src/share/vm/runtime/advancedThresholdPolicy.cpp

Fri, 04 Mar 2011 15:14:16 -0800

author
iveresov
date
Fri, 04 Mar 2011 15:14:16 -0800
changeset 2630
5d8f5a6dced7
child 2890
97b64f73103b
permissions
-rw-r--r--

7020403: Add AdvancedCompilationPolicy for tiered
Summary: This implements adaptive tiered compilation policy.
Reviewed-by: kvn, never

     1 /*
     2 * Copyright (c) 2010, 2011 Oracle and/or its affiliates. All rights reserved.
     3 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     4 */
     6 #include "precompiled.hpp"
     7 #include "runtime/advancedThresholdPolicy.hpp"
     8 #include "runtime/simpleThresholdPolicy.inline.hpp"
    10 #ifdef TIERED
    11 // Print an event.
    12 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
    13                                              int bci, CompLevel level) {
    14   tty->print(" rate: ");
    15   if (mh->prev_time() == 0) tty->print("n/a");
    16   else tty->print("%f", mh->rate());
    18   tty->print(" k: %.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
    19                                 threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
    21 }
    23 void AdvancedThresholdPolicy::initialize() {
    24   // Turn on ergonomic compiler count selection
    25   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    26     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
    27   }
    28   int count = CICompilerCount;
    29   if (CICompilerCountPerCPU) {
    30     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    31     int log_cpu = log2_intptr(os::active_processor_count());
    32     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    33     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
    34   }
    36   set_c1_count(MAX2(count / 3, 1));
    37   set_c2_count(MAX2(count - count / 3, 1));
    39   // Some inlining tuning
    40 #ifdef X86
    41   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    42     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
    43   }
    44 #endif
    46 #ifdef SPARC
    47   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    48     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
    49   }
    50 #endif
    53   set_start_time(os::javaTimeMillis());
    54 }
    56 // update_rate() is called from select_task() while holding a compile queue lock.
    57 void AdvancedThresholdPolicy::update_rate(jlong t, methodOop m) {
    58   if (is_old(m)) {
    59     // We don't remove old methods from the queue,
    60     // so we can just zero the rate.
    61     m->set_rate(0);
    62     return;
    63   }
    65   // We don't update the rate if we've just came out of a safepoint.
    66   // delta_s is the time since last safepoint in milliseconds.
    67   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
    68   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
    69   // How many events were there since the last time?
    70   int event_count = m->invocation_count() + m->backedge_count();
    71   int delta_e = event_count - m->prev_event_count();
    73   // We should be running for at least 1ms.
    74   if (delta_s >= TieredRateUpdateMinTime) {
    75     // And we must've taken the previous point at least 1ms before.
    76     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
    77       m->set_prev_time(t);
    78       m->set_prev_event_count(event_count);
    79       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
    80     } else
    81       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
    82         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
    83         m->set_rate(0);
    84       }
    85   }
    86 }
    88 // Check if this method has been stale from a given number of milliseconds.
    89 // See select_task().
    90 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, methodOop m) {
    91   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
    92   jlong delta_t = t - m->prev_time();
    93   if (delta_t > timeout && delta_s > timeout) {
    94     int event_count = m->invocation_count() + m->backedge_count();
    95     int delta_e = event_count - m->prev_event_count();
    96     // Return true if there were no events.
    97     return delta_e == 0;
    98   }
    99   return false;
   100 }
   102 // We don't remove old methods from the compile queue even if they have
   103 // very low activity. See select_task().
   104 bool AdvancedThresholdPolicy::is_old(methodOop method) {
   105   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
   106 }
   108 double AdvancedThresholdPolicy::weight(methodOop method) {
   109   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
   110 }
   112 // Apply heuristics and return true if x should be compiled before y
   113 bool AdvancedThresholdPolicy::compare_methods(methodOop x, methodOop y) {
   114   if (x->highest_comp_level() > y->highest_comp_level()) {
   115     // recompilation after deopt
   116     return true;
   117   } else
   118     if (x->highest_comp_level() == y->highest_comp_level()) {
   119       if (weight(x) > weight(y)) {
   120         return true;
   121       }
   122     }
   123   return false;
   124 }
   126 // Is method profiled enough?
   127 bool AdvancedThresholdPolicy::is_method_profiled(methodOop method) {
   128   methodDataOop mdo = method->method_data();
   129   if (mdo != NULL) {
   130     int i = mdo->invocation_count_delta();
   131     int b = mdo->backedge_count_delta();
   132     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
   133   }
   134   return false;
   135 }
   137 // Called with the queue locked and with at least one element
   138 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
   139   CompileTask *max_task = NULL;
   140   methodOop max_method;
   141   jlong t = os::javaTimeMillis();
   142   // Iterate through the queue and find a method with a maximum rate.
   143   for (CompileTask* task = compile_queue->first(); task != NULL;) {
   144     CompileTask* next_task = task->next();
   145     methodOop method = (methodOop)JNIHandles::resolve(task->method_handle());
   146     methodDataOop mdo = method->method_data();
   147     update_rate(t, method);
   148     if (max_task == NULL) {
   149       max_task = task;
   150       max_method = method;
   151     } else {
   152       // If a method has been stale for some time, remove it from the queue.
   153       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
   154         if (PrintTieredEvents) {
   155           print_event(KILL, method, method, task->osr_bci(), (CompLevel)task->comp_level());
   156         }
   157         CompileTaskWrapper ctw(task); // Frees the task
   158         compile_queue->remove(task);
   159         method->clear_queued_for_compilation();
   160         task = next_task;
   161         continue;
   162       }
   164       // Select a method with a higher rate
   165       if (compare_methods(method, max_method)) {
   166         max_task = task;
   167         max_method = method;
   168       }
   169     }
   170     task = next_task;
   171   }
   173   if (max_task->comp_level() == CompLevel_full_profile && is_method_profiled(max_method)) {
   174     max_task->set_comp_level(CompLevel_limited_profile);
   175     if (PrintTieredEvents) {
   176       print_event(UPDATE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
   177     }
   178   }
   180   return max_task;
   181 }
   183 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
   184   double queue_size = CompileBroker::queue_size(level);
   185   int comp_count = compiler_count(level);
   186   double k = queue_size / (feedback_k * comp_count) + 1;
   187   return k;
   188 }
   190 // Call and loop predicates determine whether a transition to a higher
   191 // compilation level should be performed (pointers to predicate functions
   192 // are passed to common()).
   193 // Tier?LoadFeedback is basically a coefficient that determines of
   194 // how many methods per compiler thread can be in the queue before
   195 // the threshold values double.
   196 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
   197   switch(cur_level) {
   198   case CompLevel_none:
   199   case CompLevel_limited_profile: {
   200     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   201     return loop_predicate_helper<CompLevel_none>(i, b, k);
   202   }
   203   case CompLevel_full_profile: {
   204     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   205     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
   206   }
   207   default:
   208     return true;
   209   }
   210 }
   212 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
   213   switch(cur_level) {
   214   case CompLevel_none:
   215   case CompLevel_limited_profile: {
   216     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   217     return call_predicate_helper<CompLevel_none>(i, b, k);
   218   }
   219   case CompLevel_full_profile: {
   220     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   221     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
   222   }
   223   default:
   224     return true;
   225   }
   226 }
   228 // If a method is old enough and is still in the interpreter we would want to
   229 // start profiling without waiting for the compiled method to arrive.
   230 // We also take the load on compilers into the account.
   231 bool AdvancedThresholdPolicy::should_create_mdo(methodOop method, CompLevel cur_level) {
   232   if (cur_level == CompLevel_none &&
   233       CompileBroker::queue_size(CompLevel_full_optimization) <=
   234       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   235     int i = method->invocation_count();
   236     int b = method->backedge_count();
   237     double k = Tier0ProfilingStartPercentage / 100.0;
   238     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
   239   }
   240   return false;
   241 }
   243 // Create MDO if necessary.
   244 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, TRAPS) {
   245   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
   246   if (mh->method_data() == NULL) {
   247     methodOopDesc::build_interpreter_method_data(mh, THREAD);
   248     if (HAS_PENDING_EXCEPTION) {
   249       CLEAR_PENDING_EXCEPTION;
   250     }
   251   }
   252 }
   255 /*
   256  * Method states:
   257  *   0 - interpreter (CompLevel_none)
   258  *   1 - pure C1 (CompLevel_simple)
   259  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
   260  *   3 - C1 with full profiling (CompLevel_full_profile)
   261  *   4 - C2 (CompLevel_full_optimization)
   262  *
   263  * Common state transition patterns:
   264  * a. 0 -> 3 -> 4.
   265  *    The most common path. But note that even in this straightforward case
   266  *    profiling can start at level 0 and finish at level 3.
   267  *
   268  * b. 0 -> 2 -> 3 -> 4.
   269  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
   270  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
   271  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
   272  *
   273  * c. 0 -> (3->2) -> 4.
   274  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
   275  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
   276  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
   277  *    is compiling.
   278  *
   279  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
   280  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
   281  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
   282  *
   283  * e. 0 -> 4.
   284  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
   285  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
   286  *    the compiled version already exists).
   287  *
   288  * Note that since state 0 can be reached from any other state via deoptimization different loops
   289  * are possible.
   290  *
   291  */
   293 // Common transition function. Given a predicate determines if a method should transition to another level.
   294 CompLevel AdvancedThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level) {
   295   if (is_trivial(method)) return CompLevel_simple;
   297   CompLevel next_level = cur_level;
   298   int i = method->invocation_count();
   299   int b = method->backedge_count();
   301   switch(cur_level) {
   302   case CompLevel_none:
   303     // If we were at full profile level, would we switch to full opt?
   304     if (common(p, method, CompLevel_full_profile) == CompLevel_full_optimization) {
   305       next_level = CompLevel_full_optimization;
   306     } else if ((this->*p)(i, b, cur_level)) {
   307       // C1-generated fully profiled code is about 30% slower than the limited profile
   308       // code that has only invocation and backedge counters. The observation is that
   309       // if C2 queue is large enough we can spend too much time in the fully profiled code
   310       // while waiting for C2 to pick the method from the queue. To alleviate this problem
   311       // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
   312       // we choose to compile a limited profiled version and then recompile with full profiling
   313       // when the load on C2 goes down.
   314       if (CompileBroker::queue_size(CompLevel_full_optimization) >
   315           Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   316         next_level = CompLevel_limited_profile;
   317       } else {
   318         next_level = CompLevel_full_profile;
   319       }
   320     }
   321     break;
   322   case CompLevel_limited_profile:
   323     if (is_method_profiled(method)) {
   324       // Special case: we got here because this method was fully profiled in the interpreter.
   325       next_level = CompLevel_full_optimization;
   326     } else {
   327       methodDataOop mdo = method->method_data();
   328       if (mdo != NULL) {
   329         if (mdo->would_profile()) {
   330           if (CompileBroker::queue_size(CompLevel_full_optimization) <=
   331               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
   332               (this->*p)(i, b, cur_level)) {
   333             next_level = CompLevel_full_profile;
   334           }
   335         } else {
   336           next_level = CompLevel_full_optimization;
   337         }
   338       }
   339     }
   340     break;
   341   case CompLevel_full_profile:
   342     {
   343       methodDataOop mdo = method->method_data();
   344       if (mdo != NULL) {
   345         if (mdo->would_profile()) {
   346           int mdo_i = mdo->invocation_count_delta();
   347           int mdo_b = mdo->backedge_count_delta();
   348           if ((this->*p)(mdo_i, mdo_b, cur_level)) {
   349             next_level = CompLevel_full_optimization;
   350           }
   351         } else {
   352           next_level = CompLevel_full_optimization;
   353         }
   354       }
   355     }
   356     break;
   357   }
   358   return next_level;
   359 }
   361 // Determine if a method should be compiled with a normal entry point at a different level.
   362 CompLevel AdvancedThresholdPolicy::call_event(methodOop method,  CompLevel cur_level) {
   363   CompLevel osr_level = (CompLevel) method->highest_osr_comp_level();
   364   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
   366   // If OSR method level is greater than the regular method level, the levels should be
   367   // equalized by raising the regular method level in order to avoid OSRs during each
   368   // invocation of the method.
   369   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
   370     methodDataOop mdo = method->method_data();
   371     guarantee(mdo != NULL, "MDO should not be NULL");
   372     if (mdo->invocation_count() >= 1) {
   373       next_level = CompLevel_full_optimization;
   374     }
   375   } else {
   376     next_level = MAX2(osr_level, next_level);
   377   }
   379   return next_level;
   380 }
   382 // Determine if we should do an OSR compilation of a given method.
   383 CompLevel AdvancedThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
   384   if (cur_level == CompLevel_none) {
   385     // If there is a live OSR method that means that we deopted to the interpreter
   386     // for the transition.
   387     CompLevel osr_level = (CompLevel)method->highest_osr_comp_level();
   388     if (osr_level > CompLevel_none) {
   389       return osr_level;
   390     }
   391   }
   392   return common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level);
   393 }
   395 // Update the rate and submit compile
   396 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
   397   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
   398   update_rate(os::javaTimeMillis(), mh());
   399   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
   400 }
   403 // Handle the invocation event.
   404 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
   405                                                       CompLevel level, TRAPS) {
   406   if (should_create_mdo(mh(), level)) {
   407     create_mdo(mh, THREAD);
   408   }
   409   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   410     CompLevel next_level = call_event(mh(), level);
   411     if (next_level != level) {
   412       compile(mh, InvocationEntryBci, next_level, THREAD);
   413     }
   414   }
   415 }
   417 // Handle the back branch event. Notice that we can compile the method
   418 // with a regular entry from here.
   419 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
   420                                                        int bci, CompLevel level, TRAPS) {
   421   if (should_create_mdo(mh(), level)) {
   422     create_mdo(mh, THREAD);
   423   }
   425   // If the method is already compiling, quickly bail out.
   426   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, bci)) {
   427     // Use loop event as an opportinity to also check there's been
   428     // enough calls.
   429     CompLevel cur_level = comp_level(mh());
   430     CompLevel next_level = call_event(mh(), cur_level);
   431     CompLevel next_osr_level = loop_event(mh(), level);
   432     if (next_osr_level  == CompLevel_limited_profile) {
   433       next_osr_level = CompLevel_full_profile; // OSRs are supposed to be for very hot methods.
   434     }
   435     next_level = MAX2(next_level,
   436                       next_osr_level < CompLevel_full_optimization ? next_osr_level : cur_level);
   437     bool is_compiling = false;
   438     if (next_level != cur_level) {
   439       compile(mh, InvocationEntryBci, next_level, THREAD);
   440       is_compiling = true;
   441     }
   443     // Do the OSR version
   444     if (!is_compiling && next_osr_level != level) {
   445       compile(mh, bci, next_osr_level, THREAD);
   446     }
   447   }
   448 }
   450 #endif // TIERED

mercurial