src/share/vm/opto/phaseX.hpp

Tue, 12 Jun 2012 16:23:31 -0700

author
kvn
date
Tue, 12 Jun 2012 16:23:31 -0700
changeset 3847
5e990493719e
parent 3407
35acf8f0a2e4
child 3947
611e8a669a2c
child 3969
1d7922586cf6
permissions
-rw-r--r--

7173340: C2: code cleanup: use PhaseIterGVN::replace_edge(Node*, int, Node*) where applicable
Summary: replace frequent C2 optimizer code patterns with new methods calls
Reviewed-by: kvn, twisti
Contributed-by: vladimir.x.ivanov@oracle.com

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_PHASEX_HPP
    26 #define SHARE_VM_OPTO_PHASEX_HPP
    28 #include "libadt/dict.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "opto/memnode.hpp"
    32 #include "opto/node.hpp"
    33 #include "opto/phase.hpp"
    34 #include "opto/type.hpp"
    36 class Compile;
    37 class ConINode;
    38 class ConLNode;
    39 class Node;
    40 class Type;
    41 class PhaseTransform;
    42 class   PhaseGVN;
    43 class     PhaseIterGVN;
    44 class       PhaseCCP;
    45 class   PhasePeephole;
    46 class   PhaseRegAlloc;
    49 //-----------------------------------------------------------------------------
    50 // Expandable closed hash-table of nodes, initialized to NULL.
    51 // Note that the constructor just zeros things
    52 // Storage is reclaimed when the Arena's lifetime is over.
    53 class NodeHash : public StackObj {
    54 protected:
    55   Arena *_a;                    // Arena to allocate in
    56   uint   _max;                  // Size of table (power of 2)
    57   uint   _inserts;              // For grow and debug, count of hash_inserts
    58   uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
    59   Node **_table;                // Hash table of Node pointers
    60   Node  *_sentinel;             // Replaces deleted entries in hash table
    62 public:
    63   NodeHash(uint est_max_size);
    64   NodeHash(Arena *arena, uint est_max_size);
    65   NodeHash(NodeHash *use_this_state);
    66 #ifdef ASSERT
    67   ~NodeHash();                  // Unlock all nodes upon destruction of table.
    68   void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
    69 #endif
    70   Node  *hash_find(const Node*);// Find an equivalent version in hash table
    71   Node  *hash_find_insert(Node*);// If not in table insert else return found node
    72   void   hash_insert(Node*);    // Insert into hash table
    73   bool   hash_delete(const Node*);// Replace with _sentinel in hash table
    74   void   check_grow() {
    75     _inserts++;
    76     if( _inserts == _insert_limit ) { grow(); }
    77     assert( _inserts <= _insert_limit, "hash table overflow");
    78     assert( _inserts < _max, "hash table overflow" );
    79   }
    80   static uint round_up(uint);   // Round up to nearest power of 2
    81   void   grow();                // Grow _table to next power of 2 and rehash
    82   // Return 75% of _max, rounded up.
    83   uint   insert_limit() const { return _max - (_max>>2); }
    85   void   clear();               // Set all entries to NULL, keep storage.
    86   // Size of hash table
    87   uint   size()         const { return _max; }
    88   // Return Node* at index in table
    89   Node  *at(uint table_index) {
    90     assert(table_index < _max, "Must be within table");
    91     return _table[table_index];
    92   }
    94   void   remove_useless_nodes(VectorSet &useful); // replace with sentinel
    96   Node  *sentinel() { return _sentinel; }
    98 #ifndef PRODUCT
    99   Node  *find_index(uint idx);  // For debugging
   100   void   dump();                // For debugging, dump statistics
   101 #endif
   102   uint   _grows;                // For debugging, count of table grow()s
   103   uint   _look_probes;          // For debugging, count of hash probes
   104   uint   _lookup_hits;          // For debugging, count of hash_finds
   105   uint   _lookup_misses;        // For debugging, count of hash_finds
   106   uint   _insert_probes;        // For debugging, count of hash probes
   107   uint   _delete_probes;        // For debugging, count of hash probes for deletes
   108   uint   _delete_hits;          // For debugging, count of hash probes for deletes
   109   uint   _delete_misses;        // For debugging, count of hash probes for deletes
   110   uint   _total_inserts;        // For debugging, total inserts into hash table
   111   uint   _total_insert_probes;  // For debugging, total probes while inserting
   112 };
   115 //-----------------------------------------------------------------------------
   116 // Map dense integer indices to Types.  Uses classic doubling-array trick.
   117 // Abstractly provides an infinite array of Type*'s, initialized to NULL.
   118 // Note that the constructor just zeros things, and since I use Arena
   119 // allocation I do not need a destructor to reclaim storage.
   120 // Despite the general name, this class is customized for use by PhaseTransform.
   121 class Type_Array : public StackObj {
   122   Arena *_a;                    // Arena to allocate in
   123   uint   _max;
   124   const Type **_types;
   125   void grow( uint i );          // Grow array node to fit
   126   const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
   127   { return (i<_max) ? _types[i] : (Type*)NULL; }
   128   friend class PhaseTransform;
   129 public:
   130   Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
   131   Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
   132   const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
   133   // Extend the mapping: index i maps to Type *n.
   134   void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
   135   uint Size() const { return _max; }
   136 #ifndef PRODUCT
   137   void dump() const;
   138 #endif
   139 };
   142 //------------------------------PhaseRemoveUseless-----------------------------
   143 // Remove useless nodes from GVN hash-table, worklist, and graph
   144 class PhaseRemoveUseless : public Phase {
   145 protected:
   146   Unique_Node_List _useful;   // Nodes reachable from root
   147                               // list is allocated from current resource area
   148 public:
   149   PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist );
   151   Unique_Node_List *get_useful() { return &_useful; }
   152 };
   155 //------------------------------PhaseTransform---------------------------------
   156 // Phases that analyze, then transform.  Constructing the Phase object does any
   157 // global or slow analysis.  The results are cached later for a fast
   158 // transformation pass.  When the Phase object is deleted the cached analysis
   159 // results are deleted.
   160 class PhaseTransform : public Phase {
   161 protected:
   162   Arena*     _arena;
   163   Node_Array _nodes;           // Map old node indices to new nodes.
   164   Type_Array _types;           // Map old node indices to Types.
   166   // ConNode caches:
   167   enum { _icon_min = -1 * HeapWordSize,
   168          _icon_max = 16 * HeapWordSize,
   169          _lcon_min = _icon_min,
   170          _lcon_max = _icon_max,
   171          _zcon_max = (uint)T_CONFLICT
   172   };
   173   ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
   174   ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
   175   ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
   176   void init_con_caches();
   178   // Support both int and long caches because either might be an intptr_t,
   179   // so they show up frequently in address computations.
   181 public:
   182   PhaseTransform( PhaseNumber pnum );
   183   PhaseTransform( Arena *arena, PhaseNumber pnum );
   184   PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
   186   Arena*      arena()   { return _arena; }
   187   Type_Array& types()   { return _types; }
   188   // _nodes is used in varying ways by subclasses, which define local accessors
   190 public:
   191   // Get a previously recorded type for the node n.
   192   // This type must already have been recorded.
   193   // If you want the type of a very new (untransformed) node,
   194   // you must use type_or_null, and test the result for NULL.
   195   const Type* type(const Node* n) const {
   196     const Type* t = _types.fast_lookup(n->_idx);
   197     assert(t != NULL, "must set before get");
   198     return t;
   199   }
   200   // Get a previously recorded type for the node n,
   201   // or else return NULL if there is none.
   202   const Type* type_or_null(const Node* n) const {
   203     return _types.fast_lookup(n->_idx);
   204   }
   205   // Record a type for a node.
   206   void    set_type(const Node* n, const Type *t) {
   207     assert(t != NULL, "type must not be null");
   208     _types.map(n->_idx, t);
   209   }
   210   // Record an initial type for a node, the node's bottom type.
   211   void    set_type_bottom(const Node* n) {
   212     // Use this for initialization when bottom_type() (or better) is not handy.
   213     // Usually the initialization shoudl be to n->Value(this) instead,
   214     // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
   215     assert(_types[n->_idx] == NULL, "must set the initial type just once");
   216     _types.map(n->_idx, n->bottom_type());
   217   }
   218   // Make sure the types array is big enough to record a size for the node n.
   219   // (In product builds, we never want to do range checks on the types array!)
   220   void ensure_type_or_null(const Node* n) {
   221     if (n->_idx >= _types.Size())
   222       _types.map(n->_idx, NULL);   // Grow the types array as needed.
   223   }
   225   // Utility functions:
   226   const TypeInt*  find_int_type( Node* n);
   227   const TypeLong* find_long_type(Node* n);
   228   jint  find_int_con( Node* n, jint  value_if_unknown) {
   229     const TypeInt* t = find_int_type(n);
   230     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   231   }
   232   jlong find_long_con(Node* n, jlong value_if_unknown) {
   233     const TypeLong* t = find_long_type(n);
   234     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   235   }
   237   // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
   238   // Same as transform(ConNode::make(t)).
   239   ConNode* makecon(const Type* t);
   240   virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
   241   { ShouldNotCallThis(); return NULL; }
   243   // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
   244   ConINode* intcon(jint i);
   245   ConLNode* longcon(jlong l);
   247   // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
   248   ConNode* zerocon(BasicType bt);
   250   // Return a node which computes the same function as this node, but
   251   // in a faster or cheaper fashion.
   252   virtual Node *transform( Node *n ) = 0;
   254   // Return whether two Nodes are equivalent.
   255   // Must not be recursive, since the recursive version is built from this.
   256   // For pessimistic optimizations this is simply pointer equivalence.
   257   bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
   259   // For pessimistic passes, the return type must monotonically narrow.
   260   // For optimistic  passes, the return type must monotonically widen.
   261   // It is possible to get into a "death march" in either type of pass,
   262   // where the types are continually moving but it will take 2**31 or
   263   // more steps to converge.  This doesn't happen on most normal loops.
   264   //
   265   // Here is an example of a deadly loop for an optimistic pass, along
   266   // with a partial trace of inferred types:
   267   //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
   268   //    0                 1                join([0..max], 1)
   269   //    [0..1]            [1..2]           join([0..max], [1..2])
   270   //    [0..2]            [1..3]           join([0..max], [1..3])
   271   //      ... ... ...
   272   //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
   273   //    [0..max] ==> fixpoint
   274   // We would have proven, the hard way, that the iteration space is all
   275   // non-negative ints, with the loop terminating due to 32-bit overflow.
   276   //
   277   // Here is the corresponding example for a pessimistic pass:
   278   //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
   279   //    int               int              join([0..max], int)
   280   //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
   281   //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
   282   //      ... ... ...
   283   //    [0..1]            [-1..0]          join([0..max], [-1..0])
   284   //    0                 -1               join([0..max], -1)
   285   //    0 == fixpoint
   286   // We would have proven, the hard way, that the iteration space is {0}.
   287   // (Usually, other optimizations will make the "if (x >= 0)" fold up
   288   // before we get into trouble.  But not always.)
   289   //
   290   // It's a pleasant thing to observe that the pessimistic pass
   291   // will make short work of the optimistic pass's deadly loop,
   292   // and vice versa.  That is a good example of the complementary
   293   // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
   294   //
   295   // In any case, only widen or narrow a few times before going to the
   296   // correct flavor of top or bottom.
   297   //
   298   // This call only needs to be made once as the data flows around any
   299   // given cycle.  We do it at Phis, and nowhere else.
   300   // The types presented are the new type of a phi (computed by PhiNode::Value)
   301   // and the previously computed type, last time the phi was visited.
   302   //
   303   // The third argument is upper limit for the saturated value,
   304   // if the phase wishes to widen the new_type.
   305   // If the phase is narrowing, the old type provides a lower limit.
   306   // Caller guarantees that old_type and new_type are no higher than limit_type.
   307   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   308                                const Type* limit_type) const
   309   { ShouldNotCallThis(); return NULL; }
   311 #ifndef PRODUCT
   312   void dump_old2new_map() const;
   313   void dump_new( uint new_lidx ) const;
   314   void dump_types() const;
   315   void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
   316   void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
   318   uint   _count_progress;       // For profiling, count transforms that make progress
   319   void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
   320   void   clear_progress()      { _count_progress = 0; }
   321   uint   made_progress() const { return _count_progress; }
   323   uint   _count_transforms;     // For profiling, count transforms performed
   324   void   set_transforms()      { ++_count_transforms; }
   325   void   clear_transforms()    { _count_transforms = 0; }
   326   uint   made_transforms() const{ return _count_transforms; }
   328   bool   _allow_progress;      // progress not allowed during verification pass
   329   void   set_allow_progress(bool allow) { _allow_progress = allow; }
   330   bool   allow_progress()               { return _allow_progress; }
   331 #endif
   332 };
   334 //------------------------------PhaseValues------------------------------------
   335 // Phase infrastructure to support values
   336 class PhaseValues : public PhaseTransform {
   337 protected:
   338   NodeHash  _table;             // Hash table for value-numbering
   340 public:
   341   PhaseValues( Arena *arena, uint est_max_size );
   342   PhaseValues( PhaseValues *pt );
   343   PhaseValues( PhaseValues *ptv, const char *dummy );
   344   NOT_PRODUCT( ~PhaseValues(); )
   345   virtual PhaseIterGVN *is_IterGVN() { return 0; }
   347   // Some Ideal and other transforms delete --> modify --> insert values
   348   bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
   349   void   hash_insert(Node *n)     { _table.hash_insert(n); }
   350   Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
   351   Node  *hash_find(const Node *n) { return _table.hash_find(n); }
   353   // Used after parsing to eliminate values that are no longer in program
   354   void   remove_useless_nodes(VectorSet &useful) {
   355     _table.remove_useless_nodes(useful);
   356     // this may invalidate cached cons so reset the cache
   357     init_con_caches();
   358   }
   360   virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform
   362   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   363                                const Type* limit_type) const
   364   { return new_type; }
   366 #ifndef PRODUCT
   367   uint   _count_new_values;     // For profiling, count new values produced
   368   void    inc_new_values()        { ++_count_new_values; }
   369   void    clear_new_values()      { _count_new_values = 0; }
   370   uint    made_new_values() const { return _count_new_values; }
   371 #endif
   372 };
   375 //------------------------------PhaseGVN---------------------------------------
   376 // Phase for performing local, pessimistic GVN-style optimizations.
   377 class PhaseGVN : public PhaseValues {
   378 public:
   379   PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
   380   PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
   381   PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
   383   // Return a node which computes the same function as this node, but
   384   // in a faster or cheaper fashion.
   385   Node  *transform( Node *n );
   386   Node  *transform_no_reclaim( Node *n );
   388   // Check for a simple dead loop when a data node references itself.
   389   DEBUG_ONLY(void dead_loop_check(Node *n);)
   390 };
   392 //------------------------------PhaseIterGVN-----------------------------------
   393 // Phase for iteratively performing local, pessimistic GVN-style optimizations.
   394 // and ideal transformations on the graph.
   395 class PhaseIterGVN : public PhaseGVN {
   396  private:
   397   bool _delay_transform;  // When true simply register the node when calling transform
   398                           // instead of actually optimizing it
   400   // Idealize old Node 'n' with respect to its inputs and its value
   401   virtual Node *transform_old( Node *a_node );
   403   // Subsume users of node 'old' into node 'nn'
   404   void subsume_node( Node *old, Node *nn );
   406 protected:
   408   // Idealize new Node 'n' with respect to its inputs and its value
   409   virtual Node *transform( Node *a_node );
   411   // Warm up hash table, type table and initial worklist
   412   void init_worklist( Node *a_root );
   414   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   415                                const Type* limit_type) const;
   416   // Usually returns new_type.  Returns old_type if new_type is only a slight
   417   // improvement, such that it would take many (>>10) steps to reach 2**32.
   419 public:
   420   PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
   421   PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
   422   PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
   424   virtual PhaseIterGVN *is_IterGVN() { return this; }
   426   Unique_Node_List _worklist;       // Iterative worklist
   428   // Given def-use info and an initial worklist, apply Node::Ideal,
   429   // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
   430   // and dominator info to a fixed point.
   431   void optimize();
   433   // Register a new node with the iter GVN pass without transforming it.
   434   // Used when we need to restructure a Region/Phi area and all the Regions
   435   // and Phis need to complete this one big transform before any other
   436   // transforms can be triggered on the region.
   437   // Optional 'orig' is an earlier version of this node.
   438   // It is significant only for debugging and profiling.
   439   Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
   441   // Kill a globally dead Node.   It is allowed to have uses which are
   442   // assumed dead and left 'in limbo'.
   443   void remove_globally_dead_node( Node *dead );
   445   // Kill all inputs to a dead node, recursively making more dead nodes.
   446   // The Node must be dead locally, i.e., have no uses.
   447   void remove_dead_node( Node *dead ) {
   448     assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
   449     remove_globally_dead_node(dead);
   450   }
   452   // Add users of 'n' to worklist
   453   void add_users_to_worklist0( Node *n );
   454   void add_users_to_worklist ( Node *n );
   456   // Replace old node with new one.
   457   void replace_node( Node *old, Node *nn ) {
   458     add_users_to_worklist(old);
   459     hash_delete(old); // Yank from hash before hacking edges
   460     subsume_node(old, nn);
   461   }
   463   // Delayed node rehash: remove a node from the hash table and rehash it during
   464   // next optimizing pass
   465   void rehash_node_delayed(Node* n) {
   466     hash_delete(n);
   467     _worklist.push(n);
   468   }
   470   // Replace ith edge of "n" with "in"
   471   void replace_input_of(Node* n, int i, Node* in) {
   472     rehash_node_delayed(n);
   473     n->set_req(i, in);
   474   }
   476   // Delete ith edge of "n"
   477   void delete_input_of(Node* n, int i) {
   478     rehash_node_delayed(n);
   479     n->del_req(i);
   480   }
   482   bool delay_transform() const { return _delay_transform; }
   484   void set_delay_transform(bool delay) {
   485     _delay_transform = delay;
   486   }
   488   // Clone loop predicates. Defined in loopTransform.cpp.
   489   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
   490   // Create a new if below new_entry for the predicate to be cloned
   491   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
   492                                         Deoptimization::DeoptReason reason);
   494 #ifndef PRODUCT
   495 protected:
   496   // Sub-quadratic implementation of VerifyIterativeGVN.
   497   unsigned long _verify_counter;
   498   unsigned long _verify_full_passes;
   499   enum { _verify_window_size = 30 };
   500   Node* _verify_window[_verify_window_size];
   501   void verify_step(Node* n);
   502 #endif
   503 };
   505 //------------------------------PhaseCCP---------------------------------------
   506 // Phase for performing global Conditional Constant Propagation.
   507 // Should be replaced with combined CCP & GVN someday.
   508 class PhaseCCP : public PhaseIterGVN {
   509   // Non-recursive.  Use analysis to transform single Node.
   510   virtual Node *transform_once( Node *n );
   512 public:
   513   PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
   514   NOT_PRODUCT( ~PhaseCCP(); )
   516   // Worklist algorithm identifies constants
   517   void analyze();
   518   // Recursive traversal of program.  Used analysis to modify program.
   519   virtual Node *transform( Node *n );
   520   // Do any transformation after analysis
   521   void          do_transform();
   523   virtual const Type* saturate(const Type* new_type, const Type* old_type,
   524                                const Type* limit_type) const;
   525   // Returns new_type->widen(old_type), which increments the widen bits until
   526   // giving up with TypeInt::INT or TypeLong::LONG.
   527   // Result is clipped to limit_type if necessary.
   529 #ifndef PRODUCT
   530   static uint _total_invokes;    // For profiling, count invocations
   531   void    inc_invokes()          { ++PhaseCCP::_total_invokes; }
   533   static uint _total_constants;  // For profiling, count constants found
   534   uint   _count_constants;
   535   void    clear_constants()      { _count_constants = 0; }
   536   void    inc_constants()        { ++_count_constants; }
   537   uint    count_constants() const { return _count_constants; }
   539   static void print_statistics();
   540 #endif
   541 };
   544 //------------------------------PhasePeephole----------------------------------
   545 // Phase for performing peephole optimizations on register allocated basic blocks.
   546 class PhasePeephole : public PhaseTransform {
   547   PhaseRegAlloc *_regalloc;
   548   PhaseCFG     &_cfg;
   549   // Recursive traversal of program.  Pure function is unused in this phase
   550   virtual Node *transform( Node *n );
   552 public:
   553   PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
   554   NOT_PRODUCT( ~PhasePeephole(); )
   556   // Do any transformation after analysis
   557   void          do_transform();
   559 #ifndef PRODUCT
   560   static uint _total_peepholes;  // For profiling, count peephole rules applied
   561   uint   _count_peepholes;
   562   void    clear_peepholes()      { _count_peepholes = 0; }
   563   void    inc_peepholes()        { ++_count_peepholes; }
   564   uint    count_peepholes() const { return _count_peepholes; }
   566   static void print_statistics();
   567 #endif
   568 };
   570 #endif // SHARE_VM_OPTO_PHASEX_HPP

mercurial