src/share/vm/utilities/globalDefinitions.hpp

Fri, 25 May 2012 22:35:13 +0200

author
brutisso
date
Fri, 25 May 2012 22:35:13 +0200
changeset 3810
5c8bd7c16119
parent 3766
cdfa5139bd58
child 4037
da91efe96a93
permissions
-rw-r--r--

7171936: LOG_G incorrectly defined in globalDefinitions.hpp
Summary: Removed LOG_G and LOG_K. Moved LOG_M to where it is being used.
Reviewed-by: twisti, johnc

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
    28 #ifndef __STDC_FORMAT_MACROS
    29 #define __STDC_FORMAT_MACROS
    30 #endif
    32 #ifdef TARGET_COMPILER_gcc
    33 # include "utilities/globalDefinitions_gcc.hpp"
    34 #endif
    35 #ifdef TARGET_COMPILER_visCPP
    36 # include "utilities/globalDefinitions_visCPP.hpp"
    37 #endif
    38 #ifdef TARGET_COMPILER_sparcWorks
    39 # include "utilities/globalDefinitions_sparcWorks.hpp"
    40 #endif
    42 #include "utilities/macros.hpp"
    44 // This file holds all globally used constants & types, class (forward)
    45 // declarations and a few frequently used utility functions.
    47 //----------------------------------------------------------------------------------------------------
    48 // Constants
    50 const int LogBytesPerShort   = 1;
    51 const int LogBytesPerInt     = 2;
    52 #ifdef _LP64
    53 const int LogBytesPerWord    = 3;
    54 #else
    55 const int LogBytesPerWord    = 2;
    56 #endif
    57 const int LogBytesPerLong    = 3;
    59 const int BytesPerShort      = 1 << LogBytesPerShort;
    60 const int BytesPerInt        = 1 << LogBytesPerInt;
    61 const int BytesPerWord       = 1 << LogBytesPerWord;
    62 const int BytesPerLong       = 1 << LogBytesPerLong;
    64 const int LogBitsPerByte     = 3;
    65 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    66 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    67 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    68 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    70 const int BitsPerByte        = 1 << LogBitsPerByte;
    71 const int BitsPerShort       = 1 << LogBitsPerShort;
    72 const int BitsPerInt         = 1 << LogBitsPerInt;
    73 const int BitsPerWord        = 1 << LogBitsPerWord;
    74 const int BitsPerLong        = 1 << LogBitsPerLong;
    76 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    77 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    79 const int WordsPerLong       = 2;       // Number of stack entries for longs
    81 const int oopSize            = sizeof(char*); // Full-width oop
    82 extern int heapOopSize;                       // Oop within a java object
    83 const int wordSize           = sizeof(char*);
    84 const int longSize           = sizeof(jlong);
    85 const int jintSize           = sizeof(jint);
    86 const int size_tSize         = sizeof(size_t);
    88 const int BytesPerOop        = BytesPerWord;  // Full-width oop
    90 extern int LogBytesPerHeapOop;                // Oop within a java object
    91 extern int LogBitsPerHeapOop;
    92 extern int BytesPerHeapOop;
    93 extern int BitsPerHeapOop;
    95 // Oop encoding heap max
    96 extern uint64_t OopEncodingHeapMax;
    98 const int BitsPerJavaInteger = 32;
    99 const int BitsPerJavaLong    = 64;
   100 const int BitsPerSize_t      = size_tSize * BitsPerByte;
   102 // Size of a char[] needed to represent a jint as a string in decimal.
   103 const int jintAsStringSize = 12;
   105 // In fact this should be
   106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
   107 // see os::set_memory_serialize_page()
   108 #ifdef _LP64
   109 const int SerializePageShiftCount = 4;
   110 #else
   111 const int SerializePageShiftCount = 3;
   112 #endif
   114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
   115 // pointer into the heap.  We require that object sizes be measured in
   116 // units of heap words, so that that
   117 //   HeapWord* hw;
   118 //   hw += oop(hw)->foo();
   119 // works, where foo is a method (like size or scavenge) that returns the
   120 // object size.
   121 class HeapWord {
   122   friend class VMStructs;
   123  private:
   124   char* i;
   125 #ifndef PRODUCT
   126  public:
   127   char* value() { return i; }
   128 #endif
   129 };
   131 // HeapWordSize must be 2^LogHeapWordSize.
   132 const int HeapWordSize        = sizeof(HeapWord);
   133 #ifdef _LP64
   134 const int LogHeapWordSize     = 3;
   135 #else
   136 const int LogHeapWordSize     = 2;
   137 #endif
   138 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
   139 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
   141 // The larger HeapWordSize for 64bit requires larger heaps
   142 // for the same application running in 64bit.  See bug 4967770.
   143 // The minimum alignment to a heap word size is done.  Other
   144 // parts of the memory system may required additional alignment
   145 // and are responsible for those alignments.
   146 #ifdef _LP64
   147 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   148 #else
   149 #define ScaleForWordSize(x) (x)
   150 #endif
   152 // The minimum number of native machine words necessary to contain "byte_size"
   153 // bytes.
   154 inline size_t heap_word_size(size_t byte_size) {
   155   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   156 }
   159 const size_t K                  = 1024;
   160 const size_t M                  = K*K;
   161 const size_t G                  = M*K;
   162 const size_t HWperKB            = K / sizeof(HeapWord);
   164 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   165 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   167 // Constants for converting from a base unit to milli-base units.  For
   168 // example from seconds to milliseconds and microseconds
   170 const int MILLIUNITS    = 1000;         // milli units per base unit
   171 const int MICROUNITS    = 1000000;      // micro units per base unit
   172 const int NANOUNITS     = 1000000000;   // nano units per base unit
   174 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
   175 const jint  NANOSECS_PER_MILLISEC = 1000000;
   177 inline const char* proper_unit_for_byte_size(size_t s) {
   178 #ifdef _LP64
   179   if (s >= 10*G) {
   180     return "G";
   181   }
   182 #endif
   183   if (s >= 10*M) {
   184     return "M";
   185   } else if (s >= 10*K) {
   186     return "K";
   187   } else {
   188     return "B";
   189   }
   190 }
   192 template <class T>
   193 inline T byte_size_in_proper_unit(T s) {
   194 #ifdef _LP64
   195   if (s >= 10*G) {
   196     return (T)(s/G);
   197   }
   198 #endif
   199   if (s >= 10*M) {
   200     return (T)(s/M);
   201   } else if (s >= 10*K) {
   202     return (T)(s/K);
   203   } else {
   204     return s;
   205   }
   206 }
   208 //----------------------------------------------------------------------------------------------------
   209 // VM type definitions
   211 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   212 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   214 typedef intptr_t  intx;
   215 typedef uintptr_t uintx;
   217 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   218 const intx  max_intx  = (uintx)min_intx - 1;
   219 const uintx max_uintx = (uintx)-1;
   221 // Table of values:
   222 //      sizeof intx         4               8
   223 // min_intx             0x80000000      0x8000000000000000
   224 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   225 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   227 typedef unsigned int uint;   NEEDS_CLEANUP
   230 //----------------------------------------------------------------------------------------------------
   231 // Java type definitions
   233 // All kinds of 'plain' byte addresses
   234 typedef   signed char s_char;
   235 typedef unsigned char u_char;
   236 typedef u_char*       address;
   237 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   238                                     // except for some implementations of a C++
   239                                     // linkage pointer to function. Should never
   240                                     // need one of those to be placed in this
   241                                     // type anyway.
   243 //  Utility functions to "portably" (?) bit twiddle pointers
   244 //  Where portable means keep ANSI C++ compilers quiet
   246 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   247 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   249 //  Utility functions to "portably" make cast to/from function pointers.
   251 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   252 inline address_word  castable_address(address x)              { return address_word(x) ; }
   253 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   255 // Pointer subtraction.
   256 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   257 // the range we might need to find differences from one end of the heap
   258 // to the other.
   259 // A typical use might be:
   260 //     if (pointer_delta(end(), top()) >= size) {
   261 //       // enough room for an object of size
   262 //       ...
   263 // and then additions like
   264 //       ... top() + size ...
   265 // are safe because we know that top() is at least size below end().
   266 inline size_t pointer_delta(const void* left,
   267                             const void* right,
   268                             size_t element_size) {
   269   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   270 }
   271 // A version specialized for HeapWord*'s.
   272 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   273   return pointer_delta(left, right, sizeof(HeapWord));
   274 }
   276 //
   277 // ANSI C++ does not allow casting from one pointer type to a function pointer
   278 // directly without at best a warning. This macro accomplishes it silently
   279 // In every case that is present at this point the value be cast is a pointer
   280 // to a C linkage function. In somecase the type used for the cast reflects
   281 // that linkage and a picky compiler would not complain. In other cases because
   282 // there is no convenient place to place a typedef with extern C linkage (i.e
   283 // a platform dependent header file) it doesn't. At this point no compiler seems
   284 // picky enough to catch these instances (which are few). It is possible that
   285 // using templates could fix these for all cases. This use of templates is likely
   286 // so far from the middle of the road that it is likely to be problematic in
   287 // many C++ compilers.
   288 //
   289 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   290 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   292 // Unsigned byte types for os and stream.hpp
   294 // Unsigned one, two, four and eigth byte quantities used for describing
   295 // the .class file format. See JVM book chapter 4.
   297 typedef jubyte  u1;
   298 typedef jushort u2;
   299 typedef juint   u4;
   300 typedef julong  u8;
   302 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   303 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   304 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   305 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   307 typedef jbyte  s1;
   308 typedef jshort s2;
   309 typedef jint   s4;
   310 typedef jlong  s8;
   312 //----------------------------------------------------------------------------------------------------
   313 // JVM spec restrictions
   315 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   318 //----------------------------------------------------------------------------------------------------
   319 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   320 //
   321 // Determines whether on-the-fly class replacement and frame popping are enabled.
   323 #define HOTSWAP
   325 //----------------------------------------------------------------------------------------------------
   326 // Object alignment, in units of HeapWords.
   327 //
   328 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   329 // reference fields can be naturally aligned.
   331 extern int MinObjAlignment;
   332 extern int MinObjAlignmentInBytes;
   333 extern int MinObjAlignmentInBytesMask;
   335 extern int LogMinObjAlignment;
   336 extern int LogMinObjAlignmentInBytes;
   338 // Machine dependent stuff
   340 #ifdef TARGET_ARCH_x86
   341 # include "globalDefinitions_x86.hpp"
   342 #endif
   343 #ifdef TARGET_ARCH_sparc
   344 # include "globalDefinitions_sparc.hpp"
   345 #endif
   346 #ifdef TARGET_ARCH_zero
   347 # include "globalDefinitions_zero.hpp"
   348 #endif
   349 #ifdef TARGET_ARCH_arm
   350 # include "globalDefinitions_arm.hpp"
   351 #endif
   352 #ifdef TARGET_ARCH_ppc
   353 # include "globalDefinitions_ppc.hpp"
   354 #endif
   357 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   358 // Note: this value must be a power of 2
   360 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   362 // Signed variants of alignment helpers.  There are two versions of each, a macro
   363 // for use in places like enum definitions that require compile-time constant
   364 // expressions and a function for all other places so as to get type checking.
   366 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   368 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   369   return align_size_up_(size, alignment);
   370 }
   372 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   374 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   375   return align_size_down_(size, alignment);
   376 }
   378 // Align objects by rounding up their size, in HeapWord units.
   380 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   382 inline intptr_t align_object_size(intptr_t size) {
   383   return align_size_up(size, MinObjAlignment);
   384 }
   386 inline bool is_object_aligned(intptr_t addr) {
   387   return addr == align_object_size(addr);
   388 }
   390 // Pad out certain offsets to jlong alignment, in HeapWord units.
   392 inline intptr_t align_object_offset(intptr_t offset) {
   393   return align_size_up(offset, HeapWordsPerLong);
   394 }
   396 // The expected size in bytes of a cache line, used to pad data structures.
   397 #define DEFAULT_CACHE_LINE_SIZE 64
   399 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
   400 // expected cache line size (a power of two).  The first addend avoids sharing
   401 // when the start address is not a multiple of alignment; the second maintains
   402 // alignment of starting addresses that happen to be a multiple.
   403 #define PADDING_SIZE(type, alignment)                           \
   404   ((alignment) + align_size_up_(sizeof(type), alignment))
   406 // Templates to create a subclass padded to avoid cache line sharing.  These are
   407 // effective only when applied to derived-most (leaf) classes.
   409 // When no args are passed to the base ctor.
   410 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   411 class Padded: public T {
   412 private:
   413   char _pad_buf_[PADDING_SIZE(T, alignment)];
   414 };
   416 // When either 0 or 1 args may be passed to the base ctor.
   417 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
   418 class Padded01: public T {
   419 public:
   420   Padded01(): T() { }
   421   Padded01(Arg1T arg1): T(arg1) { }
   422 private:
   423   char _pad_buf_[PADDING_SIZE(T, alignment)];
   424 };
   426 //----------------------------------------------------------------------------------------------------
   427 // Utility macros for compilers
   428 // used to silence compiler warnings
   430 #define Unused_Variable(var) var
   433 //----------------------------------------------------------------------------------------------------
   434 // Miscellaneous
   436 // 6302670 Eliminate Hotspot __fabsf dependency
   437 // All fabs() callers should call this function instead, which will implicitly
   438 // convert the operand to double, avoiding a dependency on __fabsf which
   439 // doesn't exist in early versions of Solaris 8.
   440 inline double fabsd(double value) {
   441   return fabs(value);
   442 }
   444 inline jint low (jlong value)                    { return jint(value); }
   445 inline jint high(jlong value)                    { return jint(value >> 32); }
   447 // the fancy casts are a hopefully portable way
   448 // to do unsigned 32 to 64 bit type conversion
   449 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   450                                                    *value |= (jlong)(julong)(juint)low; }
   452 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   453                                                    *value |= (jlong)high       << 32; }
   455 inline jlong jlong_from(jint h, jint l) {
   456   jlong result = 0; // initialization to avoid warning
   457   set_high(&result, h);
   458   set_low(&result,  l);
   459   return result;
   460 }
   462 union jlong_accessor {
   463   jint  words[2];
   464   jlong long_value;
   465 };
   467 void basic_types_init(); // cannot define here; uses assert
   470 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   471 enum BasicType {
   472   T_BOOLEAN  =  4,
   473   T_CHAR     =  5,
   474   T_FLOAT    =  6,
   475   T_DOUBLE   =  7,
   476   T_BYTE     =  8,
   477   T_SHORT    =  9,
   478   T_INT      = 10,
   479   T_LONG     = 11,
   480   T_OBJECT   = 12,
   481   T_ARRAY    = 13,
   482   T_VOID     = 14,
   483   T_ADDRESS  = 15,
   484   T_NARROWOOP= 16,
   485   T_CONFLICT = 17, // for stack value type with conflicting contents
   486   T_ILLEGAL  = 99
   487 };
   489 inline bool is_java_primitive(BasicType t) {
   490   return T_BOOLEAN <= t && t <= T_LONG;
   491 }
   493 inline bool is_subword_type(BasicType t) {
   494   // these guys are processed exactly like T_INT in calling sequences:
   495   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
   496 }
   498 inline bool is_signed_subword_type(BasicType t) {
   499   return (t == T_BYTE || t == T_SHORT);
   500 }
   502 // Convert a char from a classfile signature to a BasicType
   503 inline BasicType char2type(char c) {
   504   switch( c ) {
   505   case 'B': return T_BYTE;
   506   case 'C': return T_CHAR;
   507   case 'D': return T_DOUBLE;
   508   case 'F': return T_FLOAT;
   509   case 'I': return T_INT;
   510   case 'J': return T_LONG;
   511   case 'S': return T_SHORT;
   512   case 'Z': return T_BOOLEAN;
   513   case 'V': return T_VOID;
   514   case 'L': return T_OBJECT;
   515   case '[': return T_ARRAY;
   516   }
   517   return T_ILLEGAL;
   518 }
   520 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   521 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   522 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   523 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   524 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   525 extern BasicType name2type(const char* name);
   527 // Auxilary math routines
   528 // least common multiple
   529 extern size_t lcm(size_t a, size_t b);
   532 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   533 enum BasicTypeSize {
   534   T_BOOLEAN_size = 1,
   535   T_CHAR_size    = 1,
   536   T_FLOAT_size   = 1,
   537   T_DOUBLE_size  = 2,
   538   T_BYTE_size    = 1,
   539   T_SHORT_size   = 1,
   540   T_INT_size     = 1,
   541   T_LONG_size    = 2,
   542   T_OBJECT_size  = 1,
   543   T_ARRAY_size   = 1,
   544   T_NARROWOOP_size = 1,
   545   T_VOID_size    = 0
   546 };
   549 // maps a BasicType to its instance field storage type:
   550 // all sub-word integral types are widened to T_INT
   551 extern BasicType type2field[T_CONFLICT+1];
   552 extern BasicType type2wfield[T_CONFLICT+1];
   555 // size in bytes
   556 enum ArrayElementSize {
   557   T_BOOLEAN_aelem_bytes = 1,
   558   T_CHAR_aelem_bytes    = 2,
   559   T_FLOAT_aelem_bytes   = 4,
   560   T_DOUBLE_aelem_bytes  = 8,
   561   T_BYTE_aelem_bytes    = 1,
   562   T_SHORT_aelem_bytes   = 2,
   563   T_INT_aelem_bytes     = 4,
   564   T_LONG_aelem_bytes    = 8,
   565 #ifdef _LP64
   566   T_OBJECT_aelem_bytes  = 8,
   567   T_ARRAY_aelem_bytes   = 8,
   568 #else
   569   T_OBJECT_aelem_bytes  = 4,
   570   T_ARRAY_aelem_bytes   = 4,
   571 #endif
   572   T_NARROWOOP_aelem_bytes = 4,
   573   T_VOID_aelem_bytes    = 0
   574 };
   576 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   577 #ifdef ASSERT
   578 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   579 #else
   580 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
   581 #endif
   584 // JavaValue serves as a container for arbitrary Java values.
   586 class JavaValue {
   588  public:
   589   typedef union JavaCallValue {
   590     jfloat   f;
   591     jdouble  d;
   592     jint     i;
   593     jlong    l;
   594     jobject  h;
   595   } JavaCallValue;
   597  private:
   598   BasicType _type;
   599   JavaCallValue _value;
   601  public:
   602   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   604   JavaValue(jfloat value) {
   605     _type    = T_FLOAT;
   606     _value.f = value;
   607   }
   609   JavaValue(jdouble value) {
   610     _type    = T_DOUBLE;
   611     _value.d = value;
   612   }
   614  jfloat get_jfloat() const { return _value.f; }
   615  jdouble get_jdouble() const { return _value.d; }
   616  jint get_jint() const { return _value.i; }
   617  jlong get_jlong() const { return _value.l; }
   618  jobject get_jobject() const { return _value.h; }
   619  JavaCallValue* get_value_addr() { return &_value; }
   620  BasicType get_type() const { return _type; }
   622  void set_jfloat(jfloat f) { _value.f = f;}
   623  void set_jdouble(jdouble d) { _value.d = d;}
   624  void set_jint(jint i) { _value.i = i;}
   625  void set_jlong(jlong l) { _value.l = l;}
   626  void set_jobject(jobject h) { _value.h = h;}
   627  void set_type(BasicType t) { _type = t; }
   629  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   630  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   631  jchar get_jchar() const { return (jchar) (_value.i);}
   632  jshort get_jshort() const { return (jshort) (_value.i);}
   634 };
   637 #define STACK_BIAS      0
   638 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   639 // in order to extend the reach of the stack pointer.
   640 #if defined(SPARC) && defined(_LP64)
   641 #undef STACK_BIAS
   642 #define STACK_BIAS      0x7ff
   643 #endif
   646 // TosState describes the top-of-stack state before and after the execution of
   647 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   648 // registers. The TosState corresponds to the 'machine represention' of this cached
   649 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   650 // as well as a 5th state in case the top-of-stack value is actually on the top
   651 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   652 // state when it comes to machine representation but is used separately for (oop)
   653 // type specific operations (e.g. verification code).
   655 enum TosState {         // describes the tos cache contents
   656   btos = 0,             // byte, bool tos cached
   657   ctos = 1,             // char tos cached
   658   stos = 2,             // short tos cached
   659   itos = 3,             // int tos cached
   660   ltos = 4,             // long tos cached
   661   ftos = 5,             // float tos cached
   662   dtos = 6,             // double tos cached
   663   atos = 7,             // object cached
   664   vtos = 8,             // tos not cached
   665   number_of_states,
   666   ilgl                  // illegal state: should not occur
   667 };
   670 inline TosState as_TosState(BasicType type) {
   671   switch (type) {
   672     case T_BYTE   : return btos;
   673     case T_BOOLEAN: return btos; // FIXME: Add ztos
   674     case T_CHAR   : return ctos;
   675     case T_SHORT  : return stos;
   676     case T_INT    : return itos;
   677     case T_LONG   : return ltos;
   678     case T_FLOAT  : return ftos;
   679     case T_DOUBLE : return dtos;
   680     case T_VOID   : return vtos;
   681     case T_ARRAY  : // fall through
   682     case T_OBJECT : return atos;
   683   }
   684   return ilgl;
   685 }
   687 inline BasicType as_BasicType(TosState state) {
   688   switch (state) {
   689     //case ztos: return T_BOOLEAN;//FIXME
   690     case btos : return T_BYTE;
   691     case ctos : return T_CHAR;
   692     case stos : return T_SHORT;
   693     case itos : return T_INT;
   694     case ltos : return T_LONG;
   695     case ftos : return T_FLOAT;
   696     case dtos : return T_DOUBLE;
   697     case atos : return T_OBJECT;
   698     case vtos : return T_VOID;
   699   }
   700   return T_ILLEGAL;
   701 }
   704 // Helper function to convert BasicType info into TosState
   705 // Note: Cannot define here as it uses global constant at the time being.
   706 TosState as_TosState(BasicType type);
   709 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
   711 enum ReferenceType {
   712  REF_NONE,      // Regular class
   713  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
   714  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
   715  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
   716  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
   717  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
   718 };
   721 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   722 // information is needed by the safepoint code.
   723 //
   724 // There are 4 essential states:
   725 //
   726 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   727 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   728 //  _thread_in_vm       : Executing in the vm
   729 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   730 //
   731 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   732 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   733 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   734 //
   735 // Given a state, the xxx_trans state can always be found by adding 1.
   736 //
   737 enum JavaThreadState {
   738   _thread_uninitialized     =  0, // should never happen (missing initialization)
   739   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   740   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   741   _thread_in_native         =  4, // running in native code
   742   _thread_in_native_trans   =  5, // corresponding transition state
   743   _thread_in_vm             =  6, // running in VM
   744   _thread_in_vm_trans       =  7, // corresponding transition state
   745   _thread_in_Java           =  8, // running in Java or in stub code
   746   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   747   _thread_blocked           = 10, // blocked in vm
   748   _thread_blocked_trans     = 11, // corresponding transition state
   749   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   750 };
   753 // Handy constants for deciding which compiler mode to use.
   754 enum MethodCompilation {
   755   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   756   InvalidOSREntryBci = -2
   757 };
   759 // Enumeration to distinguish tiers of compilation
   760 enum CompLevel {
   761   CompLevel_any               = -1,
   762   CompLevel_all               = -1,
   763   CompLevel_none              = 0,         // Interpreter
   764   CompLevel_simple            = 1,         // C1
   765   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
   766   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
   767   CompLevel_full_optimization = 4,         // C2 or Shark
   769 #if defined(COMPILER2) || defined(SHARK)
   770   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
   771 #elif defined(COMPILER1)
   772   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
   773 #else
   774   CompLevel_highest_tier      = CompLevel_none,
   775 #endif
   777 #if defined(TIERED)
   778   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
   779 #elif defined(COMPILER1)
   780   CompLevel_initial_compile   = CompLevel_simple              // pure C1
   781 #elif defined(COMPILER2) || defined(SHARK)
   782   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
   783 #else
   784   CompLevel_initial_compile   = CompLevel_none
   785 #endif
   786 };
   788 inline bool is_c1_compile(int comp_level) {
   789   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
   790 }
   792 inline bool is_c2_compile(int comp_level) {
   793   return comp_level == CompLevel_full_optimization;
   794 }
   796 inline bool is_highest_tier_compile(int comp_level) {
   797   return comp_level == CompLevel_highest_tier;
   798 }
   800 //----------------------------------------------------------------------------------------------------
   801 // 'Forward' declarations of frequently used classes
   802 // (in order to reduce interface dependencies & reduce
   803 // number of unnecessary compilations after changes)
   805 class symbolTable;
   806 class ClassFileStream;
   808 class Event;
   810 class Thread;
   811 class  VMThread;
   812 class  JavaThread;
   813 class Threads;
   815 class VM_Operation;
   816 class VMOperationQueue;
   818 class CodeBlob;
   819 class  nmethod;
   820 class  OSRAdapter;
   821 class  I2CAdapter;
   822 class  C2IAdapter;
   823 class CompiledIC;
   824 class relocInfo;
   825 class ScopeDesc;
   826 class PcDesc;
   828 class Recompiler;
   829 class Recompilee;
   830 class RecompilationPolicy;
   831 class RFrame;
   832 class  CompiledRFrame;
   833 class  InterpretedRFrame;
   835 class frame;
   837 class vframe;
   838 class   javaVFrame;
   839 class     interpretedVFrame;
   840 class     compiledVFrame;
   841 class     deoptimizedVFrame;
   842 class   externalVFrame;
   843 class     entryVFrame;
   845 class RegisterMap;
   847 class Mutex;
   848 class Monitor;
   849 class BasicLock;
   850 class BasicObjectLock;
   852 class PeriodicTask;
   854 class JavaCallWrapper;
   856 class   oopDesc;
   858 class NativeCall;
   860 class zone;
   862 class StubQueue;
   864 class outputStream;
   866 class ResourceArea;
   868 class DebugInformationRecorder;
   869 class ScopeValue;
   870 class CompressedStream;
   871 class   DebugInfoReadStream;
   872 class   DebugInfoWriteStream;
   873 class LocationValue;
   874 class ConstantValue;
   875 class IllegalValue;
   877 class PrivilegedElement;
   878 class MonitorArray;
   880 class MonitorInfo;
   882 class OffsetClosure;
   883 class OopMapCache;
   884 class InterpreterOopMap;
   885 class OopMapCacheEntry;
   886 class OSThread;
   888 typedef int (*OSThreadStartFunc)(void*);
   890 class Space;
   892 class JavaValue;
   893 class methodHandle;
   894 class JavaCallArguments;
   896 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   898 extern void basic_fatal(const char* msg);
   901 //----------------------------------------------------------------------------------------------------
   902 // Special constants for debugging
   904 const jint     badInt           = -3;                       // generic "bad int" value
   905 const long     badAddressVal    = -2;                       // generic "bad address" value
   906 const long     badOopVal        = -1;                       // generic "bad oop" value
   907 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   908 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   909 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   910 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   911 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   912 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   913 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   914 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   915 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   918 // (These must be implemented as #defines because C++ compilers are
   919 // not obligated to inline non-integral constants!)
   920 #define       badAddress        ((address)::badAddressVal)
   921 #define       badOop            ((oop)::badOopVal)
   922 #define       badHeapWord       (::badHeapWordVal)
   923 #define       badJNIHandle      ((oop)::badJNIHandleVal)
   925 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
   926 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
   928 //----------------------------------------------------------------------------------------------------
   929 // Utility functions for bitfield manipulations
   931 const intptr_t AllBits    = ~0; // all bits set in a word
   932 const intptr_t NoBits     =  0; // no bits set in a word
   933 const jlong    NoLongBits =  0; // no bits set in a long
   934 const intptr_t OneBit     =  1; // only right_most bit set in a word
   936 // get a word with the n.th or the right-most or left-most n bits set
   937 // (note: #define used only so that they can be used in enum constant definitions)
   938 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
   939 #define right_n_bits(n)   (nth_bit(n) - 1)
   940 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
   942 // bit-operations using a mask m
   943 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
   944 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
   945 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
   946 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
   947 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
   949 // bit-operations using the n.th bit
   950 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
   951 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
   952 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
   954 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
   955 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
   956   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
   957 }
   960 //----------------------------------------------------------------------------------------------------
   961 // Utility functions for integers
   963 // Avoid use of global min/max macros which may cause unwanted double
   964 // evaluation of arguments.
   965 #ifdef max
   966 #undef max
   967 #endif
   969 #ifdef min
   970 #undef min
   971 #endif
   973 #define max(a,b) Do_not_use_max_use_MAX2_instead
   974 #define min(a,b) Do_not_use_min_use_MIN2_instead
   976 // It is necessary to use templates here. Having normal overloaded
   977 // functions does not work because it is necessary to provide both 32-
   978 // and 64-bit overloaded functions, which does not work, and having
   979 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
   980 // will be even more error-prone than macros.
   981 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
   982 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
   983 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
   984 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
   985 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
   986 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
   988 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
   990 // true if x is a power of 2, false otherwise
   991 inline bool is_power_of_2(intptr_t x) {
   992   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
   993 }
   995 // long version of is_power_of_2
   996 inline bool is_power_of_2_long(jlong x) {
   997   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
   998 }
  1000 //* largest i such that 2^i <= x
  1001 //  A negative value of 'x' will return '31'
  1002 inline int log2_intptr(intptr_t x) {
  1003   int i = -1;
  1004   uintptr_t p =  1;
  1005   while (p != 0 && p <= (uintptr_t)x) {
  1006     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1007     i++; p *= 2;
  1009   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1010   // (if p = 0 then overflow occurred and i = 31)
  1011   return i;
  1014 //* largest i such that 2^i <= x
  1015 //  A negative value of 'x' will return '63'
  1016 inline int log2_long(jlong x) {
  1017   int i = -1;
  1018   julong p =  1;
  1019   while (p != 0 && p <= (julong)x) {
  1020     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
  1021     i++; p *= 2;
  1023   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
  1024   // (if p = 0 then overflow occurred and i = 63)
  1025   return i;
  1028 //* the argument must be exactly a power of 2
  1029 inline int exact_log2(intptr_t x) {
  1030   #ifdef ASSERT
  1031     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  1032   #endif
  1033   return log2_intptr(x);
  1036 //* the argument must be exactly a power of 2
  1037 inline int exact_log2_long(jlong x) {
  1038   #ifdef ASSERT
  1039     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  1040   #endif
  1041   return log2_long(x);
  1045 // returns integer round-up to the nearest multiple of s (s must be a power of two)
  1046 inline intptr_t round_to(intptr_t x, uintx s) {
  1047   #ifdef ASSERT
  1048     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1049   #endif
  1050   const uintx m = s - 1;
  1051   return mask_bits(x + m, ~m);
  1054 // returns integer round-down to the nearest multiple of s (s must be a power of two)
  1055 inline intptr_t round_down(intptr_t x, uintx s) {
  1056   #ifdef ASSERT
  1057     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  1058   #endif
  1059   const uintx m = s - 1;
  1060   return mask_bits(x, ~m);
  1064 inline bool is_odd (intx x) { return x & 1;      }
  1065 inline bool is_even(intx x) { return !is_odd(x); }
  1067 // "to" should be greater than "from."
  1068 inline intx byte_size(void* from, void* to) {
  1069   return (address)to - (address)from;
  1072 //----------------------------------------------------------------------------------------------------
  1073 // Avoid non-portable casts with these routines (DEPRECATED)
  1075 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
  1076 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
  1078 // Given sequence of four bytes, build into a 32-bit word
  1079 // following the conventions used in class files.
  1080 // On the 386, this could be realized with a simple address cast.
  1081 //
  1083 // This routine takes eight bytes:
  1084 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1085   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
  1086        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
  1087        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
  1088        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
  1089        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
  1090        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
  1091        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
  1092        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
  1095 // This routine takes four bytes:
  1096 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1097   return  (( u4(c1) << 24 )  &  0xff000000)
  1098        |  (( u4(c2) << 16 )  &  0x00ff0000)
  1099        |  (( u4(c3) <<  8 )  &  0x0000ff00)
  1100        |  (( u4(c4) <<  0 )  &  0x000000ff);
  1103 // And this one works if the four bytes are contiguous in memory:
  1104 inline u4 build_u4_from( u1* p ) {
  1105   return  build_u4_from( p[0], p[1], p[2], p[3] );
  1108 // Ditto for two-byte ints:
  1109 inline u2 build_u2_from( u1 c1, u1 c2 ) {
  1110   return  u2((( u2(c1) <<  8 )  &  0xff00)
  1111           |  (( u2(c2) <<  0 )  &  0x00ff));
  1114 // And this one works if the two bytes are contiguous in memory:
  1115 inline u2 build_u2_from( u1* p ) {
  1116   return  build_u2_from( p[0], p[1] );
  1119 // Ditto for floats:
  1120 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  1121   u4 u = build_u4_from( c1, c2, c3, c4 );
  1122   return  *(jfloat*)&u;
  1125 inline jfloat build_float_from( u1* p ) {
  1126   u4 u = build_u4_from( p );
  1127   return  *(jfloat*)&u;
  1131 // now (64-bit) longs
  1133 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1134   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
  1135        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
  1136        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
  1137        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
  1138        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
  1139        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
  1140        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
  1141        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
  1144 inline jlong build_long_from( u1* p ) {
  1145   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
  1149 // Doubles, too!
  1150 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1151   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1152   return  *(jdouble*)&u;
  1155 inline jdouble build_double_from( u1* p ) {
  1156   jlong u = build_long_from( p );
  1157   return  *(jdouble*)&u;
  1161 // Portable routines to go the other way:
  1163 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1164   c1 = u1(x >> 8);
  1165   c2 = u1(x);
  1168 inline void explode_short_to( u2 x, u1* p ) {
  1169   explode_short_to( x, p[0], p[1]);
  1172 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1173   c1 = u1(x >> 24);
  1174   c2 = u1(x >> 16);
  1175   c3 = u1(x >>  8);
  1176   c4 = u1(x);
  1179 inline void explode_int_to( u4 x, u1* p ) {
  1180   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1184 // Pack and extract shorts to/from ints:
  1186 inline int extract_low_short_from_int(jint x) {
  1187   return x & 0xffff;
  1190 inline int extract_high_short_from_int(jint x) {
  1191   return (x >> 16) & 0xffff;
  1194 inline int build_int_from_shorts( jushort low, jushort high ) {
  1195   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1198 // Printf-style formatters for fixed- and variable-width types as pointers and
  1199 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  1200 // doesn't provide appropriate definitions, they should be provided in
  1201 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1203 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  1205 // Format 32-bit quantities.
  1206 #define INT32_FORMAT           "%" PRId32
  1207 #define UINT32_FORMAT          "%" PRIu32
  1208 #define INT32_FORMAT_W(width)  "%" #width PRId32
  1209 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  1211 #define PTR32_FORMAT           "0x%08" PRIx32
  1213 // Format 64-bit quantities.
  1214 #define INT64_FORMAT           "%" PRId64
  1215 #define UINT64_FORMAT          "%" PRIu64
  1216 #define INT64_FORMAT_W(width)  "%" #width PRId64
  1217 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  1219 #define PTR64_FORMAT           "0x%016" PRIx64
  1221 // Format pointers which change size between 32- and 64-bit.
  1222 #ifdef  _LP64
  1223 #define INTPTR_FORMAT "0x%016" PRIxPTR
  1224 #define PTR_FORMAT    "0x%016" PRIxPTR
  1225 #else   // !_LP64
  1226 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  1227 #define PTR_FORMAT    "0x%08"  PRIxPTR
  1228 #endif  // _LP64
  1230 #define SSIZE_FORMAT          "%" PRIdPTR
  1231 #define SIZE_FORMAT           "%" PRIuPTR
  1232 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
  1233 #define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
  1235 #define INTX_FORMAT           "%" PRIdPTR
  1236 #define UINTX_FORMAT          "%" PRIuPTR
  1237 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
  1238 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
  1241 // Enable zap-a-lot if in debug version.
  1243 # ifdef ASSERT
  1244 # ifdef COMPILER2
  1245 #   define ENABLE_ZAP_DEAD_LOCALS
  1246 #endif /* COMPILER2 */
  1247 # endif /* ASSERT */
  1249 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
  1251 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial