src/share/vm/c1/c1_LIR.hpp

Mon, 19 Sep 2011 15:21:03 -0700

author
iveresov
date
Mon, 19 Sep 2011 15:21:03 -0700
changeset 3153
5cceda753a4a
parent 2728
13bc79b5c9c8
child 3443
9164b8236699
permissions
-rw-r--r--

7091764: Tiered: enable aastore profiling
Summary: Turn on aastore profiling
Reviewed-by: jrose, twisti

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_C1_C1_LIR_HPP
    26 #define SHARE_VM_C1_C1_LIR_HPP
    28 #include "c1/c1_ValueType.hpp"
    30 class BlockBegin;
    31 class BlockList;
    32 class LIR_Assembler;
    33 class CodeEmitInfo;
    34 class CodeStub;
    35 class CodeStubList;
    36 class ArrayCopyStub;
    37 class LIR_Op;
    38 class ciType;
    39 class ValueType;
    40 class LIR_OpVisitState;
    41 class FpuStackSim;
    43 //---------------------------------------------------------------------
    44 //                 LIR Operands
    45 //  LIR_OprDesc
    46 //    LIR_OprPtr
    47 //      LIR_Const
    48 //      LIR_Address
    49 //---------------------------------------------------------------------
    50 class LIR_OprDesc;
    51 class LIR_OprPtr;
    52 class LIR_Const;
    53 class LIR_Address;
    54 class LIR_OprVisitor;
    57 typedef LIR_OprDesc* LIR_Opr;
    58 typedef int          RegNr;
    60 define_array(LIR_OprArray, LIR_Opr)
    61 define_stack(LIR_OprList, LIR_OprArray)
    63 define_array(LIR_OprRefArray, LIR_Opr*)
    64 define_stack(LIR_OprRefList, LIR_OprRefArray)
    66 define_array(CodeEmitInfoArray, CodeEmitInfo*)
    67 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
    69 define_array(LIR_OpArray, LIR_Op*)
    70 define_stack(LIR_OpList, LIR_OpArray)
    72 // define LIR_OprPtr early so LIR_OprDesc can refer to it
    73 class LIR_OprPtr: public CompilationResourceObj {
    74  public:
    75   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
    76   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
    78   virtual LIR_Const*  as_constant()              { return NULL; }
    79   virtual LIR_Address* as_address()              { return NULL; }
    80   virtual BasicType type() const                 = 0;
    81   virtual void print_value_on(outputStream* out) const = 0;
    82 };
    86 // LIR constants
    87 class LIR_Const: public LIR_OprPtr {
    88  private:
    89   JavaValue _value;
    91   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
    92   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
    93   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
    95  public:
    96   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
    97   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
    98   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
    99   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
   100   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
   101   LIR_Const(void* p) {
   102 #ifdef _LP64
   103     assert(sizeof(jlong) >= sizeof(p), "too small");;
   104     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
   105 #else
   106     assert(sizeof(jint) >= sizeof(p), "too small");;
   107     _value.set_type(T_INT);     _value.set_jint((jint)p);
   108 #endif
   109   }
   111   virtual BasicType type()       const { return _value.get_type(); }
   112   virtual LIR_Const* as_constant()     { return this; }
   114   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
   115   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
   116   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
   117   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
   118   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
   119   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
   120   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
   122 #ifdef _LP64
   123   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
   124 #else
   125   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
   126 #endif
   129   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
   130   jint      as_jint_lo_bits() const    {
   131     if (type() == T_DOUBLE) {
   132       return low(jlong_cast(_value.get_jdouble()));
   133     } else {
   134       return as_jint_lo();
   135     }
   136   }
   137   jint      as_jint_hi_bits() const    {
   138     if (type() == T_DOUBLE) {
   139       return high(jlong_cast(_value.get_jdouble()));
   140     } else {
   141       return as_jint_hi();
   142     }
   143   }
   144   jlong      as_jlong_bits() const    {
   145     if (type() == T_DOUBLE) {
   146       return jlong_cast(_value.get_jdouble());
   147     } else {
   148       return as_jlong();
   149     }
   150   }
   152   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   155   bool is_zero_float() {
   156     jfloat f = as_jfloat();
   157     jfloat ok = 0.0f;
   158     return jint_cast(f) == jint_cast(ok);
   159   }
   161   bool is_one_float() {
   162     jfloat f = as_jfloat();
   163     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
   164   }
   166   bool is_zero_double() {
   167     jdouble d = as_jdouble();
   168     jdouble ok = 0.0;
   169     return jlong_cast(d) == jlong_cast(ok);
   170   }
   172   bool is_one_double() {
   173     jdouble d = as_jdouble();
   174     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
   175   }
   176 };
   179 //---------------------LIR Operand descriptor------------------------------------
   180 //
   181 // The class LIR_OprDesc represents a LIR instruction operand;
   182 // it can be a register (ALU/FPU), stack location or a constant;
   183 // Constants and addresses are represented as resource area allocated
   184 // structures (see above).
   185 // Registers and stack locations are inlined into the this pointer
   186 // (see value function).
   188 class LIR_OprDesc: public CompilationResourceObj {
   189  public:
   190   // value structure:
   191   //     data       opr-type opr-kind
   192   // +--------------+-------+-------+
   193   // [max...........|7 6 5 4|3 2 1 0]
   194   //                             ^
   195   //                    is_pointer bit
   196   //
   197   // lowest bit cleared, means it is a structure pointer
   198   // we need  4 bits to represent types
   200  private:
   201   friend class LIR_OprFact;
   203   // Conversion
   204   intptr_t value() const                         { return (intptr_t) this; }
   206   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
   207     return (value() & mask) == masked_value;
   208   }
   210   enum OprKind {
   211       pointer_value      = 0
   212     , stack_value        = 1
   213     , cpu_register       = 3
   214     , fpu_register       = 5
   215     , illegal_value      = 7
   216   };
   218   enum OprBits {
   219       pointer_bits   = 1
   220     , kind_bits      = 3
   221     , type_bits      = 4
   222     , size_bits      = 2
   223     , destroys_bits  = 1
   224     , virtual_bits   = 1
   225     , is_xmm_bits    = 1
   226     , last_use_bits  = 1
   227     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
   228     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
   229                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
   230     , data_bits      = BitsPerInt - non_data_bits
   231     , reg_bits       = data_bits / 2      // for two registers in one value encoding
   232   };
   234   enum OprShift {
   235       kind_shift     = 0
   236     , type_shift     = kind_shift     + kind_bits
   237     , size_shift     = type_shift     + type_bits
   238     , destroys_shift = size_shift     + size_bits
   239     , last_use_shift = destroys_shift + destroys_bits
   240     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
   241     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
   242     , is_xmm_shift   = virtual_shift + virtual_bits
   243     , data_shift     = is_xmm_shift + is_xmm_bits
   244     , reg1_shift = data_shift
   245     , reg2_shift = data_shift + reg_bits
   247   };
   249   enum OprSize {
   250       single_size = 0 << size_shift
   251     , double_size = 1 << size_shift
   252   };
   254   enum OprMask {
   255       kind_mask      = right_n_bits(kind_bits)
   256     , type_mask      = right_n_bits(type_bits) << type_shift
   257     , size_mask      = right_n_bits(size_bits) << size_shift
   258     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
   259     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
   260     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
   261     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
   262     , pointer_mask   = right_n_bits(pointer_bits)
   263     , lower_reg_mask = right_n_bits(reg_bits)
   264     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
   265   };
   267   uintptr_t data() const                         { return value() >> data_shift; }
   268   int lo_reg_half() const                        { return data() & lower_reg_mask; }
   269   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
   270   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
   271   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
   273   static char type_char(BasicType t);
   275  public:
   276   enum {
   277     vreg_base = ConcreteRegisterImpl::number_of_registers,
   278     vreg_max = (1 << data_bits) - 1
   279   };
   281   static inline LIR_Opr illegalOpr();
   283   enum OprType {
   284       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
   285     , int_type      = 1 << type_shift
   286     , long_type     = 2 << type_shift
   287     , object_type   = 3 << type_shift
   288     , address_type  = 4 << type_shift
   289     , float_type    = 5 << type_shift
   290     , double_type   = 6 << type_shift
   291   };
   292   friend OprType as_OprType(BasicType t);
   293   friend BasicType as_BasicType(OprType t);
   295   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
   296   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
   298   static OprSize size_for(BasicType t) {
   299     switch (t) {
   300       case T_LONG:
   301       case T_DOUBLE:
   302         return double_size;
   303         break;
   305       case T_FLOAT:
   306       case T_BOOLEAN:
   307       case T_CHAR:
   308       case T_BYTE:
   309       case T_SHORT:
   310       case T_INT:
   311       case T_ADDRESS:
   312       case T_OBJECT:
   313       case T_ARRAY:
   314         return single_size;
   315         break;
   317       default:
   318         ShouldNotReachHere();
   319         return single_size;
   320       }
   321   }
   324   void validate_type() const PRODUCT_RETURN;
   326   BasicType type() const {
   327     if (is_pointer()) {
   328       return pointer()->type();
   329     }
   330     return as_BasicType(type_field());
   331   }
   334   ValueType* value_type() const                  { return as_ValueType(type()); }
   336   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
   338   bool is_equal(LIR_Opr opr) const         { return this == opr; }
   339   // checks whether types are same
   340   bool is_same_type(LIR_Opr opr) const     {
   341     assert(type_field() != unknown_type &&
   342            opr->type_field() != unknown_type, "shouldn't see unknown_type");
   343     return type_field() == opr->type_field();
   344   }
   345   bool is_same_register(LIR_Opr opr) {
   346     return (is_register() && opr->is_register() &&
   347             kind_field() == opr->kind_field() &&
   348             (value() & no_type_mask) == (opr->value() & no_type_mask));
   349   }
   351   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
   352   bool is_illegal() const      { return kind_field() == illegal_value; }
   353   bool is_valid() const        { return kind_field() != illegal_value; }
   355   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
   356   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
   358   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
   359   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
   361   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
   362   bool is_oop() const;
   364   // semantic for fpu- and xmm-registers:
   365   // * is_float and is_double return true for xmm_registers
   366   //   (so is_single_fpu and is_single_xmm are true)
   367   // * So you must always check for is_???_xmm prior to is_???_fpu to
   368   //   distinguish between fpu- and xmm-registers
   370   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
   371   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
   372   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
   374   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
   375   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
   376   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
   377   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
   378   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
   380   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
   381   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
   382   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
   383   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
   384   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
   386   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
   387   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
   388   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
   390   // fast accessor functions for special bits that do not work for pointers
   391   // (in this functions, the check for is_pointer() is omitted)
   392   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
   393   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
   394   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
   395   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
   396   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
   398   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
   399   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
   400   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
   401   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
   404   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
   405   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
   406   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   407   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   408   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   409   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
   410   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   411   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   412   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
   413   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
   414   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
   415   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
   417   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
   418   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
   419   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
   421   Register as_register()    const;
   422   Register as_register_lo() const;
   423   Register as_register_hi() const;
   425   Register as_pointer_register() {
   426 #ifdef _LP64
   427     if (is_double_cpu()) {
   428       assert(as_register_lo() == as_register_hi(), "should be a single register");
   429       return as_register_lo();
   430     }
   431 #endif
   432     return as_register();
   433   }
   435 #ifdef X86
   436   XMMRegister as_xmm_float_reg() const;
   437   XMMRegister as_xmm_double_reg() const;
   438   // for compatibility with RInfo
   439   int fpu () const                                  { return lo_reg_half(); }
   440 #endif // X86
   441 #if defined(SPARC) || defined(ARM) || defined(PPC)
   442   FloatRegister as_float_reg   () const;
   443   FloatRegister as_double_reg  () const;
   444 #endif
   446   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
   447   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
   448   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
   449   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
   450   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
   452   void print() const PRODUCT_RETURN;
   453   void print(outputStream* out) const PRODUCT_RETURN;
   454 };
   457 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
   458   switch (type) {
   459   case T_INT:      return LIR_OprDesc::int_type;
   460   case T_LONG:     return LIR_OprDesc::long_type;
   461   case T_FLOAT:    return LIR_OprDesc::float_type;
   462   case T_DOUBLE:   return LIR_OprDesc::double_type;
   463   case T_OBJECT:
   464   case T_ARRAY:    return LIR_OprDesc::object_type;
   465   case T_ADDRESS:  return LIR_OprDesc::address_type;
   466   case T_ILLEGAL:  // fall through
   467   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
   468   }
   469 }
   471 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
   472   switch (t) {
   473   case LIR_OprDesc::int_type:     return T_INT;
   474   case LIR_OprDesc::long_type:    return T_LONG;
   475   case LIR_OprDesc::float_type:   return T_FLOAT;
   476   case LIR_OprDesc::double_type:  return T_DOUBLE;
   477   case LIR_OprDesc::object_type:  return T_OBJECT;
   478   case LIR_OprDesc::address_type: return T_ADDRESS;
   479   case LIR_OprDesc::unknown_type: // fall through
   480   default: ShouldNotReachHere();  return T_ILLEGAL;
   481   }
   482 }
   485 // LIR_Address
   486 class LIR_Address: public LIR_OprPtr {
   487  friend class LIR_OpVisitState;
   489  public:
   490   // NOTE: currently these must be the log2 of the scale factor (and
   491   // must also be equivalent to the ScaleFactor enum in
   492   // assembler_i486.hpp)
   493   enum Scale {
   494     times_1  =  0,
   495     times_2  =  1,
   496     times_4  =  2,
   497     times_8  =  3
   498   };
   500  private:
   501   LIR_Opr   _base;
   502   LIR_Opr   _index;
   503   Scale     _scale;
   504   intx      _disp;
   505   BasicType _type;
   507  public:
   508   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
   509        _base(base)
   510      , _index(index)
   511      , _scale(times_1)
   512      , _type(type)
   513      , _disp(0) { verify(); }
   515   LIR_Address(LIR_Opr base, intx disp, BasicType type):
   516        _base(base)
   517      , _index(LIR_OprDesc::illegalOpr())
   518      , _scale(times_1)
   519      , _type(type)
   520      , _disp(disp) { verify(); }
   522   LIR_Address(LIR_Opr base, BasicType type):
   523        _base(base)
   524      , _index(LIR_OprDesc::illegalOpr())
   525      , _scale(times_1)
   526      , _type(type)
   527      , _disp(0) { verify(); }
   529 #if defined(X86) || defined(ARM)
   530   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
   531        _base(base)
   532      , _index(index)
   533      , _scale(scale)
   534      , _type(type)
   535      , _disp(disp) { verify(); }
   536 #endif // X86 || ARM
   538   LIR_Opr base()  const                          { return _base;  }
   539   LIR_Opr index() const                          { return _index; }
   540   Scale   scale() const                          { return _scale; }
   541   intx    disp()  const                          { return _disp;  }
   543   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
   545   virtual LIR_Address* as_address()              { return this;   }
   546   virtual BasicType type() const                 { return _type; }
   547   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
   549   void verify() const PRODUCT_RETURN;
   551   static Scale scale(BasicType type);
   552 };
   555 // operand factory
   556 class LIR_OprFact: public AllStatic {
   557  public:
   559   static LIR_Opr illegalOpr;
   561   static LIR_Opr single_cpu(int reg) {
   562     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   563                                LIR_OprDesc::int_type             |
   564                                LIR_OprDesc::cpu_register         |
   565                                LIR_OprDesc::single_size);
   566   }
   567   static LIR_Opr single_cpu_oop(int reg) {
   568     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   569                                LIR_OprDesc::object_type          |
   570                                LIR_OprDesc::cpu_register         |
   571                                LIR_OprDesc::single_size);
   572   }
   573   static LIR_Opr single_cpu_address(int reg) {
   574     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   575                                LIR_OprDesc::address_type         |
   576                                LIR_OprDesc::cpu_register         |
   577                                LIR_OprDesc::single_size);
   578   }
   579   static LIR_Opr double_cpu(int reg1, int reg2) {
   580     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
   581     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   582                                (reg2 << LIR_OprDesc::reg2_shift) |
   583                                LIR_OprDesc::long_type            |
   584                                LIR_OprDesc::cpu_register         |
   585                                LIR_OprDesc::double_size);
   586   }
   588   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   589                                                                              LIR_OprDesc::float_type           |
   590                                                                              LIR_OprDesc::fpu_register         |
   591                                                                              LIR_OprDesc::single_size); }
   592 #if defined(ARM)
   593   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
   594   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
   595   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
   596 #endif
   597 #ifdef SPARC
   598   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
   599                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
   600                                                                              LIR_OprDesc::double_type          |
   601                                                                              LIR_OprDesc::fpu_register         |
   602                                                                              LIR_OprDesc::double_size); }
   603 #endif
   604 #ifdef X86
   605   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   606                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   607                                                                              LIR_OprDesc::double_type          |
   608                                                                              LIR_OprDesc::fpu_register         |
   609                                                                              LIR_OprDesc::double_size); }
   611   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   612                                                                              LIR_OprDesc::float_type           |
   613                                                                              LIR_OprDesc::fpu_register         |
   614                                                                              LIR_OprDesc::single_size          |
   615                                                                              LIR_OprDesc::is_xmm_mask); }
   616   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   617                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   618                                                                              LIR_OprDesc::double_type          |
   619                                                                              LIR_OprDesc::fpu_register         |
   620                                                                              LIR_OprDesc::double_size          |
   621                                                                              LIR_OprDesc::is_xmm_mask); }
   622 #endif // X86
   623 #ifdef PPC
   624   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
   625                                                                              (reg  << LIR_OprDesc::reg2_shift) |
   626                                                                              LIR_OprDesc::double_type          |
   627                                                                              LIR_OprDesc::fpu_register         |
   628                                                                              LIR_OprDesc::double_size); }
   629   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
   630                                                                              LIR_OprDesc::float_type           |
   631                                                                              LIR_OprDesc::cpu_register         |
   632                                                                              LIR_OprDesc::single_size); }
   633   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
   634                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
   635                                                                              LIR_OprDesc::double_type          |
   636                                                                              LIR_OprDesc::cpu_register         |
   637                                                                              LIR_OprDesc::double_size); }
   638 #endif // PPC
   640   static LIR_Opr virtual_register(int index, BasicType type) {
   641     LIR_Opr res;
   642     switch (type) {
   643       case T_OBJECT: // fall through
   644       case T_ARRAY:
   645         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
   646                                             LIR_OprDesc::object_type  |
   647                                             LIR_OprDesc::cpu_register |
   648                                             LIR_OprDesc::single_size  |
   649                                             LIR_OprDesc::virtual_mask);
   650         break;
   652       case T_INT:
   653         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   654                                   LIR_OprDesc::int_type              |
   655                                   LIR_OprDesc::cpu_register          |
   656                                   LIR_OprDesc::single_size           |
   657                                   LIR_OprDesc::virtual_mask);
   658         break;
   660       case T_ADDRESS:
   661         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   662                                   LIR_OprDesc::address_type          |
   663                                   LIR_OprDesc::cpu_register          |
   664                                   LIR_OprDesc::single_size           |
   665                                   LIR_OprDesc::virtual_mask);
   666         break;
   668       case T_LONG:
   669         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   670                                   LIR_OprDesc::long_type             |
   671                                   LIR_OprDesc::cpu_register          |
   672                                   LIR_OprDesc::double_size           |
   673                                   LIR_OprDesc::virtual_mask);
   674         break;
   676 #ifdef __SOFTFP__
   677       case T_FLOAT:
   678         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   679                                   LIR_OprDesc::float_type  |
   680                                   LIR_OprDesc::cpu_register |
   681                                   LIR_OprDesc::single_size |
   682                                   LIR_OprDesc::virtual_mask);
   683         break;
   684       case T_DOUBLE:
   685         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   686                                   LIR_OprDesc::double_type |
   687                                   LIR_OprDesc::cpu_register |
   688                                   LIR_OprDesc::double_size |
   689                                   LIR_OprDesc::virtual_mask);
   690         break;
   691 #else // __SOFTFP__
   692       case T_FLOAT:
   693         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   694                                   LIR_OprDesc::float_type           |
   695                                   LIR_OprDesc::fpu_register         |
   696                                   LIR_OprDesc::single_size          |
   697                                   LIR_OprDesc::virtual_mask);
   698         break;
   700       case
   701         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   702                                             LIR_OprDesc::double_type           |
   703                                             LIR_OprDesc::fpu_register          |
   704                                             LIR_OprDesc::double_size           |
   705                                             LIR_OprDesc::virtual_mask);
   706         break;
   707 #endif // __SOFTFP__
   708       default:       ShouldNotReachHere(); res = illegalOpr;
   709     }
   711 #ifdef ASSERT
   712     res->validate_type();
   713     assert(res->vreg_number() == index, "conversion check");
   714     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
   715     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   717     // old-style calculation; check if old and new method are equal
   718     LIR_OprDesc::OprType t = as_OprType(type);
   719 #ifdef __SOFTFP__
   720     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   721                                t |
   722                                LIR_OprDesc::cpu_register |
   723                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   724 #else // __SOFTFP__
   725     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
   726                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
   727                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
   728     assert(res == old_res, "old and new method not equal");
   729 #endif // __SOFTFP__
   730 #endif // ASSERT
   732     return res;
   733   }
   735   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
   736   // the index is platform independent; a double stack useing indeces 2 and 3 has always
   737   // index 2.
   738   static LIR_Opr stack(int index, BasicType type) {
   739     LIR_Opr res;
   740     switch (type) {
   741       case T_OBJECT: // fall through
   742       case T_ARRAY:
   743         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   744                                   LIR_OprDesc::object_type           |
   745                                   LIR_OprDesc::stack_value           |
   746                                   LIR_OprDesc::single_size);
   747         break;
   749       case T_INT:
   750         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   751                                   LIR_OprDesc::int_type              |
   752                                   LIR_OprDesc::stack_value           |
   753                                   LIR_OprDesc::single_size);
   754         break;
   756       case T_ADDRESS:
   757         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   758                                   LIR_OprDesc::address_type          |
   759                                   LIR_OprDesc::stack_value           |
   760                                   LIR_OprDesc::single_size);
   761         break;
   763       case T_LONG:
   764         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   765                                   LIR_OprDesc::long_type             |
   766                                   LIR_OprDesc::stack_value           |
   767                                   LIR_OprDesc::double_size);
   768         break;
   770       case T_FLOAT:
   771         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   772                                   LIR_OprDesc::float_type            |
   773                                   LIR_OprDesc::stack_value           |
   774                                   LIR_OprDesc::single_size);
   775         break;
   776       case T_DOUBLE:
   777         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   778                                   LIR_OprDesc::double_type           |
   779                                   LIR_OprDesc::stack_value           |
   780                                   LIR_OprDesc::double_size);
   781         break;
   783       default:       ShouldNotReachHere(); res = illegalOpr;
   784     }
   786 #ifdef ASSERT
   787     assert(index >= 0, "index must be positive");
   788     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
   790     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
   791                                           LIR_OprDesc::stack_value           |
   792                                           as_OprType(type)                   |
   793                                           LIR_OprDesc::size_for(type));
   794     assert(res == old_res, "old and new method not equal");
   795 #endif
   797     return res;
   798   }
   800   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
   801   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
   802   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
   803   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
   804   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
   805   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
   806   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
   807   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
   808   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
   809   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
   811   static LIR_Opr value_type(ValueType* type);
   812   static LIR_Opr dummy_value_type(ValueType* type);
   813 };
   816 //-------------------------------------------------------------------------------
   817 //                   LIR Instructions
   818 //-------------------------------------------------------------------------------
   819 //
   820 // Note:
   821 //  - every instruction has a result operand
   822 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
   823 //  - every instruction has a LIR_OpCode operand
   824 //  - LIR_OpN, means an instruction that has N input operands
   825 //
   826 // class hierarchy:
   827 //
   828 class  LIR_Op;
   829 class    LIR_Op0;
   830 class      LIR_OpLabel;
   831 class    LIR_Op1;
   832 class      LIR_OpBranch;
   833 class      LIR_OpConvert;
   834 class      LIR_OpAllocObj;
   835 class      LIR_OpRoundFP;
   836 class    LIR_Op2;
   837 class    LIR_OpDelay;
   838 class    LIR_Op3;
   839 class      LIR_OpAllocArray;
   840 class    LIR_OpCall;
   841 class      LIR_OpJavaCall;
   842 class      LIR_OpRTCall;
   843 class    LIR_OpArrayCopy;
   844 class    LIR_OpLock;
   845 class    LIR_OpTypeCheck;
   846 class    LIR_OpCompareAndSwap;
   847 class    LIR_OpProfileCall;
   850 // LIR operation codes
   851 enum LIR_Code {
   852     lir_none
   853   , begin_op0
   854       , lir_word_align
   855       , lir_label
   856       , lir_nop
   857       , lir_backwardbranch_target
   858       , lir_std_entry
   859       , lir_osr_entry
   860       , lir_build_frame
   861       , lir_fpop_raw
   862       , lir_24bit_FPU
   863       , lir_reset_FPU
   864       , lir_breakpoint
   865       , lir_rtcall
   866       , lir_membar
   867       , lir_membar_acquire
   868       , lir_membar_release
   869       , lir_get_thread
   870   , end_op0
   871   , begin_op1
   872       , lir_fxch
   873       , lir_fld
   874       , lir_ffree
   875       , lir_push
   876       , lir_pop
   877       , lir_null_check
   878       , lir_return
   879       , lir_leal
   880       , lir_neg
   881       , lir_branch
   882       , lir_cond_float_branch
   883       , lir_move
   884       , lir_prefetchr
   885       , lir_prefetchw
   886       , lir_convert
   887       , lir_alloc_object
   888       , lir_monaddr
   889       , lir_roundfp
   890       , lir_safepoint
   891       , lir_pack64
   892       , lir_unpack64
   893       , lir_unwind
   894   , end_op1
   895   , begin_op2
   896       , lir_cmp
   897       , lir_cmp_l2i
   898       , lir_ucmp_fd2i
   899       , lir_cmp_fd2i
   900       , lir_cmove
   901       , lir_add
   902       , lir_sub
   903       , lir_mul
   904       , lir_mul_strictfp
   905       , lir_div
   906       , lir_div_strictfp
   907       , lir_rem
   908       , lir_sqrt
   909       , lir_abs
   910       , lir_sin
   911       , lir_cos
   912       , lir_tan
   913       , lir_log
   914       , lir_log10
   915       , lir_logic_and
   916       , lir_logic_or
   917       , lir_logic_xor
   918       , lir_shl
   919       , lir_shr
   920       , lir_ushr
   921       , lir_alloc_array
   922       , lir_throw
   923       , lir_compare_to
   924   , end_op2
   925   , begin_op3
   926       , lir_idiv
   927       , lir_irem
   928   , end_op3
   929   , begin_opJavaCall
   930       , lir_static_call
   931       , lir_optvirtual_call
   932       , lir_icvirtual_call
   933       , lir_virtual_call
   934       , lir_dynamic_call
   935   , end_opJavaCall
   936   , begin_opArrayCopy
   937       , lir_arraycopy
   938   , end_opArrayCopy
   939   , begin_opLock
   940     , lir_lock
   941     , lir_unlock
   942   , end_opLock
   943   , begin_delay_slot
   944     , lir_delay_slot
   945   , end_delay_slot
   946   , begin_opTypeCheck
   947     , lir_instanceof
   948     , lir_checkcast
   949     , lir_store_check
   950   , end_opTypeCheck
   951   , begin_opCompareAndSwap
   952     , lir_cas_long
   953     , lir_cas_obj
   954     , lir_cas_int
   955   , end_opCompareAndSwap
   956   , begin_opMDOProfile
   957     , lir_profile_call
   958   , end_opMDOProfile
   959 };
   962 enum LIR_Condition {
   963     lir_cond_equal
   964   , lir_cond_notEqual
   965   , lir_cond_less
   966   , lir_cond_lessEqual
   967   , lir_cond_greaterEqual
   968   , lir_cond_greater
   969   , lir_cond_belowEqual
   970   , lir_cond_aboveEqual
   971   , lir_cond_always
   972   , lir_cond_unknown = -1
   973 };
   976 enum LIR_PatchCode {
   977   lir_patch_none,
   978   lir_patch_low,
   979   lir_patch_high,
   980   lir_patch_normal
   981 };
   984 enum LIR_MoveKind {
   985   lir_move_normal,
   986   lir_move_volatile,
   987   lir_move_unaligned,
   988   lir_move_wide,
   989   lir_move_max_flag
   990 };
   993 // --------------------------------------------------
   994 // LIR_Op
   995 // --------------------------------------------------
   996 class LIR_Op: public CompilationResourceObj {
   997  friend class LIR_OpVisitState;
   999 #ifdef ASSERT
  1000  private:
  1001   const char *  _file;
  1002   int           _line;
  1003 #endif
  1005  protected:
  1006   LIR_Opr       _result;
  1007   unsigned short _code;
  1008   unsigned short _flags;
  1009   CodeEmitInfo* _info;
  1010   int           _id;     // value id for register allocation
  1011   int           _fpu_pop_count;
  1012   Instruction*  _source; // for debugging
  1014   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
  1016  protected:
  1017   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
  1019  public:
  1020   LIR_Op()
  1021     : _result(LIR_OprFact::illegalOpr)
  1022     , _code(lir_none)
  1023     , _flags(0)
  1024     , _info(NULL)
  1025 #ifdef ASSERT
  1026     , _file(NULL)
  1027     , _line(0)
  1028 #endif
  1029     , _fpu_pop_count(0)
  1030     , _source(NULL)
  1031     , _id(-1)                             {}
  1033   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
  1034     : _result(result)
  1035     , _code(code)
  1036     , _flags(0)
  1037     , _info(info)
  1038 #ifdef ASSERT
  1039     , _file(NULL)
  1040     , _line(0)
  1041 #endif
  1042     , _fpu_pop_count(0)
  1043     , _source(NULL)
  1044     , _id(-1)                             {}
  1046   CodeEmitInfo* info() const                  { return _info;   }
  1047   LIR_Code code()      const                  { return (LIR_Code)_code;   }
  1048   LIR_Opr result_opr() const                  { return _result; }
  1049   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
  1051 #ifdef ASSERT
  1052   void set_file_and_line(const char * file, int line) {
  1053     _file = file;
  1054     _line = line;
  1056 #endif
  1058   virtual const char * name() const PRODUCT_RETURN0;
  1060   int id()             const                  { return _id;     }
  1061   void set_id(int id)                         { _id = id; }
  1063   // FPU stack simulation helpers -- only used on Intel
  1064   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
  1065   int  fpu_pop_count() const                  { return _fpu_pop_count; }
  1066   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
  1068   Instruction* source() const                 { return _source; }
  1069   void set_source(Instruction* ins)           { _source = ins; }
  1071   virtual void emit_code(LIR_Assembler* masm) = 0;
  1072   virtual void print_instr(outputStream* out) const   = 0;
  1073   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
  1075   virtual LIR_OpCall* as_OpCall() { return NULL; }
  1076   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
  1077   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
  1078   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
  1079   virtual LIR_OpLock* as_OpLock() { return NULL; }
  1080   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
  1081   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
  1082   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
  1083   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
  1084   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
  1085   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
  1086   virtual LIR_Op0* as_Op0() { return NULL; }
  1087   virtual LIR_Op1* as_Op1() { return NULL; }
  1088   virtual LIR_Op2* as_Op2() { return NULL; }
  1089   virtual LIR_Op3* as_Op3() { return NULL; }
  1090   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
  1091   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
  1092   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
  1093   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
  1095   virtual void verify() const {}
  1096 };
  1098 // for calls
  1099 class LIR_OpCall: public LIR_Op {
  1100  friend class LIR_OpVisitState;
  1102  protected:
  1103   address      _addr;
  1104   LIR_OprList* _arguments;
  1105  protected:
  1106   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
  1107              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1108     : LIR_Op(code, result, info)
  1109     , _arguments(arguments)
  1110     , _addr(addr) {}
  1112  public:
  1113   address addr() const                           { return _addr; }
  1114   const LIR_OprList* arguments() const           { return _arguments; }
  1115   virtual LIR_OpCall* as_OpCall()                { return this; }
  1116 };
  1119 // --------------------------------------------------
  1120 // LIR_OpJavaCall
  1121 // --------------------------------------------------
  1122 class LIR_OpJavaCall: public LIR_OpCall {
  1123  friend class LIR_OpVisitState;
  1125  private:
  1126   ciMethod* _method;
  1127   LIR_Opr   _receiver;
  1128   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
  1130  public:
  1131   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1132                  LIR_Opr receiver, LIR_Opr result,
  1133                  address addr, LIR_OprList* arguments,
  1134                  CodeEmitInfo* info)
  1135   : LIR_OpCall(code, addr, result, arguments, info)
  1136   , _receiver(receiver)
  1137   , _method(method)
  1138   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
  1139   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1141   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
  1142                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
  1143                  LIR_OprList* arguments, CodeEmitInfo* info)
  1144   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
  1145   , _receiver(receiver)
  1146   , _method(method)
  1147   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
  1148   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
  1150   LIR_Opr receiver() const                       { return _receiver; }
  1151   ciMethod* method() const                       { return _method;   }
  1153   // JSR 292 support.
  1154   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
  1155   bool is_method_handle_invoke() const {
  1156     return
  1157       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
  1158       ||
  1159       (method()->holder()->name() == ciSymbol::java_lang_invoke_MethodHandle() &&
  1160        methodOopDesc::is_method_handle_invoke_name(method()->name()->sid()));
  1163   intptr_t vtable_offset() const {
  1164     assert(_code == lir_virtual_call, "only have vtable for real vcall");
  1165     return (intptr_t) addr();
  1168   virtual void emit_code(LIR_Assembler* masm);
  1169   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
  1170   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1171 };
  1173 // --------------------------------------------------
  1174 // LIR_OpLabel
  1175 // --------------------------------------------------
  1176 // Location where a branch can continue
  1177 class LIR_OpLabel: public LIR_Op {
  1178  friend class LIR_OpVisitState;
  1180  private:
  1181   Label* _label;
  1182  public:
  1183   LIR_OpLabel(Label* lbl)
  1184    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
  1185    , _label(lbl)                                 {}
  1186   Label* label() const                           { return _label; }
  1188   virtual void emit_code(LIR_Assembler* masm);
  1189   virtual LIR_OpLabel* as_OpLabel() { return this; }
  1190   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1191 };
  1193 // LIR_OpArrayCopy
  1194 class LIR_OpArrayCopy: public LIR_Op {
  1195  friend class LIR_OpVisitState;
  1197  private:
  1198   ArrayCopyStub*  _stub;
  1199   LIR_Opr   _src;
  1200   LIR_Opr   _src_pos;
  1201   LIR_Opr   _dst;
  1202   LIR_Opr   _dst_pos;
  1203   LIR_Opr   _length;
  1204   LIR_Opr   _tmp;
  1205   ciArrayKlass* _expected_type;
  1206   int       _flags;
  1208 public:
  1209   enum Flags {
  1210     src_null_check         = 1 << 0,
  1211     dst_null_check         = 1 << 1,
  1212     src_pos_positive_check = 1 << 2,
  1213     dst_pos_positive_check = 1 << 3,
  1214     length_positive_check  = 1 << 4,
  1215     src_range_check        = 1 << 5,
  1216     dst_range_check        = 1 << 6,
  1217     type_check             = 1 << 7,
  1218     overlapping            = 1 << 8,
  1219     unaligned              = 1 << 9,
  1220     src_objarray           = 1 << 10,
  1221     dst_objarray           = 1 << 11,
  1222     all_flags              = (1 << 12) - 1
  1223   };
  1225   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
  1226                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
  1228   LIR_Opr src() const                            { return _src; }
  1229   LIR_Opr src_pos() const                        { return _src_pos; }
  1230   LIR_Opr dst() const                            { return _dst; }
  1231   LIR_Opr dst_pos() const                        { return _dst_pos; }
  1232   LIR_Opr length() const                         { return _length; }
  1233   LIR_Opr tmp() const                            { return _tmp; }
  1234   int flags() const                              { return _flags; }
  1235   ciArrayKlass* expected_type() const            { return _expected_type; }
  1236   ArrayCopyStub* stub() const                    { return _stub; }
  1238   virtual void emit_code(LIR_Assembler* masm);
  1239   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
  1240   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1241 };
  1244 // --------------------------------------------------
  1245 // LIR_Op0
  1246 // --------------------------------------------------
  1247 class LIR_Op0: public LIR_Op {
  1248  friend class LIR_OpVisitState;
  1250  public:
  1251   LIR_Op0(LIR_Code code)
  1252    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1253   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
  1254    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
  1256   virtual void emit_code(LIR_Assembler* masm);
  1257   virtual LIR_Op0* as_Op0() { return this; }
  1258   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1259 };
  1262 // --------------------------------------------------
  1263 // LIR_Op1
  1264 // --------------------------------------------------
  1266 class LIR_Op1: public LIR_Op {
  1267  friend class LIR_OpVisitState;
  1269  protected:
  1270   LIR_Opr         _opr;   // input operand
  1271   BasicType       _type;  // Operand types
  1272   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
  1274   static void print_patch_code(outputStream* out, LIR_PatchCode code);
  1276   void set_kind(LIR_MoveKind kind) {
  1277     assert(code() == lir_move, "must be");
  1278     _flags = kind;
  1281  public:
  1282   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
  1283     : LIR_Op(code, result, info)
  1284     , _opr(opr)
  1285     , _patch(patch)
  1286     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1288   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
  1289     : LIR_Op(code, result, info)
  1290     , _opr(opr)
  1291     , _patch(patch)
  1292     , _type(type)                      {
  1293     assert(code == lir_move, "must be");
  1294     set_kind(kind);
  1297   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
  1298     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1299     , _opr(opr)
  1300     , _patch(lir_patch_none)
  1301     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
  1303   LIR_Opr in_opr()           const               { return _opr;   }
  1304   LIR_PatchCode patch_code() const               { return _patch; }
  1305   BasicType type()           const               { return _type;  }
  1307   LIR_MoveKind move_kind() const {
  1308     assert(code() == lir_move, "must be");
  1309     return (LIR_MoveKind)_flags;
  1312   virtual void emit_code(LIR_Assembler* masm);
  1313   virtual LIR_Op1* as_Op1() { return this; }
  1314   virtual const char * name() const PRODUCT_RETURN0;
  1316   void set_in_opr(LIR_Opr opr) { _opr = opr; }
  1318   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1319   virtual void verify() const;
  1320 };
  1323 // for runtime calls
  1324 class LIR_OpRTCall: public LIR_OpCall {
  1325  friend class LIR_OpVisitState;
  1327  private:
  1328   LIR_Opr _tmp;
  1329  public:
  1330   LIR_OpRTCall(address addr, LIR_Opr tmp,
  1331                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
  1332     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
  1333     , _tmp(tmp) {}
  1335   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1336   virtual void emit_code(LIR_Assembler* masm);
  1337   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
  1339   LIR_Opr tmp() const                            { return _tmp; }
  1341   virtual void verify() const;
  1342 };
  1345 class LIR_OpBranch: public LIR_Op {
  1346  friend class LIR_OpVisitState;
  1348  private:
  1349   LIR_Condition _cond;
  1350   BasicType     _type;
  1351   Label*        _label;
  1352   BlockBegin*   _block;  // if this is a branch to a block, this is the block
  1353   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
  1354   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
  1356  public:
  1357   LIR_OpBranch(LIR_Condition cond, Label* lbl)
  1358     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
  1359     , _cond(cond)
  1360     , _label(lbl)
  1361     , _block(NULL)
  1362     , _ublock(NULL)
  1363     , _stub(NULL) { }
  1365   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
  1366   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
  1368   // for unordered comparisons
  1369   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
  1371   LIR_Condition cond()        const              { return _cond;        }
  1372   BasicType     type()        const              { return _type;        }
  1373   Label*        label()       const              { return _label;       }
  1374   BlockBegin*   block()       const              { return _block;       }
  1375   BlockBegin*   ublock()      const              { return _ublock;      }
  1376   CodeStub*     stub()        const              { return _stub;       }
  1378   void          change_block(BlockBegin* b);
  1379   void          change_ublock(BlockBegin* b);
  1380   void          negate_cond();
  1382   virtual void emit_code(LIR_Assembler* masm);
  1383   virtual LIR_OpBranch* as_OpBranch() { return this; }
  1384   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1385 };
  1388 class ConversionStub;
  1390 class LIR_OpConvert: public LIR_Op1 {
  1391  friend class LIR_OpVisitState;
  1393  private:
  1394    Bytecodes::Code _bytecode;
  1395    ConversionStub* _stub;
  1396 #ifdef PPC
  1397   LIR_Opr _tmp1;
  1398   LIR_Opr _tmp2;
  1399 #endif
  1401  public:
  1402    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
  1403      : LIR_Op1(lir_convert, opr, result)
  1404      , _stub(stub)
  1405 #ifdef PPC
  1406      , _tmp1(LIR_OprDesc::illegalOpr())
  1407      , _tmp2(LIR_OprDesc::illegalOpr())
  1408 #endif
  1409      , _bytecode(code)                           {}
  1411 #ifdef PPC
  1412    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
  1413                  ,LIR_Opr tmp1, LIR_Opr tmp2)
  1414      : LIR_Op1(lir_convert, opr, result)
  1415      , _stub(stub)
  1416      , _tmp1(tmp1)
  1417      , _tmp2(tmp2)
  1418      , _bytecode(code)                           {}
  1419 #endif
  1421   Bytecodes::Code bytecode() const               { return _bytecode; }
  1422   ConversionStub* stub() const                   { return _stub; }
  1423 #ifdef PPC
  1424   LIR_Opr tmp1() const                           { return _tmp1; }
  1425   LIR_Opr tmp2() const                           { return _tmp2; }
  1426 #endif
  1428   virtual void emit_code(LIR_Assembler* masm);
  1429   virtual LIR_OpConvert* as_OpConvert() { return this; }
  1430   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1432   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
  1433 };
  1436 // LIR_OpAllocObj
  1437 class LIR_OpAllocObj : public LIR_Op1 {
  1438  friend class LIR_OpVisitState;
  1440  private:
  1441   LIR_Opr _tmp1;
  1442   LIR_Opr _tmp2;
  1443   LIR_Opr _tmp3;
  1444   LIR_Opr _tmp4;
  1445   int     _hdr_size;
  1446   int     _obj_size;
  1447   CodeStub* _stub;
  1448   bool    _init_check;
  1450  public:
  1451   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
  1452                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
  1453                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
  1454     : LIR_Op1(lir_alloc_object, klass, result)
  1455     , _tmp1(t1)
  1456     , _tmp2(t2)
  1457     , _tmp3(t3)
  1458     , _tmp4(t4)
  1459     , _hdr_size(hdr_size)
  1460     , _obj_size(obj_size)
  1461     , _init_check(init_check)
  1462     , _stub(stub)                                { }
  1464   LIR_Opr klass()        const                   { return in_opr();     }
  1465   LIR_Opr obj()          const                   { return result_opr(); }
  1466   LIR_Opr tmp1()         const                   { return _tmp1;        }
  1467   LIR_Opr tmp2()         const                   { return _tmp2;        }
  1468   LIR_Opr tmp3()         const                   { return _tmp3;        }
  1469   LIR_Opr tmp4()         const                   { return _tmp4;        }
  1470   int     header_size()  const                   { return _hdr_size;    }
  1471   int     object_size()  const                   { return _obj_size;    }
  1472   bool    init_check()   const                   { return _init_check;  }
  1473   CodeStub* stub()       const                   { return _stub;        }
  1475   virtual void emit_code(LIR_Assembler* masm);
  1476   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
  1477   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1478 };
  1481 // LIR_OpRoundFP
  1482 class LIR_OpRoundFP : public LIR_Op1 {
  1483  friend class LIR_OpVisitState;
  1485  private:
  1486   LIR_Opr _tmp;
  1488  public:
  1489   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
  1490     : LIR_Op1(lir_roundfp, reg, result)
  1491     , _tmp(stack_loc_temp) {}
  1493   LIR_Opr tmp() const                            { return _tmp; }
  1494   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
  1495   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1496 };
  1498 // LIR_OpTypeCheck
  1499 class LIR_OpTypeCheck: public LIR_Op {
  1500  friend class LIR_OpVisitState;
  1502  private:
  1503   LIR_Opr       _object;
  1504   LIR_Opr       _array;
  1505   ciKlass*      _klass;
  1506   LIR_Opr       _tmp1;
  1507   LIR_Opr       _tmp2;
  1508   LIR_Opr       _tmp3;
  1509   bool          _fast_check;
  1510   CodeEmitInfo* _info_for_patch;
  1511   CodeEmitInfo* _info_for_exception;
  1512   CodeStub*     _stub;
  1513   ciMethod*     _profiled_method;
  1514   int           _profiled_bci;
  1515   bool          _should_profile;
  1517 public:
  1518   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
  1519                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  1520                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
  1521   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
  1522                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
  1524   LIR_Opr object() const                         { return _object;         }
  1525   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
  1526   LIR_Opr tmp1() const                           { return _tmp1;           }
  1527   LIR_Opr tmp2() const                           { return _tmp2;           }
  1528   LIR_Opr tmp3() const                           { return _tmp3;           }
  1529   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
  1530   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
  1531   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
  1532   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
  1533   CodeStub* stub() const                         { return _stub;           }
  1535   // methodDataOop profiling
  1536   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
  1537   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
  1538   void set_should_profile(bool b)                { _should_profile = b;       }
  1539   ciMethod* profiled_method() const              { return _profiled_method;   }
  1540   int       profiled_bci() const                 { return _profiled_bci;      }
  1541   bool      should_profile() const               { return _should_profile;    }
  1543   virtual void emit_code(LIR_Assembler* masm);
  1544   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
  1545   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1546 };
  1548 // LIR_Op2
  1549 class LIR_Op2: public LIR_Op {
  1550  friend class LIR_OpVisitState;
  1552   int  _fpu_stack_size; // for sin/cos implementation on Intel
  1554  protected:
  1555   LIR_Opr   _opr1;
  1556   LIR_Opr   _opr2;
  1557   BasicType _type;
  1558   LIR_Opr   _tmp;
  1559   LIR_Condition _condition;
  1561   void verify() const;
  1563  public:
  1564   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
  1565     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1566     , _opr1(opr1)
  1567     , _opr2(opr2)
  1568     , _type(T_ILLEGAL)
  1569     , _condition(condition)
  1570     , _fpu_stack_size(0)
  1571     , _tmp(LIR_OprFact::illegalOpr) {
  1572     assert(code == lir_cmp, "code check");
  1575   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
  1576     : LIR_Op(code, result, NULL)
  1577     , _opr1(opr1)
  1578     , _opr2(opr2)
  1579     , _type(type)
  1580     , _condition(condition)
  1581     , _fpu_stack_size(0)
  1582     , _tmp(LIR_OprFact::illegalOpr) {
  1583     assert(code == lir_cmove, "code check");
  1584     assert(type != T_ILLEGAL, "cmove should have type");
  1587   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
  1588           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
  1589     : LIR_Op(code, result, info)
  1590     , _opr1(opr1)
  1591     , _opr2(opr2)
  1592     , _type(type)
  1593     , _condition(lir_cond_unknown)
  1594     , _fpu_stack_size(0)
  1595     , _tmp(LIR_OprFact::illegalOpr) {
  1596     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1599   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
  1600     : LIR_Op(code, result, NULL)
  1601     , _opr1(opr1)
  1602     , _opr2(opr2)
  1603     , _type(T_ILLEGAL)
  1604     , _condition(lir_cond_unknown)
  1605     , _fpu_stack_size(0)
  1606     , _tmp(tmp) {
  1607     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
  1610   LIR_Opr in_opr1() const                        { return _opr1; }
  1611   LIR_Opr in_opr2() const                        { return _opr2; }
  1612   BasicType type()  const                        { return _type; }
  1613   LIR_Opr tmp_opr() const                        { return _tmp; }
  1614   LIR_Condition condition() const  {
  1615     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
  1617   void set_condition(LIR_Condition condition) {
  1618     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
  1621   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
  1622   int  fpu_stack_size() const                    { return _fpu_stack_size; }
  1624   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
  1625   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
  1627   virtual void emit_code(LIR_Assembler* masm);
  1628   virtual LIR_Op2* as_Op2() { return this; }
  1629   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1630 };
  1632 class LIR_OpAllocArray : public LIR_Op {
  1633  friend class LIR_OpVisitState;
  1635  private:
  1636   LIR_Opr   _klass;
  1637   LIR_Opr   _len;
  1638   LIR_Opr   _tmp1;
  1639   LIR_Opr   _tmp2;
  1640   LIR_Opr   _tmp3;
  1641   LIR_Opr   _tmp4;
  1642   BasicType _type;
  1643   CodeStub* _stub;
  1645  public:
  1646   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
  1647     : LIR_Op(lir_alloc_array, result, NULL)
  1648     , _klass(klass)
  1649     , _len(len)
  1650     , _tmp1(t1)
  1651     , _tmp2(t2)
  1652     , _tmp3(t3)
  1653     , _tmp4(t4)
  1654     , _type(type)
  1655     , _stub(stub) {}
  1657   LIR_Opr   klass()   const                      { return _klass;       }
  1658   LIR_Opr   len()     const                      { return _len;         }
  1659   LIR_Opr   obj()     const                      { return result_opr(); }
  1660   LIR_Opr   tmp1()    const                      { return _tmp1;        }
  1661   LIR_Opr   tmp2()    const                      { return _tmp2;        }
  1662   LIR_Opr   tmp3()    const                      { return _tmp3;        }
  1663   LIR_Opr   tmp4()    const                      { return _tmp4;        }
  1664   BasicType type()    const                      { return _type;        }
  1665   CodeStub* stub()    const                      { return _stub;        }
  1667   virtual void emit_code(LIR_Assembler* masm);
  1668   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
  1669   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1670 };
  1673 class LIR_Op3: public LIR_Op {
  1674  friend class LIR_OpVisitState;
  1676  private:
  1677   LIR_Opr _opr1;
  1678   LIR_Opr _opr2;
  1679   LIR_Opr _opr3;
  1680  public:
  1681   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
  1682     : LIR_Op(code, result, info)
  1683     , _opr1(opr1)
  1684     , _opr2(opr2)
  1685     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
  1686   LIR_Opr in_opr1() const                        { return _opr1; }
  1687   LIR_Opr in_opr2() const                        { return _opr2; }
  1688   LIR_Opr in_opr3() const                        { return _opr3; }
  1690   virtual void emit_code(LIR_Assembler* masm);
  1691   virtual LIR_Op3* as_Op3() { return this; }
  1692   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1693 };
  1696 //--------------------------------
  1697 class LabelObj: public CompilationResourceObj {
  1698  private:
  1699   Label _label;
  1700  public:
  1701   LabelObj()                                     {}
  1702   Label* label()                                 { return &_label; }
  1703 };
  1706 class LIR_OpLock: public LIR_Op {
  1707  friend class LIR_OpVisitState;
  1709  private:
  1710   LIR_Opr _hdr;
  1711   LIR_Opr _obj;
  1712   LIR_Opr _lock;
  1713   LIR_Opr _scratch;
  1714   CodeStub* _stub;
  1715  public:
  1716   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
  1717     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
  1718     , _hdr(hdr)
  1719     , _obj(obj)
  1720     , _lock(lock)
  1721     , _scratch(scratch)
  1722     , _stub(stub)                      {}
  1724   LIR_Opr hdr_opr() const                        { return _hdr; }
  1725   LIR_Opr obj_opr() const                        { return _obj; }
  1726   LIR_Opr lock_opr() const                       { return _lock; }
  1727   LIR_Opr scratch_opr() const                    { return _scratch; }
  1728   CodeStub* stub() const                         { return _stub; }
  1730   virtual void emit_code(LIR_Assembler* masm);
  1731   virtual LIR_OpLock* as_OpLock() { return this; }
  1732   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1733 };
  1736 class LIR_OpDelay: public LIR_Op {
  1737  friend class LIR_OpVisitState;
  1739  private:
  1740   LIR_Op* _op;
  1742  public:
  1743   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
  1744     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
  1745     _op(op) {
  1746     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
  1748   virtual void emit_code(LIR_Assembler* masm);
  1749   virtual LIR_OpDelay* as_OpDelay() { return this; }
  1750   void print_instr(outputStream* out) const PRODUCT_RETURN;
  1751   LIR_Op* delay_op() const { return _op; }
  1752   CodeEmitInfo* call_info() const { return info(); }
  1753 };
  1756 // LIR_OpCompareAndSwap
  1757 class LIR_OpCompareAndSwap : public LIR_Op {
  1758  friend class LIR_OpVisitState;
  1760  private:
  1761   LIR_Opr _addr;
  1762   LIR_Opr _cmp_value;
  1763   LIR_Opr _new_value;
  1764   LIR_Opr _tmp1;
  1765   LIR_Opr _tmp2;
  1767  public:
  1768   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  1769                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
  1770     : LIR_Op(code, result, NULL)  // no result, no info
  1771     , _addr(addr)
  1772     , _cmp_value(cmp_value)
  1773     , _new_value(new_value)
  1774     , _tmp1(t1)
  1775     , _tmp2(t2)                                  { }
  1777   LIR_Opr addr()        const                    { return _addr;  }
  1778   LIR_Opr cmp_value()   const                    { return _cmp_value; }
  1779   LIR_Opr new_value()   const                    { return _new_value; }
  1780   LIR_Opr tmp1()        const                    { return _tmp1;      }
  1781   LIR_Opr tmp2()        const                    { return _tmp2;      }
  1783   virtual void emit_code(LIR_Assembler* masm);
  1784   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
  1785   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1786 };
  1788 // LIR_OpProfileCall
  1789 class LIR_OpProfileCall : public LIR_Op {
  1790  friend class LIR_OpVisitState;
  1792  private:
  1793   ciMethod* _profiled_method;
  1794   int _profiled_bci;
  1795   LIR_Opr _mdo;
  1796   LIR_Opr _recv;
  1797   LIR_Opr _tmp1;
  1798   ciKlass* _known_holder;
  1800  public:
  1801   // Destroys recv
  1802   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
  1803     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
  1804     , _profiled_method(profiled_method)
  1805     , _profiled_bci(profiled_bci)
  1806     , _mdo(mdo)
  1807     , _recv(recv)
  1808     , _tmp1(t1)
  1809     , _known_holder(known_holder)                { }
  1811   ciMethod* profiled_method() const              { return _profiled_method;  }
  1812   int       profiled_bci()    const              { return _profiled_bci;     }
  1813   LIR_Opr   mdo()             const              { return _mdo;              }
  1814   LIR_Opr   recv()            const              { return _recv;             }
  1815   LIR_Opr   tmp1()            const              { return _tmp1;             }
  1816   ciKlass*  known_holder()    const              { return _known_holder;     }
  1818   virtual void emit_code(LIR_Assembler* masm);
  1819   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
  1820   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
  1821 };
  1823 class LIR_InsertionBuffer;
  1825 //--------------------------------LIR_List---------------------------------------------------
  1826 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
  1827 // The LIR instructions are appended by the LIR_List class itself;
  1828 //
  1829 // Notes:
  1830 // - all offsets are(should be) in bytes
  1831 // - local positions are specified with an offset, with offset 0 being local 0
  1833 class LIR_List: public CompilationResourceObj {
  1834  private:
  1835   LIR_OpList  _operations;
  1837   Compilation*  _compilation;
  1838 #ifndef PRODUCT
  1839   BlockBegin*   _block;
  1840 #endif
  1841 #ifdef ASSERT
  1842   const char *  _file;
  1843   int           _line;
  1844 #endif
  1846   void append(LIR_Op* op) {
  1847     if (op->source() == NULL)
  1848       op->set_source(_compilation->current_instruction());
  1849 #ifndef PRODUCT
  1850     if (PrintIRWithLIR) {
  1851       _compilation->maybe_print_current_instruction();
  1852       op->print(); tty->cr();
  1854 #endif // PRODUCT
  1856     _operations.append(op);
  1858 #ifdef ASSERT
  1859     op->verify();
  1860     op->set_file_and_line(_file, _line);
  1861     _file = NULL;
  1862     _line = 0;
  1863 #endif
  1866  public:
  1867   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
  1869 #ifdef ASSERT
  1870   void set_file_and_line(const char * file, int line);
  1871 #endif
  1873   //---------- accessors ---------------
  1874   LIR_OpList* instructions_list()                { return &_operations; }
  1875   int         length() const                     { return _operations.length(); }
  1876   LIR_Op*     at(int i) const                    { return _operations.at(i); }
  1878   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
  1880   // insert LIR_Ops in buffer to right places in LIR_List
  1881   void append(LIR_InsertionBuffer* buffer);
  1883   //---------- mutators ---------------
  1884   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
  1885   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
  1886   void remove_at(int i)                          { _operations.remove_at(i); }
  1888   //---------- printing -------------
  1889   void print_instructions() PRODUCT_RETURN;
  1892   //---------- instructions -------------
  1893   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1894                         address dest, LIR_OprList* arguments,
  1895                         CodeEmitInfo* info) {
  1896     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
  1898   void call_static(ciMethod* method, LIR_Opr result,
  1899                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1900     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
  1902   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1903                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1904     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
  1906   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1907                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
  1908     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
  1910   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
  1911                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
  1912     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
  1915   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
  1916   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
  1917   void membar()                                  { append(new LIR_Op0(lir_membar)); }
  1918   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
  1919   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
  1921   void nop()                                     { append(new LIR_Op0(lir_nop)); }
  1922   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
  1924   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
  1925   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
  1927   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
  1929   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
  1930   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
  1932   // result is a stack location for old backend and vreg for UseLinearScan
  1933   // stack_loc_temp is an illegal register for old backend
  1934   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
  1935   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1936   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1937   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
  1938   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  1939   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
  1940   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
  1941   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
  1942     if (UseCompressedOops) {
  1943       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
  1944     } else {
  1945       move(src, dst, info);
  1948   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
  1949     if (UseCompressedOops) {
  1950       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
  1951     } else {
  1952       move(src, dst, info);
  1955   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
  1957   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
  1958   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
  1960   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
  1962   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
  1964 #ifdef PPC
  1965   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
  1966 #endif
  1967   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
  1969   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
  1970   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
  1971   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
  1973   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
  1974   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
  1976   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
  1977   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  1978     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
  1980   void unwind_exception(LIR_Opr exceptionOop) {
  1981     append(new LIR_Op1(lir_unwind, exceptionOop));
  1984   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  1985     append(new LIR_Op2(lir_compare_to,  left, right, dst));
  1988   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
  1989   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
  1991   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
  1992     append(new LIR_Op2(lir_cmp, condition, left, right, info));
  1994   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
  1995     cmp(condition, left, LIR_OprFact::intConst(right), info);
  1998   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
  1999   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
  2001   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
  2002     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
  2005   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2006                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2007   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2008                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2009   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
  2010                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
  2012   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
  2013   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
  2014   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
  2015   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
  2016   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
  2017   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
  2018   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
  2020   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
  2021   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
  2022   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
  2023   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
  2024   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
  2025   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
  2026   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
  2028   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2029   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  2031   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  2033   void prefetch(LIR_Address* addr, bool is_store);
  2035   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2036   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2037   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
  2038   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
  2039   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
  2041   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2042   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2043   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2044   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
  2046   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
  2047   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
  2049   // jump is an unconditional branch
  2050   void jump(BlockBegin* block) {
  2051     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
  2053   void jump(CodeStub* stub) {
  2054     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
  2056   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
  2057   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
  2058     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  2059     append(new LIR_OpBranch(cond, type, block));
  2061   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
  2062     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
  2063     append(new LIR_OpBranch(cond, type, stub));
  2065   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
  2066     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
  2067     append(new LIR_OpBranch(cond, type, block, unordered));
  2070   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2071   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2072   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
  2074   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2075   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2076   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
  2078   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
  2079   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
  2081   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
  2082     append(new LIR_OpRTCall(routine, tmp, result, arguments));
  2085   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
  2086                     LIR_OprList* arguments, CodeEmitInfo* info) {
  2087     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
  2090   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
  2091   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
  2092   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
  2094   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
  2095   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
  2096   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
  2098   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
  2100   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
  2102   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
  2103   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
  2105   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
  2106                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
  2107                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
  2108                   ciMethod* profiled_method, int profiled_bci);
  2109   // methodDataOop profiling
  2110   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
  2111     append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass));
  2113 };
  2115 void print_LIR(BlockList* blocks);
  2117 class LIR_InsertionBuffer : public CompilationResourceObj {
  2118  private:
  2119   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
  2121   // list of insertion points. index and count are stored alternately:
  2122   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
  2123   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
  2124   intStack    _index_and_count;
  2126   // the LIR_Ops to be inserted
  2127   LIR_OpList  _ops;
  2129   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
  2130   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
  2131   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
  2133 #ifdef ASSERT
  2134   void verify();
  2135 #endif
  2136  public:
  2137   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
  2139   // must be called before using the insertion buffer
  2140   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
  2141   bool initialized() const  { return _lir != NULL; }
  2142   // called automatically when the buffer is appended to the LIR_List
  2143   void finish()             { _lir = NULL; }
  2145   // accessors
  2146   LIR_List*  lir_list() const             { return _lir; }
  2147   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
  2148   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
  2149   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
  2151   int number_of_ops() const               { return _ops.length(); }
  2152   LIR_Op* op_at(int i) const              { return _ops.at(i); }
  2154   // append an instruction to the buffer
  2155   void append(int index, LIR_Op* op);
  2157   // instruction
  2158   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
  2159 };
  2162 //
  2163 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
  2164 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
  2165 // information about the input, output and temporaries used by the
  2166 // op to be recorded.  It also records whether the op has call semantics
  2167 // and also records all the CodeEmitInfos used by this op.
  2168 //
  2171 class LIR_OpVisitState: public StackObj {
  2172  public:
  2173   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
  2175   enum {
  2176     maxNumberOfOperands = 16,
  2177     maxNumberOfInfos = 4
  2178   };
  2180  private:
  2181   LIR_Op*          _op;
  2183   // optimization: the operands and infos are not stored in a variable-length
  2184   //               list, but in a fixed-size array to save time of size checks and resizing
  2185   int              _oprs_len[numModes];
  2186   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
  2187   int _info_len;
  2188   CodeEmitInfo*    _info_new[maxNumberOfInfos];
  2190   bool             _has_call;
  2191   bool             _has_slow_case;
  2194   // only include register operands
  2195   // addresses are decomposed to the base and index registers
  2196   // constants and stack operands are ignored
  2197   void append(LIR_Opr& opr, OprMode mode) {
  2198     assert(opr->is_valid(), "should not call this otherwise");
  2199     assert(mode >= 0 && mode < numModes, "bad mode");
  2201     if (opr->is_register()) {
  2202        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
  2203       _oprs_new[mode][_oprs_len[mode]++] = &opr;
  2205     } else if (opr->is_pointer()) {
  2206       LIR_Address* address = opr->as_address_ptr();
  2207       if (address != NULL) {
  2208         // special handling for addresses: add base and index register of the address
  2209         // both are always input operands!
  2210         if (address->_base->is_valid()) {
  2211           assert(address->_base->is_register(), "must be");
  2212           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  2213           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
  2215         if (address->_index->is_valid()) {
  2216           assert(address->_index->is_register(), "must be");
  2217           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
  2218           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
  2221       } else {
  2222         assert(opr->is_constant(), "constant operands are not processed");
  2224     } else {
  2225       assert(opr->is_stack(), "stack operands are not processed");
  2229   void append(CodeEmitInfo* info) {
  2230     assert(info != NULL, "should not call this otherwise");
  2231     assert(_info_len < maxNumberOfInfos, "array overflow");
  2232     _info_new[_info_len++] = info;
  2235  public:
  2236   LIR_OpVisitState()         { reset(); }
  2238   LIR_Op* op() const         { return _op; }
  2239   void set_op(LIR_Op* op)    { reset(); _op = op; }
  2241   bool has_call() const      { return _has_call; }
  2242   bool has_slow_case() const { return _has_slow_case; }
  2244   void reset() {
  2245     _op = NULL;
  2246     _has_call = false;
  2247     _has_slow_case = false;
  2249     _oprs_len[inputMode] = 0;
  2250     _oprs_len[tempMode] = 0;
  2251     _oprs_len[outputMode] = 0;
  2252     _info_len = 0;
  2256   int opr_count(OprMode mode) const {
  2257     assert(mode >= 0 && mode < numModes, "bad mode");
  2258     return _oprs_len[mode];
  2261   LIR_Opr opr_at(OprMode mode, int index) const {
  2262     assert(mode >= 0 && mode < numModes, "bad mode");
  2263     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2264     return *_oprs_new[mode][index];
  2267   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
  2268     assert(mode >= 0 && mode < numModes, "bad mode");
  2269     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
  2270     *_oprs_new[mode][index] = opr;
  2273   int info_count() const {
  2274     return _info_len;
  2277   CodeEmitInfo* info_at(int index) const {
  2278     assert(index < _info_len, "index out of bounds");
  2279     return _info_new[index];
  2282   XHandlers* all_xhandler();
  2284   // collects all register operands of the instruction
  2285   void visit(LIR_Op* op);
  2287 #if ASSERT
  2288   // check that an operation has no operands
  2289   bool no_operands(LIR_Op* op);
  2290 #endif
  2292   // LIR_Op visitor functions use these to fill in the state
  2293   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
  2294   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
  2295   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
  2296   void do_info(CodeEmitInfo* info)        { append(info); }
  2298   void do_stub(CodeStub* stub);
  2299   void do_call()                          { _has_call = true; }
  2300   void do_slow_case()                     { _has_slow_case = true; }
  2301   void do_slow_case(CodeEmitInfo* info) {
  2302     _has_slow_case = true;
  2303     append(info);
  2305 };
  2308 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
  2310 #endif // SHARE_VM_C1_C1_LIR_HPP

mercurial