src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 09 Aug 2010 05:41:05 -0700

author
jcoomes
date
Mon, 09 Aug 2010 05:41:05 -0700
changeset 2064
5f429ee79634
parent 2060
2d160770d2e5
child 2073
bb847e31b836
permissions
-rw-r--r--

6966222: G1: simplify TaskQueue overflow handling
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    26 // It uses the "Garbage First" heap organization and algorithm, which
    27 // may combine concurrent marking with parallel, incremental compaction of
    28 // heap subsets that will yield large amounts of garbage.
    30 class HeapRegion;
    31 class HeapRegionSeq;
    32 class PermanentGenerationSpec;
    33 class GenerationSpec;
    34 class OopsInHeapRegionClosure;
    35 class G1ScanHeapEvacClosure;
    36 class ObjectClosure;
    37 class SpaceClosure;
    38 class CompactibleSpaceClosure;
    39 class Space;
    40 class G1CollectorPolicy;
    41 class GenRemSet;
    42 class G1RemSet;
    43 class HeapRegionRemSetIterator;
    44 class ConcurrentMark;
    45 class ConcurrentMarkThread;
    46 class ConcurrentG1Refine;
    47 class ConcurrentZFThread;
    49 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    50 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    52 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    53 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    55 enum G1GCThreadGroups {
    56   G1CRGroup = 0,
    57   G1ZFGroup = 1,
    58   G1CMGroup = 2,
    59   G1CLGroup = 3
    60 };
    62 enum GCAllocPurpose {
    63   GCAllocForTenured,
    64   GCAllocForSurvived,
    65   GCAllocPurposeCount
    66 };
    68 class YoungList : public CHeapObj {
    69 private:
    70   G1CollectedHeap* _g1h;
    72   HeapRegion* _head;
    74   HeapRegion* _survivor_head;
    75   HeapRegion* _survivor_tail;
    77   HeapRegion* _curr;
    79   size_t      _length;
    80   size_t      _survivor_length;
    82   size_t      _last_sampled_rs_lengths;
    83   size_t      _sampled_rs_lengths;
    85   void         empty_list(HeapRegion* list);
    87 public:
    88   YoungList(G1CollectedHeap* g1h);
    90   void         push_region(HeapRegion* hr);
    91   void         add_survivor_region(HeapRegion* hr);
    93   void         empty_list();
    94   bool         is_empty() { return _length == 0; }
    95   size_t       length() { return _length; }
    96   size_t       survivor_length() { return _survivor_length; }
    98   void rs_length_sampling_init();
    99   bool rs_length_sampling_more();
   100   void rs_length_sampling_next();
   102   void reset_sampled_info() {
   103     _last_sampled_rs_lengths =   0;
   104   }
   105   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   107   // for development purposes
   108   void reset_auxilary_lists();
   109   void clear() { _head = NULL; _length = 0; }
   111   void clear_survivors() {
   112     _survivor_head    = NULL;
   113     _survivor_tail    = NULL;
   114     _survivor_length  = 0;
   115   }
   117   HeapRegion* first_region() { return _head; }
   118   HeapRegion* first_survivor_region() { return _survivor_head; }
   119   HeapRegion* last_survivor_region() { return _survivor_tail; }
   121   // debugging
   122   bool          check_list_well_formed();
   123   bool          check_list_empty(bool check_sample = true);
   124   void          print();
   125 };
   127 class RefineCardTableEntryClosure;
   128 class G1CollectedHeap : public SharedHeap {
   129   friend class VM_G1CollectForAllocation;
   130   friend class VM_GenCollectForPermanentAllocation;
   131   friend class VM_G1CollectFull;
   132   friend class VM_G1IncCollectionPause;
   133   friend class VMStructs;
   135   // Closures used in implementation.
   136   friend class G1ParCopyHelper;
   137   friend class G1IsAliveClosure;
   138   friend class G1EvacuateFollowersClosure;
   139   friend class G1ParScanThreadState;
   140   friend class G1ParScanClosureSuper;
   141   friend class G1ParEvacuateFollowersClosure;
   142   friend class G1ParTask;
   143   friend class G1FreeGarbageRegionClosure;
   144   friend class RefineCardTableEntryClosure;
   145   friend class G1PrepareCompactClosure;
   146   friend class RegionSorter;
   147   friend class CountRCClosure;
   148   friend class EvacPopObjClosure;
   149   friend class G1ParCleanupCTTask;
   151   // Other related classes.
   152   friend class G1MarkSweep;
   154 private:
   155   // The one and only G1CollectedHeap, so static functions can find it.
   156   static G1CollectedHeap* _g1h;
   158   static size_t _humongous_object_threshold_in_words;
   160   // Storage for the G1 heap (excludes the permanent generation).
   161   VirtualSpace _g1_storage;
   162   MemRegion    _g1_reserved;
   164   // The part of _g1_storage that is currently committed.
   165   MemRegion _g1_committed;
   167   // The maximum part of _g1_storage that has ever been committed.
   168   MemRegion _g1_max_committed;
   170   // The number of regions that are completely free.
   171   size_t _free_regions;
   173   // The number of regions we could create by expansion.
   174   size_t _expansion_regions;
   176   // Return the number of free regions in the heap (by direct counting.)
   177   size_t count_free_regions();
   178   // Return the number of free regions on the free and unclean lists.
   179   size_t count_free_regions_list();
   181   // The block offset table for the G1 heap.
   182   G1BlockOffsetSharedArray* _bot_shared;
   184   // Move all of the regions off the free lists, then rebuild those free
   185   // lists, before and after full GC.
   186   void tear_down_region_lists();
   187   void rebuild_region_lists();
   188   // This sets all non-empty regions to need zero-fill (which they will if
   189   // they are empty after full collection.)
   190   void set_used_regions_to_need_zero_fill();
   192   // The sequence of all heap regions in the heap.
   193   HeapRegionSeq* _hrs;
   195   // The region from which normal-sized objects are currently being
   196   // allocated.  May be NULL.
   197   HeapRegion* _cur_alloc_region;
   199   // Postcondition: cur_alloc_region == NULL.
   200   void abandon_cur_alloc_region();
   201   void abandon_gc_alloc_regions();
   203   // The to-space memory regions into which objects are being copied during
   204   // a GC.
   205   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   206   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   207   // These are the regions, one per GCAllocPurpose, that are half-full
   208   // at the end of a collection and that we want to reuse during the
   209   // next collection.
   210   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   211   // This specifies whether we will keep the last half-full region at
   212   // the end of a collection so that it can be reused during the next
   213   // collection (this is specified per GCAllocPurpose)
   214   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   216   // A list of the regions that have been set to be alloc regions in the
   217   // current collection.
   218   HeapRegion* _gc_alloc_region_list;
   220   // Determines PLAB size for a particular allocation purpose.
   221   static size_t desired_plab_sz(GCAllocPurpose purpose);
   223   // When called by par thread, require par_alloc_during_gc_lock() to be held.
   224   void push_gc_alloc_region(HeapRegion* hr);
   226   // This should only be called single-threaded.  Undeclares all GC alloc
   227   // regions.
   228   void forget_alloc_region_list();
   230   // Should be used to set an alloc region, because there's other
   231   // associated bookkeeping.
   232   void set_gc_alloc_region(int purpose, HeapRegion* r);
   234   // Check well-formedness of alloc region list.
   235   bool check_gc_alloc_regions();
   237   // Outside of GC pauses, the number of bytes used in all regions other
   238   // than the current allocation region.
   239   size_t _summary_bytes_used;
   241   // This is used for a quick test on whether a reference points into
   242   // the collection set or not. Basically, we have an array, with one
   243   // byte per region, and that byte denotes whether the corresponding
   244   // region is in the collection set or not. The entry corresponding
   245   // the bottom of the heap, i.e., region 0, is pointed to by
   246   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   247   // biased so that it actually points to address 0 of the address
   248   // space, to make the test as fast as possible (we can simply shift
   249   // the address to address into it, instead of having to subtract the
   250   // bottom of the heap from the address before shifting it; basically
   251   // it works in the same way the card table works).
   252   bool* _in_cset_fast_test;
   254   // The allocated array used for the fast test on whether a reference
   255   // points into the collection set or not. This field is also used to
   256   // free the array.
   257   bool* _in_cset_fast_test_base;
   259   // The length of the _in_cset_fast_test_base array.
   260   size_t _in_cset_fast_test_length;
   262   volatile unsigned _gc_time_stamp;
   264   size_t* _surviving_young_words;
   266   void setup_surviving_young_words();
   267   void update_surviving_young_words(size_t* surv_young_words);
   268   void cleanup_surviving_young_words();
   270   // It decides whether an explicit GC should start a concurrent cycle
   271   // instead of doing a STW GC. Currently, a concurrent cycle is
   272   // explicitly started if:
   273   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   274   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   275   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   277   // Keeps track of how many "full collections" (i.e., Full GCs or
   278   // concurrent cycles) we have completed. The number of them we have
   279   // started is maintained in _total_full_collections in CollectedHeap.
   280   volatile unsigned int _full_collections_completed;
   282 protected:
   284   // Returns "true" iff none of the gc alloc regions have any allocations
   285   // since the last call to "save_marks".
   286   bool all_alloc_regions_no_allocs_since_save_marks();
   287   // Perform finalization stuff on all allocation regions.
   288   void retire_all_alloc_regions();
   290   // The number of regions allocated to hold humongous objects.
   291   int         _num_humongous_regions;
   292   YoungList*  _young_list;
   294   // The current policy object for the collector.
   295   G1CollectorPolicy* _g1_policy;
   297   // Parallel allocation lock to protect the current allocation region.
   298   Mutex  _par_alloc_during_gc_lock;
   299   Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
   301   // If possible/desirable, allocate a new HeapRegion for normal object
   302   // allocation sufficient for an allocation of the given "word_size".
   303   // If "do_expand" is true, will attempt to expand the heap if necessary
   304   // to to satisfy the request.  If "zero_filled" is true, requires a
   305   // zero-filled region.
   306   // (Returning NULL will trigger a GC.)
   307   virtual HeapRegion* newAllocRegion_work(size_t word_size,
   308                                           bool do_expand,
   309                                           bool zero_filled);
   311   virtual HeapRegion* newAllocRegion(size_t word_size,
   312                                      bool zero_filled = true) {
   313     return newAllocRegion_work(word_size, false, zero_filled);
   314   }
   315   virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
   316                                                   size_t word_size,
   317                                                   bool zero_filled = true);
   319   // Attempt to allocate an object of the given (very large) "word_size".
   320   // Returns "NULL" on failure.
   321   virtual HeapWord* humongousObjAllocate(size_t word_size);
   323   // If possible, allocate a block of the given word_size, else return "NULL".
   324   // Returning NULL will trigger GC or heap expansion.
   325   // These two methods have rather awkward pre- and
   326   // post-conditions. If they are called outside a safepoint, then
   327   // they assume that the caller is holding the heap lock. Upon return
   328   // they release the heap lock, if they are returning a non-NULL
   329   // value. attempt_allocation_slow() also dirties the cards of a
   330   // newly-allocated young region after it releases the heap
   331   // lock. This change in interface was the neatest way to achieve
   332   // this card dirtying without affecting mem_allocate(), which is a
   333   // more frequently called method. We tried two or three different
   334   // approaches, but they were even more hacky.
   335   HeapWord* attempt_allocation(size_t word_size,
   336                                bool permit_collection_pause = true);
   338   HeapWord* attempt_allocation_slow(size_t word_size,
   339                                     bool permit_collection_pause = true);
   341   // Allocate blocks during garbage collection. Will ensure an
   342   // allocation region, either by picking one or expanding the
   343   // heap, and then allocate a block of the given size. The block
   344   // may not be a humongous - it must fit into a single heap region.
   345   HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   346   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   348   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   349                                     HeapRegion*    alloc_region,
   350                                     bool           par,
   351                                     size_t         word_size);
   353   // Ensure that no further allocations can happen in "r", bearing in mind
   354   // that parallel threads might be attempting allocations.
   355   void par_allocate_remaining_space(HeapRegion* r);
   357   // Retires an allocation region when it is full or at the end of a
   358   // GC pause.
   359   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   361   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   362   // inspection request and should collect the entire heap
   363   // - if clear_all_soft_refs is true, all soft references are cleared
   364   // during the GC
   365   // - if explicit_gc is false, word_size describes the allocation that
   366   // the GC should attempt (at least) to satisfy
   367   void do_collection(bool explicit_gc,
   368                      bool clear_all_soft_refs,
   369                      size_t word_size);
   371   // Callback from VM_G1CollectFull operation.
   372   // Perform a full collection.
   373   void do_full_collection(bool clear_all_soft_refs);
   375   // Resize the heap if necessary after a full collection.  If this is
   376   // after a collect-for allocation, "word_size" is the allocation size,
   377   // and will be considered part of the used portion of the heap.
   378   void resize_if_necessary_after_full_collection(size_t word_size);
   380   // Callback from VM_G1CollectForAllocation operation.
   381   // This function does everything necessary/possible to satisfy a
   382   // failed allocation request (including collection, expansion, etc.)
   383   HeapWord* satisfy_failed_allocation(size_t word_size);
   385   // Attempting to expand the heap sufficiently
   386   // to support an allocation of the given "word_size".  If
   387   // successful, perform the allocation and return the address of the
   388   // allocated block, or else "NULL".
   389   virtual HeapWord* expand_and_allocate(size_t word_size);
   391 public:
   392   // Expand the garbage-first heap by at least the given size (in bytes!).
   393   // (Rounds up to a HeapRegion boundary.)
   394   virtual void expand(size_t expand_bytes);
   396   // Do anything common to GC's.
   397   virtual void gc_prologue(bool full);
   398   virtual void gc_epilogue(bool full);
   400   // We register a region with the fast "in collection set" test. We
   401   // simply set to true the array slot corresponding to this region.
   402   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   403     assert(_in_cset_fast_test_base != NULL, "sanity");
   404     assert(r->in_collection_set(), "invariant");
   405     int index = r->hrs_index();
   406     assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
   407     assert(!_in_cset_fast_test_base[index], "invariant");
   408     _in_cset_fast_test_base[index] = true;
   409   }
   411   // This is a fast test on whether a reference points into the
   412   // collection set or not. It does not assume that the reference
   413   // points into the heap; if it doesn't, it will return false.
   414   bool in_cset_fast_test(oop obj) {
   415     assert(_in_cset_fast_test != NULL, "sanity");
   416     if (_g1_committed.contains((HeapWord*) obj)) {
   417       // no need to subtract the bottom of the heap from obj,
   418       // _in_cset_fast_test is biased
   419       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   420       bool ret = _in_cset_fast_test[index];
   421       // let's make sure the result is consistent with what the slower
   422       // test returns
   423       assert( ret || !obj_in_cs(obj), "sanity");
   424       assert(!ret ||  obj_in_cs(obj), "sanity");
   425       return ret;
   426     } else {
   427       return false;
   428     }
   429   }
   431   void clear_cset_fast_test() {
   432     assert(_in_cset_fast_test_base != NULL, "sanity");
   433     memset(_in_cset_fast_test_base, false,
   434         _in_cset_fast_test_length * sizeof(bool));
   435   }
   437   // This is called at the end of either a concurrent cycle or a Full
   438   // GC to update the number of full collections completed. Those two
   439   // can happen in a nested fashion, i.e., we start a concurrent
   440   // cycle, a Full GC happens half-way through it which ends first,
   441   // and then the cycle notices that a Full GC happened and ends
   442   // too. The outer parameter is a boolean to help us do a bit tighter
   443   // consistency checking in the method. If outer is false, the caller
   444   // is the inner caller in the nesting (i.e., the Full GC). If outer
   445   // is true, the caller is the outer caller in this nesting (i.e.,
   446   // the concurrent cycle). Further nesting is not currently
   447   // supported. The end of the this call also notifies the
   448   // FullGCCount_lock in case a Java thread is waiting for a full GC
   449   // to happen (e.g., it called System.gc() with
   450   // +ExplicitGCInvokesConcurrent).
   451   void increment_full_collections_completed(bool outer);
   453   unsigned int full_collections_completed() {
   454     return _full_collections_completed;
   455   }
   457 protected:
   459   // Shrink the garbage-first heap by at most the given size (in bytes!).
   460   // (Rounds down to a HeapRegion boundary.)
   461   virtual void shrink(size_t expand_bytes);
   462   void shrink_helper(size_t expand_bytes);
   464   #if TASKQUEUE_STATS
   465   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   466   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   467   void reset_taskqueue_stats();
   468   #endif // TASKQUEUE_STATS
   470   // Do an incremental collection: identify a collection set, and evacuate
   471   // its live objects elsewhere.
   472   virtual void do_collection_pause();
   474   // The guts of the incremental collection pause, executed by the vm
   475   // thread.
   476   virtual void do_collection_pause_at_safepoint(double target_pause_time_ms);
   478   // Actually do the work of evacuating the collection set.
   479   virtual void evacuate_collection_set();
   481   // If this is an appropriate right time, do a collection pause.
   482   // The "word_size" argument, if non-zero, indicates the size of an
   483   // allocation request that is prompting this query.
   484   void do_collection_pause_if_appropriate(size_t word_size);
   486   // The g1 remembered set of the heap.
   487   G1RemSet* _g1_rem_set;
   488   // And it's mod ref barrier set, used to track updates for the above.
   489   ModRefBarrierSet* _mr_bs;
   491   // A set of cards that cover the objects for which the Rsets should be updated
   492   // concurrently after the collection.
   493   DirtyCardQueueSet _dirty_card_queue_set;
   495   // The Heap Region Rem Set Iterator.
   496   HeapRegionRemSetIterator** _rem_set_iterator;
   498   // The closure used to refine a single card.
   499   RefineCardTableEntryClosure* _refine_cte_cl;
   501   // A function to check the consistency of dirty card logs.
   502   void check_ct_logs_at_safepoint();
   504   // A DirtyCardQueueSet that is used to hold cards that contain
   505   // references into the current collection set. This is used to
   506   // update the remembered sets of the regions in the collection
   507   // set in the event of an evacuation failure.
   508   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   510   // After a collection pause, make the regions in the CS into free
   511   // regions.
   512   void free_collection_set(HeapRegion* cs_head);
   514   // Abandon the current collection set without recording policy
   515   // statistics or updating free lists.
   516   void abandon_collection_set(HeapRegion* cs_head);
   518   // Applies "scan_non_heap_roots" to roots outside the heap,
   519   // "scan_rs" to roots inside the heap (having done "set_region" to
   520   // indicate the region in which the root resides), and does "scan_perm"
   521   // (setting the generation to the perm generation.)  If "scan_rs" is
   522   // NULL, then this step is skipped.  The "worker_i"
   523   // param is for use with parallel roots processing, and should be
   524   // the "i" of the calling parallel worker thread's work(i) function.
   525   // In the sequential case this param will be ignored.
   526   void g1_process_strong_roots(bool collecting_perm_gen,
   527                                SharedHeap::ScanningOption so,
   528                                OopClosure* scan_non_heap_roots,
   529                                OopsInHeapRegionClosure* scan_rs,
   530                                OopsInGenClosure* scan_perm,
   531                                int worker_i);
   533   // Apply "blk" to all the weak roots of the system.  These include
   534   // JNI weak roots, the code cache, system dictionary, symbol table,
   535   // string table, and referents of reachable weak refs.
   536   void g1_process_weak_roots(OopClosure* root_closure,
   537                              OopClosure* non_root_closure);
   539   // Invoke "save_marks" on all heap regions.
   540   void save_marks();
   542   // Free a heap region.
   543   void free_region(HeapRegion* hr);
   544   // A component of "free_region", exposed for 'batching'.
   545   // All the params after "hr" are out params: the used bytes of the freed
   546   // region(s), the number of H regions cleared, the number of regions
   547   // freed, and pointers to the head and tail of a list of freed contig
   548   // regions, linked throught the "next_on_unclean_list" field.
   549   void free_region_work(HeapRegion* hr,
   550                         size_t& pre_used,
   551                         size_t& cleared_h,
   552                         size_t& freed_regions,
   553                         UncleanRegionList* list,
   554                         bool par = false);
   557   // The concurrent marker (and the thread it runs in.)
   558   ConcurrentMark* _cm;
   559   ConcurrentMarkThread* _cmThread;
   560   bool _mark_in_progress;
   562   // The concurrent refiner.
   563   ConcurrentG1Refine* _cg1r;
   565   // The concurrent zero-fill thread.
   566   ConcurrentZFThread* _czft;
   568   // The parallel task queues
   569   RefToScanQueueSet *_task_queues;
   571   // True iff a evacuation has failed in the current collection.
   572   bool _evacuation_failed;
   574   // Set the attribute indicating whether evacuation has failed in the
   575   // current collection.
   576   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   578   // Failed evacuations cause some logical from-space objects to have
   579   // forwarding pointers to themselves.  Reset them.
   580   void remove_self_forwarding_pointers();
   582   // When one is non-null, so is the other.  Together, they each pair is
   583   // an object with a preserved mark, and its mark value.
   584   GrowableArray<oop>*     _objs_with_preserved_marks;
   585   GrowableArray<markOop>* _preserved_marks_of_objs;
   587   // Preserve the mark of "obj", if necessary, in preparation for its mark
   588   // word being overwritten with a self-forwarding-pointer.
   589   void preserve_mark_if_necessary(oop obj, markOop m);
   591   // The stack of evac-failure objects left to be scanned.
   592   GrowableArray<oop>*    _evac_failure_scan_stack;
   593   // The closure to apply to evac-failure objects.
   595   OopsInHeapRegionClosure* _evac_failure_closure;
   596   // Set the field above.
   597   void
   598   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   599     _evac_failure_closure = evac_failure_closure;
   600   }
   602   // Push "obj" on the scan stack.
   603   void push_on_evac_failure_scan_stack(oop obj);
   604   // Process scan stack entries until the stack is empty.
   605   void drain_evac_failure_scan_stack();
   606   // True iff an invocation of "drain_scan_stack" is in progress; to
   607   // prevent unnecessary recursion.
   608   bool _drain_in_progress;
   610   // Do any necessary initialization for evacuation-failure handling.
   611   // "cl" is the closure that will be used to process evac-failure
   612   // objects.
   613   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   614   // Do any necessary cleanup for evacuation-failure handling data
   615   // structures.
   616   void finalize_for_evac_failure();
   618   // An attempt to evacuate "obj" has failed; take necessary steps.
   619   void handle_evacuation_failure(oop obj);
   620   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   621   void handle_evacuation_failure_common(oop obj, markOop m);
   624   // Ensure that the relevant gc_alloc regions are set.
   625   void get_gc_alloc_regions();
   626   // We're done with GC alloc regions. We are going to tear down the
   627   // gc alloc list and remove the gc alloc tag from all the regions on
   628   // that list. However, we will also retain the last (i.e., the one
   629   // that is half-full) GC alloc region, per GCAllocPurpose, for
   630   // possible reuse during the next collection, provided
   631   // _retain_gc_alloc_region[] indicates that it should be the
   632   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   633   // array. If the parameter totally is set, we will not retain any
   634   // regions, irrespective of what _retain_gc_alloc_region[]
   635   // indicates.
   636   void release_gc_alloc_regions(bool totally);
   637 #ifndef PRODUCT
   638   // Useful for debugging.
   639   void print_gc_alloc_regions();
   640 #endif // !PRODUCT
   642   // ("Weak") Reference processing support
   643   ReferenceProcessor* _ref_processor;
   645   enum G1H_process_strong_roots_tasks {
   646     G1H_PS_mark_stack_oops_do,
   647     G1H_PS_refProcessor_oops_do,
   648     // Leave this one last.
   649     G1H_PS_NumElements
   650   };
   652   SubTasksDone* _process_strong_tasks;
   654   // List of regions which require zero filling.
   655   UncleanRegionList _unclean_region_list;
   656   bool _unclean_regions_coming;
   658 public:
   659   void set_refine_cte_cl_concurrency(bool concurrent);
   661   RefToScanQueue *task_queue(int i) const;
   663   // A set of cards where updates happened during the GC
   664   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   666   // A DirtyCardQueueSet that is used to hold cards that contain
   667   // references into the current collection set. This is used to
   668   // update the remembered sets of the regions in the collection
   669   // set in the event of an evacuation failure.
   670   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   671         { return _into_cset_dirty_card_queue_set; }
   673   // Create a G1CollectedHeap with the specified policy.
   674   // Must call the initialize method afterwards.
   675   // May not return if something goes wrong.
   676   G1CollectedHeap(G1CollectorPolicy* policy);
   678   // Initialize the G1CollectedHeap to have the initial and
   679   // maximum sizes, permanent generation, and remembered and barrier sets
   680   // specified by the policy object.
   681   jint initialize();
   683   void ref_processing_init();
   685   void set_par_threads(int t) {
   686     SharedHeap::set_par_threads(t);
   687     _process_strong_tasks->set_par_threads(t);
   688   }
   690   virtual CollectedHeap::Name kind() const {
   691     return CollectedHeap::G1CollectedHeap;
   692   }
   694   // The current policy object for the collector.
   695   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   697   // Adaptive size policy.  No such thing for g1.
   698   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   700   // The rem set and barrier set.
   701   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   702   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   704   // The rem set iterator.
   705   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   706     return _rem_set_iterator[i];
   707   }
   709   HeapRegionRemSetIterator* rem_set_iterator() {
   710     return _rem_set_iterator[0];
   711   }
   713   unsigned get_gc_time_stamp() {
   714     return _gc_time_stamp;
   715   }
   717   void reset_gc_time_stamp() {
   718     _gc_time_stamp = 0;
   719     OrderAccess::fence();
   720   }
   722   void increment_gc_time_stamp() {
   723     ++_gc_time_stamp;
   724     OrderAccess::fence();
   725   }
   727   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   728                                   DirtyCardQueue* into_cset_dcq,
   729                                   bool concurrent, int worker_i);
   731   // The shared block offset table array.
   732   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   734   // Reference Processing accessor
   735   ReferenceProcessor* ref_processor() { return _ref_processor; }
   737   // Reserved (g1 only; super method includes perm), capacity and the used
   738   // portion in bytes.
   739   size_t g1_reserved_obj_bytes() const { return _g1_reserved.byte_size(); }
   740   virtual size_t capacity() const;
   741   virtual size_t used() const;
   742   // This should be called when we're not holding the heap lock. The
   743   // result might be a bit inaccurate.
   744   size_t used_unlocked() const;
   745   size_t recalculate_used() const;
   746 #ifndef PRODUCT
   747   size_t recalculate_used_regions() const;
   748 #endif // PRODUCT
   750   // These virtual functions do the actual allocation.
   751   virtual HeapWord* mem_allocate(size_t word_size,
   752                                  bool   is_noref,
   753                                  bool   is_tlab,
   754                                  bool* gc_overhead_limit_was_exceeded);
   756   // Some heaps may offer a contiguous region for shared non-blocking
   757   // allocation, via inlined code (by exporting the address of the top and
   758   // end fields defining the extent of the contiguous allocation region.)
   759   // But G1CollectedHeap doesn't yet support this.
   761   // Return an estimate of the maximum allocation that could be performed
   762   // without triggering any collection or expansion activity.  In a
   763   // generational collector, for example, this is probably the largest
   764   // allocation that could be supported (without expansion) in the youngest
   765   // generation.  It is "unsafe" because no locks are taken; the result
   766   // should be treated as an approximation, not a guarantee, for use in
   767   // heuristic resizing decisions.
   768   virtual size_t unsafe_max_alloc();
   770   virtual bool is_maximal_no_gc() const {
   771     return _g1_storage.uncommitted_size() == 0;
   772   }
   774   // The total number of regions in the heap.
   775   size_t n_regions();
   777   // The number of regions that are completely free.
   778   size_t max_regions();
   780   // The number of regions that are completely free.
   781   size_t free_regions();
   783   // The number of regions that are not completely free.
   784   size_t used_regions() { return n_regions() - free_regions(); }
   786   // True iff the ZF thread should run.
   787   bool should_zf();
   789   // The number of regions available for "regular" expansion.
   790   size_t expansion_regions() { return _expansion_regions; }
   792 #ifndef PRODUCT
   793   bool regions_accounted_for();
   794   bool print_region_accounting_info();
   795   void print_region_counts();
   796 #endif
   798   HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
   799   HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
   801   void put_region_on_unclean_list(HeapRegion* r);
   802   void put_region_on_unclean_list_locked(HeapRegion* r);
   804   void prepend_region_list_on_unclean_list(UncleanRegionList* list);
   805   void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
   807   void set_unclean_regions_coming(bool b);
   808   void set_unclean_regions_coming_locked(bool b);
   809   // Wait for cleanup to be complete.
   810   void wait_for_cleanup_complete();
   811   // Like above, but assumes that the calling thread owns the Heap_lock.
   812   void wait_for_cleanup_complete_locked();
   814   // Return the head of the unclean list.
   815   HeapRegion* peek_unclean_region_list_locked();
   816   // Remove and return the head of the unclean list.
   817   HeapRegion* pop_unclean_region_list_locked();
   819   // List of regions which are zero filled and ready for allocation.
   820   HeapRegion* _free_region_list;
   821   // Number of elements on the free list.
   822   size_t _free_region_list_size;
   824   // If the head of the unclean list is ZeroFilled, move it to the free
   825   // list.
   826   bool move_cleaned_region_to_free_list_locked();
   827   bool move_cleaned_region_to_free_list();
   829   void put_free_region_on_list_locked(HeapRegion* r);
   830   void put_free_region_on_list(HeapRegion* r);
   832   // Remove and return the head element of the free list.
   833   HeapRegion* pop_free_region_list_locked();
   835   // If "zero_filled" is true, we first try the free list, then we try the
   836   // unclean list, zero-filling the result.  If "zero_filled" is false, we
   837   // first try the unclean list, then the zero-filled list.
   838   HeapRegion* alloc_free_region_from_lists(bool zero_filled);
   840   // Verify the integrity of the region lists.
   841   void remove_allocated_regions_from_lists();
   842   bool verify_region_lists();
   843   bool verify_region_lists_locked();
   844   size_t unclean_region_list_length();
   845   size_t free_region_list_length();
   847   // Perform a collection of the heap; intended for use in implementing
   848   // "System.gc".  This probably implies as full a collection as the
   849   // "CollectedHeap" supports.
   850   virtual void collect(GCCause::Cause cause);
   852   // The same as above but assume that the caller holds the Heap_lock.
   853   void collect_locked(GCCause::Cause cause);
   855   // This interface assumes that it's being called by the
   856   // vm thread. It collects the heap assuming that the
   857   // heap lock is already held and that we are executing in
   858   // the context of the vm thread.
   859   virtual void collect_as_vm_thread(GCCause::Cause cause);
   861   // True iff a evacuation has failed in the most-recent collection.
   862   bool evacuation_failed() { return _evacuation_failed; }
   864   // Free a region if it is totally full of garbage.  Returns the number of
   865   // bytes freed (0 ==> didn't free it).
   866   size_t free_region_if_totally_empty(HeapRegion *hr);
   867   void free_region_if_totally_empty_work(HeapRegion *hr,
   868                                          size_t& pre_used,
   869                                          size_t& cleared_h_regions,
   870                                          size_t& freed_regions,
   871                                          UncleanRegionList* list,
   872                                          bool par = false);
   874   // If we've done free region work that yields the given changes, update
   875   // the relevant global variables.
   876   void finish_free_region_work(size_t pre_used,
   877                                size_t cleared_h_regions,
   878                                size_t freed_regions,
   879                                UncleanRegionList* list);
   882   // Returns "TRUE" iff "p" points into the allocated area of the heap.
   883   virtual bool is_in(const void* p) const;
   885   // Return "TRUE" iff the given object address is within the collection
   886   // set.
   887   inline bool obj_in_cs(oop obj);
   889   // Return "TRUE" iff the given object address is in the reserved
   890   // region of g1 (excluding the permanent generation).
   891   bool is_in_g1_reserved(const void* p) const {
   892     return _g1_reserved.contains(p);
   893   }
   895   // Returns a MemRegion that corresponds to the space that  has been
   896   // committed in the heap
   897   MemRegion g1_committed() {
   898     return _g1_committed;
   899   }
   901   NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
   903   // Dirty card table entries covering a list of young regions.
   904   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
   906   // This resets the card table to all zeros.  It is used after
   907   // a collection pause which used the card table to claim cards.
   908   void cleanUpCardTable();
   910   // Iteration functions.
   912   // Iterate over all the ref-containing fields of all objects, calling
   913   // "cl.do_oop" on each.
   914   virtual void oop_iterate(OopClosure* cl) {
   915     oop_iterate(cl, true);
   916   }
   917   void oop_iterate(OopClosure* cl, bool do_perm);
   919   // Same as above, restricted to a memory region.
   920   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
   921     oop_iterate(mr, cl, true);
   922   }
   923   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
   925   // Iterate over all objects, calling "cl.do_object" on each.
   926   virtual void object_iterate(ObjectClosure* cl) {
   927     object_iterate(cl, true);
   928   }
   929   virtual void safe_object_iterate(ObjectClosure* cl) {
   930     object_iterate(cl, true);
   931   }
   932   void object_iterate(ObjectClosure* cl, bool do_perm);
   934   // Iterate over all objects allocated since the last collection, calling
   935   // "cl.do_object" on each.  The heap must have been initialized properly
   936   // to support this function, or else this call will fail.
   937   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
   939   // Iterate over all spaces in use in the heap, in ascending address order.
   940   virtual void space_iterate(SpaceClosure* cl);
   942   // Iterate over heap regions, in address order, terminating the
   943   // iteration early if the "doHeapRegion" method returns "true".
   944   void heap_region_iterate(HeapRegionClosure* blk);
   946   // Iterate over heap regions starting with r (or the first region if "r"
   947   // is NULL), in address order, terminating early if the "doHeapRegion"
   948   // method returns "true".
   949   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
   951   // As above but starting from the region at index idx.
   952   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
   954   HeapRegion* region_at(size_t idx);
   956   // Divide the heap region sequence into "chunks" of some size (the number
   957   // of regions divided by the number of parallel threads times some
   958   // overpartition factor, currently 4).  Assumes that this will be called
   959   // in parallel by ParallelGCThreads worker threads with discinct worker
   960   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
   961   // calls will use the same "claim_value", and that that claim value is
   962   // different from the claim_value of any heap region before the start of
   963   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
   964   // attempting to claim the first region in each chunk, and, if
   965   // successful, applying the closure to each region in the chunk (and
   966   // setting the claim value of the second and subsequent regions of the
   967   // chunk.)  For now requires that "doHeapRegion" always returns "false",
   968   // i.e., that a closure never attempt to abort a traversal.
   969   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
   970                                        int worker,
   971                                        jint claim_value);
   973   // It resets all the region claim values to the default.
   974   void reset_heap_region_claim_values();
   976 #ifdef ASSERT
   977   bool check_heap_region_claim_values(jint claim_value);
   978 #endif // ASSERT
   980   // Iterate over the regions (if any) in the current collection set.
   981   void collection_set_iterate(HeapRegionClosure* blk);
   983   // As above but starting from region r
   984   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
   986   // Returns the first (lowest address) compactible space in the heap.
   987   virtual CompactibleSpace* first_compactible_space();
   989   // A CollectedHeap will contain some number of spaces.  This finds the
   990   // space containing a given address, or else returns NULL.
   991   virtual Space* space_containing(const void* addr) const;
   993   // A G1CollectedHeap will contain some number of heap regions.  This
   994   // finds the region containing a given address, or else returns NULL.
   995   HeapRegion* heap_region_containing(const void* addr) const;
   997   // Like the above, but requires "addr" to be in the heap (to avoid a
   998   // null-check), and unlike the above, may return an continuing humongous
   999   // region.
  1000   HeapRegion* heap_region_containing_raw(const void* addr) const;
  1002   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1003   // each address in the (reserved) heap is a member of exactly
  1004   // one block.  The defining characteristic of a block is that it is
  1005   // possible to find its size, and thus to progress forward to the next
  1006   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1007   // represent Java objects, or they might be free blocks in a
  1008   // free-list-based heap (or subheap), as long as the two kinds are
  1009   // distinguishable and the size of each is determinable.
  1011   // Returns the address of the start of the "block" that contains the
  1012   // address "addr".  We say "blocks" instead of "object" since some heaps
  1013   // may not pack objects densely; a chunk may either be an object or a
  1014   // non-object.
  1015   virtual HeapWord* block_start(const void* addr) const;
  1017   // Requires "addr" to be the start of a chunk, and returns its size.
  1018   // "addr + size" is required to be the start of a new chunk, or the end
  1019   // of the active area of the heap.
  1020   virtual size_t block_size(const HeapWord* addr) const;
  1022   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1023   // the block is an object.
  1024   virtual bool block_is_obj(const HeapWord* addr) const;
  1026   // Does this heap support heap inspection? (+PrintClassHistogram)
  1027   virtual bool supports_heap_inspection() const { return true; }
  1029   // Section on thread-local allocation buffers (TLABs)
  1030   // See CollectedHeap for semantics.
  1032   virtual bool supports_tlab_allocation() const;
  1033   virtual size_t tlab_capacity(Thread* thr) const;
  1034   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1035   virtual HeapWord* allocate_new_tlab(size_t size);
  1037   // Can a compiler initialize a new object without store barriers?
  1038   // This permission only extends from the creation of a new object
  1039   // via a TLAB up to the first subsequent safepoint. If such permission
  1040   // is granted for this heap type, the compiler promises to call
  1041   // defer_store_barrier() below on any slow path allocation of
  1042   // a new object for which such initializing store barriers will
  1043   // have been elided. G1, like CMS, allows this, but should be
  1044   // ready to provide a compensating write barrier as necessary
  1045   // if that storage came out of a non-young region. The efficiency
  1046   // of this implementation depends crucially on being able to
  1047   // answer very efficiently in constant time whether a piece of
  1048   // storage in the heap comes from a young region or not.
  1049   // See ReduceInitialCardMarks.
  1050   virtual bool can_elide_tlab_store_barriers() const {
  1051     // 6920090: Temporarily disabled, because of lingering
  1052     // instabilities related to RICM with G1. In the
  1053     // interim, the option ReduceInitialCardMarksForG1
  1054     // below is left solely as a debugging device at least
  1055     // until 6920109 fixes the instabilities.
  1056     return ReduceInitialCardMarksForG1;
  1059   virtual bool card_mark_must_follow_store() const {
  1060     return true;
  1063   bool is_in_young(oop obj) {
  1064     HeapRegion* hr = heap_region_containing(obj);
  1065     return hr != NULL && hr->is_young();
  1068   // We don't need barriers for initializing stores to objects
  1069   // in the young gen: for the SATB pre-barrier, there is no
  1070   // pre-value that needs to be remembered; for the remembered-set
  1071   // update logging post-barrier, we don't maintain remembered set
  1072   // information for young gen objects. Note that non-generational
  1073   // G1 does not have any "young" objects, should not elide
  1074   // the rs logging barrier and so should always answer false below.
  1075   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1076   // bit-rotted so was not tested below.
  1077   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1078     // Re 6920090, 6920109 above.
  1079     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1080     assert(G1Gen || !is_in_young(new_obj),
  1081            "Non-generational G1 should never return true below");
  1082     return is_in_young(new_obj);
  1085   // Can a compiler elide a store barrier when it writes
  1086   // a permanent oop into the heap?  Applies when the compiler
  1087   // is storing x to the heap, where x->is_perm() is true.
  1088   virtual bool can_elide_permanent_oop_store_barriers() const {
  1089     // At least until perm gen collection is also G1-ified, at
  1090     // which point this should return false.
  1091     return true;
  1094   virtual bool allocs_are_zero_filled();
  1096   // The boundary between a "large" and "small" array of primitives, in
  1097   // words.
  1098   virtual size_t large_typearray_limit();
  1100   // Returns "true" iff the given word_size is "very large".
  1101   static bool isHumongous(size_t word_size) {
  1102     // Note this has to be strictly greater-than as the TLABs
  1103     // are capped at the humongous thresold and we want to
  1104     // ensure that we don't try to allocate a TLAB as
  1105     // humongous and that we don't allocate a humongous
  1106     // object in a TLAB.
  1107     return word_size > _humongous_object_threshold_in_words;
  1110   // Update mod union table with the set of dirty cards.
  1111   void updateModUnion();
  1113   // Set the mod union bits corresponding to the given memRegion.  Note
  1114   // that this is always a safe operation, since it doesn't clear any
  1115   // bits.
  1116   void markModUnionRange(MemRegion mr);
  1118   // Records the fact that a marking phase is no longer in progress.
  1119   void set_marking_complete() {
  1120     _mark_in_progress = false;
  1122   void set_marking_started() {
  1123     _mark_in_progress = true;
  1125   bool mark_in_progress() {
  1126     return _mark_in_progress;
  1129   // Print the maximum heap capacity.
  1130   virtual size_t max_capacity() const;
  1132   virtual jlong millis_since_last_gc();
  1134   // Perform any cleanup actions necessary before allowing a verification.
  1135   virtual void prepare_for_verify();
  1137   // Perform verification.
  1139   // use_prev_marking == true  -> use "prev" marking information,
  1140   // use_prev_marking == false -> use "next" marking information
  1141   // NOTE: Only the "prev" marking information is guaranteed to be
  1142   // consistent most of the time, so most calls to this should use
  1143   // use_prev_marking == true. Currently, there is only one case where
  1144   // this is called with use_prev_marking == false, which is to verify
  1145   // the "next" marking information at the end of remark.
  1146   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
  1148   // Override; it uses the "prev" marking information
  1149   virtual void verify(bool allow_dirty, bool silent);
  1150   // Default behavior by calling print(tty);
  1151   virtual void print() const;
  1152   // This calls print_on(st, PrintHeapAtGCExtended).
  1153   virtual void print_on(outputStream* st) const;
  1154   // If extended is true, it will print out information for all
  1155   // regions in the heap by calling print_on_extended(st).
  1156   virtual void print_on(outputStream* st, bool extended) const;
  1157   virtual void print_on_extended(outputStream* st) const;
  1159   virtual void print_gc_threads_on(outputStream* st) const;
  1160   virtual void gc_threads_do(ThreadClosure* tc) const;
  1162   // Override
  1163   void print_tracing_info() const;
  1165   // If "addr" is a pointer into the (reserved?) heap, returns a positive
  1166   // number indicating the "arena" within the heap in which "addr" falls.
  1167   // Or else returns 0.
  1168   virtual int addr_to_arena_id(void* addr) const;
  1170   // Convenience function to be used in situations where the heap type can be
  1171   // asserted to be this type.
  1172   static G1CollectedHeap* heap();
  1174   void empty_young_list();
  1175   bool should_set_young_locked();
  1177   void set_region_short_lived_locked(HeapRegion* hr);
  1178   // add appropriate methods for any other surv rate groups
  1180   YoungList* young_list() { return _young_list; }
  1182   // debugging
  1183   bool check_young_list_well_formed() {
  1184     return _young_list->check_list_well_formed();
  1187   bool check_young_list_empty(bool check_heap,
  1188                               bool check_sample = true);
  1190   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1191   // many of these need to be public.
  1193   // The functions below are helper functions that a subclass of
  1194   // "CollectedHeap" can use in the implementation of its virtual
  1195   // functions.
  1196   // This performs a concurrent marking of the live objects in a
  1197   // bitmap off to the side.
  1198   void doConcurrentMark();
  1200   // This is called from the marksweep collector which then does
  1201   // a concurrent mark and verifies that the results agree with
  1202   // the stop the world marking.
  1203   void checkConcurrentMark();
  1204   void do_sync_mark();
  1206   bool isMarkedPrev(oop obj) const;
  1207   bool isMarkedNext(oop obj) const;
  1209   // use_prev_marking == true  -> use "prev" marking information,
  1210   // use_prev_marking == false -> use "next" marking information
  1211   bool is_obj_dead_cond(const oop obj,
  1212                         const HeapRegion* hr,
  1213                         const bool use_prev_marking) const {
  1214     if (use_prev_marking) {
  1215       return is_obj_dead(obj, hr);
  1216     } else {
  1217       return is_obj_ill(obj, hr);
  1221   // Determine if an object is dead, given the object and also
  1222   // the region to which the object belongs. An object is dead
  1223   // iff a) it was not allocated since the last mark and b) it
  1224   // is not marked.
  1226   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1227     return
  1228       !hr->obj_allocated_since_prev_marking(obj) &&
  1229       !isMarkedPrev(obj);
  1232   // This is used when copying an object to survivor space.
  1233   // If the object is marked live, then we mark the copy live.
  1234   // If the object is allocated since the start of this mark
  1235   // cycle, then we mark the copy live.
  1236   // If the object has been around since the previous mark
  1237   // phase, and hasn't been marked yet during this phase,
  1238   // then we don't mark it, we just wait for the
  1239   // current marking cycle to get to it.
  1241   // This function returns true when an object has been
  1242   // around since the previous marking and hasn't yet
  1243   // been marked during this marking.
  1245   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1246     return
  1247       !hr->obj_allocated_since_next_marking(obj) &&
  1248       !isMarkedNext(obj);
  1251   // Determine if an object is dead, given only the object itself.
  1252   // This will find the region to which the object belongs and
  1253   // then call the region version of the same function.
  1255   // Added if it is in permanent gen it isn't dead.
  1256   // Added if it is NULL it isn't dead.
  1258   // use_prev_marking == true  -> use "prev" marking information,
  1259   // use_prev_marking == false -> use "next" marking information
  1260   bool is_obj_dead_cond(const oop obj,
  1261                         const bool use_prev_marking) {
  1262     if (use_prev_marking) {
  1263       return is_obj_dead(obj);
  1264     } else {
  1265       return is_obj_ill(obj);
  1269   bool is_obj_dead(const oop obj) {
  1270     const HeapRegion* hr = heap_region_containing(obj);
  1271     if (hr == NULL) {
  1272       if (Universe::heap()->is_in_permanent(obj))
  1273         return false;
  1274       else if (obj == NULL) return false;
  1275       else return true;
  1277     else return is_obj_dead(obj, hr);
  1280   bool is_obj_ill(const oop obj) {
  1281     const HeapRegion* hr = heap_region_containing(obj);
  1282     if (hr == NULL) {
  1283       if (Universe::heap()->is_in_permanent(obj))
  1284         return false;
  1285       else if (obj == NULL) return false;
  1286       else return true;
  1288     else return is_obj_ill(obj, hr);
  1291   // The following is just to alert the verification code
  1292   // that a full collection has occurred and that the
  1293   // remembered sets are no longer up to date.
  1294   bool _full_collection;
  1295   void set_full_collection() { _full_collection = true;}
  1296   void clear_full_collection() {_full_collection = false;}
  1297   bool full_collection() {return _full_collection;}
  1299   ConcurrentMark* concurrent_mark() const { return _cm; }
  1300   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1302   // The dirty cards region list is used to record a subset of regions
  1303   // whose cards need clearing. The list if populated during the
  1304   // remembered set scanning and drained during the card table
  1305   // cleanup. Although the methods are reentrant, population/draining
  1306   // phases must not overlap. For synchronization purposes the last
  1307   // element on the list points to itself.
  1308   HeapRegion* _dirty_cards_region_list;
  1309   void push_dirty_cards_region(HeapRegion* hr);
  1310   HeapRegion* pop_dirty_cards_region();
  1312 public:
  1313   void stop_conc_gc_threads();
  1315   // <NEW PREDICTION>
  1317   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1318   void check_if_region_is_too_expensive(double predicted_time_ms);
  1319   size_t pending_card_num();
  1320   size_t max_pending_card_num();
  1321   size_t cards_scanned();
  1323   // </NEW PREDICTION>
  1325 protected:
  1326   size_t _max_heap_capacity;
  1328 //  debug_only(static void check_for_valid_allocation_state();)
  1330 public:
  1331   // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
  1332   // MemoryService).  In productization, we can make this assert false
  1333   // to catch such places (as well as searching for calls to this...)
  1334   static void g1_unimplemented();
  1336 };
  1338 #define use_local_bitmaps         1
  1339 #define verify_local_bitmaps      0
  1340 #define oop_buffer_length       256
  1342 #ifndef PRODUCT
  1343 class GCLabBitMap;
  1344 class GCLabBitMapClosure: public BitMapClosure {
  1345 private:
  1346   ConcurrentMark* _cm;
  1347   GCLabBitMap*    _bitmap;
  1349 public:
  1350   GCLabBitMapClosure(ConcurrentMark* cm,
  1351                      GCLabBitMap* bitmap) {
  1352     _cm     = cm;
  1353     _bitmap = bitmap;
  1356   virtual bool do_bit(size_t offset);
  1357 };
  1358 #endif // !PRODUCT
  1360 class GCLabBitMap: public BitMap {
  1361 private:
  1362   ConcurrentMark* _cm;
  1364   int       _shifter;
  1365   size_t    _bitmap_word_covers_words;
  1367   // beginning of the heap
  1368   HeapWord* _heap_start;
  1370   // this is the actual start of the GCLab
  1371   HeapWord* _real_start_word;
  1373   // this is the actual end of the GCLab
  1374   HeapWord* _real_end_word;
  1376   // this is the first word, possibly located before the actual start
  1377   // of the GCLab, that corresponds to the first bit of the bitmap
  1378   HeapWord* _start_word;
  1380   // size of a GCLab in words
  1381   size_t _gclab_word_size;
  1383   static int shifter() {
  1384     return MinObjAlignment - 1;
  1387   // how many heap words does a single bitmap word corresponds to?
  1388   static size_t bitmap_word_covers_words() {
  1389     return BitsPerWord << shifter();
  1392   size_t gclab_word_size() const {
  1393     return _gclab_word_size;
  1396   // Calculates actual GCLab size in words
  1397   size_t gclab_real_word_size() const {
  1398     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1399            / BitsPerWord;
  1402   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1403     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1404     // We are going to ensure that the beginning of a word in this
  1405     // bitmap also corresponds to the beginning of a word in the
  1406     // global marking bitmap. To handle the case where a GCLab
  1407     // starts from the middle of the bitmap, we need to add enough
  1408     // space (i.e. up to a bitmap word) to ensure that we have
  1409     // enough bits in the bitmap.
  1410     return bits_in_bitmap + BitsPerWord - 1;
  1412 public:
  1413   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1414     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1415       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1416       _shifter(shifter()),
  1417       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1418       _heap_start(heap_start),
  1419       _gclab_word_size(gclab_word_size),
  1420       _real_start_word(NULL),
  1421       _real_end_word(NULL),
  1422       _start_word(NULL)
  1424     guarantee( size_in_words() >= bitmap_size_in_words(),
  1425                "just making sure");
  1428   inline unsigned heapWordToOffset(HeapWord* addr) {
  1429     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1430     assert(offset < size(), "offset should be within bounds");
  1431     return offset;
  1434   inline HeapWord* offsetToHeapWord(size_t offset) {
  1435     HeapWord* addr =  _start_word + (offset << _shifter);
  1436     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1437     return addr;
  1440   bool fields_well_formed() {
  1441     bool ret1 = (_real_start_word == NULL) &&
  1442                 (_real_end_word == NULL) &&
  1443                 (_start_word == NULL);
  1444     if (ret1)
  1445       return true;
  1447     bool ret2 = _real_start_word >= _start_word &&
  1448       _start_word < _real_end_word &&
  1449       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1450       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1451                                                               > _real_end_word;
  1452     return ret2;
  1455   inline bool mark(HeapWord* addr) {
  1456     guarantee(use_local_bitmaps, "invariant");
  1457     assert(fields_well_formed(), "invariant");
  1459     if (addr >= _real_start_word && addr < _real_end_word) {
  1460       assert(!isMarked(addr), "should not have already been marked");
  1462       // first mark it on the bitmap
  1463       at_put(heapWordToOffset(addr), true);
  1465       return true;
  1466     } else {
  1467       return false;
  1471   inline bool isMarked(HeapWord* addr) {
  1472     guarantee(use_local_bitmaps, "invariant");
  1473     assert(fields_well_formed(), "invariant");
  1475     return at(heapWordToOffset(addr));
  1478   void set_buffer(HeapWord* start) {
  1479     guarantee(use_local_bitmaps, "invariant");
  1480     clear();
  1482     assert(start != NULL, "invariant");
  1483     _real_start_word = start;
  1484     _real_end_word   = start + _gclab_word_size;
  1486     size_t diff =
  1487       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1488     _start_word = start - diff;
  1490     assert(fields_well_formed(), "invariant");
  1493 #ifndef PRODUCT
  1494   void verify() {
  1495     // verify that the marks have been propagated
  1496     GCLabBitMapClosure cl(_cm, this);
  1497     iterate(&cl);
  1499 #endif // PRODUCT
  1501   void retire() {
  1502     guarantee(use_local_bitmaps, "invariant");
  1503     assert(fields_well_formed(), "invariant");
  1505     if (_start_word != NULL) {
  1506       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1508       // this means that the bitmap was set up for the GCLab
  1509       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1511       mark_bitmap->mostly_disjoint_range_union(this,
  1512                                 0, // always start from the start of the bitmap
  1513                                 _start_word,
  1514                                 gclab_real_word_size());
  1515       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1517 #ifndef PRODUCT
  1518       if (use_local_bitmaps && verify_local_bitmaps)
  1519         verify();
  1520 #endif // PRODUCT
  1521     } else {
  1522       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1526   size_t bitmap_size_in_words() const {
  1527     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1530 };
  1532 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1533 private:
  1534   bool        _retired;
  1535   bool        _during_marking;
  1536   GCLabBitMap _bitmap;
  1538 public:
  1539   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1540     ParGCAllocBuffer(gclab_word_size),
  1541     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1542     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1543     _retired(false)
  1544   { }
  1546   inline bool mark(HeapWord* addr) {
  1547     guarantee(use_local_bitmaps, "invariant");
  1548     assert(_during_marking, "invariant");
  1549     return _bitmap.mark(addr);
  1552   inline void set_buf(HeapWord* buf) {
  1553     if (use_local_bitmaps && _during_marking)
  1554       _bitmap.set_buffer(buf);
  1555     ParGCAllocBuffer::set_buf(buf);
  1556     _retired = false;
  1559   inline void retire(bool end_of_gc, bool retain) {
  1560     if (_retired)
  1561       return;
  1562     if (use_local_bitmaps && _during_marking) {
  1563       _bitmap.retire();
  1565     ParGCAllocBuffer::retire(end_of_gc, retain);
  1566     _retired = true;
  1568 };
  1570 class G1ParScanThreadState : public StackObj {
  1571 protected:
  1572   G1CollectedHeap* _g1h;
  1573   RefToScanQueue*  _refs;
  1574   DirtyCardQueue   _dcq;
  1575   CardTableModRefBS* _ct_bs;
  1576   G1RemSet* _g1_rem;
  1578   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1579   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1580   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1581   ageTable            _age_table;
  1583   size_t           _alloc_buffer_waste;
  1584   size_t           _undo_waste;
  1586   OopsInHeapRegionClosure*      _evac_failure_cl;
  1587   G1ParScanHeapEvacClosure*     _evac_cl;
  1588   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1590   int _hash_seed;
  1591   int _queue_num;
  1593   size_t _term_attempts;
  1595   double _start;
  1596   double _start_strong_roots;
  1597   double _strong_roots_time;
  1598   double _start_term;
  1599   double _term_time;
  1601   // Map from young-age-index (0 == not young, 1 is youngest) to
  1602   // surviving words. base is what we get back from the malloc call
  1603   size_t* _surviving_young_words_base;
  1604   // this points into the array, as we use the first few entries for padding
  1605   size_t* _surviving_young_words;
  1607 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1609   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1611   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1613   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1614   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1616   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1617     if (!from->is_survivor()) {
  1618       _g1_rem->par_write_ref(from, p, tid);
  1622   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1623     // If the new value of the field points to the same region or
  1624     // is the to-space, we don't need to include it in the Rset updates.
  1625     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1626       size_t card_index = ctbs()->index_for(p);
  1627       // If the card hasn't been added to the buffer, do it.
  1628       if (ctbs()->mark_card_deferred(card_index)) {
  1629         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1634 public:
  1635   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1637   ~G1ParScanThreadState() {
  1638     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1641   RefToScanQueue*   refs()            { return _refs;             }
  1642   ageTable*         age_table()       { return &_age_table;       }
  1644   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1645     return _alloc_buffers[purpose];
  1648   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1649   size_t undo_waste() const                      { return _undo_waste; }
  1651   template <class T> void push_on_queue(T* ref) {
  1652     assert(ref != NULL, "invariant");
  1653     assert(has_partial_array_mask(ref) ||
  1654            _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(ref)), "invariant");
  1655 #ifdef ASSERT
  1656     if (has_partial_array_mask(ref)) {
  1657       oop p = clear_partial_array_mask(ref);
  1658       // Verify that we point into the CS
  1659       assert(_g1h->obj_in_cs(p), "Should be in CS");
  1661 #endif
  1662     refs()->push(ref);
  1665   void pop_from_queue(StarTask& ref) {
  1666     if (refs()->pop_local(ref)) {
  1667       assert((oop*)ref != NULL, "pop_local() returned true");
  1668       assert(UseCompressedOops || !ref.is_narrow(), "Error");
  1669       assert(has_partial_array_mask((oop*)ref) ||
  1670              _g1h->is_in_g1_reserved(ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)ref)
  1671                                                      : oopDesc::load_decode_heap_oop((oop*)ref)),
  1672               "invariant");
  1673     } else {
  1674       StarTask null_task;
  1675       ref = null_task;
  1679   void pop_from_overflow_queue(StarTask& ref) {
  1680     StarTask new_ref;
  1681     refs()->pop_overflow(new_ref);
  1682     assert((oop*)new_ref != NULL, "pop() from a local non-empty stack");
  1683     assert(UseCompressedOops || !new_ref.is_narrow(), "Error");
  1684     assert(has_partial_array_mask((oop*)new_ref) ||
  1685            _g1h->is_in_g1_reserved(new_ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)new_ref)
  1686                                                        : oopDesc::load_decode_heap_oop((oop*)new_ref)),
  1687            "invariant");
  1688     ref = new_ref;
  1691   int refs_to_scan()            { return refs()->size(); }
  1692   int overflowed_refs_to_scan() { return refs()->overflow_stack()->length(); }
  1694   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1695     if (G1DeferredRSUpdate) {
  1696       deferred_rs_update(from, p, tid);
  1697     } else {
  1698       immediate_rs_update(from, p, tid);
  1702   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1704     HeapWord* obj = NULL;
  1705     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1706     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1707       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1708       assert(gclab_word_size == alloc_buf->word_sz(),
  1709              "dynamic resizing is not supported");
  1710       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1711       alloc_buf->retire(false, false);
  1713       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1714       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1715       // Otherwise.
  1716       alloc_buf->set_buf(buf);
  1718       obj = alloc_buf->allocate(word_sz);
  1719       assert(obj != NULL, "buffer was definitely big enough...");
  1720     } else {
  1721       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1723     return obj;
  1726   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1727     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1728     if (obj != NULL) return obj;
  1729     return allocate_slow(purpose, word_sz);
  1732   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1733     if (alloc_buffer(purpose)->contains(obj)) {
  1734       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1735              "should contain whole object");
  1736       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1737     } else {
  1738       CollectedHeap::fill_with_object(obj, word_sz);
  1739       add_to_undo_waste(word_sz);
  1743   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1744     _evac_failure_cl = evac_failure_cl;
  1746   OopsInHeapRegionClosure* evac_failure_closure() {
  1747     return _evac_failure_cl;
  1750   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1751     _evac_cl = evac_cl;
  1754   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1755     _partial_scan_cl = partial_scan_cl;
  1758   int* hash_seed() { return &_hash_seed; }
  1759   int  queue_num() { return _queue_num; }
  1761   size_t term_attempts() const  { return _term_attempts; }
  1762   void note_term_attempt() { _term_attempts++; }
  1764   void start_strong_roots() {
  1765     _start_strong_roots = os::elapsedTime();
  1767   void end_strong_roots() {
  1768     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1770   double strong_roots_time() const { return _strong_roots_time; }
  1772   void start_term_time() {
  1773     note_term_attempt();
  1774     _start_term = os::elapsedTime();
  1776   void end_term_time() {
  1777     _term_time += (os::elapsedTime() - _start_term);
  1779   double term_time() const { return _term_time; }
  1781   double elapsed_time() const {
  1782     return os::elapsedTime() - _start;
  1785   static void
  1786     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1787   void
  1788     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1790   size_t* surviving_young_words() {
  1791     // We add on to hide entry 0 which accumulates surviving words for
  1792     // age -1 regions (i.e. non-young ones)
  1793     return _surviving_young_words;
  1796   void retire_alloc_buffers() {
  1797     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1798       size_t waste = _alloc_buffers[ap]->words_remaining();
  1799       add_to_alloc_buffer_waste(waste);
  1800       _alloc_buffers[ap]->retire(true, false);
  1804 private:
  1805   template <class T> void deal_with_reference(T* ref_to_scan) {
  1806     if (has_partial_array_mask(ref_to_scan)) {
  1807       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1808     } else {
  1809       // Note: we can use "raw" versions of "region_containing" because
  1810       // "obj_to_scan" is definitely in the heap, and is not in a
  1811       // humongous region.
  1812       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1813       _evac_cl->set_region(r);
  1814       _evac_cl->do_oop_nv(ref_to_scan);
  1818 public:
  1819   void trim_queue() {
  1820     // I've replicated the loop twice, first to drain the overflow
  1821     // queue, second to drain the task queue. This is better than
  1822     // having a single loop, which checks both conditions and, inside
  1823     // it, either pops the overflow queue or the task queue, as each
  1824     // loop is tighter. Also, the decision to drain the overflow queue
  1825     // first is not arbitrary, as the overflow queue is not visible
  1826     // to the other workers, whereas the task queue is. So, we want to
  1827     // drain the "invisible" entries first, while allowing the other
  1828     // workers to potentially steal the "visible" entries.
  1830     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
  1831       while (overflowed_refs_to_scan() > 0) {
  1832         StarTask ref_to_scan;
  1833         assert((oop*)ref_to_scan == NULL, "Constructed above");
  1834         pop_from_overflow_queue(ref_to_scan);
  1835         // We shouldn't have pushed it on the queue if it was not
  1836         // pointing into the CSet.
  1837         assert((oop*)ref_to_scan != NULL, "Follows from inner loop invariant");
  1838         if (ref_to_scan.is_narrow()) {
  1839           assert(UseCompressedOops, "Error");
  1840           narrowOop* p = (narrowOop*)ref_to_scan;
  1841           assert(!has_partial_array_mask(p) &&
  1842                  _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
  1843           deal_with_reference(p);
  1844         } else {
  1845           oop* p = (oop*)ref_to_scan;
  1846           assert((has_partial_array_mask(p) && _g1h->is_in_g1_reserved(clear_partial_array_mask(p))) ||
  1847                  _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
  1848           deal_with_reference(p);
  1852       while (refs_to_scan() > 0) {
  1853         StarTask ref_to_scan;
  1854         assert((oop*)ref_to_scan == NULL, "Constructed above");
  1855         pop_from_queue(ref_to_scan);
  1856         if ((oop*)ref_to_scan != NULL) {
  1857           if (ref_to_scan.is_narrow()) {
  1858             assert(UseCompressedOops, "Error");
  1859             narrowOop* p = (narrowOop*)ref_to_scan;
  1860             assert(!has_partial_array_mask(p) &&
  1861                     _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
  1862             deal_with_reference(p);
  1863           } else {
  1864             oop* p = (oop*)ref_to_scan;
  1865             assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
  1866                    _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
  1867             deal_with_reference(p);
  1873 };

mercurial