src/os/linux/vm/os_linux.cpp

Fri, 06 Jul 2018 18:50:13 +0000

author
poonam
date
Fri, 06 Jul 2018 18:50:13 +0000
changeset 9413
5aa3d728164a
parent 9013
18366fa39fe0
child 9417
65409bcab2ad
permissions
-rw-r--r--

8146115: Improve docker container detection and resource configuration usage
Reviewed-by: bobv, dbuck

     1 /*
     2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "osContainer_linux.hpp"
    41 #include "prims/jniFastGetField.hpp"
    42 #include "prims/jvm.h"
    43 #include "prims/jvm_misc.hpp"
    44 #include "runtime/arguments.hpp"
    45 #include "runtime/extendedPC.hpp"
    46 #include "runtime/globals.hpp"
    47 #include "runtime/interfaceSupport.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/mutexLocker.hpp"
    52 #include "runtime/objectMonitor.hpp"
    53 #include "runtime/orderAccess.inline.hpp"
    54 #include "runtime/osThread.hpp"
    55 #include "runtime/perfMemory.hpp"
    56 #include "runtime/sharedRuntime.hpp"
    57 #include "runtime/statSampler.hpp"
    58 #include "runtime/stubRoutines.hpp"
    59 #include "runtime/thread.inline.hpp"
    60 #include "runtime/threadCritical.hpp"
    61 #include "runtime/timer.hpp"
    62 #include "services/attachListener.hpp"
    63 #include "services/memTracker.hpp"
    64 #include "services/runtimeService.hpp"
    65 #include "utilities/decoder.hpp"
    66 #include "utilities/defaultStream.hpp"
    67 #include "utilities/events.hpp"
    68 #include "utilities/elfFile.hpp"
    69 #include "utilities/growableArray.hpp"
    70 #include "utilities/vmError.hpp"
    72 // put OS-includes here
    73 # include <sys/types.h>
    74 # include <sys/mman.h>
    75 # include <sys/stat.h>
    76 # include <sys/select.h>
    77 # include <pthread.h>
    78 # include <signal.h>
    79 # include <errno.h>
    80 # include <dlfcn.h>
    81 # include <stdio.h>
    82 # include <unistd.h>
    83 # include <sys/resource.h>
    84 # include <pthread.h>
    85 # include <sys/stat.h>
    86 # include <sys/time.h>
    87 # include <sys/times.h>
    88 # include <sys/utsname.h>
    89 # include <sys/socket.h>
    90 # include <sys/wait.h>
    91 # include <pwd.h>
    92 # include <poll.h>
    93 # include <semaphore.h>
    94 # include <fcntl.h>
    95 # include <string.h>
    96 # include <syscall.h>
    97 # include <sys/sysinfo.h>
    98 # include <gnu/libc-version.h>
    99 # include <sys/ipc.h>
   100 # include <sys/shm.h>
   101 # include <link.h>
   102 # include <stdint.h>
   103 # include <inttypes.h>
   104 # include <sys/ioctl.h>
   106 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   108 #ifndef _GNU_SOURCE
   109   #define _GNU_SOURCE
   110   #include <sched.h>
   111   #undef _GNU_SOURCE
   112 #else
   113   #include <sched.h>
   114 #endif
   116 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   117 // getrusage() is prepared to handle the associated failure.
   118 #ifndef RUSAGE_THREAD
   119 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   120 #endif
   122 #define MAX_PATH    (2 * K)
   124 #define MAX_SECS 100000000
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #define LARGEPAGES_BIT (1 << 6)
   130 ////////////////////////////////////////////////////////////////////////////////
   131 // global variables
   132 julong os::Linux::_physical_memory = 0;
   134 address   os::Linux::_initial_thread_stack_bottom = NULL;
   135 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   137 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   138 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   139 Mutex* os::Linux::_createThread_lock = NULL;
   140 pthread_t os::Linux::_main_thread;
   141 int os::Linux::_page_size = -1;
   142 const int os::Linux::_vm_default_page_size = (8 * K);
   143 bool os::Linux::_is_floating_stack = false;
   144 bool os::Linux::_is_NPTL = false;
   145 bool os::Linux::_supports_fast_thread_cpu_time = false;
   146 const char * os::Linux::_glibc_version = NULL;
   147 const char * os::Linux::_libpthread_version = NULL;
   148 pthread_condattr_t os::Linux::_condattr[1];
   150 static jlong initial_time_count=0;
   152 static int clock_tics_per_sec = 100;
   154 // For diagnostics to print a message once. see run_periodic_checks
   155 static sigset_t check_signal_done;
   156 static bool check_signals = true;
   158 static pid_t _initial_pid = 0;
   160 /* Signal number used to suspend/resume a thread */
   162 /* do not use any signal number less than SIGSEGV, see 4355769 */
   163 static int SR_signum = SIGUSR2;
   164 sigset_t SR_sigset;
   166 /* Used to protect dlsym() calls */
   167 static pthread_mutex_t dl_mutex;
   169 // Declarations
   170 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   172 // utility functions
   174 static int SR_initialize();
   176 julong os::available_memory() {
   177   return Linux::available_memory();
   178 }
   180 julong os::Linux::available_memory() {
   181   // values in struct sysinfo are "unsigned long"
   182   struct sysinfo si;
   183   julong avail_mem;
   185   if (OSContainer::is_containerized()) {
   186     jlong mem_limit, mem_usage;
   187     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
   188       if (PrintContainerInfo) {
   189         tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   190                        mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   191       }
   192     }
   194     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
   195       if (PrintContainerInfo) {
   196         tty->print_cr("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
   197       }
   198     }
   200     if (mem_limit > 0 && mem_usage > 0 ) {
   201       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
   202       if (PrintContainerInfo) {
   203         tty->print_cr("available container memory: " JULONG_FORMAT, avail_mem);
   204       }
   205       return avail_mem;
   206     }
   207   }
   209   sysinfo(&si);
   210   avail_mem = (julong)si.freeram * si.mem_unit;
   211   if (Verbose) {
   212     tty->print_cr("available memory: " JULONG_FORMAT, avail_mem);
   213   }
   214   return avail_mem;
   215 }
   217 julong os::physical_memory() {
   218   jlong phys_mem = 0;
   219   if (OSContainer::is_containerized()) {
   220     jlong mem_limit;
   221     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
   222       if (PrintContainerInfo) {
   223         tty->print_cr("total container memory: " JLONG_FORMAT, mem_limit);
   224       }
   225       return mem_limit;
   226     }
   228     if (PrintContainerInfo) {
   229       tty->print_cr("container memory limit %s: " JLONG_FORMAT ", using host value",
   230                      mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
   231     }
   232   }
   234   phys_mem = Linux::physical_memory();
   235   if (Verbose) {
   236     tty->print_cr("total system memory: " JLONG_FORMAT, phys_mem);
   237   }
   238   return phys_mem;
   239 }
   241 ////////////////////////////////////////////////////////////////////////////////
   242 // environment support
   244 bool os::getenv(const char* name, char* buf, int len) {
   245   const char* val = ::getenv(name);
   246   if (val != NULL && strlen(val) < (size_t)len) {
   247     strcpy(buf, val);
   248     return true;
   249   }
   250   if (len > 0) buf[0] = 0;  // return a null string
   251   return false;
   252 }
   255 // Return true if user is running as root.
   257 bool os::have_special_privileges() {
   258   static bool init = false;
   259   static bool privileges = false;
   260   if (!init) {
   261     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   262     init = true;
   263   }
   264   return privileges;
   265 }
   268 #ifndef SYS_gettid
   269 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   270   #ifdef __ia64__
   271     #define SYS_gettid 1105
   272   #else
   273     #ifdef __i386__
   274       #define SYS_gettid 224
   275     #else
   276       #ifdef __amd64__
   277         #define SYS_gettid 186
   278       #else
   279         #ifdef __sparc__
   280           #define SYS_gettid 143
   281         #else
   282           #error define gettid for the arch
   283         #endif
   284       #endif
   285     #endif
   286   #endif
   287 #endif
   289 // Cpu architecture string
   290 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   292 // pid_t gettid()
   293 //
   294 // Returns the kernel thread id of the currently running thread. Kernel
   295 // thread id is used to access /proc.
   296 //
   297 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   298 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   299 //
   300 pid_t os::Linux::gettid() {
   301   int rslt = syscall(SYS_gettid);
   302   if (rslt == -1) {
   303      // old kernel, no NPTL support
   304      return getpid();
   305   } else {
   306      return (pid_t)rslt;
   307   }
   308 }
   310 // Most versions of linux have a bug where the number of processors are
   311 // determined by looking at the /proc file system.  In a chroot environment,
   312 // the system call returns 1.  This causes the VM to act as if it is
   313 // a single processor and elide locking (see is_MP() call).
   314 static bool unsafe_chroot_detected = false;
   315 static const char *unstable_chroot_error = "/proc file system not found.\n"
   316                      "Java may be unstable running multithreaded in a chroot "
   317                      "environment on Linux when /proc filesystem is not mounted.";
   319 void os::Linux::initialize_system_info() {
   320   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   321   if (processor_count() == 1) {
   322     pid_t pid = os::Linux::gettid();
   323     char fname[32];
   324     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   325     FILE *fp = fopen(fname, "r");
   326     if (fp == NULL) {
   327       unsafe_chroot_detected = true;
   328     } else {
   329       fclose(fp);
   330     }
   331   }
   332   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   333   assert(processor_count() > 0, "linux error");
   334 }
   336 void os::init_system_properties_values() {
   337   // The next steps are taken in the product version:
   338   //
   339   // Obtain the JAVA_HOME value from the location of libjvm.so.
   340   // This library should be located at:
   341   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   342   //
   343   // If "/jre/lib/" appears at the right place in the path, then we
   344   // assume libjvm.so is installed in a JDK and we use this path.
   345   //
   346   // Otherwise exit with message: "Could not create the Java virtual machine."
   347   //
   348   // The following extra steps are taken in the debugging version:
   349   //
   350   // If "/jre/lib/" does NOT appear at the right place in the path
   351   // instead of exit check for $JAVA_HOME environment variable.
   352   //
   353   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   354   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   355   // it looks like libjvm.so is installed there
   356   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   357   //
   358   // Otherwise exit.
   359   //
   360   // Important note: if the location of libjvm.so changes this
   361   // code needs to be changed accordingly.
   363 // See ld(1):
   364 //      The linker uses the following search paths to locate required
   365 //      shared libraries:
   366 //        1: ...
   367 //        ...
   368 //        7: The default directories, normally /lib and /usr/lib.
   369 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   370 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   371 #else
   372 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   373 #endif
   375 // Base path of extensions installed on the system.
   376 #define SYS_EXT_DIR     "/usr/java/packages"
   377 #define EXTENSIONS_DIR  "/lib/ext"
   378 #define ENDORSED_DIR    "/lib/endorsed"
   380   // Buffer that fits several sprintfs.
   381   // Note that the space for the colon and the trailing null are provided
   382   // by the nulls included by the sizeof operator.
   383   const size_t bufsize =
   384     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   385          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   386          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   387   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   389   // sysclasspath, java_home, dll_dir
   390   {
   391     char *pslash;
   392     os::jvm_path(buf, bufsize);
   394     // Found the full path to libjvm.so.
   395     // Now cut the path to <java_home>/jre if we can.
   396     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   397     pslash = strrchr(buf, '/');
   398     if (pslash != NULL) {
   399       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   400     }
   401     Arguments::set_dll_dir(buf);
   403     if (pslash != NULL) {
   404       pslash = strrchr(buf, '/');
   405       if (pslash != NULL) {
   406         *pslash = '\0';          // Get rid of /<arch>.
   407         pslash = strrchr(buf, '/');
   408         if (pslash != NULL) {
   409           *pslash = '\0';        // Get rid of /lib.
   410         }
   411       }
   412     }
   413     Arguments::set_java_home(buf);
   414     set_boot_path('/', ':');
   415   }
   417   // Where to look for native libraries.
   418   //
   419   // Note: Due to a legacy implementation, most of the library path
   420   // is set in the launcher. This was to accomodate linking restrictions
   421   // on legacy Linux implementations (which are no longer supported).
   422   // Eventually, all the library path setting will be done here.
   423   //
   424   // However, to prevent the proliferation of improperly built native
   425   // libraries, the new path component /usr/java/packages is added here.
   426   // Eventually, all the library path setting will be done here.
   427   {
   428     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   429     // should always exist (until the legacy problem cited above is
   430     // addressed).
   431     const char *v = ::getenv("LD_LIBRARY_PATH");
   432     const char *v_colon = ":";
   433     if (v == NULL) { v = ""; v_colon = ""; }
   434     // That's +1 for the colon and +1 for the trailing '\0'.
   435     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   436                                                      strlen(v) + 1 +
   437                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   438                                                      mtInternal);
   439     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   440     Arguments::set_library_path(ld_library_path);
   441     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   442   }
   444   // Extensions directories.
   445   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   446   Arguments::set_ext_dirs(buf);
   448   // Endorsed standards default directory.
   449   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   450   Arguments::set_endorsed_dirs(buf);
   452   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   454 #undef DEFAULT_LIBPATH
   455 #undef SYS_EXT_DIR
   456 #undef EXTENSIONS_DIR
   457 #undef ENDORSED_DIR
   458 }
   460 ////////////////////////////////////////////////////////////////////////////////
   461 // breakpoint support
   463 void os::breakpoint() {
   464   BREAKPOINT;
   465 }
   467 extern "C" void breakpoint() {
   468   // use debugger to set breakpoint here
   469 }
   471 ////////////////////////////////////////////////////////////////////////////////
   472 // signal support
   474 debug_only(static bool signal_sets_initialized = false);
   475 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   477 bool os::Linux::is_sig_ignored(int sig) {
   478       struct sigaction oact;
   479       sigaction(sig, (struct sigaction*)NULL, &oact);
   480       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   481                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   482       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   483            return true;
   484       else
   485            return false;
   486 }
   488 void os::Linux::signal_sets_init() {
   489   // Should also have an assertion stating we are still single-threaded.
   490   assert(!signal_sets_initialized, "Already initialized");
   491   // Fill in signals that are necessarily unblocked for all threads in
   492   // the VM. Currently, we unblock the following signals:
   493   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   494   //                         by -Xrs (=ReduceSignalUsage));
   495   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   496   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   497   // the dispositions or masks wrt these signals.
   498   // Programs embedding the VM that want to use the above signals for their
   499   // own purposes must, at this time, use the "-Xrs" option to prevent
   500   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   501   // (See bug 4345157, and other related bugs).
   502   // In reality, though, unblocking these signals is really a nop, since
   503   // these signals are not blocked by default.
   504   sigemptyset(&unblocked_sigs);
   505   sigemptyset(&allowdebug_blocked_sigs);
   506   sigaddset(&unblocked_sigs, SIGILL);
   507   sigaddset(&unblocked_sigs, SIGSEGV);
   508   sigaddset(&unblocked_sigs, SIGBUS);
   509   sigaddset(&unblocked_sigs, SIGFPE);
   510 #if defined(PPC64)
   511   sigaddset(&unblocked_sigs, SIGTRAP);
   512 #endif
   513   sigaddset(&unblocked_sigs, SR_signum);
   515   if (!ReduceSignalUsage) {
   516    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   517       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   518       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   519    }
   520    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   521       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   522       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   523    }
   524    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   525       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   526       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   527    }
   528   }
   529   // Fill in signals that are blocked by all but the VM thread.
   530   sigemptyset(&vm_sigs);
   531   if (!ReduceSignalUsage)
   532     sigaddset(&vm_sigs, BREAK_SIGNAL);
   533   debug_only(signal_sets_initialized = true);
   535 }
   537 // These are signals that are unblocked while a thread is running Java.
   538 // (For some reason, they get blocked by default.)
   539 sigset_t* os::Linux::unblocked_signals() {
   540   assert(signal_sets_initialized, "Not initialized");
   541   return &unblocked_sigs;
   542 }
   544 // These are the signals that are blocked while a (non-VM) thread is
   545 // running Java. Only the VM thread handles these signals.
   546 sigset_t* os::Linux::vm_signals() {
   547   assert(signal_sets_initialized, "Not initialized");
   548   return &vm_sigs;
   549 }
   551 // These are signals that are blocked during cond_wait to allow debugger in
   552 sigset_t* os::Linux::allowdebug_blocked_signals() {
   553   assert(signal_sets_initialized, "Not initialized");
   554   return &allowdebug_blocked_sigs;
   555 }
   557 void os::Linux::hotspot_sigmask(Thread* thread) {
   559   //Save caller's signal mask before setting VM signal mask
   560   sigset_t caller_sigmask;
   561   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   563   OSThread* osthread = thread->osthread();
   564   osthread->set_caller_sigmask(caller_sigmask);
   566   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   568   if (!ReduceSignalUsage) {
   569     if (thread->is_VM_thread()) {
   570       // Only the VM thread handles BREAK_SIGNAL ...
   571       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   572     } else {
   573       // ... all other threads block BREAK_SIGNAL
   574       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   575     }
   576   }
   577 }
   579 //////////////////////////////////////////////////////////////////////////////
   580 // detecting pthread library
   582 void os::Linux::libpthread_init() {
   583   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   584   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   585   // generic name for earlier versions.
   586   // Define macros here so we can build HotSpot on old systems.
   587 # ifndef _CS_GNU_LIBC_VERSION
   588 # define _CS_GNU_LIBC_VERSION 2
   589 # endif
   590 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   591 # define _CS_GNU_LIBPTHREAD_VERSION 3
   592 # endif
   594   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   595   if (n > 0) {
   596      char *str = (char *)malloc(n, mtInternal);
   597      confstr(_CS_GNU_LIBC_VERSION, str, n);
   598      os::Linux::set_glibc_version(str);
   599   } else {
   600      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   601      static char _gnu_libc_version[32];
   602      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   603               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   604      os::Linux::set_glibc_version(_gnu_libc_version);
   605   }
   607   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   608   if (n > 0) {
   609      char *str = (char *)malloc(n, mtInternal);
   610      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   611      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   612      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   613      // is the case. LinuxThreads has a hard limit on max number of threads.
   614      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   615      // On the other hand, NPTL does not have such a limit, sysconf()
   616      // will return -1 and errno is not changed. Check if it is really NPTL.
   617      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   618          strstr(str, "NPTL") &&
   619          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   620        free(str);
   621        os::Linux::set_libpthread_version("linuxthreads");
   622      } else {
   623        os::Linux::set_libpthread_version(str);
   624      }
   625   } else {
   626     // glibc before 2.3.2 only has LinuxThreads.
   627     os::Linux::set_libpthread_version("linuxthreads");
   628   }
   630   if (strstr(libpthread_version(), "NPTL")) {
   631      os::Linux::set_is_NPTL();
   632   } else {
   633      os::Linux::set_is_LinuxThreads();
   634   }
   636   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   637   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   638   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   639      os::Linux::set_is_floating_stack();
   640   }
   641 }
   643 /////////////////////////////////////////////////////////////////////////////
   644 // thread stack
   646 // Force Linux kernel to expand current thread stack. If "bottom" is close
   647 // to the stack guard, caller should block all signals.
   648 //
   649 // MAP_GROWSDOWN:
   650 //   A special mmap() flag that is used to implement thread stacks. It tells
   651 //   kernel that the memory region should extend downwards when needed. This
   652 //   allows early versions of LinuxThreads to only mmap the first few pages
   653 //   when creating a new thread. Linux kernel will automatically expand thread
   654 //   stack as needed (on page faults).
   655 //
   656 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   657 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   658 //   region, it's hard to tell if the fault is due to a legitimate stack
   659 //   access or because of reading/writing non-exist memory (e.g. buffer
   660 //   overrun). As a rule, if the fault happens below current stack pointer,
   661 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   662 //   application (see Linux kernel fault.c).
   663 //
   664 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   665 //   stack overflow detection.
   666 //
   667 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   668 //   not use this flag. However, the stack of initial thread is not created
   669 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   670 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   671 //   and then attach the thread to JVM.
   672 //
   673 // To get around the problem and allow stack banging on Linux, we need to
   674 // manually expand thread stack after receiving the SIGSEGV.
   675 //
   676 // There are two ways to expand thread stack to address "bottom", we used
   677 // both of them in JVM before 1.5:
   678 //   1. adjust stack pointer first so that it is below "bottom", and then
   679 //      touch "bottom"
   680 //   2. mmap() the page in question
   681 //
   682 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   683 // if current sp is already near the lower end of page 101, and we need to
   684 // call mmap() to map page 100, it is possible that part of the mmap() frame
   685 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   686 // That will destroy the mmap() frame and cause VM to crash.
   687 //
   688 // The following code works by adjusting sp first, then accessing the "bottom"
   689 // page to force a page fault. Linux kernel will then automatically expand the
   690 // stack mapping.
   691 //
   692 // _expand_stack_to() assumes its frame size is less than page size, which
   693 // should always be true if the function is not inlined.
   695 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   696 #define NOINLINE
   697 #else
   698 #define NOINLINE __attribute__ ((noinline))
   699 #endif
   701 static void _expand_stack_to(address bottom) NOINLINE;
   703 static void _expand_stack_to(address bottom) {
   704   address sp;
   705   size_t size;
   706   volatile char *p;
   708   // Adjust bottom to point to the largest address within the same page, it
   709   // gives us a one-page buffer if alloca() allocates slightly more memory.
   710   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   711   bottom += os::Linux::page_size() - 1;
   713   // sp might be slightly above current stack pointer; if that's the case, we
   714   // will alloca() a little more space than necessary, which is OK. Don't use
   715   // os::current_stack_pointer(), as its result can be slightly below current
   716   // stack pointer, causing us to not alloca enough to reach "bottom".
   717   sp = (address)&sp;
   719   if (sp > bottom) {
   720     size = sp - bottom;
   721     p = (volatile char *)alloca(size);
   722     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   723     p[0] = '\0';
   724   }
   725 }
   727 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   728   assert(t!=NULL, "just checking");
   729   assert(t->osthread()->expanding_stack(), "expand should be set");
   730   assert(t->stack_base() != NULL, "stack_base was not initialized");
   732   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   733     sigset_t mask_all, old_sigset;
   734     sigfillset(&mask_all);
   735     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   736     _expand_stack_to(addr);
   737     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   738     return true;
   739   }
   740   return false;
   741 }
   743 //////////////////////////////////////////////////////////////////////////////
   744 // create new thread
   746 static address highest_vm_reserved_address();
   748 // check if it's safe to start a new thread
   749 static bool _thread_safety_check(Thread* thread) {
   750   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   751     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   752     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   753     //   allocated (MAP_FIXED) from high address space. Every thread stack
   754     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   755     //   it to other values if they rebuild LinuxThreads).
   756     //
   757     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   758     // the memory region has already been mmap'ed. That means if we have too
   759     // many threads and/or very large heap, eventually thread stack will
   760     // collide with heap.
   761     //
   762     // Here we try to prevent heap/stack collision by comparing current
   763     // stack bottom with the highest address that has been mmap'ed by JVM
   764     // plus a safety margin for memory maps created by native code.
   765     //
   766     // This feature can be disabled by setting ThreadSafetyMargin to 0
   767     //
   768     if (ThreadSafetyMargin > 0) {
   769       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   771       // not safe if our stack extends below the safety margin
   772       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   773     } else {
   774       return true;
   775     }
   776   } else {
   777     // Floating stack LinuxThreads or NPTL:
   778     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   779     //   there's not enough space left, pthread_create() will fail. If we come
   780     //   here, that means enough space has been reserved for stack.
   781     return true;
   782   }
   783 }
   785 // Thread start routine for all newly created threads
   786 static void *java_start(Thread *thread) {
   787   // Try to randomize the cache line index of hot stack frames.
   788   // This helps when threads of the same stack traces evict each other's
   789   // cache lines. The threads can be either from the same JVM instance, or
   790   // from different JVM instances. The benefit is especially true for
   791   // processors with hyperthreading technology.
   792   static int counter = 0;
   793   int pid = os::current_process_id();
   794   alloca(((pid ^ counter++) & 7) * 128);
   796   ThreadLocalStorage::set_thread(thread);
   798   OSThread* osthread = thread->osthread();
   799   Monitor* sync = osthread->startThread_lock();
   801   // non floating stack LinuxThreads needs extra check, see above
   802   if (!_thread_safety_check(thread)) {
   803     // notify parent thread
   804     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   805     osthread->set_state(ZOMBIE);
   806     sync->notify_all();
   807     return NULL;
   808   }
   810   // thread_id is kernel thread id (similar to Solaris LWP id)
   811   osthread->set_thread_id(os::Linux::gettid());
   813   if (UseNUMA) {
   814     int lgrp_id = os::numa_get_group_id();
   815     if (lgrp_id != -1) {
   816       thread->set_lgrp_id(lgrp_id);
   817     }
   818   }
   819   // initialize signal mask for this thread
   820   os::Linux::hotspot_sigmask(thread);
   822   // initialize floating point control register
   823   os::Linux::init_thread_fpu_state();
   825   // handshaking with parent thread
   826   {
   827     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   829     // notify parent thread
   830     osthread->set_state(INITIALIZED);
   831     sync->notify_all();
   833     // wait until os::start_thread()
   834     while (osthread->get_state() == INITIALIZED) {
   835       sync->wait(Mutex::_no_safepoint_check_flag);
   836     }
   837   }
   839   // call one more level start routine
   840   thread->run();
   842   return 0;
   843 }
   845 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   846   assert(thread->osthread() == NULL, "caller responsible");
   848   // Allocate the OSThread object
   849   OSThread* osthread = new OSThread(NULL, NULL);
   850   if (osthread == NULL) {
   851     return false;
   852   }
   854   // set the correct thread state
   855   osthread->set_thread_type(thr_type);
   857   // Initial state is ALLOCATED but not INITIALIZED
   858   osthread->set_state(ALLOCATED);
   860   thread->set_osthread(osthread);
   862   // init thread attributes
   863   pthread_attr_t attr;
   864   pthread_attr_init(&attr);
   865   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   867   // stack size
   868   if (os::Linux::supports_variable_stack_size()) {
   869     // calculate stack size if it's not specified by caller
   870     if (stack_size == 0) {
   871       stack_size = os::Linux::default_stack_size(thr_type);
   873       switch (thr_type) {
   874       case os::java_thread:
   875         // Java threads use ThreadStackSize which default value can be
   876         // changed with the flag -Xss
   877         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   878         stack_size = JavaThread::stack_size_at_create();
   879         break;
   880       case os::compiler_thread:
   881         if (CompilerThreadStackSize > 0) {
   882           stack_size = (size_t)(CompilerThreadStackSize * K);
   883           break;
   884         } // else fall through:
   885           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   886       case os::vm_thread:
   887       case os::pgc_thread:
   888       case os::cgc_thread:
   889       case os::watcher_thread:
   890         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   891         break;
   892       }
   893     }
   895     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   896     pthread_attr_setstacksize(&attr, stack_size);
   897   } else {
   898     // let pthread_create() pick the default value.
   899   }
   901   // glibc guard page
   902   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   904   ThreadState state;
   906   {
   907     // Serialize thread creation if we are running with fixed stack LinuxThreads
   908     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   909     if (lock) {
   910       os::Linux::createThread_lock()->lock_without_safepoint_check();
   911     }
   913     pthread_t tid;
   914     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   916     pthread_attr_destroy(&attr);
   918     if (ret != 0) {
   919       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   920         perror("pthread_create()");
   921       }
   922       // Need to clean up stuff we've allocated so far
   923       thread->set_osthread(NULL);
   924       delete osthread;
   925       if (lock) os::Linux::createThread_lock()->unlock();
   926       return false;
   927     }
   929     // Store pthread info into the OSThread
   930     osthread->set_pthread_id(tid);
   932     // Wait until child thread is either initialized or aborted
   933     {
   934       Monitor* sync_with_child = osthread->startThread_lock();
   935       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   936       while ((state = osthread->get_state()) == ALLOCATED) {
   937         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   938       }
   939     }
   941     if (lock) {
   942       os::Linux::createThread_lock()->unlock();
   943     }
   944   }
   946   // Aborted due to thread limit being reached
   947   if (state == ZOMBIE) {
   948       thread->set_osthread(NULL);
   949       delete osthread;
   950       return false;
   951   }
   953   // The thread is returned suspended (in state INITIALIZED),
   954   // and is started higher up in the call chain
   955   assert(state == INITIALIZED, "race condition");
   956   return true;
   957 }
   959 /////////////////////////////////////////////////////////////////////////////
   960 // attach existing thread
   962 // bootstrap the main thread
   963 bool os::create_main_thread(JavaThread* thread) {
   964   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   965   return create_attached_thread(thread);
   966 }
   968 bool os::create_attached_thread(JavaThread* thread) {
   969 #ifdef ASSERT
   970     thread->verify_not_published();
   971 #endif
   973   // Allocate the OSThread object
   974   OSThread* osthread = new OSThread(NULL, NULL);
   976   if (osthread == NULL) {
   977     return false;
   978   }
   980   // Store pthread info into the OSThread
   981   osthread->set_thread_id(os::Linux::gettid());
   982   osthread->set_pthread_id(::pthread_self());
   984   // initialize floating point control register
   985   os::Linux::init_thread_fpu_state();
   987   // Initial thread state is RUNNABLE
   988   osthread->set_state(RUNNABLE);
   990   thread->set_osthread(osthread);
   992   if (UseNUMA) {
   993     int lgrp_id = os::numa_get_group_id();
   994     if (lgrp_id != -1) {
   995       thread->set_lgrp_id(lgrp_id);
   996     }
   997   }
   999   if (os::Linux::is_initial_thread()) {
  1000     // If current thread is initial thread, its stack is mapped on demand,
  1001     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1002     // the entire stack region to avoid SEGV in stack banging.
  1003     // It is also useful to get around the heap-stack-gap problem on SuSE
  1004     // kernel (see 4821821 for details). We first expand stack to the top
  1005     // of yellow zone, then enable stack yellow zone (order is significant,
  1006     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1007     // is no gap between the last two virtual memory regions.
  1009     JavaThread *jt = (JavaThread *)thread;
  1010     address addr = jt->stack_yellow_zone_base();
  1011     assert(addr != NULL, "initialization problem?");
  1012     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1014     osthread->set_expanding_stack();
  1015     os::Linux::manually_expand_stack(jt, addr);
  1016     osthread->clear_expanding_stack();
  1019   // initialize signal mask for this thread
  1020   // and save the caller's signal mask
  1021   os::Linux::hotspot_sigmask(thread);
  1023   return true;
  1026 void os::pd_start_thread(Thread* thread) {
  1027   OSThread * osthread = thread->osthread();
  1028   assert(osthread->get_state() != INITIALIZED, "just checking");
  1029   Monitor* sync_with_child = osthread->startThread_lock();
  1030   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1031   sync_with_child->notify();
  1034 // Free Linux resources related to the OSThread
  1035 void os::free_thread(OSThread* osthread) {
  1036   assert(osthread != NULL, "osthread not set");
  1038   if (Thread::current()->osthread() == osthread) {
  1039     // Restore caller's signal mask
  1040     sigset_t sigmask = osthread->caller_sigmask();
  1041     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1044   delete osthread;
  1047 //////////////////////////////////////////////////////////////////////////////
  1048 // thread local storage
  1050 // Restore the thread pointer if the destructor is called. This is in case
  1051 // someone from JNI code sets up a destructor with pthread_key_create to run
  1052 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1053 // will hang or crash. When detachCurrentThread is called the key will be set
  1054 // to null and we will not be called again. If detachCurrentThread is never
  1055 // called we could loop forever depending on the pthread implementation.
  1056 static void restore_thread_pointer(void* p) {
  1057   Thread* thread = (Thread*) p;
  1058   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1061 int os::allocate_thread_local_storage() {
  1062   pthread_key_t key;
  1063   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1064   assert(rslt == 0, "cannot allocate thread local storage");
  1065   return (int)key;
  1068 // Note: This is currently not used by VM, as we don't destroy TLS key
  1069 // on VM exit.
  1070 void os::free_thread_local_storage(int index) {
  1071   int rslt = pthread_key_delete((pthread_key_t)index);
  1072   assert(rslt == 0, "invalid index");
  1075 void os::thread_local_storage_at_put(int index, void* value) {
  1076   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1077   assert(rslt == 0, "pthread_setspecific failed");
  1080 extern "C" Thread* get_thread() {
  1081   return ThreadLocalStorage::thread();
  1084 //////////////////////////////////////////////////////////////////////////////
  1085 // initial thread
  1087 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1088 bool os::Linux::is_initial_thread(void) {
  1089   char dummy;
  1090   // If called before init complete, thread stack bottom will be null.
  1091   // Can be called if fatal error occurs before initialization.
  1092   if (initial_thread_stack_bottom() == NULL) return false;
  1093   assert(initial_thread_stack_bottom() != NULL &&
  1094          initial_thread_stack_size()   != 0,
  1095          "os::init did not locate initial thread's stack region");
  1096   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1097       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1098        return true;
  1099   else return false;
  1102 // Find the virtual memory area that contains addr
  1103 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1104   FILE *fp = fopen("/proc/self/maps", "r");
  1105   if (fp) {
  1106     address low, high;
  1107     while (!feof(fp)) {
  1108       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1109         if (low <= addr && addr < high) {
  1110            if (vma_low)  *vma_low  = low;
  1111            if (vma_high) *vma_high = high;
  1112            fclose (fp);
  1113            return true;
  1116       for (;;) {
  1117         int ch = fgetc(fp);
  1118         if (ch == EOF || ch == (int)'\n') break;
  1121     fclose(fp);
  1123   return false;
  1126 // Locate initial thread stack. This special handling of initial thread stack
  1127 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1128 // bogus value for the primordial process thread. While the launcher has created
  1129 // the VM in a new thread since JDK 6, we still have to allow for the use of the
  1130 // JNI invocation API from a primordial thread.
  1131 void os::Linux::capture_initial_stack(size_t max_size) {
  1133   // max_size is either 0 (which means accept OS default for thread stacks) or
  1134   // a user-specified value known to be at least the minimum needed. If we
  1135   // are actually on the primordial thread we can make it appear that we have a
  1136   // smaller max_size stack by inserting the guard pages at that location. But we
  1137   // cannot do anything to emulate a larger stack than what has been provided by
  1138   // the OS or threading library. In fact if we try to use a stack greater than
  1139   // what is set by rlimit then we will crash the hosting process.
  1141   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
  1142   // If this is "unlimited" then it will be a huge value.
  1143   struct rlimit rlim;
  1144   getrlimit(RLIMIT_STACK, &rlim);
  1145   size_t stack_size = rlim.rlim_cur;
  1147   // 6308388: a bug in ld.so will relocate its own .data section to the
  1148   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1149   //   so we won't install guard page on ld.so's data section.
  1150   stack_size -= 2 * page_size();
  1152   // Try to figure out where the stack base (top) is. This is harder.
  1153   //
  1154   // When an application is started, glibc saves the initial stack pointer in
  1155   // a global variable "__libc_stack_end", which is then used by system
  1156   // libraries. __libc_stack_end should be pretty close to stack top. The
  1157   // variable is available since the very early days. However, because it is
  1158   // a private interface, it could disappear in the future.
  1159   //
  1160   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1161   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1162   // stack top. Note that /proc may not exist if VM is running as a chroot
  1163   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1164   // /proc/<pid>/stat could change in the future (though unlikely).
  1165   //
  1166   // We try __libc_stack_end first. If that doesn't work, look for
  1167   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1168   // as a hint, which should work well in most cases.
  1170   uintptr_t stack_start;
  1172   // try __libc_stack_end first
  1173   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1174   if (p && *p) {
  1175     stack_start = *p;
  1176   } else {
  1177     // see if we can get the start_stack field from /proc/self/stat
  1178     FILE *fp;
  1179     int pid;
  1180     char state;
  1181     int ppid;
  1182     int pgrp;
  1183     int session;
  1184     int nr;
  1185     int tpgrp;
  1186     unsigned long flags;
  1187     unsigned long minflt;
  1188     unsigned long cminflt;
  1189     unsigned long majflt;
  1190     unsigned long cmajflt;
  1191     unsigned long utime;
  1192     unsigned long stime;
  1193     long cutime;
  1194     long cstime;
  1195     long prio;
  1196     long nice;
  1197     long junk;
  1198     long it_real;
  1199     uintptr_t start;
  1200     uintptr_t vsize;
  1201     intptr_t rss;
  1202     uintptr_t rsslim;
  1203     uintptr_t scodes;
  1204     uintptr_t ecode;
  1205     int i;
  1207     // Figure what the primordial thread stack base is. Code is inspired
  1208     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1209     // followed by command name surrounded by parentheses, state, etc.
  1210     char stat[2048];
  1211     int statlen;
  1213     fp = fopen("/proc/self/stat", "r");
  1214     if (fp) {
  1215       statlen = fread(stat, 1, 2047, fp);
  1216       stat[statlen] = '\0';
  1217       fclose(fp);
  1219       // Skip pid and the command string. Note that we could be dealing with
  1220       // weird command names, e.g. user could decide to rename java launcher
  1221       // to "java 1.4.2 :)", then the stat file would look like
  1222       //                1234 (java 1.4.2 :)) R ... ...
  1223       // We don't really need to know the command string, just find the last
  1224       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1225       char * s = strrchr(stat, ')');
  1227       i = 0;
  1228       if (s) {
  1229         // Skip blank chars
  1230         do s++; while (isspace(*s));
  1232 #define _UFM UINTX_FORMAT
  1233 #define _DFM INTX_FORMAT
  1235         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1236         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1237         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1238              &state,          /* 3  %c  */
  1239              &ppid,           /* 4  %d  */
  1240              &pgrp,           /* 5  %d  */
  1241              &session,        /* 6  %d  */
  1242              &nr,             /* 7  %d  */
  1243              &tpgrp,          /* 8  %d  */
  1244              &flags,          /* 9  %lu  */
  1245              &minflt,         /* 10 %lu  */
  1246              &cminflt,        /* 11 %lu  */
  1247              &majflt,         /* 12 %lu  */
  1248              &cmajflt,        /* 13 %lu  */
  1249              &utime,          /* 14 %lu  */
  1250              &stime,          /* 15 %lu  */
  1251              &cutime,         /* 16 %ld  */
  1252              &cstime,         /* 17 %ld  */
  1253              &prio,           /* 18 %ld  */
  1254              &nice,           /* 19 %ld  */
  1255              &junk,           /* 20 %ld  */
  1256              &it_real,        /* 21 %ld  */
  1257              &start,          /* 22 UINTX_FORMAT */
  1258              &vsize,          /* 23 UINTX_FORMAT */
  1259              &rss,            /* 24 INTX_FORMAT  */
  1260              &rsslim,         /* 25 UINTX_FORMAT */
  1261              &scodes,         /* 26 UINTX_FORMAT */
  1262              &ecode,          /* 27 UINTX_FORMAT */
  1263              &stack_start);   /* 28 UINTX_FORMAT */
  1266 #undef _UFM
  1267 #undef _DFM
  1269       if (i != 28 - 2) {
  1270          assert(false, "Bad conversion from /proc/self/stat");
  1271          // product mode - assume we are the initial thread, good luck in the
  1272          // embedded case.
  1273          warning("Can't detect initial thread stack location - bad conversion");
  1274          stack_start = (uintptr_t) &rlim;
  1276     } else {
  1277       // For some reason we can't open /proc/self/stat (for example, running on
  1278       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1279       // most cases, so don't abort:
  1280       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1281       stack_start = (uintptr_t) &rlim;
  1285   // Now we have a pointer (stack_start) very close to the stack top, the
  1286   // next thing to do is to figure out the exact location of stack top. We
  1287   // can find out the virtual memory area that contains stack_start by
  1288   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1289   // and its upper limit is the real stack top. (again, this would fail if
  1290   // running inside chroot, because /proc may not exist.)
  1292   uintptr_t stack_top;
  1293   address low, high;
  1294   if (find_vma((address)stack_start, &low, &high)) {
  1295     // success, "high" is the true stack top. (ignore "low", because initial
  1296     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1297     stack_top = (uintptr_t)high;
  1298   } else {
  1299     // failed, likely because /proc/self/maps does not exist
  1300     warning("Can't detect initial thread stack location - find_vma failed");
  1301     // best effort: stack_start is normally within a few pages below the real
  1302     // stack top, use it as stack top, and reduce stack size so we won't put
  1303     // guard page outside stack.
  1304     stack_top = stack_start;
  1305     stack_size -= 16 * page_size();
  1308   // stack_top could be partially down the page so align it
  1309   stack_top = align_size_up(stack_top, page_size());
  1311   // Allowed stack value is minimum of max_size and what we derived from rlimit
  1312   if (max_size > 0) {
  1313     _initial_thread_stack_size = MIN2(max_size, stack_size);
  1314   } else {
  1315     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
  1316     // clamp it at 8MB as we do on Solaris
  1317     _initial_thread_stack_size = MIN2(stack_size, 8*M);
  1320   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1321   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1322   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
  1325 ////////////////////////////////////////////////////////////////////////////////
  1326 // time support
  1328 // Time since start-up in seconds to a fine granularity.
  1329 // Used by VMSelfDestructTimer and the MemProfiler.
  1330 double os::elapsedTime() {
  1332   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1335 jlong os::elapsed_counter() {
  1336   return javaTimeNanos() - initial_time_count;
  1339 jlong os::elapsed_frequency() {
  1340   return NANOSECS_PER_SEC; // nanosecond resolution
  1343 bool os::supports_vtime() { return true; }
  1344 bool os::enable_vtime()   { return false; }
  1345 bool os::vtime_enabled()  { return false; }
  1347 double os::elapsedVTime() {
  1348   struct rusage usage;
  1349   int retval = getrusage(RUSAGE_THREAD, &usage);
  1350   if (retval == 0) {
  1351     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1352   } else {
  1353     // better than nothing, but not much
  1354     return elapsedTime();
  1358 jlong os::javaTimeMillis() {
  1359   timeval time;
  1360   int status = gettimeofday(&time, NULL);
  1361   assert(status != -1, "linux error");
  1362   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1365 #ifndef CLOCK_MONOTONIC
  1366 #define CLOCK_MONOTONIC (1)
  1367 #endif
  1369 void os::Linux::clock_init() {
  1370   // we do dlopen's in this particular order due to bug in linux
  1371   // dynamical loader (see 6348968) leading to crash on exit
  1372   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1373   if (handle == NULL) {
  1374     handle = dlopen("librt.so", RTLD_LAZY);
  1377   if (handle) {
  1378     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1379            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1380     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1381            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1382     if (clock_getres_func && clock_gettime_func) {
  1383       // See if monotonic clock is supported by the kernel. Note that some
  1384       // early implementations simply return kernel jiffies (updated every
  1385       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1386       // for nano time (though the monotonic property is still nice to have).
  1387       // It's fixed in newer kernels, however clock_getres() still returns
  1388       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1389       // resolution for now. Hopefully as people move to new kernels, this
  1390       // won't be a problem.
  1391       struct timespec res;
  1392       struct timespec tp;
  1393       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1394           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1395         // yes, monotonic clock is supported
  1396         _clock_gettime = clock_gettime_func;
  1397         return;
  1398       } else {
  1399         // close librt if there is no monotonic clock
  1400         dlclose(handle);
  1404   warning("No monotonic clock was available - timed services may " \
  1405           "be adversely affected if the time-of-day clock changes");
  1408 #ifndef SYS_clock_getres
  1410 #if defined(IA32) || defined(AMD64)
  1411 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1412 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1413 #else
  1414 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1415 #define sys_clock_getres(x,y)  -1
  1416 #endif
  1418 #else
  1419 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1420 #endif
  1422 void os::Linux::fast_thread_clock_init() {
  1423   if (!UseLinuxPosixThreadCPUClocks) {
  1424     return;
  1426   clockid_t clockid;
  1427   struct timespec tp;
  1428   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1429       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1431   // Switch to using fast clocks for thread cpu time if
  1432   // the sys_clock_getres() returns 0 error code.
  1433   // Note, that some kernels may support the current thread
  1434   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1435   // returned by the pthread_getcpuclockid().
  1436   // If the fast Posix clocks are supported then the sys_clock_getres()
  1437   // must return at least tp.tv_sec == 0 which means a resolution
  1438   // better than 1 sec. This is extra check for reliability.
  1440   if(pthread_getcpuclockid_func &&
  1441      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1442      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1444     _supports_fast_thread_cpu_time = true;
  1445     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1449 jlong os::javaTimeNanos() {
  1450   if (Linux::supports_monotonic_clock()) {
  1451     struct timespec tp;
  1452     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1453     assert(status == 0, "gettime error");
  1454     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1455     return result;
  1456   } else {
  1457     timeval time;
  1458     int status = gettimeofday(&time, NULL);
  1459     assert(status != -1, "linux error");
  1460     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1461     return 1000 * usecs;
  1465 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1466   if (Linux::supports_monotonic_clock()) {
  1467     info_ptr->max_value = ALL_64_BITS;
  1469     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1470     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1471     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1472   } else {
  1473     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1474     info_ptr->max_value = ALL_64_BITS;
  1476     // gettimeofday is a real time clock so it skips
  1477     info_ptr->may_skip_backward = true;
  1478     info_ptr->may_skip_forward = true;
  1481   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1484 // Return the real, user, and system times in seconds from an
  1485 // arbitrary fixed point in the past.
  1486 bool os::getTimesSecs(double* process_real_time,
  1487                       double* process_user_time,
  1488                       double* process_system_time) {
  1489   struct tms ticks;
  1490   clock_t real_ticks = times(&ticks);
  1492   if (real_ticks == (clock_t) (-1)) {
  1493     return false;
  1494   } else {
  1495     double ticks_per_second = (double) clock_tics_per_sec;
  1496     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1497     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1498     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1500     return true;
  1505 char * os::local_time_string(char *buf, size_t buflen) {
  1506   struct tm t;
  1507   time_t long_time;
  1508   time(&long_time);
  1509   localtime_r(&long_time, &t);
  1510   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1511                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1512                t.tm_hour, t.tm_min, t.tm_sec);
  1513   return buf;
  1516 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1517   return localtime_r(clock, res);
  1520 ////////////////////////////////////////////////////////////////////////////////
  1521 // runtime exit support
  1523 // Note: os::shutdown() might be called very early during initialization, or
  1524 // called from signal handler. Before adding something to os::shutdown(), make
  1525 // sure it is async-safe and can handle partially initialized VM.
  1526 void os::shutdown() {
  1528   // allow PerfMemory to attempt cleanup of any persistent resources
  1529   perfMemory_exit();
  1531   // needs to remove object in file system
  1532   AttachListener::abort();
  1534   // flush buffered output, finish log files
  1535   ostream_abort();
  1537   // Check for abort hook
  1538   abort_hook_t abort_hook = Arguments::abort_hook();
  1539   if (abort_hook != NULL) {
  1540     abort_hook();
  1545 // Note: os::abort() might be called very early during initialization, or
  1546 // called from signal handler. Before adding something to os::abort(), make
  1547 // sure it is async-safe and can handle partially initialized VM.
  1548 void os::abort(bool dump_core) {
  1549   os::shutdown();
  1550   if (dump_core) {
  1551 #ifndef PRODUCT
  1552     fdStream out(defaultStream::output_fd());
  1553     out.print_raw("Current thread is ");
  1554     char buf[16];
  1555     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1556     out.print_raw_cr(buf);
  1557     out.print_raw_cr("Dumping core ...");
  1558 #endif
  1559     ::abort(); // dump core
  1562   ::exit(1);
  1565 // Die immediately, no exit hook, no abort hook, no cleanup.
  1566 void os::die() {
  1567   // _exit() on LinuxThreads only kills current thread
  1568   ::abort();
  1572 // This method is a copy of JDK's sysGetLastErrorString
  1573 // from src/solaris/hpi/src/system_md.c
  1575 size_t os::lasterror(char *buf, size_t len) {
  1577   if (errno == 0)  return 0;
  1579   const char *s = ::strerror(errno);
  1580   size_t n = ::strlen(s);
  1581   if (n >= len) {
  1582     n = len - 1;
  1584   ::strncpy(buf, s, n);
  1585   buf[n] = '\0';
  1586   return n;
  1589 intx os::current_thread_id() { return (intx)pthread_self(); }
  1590 int os::current_process_id() {
  1592   // Under the old linux thread library, linux gives each thread
  1593   // its own process id. Because of this each thread will return
  1594   // a different pid if this method were to return the result
  1595   // of getpid(2). Linux provides no api that returns the pid
  1596   // of the launcher thread for the vm. This implementation
  1597   // returns a unique pid, the pid of the launcher thread
  1598   // that starts the vm 'process'.
  1600   // Under the NPTL, getpid() returns the same pid as the
  1601   // launcher thread rather than a unique pid per thread.
  1602   // Use gettid() if you want the old pre NPTL behaviour.
  1604   // if you are looking for the result of a call to getpid() that
  1605   // returns a unique pid for the calling thread, then look at the
  1606   // OSThread::thread_id() method in osThread_linux.hpp file
  1608   return (int)(_initial_pid ? _initial_pid : getpid());
  1611 // DLL functions
  1613 const char* os::dll_file_extension() { return ".so"; }
  1615 // This must be hard coded because it's the system's temporary
  1616 // directory not the java application's temp directory, ala java.io.tmpdir.
  1617 const char* os::get_temp_directory() { return "/tmp"; }
  1619 static bool file_exists(const char* filename) {
  1620   struct stat statbuf;
  1621   if (filename == NULL || strlen(filename) == 0) {
  1622     return false;
  1624   return os::stat(filename, &statbuf) == 0;
  1627 bool os::dll_build_name(char* buffer, size_t buflen,
  1628                         const char* pname, const char* fname) {
  1629   bool retval = false;
  1630   // Copied from libhpi
  1631   const size_t pnamelen = pname ? strlen(pname) : 0;
  1633   // Return error on buffer overflow.
  1634   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1635     return retval;
  1638   if (pnamelen == 0) {
  1639     snprintf(buffer, buflen, "lib%s.so", fname);
  1640     retval = true;
  1641   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1642     int n;
  1643     char** pelements = split_path(pname, &n);
  1644     if (pelements == NULL) {
  1645       return false;
  1647     for (int i = 0 ; i < n ; i++) {
  1648       // Really shouldn't be NULL, but check can't hurt
  1649       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1650         continue; // skip the empty path values
  1652       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1653       if (file_exists(buffer)) {
  1654         retval = true;
  1655         break;
  1658     // release the storage
  1659     for (int i = 0 ; i < n ; i++) {
  1660       if (pelements[i] != NULL) {
  1661         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1664     if (pelements != NULL) {
  1665       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1667   } else {
  1668     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1669     retval = true;
  1671   return retval;
  1674 // check if addr is inside libjvm.so
  1675 bool os::address_is_in_vm(address addr) {
  1676   static address libjvm_base_addr;
  1677   Dl_info dlinfo;
  1679   if (libjvm_base_addr == NULL) {
  1680     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1681       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1683     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1686   if (dladdr((void *)addr, &dlinfo) != 0) {
  1687     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1690   return false;
  1693 bool os::dll_address_to_function_name(address addr, char *buf,
  1694                                       int buflen, int *offset) {
  1695   // buf is not optional, but offset is optional
  1696   assert(buf != NULL, "sanity check");
  1698   Dl_info dlinfo;
  1700   if (dladdr((void*)addr, &dlinfo) != 0) {
  1701     // see if we have a matching symbol
  1702     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1703       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1704         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1706       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1707       return true;
  1709     // no matching symbol so try for just file info
  1710     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1711       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1712                           buf, buflen, offset, dlinfo.dli_fname)) {
  1713         return true;
  1718   buf[0] = '\0';
  1719   if (offset != NULL) *offset = -1;
  1720   return false;
  1723 struct _address_to_library_name {
  1724   address addr;          // input : memory address
  1725   size_t  buflen;        //         size of fname
  1726   char*   fname;         // output: library name
  1727   address base;          //         library base addr
  1728 };
  1730 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1731                                             size_t size, void *data) {
  1732   int i;
  1733   bool found = false;
  1734   address libbase = NULL;
  1735   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1737   // iterate through all loadable segments
  1738   for (i = 0; i < info->dlpi_phnum; i++) {
  1739     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1740     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1741       // base address of a library is the lowest address of its loaded
  1742       // segments.
  1743       if (libbase == NULL || libbase > segbase) {
  1744         libbase = segbase;
  1746       // see if 'addr' is within current segment
  1747       if (segbase <= d->addr &&
  1748           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1749         found = true;
  1754   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1755   // so dll_address_to_library_name() can fall through to use dladdr() which
  1756   // can figure out executable name from argv[0].
  1757   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1758     d->base = libbase;
  1759     if (d->fname) {
  1760       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1762     return 1;
  1764   return 0;
  1767 bool os::dll_address_to_library_name(address addr, char* buf,
  1768                                      int buflen, int* offset) {
  1769   // buf is not optional, but offset is optional
  1770   assert(buf != NULL, "sanity check");
  1772   Dl_info dlinfo;
  1773   struct _address_to_library_name data;
  1775   // There is a bug in old glibc dladdr() implementation that it could resolve
  1776   // to wrong library name if the .so file has a base address != NULL. Here
  1777   // we iterate through the program headers of all loaded libraries to find
  1778   // out which library 'addr' really belongs to. This workaround can be
  1779   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1780   data.addr = addr;
  1781   data.fname = buf;
  1782   data.buflen = buflen;
  1783   data.base = NULL;
  1784   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1786   if (rslt) {
  1787      // buf already contains library name
  1788      if (offset) *offset = addr - data.base;
  1789      return true;
  1791   if (dladdr((void*)addr, &dlinfo) != 0) {
  1792     if (dlinfo.dli_fname != NULL) {
  1793       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1795     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1796       *offset = addr - (address)dlinfo.dli_fbase;
  1798     return true;
  1801   buf[0] = '\0';
  1802   if (offset) *offset = -1;
  1803   return false;
  1806   // Loads .dll/.so and
  1807   // in case of error it checks if .dll/.so was built for the
  1808   // same architecture as Hotspot is running on
  1811 // Remember the stack's state. The Linux dynamic linker will change
  1812 // the stack to 'executable' at most once, so we must safepoint only once.
  1813 bool os::Linux::_stack_is_executable = false;
  1815 // VM operation that loads a library.  This is necessary if stack protection
  1816 // of the Java stacks can be lost during loading the library.  If we
  1817 // do not stop the Java threads, they can stack overflow before the stacks
  1818 // are protected again.
  1819 class VM_LinuxDllLoad: public VM_Operation {
  1820  private:
  1821   const char *_filename;
  1822   char *_ebuf;
  1823   int _ebuflen;
  1824   void *_lib;
  1825  public:
  1826   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1827     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1828   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1829   void doit() {
  1830     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1831     os::Linux::_stack_is_executable = true;
  1833   void* loaded_library() { return _lib; }
  1834 };
  1836 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1838   void * result = NULL;
  1839   bool load_attempted = false;
  1841   // Check whether the library to load might change execution rights
  1842   // of the stack. If they are changed, the protection of the stack
  1843   // guard pages will be lost. We need a safepoint to fix this.
  1844   //
  1845   // See Linux man page execstack(8) for more info.
  1846   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1847     ElfFile ef(filename);
  1848     if (!ef.specifies_noexecstack()) {
  1849       if (!is_init_completed()) {
  1850         os::Linux::_stack_is_executable = true;
  1851         // This is OK - No Java threads have been created yet, and hence no
  1852         // stack guard pages to fix.
  1853         //
  1854         // This should happen only when you are building JDK7 using a very
  1855         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1856         //
  1857         // Dynamic loader will make all stacks executable after
  1858         // this function returns, and will not do that again.
  1859         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1860       } else {
  1861         warning("You have loaded library %s which might have disabled stack guard. "
  1862                 "The VM will try to fix the stack guard now.\n"
  1863                 "It's highly recommended that you fix the library with "
  1864                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1865                 filename);
  1867         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1868         JavaThread *jt = JavaThread::current();
  1869         if (jt->thread_state() != _thread_in_native) {
  1870           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1871           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1872           warning("Unable to fix stack guard. Giving up.");
  1873         } else {
  1874           if (!LoadExecStackDllInVMThread) {
  1875             // This is for the case where the DLL has an static
  1876             // constructor function that executes JNI code. We cannot
  1877             // load such DLLs in the VMThread.
  1878             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1881           ThreadInVMfromNative tiv(jt);
  1882           debug_only(VMNativeEntryWrapper vew;)
  1884           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1885           VMThread::execute(&op);
  1886           if (LoadExecStackDllInVMThread) {
  1887             result = op.loaded_library();
  1889           load_attempted = true;
  1895   if (!load_attempted) {
  1896     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1899   if (result != NULL) {
  1900     // Successful loading
  1901     return result;
  1904   Elf32_Ehdr elf_head;
  1905   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1906   char* diag_msg_buf=ebuf+strlen(ebuf);
  1908   if (diag_msg_max_length==0) {
  1909     // No more space in ebuf for additional diagnostics message
  1910     return NULL;
  1914   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1916   if (file_descriptor < 0) {
  1917     // Can't open library, report dlerror() message
  1918     return NULL;
  1921   bool failed_to_read_elf_head=
  1922     (sizeof(elf_head)!=
  1923         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1925   ::close(file_descriptor);
  1926   if (failed_to_read_elf_head) {
  1927     // file i/o error - report dlerror() msg
  1928     return NULL;
  1931   typedef struct {
  1932     Elf32_Half  code;         // Actual value as defined in elf.h
  1933     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1934     char        elf_class;    // 32 or 64 bit
  1935     char        endianess;    // MSB or LSB
  1936     char*       name;         // String representation
  1937   } arch_t;
  1939   #ifndef EM_486
  1940   #define EM_486          6               /* Intel 80486 */
  1941   #endif
  1943   static const arch_t arch_array[]={
  1944     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1945     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1946     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1947     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1948     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1949     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1950     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1951     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1952 #if defined(VM_LITTLE_ENDIAN)
  1953     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
  1954 #else
  1955     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1956 #endif
  1957     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1958     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1959     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1960     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1961     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1962     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1963     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1964   };
  1966   #if  (defined IA32)
  1967     static  Elf32_Half running_arch_code=EM_386;
  1968   #elif   (defined AMD64)
  1969     static  Elf32_Half running_arch_code=EM_X86_64;
  1970   #elif  (defined IA64)
  1971     static  Elf32_Half running_arch_code=EM_IA_64;
  1972   #elif  (defined __sparc) && (defined _LP64)
  1973     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1974   #elif  (defined __sparc) && (!defined _LP64)
  1975     static  Elf32_Half running_arch_code=EM_SPARC;
  1976   #elif  (defined __powerpc64__)
  1977     static  Elf32_Half running_arch_code=EM_PPC64;
  1978   #elif  (defined __powerpc__)
  1979     static  Elf32_Half running_arch_code=EM_PPC;
  1980   #elif  (defined ARM)
  1981     static  Elf32_Half running_arch_code=EM_ARM;
  1982   #elif  (defined S390)
  1983     static  Elf32_Half running_arch_code=EM_S390;
  1984   #elif  (defined ALPHA)
  1985     static  Elf32_Half running_arch_code=EM_ALPHA;
  1986   #elif  (defined MIPSEL)
  1987     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1988   #elif  (defined PARISC)
  1989     static  Elf32_Half running_arch_code=EM_PARISC;
  1990   #elif  (defined MIPS)
  1991     static  Elf32_Half running_arch_code=EM_MIPS;
  1992   #elif  (defined M68K)
  1993     static  Elf32_Half running_arch_code=EM_68K;
  1994   #else
  1995     #error Method os::dll_load requires that one of following is defined:\
  1996          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1997   #endif
  1999   // Identify compatability class for VM's architecture and library's architecture
  2000   // Obtain string descriptions for architectures
  2002   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2003   int running_arch_index=-1;
  2005   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2006     if (running_arch_code == arch_array[i].code) {
  2007       running_arch_index    = i;
  2009     if (lib_arch.code == arch_array[i].code) {
  2010       lib_arch.compat_class = arch_array[i].compat_class;
  2011       lib_arch.name         = arch_array[i].name;
  2015   assert(running_arch_index != -1,
  2016     "Didn't find running architecture code (running_arch_code) in arch_array");
  2017   if (running_arch_index == -1) {
  2018     // Even though running architecture detection failed
  2019     // we may still continue with reporting dlerror() message
  2020     return NULL;
  2023   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2024     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2025     return NULL;
  2028 #ifndef S390
  2029   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2030     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2031     return NULL;
  2033 #endif // !S390
  2035   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2036     if ( lib_arch.name!=NULL ) {
  2037       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2038         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2039         lib_arch.name, arch_array[running_arch_index].name);
  2040     } else {
  2041       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2042       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2043         lib_arch.code,
  2044         arch_array[running_arch_index].name);
  2048   return NULL;
  2051 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2052   void * result = ::dlopen(filename, RTLD_LAZY);
  2053   if (result == NULL) {
  2054     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2055     ebuf[ebuflen-1] = '\0';
  2057   return result;
  2060 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2061   void * result = NULL;
  2062   if (LoadExecStackDllInVMThread) {
  2063     result = dlopen_helper(filename, ebuf, ebuflen);
  2066   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2067   // library that requires an executable stack, or which does not have this
  2068   // stack attribute set, dlopen changes the stack attribute to executable. The
  2069   // read protection of the guard pages gets lost.
  2070   //
  2071   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2072   // may have been queued at the same time.
  2074   if (!_stack_is_executable) {
  2075     JavaThread *jt = Threads::first();
  2077     while (jt) {
  2078       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2079           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2080         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2081                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2082           warning("Attempt to reguard stack yellow zone failed.");
  2085       jt = jt->next();
  2089   return result;
  2092 /*
  2093  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2094  * chances are you might want to run the generated bits against glibc-2.0
  2095  * libdl.so, so always use locking for any version of glibc.
  2096  */
  2097 void* os::dll_lookup(void* handle, const char* name) {
  2098   pthread_mutex_lock(&dl_mutex);
  2099   void* res = dlsym(handle, name);
  2100   pthread_mutex_unlock(&dl_mutex);
  2101   return res;
  2104 void* os::get_default_process_handle() {
  2105   return (void*)::dlopen(NULL, RTLD_LAZY);
  2108 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2109   int fd = ::open(filename, O_RDONLY);
  2110   if (fd == -1) {
  2111      return false;
  2114   char buf[32];
  2115   int bytes;
  2116   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2117     st->print_raw(buf, bytes);
  2120   ::close(fd);
  2122   return true;
  2125 void os::print_dll_info(outputStream *st) {
  2126    st->print_cr("Dynamic libraries:");
  2128    char fname[32];
  2129    pid_t pid = os::Linux::gettid();
  2131    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2133    if (!_print_ascii_file(fname, st)) {
  2134      st->print("Can not get library information for pid = %d\n", pid);
  2138 void os::print_os_info_brief(outputStream* st) {
  2139   os::Linux::print_distro_info(st);
  2141   os::Posix::print_uname_info(st);
  2143   os::Linux::print_libversion_info(st);
  2147 void os::print_os_info(outputStream* st) {
  2148   st->print("OS:");
  2150   os::Linux::print_distro_info(st);
  2152   os::Posix::print_uname_info(st);
  2154   // Print warning if unsafe chroot environment detected
  2155   if (unsafe_chroot_detected) {
  2156     st->print("WARNING!! ");
  2157     st->print_cr("%s", unstable_chroot_error);
  2160   os::Linux::print_libversion_info(st);
  2162   os::Posix::print_rlimit_info(st);
  2164   os::Posix::print_load_average(st);
  2166   os::Linux::print_full_memory_info(st);
  2168   os::Linux::print_container_info(st);
  2171 // Try to identify popular distros.
  2172 // Most Linux distributions have a /etc/XXX-release file, which contains
  2173 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2174 // file that also contains the OS version string. Some have more than one
  2175 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2176 // /etc/redhat-release.), so the order is important.
  2177 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2178 // their own specific XXX-release file as well as a redhat-release file.
  2179 // Because of this the XXX-release file needs to be searched for before the
  2180 // redhat-release file.
  2181 // Since Red Hat has a lsb-release file that is not very descriptive the
  2182 // search for redhat-release needs to be before lsb-release.
  2183 // Since the lsb-release file is the new standard it needs to be searched
  2184 // before the older style release files.
  2185 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2186 // next to last resort.  The os-release file is a new standard that contains
  2187 // distribution information and the system-release file seems to be an old
  2188 // standard that has been replaced by the lsb-release and os-release files.
  2189 // Searching for the debian_version file is the last resort.  It contains
  2190 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2191 // "Debian " is printed before the contents of the debian_version file.
  2192 void os::Linux::print_distro_info(outputStream* st) {
  2193    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2194        !_print_ascii_file("/etc/mandriva-release", st) &&
  2195        !_print_ascii_file("/etc/mandrake-release", st) &&
  2196        !_print_ascii_file("/etc/sun-release", st) &&
  2197        !_print_ascii_file("/etc/redhat-release", st) &&
  2198        !_print_ascii_file("/etc/lsb-release", st) &&
  2199        !_print_ascii_file("/etc/SuSE-release", st) &&
  2200        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2201        !_print_ascii_file("/etc/gentoo-release", st) &&
  2202        !_print_ascii_file("/etc/ltib-release", st) &&
  2203        !_print_ascii_file("/etc/angstrom-version", st) &&
  2204        !_print_ascii_file("/etc/system-release", st) &&
  2205        !_print_ascii_file("/etc/os-release", st)) {
  2207        if (file_exists("/etc/debian_version")) {
  2208          st->print("Debian ");
  2209          _print_ascii_file("/etc/debian_version", st);
  2210        } else {
  2211          st->print("Linux");
  2214    st->cr();
  2217 void os::Linux::print_libversion_info(outputStream* st) {
  2218   // libc, pthread
  2219   st->print("libc:");
  2220   st->print("%s ", os::Linux::glibc_version());
  2221   st->print("%s ", os::Linux::libpthread_version());
  2222   if (os::Linux::is_LinuxThreads()) {
  2223      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2225   st->cr();
  2228 void os::Linux::print_full_memory_info(outputStream* st) {
  2229    st->print("\n/proc/meminfo:\n");
  2230    _print_ascii_file("/proc/meminfo", st);
  2231    st->cr();
  2234 void os::Linux::print_container_info(outputStream* st) {
  2235 if (!OSContainer::is_containerized()) {
  2236     return;
  2239   st->print("container (cgroup) information:\n");
  2241   const char *p_ct = OSContainer::container_type();
  2242   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
  2244   char *p = OSContainer::cpu_cpuset_cpus();
  2245   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
  2246   free(p);
  2248   p = OSContainer::cpu_cpuset_memory_nodes();
  2249   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
  2250   free(p);
  2252   int i = OSContainer::active_processor_count();
  2253   if (i > 0) {
  2254     st->print("active_processor_count: %d\n", i);
  2255   } else {
  2256     st->print("active_processor_count: failed\n");
  2259   i = OSContainer::cpu_quota();
  2260   st->print("cpu_quota: %d\n", i);
  2262   i = OSContainer::cpu_period();
  2263   st->print("cpu_period: %d\n", i);
  2265   i = OSContainer::cpu_shares();
  2266   st->print("cpu_shares: %d\n", i);
  2268   jlong j = OSContainer::memory_limit_in_bytes();
  2269   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2271   j = OSContainer::memory_and_swap_limit_in_bytes();
  2272   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2274   j = OSContainer::memory_soft_limit_in_bytes();
  2275   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
  2277   j = OSContainer::OSContainer::memory_usage_in_bytes();
  2278   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2280   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
  2281   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
  2282   st->cr();
  2285 void os::print_memory_info(outputStream* st) {
  2287   st->print("Memory:");
  2288   st->print(" %dk page", os::vm_page_size()>>10);
  2290   // values in struct sysinfo are "unsigned long"
  2291   struct sysinfo si;
  2292   sysinfo(&si);
  2294   st->print(", physical " UINT64_FORMAT "k",
  2295             os::physical_memory() >> 10);
  2296   st->print("(" UINT64_FORMAT "k free)",
  2297             os::available_memory() >> 10);
  2298   st->print(", swap " UINT64_FORMAT "k",
  2299             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2300   st->print("(" UINT64_FORMAT "k free)",
  2301             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2302   st->cr();
  2305 void os::pd_print_cpu_info(outputStream* st) {
  2306   st->print("\n/proc/cpuinfo:\n");
  2307   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2308     st->print("  <Not Available>");
  2310   st->cr();
  2313 void os::print_siginfo(outputStream* st, void* siginfo) {
  2314   const siginfo_t* si = (const siginfo_t*)siginfo;
  2316   os::Posix::print_siginfo_brief(st, si);
  2317 #if INCLUDE_CDS
  2318   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2319       UseSharedSpaces) {
  2320     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2321     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2322       st->print("\n\nError accessing class data sharing archive."   \
  2323                 " Mapped file inaccessible during execution, "      \
  2324                 " possible disk/network problem.");
  2327 #endif
  2328   st->cr();
  2332 static void print_signal_handler(outputStream* st, int sig,
  2333                                  char* buf, size_t buflen);
  2335 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2336   st->print_cr("Signal Handlers:");
  2337   print_signal_handler(st, SIGSEGV, buf, buflen);
  2338   print_signal_handler(st, SIGBUS , buf, buflen);
  2339   print_signal_handler(st, SIGFPE , buf, buflen);
  2340   print_signal_handler(st, SIGPIPE, buf, buflen);
  2341   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2342   print_signal_handler(st, SIGILL , buf, buflen);
  2343   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2344   print_signal_handler(st, SR_signum, buf, buflen);
  2345   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2346   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2347   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2348   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2349 #if defined(PPC64)
  2350   print_signal_handler(st, SIGTRAP, buf, buflen);
  2351 #endif
  2354 static char saved_jvm_path[MAXPATHLEN] = {0};
  2356 // Find the full path to the current module, libjvm.so
  2357 void os::jvm_path(char *buf, jint buflen) {
  2358   // Error checking.
  2359   if (buflen < MAXPATHLEN) {
  2360     assert(false, "must use a large-enough buffer");
  2361     buf[0] = '\0';
  2362     return;
  2364   // Lazy resolve the path to current module.
  2365   if (saved_jvm_path[0] != 0) {
  2366     strcpy(buf, saved_jvm_path);
  2367     return;
  2370   char dli_fname[MAXPATHLEN];
  2371   bool ret = dll_address_to_library_name(
  2372                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2373                 dli_fname, sizeof(dli_fname), NULL);
  2374   assert(ret, "cannot locate libjvm");
  2375   char *rp = NULL;
  2376   if (ret && dli_fname[0] != '\0') {
  2377     rp = realpath(dli_fname, buf);
  2379   if (rp == NULL)
  2380     return;
  2382   if (Arguments::created_by_gamma_launcher()) {
  2383     // Support for the gamma launcher.  Typical value for buf is
  2384     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2385     // the right place in the string, then assume we are installed in a JDK and
  2386     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2387     // up the path so it looks like libjvm.so is installed there (append a
  2388     // fake suffix hotspot/libjvm.so).
  2389     const char *p = buf + strlen(buf) - 1;
  2390     for (int count = 0; p > buf && count < 5; ++count) {
  2391       for (--p; p > buf && *p != '/'; --p)
  2392         /* empty */ ;
  2395     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2396       // Look for JAVA_HOME in the environment.
  2397       char* java_home_var = ::getenv("JAVA_HOME");
  2398       if (java_home_var != NULL && java_home_var[0] != 0) {
  2399         char* jrelib_p;
  2400         int len;
  2402         // Check the current module name "libjvm.so".
  2403         p = strrchr(buf, '/');
  2404         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2406         rp = realpath(java_home_var, buf);
  2407         if (rp == NULL)
  2408           return;
  2410         // determine if this is a legacy image or modules image
  2411         // modules image doesn't have "jre" subdirectory
  2412         len = strlen(buf);
  2413         assert(len < buflen, "Ran out of buffer room");
  2414         jrelib_p = buf + len;
  2415         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2416         if (0 != access(buf, F_OK)) {
  2417           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2420         if (0 == access(buf, F_OK)) {
  2421           // Use current module name "libjvm.so"
  2422           len = strlen(buf);
  2423           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2424         } else {
  2425           // Go back to path of .so
  2426           rp = realpath(dli_fname, buf);
  2427           if (rp == NULL)
  2428             return;
  2434   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2437 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2438   // no prefix required, not even "_"
  2441 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2442   // no suffix required
  2445 ////////////////////////////////////////////////////////////////////////////////
  2446 // sun.misc.Signal support
  2448 static volatile jint sigint_count = 0;
  2450 static void
  2451 UserHandler(int sig, void *siginfo, void *context) {
  2452   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2453   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2454   // don't want to flood the manager thread with sem_post requests.
  2455   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2456       return;
  2458   // Ctrl-C is pressed during error reporting, likely because the error
  2459   // handler fails to abort. Let VM die immediately.
  2460   if (sig == SIGINT && is_error_reported()) {
  2461      os::die();
  2464   os::signal_notify(sig);
  2467 void* os::user_handler() {
  2468   return CAST_FROM_FN_PTR(void*, UserHandler);
  2471 class Semaphore : public StackObj {
  2472   public:
  2473     Semaphore();
  2474     ~Semaphore();
  2475     void signal();
  2476     void wait();
  2477     bool trywait();
  2478     bool timedwait(unsigned int sec, int nsec);
  2479   private:
  2480     sem_t _semaphore;
  2481 };
  2483 Semaphore::Semaphore() {
  2484   sem_init(&_semaphore, 0, 0);
  2487 Semaphore::~Semaphore() {
  2488   sem_destroy(&_semaphore);
  2491 void Semaphore::signal() {
  2492   sem_post(&_semaphore);
  2495 void Semaphore::wait() {
  2496   sem_wait(&_semaphore);
  2499 bool Semaphore::trywait() {
  2500   return sem_trywait(&_semaphore) == 0;
  2503 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2505   struct timespec ts;
  2506   // Semaphore's are always associated with CLOCK_REALTIME
  2507   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2508   // see unpackTime for discussion on overflow checking
  2509   if (sec >= MAX_SECS) {
  2510     ts.tv_sec += MAX_SECS;
  2511     ts.tv_nsec = 0;
  2512   } else {
  2513     ts.tv_sec += sec;
  2514     ts.tv_nsec += nsec;
  2515     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2516       ts.tv_nsec -= NANOSECS_PER_SEC;
  2517       ++ts.tv_sec; // note: this must be <= max_secs
  2521   while (1) {
  2522     int result = sem_timedwait(&_semaphore, &ts);
  2523     if (result == 0) {
  2524       return true;
  2525     } else if (errno == EINTR) {
  2526       continue;
  2527     } else if (errno == ETIMEDOUT) {
  2528       return false;
  2529     } else {
  2530       return false;
  2535 extern "C" {
  2536   typedef void (*sa_handler_t)(int);
  2537   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2540 void* os::signal(int signal_number, void* handler) {
  2541   struct sigaction sigAct, oldSigAct;
  2543   sigfillset(&(sigAct.sa_mask));
  2544   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2545   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2547   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2548     // -1 means registration failed
  2549     return (void *)-1;
  2552   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2555 void os::signal_raise(int signal_number) {
  2556   ::raise(signal_number);
  2559 /*
  2560  * The following code is moved from os.cpp for making this
  2561  * code platform specific, which it is by its very nature.
  2562  */
  2564 // Will be modified when max signal is changed to be dynamic
  2565 int os::sigexitnum_pd() {
  2566   return NSIG;
  2569 // a counter for each possible signal value
  2570 static volatile jint pending_signals[NSIG+1] = { 0 };
  2572 // Linux(POSIX) specific hand shaking semaphore.
  2573 static sem_t sig_sem;
  2574 static Semaphore sr_semaphore;
  2576 void os::signal_init_pd() {
  2577   // Initialize signal structures
  2578   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2580   // Initialize signal semaphore
  2581   ::sem_init(&sig_sem, 0, 0);
  2584 void os::signal_notify(int sig) {
  2585   Atomic::inc(&pending_signals[sig]);
  2586   ::sem_post(&sig_sem);
  2589 static int check_pending_signals(bool wait) {
  2590   Atomic::store(0, &sigint_count);
  2591   for (;;) {
  2592     for (int i = 0; i < NSIG + 1; i++) {
  2593       jint n = pending_signals[i];
  2594       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2595         return i;
  2598     if (!wait) {
  2599       return -1;
  2601     JavaThread *thread = JavaThread::current();
  2602     ThreadBlockInVM tbivm(thread);
  2604     bool threadIsSuspended;
  2605     do {
  2606       thread->set_suspend_equivalent();
  2607       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2608       ::sem_wait(&sig_sem);
  2610       // were we externally suspended while we were waiting?
  2611       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2612       if (threadIsSuspended) {
  2613         //
  2614         // The semaphore has been incremented, but while we were waiting
  2615         // another thread suspended us. We don't want to continue running
  2616         // while suspended because that would surprise the thread that
  2617         // suspended us.
  2618         //
  2619         ::sem_post(&sig_sem);
  2621         thread->java_suspend_self();
  2623     } while (threadIsSuspended);
  2627 int os::signal_lookup() {
  2628   return check_pending_signals(false);
  2631 int os::signal_wait() {
  2632   return check_pending_signals(true);
  2635 ////////////////////////////////////////////////////////////////////////////////
  2636 // Virtual Memory
  2638 int os::vm_page_size() {
  2639   // Seems redundant as all get out
  2640   assert(os::Linux::page_size() != -1, "must call os::init");
  2641   return os::Linux::page_size();
  2644 // Solaris allocates memory by pages.
  2645 int os::vm_allocation_granularity() {
  2646   assert(os::Linux::page_size() != -1, "must call os::init");
  2647   return os::Linux::page_size();
  2650 // Rationale behind this function:
  2651 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2652 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2653 //  samples for JITted code. Here we create private executable mapping over the code cache
  2654 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2655 //  info for the reporting script by storing timestamp and location of symbol
  2656 void linux_wrap_code(char* base, size_t size) {
  2657   static volatile jint cnt = 0;
  2659   if (!UseOprofile) {
  2660     return;
  2663   char buf[PATH_MAX+1];
  2664   int num = Atomic::add(1, &cnt);
  2666   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2667            os::get_temp_directory(), os::current_process_id(), num);
  2668   unlink(buf);
  2670   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2672   if (fd != -1) {
  2673     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2674     if (rv != (off_t)-1) {
  2675       if (::write(fd, "", 1) == 1) {
  2676         mmap(base, size,
  2677              PROT_READ|PROT_WRITE|PROT_EXEC,
  2678              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2681     ::close(fd);
  2682     unlink(buf);
  2686 static bool recoverable_mmap_error(int err) {
  2687   // See if the error is one we can let the caller handle. This
  2688   // list of errno values comes from JBS-6843484. I can't find a
  2689   // Linux man page that documents this specific set of errno
  2690   // values so while this list currently matches Solaris, it may
  2691   // change as we gain experience with this failure mode.
  2692   switch (err) {
  2693   case EBADF:
  2694   case EINVAL:
  2695   case ENOTSUP:
  2696     // let the caller deal with these errors
  2697     return true;
  2699   default:
  2700     // Any remaining errors on this OS can cause our reserved mapping
  2701     // to be lost. That can cause confusion where different data
  2702     // structures think they have the same memory mapped. The worst
  2703     // scenario is if both the VM and a library think they have the
  2704     // same memory mapped.
  2705     return false;
  2709 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2710                                     int err) {
  2711   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2712           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2713           strerror(err), err);
  2716 static void warn_fail_commit_memory(char* addr, size_t size,
  2717                                     size_t alignment_hint, bool exec,
  2718                                     int err) {
  2719   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2720           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2721           alignment_hint, exec, strerror(err), err);
  2724 // NOTE: Linux kernel does not really reserve the pages for us.
  2725 //       All it does is to check if there are enough free pages
  2726 //       left at the time of mmap(). This could be a potential
  2727 //       problem.
  2728 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2729   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2730   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2731                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2732   if (res != (uintptr_t) MAP_FAILED) {
  2733     if (UseNUMAInterleaving) {
  2734       numa_make_global(addr, size);
  2736     return 0;
  2739   int err = errno;  // save errno from mmap() call above
  2741   if (!recoverable_mmap_error(err)) {
  2742     warn_fail_commit_memory(addr, size, exec, err);
  2743     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2746   return err;
  2749 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2750   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2753 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2754                                   const char* mesg) {
  2755   assert(mesg != NULL, "mesg must be specified");
  2756   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2757   if (err != 0) {
  2758     // the caller wants all commit errors to exit with the specified mesg:
  2759     warn_fail_commit_memory(addr, size, exec, err);
  2760     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2764 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2765 #ifndef MAP_HUGETLB
  2766 #define MAP_HUGETLB 0x40000
  2767 #endif
  2769 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2770 #ifndef MADV_HUGEPAGE
  2771 #define MADV_HUGEPAGE 14
  2772 #endif
  2774 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2775                                   size_t alignment_hint, bool exec) {
  2776   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2777   if (err == 0) {
  2778     realign_memory(addr, size, alignment_hint);
  2780   return err;
  2783 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2784                           bool exec) {
  2785   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2788 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2789                                   size_t alignment_hint, bool exec,
  2790                                   const char* mesg) {
  2791   assert(mesg != NULL, "mesg must be specified");
  2792   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2793   if (err != 0) {
  2794     // the caller wants all commit errors to exit with the specified mesg:
  2795     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2796     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2800 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2801   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2802     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2803     // be supported or the memory may already be backed by huge pages.
  2804     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2808 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2809   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2810   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2811   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2812   // small pages on top of the SHM segment. This method always works for small pages, so we
  2813   // allow that in any case.
  2814   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2815     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2819 void os::numa_make_global(char *addr, size_t bytes) {
  2820   Linux::numa_interleave_memory(addr, bytes);
  2823 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2824 // bind policy to MPOL_PREFERRED for the current thread.
  2825 #define USE_MPOL_PREFERRED 0
  2827 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2828   // To make NUMA and large pages more robust when both enabled, we need to ease
  2829   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2830   // default policy and it will force memory to be allocated on the specified
  2831   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2832   // the specified node, but will not force it. Using this policy will prevent
  2833   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2834   // free large pages.
  2835   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2836   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2839 bool os::numa_topology_changed()   { return false; }
  2841 size_t os::numa_get_groups_num() {
  2842   // Return just the number of nodes in which it's possible to allocate memory
  2843   // (in numa terminology, configured nodes).
  2844   return Linux::numa_num_configured_nodes();
  2847 int os::numa_get_group_id() {
  2848   int cpu_id = Linux::sched_getcpu();
  2849   if (cpu_id != -1) {
  2850     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2851     if (lgrp_id != -1) {
  2852       return lgrp_id;
  2855   return 0;
  2858 int os::Linux::get_existing_num_nodes() {
  2859   size_t node;
  2860   size_t highest_node_number = Linux::numa_max_node();
  2861   int num_nodes = 0;
  2863   // Get the total number of nodes in the system including nodes without memory.
  2864   for (node = 0; node <= highest_node_number; node++) {
  2865     if (isnode_in_existing_nodes(node)) {
  2866       num_nodes++;
  2869   return num_nodes;
  2872 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2873   size_t highest_node_number = Linux::numa_max_node();
  2874   size_t i = 0;
  2876   // Map all node ids in which is possible to allocate memory. Also nodes are
  2877   // not always consecutively available, i.e. available from 0 to the highest
  2878   // node number.
  2879   for (size_t node = 0; node <= highest_node_number; node++) {
  2880     if (Linux::isnode_in_configured_nodes(node)) {
  2881       ids[i++] = node;
  2884   return i;
  2887 bool os::get_page_info(char *start, page_info* info) {
  2888   return false;
  2891 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2892   return end;
  2896 int os::Linux::sched_getcpu_syscall(void) {
  2897   unsigned int cpu = 0;
  2898   int retval = -1;
  2900 #if defined(IA32)
  2901 # ifndef SYS_getcpu
  2902 # define SYS_getcpu 318
  2903 # endif
  2904   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2905 #elif defined(AMD64)
  2906 // Unfortunately we have to bring all these macros here from vsyscall.h
  2907 // to be able to compile on old linuxes.
  2908 # define __NR_vgetcpu 2
  2909 # define VSYSCALL_START (-10UL << 20)
  2910 # define VSYSCALL_SIZE 1024
  2911 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2912   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2913   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2914   retval = vgetcpu(&cpu, NULL, NULL);
  2915 #endif
  2917   return (retval == -1) ? retval : cpu;
  2920 // Something to do with the numa-aware allocator needs these symbols
  2921 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2922 extern "C" JNIEXPORT void numa_error(char *where) { }
  2923 extern "C" JNIEXPORT int fork1() { return fork(); }
  2925 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
  2926 // load symbol from base version instead.
  2927 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2928   void *f = dlvsym(handle, name, "libnuma_1.1");
  2929   if (f == NULL) {
  2930     f = dlsym(handle, name);
  2932   return f;
  2935 // Handle request to load libnuma symbol version 1.2 (API v2) only.
  2936 // Return NULL if the symbol is not defined in this particular version.
  2937 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
  2938   return dlvsym(handle, name, "libnuma_1.2");
  2941 bool os::Linux::libnuma_init() {
  2942   // sched_getcpu() should be in libc.
  2943   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2944                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2946   // If it's not, try a direct syscall.
  2947   if (sched_getcpu() == -1)
  2948     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2950   if (sched_getcpu() != -1) { // Does it work?
  2951     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2952     if (handle != NULL) {
  2953       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2954                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2955       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2956                                        libnuma_dlsym(handle, "numa_max_node")));
  2957       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
  2958                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
  2959       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2960                                         libnuma_dlsym(handle, "numa_available")));
  2961       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2962                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2963       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2964                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
  2965       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
  2966                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
  2967       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2968                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
  2969       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
  2970                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
  2971       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
  2972                                        libnuma_dlsym(handle, "numa_distance")));
  2974       if (numa_available() != -1) {
  2975         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2976         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
  2977         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
  2978         // Create an index -> node mapping, since nodes are not always consecutive
  2979         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2980         rebuild_nindex_to_node_map();
  2981         // Create a cpu -> node mapping
  2982         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2983         rebuild_cpu_to_node_map();
  2984         return true;
  2988   return false;
  2991 void os::Linux::rebuild_nindex_to_node_map() {
  2992   int highest_node_number = Linux::numa_max_node();
  2994   nindex_to_node()->clear();
  2995   for (int node = 0; node <= highest_node_number; node++) {
  2996     if (Linux::isnode_in_existing_nodes(node)) {
  2997       nindex_to_node()->append(node);
  3002 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  3003 // The table is later used in get_node_by_cpu().
  3004 void os::Linux::rebuild_cpu_to_node_map() {
  3005   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  3006                               // in libnuma (possible values are starting from 16,
  3007                               // and continuing up with every other power of 2, but less
  3008                               // than the maximum number of CPUs supported by kernel), and
  3009                               // is a subject to change (in libnuma version 2 the requirements
  3010                               // are more reasonable) we'll just hardcode the number they use
  3011                               // in the library.
  3012   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  3014   size_t cpu_num = processor_count();
  3015   size_t cpu_map_size = NCPUS / BitsPerCLong;
  3016   size_t cpu_map_valid_size =
  3017     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  3019   cpu_to_node()->clear();
  3020   cpu_to_node()->at_grow(cpu_num - 1);
  3022   size_t node_num = get_existing_num_nodes();
  3024   int distance = 0;
  3025   int closest_distance = INT_MAX;
  3026   int closest_node = 0;
  3027   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  3028   for (size_t i = 0; i < node_num; i++) {
  3029     // Check if node is configured (not a memory-less node). If it is not, find
  3030     // the closest configured node.
  3031     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
  3032       closest_distance = INT_MAX;
  3033       // Check distance from all remaining nodes in the system. Ignore distance
  3034       // from itself and from another non-configured node.
  3035       for (size_t m = 0; m < node_num; m++) {
  3036         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
  3037           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
  3038           // If a closest node is found, update. There is always at least one
  3039           // configured node in the system so there is always at least one node
  3040           // close.
  3041           if (distance != 0 && distance < closest_distance) {
  3042             closest_distance = distance;
  3043             closest_node = nindex_to_node()->at(m);
  3047      } else {
  3048        // Current node is already a configured node.
  3049        closest_node = nindex_to_node()->at(i);
  3052     // Get cpus from the original node and map them to the closest node. If node
  3053     // is a configured node (not a memory-less node), then original node and
  3054     // closest node are the same.
  3055     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  3056       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  3057         if (cpu_map[j] != 0) {
  3058           for (size_t k = 0; k < BitsPerCLong; k++) {
  3059             if (cpu_map[j] & (1UL << k)) {
  3060               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
  3067   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  3070 int os::Linux::get_node_by_cpu(int cpu_id) {
  3071   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  3072     return cpu_to_node()->at(cpu_id);
  3074   return -1;
  3077 GrowableArray<int>* os::Linux::_cpu_to_node;
  3078 GrowableArray<int>* os::Linux::_nindex_to_node;
  3079 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  3080 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  3081 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  3082 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
  3083 os::Linux::numa_available_func_t os::Linux::_numa_available;
  3084 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  3085 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  3086 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
  3087 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  3088 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
  3089 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
  3090 unsigned long* os::Linux::_numa_all_nodes;
  3091 struct bitmask* os::Linux::_numa_all_nodes_ptr;
  3092 struct bitmask* os::Linux::_numa_nodes_ptr;
  3094 bool os::pd_uncommit_memory(char* addr, size_t size) {
  3095   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  3096                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  3097   return res  != (uintptr_t) MAP_FAILED;
  3100 static
  3101 address get_stack_commited_bottom(address bottom, size_t size) {
  3102   address nbot = bottom;
  3103   address ntop = bottom + size;
  3105   size_t page_sz = os::vm_page_size();
  3106   unsigned pages = size / page_sz;
  3108   unsigned char vec[1];
  3109   unsigned imin = 1, imax = pages + 1, imid;
  3110   int mincore_return_value = 0;
  3112   assert(imin <= imax, "Unexpected page size");
  3114   while (imin < imax) {
  3115     imid = (imax + imin) / 2;
  3116     nbot = ntop - (imid * page_sz);
  3118     // Use a trick with mincore to check whether the page is mapped or not.
  3119     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3120     // is swapped output but if page we are asking for is unmapped
  3121     // it returns -1,ENOMEM
  3122     mincore_return_value = mincore(nbot, page_sz, vec);
  3124     if (mincore_return_value == -1) {
  3125       // Page is not mapped go up
  3126       // to find first mapped page
  3127       if (errno != EAGAIN) {
  3128         assert(errno == ENOMEM, "Unexpected mincore errno");
  3129         imax = imid;
  3131     } else {
  3132       // Page is mapped go down
  3133       // to find first not mapped page
  3134       imin = imid + 1;
  3138   nbot = nbot + page_sz;
  3140   // Adjust stack bottom one page up if last checked page is not mapped
  3141   if (mincore_return_value == -1) {
  3142     nbot = nbot + page_sz;
  3145   return nbot;
  3149 // Linux uses a growable mapping for the stack, and if the mapping for
  3150 // the stack guard pages is not removed when we detach a thread the
  3151 // stack cannot grow beyond the pages where the stack guard was
  3152 // mapped.  If at some point later in the process the stack expands to
  3153 // that point, the Linux kernel cannot expand the stack any further
  3154 // because the guard pages are in the way, and a segfault occurs.
  3155 //
  3156 // However, it's essential not to split the stack region by unmapping
  3157 // a region (leaving a hole) that's already part of the stack mapping,
  3158 // so if the stack mapping has already grown beyond the guard pages at
  3159 // the time we create them, we have to truncate the stack mapping.
  3160 // So, we need to know the extent of the stack mapping when
  3161 // create_stack_guard_pages() is called.
  3163 // We only need this for stacks that are growable: at the time of
  3164 // writing thread stacks don't use growable mappings (i.e. those
  3165 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3166 // only applies to the main thread.
  3168 // If the (growable) stack mapping already extends beyond the point
  3169 // where we're going to put our guard pages, truncate the mapping at
  3170 // that point by munmap()ping it.  This ensures that when we later
  3171 // munmap() the guard pages we don't leave a hole in the stack
  3172 // mapping. This only affects the main/initial thread
  3174 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3176   if (os::Linux::is_initial_thread()) {
  3177     // As we manually grow stack up to bottom inside create_attached_thread(),
  3178     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3179     // we don't need to do anything special.
  3180     // Check it first, before calling heavy function.
  3181     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3182     unsigned char vec[1];
  3184     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3185       // Fallback to slow path on all errors, including EAGAIN
  3186       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3187                                     os::Linux::initial_thread_stack_bottom(),
  3188                                     (size_t)addr - stack_extent);
  3191     if (stack_extent < (uintptr_t)addr) {
  3192       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3196   return os::commit_memory(addr, size, !ExecMem);
  3199 // If this is a growable mapping, remove the guard pages entirely by
  3200 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3201 // affects the main/initial thread, but guard against future OS changes
  3202 // It's safe to always unmap guard pages for initial thread because we
  3203 // always place it right after end of the mapped region
  3205 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3206   uintptr_t stack_extent, stack_base;
  3208   if (os::Linux::is_initial_thread()) {
  3209     return ::munmap(addr, size) == 0;
  3212   return os::uncommit_memory(addr, size);
  3215 static address _highest_vm_reserved_address = NULL;
  3217 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3218 // at 'requested_addr'. If there are existing memory mappings at the same
  3219 // location, however, they will be overwritten. If 'fixed' is false,
  3220 // 'requested_addr' is only treated as a hint, the return value may or
  3221 // may not start from the requested address. Unlike Linux mmap(), this
  3222 // function returns NULL to indicate failure.
  3223 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3224   char * addr;
  3225   int flags;
  3227   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3228   if (fixed) {
  3229     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3230     flags |= MAP_FIXED;
  3233   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3234   // touch an uncommitted page. Otherwise, the read/write might
  3235   // succeed if we have enough swap space to back the physical page.
  3236   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3237                        flags, -1, 0);
  3239   if (addr != MAP_FAILED) {
  3240     // anon_mmap() should only get called during VM initialization,
  3241     // don't need lock (actually we can skip locking even it can be called
  3242     // from multiple threads, because _highest_vm_reserved_address is just a
  3243     // hint about the upper limit of non-stack memory regions.)
  3244     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3245       _highest_vm_reserved_address = (address)addr + bytes;
  3249   return addr == MAP_FAILED ? NULL : addr;
  3252 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3253 //   (req_addr != NULL) or with a given alignment.
  3254 //  - bytes shall be a multiple of alignment.
  3255 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3256 //  - alignment sets the alignment at which memory shall be allocated.
  3257 //     It must be a multiple of allocation granularity.
  3258 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3259 //  req_addr or NULL.
  3260 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3262   size_t extra_size = bytes;
  3263   if (req_addr == NULL && alignment > 0) {
  3264     extra_size += alignment;
  3267   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3268     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3269     -1, 0);
  3270   if (start == MAP_FAILED) {
  3271     start = NULL;
  3272   } else {
  3273     if (req_addr != NULL) {
  3274       if (start != req_addr) {
  3275         ::munmap(start, extra_size);
  3276         start = NULL;
  3278     } else {
  3279       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3280       char* const end_aligned = start_aligned + bytes;
  3281       char* const end = start + extra_size;
  3282       if (start_aligned > start) {
  3283         ::munmap(start, start_aligned - start);
  3285       if (end_aligned < end) {
  3286         ::munmap(end_aligned, end - end_aligned);
  3288       start = start_aligned;
  3291   return start;
  3294 // Don't update _highest_vm_reserved_address, because there might be memory
  3295 // regions above addr + size. If so, releasing a memory region only creates
  3296 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3297 //
  3298 static int anon_munmap(char * addr, size_t size) {
  3299   return ::munmap(addr, size) == 0;
  3302 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3303                          size_t alignment_hint) {
  3304   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3307 bool os::pd_release_memory(char* addr, size_t size) {
  3308   return anon_munmap(addr, size);
  3311 static address highest_vm_reserved_address() {
  3312   return _highest_vm_reserved_address;
  3315 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3316   // Linux wants the mprotect address argument to be page aligned.
  3317   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3319   // According to SUSv3, mprotect() should only be used with mappings
  3320   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3321   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3322   // protection of malloc'ed or statically allocated memory). Check the
  3323   // caller if you hit this assert.
  3324   assert(addr == bottom, "sanity check");
  3326   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3327   return ::mprotect(bottom, size, prot) == 0;
  3330 // Set protections specified
  3331 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3332                         bool is_committed) {
  3333   unsigned int p = 0;
  3334   switch (prot) {
  3335   case MEM_PROT_NONE: p = PROT_NONE; break;
  3336   case MEM_PROT_READ: p = PROT_READ; break;
  3337   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3338   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3339   default:
  3340     ShouldNotReachHere();
  3342   // is_committed is unused.
  3343   return linux_mprotect(addr, bytes, p);
  3346 bool os::guard_memory(char* addr, size_t size) {
  3347   return linux_mprotect(addr, size, PROT_NONE);
  3350 bool os::unguard_memory(char* addr, size_t size) {
  3351   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3354 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3355   bool result = false;
  3356   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3357                  MAP_ANONYMOUS|MAP_PRIVATE,
  3358                  -1, 0);
  3359   if (p != MAP_FAILED) {
  3360     void *aligned_p = align_ptr_up(p, page_size);
  3362     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3364     munmap(p, page_size * 2);
  3367   if (warn && !result) {
  3368     warning("TransparentHugePages is not supported by the operating system.");
  3371   return result;
  3374 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3375   bool result = false;
  3376   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3377                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3378                  -1, 0);
  3380   if (p != MAP_FAILED) {
  3381     // We don't know if this really is a huge page or not.
  3382     FILE *fp = fopen("/proc/self/maps", "r");
  3383     if (fp) {
  3384       while (!feof(fp)) {
  3385         char chars[257];
  3386         long x = 0;
  3387         if (fgets(chars, sizeof(chars), fp)) {
  3388           if (sscanf(chars, "%lx-%*x", &x) == 1
  3389               && x == (long)p) {
  3390             if (strstr (chars, "hugepage")) {
  3391               result = true;
  3392               break;
  3397       fclose(fp);
  3399     munmap(p, page_size);
  3402   if (warn && !result) {
  3403     warning("HugeTLBFS is not supported by the operating system.");
  3406   return result;
  3409 /*
  3410 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3412 * From the coredump_filter documentation:
  3414 * - (bit 0) anonymous private memory
  3415 * - (bit 1) anonymous shared memory
  3416 * - (bit 2) file-backed private memory
  3417 * - (bit 3) file-backed shared memory
  3418 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3419 *           effective only if the bit 2 is cleared)
  3420 * - (bit 5) hugetlb private memory
  3421 * - (bit 6) hugetlb shared memory
  3422 */
  3423 static void set_coredump_filter(void) {
  3424   FILE *f;
  3425   long cdm;
  3427   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3428     return;
  3431   if (fscanf(f, "%lx", &cdm) != 1) {
  3432     fclose(f);
  3433     return;
  3436   rewind(f);
  3438   if ((cdm & LARGEPAGES_BIT) == 0) {
  3439     cdm |= LARGEPAGES_BIT;
  3440     fprintf(f, "%#lx", cdm);
  3443   fclose(f);
  3446 // Large page support
  3448 static size_t _large_page_size = 0;
  3450 size_t os::Linux::find_large_page_size() {
  3451   size_t large_page_size = 0;
  3453   // large_page_size on Linux is used to round up heap size. x86 uses either
  3454   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3455   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3456   // page as large as 256M.
  3457   //
  3458   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3459   // for a line with the following format:
  3460   //    Hugepagesize:     2048 kB
  3461   //
  3462   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3463   // format has been changed), we'll use the largest page size supported by
  3464   // the processor.
  3466 #ifndef ZERO
  3467   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3468                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3469 #endif // ZERO
  3471   FILE *fp = fopen("/proc/meminfo", "r");
  3472   if (fp) {
  3473     while (!feof(fp)) {
  3474       int x = 0;
  3475       char buf[16];
  3476       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3477         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3478           large_page_size = x * K;
  3479           break;
  3481       } else {
  3482         // skip to next line
  3483         for (;;) {
  3484           int ch = fgetc(fp);
  3485           if (ch == EOF || ch == (int)'\n') break;
  3489     fclose(fp);
  3492   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3493     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3494         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3495         proper_unit_for_byte_size(large_page_size));
  3498   return large_page_size;
  3501 size_t os::Linux::setup_large_page_size() {
  3502   _large_page_size = Linux::find_large_page_size();
  3503   const size_t default_page_size = (size_t)Linux::page_size();
  3504   if (_large_page_size > default_page_size) {
  3505     _page_sizes[0] = _large_page_size;
  3506     _page_sizes[1] = default_page_size;
  3507     _page_sizes[2] = 0;
  3510   return _large_page_size;
  3513 bool os::Linux::setup_large_page_type(size_t page_size) {
  3514   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3515       FLAG_IS_DEFAULT(UseSHM) &&
  3516       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3518     // The type of large pages has not been specified by the user.
  3520     // Try UseHugeTLBFS and then UseSHM.
  3521     UseHugeTLBFS = UseSHM = true;
  3523     // Don't try UseTransparentHugePages since there are known
  3524     // performance issues with it turned on. This might change in the future.
  3525     UseTransparentHugePages = false;
  3528   if (UseTransparentHugePages) {
  3529     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3530     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3531       UseHugeTLBFS = false;
  3532       UseSHM = false;
  3533       return true;
  3535     UseTransparentHugePages = false;
  3538   if (UseHugeTLBFS) {
  3539     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3540     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3541       UseSHM = false;
  3542       return true;
  3544     UseHugeTLBFS = false;
  3547   return UseSHM;
  3550 void os::large_page_init() {
  3551   if (!UseLargePages &&
  3552       !UseTransparentHugePages &&
  3553       !UseHugeTLBFS &&
  3554       !UseSHM) {
  3555     // Not using large pages.
  3556     return;
  3559   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3560     // The user explicitly turned off large pages.
  3561     // Ignore the rest of the large pages flags.
  3562     UseTransparentHugePages = false;
  3563     UseHugeTLBFS = false;
  3564     UseSHM = false;
  3565     return;
  3568   size_t large_page_size = Linux::setup_large_page_size();
  3569   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3571   set_coredump_filter();
  3574 #ifndef SHM_HUGETLB
  3575 #define SHM_HUGETLB 04000
  3576 #endif
  3578 #define shm_warning_format(format, ...)              \
  3579   do {                                               \
  3580     if (UseLargePages &&                             \
  3581         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3582          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3583          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3584       warning(format, __VA_ARGS__);                  \
  3585     }                                                \
  3586   } while (0)
  3588 #define shm_warning(str) shm_warning_format("%s", str)
  3590 #define shm_warning_with_errno(str)                \
  3591   do {                                             \
  3592     int err = errno;                               \
  3593     shm_warning_format(str " (error = %d)", err);  \
  3594   } while (0)
  3596 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3597   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3599   if (!is_size_aligned(alignment, SHMLBA)) {
  3600     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3601     return NULL;
  3604   // To ensure that we get 'alignment' aligned memory from shmat,
  3605   // we pre-reserve aligned virtual memory and then attach to that.
  3607   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3608   if (pre_reserved_addr == NULL) {
  3609     // Couldn't pre-reserve aligned memory.
  3610     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3611     return NULL;
  3614   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3615   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3617   if ((intptr_t)addr == -1) {
  3618     int err = errno;
  3619     shm_warning_with_errno("Failed to attach shared memory.");
  3621     assert(err != EACCES, "Unexpected error");
  3622     assert(err != EIDRM,  "Unexpected error");
  3623     assert(err != EINVAL, "Unexpected error");
  3625     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3626     // we can't unmap it, since that would potentially unmap memory that was
  3627     // mapped from other threads.
  3628     return NULL;
  3631   return addr;
  3634 static char* shmat_at_address(int shmid, char* req_addr) {
  3635   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3636     assert(false, "Requested address needs to be SHMLBA aligned");
  3637     return NULL;
  3640   char* addr = (char*)shmat(shmid, req_addr, 0);
  3642   if ((intptr_t)addr == -1) {
  3643     shm_warning_with_errno("Failed to attach shared memory.");
  3644     return NULL;
  3647   return addr;
  3650 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3651   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3652   if (req_addr != NULL) {
  3653     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3654     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3655     return shmat_at_address(shmid, req_addr);
  3658   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3659   // return large page size aligned memory addresses when req_addr == NULL.
  3660   // However, if the alignment is larger than the large page size, we have
  3661   // to manually ensure that the memory returned is 'alignment' aligned.
  3662   if (alignment > os::large_page_size()) {
  3663     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3664     return shmat_with_alignment(shmid, bytes, alignment);
  3665   } else {
  3666     return shmat_at_address(shmid, NULL);
  3670 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3671   // "exec" is passed in but not used.  Creating the shared image for
  3672   // the code cache doesn't have an SHM_X executable permission to check.
  3673   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3674   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3675   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3677   if (!is_size_aligned(bytes, os::large_page_size())) {
  3678     return NULL; // Fallback to small pages.
  3681   // Create a large shared memory region to attach to based on size.
  3682   // Currently, size is the total size of the heap.
  3683   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3684   if (shmid == -1) {
  3685     // Possible reasons for shmget failure:
  3686     // 1. shmmax is too small for Java heap.
  3687     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3688     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3689     // 2. not enough large page memory.
  3690     //    > check available large pages: cat /proc/meminfo
  3691     //    > increase amount of large pages:
  3692     //          echo new_value > /proc/sys/vm/nr_hugepages
  3693     //      Note 1: different Linux may use different name for this property,
  3694     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3695     //      Note 2: it's possible there's enough physical memory available but
  3696     //            they are so fragmented after a long run that they can't
  3697     //            coalesce into large pages. Try to reserve large pages when
  3698     //            the system is still "fresh".
  3699     shm_warning_with_errno("Failed to reserve shared memory.");
  3700     return NULL;
  3703   // Attach to the region.
  3704   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3706   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3707   // will be deleted when it's detached by shmdt() or when the process
  3708   // terminates. If shmat() is not successful this will remove the shared
  3709   // segment immediately.
  3710   shmctl(shmid, IPC_RMID, NULL);
  3712   return addr;
  3715 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3716   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3718   bool warn_on_failure = UseLargePages &&
  3719       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3720        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3721        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3723   if (warn_on_failure) {
  3724     char msg[128];
  3725     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3726         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3727     warning("%s", msg);
  3731 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3732   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3733   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3734   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3736   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3737   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3738                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3739                              -1, 0);
  3741   if (addr == MAP_FAILED) {
  3742     warn_on_large_pages_failure(req_addr, bytes, errno);
  3743     return NULL;
  3746   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3748   return addr;
  3751 // Reserve memory using mmap(MAP_HUGETLB).
  3752 //  - bytes shall be a multiple of alignment.
  3753 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3754 //  - alignment sets the alignment at which memory shall be allocated.
  3755 //     It must be a multiple of allocation granularity.
  3756 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3757 //  req_addr or NULL.
  3758 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3759   size_t large_page_size = os::large_page_size();
  3760   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3762   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3763   assert(is_size_aligned(bytes, alignment), "Must be");
  3765   // First reserve - but not commit - the address range in small pages.
  3766   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3768   if (start == NULL) {
  3769     return NULL;
  3772   assert(is_ptr_aligned(start, alignment), "Must be");
  3774   char* end = start + bytes;
  3776   // Find the regions of the allocated chunk that can be promoted to large pages.
  3777   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3778   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3780   size_t lp_bytes = lp_end - lp_start;
  3782   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3784   if (lp_bytes == 0) {
  3785     // The mapped region doesn't even span the start and the end of a large page.
  3786     // Fall back to allocate a non-special area.
  3787     ::munmap(start, end - start);
  3788     return NULL;
  3791   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3793   void* result;
  3795   // Commit small-paged leading area.
  3796   if (start != lp_start) {
  3797     result = ::mmap(start, lp_start - start, prot,
  3798                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3799                     -1, 0);
  3800     if (result == MAP_FAILED) {
  3801       ::munmap(lp_start, end - lp_start);
  3802       return NULL;
  3806   // Commit large-paged area.
  3807   result = ::mmap(lp_start, lp_bytes, prot,
  3808                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3809                   -1, 0);
  3810   if (result == MAP_FAILED) {
  3811     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3812     // If the mmap above fails, the large pages region will be unmapped and we
  3813     // have regions before and after with small pages. Release these regions.
  3814     //
  3815     // |  mapped  |  unmapped  |  mapped  |
  3816     // ^          ^            ^          ^
  3817     // start      lp_start     lp_end     end
  3818     //
  3819     ::munmap(start, lp_start - start);
  3820     ::munmap(lp_end, end - lp_end);
  3821     return NULL;
  3824   // Commit small-paged trailing area.
  3825   if (lp_end != end) {
  3826       result = ::mmap(lp_end, end - lp_end, prot,
  3827                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3828                       -1, 0);
  3829     if (result == MAP_FAILED) {
  3830       ::munmap(start, lp_end - start);
  3831       return NULL;
  3835   return start;
  3838 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3839   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3840   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3841   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3842   assert(is_power_of_2(os::large_page_size()), "Must be");
  3843   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3845   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3846     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3847   } else {
  3848     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3852 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3853   assert(UseLargePages, "only for large pages");
  3855   char* addr;
  3856   if (UseSHM) {
  3857     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3858   } else {
  3859     assert(UseHugeTLBFS, "must be");
  3860     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3863   if (addr != NULL) {
  3864     if (UseNUMAInterleaving) {
  3865       numa_make_global(addr, bytes);
  3868     // The memory is committed
  3869     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3872   return addr;
  3875 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3876   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3877   return shmdt(base) == 0;
  3880 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3881   return pd_release_memory(base, bytes);
  3884 bool os::release_memory_special(char* base, size_t bytes) {
  3885   bool res;
  3886   if (MemTracker::tracking_level() > NMT_minimal) {
  3887     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3888     res = os::Linux::release_memory_special_impl(base, bytes);
  3889     if (res) {
  3890       tkr.record((address)base, bytes);
  3893   } else {
  3894     res = os::Linux::release_memory_special_impl(base, bytes);
  3896   return res;
  3899 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3900   assert(UseLargePages, "only for large pages");
  3901   bool res;
  3903   if (UseSHM) {
  3904     res = os::Linux::release_memory_special_shm(base, bytes);
  3905   } else {
  3906     assert(UseHugeTLBFS, "must be");
  3907     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3909   return res;
  3912 size_t os::large_page_size() {
  3913   return _large_page_size;
  3916 // With SysV SHM the entire memory region must be allocated as shared
  3917 // memory.
  3918 // HugeTLBFS allows application to commit large page memory on demand.
  3919 // However, when committing memory with HugeTLBFS fails, the region
  3920 // that was supposed to be committed will lose the old reservation
  3921 // and allow other threads to steal that memory region. Because of this
  3922 // behavior we can't commit HugeTLBFS memory.
  3923 bool os::can_commit_large_page_memory() {
  3924   return UseTransparentHugePages;
  3927 bool os::can_execute_large_page_memory() {
  3928   return UseTransparentHugePages || UseHugeTLBFS;
  3931 // Reserve memory at an arbitrary address, only if that area is
  3932 // available (and not reserved for something else).
  3934 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3935   const int max_tries = 10;
  3936   char* base[max_tries];
  3937   size_t size[max_tries];
  3938   const size_t gap = 0x000000;
  3940   // Assert only that the size is a multiple of the page size, since
  3941   // that's all that mmap requires, and since that's all we really know
  3942   // about at this low abstraction level.  If we need higher alignment,
  3943   // we can either pass an alignment to this method or verify alignment
  3944   // in one of the methods further up the call chain.  See bug 5044738.
  3945   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3947   // Repeatedly allocate blocks until the block is allocated at the
  3948   // right spot. Give up after max_tries. Note that reserve_memory() will
  3949   // automatically update _highest_vm_reserved_address if the call is
  3950   // successful. The variable tracks the highest memory address every reserved
  3951   // by JVM. It is used to detect heap-stack collision if running with
  3952   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3953   // space than needed, it could confuse the collision detecting code. To
  3954   // solve the problem, save current _highest_vm_reserved_address and
  3955   // calculate the correct value before return.
  3956   address old_highest = _highest_vm_reserved_address;
  3958   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3959   // if kernel honors the hint then we can return immediately.
  3960   char * addr = anon_mmap(requested_addr, bytes, false);
  3961   if (addr == requested_addr) {
  3962      return requested_addr;
  3965   if (addr != NULL) {
  3966      // mmap() is successful but it fails to reserve at the requested address
  3967      anon_munmap(addr, bytes);
  3970   int i;
  3971   for (i = 0; i < max_tries; ++i) {
  3972     base[i] = reserve_memory(bytes);
  3974     if (base[i] != NULL) {
  3975       // Is this the block we wanted?
  3976       if (base[i] == requested_addr) {
  3977         size[i] = bytes;
  3978         break;
  3981       // Does this overlap the block we wanted? Give back the overlapped
  3982       // parts and try again.
  3984       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3985       if (top_overlap >= 0 && top_overlap < bytes) {
  3986         unmap_memory(base[i], top_overlap);
  3987         base[i] += top_overlap;
  3988         size[i] = bytes - top_overlap;
  3989       } else {
  3990         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3991         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3992           unmap_memory(requested_addr, bottom_overlap);
  3993           size[i] = bytes - bottom_overlap;
  3994         } else {
  3995           size[i] = bytes;
  4001   // Give back the unused reserved pieces.
  4003   for (int j = 0; j < i; ++j) {
  4004     if (base[j] != NULL) {
  4005       unmap_memory(base[j], size[j]);
  4009   if (i < max_tries) {
  4010     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  4011     return requested_addr;
  4012   } else {
  4013     _highest_vm_reserved_address = old_highest;
  4014     return NULL;
  4018 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  4019   return ::read(fd, buf, nBytes);
  4022 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  4023 // Solaris uses poll(), linux uses park().
  4024 // Poll() is likely a better choice, assuming that Thread.interrupt()
  4025 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  4026 // SIGSEGV, see 4355769.
  4028 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  4029   assert(thread == Thread::current(),  "thread consistency check");
  4031   ParkEvent * const slp = thread->_SleepEvent ;
  4032   slp->reset() ;
  4033   OrderAccess::fence() ;
  4035   if (interruptible) {
  4036     jlong prevtime = javaTimeNanos();
  4038     for (;;) {
  4039       if (os::is_interrupted(thread, true)) {
  4040         return OS_INTRPT;
  4043       jlong newtime = javaTimeNanos();
  4045       if (newtime - prevtime < 0) {
  4046         // time moving backwards, should only happen if no monotonic clock
  4047         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4048         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4049       } else {
  4050         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4053       if(millis <= 0) {
  4054         return OS_OK;
  4057       prevtime = newtime;
  4060         assert(thread->is_Java_thread(), "sanity check");
  4061         JavaThread *jt = (JavaThread *) thread;
  4062         ThreadBlockInVM tbivm(jt);
  4063         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  4065         jt->set_suspend_equivalent();
  4066         // cleared by handle_special_suspend_equivalent_condition() or
  4067         // java_suspend_self() via check_and_wait_while_suspended()
  4069         slp->park(millis);
  4071         // were we externally suspended while we were waiting?
  4072         jt->check_and_wait_while_suspended();
  4075   } else {
  4076     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4077     jlong prevtime = javaTimeNanos();
  4079     for (;;) {
  4080       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  4081       // the 1st iteration ...
  4082       jlong newtime = javaTimeNanos();
  4084       if (newtime - prevtime < 0) {
  4085         // time moving backwards, should only happen if no monotonic clock
  4086         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  4087         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  4088       } else {
  4089         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  4092       if(millis <= 0) break ;
  4094       prevtime = newtime;
  4095       slp->park(millis);
  4097     return OS_OK ;
  4101 //
  4102 // Short sleep, direct OS call.
  4103 //
  4104 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  4105 // sched_yield(2) will actually give up the CPU:
  4106 //
  4107 //   * Alone on this pariticular CPU, keeps running.
  4108 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  4109 //     (pre 2.6.39).
  4110 //
  4111 // So calling this with 0 is an alternative.
  4112 //
  4113 void os::naked_short_sleep(jlong ms) {
  4114   struct timespec req;
  4116   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  4117   req.tv_sec = 0;
  4118   if (ms > 0) {
  4119     req.tv_nsec = (ms % 1000) * 1000000;
  4121   else {
  4122     req.tv_nsec = 1;
  4125   nanosleep(&req, NULL);
  4127   return;
  4130 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  4131 void os::infinite_sleep() {
  4132   while (true) {    // sleep forever ...
  4133     ::sleep(100);   // ... 100 seconds at a time
  4137 // Used to convert frequent JVM_Yield() to nops
  4138 bool os::dont_yield() {
  4139   return DontYieldALot;
  4142 void os::yield() {
  4143   sched_yield();
  4146 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  4148 void os::yield_all(int attempts) {
  4149   // Yields to all threads, including threads with lower priorities
  4150   // Threads on Linux are all with same priority. The Solaris style
  4151   // os::yield_all() with nanosleep(1ms) is not necessary.
  4152   sched_yield();
  4155 // Called from the tight loops to possibly influence time-sharing heuristics
  4156 void os::loop_breaker(int attempts) {
  4157   os::yield_all(attempts);
  4160 ////////////////////////////////////////////////////////////////////////////////
  4161 // thread priority support
  4163 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  4164 // only supports dynamic priority, static priority must be zero. For real-time
  4165 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  4166 // However, for large multi-threaded applications, SCHED_RR is not only slower
  4167 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  4168 // of 5 runs - Sep 2005).
  4169 //
  4170 // The following code actually changes the niceness of kernel-thread/LWP. It
  4171 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  4172 // not the entire user process, and user level threads are 1:1 mapped to kernel
  4173 // threads. It has always been the case, but could change in the future. For
  4174 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  4175 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  4177 int os::java_to_os_priority[CriticalPriority + 1] = {
  4178   19,              // 0 Entry should never be used
  4180    4,              // 1 MinPriority
  4181    3,              // 2
  4182    2,              // 3
  4184    1,              // 4
  4185    0,              // 5 NormPriority
  4186   -1,              // 6
  4188   -2,              // 7
  4189   -3,              // 8
  4190   -4,              // 9 NearMaxPriority
  4192   -5,              // 10 MaxPriority
  4194   -5               // 11 CriticalPriority
  4195 };
  4197 static int prio_init() {
  4198   if (ThreadPriorityPolicy == 1) {
  4199     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  4200     // if effective uid is not root. Perhaps, a more elegant way of doing
  4201     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4202     if (geteuid() != 0) {
  4203       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4204         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4206       ThreadPriorityPolicy = 0;
  4209   if (UseCriticalJavaThreadPriority) {
  4210     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4212   return 0;
  4215 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4216   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4218   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4219   return (ret == 0) ? OS_OK : OS_ERR;
  4222 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4223   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4224     *priority_ptr = java_to_os_priority[NormPriority];
  4225     return OS_OK;
  4228   errno = 0;
  4229   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4230   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4233 // Hint to the underlying OS that a task switch would not be good.
  4234 // Void return because it's a hint and can fail.
  4235 void os::hint_no_preempt() {}
  4237 ////////////////////////////////////////////////////////////////////////////////
  4238 // suspend/resume support
  4240 //  the low-level signal-based suspend/resume support is a remnant from the
  4241 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4242 //  within hotspot. Now there is a single use-case for this:
  4243 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4244 //      that runs in the watcher thread.
  4245 //  The remaining code is greatly simplified from the more general suspension
  4246 //  code that used to be used.
  4247 //
  4248 //  The protocol is quite simple:
  4249 //  - suspend:
  4250 //      - sends a signal to the target thread
  4251 //      - polls the suspend state of the osthread using a yield loop
  4252 //      - target thread signal handler (SR_handler) sets suspend state
  4253 //        and blocks in sigsuspend until continued
  4254 //  - resume:
  4255 //      - sets target osthread state to continue
  4256 //      - sends signal to end the sigsuspend loop in the SR_handler
  4257 //
  4258 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4259 //
  4261 static void resume_clear_context(OSThread *osthread) {
  4262   osthread->set_ucontext(NULL);
  4263   osthread->set_siginfo(NULL);
  4266 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4267   osthread->set_ucontext(context);
  4268   osthread->set_siginfo(siginfo);
  4271 //
  4272 // Handler function invoked when a thread's execution is suspended or
  4273 // resumed. We have to be careful that only async-safe functions are
  4274 // called here (Note: most pthread functions are not async safe and
  4275 // should be avoided.)
  4276 //
  4277 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4278 // interface point of view, but sigwait() prevents the signal hander
  4279 // from being run. libpthread would get very confused by not having
  4280 // its signal handlers run and prevents sigwait()'s use with the
  4281 // mutex granting granting signal.
  4282 //
  4283 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4284 //
  4285 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4286   // Save and restore errno to avoid confusing native code with EINTR
  4287   // after sigsuspend.
  4288   int old_errno = errno;
  4290   Thread* thread = Thread::current();
  4291   OSThread* osthread = thread->osthread();
  4292   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4294   os::SuspendResume::State current = osthread->sr.state();
  4295   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4296     suspend_save_context(osthread, siginfo, context);
  4298     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4299     os::SuspendResume::State state = osthread->sr.suspended();
  4300     if (state == os::SuspendResume::SR_SUSPENDED) {
  4301       sigset_t suspend_set;  // signals for sigsuspend()
  4303       // get current set of blocked signals and unblock resume signal
  4304       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4305       sigdelset(&suspend_set, SR_signum);
  4307       sr_semaphore.signal();
  4308       // wait here until we are resumed
  4309       while (1) {
  4310         sigsuspend(&suspend_set);
  4312         os::SuspendResume::State result = osthread->sr.running();
  4313         if (result == os::SuspendResume::SR_RUNNING) {
  4314           sr_semaphore.signal();
  4315           break;
  4319     } else if (state == os::SuspendResume::SR_RUNNING) {
  4320       // request was cancelled, continue
  4321     } else {
  4322       ShouldNotReachHere();
  4325     resume_clear_context(osthread);
  4326   } else if (current == os::SuspendResume::SR_RUNNING) {
  4327     // request was cancelled, continue
  4328   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4329     // ignore
  4330   } else {
  4331     // ignore
  4334   errno = old_errno;
  4338 static int SR_initialize() {
  4339   struct sigaction act;
  4340   char *s;
  4341   /* Get signal number to use for suspend/resume */
  4342   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4343     int sig = ::strtol(s, 0, 10);
  4344     if (sig > 0 || sig < _NSIG) {
  4345         SR_signum = sig;
  4349   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4350         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4352   sigemptyset(&SR_sigset);
  4353   sigaddset(&SR_sigset, SR_signum);
  4355   /* Set up signal handler for suspend/resume */
  4356   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4357   act.sa_handler = (void (*)(int)) SR_handler;
  4359   // SR_signum is blocked by default.
  4360   // 4528190 - We also need to block pthread restart signal (32 on all
  4361   // supported Linux platforms). Note that LinuxThreads need to block
  4362   // this signal for all threads to work properly. So we don't have
  4363   // to use hard-coded signal number when setting up the mask.
  4364   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4366   if (sigaction(SR_signum, &act, 0) == -1) {
  4367     return -1;
  4370   // Save signal flag
  4371   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4372   return 0;
  4375 static int sr_notify(OSThread* osthread) {
  4376   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4377   assert_status(status == 0, status, "pthread_kill");
  4378   return status;
  4381 // "Randomly" selected value for how long we want to spin
  4382 // before bailing out on suspending a thread, also how often
  4383 // we send a signal to a thread we want to resume
  4384 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4385 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4387 // returns true on success and false on error - really an error is fatal
  4388 // but this seems the normal response to library errors
  4389 static bool do_suspend(OSThread* osthread) {
  4390   assert(osthread->sr.is_running(), "thread should be running");
  4391   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4393   // mark as suspended and send signal
  4394   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4395     // failed to switch, state wasn't running?
  4396     ShouldNotReachHere();
  4397     return false;
  4400   if (sr_notify(osthread) != 0) {
  4401     ShouldNotReachHere();
  4404   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4405   while (true) {
  4406     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4407       break;
  4408     } else {
  4409       // timeout
  4410       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4411       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4412         return false;
  4413       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4414         // make sure that we consume the signal on the semaphore as well
  4415         sr_semaphore.wait();
  4416         break;
  4417       } else {
  4418         ShouldNotReachHere();
  4419         return false;
  4424   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4425   return true;
  4428 static void do_resume(OSThread* osthread) {
  4429   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4430   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4432   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4433     // failed to switch to WAKEUP_REQUEST
  4434     ShouldNotReachHere();
  4435     return;
  4438   while (true) {
  4439     if (sr_notify(osthread) == 0) {
  4440       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4441         if (osthread->sr.is_running()) {
  4442           return;
  4445     } else {
  4446       ShouldNotReachHere();
  4450   guarantee(osthread->sr.is_running(), "Must be running!");
  4453 ////////////////////////////////////////////////////////////////////////////////
  4454 // interrupt support
  4456 void os::interrupt(Thread* thread) {
  4457   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4458     "possibility of dangling Thread pointer");
  4460   OSThread* osthread = thread->osthread();
  4462   if (!osthread->interrupted()) {
  4463     osthread->set_interrupted(true);
  4464     // More than one thread can get here with the same value of osthread,
  4465     // resulting in multiple notifications.  We do, however, want the store
  4466     // to interrupted() to be visible to other threads before we execute unpark().
  4467     OrderAccess::fence();
  4468     ParkEvent * const slp = thread->_SleepEvent ;
  4469     if (slp != NULL) slp->unpark() ;
  4472   // For JSR166. Unpark even if interrupt status already was set
  4473   if (thread->is_Java_thread())
  4474     ((JavaThread*)thread)->parker()->unpark();
  4476   ParkEvent * ev = thread->_ParkEvent ;
  4477   if (ev != NULL) ev->unpark() ;
  4481 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4482   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4483     "possibility of dangling Thread pointer");
  4485   OSThread* osthread = thread->osthread();
  4487   bool interrupted = osthread->interrupted();
  4489   if (interrupted && clear_interrupted) {
  4490     osthread->set_interrupted(false);
  4491     // consider thread->_SleepEvent->reset() ... optional optimization
  4494   return interrupted;
  4497 ///////////////////////////////////////////////////////////////////////////////////
  4498 // signal handling (except suspend/resume)
  4500 // This routine may be used by user applications as a "hook" to catch signals.
  4501 // The user-defined signal handler must pass unrecognized signals to this
  4502 // routine, and if it returns true (non-zero), then the signal handler must
  4503 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4504 // routine will never retun false (zero), but instead will execute a VM panic
  4505 // routine kill the process.
  4506 //
  4507 // If this routine returns false, it is OK to call it again.  This allows
  4508 // the user-defined signal handler to perform checks either before or after
  4509 // the VM performs its own checks.  Naturally, the user code would be making
  4510 // a serious error if it tried to handle an exception (such as a null check
  4511 // or breakpoint) that the VM was generating for its own correct operation.
  4512 //
  4513 // This routine may recognize any of the following kinds of signals:
  4514 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4515 // It should be consulted by handlers for any of those signals.
  4516 //
  4517 // The caller of this routine must pass in the three arguments supplied
  4518 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4519 // field of the structure passed to sigaction().  This routine assumes that
  4520 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4521 //
  4522 // Note that the VM will print warnings if it detects conflicting signal
  4523 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4524 //
  4525 extern "C" JNIEXPORT int
  4526 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4527                         void* ucontext, int abort_if_unrecognized);
  4529 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4530   assert(info != NULL && uc != NULL, "it must be old kernel");
  4531   int orig_errno = errno;  // Preserve errno value over signal handler.
  4532   JVM_handle_linux_signal(sig, info, uc, true);
  4533   errno = orig_errno;
  4537 // This boolean allows users to forward their own non-matching signals
  4538 // to JVM_handle_linux_signal, harmlessly.
  4539 bool os::Linux::signal_handlers_are_installed = false;
  4541 // For signal-chaining
  4542 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4543 unsigned int os::Linux::sigs = 0;
  4544 bool os::Linux::libjsig_is_loaded = false;
  4545 typedef struct sigaction *(*get_signal_t)(int);
  4546 get_signal_t os::Linux::get_signal_action = NULL;
  4548 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4549   struct sigaction *actp = NULL;
  4551   if (libjsig_is_loaded) {
  4552     // Retrieve the old signal handler from libjsig
  4553     actp = (*get_signal_action)(sig);
  4555   if (actp == NULL) {
  4556     // Retrieve the preinstalled signal handler from jvm
  4557     actp = get_preinstalled_handler(sig);
  4560   return actp;
  4563 static bool call_chained_handler(struct sigaction *actp, int sig,
  4564                                  siginfo_t *siginfo, void *context) {
  4565   // Call the old signal handler
  4566   if (actp->sa_handler == SIG_DFL) {
  4567     // It's more reasonable to let jvm treat it as an unexpected exception
  4568     // instead of taking the default action.
  4569     return false;
  4570   } else if (actp->sa_handler != SIG_IGN) {
  4571     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4572       // automaticlly block the signal
  4573       sigaddset(&(actp->sa_mask), sig);
  4576     sa_handler_t hand = NULL;
  4577     sa_sigaction_t sa = NULL;
  4578     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4579     // retrieve the chained handler
  4580     if (siginfo_flag_set) {
  4581       sa = actp->sa_sigaction;
  4582     } else {
  4583       hand = actp->sa_handler;
  4586     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4587       actp->sa_handler = SIG_DFL;
  4590     // try to honor the signal mask
  4591     sigset_t oset;
  4592     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4594     // call into the chained handler
  4595     if (siginfo_flag_set) {
  4596       (*sa)(sig, siginfo, context);
  4597     } else {
  4598       (*hand)(sig);
  4601     // restore the signal mask
  4602     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4604   // Tell jvm's signal handler the signal is taken care of.
  4605   return true;
  4608 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4609   bool chained = false;
  4610   // signal-chaining
  4611   if (UseSignalChaining) {
  4612     struct sigaction *actp = get_chained_signal_action(sig);
  4613     if (actp != NULL) {
  4614       chained = call_chained_handler(actp, sig, siginfo, context);
  4617   return chained;
  4620 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4621   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4622     return &sigact[sig];
  4624   return NULL;
  4627 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4628   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4629   sigact[sig] = oldAct;
  4630   sigs |= (unsigned int)1 << sig;
  4633 // for diagnostic
  4634 int os::Linux::sigflags[MAXSIGNUM];
  4636 int os::Linux::get_our_sigflags(int sig) {
  4637   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4638   return sigflags[sig];
  4641 void os::Linux::set_our_sigflags(int sig, int flags) {
  4642   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4643   sigflags[sig] = flags;
  4646 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4647   // Check for overwrite.
  4648   struct sigaction oldAct;
  4649   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4651   void* oldhand = oldAct.sa_sigaction
  4652                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4653                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4654   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4655       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4656       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4657     if (AllowUserSignalHandlers || !set_installed) {
  4658       // Do not overwrite; user takes responsibility to forward to us.
  4659       return;
  4660     } else if (UseSignalChaining) {
  4661       // save the old handler in jvm
  4662       save_preinstalled_handler(sig, oldAct);
  4663       // libjsig also interposes the sigaction() call below and saves the
  4664       // old sigaction on it own.
  4665     } else {
  4666       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4667                     "%#lx for signal %d.", (long)oldhand, sig));
  4671   struct sigaction sigAct;
  4672   sigfillset(&(sigAct.sa_mask));
  4673   sigAct.sa_handler = SIG_DFL;
  4674   if (!set_installed) {
  4675     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4676   } else {
  4677     sigAct.sa_sigaction = signalHandler;
  4678     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4680   // Save flags, which are set by ours
  4681   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4682   sigflags[sig] = sigAct.sa_flags;
  4684   int ret = sigaction(sig, &sigAct, &oldAct);
  4685   assert(ret == 0, "check");
  4687   void* oldhand2  = oldAct.sa_sigaction
  4688                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4689                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4690   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4693 // install signal handlers for signals that HotSpot needs to
  4694 // handle in order to support Java-level exception handling.
  4696 void os::Linux::install_signal_handlers() {
  4697   if (!signal_handlers_are_installed) {
  4698     signal_handlers_are_installed = true;
  4700     // signal-chaining
  4701     typedef void (*signal_setting_t)();
  4702     signal_setting_t begin_signal_setting = NULL;
  4703     signal_setting_t end_signal_setting = NULL;
  4704     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4705                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4706     if (begin_signal_setting != NULL) {
  4707       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4708                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4709       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4710                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4711       libjsig_is_loaded = true;
  4712       assert(UseSignalChaining, "should enable signal-chaining");
  4714     if (libjsig_is_loaded) {
  4715       // Tell libjsig jvm is setting signal handlers
  4716       (*begin_signal_setting)();
  4719     set_signal_handler(SIGSEGV, true);
  4720     set_signal_handler(SIGPIPE, true);
  4721     set_signal_handler(SIGBUS, true);
  4722     set_signal_handler(SIGILL, true);
  4723     set_signal_handler(SIGFPE, true);
  4724 #if defined(PPC64)
  4725     set_signal_handler(SIGTRAP, true);
  4726 #endif
  4727     set_signal_handler(SIGXFSZ, true);
  4729     if (libjsig_is_loaded) {
  4730       // Tell libjsig jvm finishes setting signal handlers
  4731       (*end_signal_setting)();
  4734     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4735     // and if UserSignalHandler is installed all bets are off.
  4736     // Log that signal checking is off only if -verbose:jni is specified.
  4737     if (CheckJNICalls) {
  4738       if (libjsig_is_loaded) {
  4739         if (PrintJNIResolving) {
  4740           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4742         check_signals = false;
  4744       if (AllowUserSignalHandlers) {
  4745         if (PrintJNIResolving) {
  4746           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4748         check_signals = false;
  4754 // This is the fastest way to get thread cpu time on Linux.
  4755 // Returns cpu time (user+sys) for any thread, not only for current.
  4756 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4757 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4758 // For reference, please, see IEEE Std 1003.1-2004:
  4759 //   http://www.unix.org/single_unix_specification
  4761 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4762   struct timespec tp;
  4763   int rc = os::Linux::clock_gettime(clockid, &tp);
  4764   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4766   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4769 /////
  4770 // glibc on Linux platform uses non-documented flag
  4771 // to indicate, that some special sort of signal
  4772 // trampoline is used.
  4773 // We will never set this flag, and we should
  4774 // ignore this flag in our diagnostic
  4775 #ifdef SIGNIFICANT_SIGNAL_MASK
  4776 #undef SIGNIFICANT_SIGNAL_MASK
  4777 #endif
  4778 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4780 static const char* get_signal_handler_name(address handler,
  4781                                            char* buf, int buflen) {
  4782   int offset = 0;
  4783   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4784   if (found) {
  4785     // skip directory names
  4786     const char *p1, *p2;
  4787     p1 = buf;
  4788     size_t len = strlen(os::file_separator());
  4789     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4790     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4791   } else {
  4792     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4794   return buf;
  4797 static void print_signal_handler(outputStream* st, int sig,
  4798                                  char* buf, size_t buflen) {
  4799   struct sigaction sa;
  4801   sigaction(sig, NULL, &sa);
  4803   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4804   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4806   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4808   address handler = (sa.sa_flags & SA_SIGINFO)
  4809     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4810     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4812   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4813     st->print("SIG_DFL");
  4814   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4815     st->print("SIG_IGN");
  4816   } else {
  4817     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4820   st->print(", sa_mask[0]=");
  4821   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4823   address rh = VMError::get_resetted_sighandler(sig);
  4824   // May be, handler was resetted by VMError?
  4825   if(rh != NULL) {
  4826     handler = rh;
  4827     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4830   st->print(", sa_flags=");
  4831   os::Posix::print_sa_flags(st, sa.sa_flags);
  4833   // Check: is it our handler?
  4834   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4835      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4836     // It is our signal handler
  4837     // check for flags, reset system-used one!
  4838     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4839       st->print(
  4840                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4841                 os::Linux::get_our_sigflags(sig));
  4844   st->cr();
  4848 #define DO_SIGNAL_CHECK(sig) \
  4849   if (!sigismember(&check_signal_done, sig)) \
  4850     os::Linux::check_signal_handler(sig)
  4852 // This method is a periodic task to check for misbehaving JNI applications
  4853 // under CheckJNI, we can add any periodic checks here
  4855 void os::run_periodic_checks() {
  4857   if (check_signals == false) return;
  4859   // SEGV and BUS if overridden could potentially prevent
  4860   // generation of hs*.log in the event of a crash, debugging
  4861   // such a case can be very challenging, so we absolutely
  4862   // check the following for a good measure:
  4863   DO_SIGNAL_CHECK(SIGSEGV);
  4864   DO_SIGNAL_CHECK(SIGILL);
  4865   DO_SIGNAL_CHECK(SIGFPE);
  4866   DO_SIGNAL_CHECK(SIGBUS);
  4867   DO_SIGNAL_CHECK(SIGPIPE);
  4868   DO_SIGNAL_CHECK(SIGXFSZ);
  4869 #if defined(PPC64)
  4870   DO_SIGNAL_CHECK(SIGTRAP);
  4871 #endif
  4873   // ReduceSignalUsage allows the user to override these handlers
  4874   // see comments at the very top and jvm_solaris.h
  4875   if (!ReduceSignalUsage) {
  4876     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4877     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4878     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4879     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4882   DO_SIGNAL_CHECK(SR_signum);
  4883   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4886 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4888 static os_sigaction_t os_sigaction = NULL;
  4890 void os::Linux::check_signal_handler(int sig) {
  4891   char buf[O_BUFLEN];
  4892   address jvmHandler = NULL;
  4895   struct sigaction act;
  4896   if (os_sigaction == NULL) {
  4897     // only trust the default sigaction, in case it has been interposed
  4898     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4899     if (os_sigaction == NULL) return;
  4902   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4905   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4907   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4908     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4909     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4912   switch(sig) {
  4913   case SIGSEGV:
  4914   case SIGBUS:
  4915   case SIGFPE:
  4916   case SIGPIPE:
  4917   case SIGILL:
  4918   case SIGXFSZ:
  4919     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4920     break;
  4922   case SHUTDOWN1_SIGNAL:
  4923   case SHUTDOWN2_SIGNAL:
  4924   case SHUTDOWN3_SIGNAL:
  4925   case BREAK_SIGNAL:
  4926     jvmHandler = (address)user_handler();
  4927     break;
  4929   case INTERRUPT_SIGNAL:
  4930     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4931     break;
  4933   default:
  4934     if (sig == SR_signum) {
  4935       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4936     } else {
  4937       return;
  4939     break;
  4942   if (thisHandler != jvmHandler) {
  4943     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4944     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4945     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4946     // No need to check this sig any longer
  4947     sigaddset(&check_signal_done, sig);
  4948     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  4949     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  4950       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  4951                     exception_name(sig, buf, O_BUFLEN));
  4953   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4954     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4955     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4956     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4957     // No need to check this sig any longer
  4958     sigaddset(&check_signal_done, sig);
  4961   // Dump all the signal
  4962   if (sigismember(&check_signal_done, sig)) {
  4963     print_signal_handlers(tty, buf, O_BUFLEN);
  4967 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4969 extern bool signal_name(int signo, char* buf, size_t len);
  4971 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4972   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4973     // signal
  4974     if (!signal_name(exception_code, buf, size)) {
  4975       jio_snprintf(buf, size, "SIG%d", exception_code);
  4977     return buf;
  4978   } else {
  4979     return NULL;
  4983 // this is called _before_ the most of global arguments have been parsed
  4984 void os::init(void) {
  4985   char dummy;   /* used to get a guess on initial stack address */
  4986 //  first_hrtime = gethrtime();
  4988   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4989   // is different than the pid of the java launcher thread.
  4990   // So, on Linux, the launcher thread pid is passed to the VM
  4991   // via the sun.java.launcher.pid property.
  4992   // Use this property instead of getpid() if it was correctly passed.
  4993   // See bug 6351349.
  4994   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4996   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4998   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  5000   init_random(1234567);
  5002   ThreadCritical::initialize();
  5004   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  5005   if (Linux::page_size() == -1) {
  5006     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  5007                   strerror(errno)));
  5009   init_page_sizes((size_t) Linux::page_size());
  5011   Linux::initialize_system_info();
  5013   // main_thread points to the aboriginal thread
  5014   Linux::_main_thread = pthread_self();
  5016   Linux::clock_init();
  5017   initial_time_count = javaTimeNanos();
  5019   // pthread_condattr initialization for monotonic clock
  5020   int status;
  5021   pthread_condattr_t* _condattr = os::Linux::condAttr();
  5022   if ((status = pthread_condattr_init(_condattr)) != 0) {
  5023     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  5025   // Only set the clock if CLOCK_MONOTONIC is available
  5026   if (Linux::supports_monotonic_clock()) {
  5027     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  5028       if (status == EINVAL) {
  5029         warning("Unable to use monotonic clock with relative timed-waits" \
  5030                 " - changes to the time-of-day clock may have adverse affects");
  5031       } else {
  5032         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  5036   // else it defaults to CLOCK_REALTIME
  5038   pthread_mutex_init(&dl_mutex, NULL);
  5040   // If the pagesize of the VM is greater than 8K determine the appropriate
  5041   // number of initial guard pages.  The user can change this with the
  5042   // command line arguments, if needed.
  5043   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  5044     StackYellowPages = 1;
  5045     StackRedPages = 1;
  5046     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  5050 // To install functions for atexit system call
  5051 extern "C" {
  5052   static void perfMemory_exit_helper() {
  5053     perfMemory_exit();
  5057 void os::pd_init_container_support() {
  5058   OSContainer::init();
  5061 // this is called _after_ the global arguments have been parsed
  5062 jint os::init_2(void)
  5064   Linux::fast_thread_clock_init();
  5066   // Allocate a single page and mark it as readable for safepoint polling
  5067   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5068   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  5070   os::set_polling_page( polling_page );
  5072 #ifndef PRODUCT
  5073   if(Verbose && PrintMiscellaneous)
  5074     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  5075 #endif
  5077   if (!UseMembar) {
  5078     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  5079     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  5080     os::set_memory_serialize_page( mem_serialize_page );
  5082 #ifndef PRODUCT
  5083     if(Verbose && PrintMiscellaneous)
  5084       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  5085 #endif
  5088   // initialize suspend/resume support - must do this before signal_sets_init()
  5089   if (SR_initialize() != 0) {
  5090     perror("SR_initialize failed");
  5091     return JNI_ERR;
  5094   Linux::signal_sets_init();
  5095   Linux::install_signal_handlers();
  5097   // Check minimum allowable stack size for thread creation and to initialize
  5098   // the java system classes, including StackOverflowError - depends on page
  5099   // size.  Add a page for compiler2 recursion in main thread.
  5100   // Add in 2*BytesPerWord times page size to account for VM stack during
  5101   // class initialization depending on 32 or 64 bit VM.
  5102   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  5103             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  5104                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  5106   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5107   if (threadStackSizeInBytes != 0 &&
  5108       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  5109         tty->print_cr("\nThe stack size specified is too small, "
  5110                       "Specify at least %dk",
  5111                       os::Linux::min_stack_allowed/ K);
  5112         return JNI_ERR;
  5115   // Make the stack size a multiple of the page size so that
  5116   // the yellow/red zones can be guarded.
  5117   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5118         vm_page_size()));
  5120   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  5122 #if defined(IA32)
  5123   workaround_expand_exec_shield_cs_limit();
  5124 #endif
  5126   Linux::libpthread_init();
  5127   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  5128      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  5129           Linux::glibc_version(), Linux::libpthread_version(),
  5130           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  5133   if (UseNUMA) {
  5134     if (!Linux::libnuma_init()) {
  5135       UseNUMA = false;
  5136     } else {
  5137       if ((Linux::numa_max_node() < 1)) {
  5138         // There's only one node(they start from 0), disable NUMA.
  5139         UseNUMA = false;
  5142     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  5143     // we can make the adaptive lgrp chunk resizing work. If the user specified
  5144     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  5145     // disable adaptive resizing.
  5146     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  5147       if (FLAG_IS_DEFAULT(UseNUMA)) {
  5148         UseNUMA = false;
  5149       } else {
  5150         if (FLAG_IS_DEFAULT(UseLargePages) &&
  5151             FLAG_IS_DEFAULT(UseSHM) &&
  5152             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  5153           UseLargePages = false;
  5154         } else {
  5155           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  5156           UseAdaptiveSizePolicy = false;
  5157           UseAdaptiveNUMAChunkSizing = false;
  5161     if (!UseNUMA && ForceNUMA) {
  5162       UseNUMA = true;
  5166   if (MaxFDLimit) {
  5167     // set the number of file descriptors to max. print out error
  5168     // if getrlimit/setrlimit fails but continue regardless.
  5169     struct rlimit nbr_files;
  5170     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5171     if (status != 0) {
  5172       if (PrintMiscellaneous && (Verbose || WizardMode))
  5173         perror("os::init_2 getrlimit failed");
  5174     } else {
  5175       nbr_files.rlim_cur = nbr_files.rlim_max;
  5176       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5177       if (status != 0) {
  5178         if (PrintMiscellaneous && (Verbose || WizardMode))
  5179           perror("os::init_2 setrlimit failed");
  5184   // Initialize lock used to serialize thread creation (see os::create_thread)
  5185   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  5187   // at-exit methods are called in the reverse order of their registration.
  5188   // atexit functions are called on return from main or as a result of a
  5189   // call to exit(3C). There can be only 32 of these functions registered
  5190   // and atexit() does not set errno.
  5192   if (PerfAllowAtExitRegistration) {
  5193     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5194     // atexit functions can be delayed until process exit time, which
  5195     // can be problematic for embedded VM situations. Embedded VMs should
  5196     // call DestroyJavaVM() to assure that VM resources are released.
  5198     // note: perfMemory_exit_helper atexit function may be removed in
  5199     // the future if the appropriate cleanup code can be added to the
  5200     // VM_Exit VMOperation's doit method.
  5201     if (atexit(perfMemory_exit_helper) != 0) {
  5202       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5206   // initialize thread priority policy
  5207   prio_init();
  5209   return JNI_OK;
  5212 // Mark the polling page as unreadable
  5213 void os::make_polling_page_unreadable(void) {
  5214   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5215     fatal("Could not disable polling page");
  5216 };
  5218 // Mark the polling page as readable
  5219 void os::make_polling_page_readable(void) {
  5220   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5221     fatal("Could not enable polling page");
  5223 };
  5225 static int os_cpu_count(const cpu_set_t* cpus) {
  5226   int count = 0;
  5227   // only look up to the number of configured processors
  5228   for (int i = 0; i < os::processor_count(); i++) {
  5229     if (CPU_ISSET(i, cpus)) {
  5230       count++;
  5233   return count;
  5236 // Get the current number of available processors for this process.
  5237 // This value can change at any time during a process's lifetime.
  5238 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
  5239 // If anything goes wrong we fallback to returning the number of online
  5240 // processors - which can be greater than the number available to the process.
  5241 int os::Linux::active_processor_count() {
  5242   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
  5243   int cpus_size = sizeof(cpu_set_t);
  5244   int cpu_count = 0;
  5246   // pid 0 means the current thread - which we have to assume represents the process
  5247   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
  5248     cpu_count = os_cpu_count(&cpus);
  5249     if (PrintActiveCpus) {
  5250       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
  5253   else {
  5254     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
  5255     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
  5256             "which may exceed available processors", strerror(errno), cpu_count);
  5259   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
  5260   return cpu_count;
  5263 // Determine the active processor count from one of
  5264 // three different sources:
  5265 //
  5266 // 1. User option -XX:ActiveProcessorCount
  5267 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
  5268 // 3. extracted from cgroup cpu subsystem (shares and quotas)
  5269 //
  5270 // Option 1, if specified, will always override.
  5271 // If the cgroup subsystem is active and configured, we
  5272 // will return the min of the cgroup and option 2 results.
  5273 // This is required since tools, such as numactl, that
  5274 // alter cpu affinity do not update cgroup subsystem
  5275 // cpuset configuration files.
  5276 int os::active_processor_count() {
  5277   // User has overridden the number of active processors
  5278   if (ActiveProcessorCount > 0) {
  5279     if (PrintActiveCpus) {
  5280       tty->print_cr("active_processor_count: "
  5281                     "active processor count set by user : %d",
  5282                     ActiveProcessorCount);
  5284     return ActiveProcessorCount;
  5287   int active_cpus;
  5288   if (OSContainer::is_containerized()) {
  5289     active_cpus = OSContainer::active_processor_count();
  5290     if (PrintActiveCpus) {
  5291       tty->print_cr("active_processor_count: determined by OSContainer: %d",
  5292                      active_cpus);
  5294   } else {
  5295     active_cpus = os::Linux::active_processor_count();
  5298   return active_cpus;
  5301 void os::set_native_thread_name(const char *name) {
  5302   // Not yet implemented.
  5303   return;
  5306 bool os::distribute_processes(uint length, uint* distribution) {
  5307   // Not yet implemented.
  5308   return false;
  5311 bool os::bind_to_processor(uint processor_id) {
  5312   // Not yet implemented.
  5313   return false;
  5316 ///
  5318 void os::SuspendedThreadTask::internal_do_task() {
  5319   if (do_suspend(_thread->osthread())) {
  5320     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5321     do_task(context);
  5322     do_resume(_thread->osthread());
  5326 class PcFetcher : public os::SuspendedThreadTask {
  5327 public:
  5328   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5329   ExtendedPC result();
  5330 protected:
  5331   void do_task(const os::SuspendedThreadTaskContext& context);
  5332 private:
  5333   ExtendedPC _epc;
  5334 };
  5336 ExtendedPC PcFetcher::result() {
  5337   guarantee(is_done(), "task is not done yet.");
  5338   return _epc;
  5341 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5342   Thread* thread = context.thread();
  5343   OSThread* osthread = thread->osthread();
  5344   if (osthread->ucontext() != NULL) {
  5345     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5346   } else {
  5347     // NULL context is unexpected, double-check this is the VMThread
  5348     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5352 // Suspends the target using the signal mechanism and then grabs the PC before
  5353 // resuming the target. Used by the flat-profiler only
  5354 ExtendedPC os::get_thread_pc(Thread* thread) {
  5355   // Make sure that it is called by the watcher for the VMThread
  5356   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5357   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5359   PcFetcher fetcher(thread);
  5360   fetcher.run();
  5361   return fetcher.result();
  5364 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5366    if (is_NPTL()) {
  5367       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5368    } else {
  5369       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5370       // word back to default 64bit precision if condvar is signaled. Java
  5371       // wants 53bit precision.  Save and restore current value.
  5372       int fpu = get_fpu_control_word();
  5373       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5374       set_fpu_control_word(fpu);
  5375       return status;
  5379 ////////////////////////////////////////////////////////////////////////////////
  5380 // debug support
  5382 bool os::find(address addr, outputStream* st) {
  5383   Dl_info dlinfo;
  5384   memset(&dlinfo, 0, sizeof(dlinfo));
  5385   if (dladdr(addr, &dlinfo) != 0) {
  5386     st->print(PTR_FORMAT ": ", addr);
  5387     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5388       st->print("%s+%#x", dlinfo.dli_sname,
  5389                  addr - (intptr_t)dlinfo.dli_saddr);
  5390     } else if (dlinfo.dli_fbase != NULL) {
  5391       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5392     } else {
  5393       st->print("<absolute address>");
  5395     if (dlinfo.dli_fname != NULL) {
  5396       st->print(" in %s", dlinfo.dli_fname);
  5398     if (dlinfo.dli_fbase != NULL) {
  5399       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5401     st->cr();
  5403     if (Verbose) {
  5404       // decode some bytes around the PC
  5405       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5406       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5407       address       lowest = (address) dlinfo.dli_sname;
  5408       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5409       if (begin < lowest)  begin = lowest;
  5410       Dl_info dlinfo2;
  5411       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5412           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5413         end = (address) dlinfo2.dli_saddr;
  5414       Disassembler::decode(begin, end, st);
  5416     return true;
  5418   return false;
  5421 ////////////////////////////////////////////////////////////////////////////////
  5422 // misc
  5424 // This does not do anything on Linux. This is basically a hook for being
  5425 // able to use structured exception handling (thread-local exception filters)
  5426 // on, e.g., Win32.
  5427 void
  5428 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5429                          JavaCallArguments* args, Thread* thread) {
  5430   f(value, method, args, thread);
  5433 void os::print_statistics() {
  5436 int os::message_box(const char* title, const char* message) {
  5437   int i;
  5438   fdStream err(defaultStream::error_fd());
  5439   for (i = 0; i < 78; i++) err.print_raw("=");
  5440   err.cr();
  5441   err.print_raw_cr(title);
  5442   for (i = 0; i < 78; i++) err.print_raw("-");
  5443   err.cr();
  5444   err.print_raw_cr(message);
  5445   for (i = 0; i < 78; i++) err.print_raw("=");
  5446   err.cr();
  5448   char buf[16];
  5449   // Prevent process from exiting upon "read error" without consuming all CPU
  5450   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5452   return buf[0] == 'y' || buf[0] == 'Y';
  5455 int os::stat(const char *path, struct stat *sbuf) {
  5456   char pathbuf[MAX_PATH];
  5457   if (strlen(path) > MAX_PATH - 1) {
  5458     errno = ENAMETOOLONG;
  5459     return -1;
  5461   os::native_path(strcpy(pathbuf, path));
  5462   return ::stat(pathbuf, sbuf);
  5465 bool os::check_heap(bool force) {
  5466   return true;
  5469 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5470   return ::vsnprintf(buf, count, format, args);
  5473 // Is a (classpath) directory empty?
  5474 bool os::dir_is_empty(const char* path) {
  5475   DIR *dir = NULL;
  5476   struct dirent *ptr;
  5478   dir = opendir(path);
  5479   if (dir == NULL) return true;
  5481   /* Scan the directory */
  5482   bool result = true;
  5483   char buf[sizeof(struct dirent) + MAX_PATH];
  5484   while (result && (ptr = ::readdir(dir)) != NULL) {
  5485     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5486       result = false;
  5489   closedir(dir);
  5490   return result;
  5493 // This code originates from JDK's sysOpen and open64_w
  5494 // from src/solaris/hpi/src/system_md.c
  5496 #ifndef O_DELETE
  5497 #define O_DELETE 0x10000
  5498 #endif
  5500 // Open a file. Unlink the file immediately after open returns
  5501 // if the specified oflag has the O_DELETE flag set.
  5502 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5504 int os::open(const char *path, int oflag, int mode) {
  5506   if (strlen(path) > MAX_PATH - 1) {
  5507     errno = ENAMETOOLONG;
  5508     return -1;
  5510   int fd;
  5511   int o_delete = (oflag & O_DELETE);
  5512   oflag = oflag & ~O_DELETE;
  5514   fd = ::open64(path, oflag, mode);
  5515   if (fd == -1) return -1;
  5517   //If the open succeeded, the file might still be a directory
  5519     struct stat64 buf64;
  5520     int ret = ::fstat64(fd, &buf64);
  5521     int st_mode = buf64.st_mode;
  5523     if (ret != -1) {
  5524       if ((st_mode & S_IFMT) == S_IFDIR) {
  5525         errno = EISDIR;
  5526         ::close(fd);
  5527         return -1;
  5529     } else {
  5530       ::close(fd);
  5531       return -1;
  5535     /*
  5536      * All file descriptors that are opened in the JVM and not
  5537      * specifically destined for a subprocess should have the
  5538      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5539      * party native code might fork and exec without closing all
  5540      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5541      * UNIXProcess.c), and this in turn might:
  5543      * - cause end-of-file to fail to be detected on some file
  5544      *   descriptors, resulting in mysterious hangs, or
  5546      * - might cause an fopen in the subprocess to fail on a system
  5547      *   suffering from bug 1085341.
  5549      * (Yes, the default setting of the close-on-exec flag is a Unix
  5550      * design flaw)
  5552      * See:
  5553      * 1085341: 32-bit stdio routines should support file descriptors >255
  5554      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5555      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5556      */
  5557 #ifdef FD_CLOEXEC
  5559         int flags = ::fcntl(fd, F_GETFD);
  5560         if (flags != -1)
  5561             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5563 #endif
  5565   if (o_delete != 0) {
  5566     ::unlink(path);
  5568   return fd;
  5572 // create binary file, rewriting existing file if required
  5573 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5574   int oflags = O_WRONLY | O_CREAT;
  5575   if (!rewrite_existing) {
  5576     oflags |= O_EXCL;
  5578   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5581 // return current position of file pointer
  5582 jlong os::current_file_offset(int fd) {
  5583   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5586 // move file pointer to the specified offset
  5587 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5588   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5591 // This code originates from JDK's sysAvailable
  5592 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5594 int os::available(int fd, jlong *bytes) {
  5595   jlong cur, end;
  5596   int mode;
  5597   struct stat64 buf64;
  5599   if (::fstat64(fd, &buf64) >= 0) {
  5600     mode = buf64.st_mode;
  5601     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5602       /*
  5603       * XXX: is the following call interruptible? If so, this might
  5604       * need to go through the INTERRUPT_IO() wrapper as for other
  5605       * blocking, interruptible calls in this file.
  5606       */
  5607       int n;
  5608       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5609         *bytes = n;
  5610         return 1;
  5614   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5615     return 0;
  5616   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5617     return 0;
  5618   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5619     return 0;
  5621   *bytes = end - cur;
  5622   return 1;
  5625 int os::socket_available(int fd, jint *pbytes) {
  5626   // Linux doc says EINTR not returned, unlike Solaris
  5627   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5629   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5630   // is expected to return 0 on failure and 1 on success to the jdk.
  5631   return (ret < 0) ? 0 : 1;
  5634 // Map a block of memory.
  5635 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5636                      char *addr, size_t bytes, bool read_only,
  5637                      bool allow_exec) {
  5638   int prot;
  5639   int flags = MAP_PRIVATE;
  5641   if (read_only) {
  5642     prot = PROT_READ;
  5643   } else {
  5644     prot = PROT_READ | PROT_WRITE;
  5647   if (allow_exec) {
  5648     prot |= PROT_EXEC;
  5651   if (addr != NULL) {
  5652     flags |= MAP_FIXED;
  5655   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5656                                      fd, file_offset);
  5657   if (mapped_address == MAP_FAILED) {
  5658     return NULL;
  5660   return mapped_address;
  5664 // Remap a block of memory.
  5665 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5666                        char *addr, size_t bytes, bool read_only,
  5667                        bool allow_exec) {
  5668   // same as map_memory() on this OS
  5669   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5670                         allow_exec);
  5674 // Unmap a block of memory.
  5675 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5676   return munmap(addr, bytes) == 0;
  5679 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5681 static clockid_t thread_cpu_clockid(Thread* thread) {
  5682   pthread_t tid = thread->osthread()->pthread_id();
  5683   clockid_t clockid;
  5685   // Get thread clockid
  5686   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5687   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5688   return clockid;
  5691 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5692 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5693 // of a thread.
  5694 //
  5695 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5696 // the fast estimate available on the platform.
  5698 jlong os::current_thread_cpu_time() {
  5699   if (os::Linux::supports_fast_thread_cpu_time()) {
  5700     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5701   } else {
  5702     // return user + sys since the cost is the same
  5703     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5707 jlong os::thread_cpu_time(Thread* thread) {
  5708   // consistent with what current_thread_cpu_time() returns
  5709   if (os::Linux::supports_fast_thread_cpu_time()) {
  5710     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5711   } else {
  5712     return slow_thread_cpu_time(thread, true /* user + sys */);
  5716 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5717   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5718     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5719   } else {
  5720     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5724 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5725   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5726     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5727   } else {
  5728     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5732 //
  5733 //  -1 on error.
  5734 //
  5736 PRAGMA_DIAG_PUSH
  5737 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5738 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5739   static bool proc_task_unchecked = true;
  5740   static const char *proc_stat_path = "/proc/%d/stat";
  5741   pid_t  tid = thread->osthread()->thread_id();
  5742   char *s;
  5743   char stat[2048];
  5744   int statlen;
  5745   char proc_name[64];
  5746   int count;
  5747   long sys_time, user_time;
  5748   char cdummy;
  5749   int idummy;
  5750   long ldummy;
  5751   FILE *fp;
  5753   // The /proc/<tid>/stat aggregates per-process usage on
  5754   // new Linux kernels 2.6+ where NPTL is supported.
  5755   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5756   // See bug 6328462.
  5757   // There possibly can be cases where there is no directory
  5758   // /proc/self/task, so we check its availability.
  5759   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5760     // This is executed only once
  5761     proc_task_unchecked = false;
  5762     fp = fopen("/proc/self/task", "r");
  5763     if (fp != NULL) {
  5764       proc_stat_path = "/proc/self/task/%d/stat";
  5765       fclose(fp);
  5769   sprintf(proc_name, proc_stat_path, tid);
  5770   fp = fopen(proc_name, "r");
  5771   if ( fp == NULL ) return -1;
  5772   statlen = fread(stat, 1, 2047, fp);
  5773   stat[statlen] = '\0';
  5774   fclose(fp);
  5776   // Skip pid and the command string. Note that we could be dealing with
  5777   // weird command names, e.g. user could decide to rename java launcher
  5778   // to "java 1.4.2 :)", then the stat file would look like
  5779   //                1234 (java 1.4.2 :)) R ... ...
  5780   // We don't really need to know the command string, just find the last
  5781   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5782   s = strrchr(stat, ')');
  5783   if (s == NULL ) return -1;
  5785   // Skip blank chars
  5786   do s++; while (isspace(*s));
  5788   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5789                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5790                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5791                  &user_time, &sys_time);
  5792   if ( count != 13 ) return -1;
  5793   if (user_sys_cpu_time) {
  5794     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5795   } else {
  5796     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5799 PRAGMA_DIAG_POP
  5801 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5802   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5803   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5804   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5805   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5808 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5809   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5810   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5811   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5812   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5815 bool os::is_thread_cpu_time_supported() {
  5816   return true;
  5819 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5820 // Linux doesn't yet have a (official) notion of processor sets,
  5821 // so just return the system wide load average.
  5822 int os::loadavg(double loadavg[], int nelem) {
  5823   return ::getloadavg(loadavg, nelem);
  5826 void os::pause() {
  5827   char filename[MAX_PATH];
  5828   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5829     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5830   } else {
  5831     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5834   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5835   if (fd != -1) {
  5836     struct stat buf;
  5837     ::close(fd);
  5838     while (::stat(filename, &buf) == 0) {
  5839       (void)::poll(NULL, 0, 100);
  5841   } else {
  5842     jio_fprintf(stderr,
  5843       "Could not open pause file '%s', continuing immediately.\n", filename);
  5848 // Refer to the comments in os_solaris.cpp park-unpark.
  5849 //
  5850 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5851 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5852 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5853 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5854 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5855 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5856 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5857 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5858 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5859 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5860 // of libpthread avoids the problem, but isn't practical.
  5861 //
  5862 // Possible remedies:
  5863 //
  5864 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5865 //      This is palliative and probabilistic, however.  If the thread is preempted
  5866 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5867 //      than the minimum period may have passed, and the abstime may be stale (in the
  5868 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5869 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5870 //
  5871 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5872 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5873 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5874 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5875 //      thread.
  5876 //
  5877 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5878 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5879 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5880 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5881 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5882 //      timers in a graceful fashion.
  5883 //
  5884 // 4.   When the abstime value is in the past it appears that control returns
  5885 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5886 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5887 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5888 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5889 //      It may be possible to avoid reinitialization by checking the return
  5890 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5891 //      condvar we must establish the invariant that cond_signal() is only called
  5892 //      within critical sections protected by the adjunct mutex.  This prevents
  5893 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5894 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5895 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5896 //
  5897 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5898 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5899 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5900 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5901 //
  5902 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5903 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5904 // and only enabling the work-around for vulnerable environments.
  5906 // utility to compute the abstime argument to timedwait:
  5907 // millis is the relative timeout time
  5908 // abstime will be the absolute timeout time
  5909 // TODO: replace compute_abstime() with unpackTime()
  5911 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5912   if (millis < 0)  millis = 0;
  5914   jlong seconds = millis / 1000;
  5915   millis %= 1000;
  5916   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5917     seconds = 50000000;
  5920   if (os::Linux::supports_monotonic_clock()) {
  5921     struct timespec now;
  5922     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5923     assert_status(status == 0, status, "clock_gettime");
  5924     abstime->tv_sec = now.tv_sec  + seconds;
  5925     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5926     if (nanos >= NANOSECS_PER_SEC) {
  5927       abstime->tv_sec += 1;
  5928       nanos -= NANOSECS_PER_SEC;
  5930     abstime->tv_nsec = nanos;
  5931   } else {
  5932     struct timeval now;
  5933     int status = gettimeofday(&now, NULL);
  5934     assert(status == 0, "gettimeofday");
  5935     abstime->tv_sec = now.tv_sec  + seconds;
  5936     long usec = now.tv_usec + millis * 1000;
  5937     if (usec >= 1000000) {
  5938       abstime->tv_sec += 1;
  5939       usec -= 1000000;
  5941     abstime->tv_nsec = usec * 1000;
  5943   return abstime;
  5947 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5948 // Conceptually TryPark() should be equivalent to park(0).
  5950 int os::PlatformEvent::TryPark() {
  5951   for (;;) {
  5952     const int v = _Event ;
  5953     guarantee ((v == 0) || (v == 1), "invariant") ;
  5954     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5958 void os::PlatformEvent::park() {       // AKA "down()"
  5959   // Invariant: Only the thread associated with the Event/PlatformEvent
  5960   // may call park().
  5961   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5962   int v ;
  5963   for (;;) {
  5964       v = _Event ;
  5965       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5967   guarantee (v >= 0, "invariant") ;
  5968   if (v == 0) {
  5969      // Do this the hard way by blocking ...
  5970      int status = pthread_mutex_lock(_mutex);
  5971      assert_status(status == 0, status, "mutex_lock");
  5972      guarantee (_nParked == 0, "invariant") ;
  5973      ++ _nParked ;
  5974      while (_Event < 0) {
  5975         status = pthread_cond_wait(_cond, _mutex);
  5976         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5977         // Treat this the same as if the wait was interrupted
  5978         if (status == ETIME) { status = EINTR; }
  5979         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5981      -- _nParked ;
  5983     _Event = 0 ;
  5984      status = pthread_mutex_unlock(_mutex);
  5985      assert_status(status == 0, status, "mutex_unlock");
  5986     // Paranoia to ensure our locked and lock-free paths interact
  5987     // correctly with each other.
  5988     OrderAccess::fence();
  5990   guarantee (_Event >= 0, "invariant") ;
  5993 int os::PlatformEvent::park(jlong millis) {
  5994   guarantee (_nParked == 0, "invariant") ;
  5996   int v ;
  5997   for (;;) {
  5998       v = _Event ;
  5999       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  6001   guarantee (v >= 0, "invariant") ;
  6002   if (v != 0) return OS_OK ;
  6004   // We do this the hard way, by blocking the thread.
  6005   // Consider enforcing a minimum timeout value.
  6006   struct timespec abst;
  6007   compute_abstime(&abst, millis);
  6009   int ret = OS_TIMEOUT;
  6010   int status = pthread_mutex_lock(_mutex);
  6011   assert_status(status == 0, status, "mutex_lock");
  6012   guarantee (_nParked == 0, "invariant") ;
  6013   ++_nParked ;
  6015   // Object.wait(timo) will return because of
  6016   // (a) notification
  6017   // (b) timeout
  6018   // (c) thread.interrupt
  6019   //
  6020   // Thread.interrupt and object.notify{All} both call Event::set.
  6021   // That is, we treat thread.interrupt as a special case of notification.
  6022   // The underlying Solaris implementation, cond_timedwait, admits
  6023   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  6024   // JVM from making those visible to Java code.  As such, we must
  6025   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  6026   //
  6027   // TODO: properly differentiate simultaneous notify+interrupt.
  6028   // In that case, we should propagate the notify to another waiter.
  6030   while (_Event < 0) {
  6031     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  6032     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6033       pthread_cond_destroy (_cond);
  6034       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  6036     assert_status(status == 0 || status == EINTR ||
  6037                   status == ETIME || status == ETIMEDOUT,
  6038                   status, "cond_timedwait");
  6039     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  6040     if (status == ETIME || status == ETIMEDOUT) break ;
  6041     // We consume and ignore EINTR and spurious wakeups.
  6043   --_nParked ;
  6044   if (_Event >= 0) {
  6045      ret = OS_OK;
  6047   _Event = 0 ;
  6048   status = pthread_mutex_unlock(_mutex);
  6049   assert_status(status == 0, status, "mutex_unlock");
  6050   assert (_nParked == 0, "invariant") ;
  6051   // Paranoia to ensure our locked and lock-free paths interact
  6052   // correctly with each other.
  6053   OrderAccess::fence();
  6054   return ret;
  6057 void os::PlatformEvent::unpark() {
  6058   // Transitions for _Event:
  6059   //    0 :=> 1
  6060   //    1 :=> 1
  6061   //   -1 :=> either 0 or 1; must signal target thread
  6062   //          That is, we can safely transition _Event from -1 to either
  6063   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  6064   //          unpark() calls.
  6065   // See also: "Semaphores in Plan 9" by Mullender & Cox
  6066   //
  6067   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  6068   // that it will take two back-to-back park() calls for the owning
  6069   // thread to block. This has the benefit of forcing a spurious return
  6070   // from the first park() call after an unpark() call which will help
  6071   // shake out uses of park() and unpark() without condition variables.
  6073   if (Atomic::xchg(1, &_Event) >= 0) return;
  6075   // Wait for the thread associated with the event to vacate
  6076   int status = pthread_mutex_lock(_mutex);
  6077   assert_status(status == 0, status, "mutex_lock");
  6078   int AnyWaiters = _nParked;
  6079   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  6080   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  6081     AnyWaiters = 0;
  6082     pthread_cond_signal(_cond);
  6084   status = pthread_mutex_unlock(_mutex);
  6085   assert_status(status == 0, status, "mutex_unlock");
  6086   if (AnyWaiters != 0) {
  6087     status = pthread_cond_signal(_cond);
  6088     assert_status(status == 0, status, "cond_signal");
  6091   // Note that we signal() _after dropping the lock for "immortal" Events.
  6092   // This is safe and avoids a common class of  futile wakeups.  In rare
  6093   // circumstances this can cause a thread to return prematurely from
  6094   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  6095   // simply re-test the condition and re-park itself.
  6099 // JSR166
  6100 // -------------------------------------------------------
  6102 /*
  6103  * The solaris and linux implementations of park/unpark are fairly
  6104  * conservative for now, but can be improved. They currently use a
  6105  * mutex/condvar pair, plus a a count.
  6106  * Park decrements count if > 0, else does a condvar wait.  Unpark
  6107  * sets count to 1 and signals condvar.  Only one thread ever waits
  6108  * on the condvar. Contention seen when trying to park implies that someone
  6109  * is unparking you, so don't wait. And spurious returns are fine, so there
  6110  * is no need to track notifications.
  6111  */
  6113 /*
  6114  * This code is common to linux and solaris and will be moved to a
  6115  * common place in dolphin.
  6117  * The passed in time value is either a relative time in nanoseconds
  6118  * or an absolute time in milliseconds. Either way it has to be unpacked
  6119  * into suitable seconds and nanoseconds components and stored in the
  6120  * given timespec structure.
  6121  * Given time is a 64-bit value and the time_t used in the timespec is only
  6122  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6123  * overflow if times way in the future are given. Further on Solaris versions
  6124  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6125  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6126  * As it will be 28 years before "now + 100000000" will overflow we can
  6127  * ignore overflow and just impose a hard-limit on seconds using the value
  6128  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6129  * years from "now".
  6130  */
  6132 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6133   assert (time > 0, "convertTime");
  6134   time_t max_secs = 0;
  6136   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  6137     struct timeval now;
  6138     int status = gettimeofday(&now, NULL);
  6139     assert(status == 0, "gettimeofday");
  6141     max_secs = now.tv_sec + MAX_SECS;
  6143     if (isAbsolute) {
  6144       jlong secs = time / 1000;
  6145       if (secs > max_secs) {
  6146         absTime->tv_sec = max_secs;
  6147       } else {
  6148         absTime->tv_sec = secs;
  6150       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6151     } else {
  6152       jlong secs = time / NANOSECS_PER_SEC;
  6153       if (secs >= MAX_SECS) {
  6154         absTime->tv_sec = max_secs;
  6155         absTime->tv_nsec = 0;
  6156       } else {
  6157         absTime->tv_sec = now.tv_sec + secs;
  6158         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6159         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6160           absTime->tv_nsec -= NANOSECS_PER_SEC;
  6161           ++absTime->tv_sec; // note: this must be <= max_secs
  6165   } else {
  6166     // must be relative using monotonic clock
  6167     struct timespec now;
  6168     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  6169     assert_status(status == 0, status, "clock_gettime");
  6170     max_secs = now.tv_sec + MAX_SECS;
  6171     jlong secs = time / NANOSECS_PER_SEC;
  6172     if (secs >= MAX_SECS) {
  6173       absTime->tv_sec = max_secs;
  6174       absTime->tv_nsec = 0;
  6175     } else {
  6176       absTime->tv_sec = now.tv_sec + secs;
  6177       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  6178       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6179         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6180         ++absTime->tv_sec; // note: this must be <= max_secs
  6184   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6185   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6186   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6187   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6190 void Parker::park(bool isAbsolute, jlong time) {
  6191   // Ideally we'd do something useful while spinning, such
  6192   // as calling unpackTime().
  6194   // Optional fast-path check:
  6195   // Return immediately if a permit is available.
  6196   // We depend on Atomic::xchg() having full barrier semantics
  6197   // since we are doing a lock-free update to _counter.
  6198   if (Atomic::xchg(0, &_counter) > 0) return;
  6200   Thread* thread = Thread::current();
  6201   assert(thread->is_Java_thread(), "Must be JavaThread");
  6202   JavaThread *jt = (JavaThread *)thread;
  6204   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  6205   // Check interrupt before trying to wait
  6206   if (Thread::is_interrupted(thread, false)) {
  6207     return;
  6210   // Next, demultiplex/decode time arguments
  6211   timespec absTime;
  6212   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6213     return;
  6215   if (time > 0) {
  6216     unpackTime(&absTime, isAbsolute, time);
  6220   // Enter safepoint region
  6221   // Beware of deadlocks such as 6317397.
  6222   // The per-thread Parker:: mutex is a classic leaf-lock.
  6223   // In particular a thread must never block on the Threads_lock while
  6224   // holding the Parker:: mutex.  If safepoints are pending both the
  6225   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6226   ThreadBlockInVM tbivm(jt);
  6228   // Don't wait if cannot get lock since interference arises from
  6229   // unblocking.  Also. check interrupt before trying wait
  6230   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  6231     return;
  6234   int status ;
  6235   if (_counter > 0)  { // no wait needed
  6236     _counter = 0;
  6237     status = pthread_mutex_unlock(_mutex);
  6238     assert (status == 0, "invariant") ;
  6239     // Paranoia to ensure our locked and lock-free paths interact
  6240     // correctly with each other and Java-level accesses.
  6241     OrderAccess::fence();
  6242     return;
  6245 #ifdef ASSERT
  6246   // Don't catch signals while blocked; let the running threads have the signals.
  6247   // (This allows a debugger to break into the running thread.)
  6248   sigset_t oldsigs;
  6249   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  6250   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6251 #endif
  6253   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6254   jt->set_suspend_equivalent();
  6255   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6257   assert(_cur_index == -1, "invariant");
  6258   if (time == 0) {
  6259     _cur_index = REL_INDEX; // arbitrary choice when not timed
  6260     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  6261   } else {
  6262     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  6263     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  6264     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6265       pthread_cond_destroy (&_cond[_cur_index]) ;
  6266       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  6269   _cur_index = -1;
  6270   assert_status(status == 0 || status == EINTR ||
  6271                 status == ETIME || status == ETIMEDOUT,
  6272                 status, "cond_timedwait");
  6274 #ifdef ASSERT
  6275   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6276 #endif
  6278   _counter = 0 ;
  6279   status = pthread_mutex_unlock(_mutex) ;
  6280   assert_status(status == 0, status, "invariant") ;
  6281   // Paranoia to ensure our locked and lock-free paths interact
  6282   // correctly with each other and Java-level accesses.
  6283   OrderAccess::fence();
  6285   // If externally suspended while waiting, re-suspend
  6286   if (jt->handle_special_suspend_equivalent_condition()) {
  6287     jt->java_suspend_self();
  6291 void Parker::unpark() {
  6292   int s, status ;
  6293   status = pthread_mutex_lock(_mutex);
  6294   assert (status == 0, "invariant") ;
  6295   s = _counter;
  6296   _counter = 1;
  6297   if (s < 1) {
  6298     // thread might be parked
  6299     if (_cur_index != -1) {
  6300       // thread is definitely parked
  6301       if (WorkAroundNPTLTimedWaitHang) {
  6302         status = pthread_cond_signal (&_cond[_cur_index]);
  6303         assert (status == 0, "invariant");
  6304         status = pthread_mutex_unlock(_mutex);
  6305         assert (status == 0, "invariant");
  6306       } else {
  6307         // must capture correct index before unlocking
  6308         int index = _cur_index;
  6309         status = pthread_mutex_unlock(_mutex);
  6310         assert (status == 0, "invariant");
  6311         status = pthread_cond_signal (&_cond[index]);
  6312         assert (status == 0, "invariant");
  6314     } else {
  6315       pthread_mutex_unlock(_mutex);
  6316       assert (status == 0, "invariant") ;
  6318   } else {
  6319     pthread_mutex_unlock(_mutex);
  6320     assert (status == 0, "invariant") ;
  6325 extern char** environ;
  6327 // Run the specified command in a separate process. Return its exit value,
  6328 // or -1 on failure (e.g. can't fork a new process).
  6329 // Unlike system(), this function can be called from signal handler. It
  6330 // doesn't block SIGINT et al.
  6331 int os::fork_and_exec(char* cmd) {
  6332   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6334   pid_t pid = fork();
  6336   if (pid < 0) {
  6337     // fork failed
  6338     return -1;
  6340   } else if (pid == 0) {
  6341     // child process
  6343     execve("/bin/sh", (char* const*)argv, environ);
  6345     // execve failed
  6346     _exit(-1);
  6348   } else  {
  6349     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6350     // care about the actual exit code, for now.
  6352     int status;
  6354     // Wait for the child process to exit.  This returns immediately if
  6355     // the child has already exited. */
  6356     while (waitpid(pid, &status, 0) < 0) {
  6357         switch (errno) {
  6358         case ECHILD: return 0;
  6359         case EINTR: break;
  6360         default: return -1;
  6364     if (WIFEXITED(status)) {
  6365        // The child exited normally; get its exit code.
  6366        return WEXITSTATUS(status);
  6367     } else if (WIFSIGNALED(status)) {
  6368        // The child exited because of a signal
  6369        // The best value to return is 0x80 + signal number,
  6370        // because that is what all Unix shells do, and because
  6371        // it allows callers to distinguish between process exit and
  6372        // process death by signal.
  6373        return 0x80 + WTERMSIG(status);
  6374     } else {
  6375        // Unknown exit code; pass it through
  6376        return status;
  6381 // is_headless_jre()
  6382 //
  6383 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6384 // in order to report if we are running in a headless jre
  6385 //
  6386 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6387 // as libawt.so, and renamed libawt_xawt.so
  6388 //
  6389 bool os::is_headless_jre() {
  6390     struct stat statbuf;
  6391     char buf[MAXPATHLEN];
  6392     char libmawtpath[MAXPATHLEN];
  6393     const char *xawtstr  = "/xawt/libmawt.so";
  6394     const char *new_xawtstr = "/libawt_xawt.so";
  6395     char *p;
  6397     // Get path to libjvm.so
  6398     os::jvm_path(buf, sizeof(buf));
  6400     // Get rid of libjvm.so
  6401     p = strrchr(buf, '/');
  6402     if (p == NULL) return false;
  6403     else *p = '\0';
  6405     // Get rid of client or server
  6406     p = strrchr(buf, '/');
  6407     if (p == NULL) return false;
  6408     else *p = '\0';
  6410     // check xawt/libmawt.so
  6411     strcpy(libmawtpath, buf);
  6412     strcat(libmawtpath, xawtstr);
  6413     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6415     // check libawt_xawt.so
  6416     strcpy(libmawtpath, buf);
  6417     strcat(libmawtpath, new_xawtstr);
  6418     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6420     return true;
  6423 // Get the default path to the core file
  6424 // Returns the length of the string
  6425 int os::get_core_path(char* buffer, size_t bufferSize) {
  6426   const char* p = get_current_directory(buffer, bufferSize);
  6428   if (p == NULL) {
  6429     assert(p != NULL, "failed to get current directory");
  6430     return 0;
  6433   return strlen(buffer);
  6436 /////////////// Unit tests ///////////////
  6438 #ifndef PRODUCT
  6440 #define test_log(...) \
  6441   do {\
  6442     if (VerboseInternalVMTests) { \
  6443       tty->print_cr(__VA_ARGS__); \
  6444       tty->flush(); \
  6445     }\
  6446   } while (false)
  6448 class TestReserveMemorySpecial : AllStatic {
  6449  public:
  6450   static void small_page_write(void* addr, size_t size) {
  6451     size_t page_size = os::vm_page_size();
  6453     char* end = (char*)addr + size;
  6454     for (char* p = (char*)addr; p < end; p += page_size) {
  6455       *p = 1;
  6459   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6460     if (!UseHugeTLBFS) {
  6461       return;
  6464     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6466     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6468     if (addr != NULL) {
  6469       small_page_write(addr, size);
  6471       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6475   static void test_reserve_memory_special_huge_tlbfs_only() {
  6476     if (!UseHugeTLBFS) {
  6477       return;
  6480     size_t lp = os::large_page_size();
  6482     for (size_t size = lp; size <= lp * 10; size += lp) {
  6483       test_reserve_memory_special_huge_tlbfs_only(size);
  6487   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6488     size_t lp = os::large_page_size();
  6489     size_t ag = os::vm_allocation_granularity();
  6491     // sizes to test
  6492     const size_t sizes[] = {
  6493       lp, lp + ag, lp + lp / 2, lp * 2,
  6494       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6495       lp * 10, lp * 10 + lp / 2
  6496     };
  6497     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6499     // For each size/alignment combination, we test three scenarios:
  6500     // 1) with req_addr == NULL
  6501     // 2) with a non-null req_addr at which we expect to successfully allocate
  6502     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6503     //    expect the allocation to either fail or to ignore req_addr
  6505     // Pre-allocate two areas; they shall be as large as the largest allocation
  6506     //  and aligned to the largest alignment we will be testing.
  6507     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6508     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6509       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6510       -1, 0);
  6511     assert(mapping1 != MAP_FAILED, "should work");
  6513     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6514       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6515       -1, 0);
  6516     assert(mapping2 != MAP_FAILED, "should work");
  6518     // Unmap the first mapping, but leave the second mapping intact: the first
  6519     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6520     // mapping, still intact, as "bad" req_addr (case 3).
  6521     ::munmap(mapping1, mapping_size);
  6523     // Case 1
  6524     test_log("%s, req_addr NULL:", __FUNCTION__);
  6525     test_log("size            align           result");
  6527     for (int i = 0; i < num_sizes; i++) {
  6528       const size_t size = sizes[i];
  6529       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6530         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6531         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6532             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6533         if (p != NULL) {
  6534           assert(is_ptr_aligned(p, alignment), "must be");
  6535           small_page_write(p, size);
  6536           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6541     // Case 2
  6542     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6543     test_log("size            align           req_addr         result");
  6545     for (int i = 0; i < num_sizes; i++) {
  6546       const size_t size = sizes[i];
  6547       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6548         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6549         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6550         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6551             size, alignment, req_addr, p,
  6552             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6553         if (p != NULL) {
  6554           assert(p == req_addr, "must be");
  6555           small_page_write(p, size);
  6556           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6561     // Case 3
  6562     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6563     test_log("size            align           req_addr         result");
  6565     for (int i = 0; i < num_sizes; i++) {
  6566       const size_t size = sizes[i];
  6567       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6568         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6569         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6570         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6571             size, alignment, req_addr, p,
  6572             ((p != NULL ? "" : "(failed)")));
  6573         // as the area around req_addr contains already existing mappings, the API should always
  6574         // return NULL (as per contract, it cannot return another address)
  6575         assert(p == NULL, "must be");
  6579     ::munmap(mapping2, mapping_size);
  6583   static void test_reserve_memory_special_huge_tlbfs() {
  6584     if (!UseHugeTLBFS) {
  6585       return;
  6588     test_reserve_memory_special_huge_tlbfs_only();
  6589     test_reserve_memory_special_huge_tlbfs_mixed();
  6592   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6593     if (!UseSHM) {
  6594       return;
  6597     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6599     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6601     if (addr != NULL) {
  6602       assert(is_ptr_aligned(addr, alignment), "Check");
  6603       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6605       small_page_write(addr, size);
  6607       os::Linux::release_memory_special_shm(addr, size);
  6611   static void test_reserve_memory_special_shm() {
  6612     size_t lp = os::large_page_size();
  6613     size_t ag = os::vm_allocation_granularity();
  6615     for (size_t size = ag; size < lp * 3; size += ag) {
  6616       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6617         test_reserve_memory_special_shm(size, alignment);
  6622   static void test() {
  6623     test_reserve_memory_special_huge_tlbfs();
  6624     test_reserve_memory_special_shm();
  6626 };
  6628 void TestReserveMemorySpecial_test() {
  6629   TestReserveMemorySpecial::test();
  6632 #endif

mercurial