_on_unclean_list(HeapRegion* r) {
   421   assert(r == NULL || r->is_on_unclean_list(), "Malformed unclean list.");
   422   _next_in_special_set = r;
   423 }
   425 void HeapRegion::set_on_unclean_list(bool b) {
   426   _is_on_unclean_list = b;
   427 }
   429 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   430   G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
   431   hr_clear(false/*par*/, clear_space);
   432 }
   433 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   434 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   435 #endif // _MSC_VER
   438 HeapRegion::
   439 HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   440                      MemRegion mr, bool is_zeroed)
   441   : G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
   442     _next_fk(HeapRegionDCTOC::NoFilterKind),
   443     _hrs_index(-1),
   444     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   445     _in_collection_set(false), _is_gc_alloc_region(false),
   446     _is_on_free_list(false), _is_on_unclean_list(false),
   447     _next_in_special_set(NULL), _orig_end(NULL),
   448     _claimed(InitialClaimValue), _evacuation_failed(false),
   449     _prev_marked_bytes(0), _next_marked_bytes(0), _sort_index(-1),
   450     _young_type(NotYoung), _next_young_region(NULL),
   451     _next_dirty_cards_region(NULL),
   452     _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   453     _rem_set(NULL), _zfs(NotZeroFilled),
   454     _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   455     _predicted_bytes_to_copy(0)
   456 {
   457   _orig_end = mr.end();
   458   // Note that initialize() will set the start of the unmarked area of the
   459   // region.
   460   this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
   461   set_top(bottom());
   462   set_saved_mark();
   464   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
   466   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   467   // In case the region is allocated during a pause, note the top.
   468   // We haven't done any counting on a brand new region.
   469   _top_at_conc_mark_count = bottom();
   470 }
   472 class NextCompactionHeapRegionClosure: public HeapRegionClosure {
   473   const HeapRegion* _target;
   474   bool _target_seen;
   475   HeapRegion* _last;
   476   CompactibleSpace* _res;
   477 public:
   478   NextCompactionHeapRegionClosure(const HeapRegion* target) :
   479     _target(target), _target_seen(false), _res(NULL) {}
   480   bool doHeapRegion(HeapRegion* cur) {
   481     if (_target_seen) {
   482       if (!cur->isHumongous()) {
   483         _res = cur;
   484         return true;
   485       }
   486     } else if (cur == _target) {
   487       _target_seen = true;
   488     }
   489     return false;
   490   }
   491   CompactibleSpace* result() { return _res; }
   492 };
   494 CompactibleSpace* HeapRegion::next_compaction_space() const {
   495   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   496   // cast away const-ness
   497   HeapRegion* r = (HeapRegion*) this;
   498   NextCompactionHeapRegionClosure blk(r);
   499   g1h->heap_region_iterate_from(r, &blk);
   500   return blk.result();
   501 }
   503 void HeapRegion::set_continuesHumongous(HeapRegion* start) {
   504   // The order is important here.
   505   start->add_continuingHumongousRegion(this);
   506   _humongous_type = ContinuesHumongous;
   507   _humongous_start_region = start;
   508 }
   510 void HeapRegion::add_continuingHumongousRegion(HeapRegion* cont) {
   511   // Must join the blocks of the current H region seq with the block of the
   512   // added region.
   513   offsets()->join_blocks(bottom(), cont->bottom());
   514   arrayOop obj = (arrayOop)(bottom());
   515   obj->set_length((int) (obj->length() + cont->capacity()/jintSize));
   516   set_end(cont->end());
   517   set_top(cont->end());
   518 }
   520 void HeapRegion::save_marks() {
   521   set_saved_mark();
   522 }
   524 void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
   525   HeapWord* p = mr.start();
   526   HeapWord* e = mr.end();
   527   oop obj;
   528   while (p < e) {
   529     obj = oop(p);
   530     p += obj->oop_iterate(cl);
   531   }
   532   assert(p == e, "bad memregion: doesn't end on obj boundary");
   533 }
   535 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   536 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   537   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   538 }
   539 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   542 void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
   543   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   544 }
   546 #ifdef DEBUG
   547 HeapWord* HeapRegion::allocate(size_t size) {
   548   jint state = zero_fill_state();
   549   assert(!G1CollectedHeap::heap()->allocs_are_zero_filled() ||
   550          zero_fill_is_allocated(),
   551          "When ZF is on, only alloc in ZF'd regions");
   552   return G1OffsetTableContigSpace::allocate(size);
   553 }
   554 #endif
   556 void HeapRegion::set_zero_fill_state_work(ZeroFillState zfs) {
   557   assert(ZF_mon->owned_by_self() ||
   558          Universe::heap()->is_gc_active(),
   559          "Must hold the lock or be a full GC to modify.");
   560 #ifdef ASSERT
   561   if (top() != bottom() && zfs != Allocated) {
   562     ResourceMark rm;
   563     stringStream region_str;
   564     print_on(&region_str);
   565     assert(top() == bottom() || zfs == Allocated,
   566            err_msg("Region must be empty, or we must be setting it to allocated. "
   567                    "_zfs=%d, zfs=%d, region: %s", _zfs, zfs, region_str.as_string()));
   568   }
   569 #endif
   570   _zfs = zfs;
   571 }
   573 void HeapRegion::set_zero_fill_complete() {
   574   set_zero_fill_state_work(ZeroFilled);
   575   if (ZF_mon->owned_by_self()) {
   576     ZF_mon->notify_all();
   577   }
   578 }
   581 void HeapRegion::ensure_zero_filled() {
   582   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
   583   ensure_zero_filled_locked();
   584 }
   586 void HeapRegion::ensure_zero_filled_locked() {
   587   assert(ZF_mon->owned_by_self(), "Precondition");
   588   bool should_ignore_zf = SafepointSynchronize::is_at_safepoint();
   589   assert(should_ignore_zf || Heap_lock->is_locked(),
   590          "Either we're in a GC or we're allocating a region.");
   591   switch (zero_fill_state()) {
   592   case HeapRegion::NotZeroFilled:
   593     set_zero_fill_in_progress(Thread::current());
   594     {
   595       ZF_mon->unlock();
   596       Copy::fill_to_words(bottom(), capacity()/HeapWordSize);
   597       ZF_mon->lock_without_safepoint_check();
   598     }
   599     // A trap.
   600     guarantee(zero_fill_state() == HeapRegion::ZeroFilling
   601               && zero_filler() == Thread::current(),
   602               "AHA!  Tell Dave D if you see this...");
   603     set_zero_fill_complete();
   604     // gclog_or_tty->print_cr("Did sync ZF.");
   605     ConcurrentZFThread::note_sync_zfs();
   606     break;
   607   case HeapRegion::ZeroFilling:
   608     if (should_ignore_zf) {
   609       // We can "break" the lock and take over the work.
   610       Copy::fill_to_words(bottom(), capacity()/HeapWordSize);
   611       set_zero_fill_complete();
   612       ConcurrentZFThread::note_sync_zfs();
   613       break;
   614     } else {
   615       ConcurrentZFThread::wait_for_ZF_completed(this);
   616     }
   617   case HeapRegion::ZeroFilled:
   618     // Nothing to do.
   619     break;
   620   case HeapRegion::Allocated:
   621     guarantee(false, "Should not call on allocated regions.");
   622   }
   623   assert(zero_fill_state() == HeapRegion::ZeroFilled, "Post");
   624 }
   626 HeapWord*
   627 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   628                                                  ObjectClosure* cl) {
   629   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   630   // We used to use "block_start_careful" here.  But we're actually happy
   631   // to update the BOT while we do this...
   632   HeapWord* cur = block_start(mr.start());
   633   mr = mr.intersection(used_region());
   634   if (mr.is_empty()) return NULL;
   635   // Otherwise, find the obj that extends onto mr.start().
   637   assert(cur <= mr.start()
   638          && (oop(cur)->klass_or_null() == NULL ||
   639              cur + oop(cur)->size() > mr.start()),
   640          "postcondition of block_start");
   641   oop obj;
   642   while (cur < mr.end()) {
   643     obj = oop(cur);
   644     if (obj->klass_or_null() == NULL) {
   645       // Ran into an unparseable point.
   646       return cur;
   647     } else if (!g1h->is_obj_dead(obj)) {
   648       cl->do_object(obj);
   649     }
   650     if (cl->abort()) return cur;
   651     // The check above must occur before the operation below, since an
   652     // abort might invalidate the "size" operation.
   653     cur += obj->size();
   654   }
   655   return NULL;
   656 }
   658 HeapWord*
   659 HeapRegion::
   660 oops_on_card_seq_iterate_careful(MemRegion mr,
   661                                  FilterOutOfRegionClosure* cl,
   662                                  bool filter_young) {
   663   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   665   // If we're within a stop-world GC, then we might look at a card in a
   666   // GC alloc region that extends onto a GC LAB, which may not be
   667   // parseable.  Stop such at the "saved_mark" of the region.
   668   if (G1CollectedHeap::heap()->is_gc_active()) {
   669     mr = mr.intersection(used_region_at_save_marks());
   670   } else {
   671     mr = mr.intersection(used_region());
   672   }
   673   if (mr.is_empty()) return NULL;
   674   // Otherwise, find the obj that extends onto mr.start().
   676   // The intersection of the incoming mr (for the card) and the
   677   // allocated part of the region is non-empty. This implies that
   678   // we have actually allocated into this region. The code in
   679   // G1CollectedHeap.cpp that allocates a new region sets the
   680   // is_young tag on the region before allocating. Thus we
   681   // safely know if this region is young.
   682   if (is_young() && filter_young) {
   683     return NULL;
   684   }
   686   assert(!is_young(), "check value of filter_young");
   688   // We used to use "block_start_careful" here.  But we're actually happy
   689   // to update the BOT while we do this...
   690   HeapWord* cur = block_start(mr.start());
   691   assert(cur <= mr.start(), "Postcondition");
   693   while (cur <= mr.start()) {
   694     if (oop(cur)->klass_or_null() == NULL) {
   695       // Ran into an unparseable point.
   696       return cur;
   697     }
   698     // Otherwise...
   699     int sz = oop(cur)->size();
   700     if (cur + sz > mr.start()) break;
   701     // Otherwise, go on.
   702     cur = cur + sz;
   703   }
   704   oop obj;
   705   obj = oop(cur);
   706   // If we finish this loop...
   707   assert(cur <= mr.start()
   708          && obj->klass_or_null() != NULL
   709          && cur + obj->size() > mr.start(),
   710          "Loop postcondition");
   711   if (!g1h->is_obj_dead(obj)) {
   712     obj->oop_iterate(cl, mr);
   713   }
   715   HeapWord* next;
   716   while (cur < mr.end()) {
   717     obj = oop(cur);
   718     if (obj->klass_or_null() == NULL) {
   719       // Ran into an unparseable point.
   720       return cur;
   721     };
   722     // Otherwise:
   723     next = (cur + obj->size());
   724     if (!g1h->is_obj_dead(obj)) {
   725       if (next < mr.end()) {
   726         obj->oop_iterate(cl);
   727       } else {
   728         // this obj spans the boundary.  If it's an array, stop at the
   729         // boundary.
   730         if (obj->is_objArray()) {
   731           obj->oop_iterate(cl, mr);
   732         } else {
   733           obj->oop_iterate(cl);
   734         }
   735       }
   736     }
   737     cur = next;
   738   }
   739   return NULL;
   740 }
   742 void HeapRegion::print() const { print_on(gclog_or_tty); }
   743 void HeapRegion::print_on(outputStream* st) const {
   744   if (isHumongous()) {
   745     if (startsHumongous())
   746       st->print(" HS");
   747     else
   748       st->print(" HC");
   749   } else {
   750     st->print("   ");
   751   }
   752   if (in_collection_set())
   753     st->print(" CS");
   754   else if (is_gc_alloc_region())
   755     st->print(" A ");
   756   else
   757     st->print("   ");
   758   if (is_young())
   759     st->print(is_survivor() ? " SU" : " Y ");
   760   else
   761     st->print("   ");
   762   if (is_empty())
   763     st->print(" F");
   764   else
   765     st->print("  ");
   766   st->print(" %5d", _gc_time_stamp);
   767   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   768             prev_top_at_mark_start(), next_top_at_mark_start());
   769   G1OffsetTableContigSpace::print_on(st);
   770 }
   772 void HeapRegion::verify(bool allow_dirty) const {
   773   bool dummy = false;
   774   verify(allow_dirty, /* use_prev_marking */ true, /* failures */ &dummy);
   775 }
   777 #define OBJ_SAMPLE_INTERVAL 0
   778 #define BLOCK_SAMPLE_INTERVAL 100
   780 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   781 // We would need a mechanism to make that code skip dead objects.
   783 void HeapRegion::verify(bool allow_dirty,
   784                         bool use_prev_marking,
   785                         bool* failures) const {
   786   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   787   *failures = false;
   788   HeapWord* p = bottom();
   789   HeapWord* prev_p = NULL;
   790   int objs = 0;
   791   int blocks = 0;
   792   VerifyLiveClosure vl_cl(g1, use_prev_marking);
   793   while (p < top()) {
   794     size_t size = oop(p)->size();
   795     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   796       HeapWord* res = block_start_const(p + (size/2));
   797       if (p != res) {
   798         gclog_or_tty->print_cr("offset computation 1 for "PTR_FORMAT" and "
   799                                SIZE_FORMAT" returned "PTR_FORMAT,
   800                                p, size, res);
   801         *failures = true;
   802         return;
   803       }
   804       blocks = 0;
   805     } else {
   806       blocks++;
   807     }
   808     if (objs == OBJ_SAMPLE_INTERVAL) {
   809       oop obj = oop(p);
   810       if (!g1->is_obj_dead_cond(obj, this, use_prev_marking)) {
   811         if (obj->is_oop()) {
   812           klassOop klass = obj->klass();
   813           if (!klass->is_perm()) {
   814             gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   815                                    "not in perm", klass, obj);
   816             *failures = true;
   817             return;
   818           } else if (!klass->is_klass()) {
   819             gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   820                                    "not a klass", klass, obj);
   821             *failures = true;
   822             return;
   823           } else {
   824             vl_cl.set_containing_obj(obj);
   825             obj->oop_iterate(&vl_cl);
   826             if (vl_cl.failures()) {
   827               *failures = true;
   828             }
   829             if (G1MaxVerifyFailures >= 0 &&
   830                 vl_cl.n_failures() >= G1MaxVerifyFailures) {
   831               return;
   832             }
   833           }
   834         } else {
   835           gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
   836           *failures = true;
   837           return;
   838         }
   839       }
   840       objs = 0;
   841     } else {
   842       objs++;
   843     }
   844     prev_p = p;
   845     p += size;
   846   }
   847   HeapWord* rend = end();
   848   HeapWord* rtop = top();
   849   if (rtop < rend) {
   850     HeapWord* res = block_start_const(rtop + (rend - rtop) / 2);
   851     if (res != rtop) {
   852         gclog_or_tty->print_cr("offset computation 2 for "PTR_FORMAT" and "
   853                                PTR_FORMAT" returned "PTR_FORMAT,
   854                                rtop, rend, res);
   855         *failures = true;
   856         return;
   857     }
   858   }
   860   if (p != top()) {
   861     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   862                            "does not match top "PTR_FORMAT, p, top());
   863     *failures = true;
   864     return;
   865   }
   866 }
   868 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
   869 // away eventually.
   871 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   872   // false ==> we'll do the clearing if there's clearing to be done.
   873   ContiguousSpace::initialize(mr, false, mangle_space);
   874   _offsets.zero_bottom_entry();
   875   _offsets.initialize_threshold();
   876   if (clear_space) clear(mangle_space);
   877 }
   879 void G1OffsetTableContigSpace::clear(bool mangle_space) {
   880   ContiguousSpace::clear(mangle_space);
   881   _offsets.zero_bottom_entry();
   882   _offsets.initialize_threshold();
   883 }
   885 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   886   Space::set_bottom(new_bottom);
   887   _offsets.set_bottom(new_bottom);
   888 }
   890 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
   891   Space::set_end(new_end);
   892   _offsets.resize(new_end - bottom());
   893 }
   895 void G1OffsetTableContigSpace::print() const {
   896   print_short();
   897   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   898                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   899                 bottom(), top(), _offsets.threshold(), end());
   900 }
   902 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
   903   return _offsets.initialize_threshold();
   904 }
   906 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
   907                                                     HeapWord* end) {
   908   _offsets.alloc_block(start, end);
   909   return _offsets.threshold();
   910 }
   912 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
   913   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   914   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
   915   if (_gc_time_stamp < g1h->get_gc_time_stamp())
   916     return top();
   917   else
   918     return ContiguousSpace::saved_mark_word();
   919 }
   921 void G1OffsetTableContigSpace::set_saved_mark() {
   922   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   923   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
   925   if (_gc_time_stamp < curr_gc_time_stamp) {
   926     // The order of these is important, as another thread might be
   927     // about to start scanning this region. If it does so after
   928     // set_saved_mark and before _gc_time_stamp = ..., then the latter
   929     // will be false, and it will pick up top() as the high water mark
   930     // of region. If it does so after _gc_time_stamp = ..., then it
   931     // will pick up the right saved_mark_word() as the high water mark
   932     // of the region. Either way, the behaviour will be correct.
   933     ContiguousSpace::set_saved_mark();
   934     OrderAccess::storestore();
   935     _gc_time_stamp = curr_gc_time_stamp;
   936     // The following fence is to force a flush of the writes above, but
   937     // is strictly not needed because when an allocating worker thread
   938     // calls set_saved_mark() it does so under the ParGCRareEvent_lock;
   939     // when the lock is released, the write will be flushed.
   940     // OrderAccess::fence();
   941   }
   942 }
   944 G1OffsetTableContigSpace::
   945 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   946                          MemRegion mr, bool is_zeroed) :
   947   _offsets(sharedOffsetArray, mr),
   948   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
   949   _gc_time_stamp(0)
   950 {
   951   _offsets.set_space(this);
   952   initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
   953 }
   955 size_t RegionList::length() {
   956   size_t len = 0;
   957   HeapRegion* cur = hd();
   958   DEBUG_ONLY(HeapRegion* last = NULL);
   959   while (cur != NULL) {
   960     len++;
   961     DEBUG_ONLY(last = cur);
   962     cur = get_next(cur);
   963   }
   964   assert(last == tl(), "Invariant");
   965   return len;
   966 }
   968 void RegionList::insert_before_head(HeapRegion* r) {
   969   assert(well_formed(), "Inv");
   970   set_next(r, hd());
   971   _hd = r;
   972   _sz++;
   973   if (tl() == NULL) _tl = r;
   974   assert(well_formed(), "Inv");
   975 }
   977 void RegionList::prepend_list(RegionList* new_list) {
   978   assert(well_formed(), "Precondition");
   979   assert(new_list->well_formed(), "Precondition");
   980   HeapRegion* new_tl = new_list->tl();
   981   if (new_tl != NULL) {
   982     set_next(new_tl, hd());
   983     _hd = new_list->hd();
   984     _sz += new_list->sz();
   985     if (tl() == NULL) _tl = new_list->tl();
   986   } else {
   987     assert(new_list->hd() == NULL && new_list->sz() == 0, "Inv");
   988   }
   989   assert(well_formed(), "Inv");
   990 }
   992 void RegionList::delete_after(HeapRegion* r) {
   993   assert(well_formed(), "Precondition");
   994   HeapRegion* next = get_next(r);
   995   assert(r != NULL, "Precondition");
   996   HeapRegion* next_tl = get_next(next);
   997   set_next(r, next_tl);
   998   dec_sz();
   999   if (next == tl()) {
  1000     assert(next_tl == NULL, "Inv");
  1001     _tl = r;
  1003   assert(well_formed(), "Inv");
  1006 HeapRegion* RegionList::pop() {
  1007   assert(well_formed(), "Inv");
  1008   HeapRegion* res = hd();
  1009   if (res != NULL) {
  1010     _hd = get_next(res);
  1011     _sz--;
  1012     set_next(res, NULL);
  1013     if (sz() == 0) _tl = NULL;
  1015   assert(well_formed(), "Inv");
  1016   return res;

mercurial