src/share/vm/runtime/thread.cpp

Sun, 21 Apr 2013 20:41:04 -0700

author
dcubed
date
Sun, 21 Apr 2013 20:41:04 -0700
changeset 4967
5a9fa2ba85f0
parent 4962
6f817ce50129
child 5022
caac22686b17
permissions
-rw-r--r--

8012907: anti-delta fix for 8010992
Summary: anti-delta fix for 8010992 until 8012902 can be fixed
Reviewed-by: acorn, minqi, rdurbin

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/linkResolver.hpp"
    34 #include "interpreter/oopMapCache.hpp"
    35 #include "jvmtifiles/jvmtiEnv.hpp"
    36 #include "memory/gcLocker.inline.hpp"
    37 #include "memory/metaspaceShared.hpp"
    38 #include "memory/oopFactory.hpp"
    39 #include "memory/universe.inline.hpp"
    40 #include "oops/instanceKlass.hpp"
    41 #include "oops/objArrayOop.hpp"
    42 #include "oops/oop.inline.hpp"
    43 #include "oops/symbol.hpp"
    44 #include "prims/jvm_misc.hpp"
    45 #include "prims/jvmtiExport.hpp"
    46 #include "prims/jvmtiThreadState.hpp"
    47 #include "prims/privilegedStack.hpp"
    48 #include "runtime/aprofiler.hpp"
    49 #include "runtime/arguments.hpp"
    50 #include "runtime/biasedLocking.hpp"
    51 #include "runtime/deoptimization.hpp"
    52 #include "runtime/fprofiler.hpp"
    53 #include "runtime/frame.inline.hpp"
    54 #include "runtime/init.hpp"
    55 #include "runtime/interfaceSupport.hpp"
    56 #include "runtime/java.hpp"
    57 #include "runtime/javaCalls.hpp"
    58 #include "runtime/jniPeriodicChecker.hpp"
    59 #include "runtime/memprofiler.hpp"
    60 #include "runtime/mutexLocker.hpp"
    61 #include "runtime/objectMonitor.hpp"
    62 #include "runtime/osThread.hpp"
    63 #include "runtime/safepoint.hpp"
    64 #include "runtime/sharedRuntime.hpp"
    65 #include "runtime/statSampler.hpp"
    66 #include "runtime/stubRoutines.hpp"
    67 #include "runtime/task.hpp"
    68 #include "runtime/thread.inline.hpp"
    69 #include "runtime/threadCritical.hpp"
    70 #include "runtime/threadLocalStorage.hpp"
    71 #include "runtime/vframe.hpp"
    72 #include "runtime/vframeArray.hpp"
    73 #include "runtime/vframe_hp.hpp"
    74 #include "runtime/vmThread.hpp"
    75 #include "runtime/vm_operations.hpp"
    76 #include "services/attachListener.hpp"
    77 #include "services/management.hpp"
    78 #include "services/memTracker.hpp"
    79 #include "services/threadService.hpp"
    80 #include "trace/traceEventTypes.hpp"
    81 #include "utilities/defaultStream.hpp"
    82 #include "utilities/dtrace.hpp"
    83 #include "utilities/events.hpp"
    84 #include "utilities/preserveException.hpp"
    85 #include "utilities/macros.hpp"
    86 #ifdef TARGET_OS_FAMILY_linux
    87 # include "os_linux.inline.hpp"
    88 #endif
    89 #ifdef TARGET_OS_FAMILY_solaris
    90 # include "os_solaris.inline.hpp"
    91 #endif
    92 #ifdef TARGET_OS_FAMILY_windows
    93 # include "os_windows.inline.hpp"
    94 #endif
    95 #ifdef TARGET_OS_FAMILY_bsd
    96 # include "os_bsd.inline.hpp"
    97 #endif
    98 #if INCLUDE_ALL_GCS
    99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
   100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
   101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
   102 #endif // INCLUDE_ALL_GCS
   103 #ifdef COMPILER1
   104 #include "c1/c1_Compiler.hpp"
   105 #endif
   106 #ifdef COMPILER2
   107 #include "opto/c2compiler.hpp"
   108 #include "opto/idealGraphPrinter.hpp"
   109 #endif
   111 #ifdef DTRACE_ENABLED
   113 // Only bother with this argument setup if dtrace is available
   115 #ifndef USDT2
   116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
   117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
   118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
   119   intptr_t, intptr_t, bool);
   120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
   121   intptr_t, intptr_t, bool);
   123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   124   {                                                                        \
   125     ResourceMark rm(this);                                                 \
   126     int len = 0;                                                           \
   127     const char* name = (javathread)->get_thread_name();                    \
   128     len = strlen(name);                                                    \
   129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
   130       name, len,                                                           \
   131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   132       (javathread)->osthread()->thread_id(),                               \
   133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   134   }
   136 #else /* USDT2 */
   138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
   139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
   141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
   142   {                                                                        \
   143     ResourceMark rm(this);                                                 \
   144     int len = 0;                                                           \
   145     const char* name = (javathread)->get_thread_name();                    \
   146     len = strlen(name);                                                    \
   147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
   148       (char *) name, len,                                                           \
   149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
   150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
   151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
   152   }
   154 #endif /* USDT2 */
   156 #else //  ndef DTRACE_ENABLED
   158 #define DTRACE_THREAD_PROBE(probe, javathread)
   160 #endif // ndef DTRACE_ENABLED
   163 // Class hierarchy
   164 // - Thread
   165 //   - VMThread
   166 //   - WatcherThread
   167 //   - ConcurrentMarkSweepThread
   168 //   - JavaThread
   169 //     - CompilerThread
   171 // ======= Thread ========
   172 // Support for forcing alignment of thread objects for biased locking
   173 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
   174   if (UseBiasedLocking) {
   175     const int alignment = markOopDesc::biased_lock_alignment;
   176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
   177     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
   178                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
   179                                               AllocFailStrategy::RETURN_NULL);
   180     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
   181     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
   182            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
   183            "JavaThread alignment code overflowed allocated storage");
   184     if (TraceBiasedLocking) {
   185       if (aligned_addr != real_malloc_addr)
   186         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
   187                       real_malloc_addr, aligned_addr);
   188     }
   189     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
   190     return aligned_addr;
   191   } else {
   192     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
   193                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
   194   }
   195 }
   197 void Thread::operator delete(void* p) {
   198   if (UseBiasedLocking) {
   199     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
   200     FreeHeap(real_malloc_addr, mtThread);
   201   } else {
   202     FreeHeap(p, mtThread);
   203   }
   204 }
   207 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   208 // JavaThread
   211 Thread::Thread() {
   212   // stack and get_thread
   213   set_stack_base(NULL);
   214   set_stack_size(0);
   215   set_self_raw_id(0);
   216   set_lgrp_id(-1);
   218   // allocated data structures
   219   set_osthread(NULL);
   220   set_resource_area(new (mtThread)ResourceArea());
   221   set_handle_area(new (mtThread) HandleArea(NULL));
   222   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(300, true));
   223   set_active_handles(NULL);
   224   set_free_handle_block(NULL);
   225   set_last_handle_mark(NULL);
   227   // This initial value ==> never claimed.
   228   _oops_do_parity = 0;
   230   // the handle mark links itself to last_handle_mark
   231   new HandleMark(this);
   233   // plain initialization
   234   debug_only(_owned_locks = NULL;)
   235   debug_only(_allow_allocation_count = 0;)
   236   NOT_PRODUCT(_allow_safepoint_count = 0;)
   237   NOT_PRODUCT(_skip_gcalot = false;)
   238   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   239   _jvmti_env_iteration_count = 0;
   240   set_allocated_bytes(0);
   241   set_trace_buffer(NULL);
   242   _vm_operation_started_count = 0;
   243   _vm_operation_completed_count = 0;
   244   _current_pending_monitor = NULL;
   245   _current_pending_monitor_is_from_java = true;
   246   _current_waiting_monitor = NULL;
   247   _num_nested_signal = 0;
   248   omFreeList = NULL ;
   249   omFreeCount = 0 ;
   250   omFreeProvision = 32 ;
   251   omInUseList = NULL ;
   252   omInUseCount = 0 ;
   254 #ifdef ASSERT
   255   _visited_for_critical_count = false;
   256 #endif
   258   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   259   _suspend_flags = 0;
   261   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   262   _hashStateX = os::random() ;
   263   _hashStateY = 842502087 ;
   264   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   265   _hashStateW = 273326509 ;
   267   _OnTrap   = 0 ;
   268   _schedctl = NULL ;
   269   _Stalled  = 0 ;
   270   _TypeTag  = 0x2BAD ;
   272   // Many of the following fields are effectively final - immutable
   273   // Note that nascent threads can't use the Native Monitor-Mutex
   274   // construct until the _MutexEvent is initialized ...
   275   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   276   // we might instead use a stack of ParkEvents that we could provision on-demand.
   277   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   278   // and ::Release()
   279   _ParkEvent   = ParkEvent::Allocate (this) ;
   280   _SleepEvent  = ParkEvent::Allocate (this) ;
   281   _MutexEvent  = ParkEvent::Allocate (this) ;
   282   _MuxEvent    = ParkEvent::Allocate (this) ;
   284 #ifdef CHECK_UNHANDLED_OOPS
   285   if (CheckUnhandledOops) {
   286     _unhandled_oops = new UnhandledOops(this);
   287   }
   288 #endif // CHECK_UNHANDLED_OOPS
   289 #ifdef ASSERT
   290   if (UseBiasedLocking) {
   291     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   292     assert(this == _real_malloc_address ||
   293            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   294            "bug in forced alignment of thread objects");
   295   }
   296 #endif /* ASSERT */
   297 }
   299 void Thread::initialize_thread_local_storage() {
   300   // Note: Make sure this method only calls
   301   // non-blocking operations. Otherwise, it might not work
   302   // with the thread-startup/safepoint interaction.
   304   // During Java thread startup, safepoint code should allow this
   305   // method to complete because it may need to allocate memory to
   306   // store information for the new thread.
   308   // initialize structure dependent on thread local storage
   309   ThreadLocalStorage::set_thread(this);
   310 }
   312 void Thread::record_stack_base_and_size() {
   313   set_stack_base(os::current_stack_base());
   314   set_stack_size(os::current_stack_size());
   315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
   316   // in initialize_thread(). Without the adjustment, stack size is
   317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
   318   // So far, only Solaris has real implementation of initialize_thread().
   319   //
   320   // set up any platform-specific state.
   321   os::initialize_thread(this);
   323 #if INCLUDE_NMT
   324   // record thread's native stack, stack grows downward
   325   address stack_low_addr = stack_base() - stack_size();
   326   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
   327       CURRENT_PC);
   328 #endif // INCLUDE_NMT
   329 }
   332 Thread::~Thread() {
   333   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   334   ObjectSynchronizer::omFlush (this) ;
   336   // stack_base can be NULL if the thread is never started or exited before
   337   // record_stack_base_and_size called. Although, we would like to ensure
   338   // that all started threads do call record_stack_base_and_size(), there is
   339   // not proper way to enforce that.
   340 #if INCLUDE_NMT
   341   if (_stack_base != NULL) {
   342     address low_stack_addr = stack_base() - stack_size();
   343     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
   344 #ifdef ASSERT
   345     set_stack_base(NULL);
   346 #endif
   347   }
   348 #endif // INCLUDE_NMT
   350   // deallocate data structures
   351   delete resource_area();
   352   // since the handle marks are using the handle area, we have to deallocated the root
   353   // handle mark before deallocating the thread's handle area,
   354   assert(last_handle_mark() != NULL, "check we have an element");
   355   delete last_handle_mark();
   356   assert(last_handle_mark() == NULL, "check we have reached the end");
   358   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   359   // We NULL out the fields for good hygiene.
   360   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   361   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   362   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   363   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   365   delete handle_area();
   366   delete metadata_handles();
   368   // osthread() can be NULL, if creation of thread failed.
   369   if (osthread() != NULL) os::free_thread(osthread());
   371   delete _SR_lock;
   373   // clear thread local storage if the Thread is deleting itself
   374   if (this == Thread::current()) {
   375     ThreadLocalStorage::set_thread(NULL);
   376   } else {
   377     // In the case where we're not the current thread, invalidate all the
   378     // caches in case some code tries to get the current thread or the
   379     // thread that was destroyed, and gets stale information.
   380     ThreadLocalStorage::invalidate_all();
   381   }
   382   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   383 }
   385 // NOTE: dummy function for assertion purpose.
   386 void Thread::run() {
   387   ShouldNotReachHere();
   388 }
   390 #ifdef ASSERT
   391 // Private method to check for dangling thread pointer
   392 void check_for_dangling_thread_pointer(Thread *thread) {
   393  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   394          "possibility of dangling Thread pointer");
   395 }
   396 #endif
   399 #ifndef PRODUCT
   400 // Tracing method for basic thread operations
   401 void Thread::trace(const char* msg, const Thread* const thread) {
   402   if (!TraceThreadEvents) return;
   403   ResourceMark rm;
   404   ThreadCritical tc;
   405   const char *name = "non-Java thread";
   406   int prio = -1;
   407   if (thread->is_Java_thread()
   408       && !thread->is_Compiler_thread()) {
   409     // The Threads_lock must be held to get information about
   410     // this thread but may not be in some situations when
   411     // tracing  thread events.
   412     bool release_Threads_lock = false;
   413     if (!Threads_lock->owned_by_self()) {
   414       Threads_lock->lock();
   415       release_Threads_lock = true;
   416     }
   417     JavaThread* jt = (JavaThread *)thread;
   418     name = (char *)jt->get_thread_name();
   419     oop thread_oop = jt->threadObj();
   420     if (thread_oop != NULL) {
   421       prio = java_lang_Thread::priority(thread_oop);
   422     }
   423     if (release_Threads_lock) {
   424       Threads_lock->unlock();
   425     }
   426   }
   427   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   428 }
   429 #endif
   432 ThreadPriority Thread::get_priority(const Thread* const thread) {
   433   trace("get priority", thread);
   434   ThreadPriority priority;
   435   // Can return an error!
   436   (void)os::get_priority(thread, priority);
   437   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   438   return priority;
   439 }
   441 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   442   trace("set priority", thread);
   443   debug_only(check_for_dangling_thread_pointer(thread);)
   444   // Can return an error!
   445   (void)os::set_priority(thread, priority);
   446 }
   449 void Thread::start(Thread* thread) {
   450   trace("start", thread);
   451   // Start is different from resume in that its safety is guaranteed by context or
   452   // being called from a Java method synchronized on the Thread object.
   453   if (!DisableStartThread) {
   454     if (thread->is_Java_thread()) {
   455       // Initialize the thread state to RUNNABLE before starting this thread.
   456       // Can not set it after the thread started because we do not know the
   457       // exact thread state at that time. It could be in MONITOR_WAIT or
   458       // in SLEEPING or some other state.
   459       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   460                                           java_lang_Thread::RUNNABLE);
   461     }
   462     os::start_thread(thread);
   463   }
   464 }
   466 // Enqueue a VM_Operation to do the job for us - sometime later
   467 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   468   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   469   VMThread::execute(vm_stop);
   470 }
   473 //
   474 // Check if an external suspend request has completed (or has been
   475 // cancelled). Returns true if the thread is externally suspended and
   476 // false otherwise.
   477 //
   478 // The bits parameter returns information about the code path through
   479 // the routine. Useful for debugging:
   480 //
   481 // set in is_ext_suspend_completed():
   482 // 0x00000001 - routine was entered
   483 // 0x00000010 - routine return false at end
   484 // 0x00000100 - thread exited (return false)
   485 // 0x00000200 - suspend request cancelled (return false)
   486 // 0x00000400 - thread suspended (return true)
   487 // 0x00001000 - thread is in a suspend equivalent state (return true)
   488 // 0x00002000 - thread is native and walkable (return true)
   489 // 0x00004000 - thread is native_trans and walkable (needed retry)
   490 //
   491 // set in wait_for_ext_suspend_completion():
   492 // 0x00010000 - routine was entered
   493 // 0x00020000 - suspend request cancelled before loop (return false)
   494 // 0x00040000 - thread suspended before loop (return true)
   495 // 0x00080000 - suspend request cancelled in loop (return false)
   496 // 0x00100000 - thread suspended in loop (return true)
   497 // 0x00200000 - suspend not completed during retry loop (return false)
   498 //
   500 // Helper class for tracing suspend wait debug bits.
   501 //
   502 // 0x00000100 indicates that the target thread exited before it could
   503 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   504 // 0x00080000 each indicate a cancelled suspend request so they don't
   505 // count as wait failures either.
   506 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   508 class TraceSuspendDebugBits : public StackObj {
   509  private:
   510   JavaThread * jt;
   511   bool         is_wait;
   512   bool         called_by_wait;  // meaningful when !is_wait
   513   uint32_t *   bits;
   515  public:
   516   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   517                         uint32_t *_bits) {
   518     jt             = _jt;
   519     is_wait        = _is_wait;
   520     called_by_wait = _called_by_wait;
   521     bits           = _bits;
   522   }
   524   ~TraceSuspendDebugBits() {
   525     if (!is_wait) {
   526 #if 1
   527       // By default, don't trace bits for is_ext_suspend_completed() calls.
   528       // That trace is very chatty.
   529       return;
   530 #else
   531       if (!called_by_wait) {
   532         // If tracing for is_ext_suspend_completed() is enabled, then only
   533         // trace calls to it from wait_for_ext_suspend_completion()
   534         return;
   535       }
   536 #endif
   537     }
   539     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   540       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   541         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   542         ResourceMark rm;
   544         tty->print_cr(
   545             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   546             jt->get_thread_name(), *bits);
   548         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   549       }
   550     }
   551   }
   552 };
   553 #undef DEBUG_FALSE_BITS
   556 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   557   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   559   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   560   bool do_trans_retry;           // flag to force the retry
   562   *bits |= 0x00000001;
   564   do {
   565     do_trans_retry = false;
   567     if (is_exiting()) {
   568       // Thread is in the process of exiting. This is always checked
   569       // first to reduce the risk of dereferencing a freed JavaThread.
   570       *bits |= 0x00000100;
   571       return false;
   572     }
   574     if (!is_external_suspend()) {
   575       // Suspend request is cancelled. This is always checked before
   576       // is_ext_suspended() to reduce the risk of a rogue resume
   577       // confusing the thread that made the suspend request.
   578       *bits |= 0x00000200;
   579       return false;
   580     }
   582     if (is_ext_suspended()) {
   583       // thread is suspended
   584       *bits |= 0x00000400;
   585       return true;
   586     }
   588     // Now that we no longer do hard suspends of threads running
   589     // native code, the target thread can be changing thread state
   590     // while we are in this routine:
   591     //
   592     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   593     //
   594     // We save a copy of the thread state as observed at this moment
   595     // and make our decision about suspend completeness based on the
   596     // copy. This closes the race where the thread state is seen as
   597     // _thread_in_native_trans in the if-thread_blocked check, but is
   598     // seen as _thread_blocked in if-thread_in_native_trans check.
   599     JavaThreadState save_state = thread_state();
   601     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   602       // If the thread's state is _thread_blocked and this blocking
   603       // condition is known to be equivalent to a suspend, then we can
   604       // consider the thread to be externally suspended. This means that
   605       // the code that sets _thread_blocked has been modified to do
   606       // self-suspension if the blocking condition releases. We also
   607       // used to check for CONDVAR_WAIT here, but that is now covered by
   608       // the _thread_blocked with self-suspension check.
   609       //
   610       // Return true since we wouldn't be here unless there was still an
   611       // external suspend request.
   612       *bits |= 0x00001000;
   613       return true;
   614     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   615       // Threads running native code will self-suspend on native==>VM/Java
   616       // transitions. If its stack is walkable (should always be the case
   617       // unless this function is called before the actual java_suspend()
   618       // call), then the wait is done.
   619       *bits |= 0x00002000;
   620       return true;
   621     } else if (!called_by_wait && !did_trans_retry &&
   622                save_state == _thread_in_native_trans &&
   623                frame_anchor()->walkable()) {
   624       // The thread is transitioning from thread_in_native to another
   625       // thread state. check_safepoint_and_suspend_for_native_trans()
   626       // will force the thread to self-suspend. If it hasn't gotten
   627       // there yet we may have caught the thread in-between the native
   628       // code check above and the self-suspend. Lucky us. If we were
   629       // called by wait_for_ext_suspend_completion(), then it
   630       // will be doing the retries so we don't have to.
   631       //
   632       // Since we use the saved thread state in the if-statement above,
   633       // there is a chance that the thread has already transitioned to
   634       // _thread_blocked by the time we get here. In that case, we will
   635       // make a single unnecessary pass through the logic below. This
   636       // doesn't hurt anything since we still do the trans retry.
   638       *bits |= 0x00004000;
   640       // Once the thread leaves thread_in_native_trans for another
   641       // thread state, we break out of this retry loop. We shouldn't
   642       // need this flag to prevent us from getting back here, but
   643       // sometimes paranoia is good.
   644       did_trans_retry = true;
   646       // We wait for the thread to transition to a more usable state.
   647       for (int i = 1; i <= SuspendRetryCount; i++) {
   648         // We used to do an "os::yield_all(i)" call here with the intention
   649         // that yielding would increase on each retry. However, the parameter
   650         // is ignored on Linux which means the yield didn't scale up. Waiting
   651         // on the SR_lock below provides a much more predictable scale up for
   652         // the delay. It also provides a simple/direct point to check for any
   653         // safepoint requests from the VMThread
   655         // temporarily drops SR_lock while doing wait with safepoint check
   656         // (if we're a JavaThread - the WatcherThread can also call this)
   657         // and increase delay with each retry
   658         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   660         // check the actual thread state instead of what we saved above
   661         if (thread_state() != _thread_in_native_trans) {
   662           // the thread has transitioned to another thread state so
   663           // try all the checks (except this one) one more time.
   664           do_trans_retry = true;
   665           break;
   666         }
   667       } // end retry loop
   670     }
   671   } while (do_trans_retry);
   673   *bits |= 0x00000010;
   674   return false;
   675 }
   677 //
   678 // Wait for an external suspend request to complete (or be cancelled).
   679 // Returns true if the thread is externally suspended and false otherwise.
   680 //
   681 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   682        uint32_t *bits) {
   683   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   684                              false /* !called_by_wait */, bits);
   686   // local flag copies to minimize SR_lock hold time
   687   bool is_suspended;
   688   bool pending;
   689   uint32_t reset_bits;
   691   // set a marker so is_ext_suspend_completed() knows we are the caller
   692   *bits |= 0x00010000;
   694   // We use reset_bits to reinitialize the bits value at the top of
   695   // each retry loop. This allows the caller to make use of any
   696   // unused bits for their own marking purposes.
   697   reset_bits = *bits;
   699   {
   700     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   701     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   702                                             delay, bits);
   703     pending = is_external_suspend();
   704   }
   705   // must release SR_lock to allow suspension to complete
   707   if (!pending) {
   708     // A cancelled suspend request is the only false return from
   709     // is_ext_suspend_completed() that keeps us from entering the
   710     // retry loop.
   711     *bits |= 0x00020000;
   712     return false;
   713   }
   715   if (is_suspended) {
   716     *bits |= 0x00040000;
   717     return true;
   718   }
   720   for (int i = 1; i <= retries; i++) {
   721     *bits = reset_bits;  // reinit to only track last retry
   723     // We used to do an "os::yield_all(i)" call here with the intention
   724     // that yielding would increase on each retry. However, the parameter
   725     // is ignored on Linux which means the yield didn't scale up. Waiting
   726     // on the SR_lock below provides a much more predictable scale up for
   727     // the delay. It also provides a simple/direct point to check for any
   728     // safepoint requests from the VMThread
   730     {
   731       MutexLocker ml(SR_lock());
   732       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   733       // can also call this)  and increase delay with each retry
   734       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   736       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   737                                               delay, bits);
   739       // It is possible for the external suspend request to be cancelled
   740       // (by a resume) before the actual suspend operation is completed.
   741       // Refresh our local copy to see if we still need to wait.
   742       pending = is_external_suspend();
   743     }
   745     if (!pending) {
   746       // A cancelled suspend request is the only false return from
   747       // is_ext_suspend_completed() that keeps us from staying in the
   748       // retry loop.
   749       *bits |= 0x00080000;
   750       return false;
   751     }
   753     if (is_suspended) {
   754       *bits |= 0x00100000;
   755       return true;
   756     }
   757   } // end retry loop
   759   // thread did not suspend after all our retries
   760   *bits |= 0x00200000;
   761   return false;
   762 }
   764 #ifndef PRODUCT
   765 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   767   // This should not need to be atomic as the only way for simultaneous
   768   // updates is via interrupts. Even then this should be rare or non-existant
   769   // and we don't care that much anyway.
   771   int index = _jmp_ring_index;
   772   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   773   _jmp_ring[index]._target = (intptr_t) target;
   774   _jmp_ring[index]._instruction = (intptr_t) instr;
   775   _jmp_ring[index]._file = file;
   776   _jmp_ring[index]._line = line;
   777 }
   778 #endif /* PRODUCT */
   780 // Called by flat profiler
   781 // Callers have already called wait_for_ext_suspend_completion
   782 // The assertion for that is currently too complex to put here:
   783 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   784   bool gotframe = false;
   785   // self suspension saves needed state.
   786   if (has_last_Java_frame() && _anchor.walkable()) {
   787      *_fr = pd_last_frame();
   788      gotframe = true;
   789   }
   790   return gotframe;
   791 }
   793 void Thread::interrupt(Thread* thread) {
   794   trace("interrupt", thread);
   795   debug_only(check_for_dangling_thread_pointer(thread);)
   796   os::interrupt(thread);
   797 }
   799 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   800   trace("is_interrupted", thread);
   801   debug_only(check_for_dangling_thread_pointer(thread);)
   802   // Note:  If clear_interrupted==false, this simply fetches and
   803   // returns the value of the field osthread()->interrupted().
   804   return os::is_interrupted(thread, clear_interrupted);
   805 }
   808 // GC Support
   809 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   810   jint thread_parity = _oops_do_parity;
   811   if (thread_parity != strong_roots_parity) {
   812     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   813     if (res == thread_parity) {
   814       return true;
   815     } else {
   816       guarantee(res == strong_roots_parity, "Or else what?");
   817       assert(SharedHeap::heap()->workers()->active_workers() > 0,
   818          "Should only fail when parallel.");
   819       return false;
   820     }
   821   }
   822   assert(SharedHeap::heap()->workers()->active_workers() > 0,
   823          "Should only fail when parallel.");
   824   return false;
   825 }
   827 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
   828   active_handles()->oops_do(f);
   829   // Do oop for ThreadShadow
   830   f->do_oop((oop*)&_pending_exception);
   831   handle_area()->oops_do(f);
   832 }
   834 void Thread::nmethods_do(CodeBlobClosure* cf) {
   835   // no nmethods in a generic thread...
   836 }
   838 void Thread::metadata_do(void f(Metadata*)) {
   839   if (metadata_handles() != NULL) {
   840     for (int i = 0; i< metadata_handles()->length(); i++) {
   841       f(metadata_handles()->at(i));
   842     }
   843   }
   844 }
   846 void Thread::print_on(outputStream* st) const {
   847   // get_priority assumes osthread initialized
   848   if (osthread() != NULL) {
   849     int os_prio;
   850     if (os::get_native_priority(this, &os_prio) == OS_OK) {
   851       st->print("os_prio=%d ", os_prio);
   852     }
   853     st->print("tid=" INTPTR_FORMAT " ", this);
   854     osthread()->print_on(st);
   855   }
   856   debug_only(if (WizardMode) print_owned_locks_on(st);)
   857 }
   859 // Thread::print_on_error() is called by fatal error handler. Don't use
   860 // any lock or allocate memory.
   861 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   862   if      (is_VM_thread())                  st->print("VMThread");
   863   else if (is_Compiler_thread())            st->print("CompilerThread");
   864   else if (is_Java_thread())                st->print("JavaThread");
   865   else if (is_GC_task_thread())             st->print("GCTaskThread");
   866   else if (is_Watcher_thread())             st->print("WatcherThread");
   867   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   868   else st->print("Thread");
   870   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   871             _stack_base - _stack_size, _stack_base);
   873   if (osthread()) {
   874     st->print(" [id=%d]", osthread()->thread_id());
   875   }
   876 }
   878 #ifdef ASSERT
   879 void Thread::print_owned_locks_on(outputStream* st) const {
   880   Monitor *cur = _owned_locks;
   881   if (cur == NULL) {
   882     st->print(" (no locks) ");
   883   } else {
   884     st->print_cr(" Locks owned:");
   885     while(cur) {
   886       cur->print_on(st);
   887       cur = cur->next();
   888     }
   889   }
   890 }
   892 static int ref_use_count  = 0;
   894 bool Thread::owns_locks_but_compiled_lock() const {
   895   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   896     if (cur != Compile_lock) return true;
   897   }
   898   return false;
   899 }
   902 #endif
   904 #ifndef PRODUCT
   906 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   907 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   908 // no threads which allow_vm_block's are held
   909 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   910     // Check if current thread is allowed to block at a safepoint
   911     if (!(_allow_safepoint_count == 0))
   912       fatal("Possible safepoint reached by thread that does not allow it");
   913     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   914       fatal("LEAF method calling lock?");
   915     }
   917 #ifdef ASSERT
   918     if (potential_vm_operation && is_Java_thread()
   919         && !Universe::is_bootstrapping()) {
   920       // Make sure we do not hold any locks that the VM thread also uses.
   921       // This could potentially lead to deadlocks
   922       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   923         // Threads_lock is special, since the safepoint synchronization will not start before this is
   924         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   925         // since it is used to transfer control between JavaThreads and the VMThread
   926         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   927         if ( (cur->allow_vm_block() &&
   928               cur != Threads_lock &&
   929               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   930               cur != VMOperationRequest_lock &&
   931               cur != VMOperationQueue_lock) ||
   932               cur->rank() == Mutex::special) {
   933           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   934         }
   935       }
   936     }
   938     if (GCALotAtAllSafepoints) {
   939       // We could enter a safepoint here and thus have a gc
   940       InterfaceSupport::check_gc_alot();
   941     }
   942 #endif
   943 }
   944 #endif
   946 bool Thread::is_in_stack(address adr) const {
   947   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   948   address end = os::current_stack_pointer();
   949   // Allow non Java threads to call this without stack_base
   950   if (_stack_base == NULL) return true;
   951   if (stack_base() >= adr && adr >= end) return true;
   953   return false;
   954 }
   957 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   958 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   959 // used for compilation in the future. If that change is made, the need for these methods
   960 // should be revisited, and they should be removed if possible.
   962 bool Thread::is_lock_owned(address adr) const {
   963   return on_local_stack(adr);
   964 }
   966 bool Thread::set_as_starting_thread() {
   967  // NOTE: this must be called inside the main thread.
   968   return os::create_main_thread((JavaThread*)this);
   969 }
   971 static void initialize_class(Symbol* class_name, TRAPS) {
   972   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   973   InstanceKlass::cast(klass)->initialize(CHECK);
   974 }
   977 // Creates the initial ThreadGroup
   978 static Handle create_initial_thread_group(TRAPS) {
   979   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
   980   instanceKlassHandle klass (THREAD, k);
   982   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   983   {
   984     JavaValue result(T_VOID);
   985     JavaCalls::call_special(&result,
   986                             system_instance,
   987                             klass,
   988                             vmSymbols::object_initializer_name(),
   989                             vmSymbols::void_method_signature(),
   990                             CHECK_NH);
   991   }
   992   Universe::set_system_thread_group(system_instance());
   994   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   995   {
   996     JavaValue result(T_VOID);
   997     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   998     JavaCalls::call_special(&result,
   999                             main_instance,
  1000                             klass,
  1001                             vmSymbols::object_initializer_name(),
  1002                             vmSymbols::threadgroup_string_void_signature(),
  1003                             system_instance,
  1004                             string,
  1005                             CHECK_NH);
  1007   return main_instance;
  1010 // Creates the initial Thread
  1011 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
  1012   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
  1013   instanceKlassHandle klass (THREAD, k);
  1014   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
  1016   java_lang_Thread::set_thread(thread_oop(), thread);
  1017   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1018   thread->set_threadObj(thread_oop());
  1020   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
  1022   JavaValue result(T_VOID);
  1023   JavaCalls::call_special(&result, thread_oop,
  1024                                    klass,
  1025                                    vmSymbols::object_initializer_name(),
  1026                                    vmSymbols::threadgroup_string_void_signature(),
  1027                                    thread_group,
  1028                                    string,
  1029                                    CHECK_NULL);
  1030   return thread_oop();
  1033 static void call_initializeSystemClass(TRAPS) {
  1034   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1035   instanceKlassHandle klass (THREAD, k);
  1037   JavaValue result(T_VOID);
  1038   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
  1039                                          vmSymbols::void_method_signature(), CHECK);
  1042 char java_runtime_name[128] = "";
  1043 char java_runtime_version[128] = "";
  1045 // extract the JRE name from sun.misc.Version.java_runtime_name
  1046 static const char* get_java_runtime_name(TRAPS) {
  1047   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1048                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1049   fieldDescriptor fd;
  1050   bool found = k != NULL &&
  1051                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
  1052                                                         vmSymbols::string_signature(), &fd);
  1053   if (found) {
  1054     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1055     if (name_oop == NULL)
  1056       return NULL;
  1057     const char* name = java_lang_String::as_utf8_string(name_oop,
  1058                                                         java_runtime_name,
  1059                                                         sizeof(java_runtime_name));
  1060     return name;
  1061   } else {
  1062     return NULL;
  1066 // extract the JRE version from sun.misc.Version.java_runtime_version
  1067 static const char* get_java_runtime_version(TRAPS) {
  1068   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
  1069                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
  1070   fieldDescriptor fd;
  1071   bool found = k != NULL &&
  1072                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
  1073                                                         vmSymbols::string_signature(), &fd);
  1074   if (found) {
  1075     oop name_oop = k->java_mirror()->obj_field(fd.offset());
  1076     if (name_oop == NULL)
  1077       return NULL;
  1078     const char* name = java_lang_String::as_utf8_string(name_oop,
  1079                                                         java_runtime_version,
  1080                                                         sizeof(java_runtime_version));
  1081     return name;
  1082   } else {
  1083     return NULL;
  1087 // General purpose hook into Java code, run once when the VM is initialized.
  1088 // The Java library method itself may be changed independently from the VM.
  1089 static void call_postVMInitHook(TRAPS) {
  1090   Klass* k = SystemDictionary::PostVMInitHook_klass();
  1091   instanceKlassHandle klass (THREAD, k);
  1092   if (klass.not_null()) {
  1093     JavaValue result(T_VOID);
  1094     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
  1095                                            vmSymbols::void_method_signature(),
  1096                                            CHECK);
  1100 static void reset_vm_info_property(TRAPS) {
  1101   // the vm info string
  1102   ResourceMark rm(THREAD);
  1103   const char *vm_info = VM_Version::vm_info_string();
  1105   // java.lang.System class
  1106   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
  1107   instanceKlassHandle klass (THREAD, k);
  1109   // setProperty arguments
  1110   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
  1111   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
  1113   // return value
  1114   JavaValue r(T_OBJECT);
  1116   // public static String setProperty(String key, String value);
  1117   JavaCalls::call_static(&r,
  1118                          klass,
  1119                          vmSymbols::setProperty_name(),
  1120                          vmSymbols::string_string_string_signature(),
  1121                          key_str,
  1122                          value_str,
  1123                          CHECK);
  1127 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
  1128   assert(thread_group.not_null(), "thread group should be specified");
  1129   assert(threadObj() == NULL, "should only create Java thread object once");
  1131   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
  1132   instanceKlassHandle klass (THREAD, k);
  1133   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
  1135   java_lang_Thread::set_thread(thread_oop(), this);
  1136   java_lang_Thread::set_priority(thread_oop(), NormPriority);
  1137   set_threadObj(thread_oop());
  1139   JavaValue result(T_VOID);
  1140   if (thread_name != NULL) {
  1141     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
  1142     // Thread gets assigned specified name and null target
  1143     JavaCalls::call_special(&result,
  1144                             thread_oop,
  1145                             klass,
  1146                             vmSymbols::object_initializer_name(),
  1147                             vmSymbols::threadgroup_string_void_signature(),
  1148                             thread_group, // Argument 1
  1149                             name,         // Argument 2
  1150                             THREAD);
  1151   } else {
  1152     // Thread gets assigned name "Thread-nnn" and null target
  1153     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
  1154     JavaCalls::call_special(&result,
  1155                             thread_oop,
  1156                             klass,
  1157                             vmSymbols::object_initializer_name(),
  1158                             vmSymbols::threadgroup_runnable_void_signature(),
  1159                             thread_group, // Argument 1
  1160                             Handle(),     // Argument 2
  1161                             THREAD);
  1165   if (daemon) {
  1166       java_lang_Thread::set_daemon(thread_oop());
  1169   if (HAS_PENDING_EXCEPTION) {
  1170     return;
  1173   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
  1174   Handle threadObj(this, this->threadObj());
  1176   JavaCalls::call_special(&result,
  1177                          thread_group,
  1178                          group,
  1179                          vmSymbols::add_method_name(),
  1180                          vmSymbols::thread_void_signature(),
  1181                          threadObj,          // Arg 1
  1182                          THREAD);
  1187 // NamedThread --  non-JavaThread subclasses with multiple
  1188 // uniquely named instances should derive from this.
  1189 NamedThread::NamedThread() : Thread() {
  1190   _name = NULL;
  1191   _processed_thread = NULL;
  1194 NamedThread::~NamedThread() {
  1195   if (_name != NULL) {
  1196     FREE_C_HEAP_ARRAY(char, _name, mtThread);
  1197     _name = NULL;
  1201 void NamedThread::set_name(const char* format, ...) {
  1202   guarantee(_name == NULL, "Only get to set name once.");
  1203   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
  1204   guarantee(_name != NULL, "alloc failure");
  1205   va_list ap;
  1206   va_start(ap, format);
  1207   jio_vsnprintf(_name, max_name_len, format, ap);
  1208   va_end(ap);
  1211 // ======= WatcherThread ========
  1213 // The watcher thread exists to simulate timer interrupts.  It should
  1214 // be replaced by an abstraction over whatever native support for
  1215 // timer interrupts exists on the platform.
  1217 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1218 bool WatcherThread::_startable = false;
  1219 volatile bool  WatcherThread::_should_terminate = false;
  1221 WatcherThread::WatcherThread() : Thread() {
  1222   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1223   if (os::create_thread(this, os::watcher_thread)) {
  1224     _watcher_thread = this;
  1226     // Set the watcher thread to the highest OS priority which should not be
  1227     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1228     // is created. The only normal thread using this priority is the reference
  1229     // handler thread, which runs for very short intervals only.
  1230     // If the VMThread's priority is not lower than the WatcherThread profiling
  1231     // will be inaccurate.
  1232     os::set_priority(this, MaxPriority);
  1233     if (!DisableStartThread) {
  1234       os::start_thread(this);
  1239 int WatcherThread::sleep() const {
  1240   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1242   // remaining will be zero if there are no tasks,
  1243   // causing the WatcherThread to sleep until a task is
  1244   // enrolled
  1245   int remaining = PeriodicTask::time_to_wait();
  1246   int time_slept = 0;
  1248   // we expect this to timeout - we only ever get unparked when
  1249   // we should terminate or when a new task has been enrolled
  1250   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1252   jlong time_before_loop = os::javaTimeNanos();
  1254   for (;;) {
  1255     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
  1256     jlong now = os::javaTimeNanos();
  1258     if (remaining == 0) {
  1259         // if we didn't have any tasks we could have waited for a long time
  1260         // consider the time_slept zero and reset time_before_loop
  1261         time_slept = 0;
  1262         time_before_loop = now;
  1263     } else {
  1264         // need to recalulate since we might have new tasks in _tasks
  1265         time_slept = (int) ((now - time_before_loop) / 1000000);
  1268     // Change to task list or spurious wakeup of some kind
  1269     if (timedout || _should_terminate) {
  1270         break;
  1273     remaining = PeriodicTask::time_to_wait();
  1274     if (remaining == 0) {
  1275         // Last task was just disenrolled so loop around and wait until
  1276         // another task gets enrolled
  1277         continue;
  1280     remaining -= time_slept;
  1281     if (remaining <= 0)
  1282       break;
  1285   return time_slept;
  1288 void WatcherThread::run() {
  1289   assert(this == watcher_thread(), "just checking");
  1291   this->record_stack_base_and_size();
  1292   this->initialize_thread_local_storage();
  1293   this->set_active_handles(JNIHandleBlock::allocate_block());
  1294   while(!_should_terminate) {
  1295     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1296     assert(watcher_thread() == this,  "thread consistency check");
  1298     // Calculate how long it'll be until the next PeriodicTask work
  1299     // should be done, and sleep that amount of time.
  1300     int time_waited = sleep();
  1302     if (is_error_reported()) {
  1303       // A fatal error has happened, the error handler(VMError::report_and_die)
  1304       // should abort JVM after creating an error log file. However in some
  1305       // rare cases, the error handler itself might deadlock. Here we try to
  1306       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1307       //
  1308       // This code is in WatcherThread because WatcherThread wakes up
  1309       // periodically so the fatal error handler doesn't need to do anything;
  1310       // also because the WatcherThread is less likely to crash than other
  1311       // threads.
  1313       for (;;) {
  1314         if (!ShowMessageBoxOnError
  1315          && (OnError == NULL || OnError[0] == '\0')
  1316          && Arguments::abort_hook() == NULL) {
  1317              os::sleep(this, 2 * 60 * 1000, false);
  1318              fdStream err(defaultStream::output_fd());
  1319              err.print_raw_cr("# [ timer expired, abort... ]");
  1320              // skip atexit/vm_exit/vm_abort hooks
  1321              os::die();
  1324         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1325         // ShowMessageBoxOnError when it is ready to abort.
  1326         os::sleep(this, 5 * 1000, false);
  1330     PeriodicTask::real_time_tick(time_waited);
  1333   // Signal that it is terminated
  1335     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1336     _watcher_thread = NULL;
  1337     Terminator_lock->notify();
  1340   // Thread destructor usually does this..
  1341   ThreadLocalStorage::set_thread(NULL);
  1344 void WatcherThread::start() {
  1345   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1347   if (watcher_thread() == NULL && _startable) {
  1348     _should_terminate = false;
  1349     // Create the single instance of WatcherThread
  1350     new WatcherThread();
  1354 void WatcherThread::make_startable() {
  1355   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
  1356   _startable = true;
  1359 void WatcherThread::stop() {
  1361     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1362     _should_terminate = true;
  1363     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1365     WatcherThread* watcher = watcher_thread();
  1366     if (watcher != NULL)
  1367       watcher->unpark();
  1370   // it is ok to take late safepoints here, if needed
  1371   MutexLocker mu(Terminator_lock);
  1373   while(watcher_thread() != NULL) {
  1374     // This wait should make safepoint checks, wait without a timeout,
  1375     // and wait as a suspend-equivalent condition.
  1376     //
  1377     // Note: If the FlatProfiler is running, then this thread is waiting
  1378     // for the WatcherThread to terminate and the WatcherThread, via the
  1379     // FlatProfiler task, is waiting for the external suspend request on
  1380     // this thread to complete. wait_for_ext_suspend_completion() will
  1381     // eventually timeout, but that takes time. Making this wait a
  1382     // suspend-equivalent condition solves that timeout problem.
  1383     //
  1384     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1385                           Mutex::_as_suspend_equivalent_flag);
  1389 void WatcherThread::unpark() {
  1390   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  1391   PeriodicTask_lock->notify();
  1394 void WatcherThread::print_on(outputStream* st) const {
  1395   st->print("\"%s\" ", name());
  1396   Thread::print_on(st);
  1397   st->cr();
  1400 // ======= JavaThread ========
  1402 // A JavaThread is a normal Java thread
  1404 void JavaThread::initialize() {
  1405   // Initialize fields
  1407   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1408   set_claimed_par_id(-1);
  1410   set_saved_exception_pc(NULL);
  1411   set_threadObj(NULL);
  1412   _anchor.clear();
  1413   set_entry_point(NULL);
  1414   set_jni_functions(jni_functions());
  1415   set_callee_target(NULL);
  1416   set_vm_result(NULL);
  1417   set_vm_result_2(NULL);
  1418   set_vframe_array_head(NULL);
  1419   set_vframe_array_last(NULL);
  1420   set_deferred_locals(NULL);
  1421   set_deopt_mark(NULL);
  1422   set_deopt_nmethod(NULL);
  1423   clear_must_deopt_id();
  1424   set_monitor_chunks(NULL);
  1425   set_next(NULL);
  1426   set_thread_state(_thread_new);
  1427 #if INCLUDE_NMT
  1428   set_recorder(NULL);
  1429 #endif
  1430   _terminated = _not_terminated;
  1431   _privileged_stack_top = NULL;
  1432   _array_for_gc = NULL;
  1433   _suspend_equivalent = false;
  1434   _in_deopt_handler = 0;
  1435   _doing_unsafe_access = false;
  1436   _stack_guard_state = stack_guard_unused;
  1437   _exception_oop = NULL;
  1438   _exception_pc  = 0;
  1439   _exception_handler_pc = 0;
  1440   _is_method_handle_return = 0;
  1441   _jvmti_thread_state= NULL;
  1442   _should_post_on_exceptions_flag = JNI_FALSE;
  1443   _jvmti_get_loaded_classes_closure = NULL;
  1444   _interp_only_mode    = 0;
  1445   _special_runtime_exit_condition = _no_async_condition;
  1446   _pending_async_exception = NULL;
  1447   _is_compiling = false;
  1448   _thread_stat = NULL;
  1449   _thread_stat = new ThreadStatistics();
  1450   _blocked_on_compilation = false;
  1451   _jni_active_critical = 0;
  1452   _do_not_unlock_if_synchronized = false;
  1453   _cached_monitor_info = NULL;
  1454   _parker = Parker::Allocate(this) ;
  1456 #ifndef PRODUCT
  1457   _jmp_ring_index = 0;
  1458   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1459     record_jump(NULL, NULL, NULL, 0);
  1461 #endif /* PRODUCT */
  1463   set_thread_profiler(NULL);
  1464   if (FlatProfiler::is_active()) {
  1465     // This is where we would decide to either give each thread it's own profiler
  1466     // or use one global one from FlatProfiler,
  1467     // or up to some count of the number of profiled threads, etc.
  1468     ThreadProfiler* pp = new ThreadProfiler();
  1469     pp->engage();
  1470     set_thread_profiler(pp);
  1473   // Setup safepoint state info for this thread
  1474   ThreadSafepointState::create(this);
  1476   debug_only(_java_call_counter = 0);
  1478   // JVMTI PopFrame support
  1479   _popframe_condition = popframe_inactive;
  1480   _popframe_preserved_args = NULL;
  1481   _popframe_preserved_args_size = 0;
  1483   pd_initialize();
  1486 #if INCLUDE_ALL_GCS
  1487 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1488 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1489 #endif // INCLUDE_ALL_GCS
  1491 JavaThread::JavaThread(bool is_attaching_via_jni) :
  1492   Thread()
  1493 #if INCLUDE_ALL_GCS
  1494   , _satb_mark_queue(&_satb_mark_queue_set),
  1495   _dirty_card_queue(&_dirty_card_queue_set)
  1496 #endif // INCLUDE_ALL_GCS
  1498   initialize();
  1499   if (is_attaching_via_jni) {
  1500     _jni_attach_state = _attaching_via_jni;
  1501   } else {
  1502     _jni_attach_state = _not_attaching_via_jni;
  1504   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
  1505   _safepoint_visible = false;
  1508 bool JavaThread::reguard_stack(address cur_sp) {
  1509   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1510     return true; // Stack already guarded or guard pages not needed.
  1513   if (register_stack_overflow()) {
  1514     // For those architectures which have separate register and
  1515     // memory stacks, we must check the register stack to see if
  1516     // it has overflowed.
  1517     return false;
  1520   // Java code never executes within the yellow zone: the latter is only
  1521   // there to provoke an exception during stack banging.  If java code
  1522   // is executing there, either StackShadowPages should be larger, or
  1523   // some exception code in c1, c2 or the interpreter isn't unwinding
  1524   // when it should.
  1525   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1527   enable_stack_yellow_zone();
  1528   return true;
  1531 bool JavaThread::reguard_stack(void) {
  1532   return reguard_stack(os::current_stack_pointer());
  1536 void JavaThread::block_if_vm_exited() {
  1537   if (_terminated == _vm_exited) {
  1538     // _vm_exited is set at safepoint, and Threads_lock is never released
  1539     // we will block here forever
  1540     Threads_lock->lock_without_safepoint_check();
  1541     ShouldNotReachHere();
  1546 // Remove this ifdef when C1 is ported to the compiler interface.
  1547 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1549 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1550   Thread()
  1551 #if INCLUDE_ALL_GCS
  1552   , _satb_mark_queue(&_satb_mark_queue_set),
  1553   _dirty_card_queue(&_dirty_card_queue_set)
  1554 #endif // INCLUDE_ALL_GCS
  1556   if (TraceThreadEvents) {
  1557     tty->print_cr("creating thread %p", this);
  1559   initialize();
  1560   _jni_attach_state = _not_attaching_via_jni;
  1561   set_entry_point(entry_point);
  1562   // Create the native thread itself.
  1563   // %note runtime_23
  1564   os::ThreadType thr_type = os::java_thread;
  1565   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1566                                                      os::java_thread;
  1567   os::create_thread(this, thr_type, stack_sz);
  1568   _safepoint_visible = false;
  1569   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1570   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1571   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1572   // the exception consists of creating the exception object & initializing it, initialization
  1573   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1574   //
  1575   // The thread is still suspended when we reach here. Thread must be explicit started
  1576   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1577   // by calling Threads:add. The reason why this is not done here, is because the thread
  1578   // object must be fully initialized (take a look at JVM_Start)
  1581 JavaThread::~JavaThread() {
  1582   if (TraceThreadEvents) {
  1583       tty->print_cr("terminate thread %p", this);
  1586   // By now, this thread should already be invisible to safepoint,
  1587   // and its per-thread recorder also collected.
  1588   assert(!is_safepoint_visible(), "wrong state");
  1589 #if INCLUDE_NMT
  1590   assert(get_recorder() == NULL, "Already collected");
  1591 #endif // INCLUDE_NMT
  1593   // JSR166 -- return the parker to the free list
  1594   Parker::Release(_parker);
  1595   _parker = NULL ;
  1597   // Free any remaining  previous UnrollBlock
  1598   vframeArray* old_array = vframe_array_last();
  1600   if (old_array != NULL) {
  1601     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1602     old_array->set_unroll_block(NULL);
  1603     delete old_info;
  1604     delete old_array;
  1607   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1608   if (deferred != NULL) {
  1609     // This can only happen if thread is destroyed before deoptimization occurs.
  1610     assert(deferred->length() != 0, "empty array!");
  1611     do {
  1612       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1613       deferred->remove_at(0);
  1614       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1615       delete dlv;
  1616     } while (deferred->length() != 0);
  1617     delete deferred;
  1620   // All Java related clean up happens in exit
  1621   ThreadSafepointState::destroy(this);
  1622   if (_thread_profiler != NULL) delete _thread_profiler;
  1623   if (_thread_stat != NULL) delete _thread_stat;
  1627 // The first routine called by a new Java thread
  1628 void JavaThread::run() {
  1629   // initialize thread-local alloc buffer related fields
  1630   this->initialize_tlab();
  1632   // used to test validitity of stack trace backs
  1633   this->record_base_of_stack_pointer();
  1635   // Record real stack base and size.
  1636   this->record_stack_base_and_size();
  1638   // Initialize thread local storage; set before calling MutexLocker
  1639   this->initialize_thread_local_storage();
  1641   this->create_stack_guard_pages();
  1643   this->cache_global_variables();
  1645   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1646   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1647   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1649   assert(JavaThread::current() == this, "sanity check");
  1650   assert(!Thread::current()->owns_locks(), "sanity check");
  1652   DTRACE_THREAD_PROBE(start, this);
  1654   // This operation might block. We call that after all safepoint checks for a new thread has
  1655   // been completed.
  1656   this->set_active_handles(JNIHandleBlock::allocate_block());
  1658   if (JvmtiExport::should_post_thread_life()) {
  1659     JvmtiExport::post_thread_start(this);
  1662   EVENT_BEGIN(TraceEventThreadStart, event);
  1663   EVENT_COMMIT(event,
  1664      EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1666   // We call another function to do the rest so we are sure that the stack addresses used
  1667   // from there will be lower than the stack base just computed
  1668   thread_main_inner();
  1670   // Note, thread is no longer valid at this point!
  1674 void JavaThread::thread_main_inner() {
  1675   assert(JavaThread::current() == this, "sanity check");
  1676   assert(this->threadObj() != NULL, "just checking");
  1678   // Execute thread entry point unless this thread has a pending exception
  1679   // or has been stopped before starting.
  1680   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1681   if (!this->has_pending_exception() &&
  1682       !java_lang_Thread::is_stillborn(this->threadObj())) {
  1684       ResourceMark rm(this);
  1685       this->set_native_thread_name(this->get_thread_name());
  1687     HandleMark hm(this);
  1688     this->entry_point()(this, this);
  1691   DTRACE_THREAD_PROBE(stop, this);
  1693   this->exit(false);
  1694   delete this;
  1698 static void ensure_join(JavaThread* thread) {
  1699   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1700   Handle threadObj(thread, thread->threadObj());
  1701   assert(threadObj.not_null(), "java thread object must exist");
  1702   ObjectLocker lock(threadObj, thread);
  1703   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1704   thread->clear_pending_exception();
  1705   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1706   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1707   // Clear the native thread instance - this makes isAlive return false and allows the join()
  1708   // to complete once we've done the notify_all below
  1709   java_lang_Thread::set_thread(threadObj(), NULL);
  1710   lock.notify_all(thread);
  1711   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1712   thread->clear_pending_exception();
  1716 // For any new cleanup additions, please check to see if they need to be applied to
  1717 // cleanup_failed_attach_current_thread as well.
  1718 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1719   assert(this == JavaThread::current(),  "thread consistency check");
  1721   HandleMark hm(this);
  1722   Handle uncaught_exception(this, this->pending_exception());
  1723   this->clear_pending_exception();
  1724   Handle threadObj(this, this->threadObj());
  1725   assert(threadObj.not_null(), "Java thread object should be created");
  1727   if (get_thread_profiler() != NULL) {
  1728     get_thread_profiler()->disengage();
  1729     ResourceMark rm;
  1730     get_thread_profiler()->print(get_thread_name());
  1734   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1736     EXCEPTION_MARK;
  1738     CLEAR_PENDING_EXCEPTION;
  1740   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1741   // has to be fixed by a runtime query method
  1742   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1743     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1744     // java.lang.Thread.dispatchUncaughtException
  1745     if (uncaught_exception.not_null()) {
  1746       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1748         EXCEPTION_MARK;
  1749         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1750         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1751         // so call ThreadGroup.uncaughtException()
  1752         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1753         CallInfo callinfo;
  1754         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1755         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1756                                            vmSymbols::dispatchUncaughtException_name(),
  1757                                            vmSymbols::throwable_void_signature(),
  1758                                            KlassHandle(), false, false, THREAD);
  1759         CLEAR_PENDING_EXCEPTION;
  1760         methodHandle method = callinfo.selected_method();
  1761         if (method.not_null()) {
  1762           JavaValue result(T_VOID);
  1763           JavaCalls::call_virtual(&result,
  1764                                   threadObj, thread_klass,
  1765                                   vmSymbols::dispatchUncaughtException_name(),
  1766                                   vmSymbols::throwable_void_signature(),
  1767                                   uncaught_exception,
  1768                                   THREAD);
  1769         } else {
  1770           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1771           JavaValue result(T_VOID);
  1772           JavaCalls::call_virtual(&result,
  1773                                   group, thread_group,
  1774                                   vmSymbols::uncaughtException_name(),
  1775                                   vmSymbols::thread_throwable_void_signature(),
  1776                                   threadObj,           // Arg 1
  1777                                   uncaught_exception,  // Arg 2
  1778                                   THREAD);
  1780         if (HAS_PENDING_EXCEPTION) {
  1781           ResourceMark rm(this);
  1782           jio_fprintf(defaultStream::error_stream(),
  1783                 "\nException: %s thrown from the UncaughtExceptionHandler"
  1784                 " in thread \"%s\"\n",
  1785                 pending_exception()->klass()->external_name(),
  1786                 get_thread_name());
  1787           CLEAR_PENDING_EXCEPTION;
  1792     // Called before the java thread exit since we want to read info
  1793     // from java_lang_Thread object
  1794     EVENT_BEGIN(TraceEventThreadEnd, event);
  1795     EVENT_COMMIT(event,
  1796         EVENT_SET(event, javalangthread, java_lang_Thread::thread_id(this->threadObj())));
  1798     // Call after last event on thread
  1799     EVENT_THREAD_EXIT(this);
  1801     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1802     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1803     // is deprecated anyhow.
  1804     { int count = 3;
  1805       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1806         EXCEPTION_MARK;
  1807         JavaValue result(T_VOID);
  1808         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1809         JavaCalls::call_virtual(&result,
  1810                               threadObj, thread_klass,
  1811                               vmSymbols::exit_method_name(),
  1812                               vmSymbols::void_method_signature(),
  1813                               THREAD);
  1814         CLEAR_PENDING_EXCEPTION;
  1818     // notify JVMTI
  1819     if (JvmtiExport::should_post_thread_life()) {
  1820       JvmtiExport::post_thread_end(this);
  1823     // We have notified the agents that we are exiting, before we go on,
  1824     // we must check for a pending external suspend request and honor it
  1825     // in order to not surprise the thread that made the suspend request.
  1826     while (true) {
  1828         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1829         if (!is_external_suspend()) {
  1830           set_terminated(_thread_exiting);
  1831           ThreadService::current_thread_exiting(this);
  1832           break;
  1834         // Implied else:
  1835         // Things get a little tricky here. We have a pending external
  1836         // suspend request, but we are holding the SR_lock so we
  1837         // can't just self-suspend. So we temporarily drop the lock
  1838         // and then self-suspend.
  1841       ThreadBlockInVM tbivm(this);
  1842       java_suspend_self();
  1844       // We're done with this suspend request, but we have to loop around
  1845       // and check again. Eventually we will get SR_lock without a pending
  1846       // external suspend request and will be able to mark ourselves as
  1847       // exiting.
  1849     // no more external suspends are allowed at this point
  1850   } else {
  1851     // before_exit() has already posted JVMTI THREAD_END events
  1854   // Notify waiters on thread object. This has to be done after exit() is called
  1855   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1856   // group should have the destroyed bit set before waiters are notified).
  1857   ensure_join(this);
  1858   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1860   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1861   // held by this thread must be released.  A detach operation must only
  1862   // get here if there are no Java frames on the stack.  Therefore, any
  1863   // owned monitors at this point MUST be JNI-acquired monitors which are
  1864   // pre-inflated and in the monitor cache.
  1865   //
  1866   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1867   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1868     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1869     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1870     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1873   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1874   // is in a consistent state, in case GC happens
  1875   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1877   if (active_handles() != NULL) {
  1878     JNIHandleBlock* block = active_handles();
  1879     set_active_handles(NULL);
  1880     JNIHandleBlock::release_block(block);
  1883   if (free_handle_block() != NULL) {
  1884     JNIHandleBlock* block = free_handle_block();
  1885     set_free_handle_block(NULL);
  1886     JNIHandleBlock::release_block(block);
  1889   // These have to be removed while this is still a valid thread.
  1890   remove_stack_guard_pages();
  1892   if (UseTLAB) {
  1893     tlab().make_parsable(true);  // retire TLAB
  1896   if (JvmtiEnv::environments_might_exist()) {
  1897     JvmtiExport::cleanup_thread(this);
  1900   // We must flush any deferred card marks before removing a thread from
  1901   // the list of active threads.
  1902   Universe::heap()->flush_deferred_store_barrier(this);
  1903   assert(deferred_card_mark().is_empty(), "Should have been flushed");
  1905 #if INCLUDE_ALL_GCS
  1906   // We must flush the G1-related buffers before removing a thread
  1907   // from the list of active threads. We must do this after any deferred
  1908   // card marks have been flushed (above) so that any entries that are
  1909   // added to the thread's dirty card queue as a result are not lost.
  1910   if (UseG1GC) {
  1911     flush_barrier_queues();
  1913 #endif // INCLUDE_ALL_GCS
  1915   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1916   Threads::remove(this);
  1919 #if INCLUDE_ALL_GCS
  1920 // Flush G1-related queues.
  1921 void JavaThread::flush_barrier_queues() {
  1922   satb_mark_queue().flush();
  1923   dirty_card_queue().flush();
  1926 void JavaThread::initialize_queues() {
  1927   assert(!SafepointSynchronize::is_at_safepoint(),
  1928          "we should not be at a safepoint");
  1930   ObjPtrQueue& satb_queue = satb_mark_queue();
  1931   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1932   // The SATB queue should have been constructed with its active
  1933   // field set to false.
  1934   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1935   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1936   // If we are creating the thread during a marking cycle, we should
  1937   // set the active field of the SATB queue to true.
  1938   if (satb_queue_set.is_active()) {
  1939     satb_queue.set_active(true);
  1942   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1943   // The dirty card queue should have been constructed with its
  1944   // active field set to true.
  1945   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1947 #endif // INCLUDE_ALL_GCS
  1949 void JavaThread::cleanup_failed_attach_current_thread() {
  1950   if (get_thread_profiler() != NULL) {
  1951     get_thread_profiler()->disengage();
  1952     ResourceMark rm;
  1953     get_thread_profiler()->print(get_thread_name());
  1956   if (active_handles() != NULL) {
  1957     JNIHandleBlock* block = active_handles();
  1958     set_active_handles(NULL);
  1959     JNIHandleBlock::release_block(block);
  1962   if (free_handle_block() != NULL) {
  1963     JNIHandleBlock* block = free_handle_block();
  1964     set_free_handle_block(NULL);
  1965     JNIHandleBlock::release_block(block);
  1968   // These have to be removed while this is still a valid thread.
  1969   remove_stack_guard_pages();
  1971   if (UseTLAB) {
  1972     tlab().make_parsable(true);  // retire TLAB, if any
  1975 #if INCLUDE_ALL_GCS
  1976   if (UseG1GC) {
  1977     flush_barrier_queues();
  1979 #endif // INCLUDE_ALL_GCS
  1981   Threads::remove(this);
  1982   delete this;
  1988 JavaThread* JavaThread::active() {
  1989   Thread* thread = ThreadLocalStorage::thread();
  1990   assert(thread != NULL, "just checking");
  1991   if (thread->is_Java_thread()) {
  1992     return (JavaThread*) thread;
  1993   } else {
  1994     assert(thread->is_VM_thread(), "this must be a vm thread");
  1995     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1996     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1997     assert(ret->is_Java_thread(), "must be a Java thread");
  1998     return ret;
  2002 bool JavaThread::is_lock_owned(address adr) const {
  2003   if (Thread::is_lock_owned(adr)) return true;
  2005   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2006     if (chunk->contains(adr)) return true;
  2009   return false;
  2013 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  2014   chunk->set_next(monitor_chunks());
  2015   set_monitor_chunks(chunk);
  2018 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  2019   guarantee(monitor_chunks() != NULL, "must be non empty");
  2020   if (monitor_chunks() == chunk) {
  2021     set_monitor_chunks(chunk->next());
  2022   } else {
  2023     MonitorChunk* prev = monitor_chunks();
  2024     while (prev->next() != chunk) prev = prev->next();
  2025     prev->set_next(chunk->next());
  2029 // JVM support.
  2031 // Note: this function shouldn't block if it's called in
  2032 // _thread_in_native_trans state (such as from
  2033 // check_special_condition_for_native_trans()).
  2034 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  2036   if (has_last_Java_frame() && has_async_condition()) {
  2037     // If we are at a polling page safepoint (not a poll return)
  2038     // then we must defer async exception because live registers
  2039     // will be clobbered by the exception path. Poll return is
  2040     // ok because the call we a returning from already collides
  2041     // with exception handling registers and so there is no issue.
  2042     // (The exception handling path kills call result registers but
  2043     //  this is ok since the exception kills the result anyway).
  2045     if (is_at_poll_safepoint()) {
  2046       // if the code we are returning to has deoptimized we must defer
  2047       // the exception otherwise live registers get clobbered on the
  2048       // exception path before deoptimization is able to retrieve them.
  2049       //
  2050       RegisterMap map(this, false);
  2051       frame caller_fr = last_frame().sender(&map);
  2052       assert(caller_fr.is_compiled_frame(), "what?");
  2053       if (caller_fr.is_deoptimized_frame()) {
  2054         if (TraceExceptions) {
  2055           ResourceMark rm;
  2056           tty->print_cr("deferred async exception at compiled safepoint");
  2058         return;
  2063   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  2064   if (condition == _no_async_condition) {
  2065     // Conditions have changed since has_special_runtime_exit_condition()
  2066     // was called:
  2067     // - if we were here only because of an external suspend request,
  2068     //   then that was taken care of above (or cancelled) so we are done
  2069     // - if we were here because of another async request, then it has
  2070     //   been cleared between the has_special_runtime_exit_condition()
  2071     //   and now so again we are done
  2072     return;
  2075   // Check for pending async. exception
  2076   if (_pending_async_exception != NULL) {
  2077     // Only overwrite an already pending exception, if it is not a threadDeath.
  2078     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  2080       // We cannot call Exceptions::_throw(...) here because we cannot block
  2081       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  2083       if (TraceExceptions) {
  2084         ResourceMark rm;
  2085         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  2086         if (has_last_Java_frame() ) {
  2087           frame f = last_frame();
  2088           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  2090         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2092       _pending_async_exception = NULL;
  2093       clear_has_async_exception();
  2097   if (check_unsafe_error &&
  2098       condition == _async_unsafe_access_error && !has_pending_exception()) {
  2099     condition = _no_async_condition;  // done
  2100     switch (thread_state()) {
  2101     case _thread_in_vm:
  2103         JavaThread* THREAD = this;
  2104         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2106     case _thread_in_native:
  2108         ThreadInVMfromNative tiv(this);
  2109         JavaThread* THREAD = this;
  2110         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  2112     case _thread_in_Java:
  2114         ThreadInVMfromJava tiv(this);
  2115         JavaThread* THREAD = this;
  2116         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  2118     default:
  2119       ShouldNotReachHere();
  2123   assert(condition == _no_async_condition || has_pending_exception() ||
  2124          (!check_unsafe_error && condition == _async_unsafe_access_error),
  2125          "must have handled the async condition, if no exception");
  2128 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  2129   //
  2130   // Check for pending external suspend. Internal suspend requests do
  2131   // not use handle_special_runtime_exit_condition().
  2132   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2133   // thread is not the current thread. In older versions of jdbx, jdbx
  2134   // threads could call into the VM with another thread's JNIEnv so we
  2135   // can be here operating on behalf of a suspended thread (4432884).
  2136   bool do_self_suspend = is_external_suspend_with_lock();
  2137   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  2138     //
  2139     // Because thread is external suspended the safepoint code will count
  2140     // thread as at a safepoint. This can be odd because we can be here
  2141     // as _thread_in_Java which would normally transition to _thread_blocked
  2142     // at a safepoint. We would like to mark the thread as _thread_blocked
  2143     // before calling java_suspend_self like all other callers of it but
  2144     // we must then observe proper safepoint protocol. (We can't leave
  2145     // _thread_blocked with a safepoint in progress). However we can be
  2146     // here as _thread_in_native_trans so we can't use a normal transition
  2147     // constructor/destructor pair because they assert on that type of
  2148     // transition. We could do something like:
  2149     //
  2150     // JavaThreadState state = thread_state();
  2151     // set_thread_state(_thread_in_vm);
  2152     // {
  2153     //   ThreadBlockInVM tbivm(this);
  2154     //   java_suspend_self()
  2155     // }
  2156     // set_thread_state(_thread_in_vm_trans);
  2157     // if (safepoint) block;
  2158     // set_thread_state(state);
  2159     //
  2160     // but that is pretty messy. Instead we just go with the way the
  2161     // code has worked before and note that this is the only path to
  2162     // java_suspend_self that doesn't put the thread in _thread_blocked
  2163     // mode.
  2165     frame_anchor()->make_walkable(this);
  2166     java_suspend_self();
  2168     // We might be here for reasons in addition to the self-suspend request
  2169     // so check for other async requests.
  2172   if (check_asyncs) {
  2173     check_and_handle_async_exceptions();
  2177 void JavaThread::send_thread_stop(oop java_throwable)  {
  2178   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  2179   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  2180   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  2182   // Do not throw asynchronous exceptions against the compiler thread
  2183   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  2184   if (is_Compiler_thread()) return;
  2187     // Actually throw the Throwable against the target Thread - however
  2188     // only if there is no thread death exception installed already.
  2189     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  2190       // If the topmost frame is a runtime stub, then we are calling into
  2191       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  2192       // must deoptimize the caller before continuing, as the compiled  exception handler table
  2193       // may not be valid
  2194       if (has_last_Java_frame()) {
  2195         frame f = last_frame();
  2196         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  2197           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2198           RegisterMap reg_map(this, UseBiasedLocking);
  2199           frame compiled_frame = f.sender(&reg_map);
  2200           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
  2201             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  2206       // Set async. pending exception in thread.
  2207       set_pending_async_exception(java_throwable);
  2209       if (TraceExceptions) {
  2210        ResourceMark rm;
  2211        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
  2213       // for AbortVMOnException flag
  2214       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
  2219   // Interrupt thread so it will wake up from a potential wait()
  2220   Thread::interrupt(this);
  2223 // External suspension mechanism.
  2224 //
  2225 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  2226 // to any VM_locks and it is at a transition
  2227 // Self-suspension will happen on the transition out of the vm.
  2228 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  2229 //
  2230 // Guarantees on return:
  2231 //   + Target thread will not execute any new bytecode (that's why we need to
  2232 //     force a safepoint)
  2233 //   + Target thread will not enter any new monitors
  2234 //
  2235 void JavaThread::java_suspend() {
  2236   { MutexLocker mu(Threads_lock);
  2237     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  2238        return;
  2242   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2243     if (!is_external_suspend()) {
  2244       // a racing resume has cancelled us; bail out now
  2245       return;
  2248     // suspend is done
  2249     uint32_t debug_bits = 0;
  2250     // Warning: is_ext_suspend_completed() may temporarily drop the
  2251     // SR_lock to allow the thread to reach a stable thread state if
  2252     // it is currently in a transient thread state.
  2253     if (is_ext_suspend_completed(false /* !called_by_wait */,
  2254                                  SuspendRetryDelay, &debug_bits) ) {
  2255       return;
  2259   VM_ForceSafepoint vm_suspend;
  2260   VMThread::execute(&vm_suspend);
  2263 // Part II of external suspension.
  2264 // A JavaThread self suspends when it detects a pending external suspend
  2265 // request. This is usually on transitions. It is also done in places
  2266 // where continuing to the next transition would surprise the caller,
  2267 // e.g., monitor entry.
  2268 //
  2269 // Returns the number of times that the thread self-suspended.
  2270 //
  2271 // Note: DO NOT call java_suspend_self() when you just want to block current
  2272 //       thread. java_suspend_self() is the second stage of cooperative
  2273 //       suspension for external suspend requests and should only be used
  2274 //       to complete an external suspend request.
  2275 //
  2276 int JavaThread::java_suspend_self() {
  2277   int ret = 0;
  2279   // we are in the process of exiting so don't suspend
  2280   if (is_exiting()) {
  2281      clear_external_suspend();
  2282      return ret;
  2285   assert(_anchor.walkable() ||
  2286     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2287     "must have walkable stack");
  2289   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2291   assert(!this->is_ext_suspended(),
  2292     "a thread trying to self-suspend should not already be suspended");
  2294   if (this->is_suspend_equivalent()) {
  2295     // If we are self-suspending as a result of the lifting of a
  2296     // suspend equivalent condition, then the suspend_equivalent
  2297     // flag is not cleared until we set the ext_suspended flag so
  2298     // that wait_for_ext_suspend_completion() returns consistent
  2299     // results.
  2300     this->clear_suspend_equivalent();
  2303   // A racing resume may have cancelled us before we grabbed SR_lock
  2304   // above. Or another external suspend request could be waiting for us
  2305   // by the time we return from SR_lock()->wait(). The thread
  2306   // that requested the suspension may already be trying to walk our
  2307   // stack and if we return now, we can change the stack out from under
  2308   // it. This would be a "bad thing (TM)" and cause the stack walker
  2309   // to crash. We stay self-suspended until there are no more pending
  2310   // external suspend requests.
  2311   while (is_external_suspend()) {
  2312     ret++;
  2313     this->set_ext_suspended();
  2315     // _ext_suspended flag is cleared by java_resume()
  2316     while (is_ext_suspended()) {
  2317       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2321   return ret;
  2324 #ifdef ASSERT
  2325 // verify the JavaThread has not yet been published in the Threads::list, and
  2326 // hence doesn't need protection from concurrent access at this stage
  2327 void JavaThread::verify_not_published() {
  2328   if (!Threads_lock->owned_by_self()) {
  2329    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2330    assert( !Threads::includes(this),
  2331            "java thread shouldn't have been published yet!");
  2333   else {
  2334    assert( !Threads::includes(this),
  2335            "java thread shouldn't have been published yet!");
  2338 #endif
  2340 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2341 // progress or when _suspend_flags is non-zero.
  2342 // Current thread needs to self-suspend if there is a suspend request and/or
  2343 // block if a safepoint is in progress.
  2344 // Async exception ISN'T checked.
  2345 // Note only the ThreadInVMfromNative transition can call this function
  2346 // directly and when thread state is _thread_in_native_trans
  2347 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2348   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2350   JavaThread *curJT = JavaThread::current();
  2351   bool do_self_suspend = thread->is_external_suspend();
  2353   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2355   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2356   // thread is not the current thread. In older versions of jdbx, jdbx
  2357   // threads could call into the VM with another thread's JNIEnv so we
  2358   // can be here operating on behalf of a suspended thread (4432884).
  2359   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2360     JavaThreadState state = thread->thread_state();
  2362     // We mark this thread_blocked state as a suspend-equivalent so
  2363     // that a caller to is_ext_suspend_completed() won't be confused.
  2364     // The suspend-equivalent state is cleared by java_suspend_self().
  2365     thread->set_suspend_equivalent();
  2367     // If the safepoint code sees the _thread_in_native_trans state, it will
  2368     // wait until the thread changes to other thread state. There is no
  2369     // guarantee on how soon we can obtain the SR_lock and complete the
  2370     // self-suspend request. It would be a bad idea to let safepoint wait for
  2371     // too long. Temporarily change the state to _thread_blocked to
  2372     // let the VM thread know that this thread is ready for GC. The problem
  2373     // of changing thread state is that safepoint could happen just after
  2374     // java_suspend_self() returns after being resumed, and VM thread will
  2375     // see the _thread_blocked state. We must check for safepoint
  2376     // after restoring the state and make sure we won't leave while a safepoint
  2377     // is in progress.
  2378     thread->set_thread_state(_thread_blocked);
  2379     thread->java_suspend_self();
  2380     thread->set_thread_state(state);
  2381     // Make sure new state is seen by VM thread
  2382     if (os::is_MP()) {
  2383       if (UseMembar) {
  2384         // Force a fence between the write above and read below
  2385         OrderAccess::fence();
  2386       } else {
  2387         // Must use this rather than serialization page in particular on Windows
  2388         InterfaceSupport::serialize_memory(thread);
  2393   if (SafepointSynchronize::do_call_back()) {
  2394     // If we are safepointing, then block the caller which may not be
  2395     // the same as the target thread (see above).
  2396     SafepointSynchronize::block(curJT);
  2399   if (thread->is_deopt_suspend()) {
  2400     thread->clear_deopt_suspend();
  2401     RegisterMap map(thread, false);
  2402     frame f = thread->last_frame();
  2403     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2404       f = f.sender(&map);
  2406     if (f.id() == thread->must_deopt_id()) {
  2407       thread->clear_must_deopt_id();
  2408       f.deoptimize(thread);
  2409     } else {
  2410       fatal("missed deoptimization!");
  2415 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2416 // progress or when _suspend_flags is non-zero.
  2417 // Current thread needs to self-suspend if there is a suspend request and/or
  2418 // block if a safepoint is in progress.
  2419 // Also check for pending async exception (not including unsafe access error).
  2420 // Note only the native==>VM/Java barriers can call this function and when
  2421 // thread state is _thread_in_native_trans.
  2422 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2423   check_safepoint_and_suspend_for_native_trans(thread);
  2425   if (thread->has_async_exception()) {
  2426     // We are in _thread_in_native_trans state, don't handle unsafe
  2427     // access error since that may block.
  2428     thread->check_and_handle_async_exceptions(false);
  2432 // This is a variant of the normal
  2433 // check_special_condition_for_native_trans with slightly different
  2434 // semantics for use by critical native wrappers.  It does all the
  2435 // normal checks but also performs the transition back into
  2436 // thread_in_Java state.  This is required so that critical natives
  2437 // can potentially block and perform a GC if they are the last thread
  2438 // exiting the GC_locker.
  2439 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
  2440   check_special_condition_for_native_trans(thread);
  2442   // Finish the transition
  2443   thread->set_thread_state(_thread_in_Java);
  2445   if (thread->do_critical_native_unlock()) {
  2446     ThreadInVMfromJavaNoAsyncException tiv(thread);
  2447     GC_locker::unlock_critical(thread);
  2448     thread->clear_critical_native_unlock();
  2452 // We need to guarantee the Threads_lock here, since resumes are not
  2453 // allowed during safepoint synchronization
  2454 // Can only resume from an external suspension
  2455 void JavaThread::java_resume() {
  2456   assert_locked_or_safepoint(Threads_lock);
  2458   // Sanity check: thread is gone, has started exiting or the thread
  2459   // was not externally suspended.
  2460   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2461     return;
  2464   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2466   clear_external_suspend();
  2468   if (is_ext_suspended()) {
  2469     clear_ext_suspended();
  2470     SR_lock()->notify_all();
  2474 void JavaThread::create_stack_guard_pages() {
  2475   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2476   address low_addr = stack_base() - stack_size();
  2477   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2479   int allocate = os::allocate_stack_guard_pages();
  2480   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2482   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2483     warning("Attempt to allocate stack guard pages failed.");
  2484     return;
  2487   if (os::guard_memory((char *) low_addr, len)) {
  2488     _stack_guard_state = stack_guard_enabled;
  2489   } else {
  2490     warning("Attempt to protect stack guard pages failed.");
  2491     if (os::uncommit_memory((char *) low_addr, len)) {
  2492       warning("Attempt to deallocate stack guard pages failed.");
  2497 void JavaThread::remove_stack_guard_pages() {
  2498   assert(Thread::current() == this, "from different thread");
  2499   if (_stack_guard_state == stack_guard_unused) return;
  2500   address low_addr = stack_base() - stack_size();
  2501   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2503   if (os::allocate_stack_guard_pages()) {
  2504     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2505       _stack_guard_state = stack_guard_unused;
  2506     } else {
  2507       warning("Attempt to deallocate stack guard pages failed.");
  2509   } else {
  2510     if (_stack_guard_state == stack_guard_unused) return;
  2511     if (os::unguard_memory((char *) low_addr, len)) {
  2512       _stack_guard_state = stack_guard_unused;
  2513     } else {
  2514         warning("Attempt to unprotect stack guard pages failed.");
  2519 void JavaThread::enable_stack_yellow_zone() {
  2520   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2521   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2523   // The base notation is from the stacks point of view, growing downward.
  2524   // We need to adjust it to work correctly with guard_memory()
  2525   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2527   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2528   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2530   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2531     _stack_guard_state = stack_guard_enabled;
  2532   } else {
  2533     warning("Attempt to guard stack yellow zone failed.");
  2535   enable_register_stack_guard();
  2538 void JavaThread::disable_stack_yellow_zone() {
  2539   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2540   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2542   // Simply return if called for a thread that does not use guard pages.
  2543   if (_stack_guard_state == stack_guard_unused) return;
  2545   // The base notation is from the stacks point of view, growing downward.
  2546   // We need to adjust it to work correctly with guard_memory()
  2547   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2549   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2550     _stack_guard_state = stack_guard_yellow_disabled;
  2551   } else {
  2552     warning("Attempt to unguard stack yellow zone failed.");
  2554   disable_register_stack_guard();
  2557 void JavaThread::enable_stack_red_zone() {
  2558   // The base notation is from the stacks point of view, growing downward.
  2559   // We need to adjust it to work correctly with guard_memory()
  2560   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2561   address base = stack_red_zone_base() - stack_red_zone_size();
  2563   guarantee(base < stack_base(),"Error calculating stack red zone");
  2564   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2566   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2567     warning("Attempt to guard stack red zone failed.");
  2571 void JavaThread::disable_stack_red_zone() {
  2572   // The base notation is from the stacks point of view, growing downward.
  2573   // We need to adjust it to work correctly with guard_memory()
  2574   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2575   address base = stack_red_zone_base() - stack_red_zone_size();
  2576   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2577     warning("Attempt to unguard stack red zone failed.");
  2581 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2582   // ignore is there is no stack
  2583   if (!has_last_Java_frame()) return;
  2584   // traverse the stack frames. Starts from top frame.
  2585   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2586     frame* fr = fst.current();
  2587     f(fr, fst.register_map());
  2592 #ifndef PRODUCT
  2593 // Deoptimization
  2594 // Function for testing deoptimization
  2595 void JavaThread::deoptimize() {
  2596   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2597   StackFrameStream fst(this, UseBiasedLocking);
  2598   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2599   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2600   // Iterate over all frames in the thread and deoptimize
  2601   for(; !fst.is_done(); fst.next()) {
  2602     if(fst.current()->can_be_deoptimized()) {
  2604       if (only_at) {
  2605         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2606         // consists of comma or carriage return separated numbers so
  2607         // search for the current bci in that string.
  2608         address pc = fst.current()->pc();
  2609         nmethod* nm =  (nmethod*) fst.current()->cb();
  2610         ScopeDesc* sd = nm->scope_desc_at( pc);
  2611         char buffer[8];
  2612         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2613         size_t len = strlen(buffer);
  2614         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2615         while (found != NULL) {
  2616           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2617               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2618             // Check that the bci found is bracketed by terminators.
  2619             break;
  2621           found = strstr(found + 1, buffer);
  2623         if (!found) {
  2624           continue;
  2628       if (DebugDeoptimization && !deopt) {
  2629         deopt = true; // One-time only print before deopt
  2630         tty->print_cr("[BEFORE Deoptimization]");
  2631         trace_frames();
  2632         trace_stack();
  2634       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2638   if (DebugDeoptimization && deopt) {
  2639     tty->print_cr("[AFTER Deoptimization]");
  2640     trace_frames();
  2645 // Make zombies
  2646 void JavaThread::make_zombies() {
  2647   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2648     if (fst.current()->can_be_deoptimized()) {
  2649       // it is a Java nmethod
  2650       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2651       nm->make_not_entrant();
  2655 #endif // PRODUCT
  2658 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2659   if (!has_last_Java_frame()) return;
  2660   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2661   StackFrameStream fst(this, UseBiasedLocking);
  2662   for(; !fst.is_done(); fst.next()) {
  2663     if (fst.current()->should_be_deoptimized()) {
  2664       if (LogCompilation && xtty != NULL) {
  2665         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
  2666         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
  2667                    this->name(), nm != NULL ? nm->compile_id() : -1);
  2670       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2676 // GC support
  2677 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2679 void JavaThread::gc_epilogue() {
  2680   frames_do(frame_gc_epilogue);
  2684 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2686 void JavaThread::gc_prologue() {
  2687   frames_do(frame_gc_prologue);
  2690 // If the caller is a NamedThread, then remember, in the current scope,
  2691 // the given JavaThread in its _processed_thread field.
  2692 class RememberProcessedThread: public StackObj {
  2693   NamedThread* _cur_thr;
  2694 public:
  2695   RememberProcessedThread(JavaThread* jthr) {
  2696     Thread* thread = Thread::current();
  2697     if (thread->is_Named_thread()) {
  2698       _cur_thr = (NamedThread *)thread;
  2699       _cur_thr->set_processed_thread(jthr);
  2700     } else {
  2701       _cur_thr = NULL;
  2705   ~RememberProcessedThread() {
  2706     if (_cur_thr) {
  2707       _cur_thr->set_processed_thread(NULL);
  2710 };
  2712 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  2713   // Verify that the deferred card marks have been flushed.
  2714   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2716   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2717   // since there may be more than one thread using each ThreadProfiler.
  2719   // Traverse the GCHandles
  2720   Thread::oops_do(f, cld_f, cf);
  2722   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2723           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2725   if (has_last_Java_frame()) {
  2726     // Record JavaThread to GC thread
  2727     RememberProcessedThread rpt(this);
  2729     // Traverse the privileged stack
  2730     if (_privileged_stack_top != NULL) {
  2731       _privileged_stack_top->oops_do(f);
  2734     // traverse the registered growable array
  2735     if (_array_for_gc != NULL) {
  2736       for (int index = 0; index < _array_for_gc->length(); index++) {
  2737         f->do_oop(_array_for_gc->adr_at(index));
  2741     // Traverse the monitor chunks
  2742     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2743       chunk->oops_do(f);
  2746     // Traverse the execution stack
  2747     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2748       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
  2752   // callee_target is never live across a gc point so NULL it here should
  2753   // it still contain a methdOop.
  2755   set_callee_target(NULL);
  2757   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2758   // If we have deferred set_locals there might be oops waiting to be
  2759   // written
  2760   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2761   if (list != NULL) {
  2762     for (int i = 0; i < list->length(); i++) {
  2763       list->at(i)->oops_do(f);
  2767   // Traverse instance variables at the end since the GC may be moving things
  2768   // around using this function
  2769   f->do_oop((oop*) &_threadObj);
  2770   f->do_oop((oop*) &_vm_result);
  2771   f->do_oop((oop*) &_exception_oop);
  2772   f->do_oop((oop*) &_pending_async_exception);
  2774   if (jvmti_thread_state() != NULL) {
  2775     jvmti_thread_state()->oops_do(f);
  2779 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2780   Thread::nmethods_do(cf);  // (super method is a no-op)
  2782   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2783           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2785   if (has_last_Java_frame()) {
  2786     // Traverse the execution stack
  2787     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2788       fst.current()->nmethods_do(cf);
  2793 void JavaThread::metadata_do(void f(Metadata*)) {
  2794   Thread::metadata_do(f);
  2795   if (has_last_Java_frame()) {
  2796     // Traverse the execution stack to call f() on the methods in the stack
  2797     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2798       fst.current()->metadata_do(f);
  2800   } else if (is_Compiler_thread()) {
  2801     // need to walk ciMetadata in current compile tasks to keep alive.
  2802     CompilerThread* ct = (CompilerThread*)this;
  2803     if (ct->env() != NULL) {
  2804       ct->env()->metadata_do(f);
  2809 // Printing
  2810 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2811   switch (_thread_state) {
  2812   case _thread_uninitialized:     return "_thread_uninitialized";
  2813   case _thread_new:               return "_thread_new";
  2814   case _thread_new_trans:         return "_thread_new_trans";
  2815   case _thread_in_native:         return "_thread_in_native";
  2816   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2817   case _thread_in_vm:             return "_thread_in_vm";
  2818   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2819   case _thread_in_Java:           return "_thread_in_Java";
  2820   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2821   case _thread_blocked:           return "_thread_blocked";
  2822   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2823   default:                        return "unknown thread state";
  2827 #ifndef PRODUCT
  2828 void JavaThread::print_thread_state_on(outputStream *st) const {
  2829   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2830 };
  2831 void JavaThread::print_thread_state() const {
  2832   print_thread_state_on(tty);
  2833 };
  2834 #endif // PRODUCT
  2836 // Called by Threads::print() for VM_PrintThreads operation
  2837 void JavaThread::print_on(outputStream *st) const {
  2838   st->print("\"%s\" ", get_thread_name());
  2839   oop thread_oop = threadObj();
  2840   if (thread_oop != NULL) {
  2841     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
  2842     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2843     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
  2845   Thread::print_on(st);
  2846   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2847   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2848   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2849     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2851 #ifndef PRODUCT
  2852   print_thread_state_on(st);
  2853   _safepoint_state->print_on(st);
  2854 #endif // PRODUCT
  2857 // Called by fatal error handler. The difference between this and
  2858 // JavaThread::print() is that we can't grab lock or allocate memory.
  2859 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2860   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2861   oop thread_obj = threadObj();
  2862   if (thread_obj != NULL) {
  2863      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2865   st->print(" [");
  2866   st->print("%s", _get_thread_state_name(_thread_state));
  2867   if (osthread()) {
  2868     st->print(", id=%d", osthread()->thread_id());
  2870   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2871             _stack_base - _stack_size, _stack_base);
  2872   st->print("]");
  2873   return;
  2876 // Verification
  2878 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2880 void JavaThread::verify() {
  2881   // Verify oops in the thread.
  2882   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
  2884   // Verify the stack frames.
  2885   frames_do(frame_verify);
  2888 // CR 6300358 (sub-CR 2137150)
  2889 // Most callers of this method assume that it can't return NULL but a
  2890 // thread may not have a name whilst it is in the process of attaching to
  2891 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2892 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2893 // if vm exit occurs during initialization). These cases can all be accounted
  2894 // for such that this method never returns NULL.
  2895 const char* JavaThread::get_thread_name() const {
  2896 #ifdef ASSERT
  2897   // early safepoints can hit while current thread does not yet have TLS
  2898   if (!SafepointSynchronize::is_at_safepoint()) {
  2899     Thread *cur = Thread::current();
  2900     if (!(cur->is_Java_thread() && cur == this)) {
  2901       // Current JavaThreads are allowed to get their own name without
  2902       // the Threads_lock.
  2903       assert_locked_or_safepoint(Threads_lock);
  2906 #endif // ASSERT
  2907     return get_thread_name_string();
  2910 // Returns a non-NULL representation of this thread's name, or a suitable
  2911 // descriptive string if there is no set name
  2912 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2913   const char* name_str;
  2914   oop thread_obj = threadObj();
  2915   if (thread_obj != NULL) {
  2916     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2917     if (name != NULL) {
  2918       if (buf == NULL) {
  2919         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2921       else {
  2922         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2925     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
  2926       name_str = "<no-name - thread is attaching>";
  2928     else {
  2929       name_str = Thread::name();
  2932   else {
  2933     name_str = Thread::name();
  2935   assert(name_str != NULL, "unexpected NULL thread name");
  2936   return name_str;
  2940 const char* JavaThread::get_threadgroup_name() const {
  2941   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2942   oop thread_obj = threadObj();
  2943   if (thread_obj != NULL) {
  2944     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2945     if (thread_group != NULL) {
  2946       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2947       // ThreadGroup.name can be null
  2948       if (name != NULL) {
  2949         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2950         return str;
  2954   return NULL;
  2957 const char* JavaThread::get_parent_name() const {
  2958   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2959   oop thread_obj = threadObj();
  2960   if (thread_obj != NULL) {
  2961     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2962     if (thread_group != NULL) {
  2963       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2964       if (parent != NULL) {
  2965         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2966         // ThreadGroup.name can be null
  2967         if (name != NULL) {
  2968           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2969           return str;
  2974   return NULL;
  2977 ThreadPriority JavaThread::java_priority() const {
  2978   oop thr_oop = threadObj();
  2979   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2980   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2981   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2982   return priority;
  2985 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2987   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2988   // Link Java Thread object <-> C++ Thread
  2990   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2991   // and put it into a new Handle.  The Handle "thread_oop" can then
  2992   // be used to pass the C++ thread object to other methods.
  2994   // Set the Java level thread object (jthread) field of the
  2995   // new thread (a JavaThread *) to C++ thread object using the
  2996   // "thread_oop" handle.
  2998   // Set the thread field (a JavaThread *) of the
  2999   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  3001   Handle thread_oop(Thread::current(),
  3002                     JNIHandles::resolve_non_null(jni_thread));
  3003   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
  3004     "must be initialized");
  3005   set_threadObj(thread_oop());
  3006   java_lang_Thread::set_thread(thread_oop(), this);
  3008   if (prio == NoPriority) {
  3009     prio = java_lang_Thread::priority(thread_oop());
  3010     assert(prio != NoPriority, "A valid priority should be present");
  3013   // Push the Java priority down to the native thread; needs Threads_lock
  3014   Thread::set_priority(this, prio);
  3016   // Add the new thread to the Threads list and set it in motion.
  3017   // We must have threads lock in order to call Threads::add.
  3018   // It is crucial that we do not block before the thread is
  3019   // added to the Threads list for if a GC happens, then the java_thread oop
  3020   // will not be visited by GC.
  3021   Threads::add(this);
  3024 oop JavaThread::current_park_blocker() {
  3025   // Support for JSR-166 locks
  3026   oop thread_oop = threadObj();
  3027   if (thread_oop != NULL &&
  3028       JDK_Version::current().supports_thread_park_blocker()) {
  3029     return java_lang_Thread::park_blocker(thread_oop);
  3031   return NULL;
  3035 void JavaThread::print_stack_on(outputStream* st) {
  3036   if (!has_last_Java_frame()) return;
  3037   ResourceMark rm;
  3038   HandleMark   hm;
  3040   RegisterMap reg_map(this);
  3041   vframe* start_vf = last_java_vframe(&reg_map);
  3042   int count = 0;
  3043   for (vframe* f = start_vf; f; f = f->sender() ) {
  3044     if (f->is_java_frame()) {
  3045       javaVFrame* jvf = javaVFrame::cast(f);
  3046       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  3048       // Print out lock information
  3049       if (JavaMonitorsInStackTrace) {
  3050         jvf->print_lock_info_on(st, count);
  3052     } else {
  3053       // Ignore non-Java frames
  3056     // Bail-out case for too deep stacks
  3057     count++;
  3058     if (MaxJavaStackTraceDepth == count) return;
  3063 // JVMTI PopFrame support
  3064 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  3065   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  3066   if (in_bytes(size_in_bytes) != 0) {
  3067     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
  3068     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  3069     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  3073 void* JavaThread::popframe_preserved_args() {
  3074   return _popframe_preserved_args;
  3077 ByteSize JavaThread::popframe_preserved_args_size() {
  3078   return in_ByteSize(_popframe_preserved_args_size);
  3081 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  3082   int sz = in_bytes(popframe_preserved_args_size());
  3083   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  3084   return in_WordSize(sz / wordSize);
  3087 void JavaThread::popframe_free_preserved_args() {
  3088   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  3089   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
  3090   _popframe_preserved_args = NULL;
  3091   _popframe_preserved_args_size = 0;
  3094 #ifndef PRODUCT
  3096 void JavaThread::trace_frames() {
  3097   tty->print_cr("[Describe stack]");
  3098   int frame_no = 1;
  3099   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  3100     tty->print("  %d. ", frame_no++);
  3101     fst.current()->print_value_on(tty,this);
  3102     tty->cr();
  3106 class PrintAndVerifyOopClosure: public OopClosure {
  3107  protected:
  3108   template <class T> inline void do_oop_work(T* p) {
  3109     oop obj = oopDesc::load_decode_heap_oop(p);
  3110     if (obj == NULL) return;
  3111     tty->print(INTPTR_FORMAT ": ", p);
  3112     if (obj->is_oop_or_null()) {
  3113       if (obj->is_objArray()) {
  3114         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
  3115       } else {
  3116         obj->print();
  3118     } else {
  3119       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
  3121     tty->cr();
  3123  public:
  3124   virtual void do_oop(oop* p) { do_oop_work(p); }
  3125   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
  3126 };
  3129 static void oops_print(frame* f, const RegisterMap *map) {
  3130   PrintAndVerifyOopClosure print;
  3131   f->print_value();
  3132   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
  3135 // Print our all the locations that contain oops and whether they are
  3136 // valid or not.  This useful when trying to find the oldest frame
  3137 // where an oop has gone bad since the frame walk is from youngest to
  3138 // oldest.
  3139 void JavaThread::trace_oops() {
  3140   tty->print_cr("[Trace oops]");
  3141   frames_do(oops_print);
  3145 #ifdef ASSERT
  3146 // Print or validate the layout of stack frames
  3147 void JavaThread::print_frame_layout(int depth, bool validate_only) {
  3148   ResourceMark rm;
  3149   PRESERVE_EXCEPTION_MARK;
  3150   FrameValues values;
  3151   int frame_no = 0;
  3152   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
  3153     fst.current()->describe(values, ++frame_no);
  3154     if (depth == frame_no) break;
  3156   if (validate_only) {
  3157     values.validate();
  3158   } else {
  3159     tty->print_cr("[Describe stack layout]");
  3160     values.print(this);
  3163 #endif
  3165 void JavaThread::trace_stack_from(vframe* start_vf) {
  3166   ResourceMark rm;
  3167   int vframe_no = 1;
  3168   for (vframe* f = start_vf; f; f = f->sender() ) {
  3169     if (f->is_java_frame()) {
  3170       javaVFrame::cast(f)->print_activation(vframe_no++);
  3171     } else {
  3172       f->print();
  3174     if (vframe_no > StackPrintLimit) {
  3175       tty->print_cr("...<more frames>...");
  3176       return;
  3182 void JavaThread::trace_stack() {
  3183   if (!has_last_Java_frame()) return;
  3184   ResourceMark rm;
  3185   HandleMark   hm;
  3186   RegisterMap reg_map(this);
  3187   trace_stack_from(last_java_vframe(&reg_map));
  3191 #endif // PRODUCT
  3194 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  3195   assert(reg_map != NULL, "a map must be given");
  3196   frame f = last_frame();
  3197   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  3198     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  3200   return NULL;
  3204 Klass* JavaThread::security_get_caller_class(int depth) {
  3205   vframeStream vfst(this);
  3206   vfst.security_get_caller_frame(depth);
  3207   if (!vfst.at_end()) {
  3208     return vfst.method()->method_holder();
  3210   return NULL;
  3213 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  3214   assert(thread->is_Compiler_thread(), "must be compiler thread");
  3215   CompileBroker::compiler_thread_loop();
  3218 // Create a CompilerThread
  3219 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  3220 : JavaThread(&compiler_thread_entry) {
  3221   _env   = NULL;
  3222   _log   = NULL;
  3223   _task  = NULL;
  3224   _queue = queue;
  3225   _counters = counters;
  3226   _buffer_blob = NULL;
  3227   _scanned_nmethod = NULL;
  3229 #ifndef PRODUCT
  3230   _ideal_graph_printer = NULL;
  3231 #endif
  3234 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  3235   JavaThread::oops_do(f, cld_f, cf);
  3236   if (_scanned_nmethod != NULL && cf != NULL) {
  3237     // Safepoints can occur when the sweeper is scanning an nmethod so
  3238     // process it here to make sure it isn't unloaded in the middle of
  3239     // a scan.
  3240     cf->do_code_blob(_scanned_nmethod);
  3244 // ======= Threads ========
  3246 // The Threads class links together all active threads, and provides
  3247 // operations over all threads.  It is protected by its own Mutex
  3248 // lock, which is also used in other contexts to protect thread
  3249 // operations from having the thread being operated on from exiting
  3250 // and going away unexpectedly (e.g., safepoint synchronization)
  3252 JavaThread* Threads::_thread_list = NULL;
  3253 int         Threads::_number_of_threads = 0;
  3254 int         Threads::_number_of_non_daemon_threads = 0;
  3255 int         Threads::_return_code = 0;
  3256 size_t      JavaThread::_stack_size_at_create = 0;
  3257 #ifdef ASSERT
  3258 bool        Threads::_vm_complete = false;
  3259 #endif
  3261 // All JavaThreads
  3262 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  3264 void os_stream();
  3266 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  3267 void Threads::threads_do(ThreadClosure* tc) {
  3268   assert_locked_or_safepoint(Threads_lock);
  3269   // ALL_JAVA_THREADS iterates through all JavaThreads
  3270   ALL_JAVA_THREADS(p) {
  3271     tc->do_thread(p);
  3273   // Someday we could have a table or list of all non-JavaThreads.
  3274   // For now, just manually iterate through them.
  3275   tc->do_thread(VMThread::vm_thread());
  3276   Universe::heap()->gc_threads_do(tc);
  3277   WatcherThread *wt = WatcherThread::watcher_thread();
  3278   // Strictly speaking, the following NULL check isn't sufficient to make sure
  3279   // the data for WatcherThread is still valid upon being examined. However,
  3280   // considering that WatchThread terminates when the VM is on the way to
  3281   // exit at safepoint, the chance of the above is extremely small. The right
  3282   // way to prevent termination of WatcherThread would be to acquire
  3283   // Terminator_lock, but we can't do that without violating the lock rank
  3284   // checking in some cases.
  3285   if (wt != NULL)
  3286     tc->do_thread(wt);
  3288   // If CompilerThreads ever become non-JavaThreads, add them here
  3291 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  3293   extern void JDK_Version_init();
  3295   // Check version
  3296   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  3298   // Initialize the output stream module
  3299   ostream_init();
  3301   // Process java launcher properties.
  3302   Arguments::process_sun_java_launcher_properties(args);
  3304   // Initialize the os module before using TLS
  3305   os::init();
  3307   // Initialize system properties.
  3308   Arguments::init_system_properties();
  3310   // So that JDK version can be used as a discrimintor when parsing arguments
  3311   JDK_Version_init();
  3313   // Update/Initialize System properties after JDK version number is known
  3314   Arguments::init_version_specific_system_properties();
  3316   // Parse arguments
  3317   jint parse_result = Arguments::parse(args);
  3318   if (parse_result != JNI_OK) return parse_result;
  3320   if (PauseAtStartup) {
  3321     os::pause();
  3324 #ifndef USDT2
  3325   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  3326 #else /* USDT2 */
  3327   HOTSPOT_VM_INIT_BEGIN();
  3328 #endif /* USDT2 */
  3330   // Record VM creation timing statistics
  3331   TraceVmCreationTime create_vm_timer;
  3332   create_vm_timer.start();
  3334   // Timing (must come after argument parsing)
  3335   TraceTime timer("Create VM", TraceStartupTime);
  3337   // Initialize the os module after parsing the args
  3338   jint os_init_2_result = os::init_2();
  3339   if (os_init_2_result != JNI_OK) return os_init_2_result;
  3341   jint adjust_after_os_result = Arguments::adjust_after_os();
  3342   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
  3344   // intialize TLS
  3345   ThreadLocalStorage::init();
  3347   // Bootstrap native memory tracking, so it can start recording memory
  3348   // activities before worker thread is started. This is the first phase
  3349   // of bootstrapping, VM is currently running in single-thread mode.
  3350   MemTracker::bootstrap_single_thread();
  3352   // Initialize output stream logging
  3353   ostream_init_log();
  3355   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  3356   // Must be before create_vm_init_agents()
  3357   if (Arguments::init_libraries_at_startup()) {
  3358     convert_vm_init_libraries_to_agents();
  3361   // Launch -agentlib/-agentpath and converted -Xrun agents
  3362   if (Arguments::init_agents_at_startup()) {
  3363     create_vm_init_agents();
  3366   // Initialize Threads state
  3367   _thread_list = NULL;
  3368   _number_of_threads = 0;
  3369   _number_of_non_daemon_threads = 0;
  3371   // Initialize global data structures and create system classes in heap
  3372   vm_init_globals();
  3374   // Attach the main thread to this os thread
  3375   JavaThread* main_thread = new JavaThread();
  3376   main_thread->set_thread_state(_thread_in_vm);
  3377   // must do this before set_active_handles and initialize_thread_local_storage
  3378   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  3379   // change the stack size recorded here to one based on the java thread
  3380   // stacksize. This adjusted size is what is used to figure the placement
  3381   // of the guard pages.
  3382   main_thread->record_stack_base_and_size();
  3383   main_thread->initialize_thread_local_storage();
  3385   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  3387   if (!main_thread->set_as_starting_thread()) {
  3388     vm_shutdown_during_initialization(
  3389       "Failed necessary internal allocation. Out of swap space");
  3390     delete main_thread;
  3391     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3392     return JNI_ENOMEM;
  3395   // Enable guard page *after* os::create_main_thread(), otherwise it would
  3396   // crash Linux VM, see notes in os_linux.cpp.
  3397   main_thread->create_stack_guard_pages();
  3399   // Initialize Java-Level synchronization subsystem
  3400   ObjectMonitor::Initialize() ;
  3402   // Second phase of bootstrapping, VM is about entering multi-thread mode
  3403   MemTracker::bootstrap_multi_thread();
  3405   // Initialize global modules
  3406   jint status = init_globals();
  3407   if (status != JNI_OK) {
  3408     delete main_thread;
  3409     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3410     return status;
  3413   // Should be done after the heap is fully created
  3414   main_thread->cache_global_variables();
  3416   HandleMark hm;
  3418   { MutexLocker mu(Threads_lock);
  3419     Threads::add(main_thread);
  3422   // Any JVMTI raw monitors entered in onload will transition into
  3423   // real raw monitor. VM is setup enough here for raw monitor enter.
  3424   JvmtiExport::transition_pending_onload_raw_monitors();
  3426   // Fully start NMT
  3427   MemTracker::start();
  3429   // Create the VMThread
  3430   { TraceTime timer("Start VMThread", TraceStartupTime);
  3431     VMThread::create();
  3432     Thread* vmthread = VMThread::vm_thread();
  3434     if (!os::create_thread(vmthread, os::vm_thread))
  3435       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3437     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3438     // Monitors can have spurious returns, must always check another state flag
  3440       MutexLocker ml(Notify_lock);
  3441       os::start_thread(vmthread);
  3442       while (vmthread->active_handles() == NULL) {
  3443         Notify_lock->wait();
  3448   assert (Universe::is_fully_initialized(), "not initialized");
  3449   if (VerifyDuringStartup) {
  3450     VM_Verify verify_op(false /* silent */);   // make sure we're starting with a clean slate
  3451     VMThread::execute(&verify_op);
  3454   EXCEPTION_MARK;
  3456   // At this point, the Universe is initialized, but we have not executed
  3457   // any byte code.  Now is a good time (the only time) to dump out the
  3458   // internal state of the JVM for sharing.
  3459   if (DumpSharedSpaces) {
  3460     MetaspaceShared::preload_and_dump(CHECK_0);
  3461     ShouldNotReachHere();
  3464   // Always call even when there are not JVMTI environments yet, since environments
  3465   // may be attached late and JVMTI must track phases of VM execution
  3466   JvmtiExport::enter_start_phase();
  3468   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3469   JvmtiExport::post_vm_start();
  3472     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3474     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3475       create_vm_init_libraries();
  3478     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
  3480     if (AggressiveOpts) {
  3482         // Forcibly initialize java/util/HashMap and mutate the private
  3483         // static final "frontCacheEnabled" field before we start creating instances
  3484 #ifdef ASSERT
  3485         Klass* tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3486         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3487 #endif
  3488         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3489         KlassHandle k = KlassHandle(THREAD, k_o);
  3490         guarantee(k.not_null(), "Must find java/util/HashMap");
  3491         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3492         ik->initialize(CHECK_0);
  3493         fieldDescriptor fd;
  3494         // Possible we might not find this field; if so, don't break
  3495         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3496           k()->java_mirror()->bool_field_put(fd.offset(), true);
  3500       if (UseStringCache) {
  3501         // Forcibly initialize java/lang/StringValue and mutate the private
  3502         // static final "stringCacheEnabled" field before we start creating instances
  3503         Klass* k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3504         // Possible that StringValue isn't present: if so, silently don't break
  3505         if (k_o != NULL) {
  3506           KlassHandle k = KlassHandle(THREAD, k_o);
  3507           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3508           ik->initialize(CHECK_0);
  3509           fieldDescriptor fd;
  3510           // Possible we might not find this field: if so, silently don't break
  3511           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3512             k()->java_mirror()->bool_field_put(fd.offset(), true);
  3518     // Initialize java_lang.System (needed before creating the thread)
  3519     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
  3520     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
  3521     Handle thread_group = create_initial_thread_group(CHECK_0);
  3522     Universe::set_main_thread_group(thread_group());
  3523     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
  3524     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3525     main_thread->set_threadObj(thread_object);
  3526     // Set thread status to running since main thread has
  3527     // been started and running.
  3528     java_lang_Thread::set_thread_status(thread_object,
  3529                                         java_lang_Thread::RUNNABLE);
  3531     // The VM creates & returns objects of this class. Make sure it's initialized.
  3532     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
  3534     // The VM preresolves methods to these classes. Make sure that they get initialized
  3535     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
  3536     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
  3537     call_initializeSystemClass(CHECK_0);
  3539     // get the Java runtime name after java.lang.System is initialized
  3540     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
  3541     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
  3543     // an instance of OutOfMemory exception has been allocated earlier
  3544     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
  3545     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
  3546     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
  3547     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
  3548     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
  3549     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
  3550     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
  3551     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
  3554   // See        : bugid 4211085.
  3555   // Background : the static initializer of java.lang.Compiler tries to read
  3556   //              property"java.compiler" and read & write property "java.vm.info".
  3557   //              When a security manager is installed through the command line
  3558   //              option "-Djava.security.manager", the above properties are not
  3559   //              readable and the static initializer for java.lang.Compiler fails
  3560   //              resulting in a NoClassDefFoundError.  This can happen in any
  3561   //              user code which calls methods in java.lang.Compiler.
  3562   // Hack :       the hack is to pre-load and initialize this class, so that only
  3563   //              system domains are on the stack when the properties are read.
  3564   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3565   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3566   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3567   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3568   //              Once that is done, we should remove this hack.
  3569   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
  3571   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3572   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3573   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3574   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3575   // This should also be taken out as soon as 4211383 gets fixed.
  3576   reset_vm_info_property(CHECK_0);
  3578   quicken_jni_functions();
  3580   // Must be run after init_ft which initializes ft_enabled
  3581   if (TRACE_INITIALIZE() != JNI_OK) {
  3582     vm_exit_during_initialization("Failed to initialize tracing backend");
  3585   // Set flag that basic initialization has completed. Used by exceptions and various
  3586   // debug stuff, that does not work until all basic classes have been initialized.
  3587   set_init_completed();
  3589 #ifndef USDT2
  3590   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3591 #else /* USDT2 */
  3592   HOTSPOT_VM_INIT_END();
  3593 #endif /* USDT2 */
  3595   // record VM initialization completion time
  3596 #if INCLUDE_MANAGEMENT
  3597   Management::record_vm_init_completed();
  3598 #endif // INCLUDE_MANAGEMENT
  3600   // Compute system loader. Note that this has to occur after set_init_completed, since
  3601   // valid exceptions may be thrown in the process.
  3602   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3603   // set_init_completed has just been called, causing exceptions not to be shortcut
  3604   // anymore. We call vm_exit_during_initialization directly instead.
  3605   SystemDictionary::compute_java_system_loader(THREAD);
  3606   if (HAS_PENDING_EXCEPTION) {
  3607     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3610 #if INCLUDE_ALL_GCS
  3611   // Support for ConcurrentMarkSweep. This should be cleaned up
  3612   // and better encapsulated. The ugly nested if test would go away
  3613   // once things are properly refactored. XXX YSR
  3614   if (UseConcMarkSweepGC || UseG1GC) {
  3615     if (UseConcMarkSweepGC) {
  3616       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3617     } else {
  3618       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3620     if (HAS_PENDING_EXCEPTION) {
  3621       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3624 #endif // INCLUDE_ALL_GCS
  3626   // Always call even when there are not JVMTI environments yet, since environments
  3627   // may be attached late and JVMTI must track phases of VM execution
  3628   JvmtiExport::enter_live_phase();
  3630   // Signal Dispatcher needs to be started before VMInit event is posted
  3631   os::signal_init();
  3633   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3634   if (!DisableAttachMechanism) {
  3635     if (StartAttachListener || AttachListener::init_at_startup()) {
  3636       AttachListener::init();
  3640   // Launch -Xrun agents
  3641   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3642   // back-end can launch with -Xdebug -Xrunjdwp.
  3643   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3644     create_vm_init_libraries();
  3647   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3648   JvmtiExport::post_vm_initialized();
  3650   if (!TRACE_START()) {
  3651     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3654   if (CleanChunkPoolAsync) {
  3655     Chunk::start_chunk_pool_cleaner_task();
  3658   // initialize compiler(s)
  3659 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
  3660   CompileBroker::compilation_init();
  3661 #endif
  3663 #if INCLUDE_MANAGEMENT
  3664   Management::initialize(THREAD);
  3665 #endif // INCLUDE_MANAGEMENT
  3667   if (HAS_PENDING_EXCEPTION) {
  3668     // management agent fails to start possibly due to
  3669     // configuration problem and is responsible for printing
  3670     // stack trace if appropriate. Simply exit VM.
  3671     vm_exit(1);
  3674   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3675   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3676   if (MemProfiling)                   MemProfiler::engage();
  3677   StatSampler::engage();
  3678   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3680   BiasedLocking::init();
  3682   if (JDK_Version::current().post_vm_init_hook_enabled()) {
  3683     call_postVMInitHook(THREAD);
  3684     // The Java side of PostVMInitHook.run must deal with all
  3685     // exceptions and provide means of diagnosis.
  3686     if (HAS_PENDING_EXCEPTION) {
  3687       CLEAR_PENDING_EXCEPTION;
  3692       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
  3693       // Make sure the watcher thread can be started by WatcherThread::start()
  3694       // or by dynamic enrollment.
  3695       WatcherThread::make_startable();
  3696       // Start up the WatcherThread if there are any periodic tasks
  3697       // NOTE:  All PeriodicTasks should be registered by now. If they
  3698       //   aren't, late joiners might appear to start slowly (we might
  3699       //   take a while to process their first tick).
  3700       if (PeriodicTask::num_tasks() > 0) {
  3701           WatcherThread::start();
  3705   // Give os specific code one last chance to start
  3706   os::init_3();
  3708   create_vm_timer.end();
  3709 #ifdef ASSERT
  3710   _vm_complete = true;
  3711 #endif
  3712   return JNI_OK;
  3715 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3716 extern "C" {
  3717   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3719 // Find a command line agent library and return its entry point for
  3720 //         -agentlib:  -agentpath:   -Xrun
  3721 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3722 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3723   OnLoadEntry_t on_load_entry = NULL;
  3724   void *library = agent->os_lib();  // check if we have looked it up before
  3726   if (library == NULL) {
  3727     char buffer[JVM_MAXPATHLEN];
  3728     char ebuf[1024];
  3729     const char *name = agent->name();
  3730     const char *msg = "Could not find agent library ";
  3732     if (agent->is_absolute_path()) {
  3733       library = os::dll_load(name, ebuf, sizeof ebuf);
  3734       if (library == NULL) {
  3735         const char *sub_msg = " in absolute path, with error: ";
  3736         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3737         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3738         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3739         // If we can't find the agent, exit.
  3740         vm_exit_during_initialization(buf, NULL);
  3741         FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3743     } else {
  3744       // Try to load the agent from the standard dll directory
  3745       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
  3746                              name)) {
  3747         library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3749       if (library == NULL) { // Try the local directory
  3750         char ns[1] = {0};
  3751         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
  3752           library = os::dll_load(buffer, ebuf, sizeof ebuf);
  3754         if (library == NULL) {
  3755           const char *sub_msg = " on the library path, with error: ";
  3756           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3757           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
  3758           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3759           // If we can't find the agent, exit.
  3760           vm_exit_during_initialization(buf, NULL);
  3761           FREE_C_HEAP_ARRAY(char, buf, mtThread);
  3765     agent->set_os_lib(library);
  3768   // Find the OnLoad function.
  3769   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3770     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
  3771     if (on_load_entry != NULL) break;
  3773   return on_load_entry;
  3776 // Find the JVM_OnLoad entry point
  3777 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3778   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3779   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3782 // Find the Agent_OnLoad entry point
  3783 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3784   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3785   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3788 // For backwards compatibility with -Xrun
  3789 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3790 // treated like -agentpath:
  3791 // Must be called before agent libraries are created
  3792 void Threads::convert_vm_init_libraries_to_agents() {
  3793   AgentLibrary* agent;
  3794   AgentLibrary* next;
  3796   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3797     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3798     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3800     // If there is an JVM_OnLoad function it will get called later,
  3801     // otherwise see if there is an Agent_OnLoad
  3802     if (on_load_entry == NULL) {
  3803       on_load_entry = lookup_agent_on_load(agent);
  3804       if (on_load_entry != NULL) {
  3805         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3806         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3807         Arguments::convert_library_to_agent(agent);
  3808       } else {
  3809         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3815 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3816 // Invokes Agent_OnLoad
  3817 // Called very early -- before JavaThreads exist
  3818 void Threads::create_vm_init_agents() {
  3819   extern struct JavaVM_ main_vm;
  3820   AgentLibrary* agent;
  3822   JvmtiExport::enter_onload_phase();
  3824   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3825     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3827     if (on_load_entry != NULL) {
  3828       // Invoke the Agent_OnLoad function
  3829       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3830       if (err != JNI_OK) {
  3831         vm_exit_during_initialization("agent library failed to init", agent->name());
  3833     } else {
  3834       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3837   JvmtiExport::enter_primordial_phase();
  3840 extern "C" {
  3841   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3844 void Threads::shutdown_vm_agents() {
  3845   // Send any Agent_OnUnload notifications
  3846   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3847   extern struct JavaVM_ main_vm;
  3848   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3850     // Find the Agent_OnUnload function.
  3851     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3852       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3853                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3855       // Invoke the Agent_OnUnload function
  3856       if (unload_entry != NULL) {
  3857         JavaThread* thread = JavaThread::current();
  3858         ThreadToNativeFromVM ttn(thread);
  3859         HandleMark hm(thread);
  3860         (*unload_entry)(&main_vm);
  3861         break;
  3867 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3868 // Invokes JVM_OnLoad
  3869 void Threads::create_vm_init_libraries() {
  3870   extern struct JavaVM_ main_vm;
  3871   AgentLibrary* agent;
  3873   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3874     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3876     if (on_load_entry != NULL) {
  3877       // Invoke the JVM_OnLoad function
  3878       JavaThread* thread = JavaThread::current();
  3879       ThreadToNativeFromVM ttn(thread);
  3880       HandleMark hm(thread);
  3881       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3882       if (err != JNI_OK) {
  3883         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3885     } else {
  3886       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3891 // Last thread running calls java.lang.Shutdown.shutdown()
  3892 void JavaThread::invoke_shutdown_hooks() {
  3893   HandleMark hm(this);
  3895   // We could get here with a pending exception, if so clear it now.
  3896   if (this->has_pending_exception()) {
  3897     this->clear_pending_exception();
  3900   EXCEPTION_MARK;
  3901   Klass* k =
  3902     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
  3903                                       THREAD);
  3904   if (k != NULL) {
  3905     // SystemDictionary::resolve_or_null will return null if there was
  3906     // an exception.  If we cannot load the Shutdown class, just don't
  3907     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3908     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3909     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3910     // was called, the Shutdown class would have already been loaded
  3911     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3912     instanceKlassHandle shutdown_klass (THREAD, k);
  3913     JavaValue result(T_VOID);
  3914     JavaCalls::call_static(&result,
  3915                            shutdown_klass,
  3916                            vmSymbols::shutdown_method_name(),
  3917                            vmSymbols::void_method_signature(),
  3918                            THREAD);
  3920   CLEAR_PENDING_EXCEPTION;
  3923 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3924 // the program falls off the end of main(). Another VM exit path is through
  3925 // vm_exit() when the program calls System.exit() to return a value or when
  3926 // there is a serious error in VM. The two shutdown paths are not exactly
  3927 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3928 // and VM_Exit op at VM level.
  3929 //
  3930 // Shutdown sequence:
  3931 //   + Shutdown native memory tracking if it is on
  3932 //   + Wait until we are the last non-daemon thread to execute
  3933 //     <-- every thing is still working at this moment -->
  3934 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3935 //        shutdown hooks, run finalizers if finalization-on-exit
  3936 //   + Call before_exit(), prepare for VM exit
  3937 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3938 //        currently the only user of this mechanism is File.deleteOnExit())
  3939 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3940 //        post thread end and vm death events to JVMTI,
  3941 //        stop signal thread
  3942 //   + Call JavaThread::exit(), it will:
  3943 //      > release JNI handle blocks, remove stack guard pages
  3944 //      > remove this thread from Threads list
  3945 //     <-- no more Java code from this thread after this point -->
  3946 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3947 //     the compiler threads at safepoint
  3948 //     <-- do not use anything that could get blocked by Safepoint -->
  3949 //   + Disable tracing at JNI/JVM barriers
  3950 //   + Set _vm_exited flag for threads that are still running native code
  3951 //   + Delete this thread
  3952 //   + Call exit_globals()
  3953 //      > deletes tty
  3954 //      > deletes PerfMemory resources
  3955 //   + Return to caller
  3957 bool Threads::destroy_vm() {
  3958   JavaThread* thread = JavaThread::current();
  3960 #ifdef ASSERT
  3961   _vm_complete = false;
  3962 #endif
  3963   // Wait until we are the last non-daemon thread to execute
  3964   { MutexLocker nu(Threads_lock);
  3965     while (Threads::number_of_non_daemon_threads() > 1 )
  3966       // This wait should make safepoint checks, wait without a timeout,
  3967       // and wait as a suspend-equivalent condition.
  3968       //
  3969       // Note: If the FlatProfiler is running and this thread is waiting
  3970       // for another non-daemon thread to finish, then the FlatProfiler
  3971       // is waiting for the external suspend request on this thread to
  3972       // complete. wait_for_ext_suspend_completion() will eventually
  3973       // timeout, but that takes time. Making this wait a suspend-
  3974       // equivalent condition solves that timeout problem.
  3975       //
  3976       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3977                          Mutex::_as_suspend_equivalent_flag);
  3980   // Hang forever on exit if we are reporting an error.
  3981   if (ShowMessageBoxOnError && is_error_reported()) {
  3982     os::infinite_sleep();
  3984   os::wait_for_keypress_at_exit();
  3986   if (JDK_Version::is_jdk12x_version()) {
  3987     // We are the last thread running, so check if finalizers should be run.
  3988     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3989     HandleMark rm(thread);
  3990     Universe::run_finalizers_on_exit();
  3991   } else {
  3992     // run Java level shutdown hooks
  3993     thread->invoke_shutdown_hooks();
  3996   before_exit(thread);
  3998   thread->exit(true);
  4000   // Stop VM thread.
  4002     // 4945125 The vm thread comes to a safepoint during exit.
  4003     // GC vm_operations can get caught at the safepoint, and the
  4004     // heap is unparseable if they are caught. Grab the Heap_lock
  4005     // to prevent this. The GC vm_operations will not be able to
  4006     // queue until after the vm thread is dead.
  4007     // After this point, we'll never emerge out of the safepoint before
  4008     // the VM exits, so concurrent GC threads do not need to be explicitly
  4009     // stopped; they remain inactive until the process exits.
  4010     // Note: some concurrent G1 threads may be running during a safepoint,
  4011     // but these will not be accessing the heap, just some G1-specific side
  4012     // data structures that are not accessed by any other threads but them
  4013     // after this point in a terminal safepoint.
  4015     MutexLocker ml(Heap_lock);
  4017     VMThread::wait_for_vm_thread_exit();
  4018     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  4019     VMThread::destroy();
  4022   // clean up ideal graph printers
  4023 #if defined(COMPILER2) && !defined(PRODUCT)
  4024   IdealGraphPrinter::clean_up();
  4025 #endif
  4027   // Now, all Java threads are gone except daemon threads. Daemon threads
  4028   // running Java code or in VM are stopped by the Safepoint. However,
  4029   // daemon threads executing native code are still running.  But they
  4030   // will be stopped at native=>Java/VM barriers. Note that we can't
  4031   // simply kill or suspend them, as it is inherently deadlock-prone.
  4033 #ifndef PRODUCT
  4034   // disable function tracing at JNI/JVM barriers
  4035   TraceJNICalls = false;
  4036   TraceJVMCalls = false;
  4037   TraceRuntimeCalls = false;
  4038 #endif
  4040   VM_Exit::set_vm_exited();
  4042   notify_vm_shutdown();
  4044   delete thread;
  4046   // exit_globals() will delete tty
  4047   exit_globals();
  4049   return true;
  4053 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  4054   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  4055   return is_supported_jni_version(version);
  4059 jboolean Threads::is_supported_jni_version(jint version) {
  4060   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  4061   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  4062   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  4063   if (version == JNI_VERSION_1_8) return JNI_TRUE;
  4064   return JNI_FALSE;
  4068 void Threads::add(JavaThread* p, bool force_daemon) {
  4069   // The threads lock must be owned at this point
  4070   assert_locked_or_safepoint(Threads_lock);
  4072   // See the comment for this method in thread.hpp for its purpose and
  4073   // why it is called here.
  4074   p->initialize_queues();
  4075   p->set_next(_thread_list);
  4076   _thread_list = p;
  4077   _number_of_threads++;
  4078   oop threadObj = p->threadObj();
  4079   bool daemon = true;
  4080   // Bootstrapping problem: threadObj can be null for initial
  4081   // JavaThread (or for threads attached via JNI)
  4082   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  4083     _number_of_non_daemon_threads++;
  4084     daemon = false;
  4087   p->set_safepoint_visible(true);
  4089   ThreadService::add_thread(p, daemon);
  4091   // Possible GC point.
  4092   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
  4095 void Threads::remove(JavaThread* p) {
  4096   // Extra scope needed for Thread_lock, so we can check
  4097   // that we do not remove thread without safepoint code notice
  4098   { MutexLocker ml(Threads_lock);
  4100     assert(includes(p), "p must be present");
  4102     JavaThread* current = _thread_list;
  4103     JavaThread* prev    = NULL;
  4105     while (current != p) {
  4106       prev    = current;
  4107       current = current->next();
  4110     if (prev) {
  4111       prev->set_next(current->next());
  4112     } else {
  4113       _thread_list = p->next();
  4115     _number_of_threads--;
  4116     oop threadObj = p->threadObj();
  4117     bool daemon = true;
  4118     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  4119       _number_of_non_daemon_threads--;
  4120       daemon = false;
  4122       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  4123       // on destroy_vm will wake up.
  4124       if (number_of_non_daemon_threads() == 1)
  4125         Threads_lock->notify_all();
  4127     ThreadService::remove_thread(p, daemon);
  4129     // Make sure that safepoint code disregard this thread. This is needed since
  4130     // the thread might mess around with locks after this point. This can cause it
  4131     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  4132     // of this thread since it is removed from the queue.
  4133     p->set_terminated_value();
  4135     // Now, this thread is not visible to safepoint
  4136     p->set_safepoint_visible(false);
  4137     // once the thread becomes safepoint invisible, we can not use its per-thread
  4138     // recorder. And Threads::do_threads() no longer walks this thread, so we have
  4139     // to release its per-thread recorder here.
  4140     MemTracker::thread_exiting(p);
  4141   } // unlock Threads_lock
  4143   // Since Events::log uses a lock, we grab it outside the Threads_lock
  4144   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
  4147 // Threads_lock must be held when this is called (or must be called during a safepoint)
  4148 bool Threads::includes(JavaThread* p) {
  4149   assert(Threads_lock->is_locked(), "sanity check");
  4150   ALL_JAVA_THREADS(q) {
  4151     if (q == p ) {
  4152       return true;
  4155   return false;
  4158 // Operations on the Threads list for GC.  These are not explicitly locked,
  4159 // but the garbage collector must provide a safe context for them to run.
  4160 // In particular, these things should never be called when the Threads_lock
  4161 // is held by some other thread. (Note: the Safepoint abstraction also
  4162 // uses the Threads_lock to gurantee this property. It also makes sure that
  4163 // all threads gets blocked when exiting or starting).
  4165 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  4166   ALL_JAVA_THREADS(p) {
  4167     p->oops_do(f, cld_f, cf);
  4169   VMThread::vm_thread()->oops_do(f, cld_f, cf);
  4172 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
  4173   // Introduce a mechanism allowing parallel threads to claim threads as
  4174   // root groups.  Overhead should be small enough to use all the time,
  4175   // even in sequential code.
  4176   SharedHeap* sh = SharedHeap::heap();
  4177   // Cannot yet substitute active_workers for n_par_threads
  4178   // because of G1CollectedHeap::verify() use of
  4179   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
  4180   // turn off parallelism in process_strong_roots while active_workers
  4181   // is being used for parallelism elsewhere.
  4182   bool is_par = sh->n_par_threads() > 0;
  4183   assert(!is_par ||
  4184          (SharedHeap::heap()->n_par_threads() ==
  4185           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
  4186   int cp = SharedHeap::heap()->strong_roots_parity();
  4187   ALL_JAVA_THREADS(p) {
  4188     if (p->claim_oops_do(is_par, cp)) {
  4189       p->oops_do(f, cld_f, cf);
  4192   VMThread* vmt = VMThread::vm_thread();
  4193   if (vmt->claim_oops_do(is_par, cp)) {
  4194     vmt->oops_do(f, cld_f, cf);
  4198 #if INCLUDE_ALL_GCS
  4199 // Used by ParallelScavenge
  4200 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  4201   ALL_JAVA_THREADS(p) {
  4202     q->enqueue(new ThreadRootsTask(p));
  4204   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  4207 // Used by Parallel Old
  4208 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  4209   ALL_JAVA_THREADS(p) {
  4210     q->enqueue(new ThreadRootsMarkingTask(p));
  4212   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  4214 #endif // INCLUDE_ALL_GCS
  4216 void Threads::nmethods_do(CodeBlobClosure* cf) {
  4217   ALL_JAVA_THREADS(p) {
  4218     p->nmethods_do(cf);
  4220   VMThread::vm_thread()->nmethods_do(cf);
  4223 void Threads::metadata_do(void f(Metadata*)) {
  4224   ALL_JAVA_THREADS(p) {
  4225     p->metadata_do(f);
  4229 void Threads::gc_epilogue() {
  4230   ALL_JAVA_THREADS(p) {
  4231     p->gc_epilogue();
  4235 void Threads::gc_prologue() {
  4236   ALL_JAVA_THREADS(p) {
  4237     p->gc_prologue();
  4241 void Threads::deoptimized_wrt_marked_nmethods() {
  4242   ALL_JAVA_THREADS(p) {
  4243     p->deoptimized_wrt_marked_nmethods();
  4248 // Get count Java threads that are waiting to enter the specified monitor.
  4249 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  4250   address monitor, bool doLock) {
  4251   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  4252     "must grab Threads_lock or be at safepoint");
  4253   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  4255   int i = 0;
  4257     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4258     ALL_JAVA_THREADS(p) {
  4259       if (p->is_Compiler_thread()) continue;
  4261       address pending = (address)p->current_pending_monitor();
  4262       if (pending == monitor) {             // found a match
  4263         if (i < count) result->append(p);   // save the first count matches
  4264         i++;
  4268   return result;
  4272 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  4273   assert(doLock ||
  4274          Threads_lock->owned_by_self() ||
  4275          SafepointSynchronize::is_at_safepoint(),
  4276          "must grab Threads_lock or be at safepoint");
  4278   // NULL owner means not locked so we can skip the search
  4279   if (owner == NULL) return NULL;
  4282     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4283     ALL_JAVA_THREADS(p) {
  4284       // first, see if owner is the address of a Java thread
  4285       if (owner == (address)p) return p;
  4288   // Cannot assert on lack of success here since this function may be
  4289   // used by code that is trying to report useful problem information
  4290   // like deadlock detection.
  4291   if (UseHeavyMonitors) return NULL;
  4293   //
  4294   // If we didn't find a matching Java thread and we didn't force use of
  4295   // heavyweight monitors, then the owner is the stack address of the
  4296   // Lock Word in the owning Java thread's stack.
  4297   //
  4298   JavaThread* the_owner = NULL;
  4300     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  4301     ALL_JAVA_THREADS(q) {
  4302       if (q->is_lock_owned(owner)) {
  4303         the_owner = q;
  4304         break;
  4308   // cannot assert on lack of success here; see above comment
  4309   return the_owner;
  4312 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  4313 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  4314   char buf[32];
  4315   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  4317   st->print_cr("Full thread dump %s (%s %s):",
  4318                 Abstract_VM_Version::vm_name(),
  4319                 Abstract_VM_Version::vm_release(),
  4320                 Abstract_VM_Version::vm_info_string()
  4321                );
  4322   st->cr();
  4324 #if INCLUDE_ALL_GCS
  4325   // Dump concurrent locks
  4326   ConcurrentLocksDump concurrent_locks;
  4327   if (print_concurrent_locks) {
  4328     concurrent_locks.dump_at_safepoint();
  4330 #endif // INCLUDE_ALL_GCS
  4332   ALL_JAVA_THREADS(p) {
  4333     ResourceMark rm;
  4334     p->print_on(st);
  4335     if (print_stacks) {
  4336       if (internal_format) {
  4337         p->trace_stack();
  4338       } else {
  4339         p->print_stack_on(st);
  4342     st->cr();
  4343 #if INCLUDE_ALL_GCS
  4344     if (print_concurrent_locks) {
  4345       concurrent_locks.print_locks_on(p, st);
  4347 #endif // INCLUDE_ALL_GCS
  4350   VMThread::vm_thread()->print_on(st);
  4351   st->cr();
  4352   Universe::heap()->print_gc_threads_on(st);
  4353   WatcherThread* wt = WatcherThread::watcher_thread();
  4354   if (wt != NULL) {
  4355     wt->print_on(st);
  4356     st->cr();
  4358   CompileBroker::print_compiler_threads_on(st);
  4359   st->flush();
  4362 // Threads::print_on_error() is called by fatal error handler. It's possible
  4363 // that VM is not at safepoint and/or current thread is inside signal handler.
  4364 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  4365 // memory (even in resource area), it might deadlock the error handler.
  4366 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  4367   bool found_current = false;
  4368   st->print_cr("Java Threads: ( => current thread )");
  4369   ALL_JAVA_THREADS(thread) {
  4370     bool is_current = (current == thread);
  4371     found_current = found_current || is_current;
  4373     st->print("%s", is_current ? "=>" : "  ");
  4375     st->print(PTR_FORMAT, thread);
  4376     st->print(" ");
  4377     thread->print_on_error(st, buf, buflen);
  4378     st->cr();
  4380   st->cr();
  4382   st->print_cr("Other Threads:");
  4383   if (VMThread::vm_thread()) {
  4384     bool is_current = (current == VMThread::vm_thread());
  4385     found_current = found_current || is_current;
  4386     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  4388     st->print(PTR_FORMAT, VMThread::vm_thread());
  4389     st->print(" ");
  4390     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  4391     st->cr();
  4393   WatcherThread* wt = WatcherThread::watcher_thread();
  4394   if (wt != NULL) {
  4395     bool is_current = (current == wt);
  4396     found_current = found_current || is_current;
  4397     st->print("%s", is_current ? "=>" : "  ");
  4399     st->print(PTR_FORMAT, wt);
  4400     st->print(" ");
  4401     wt->print_on_error(st, buf, buflen);
  4402     st->cr();
  4404   if (!found_current) {
  4405     st->cr();
  4406     st->print("=>" PTR_FORMAT " (exited) ", current);
  4407     current->print_on_error(st, buf, buflen);
  4408     st->cr();
  4412 // Internal SpinLock and Mutex
  4413 // Based on ParkEvent
  4415 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  4416 //
  4417 // We employ SpinLocks _only for low-contention, fixed-length
  4418 // short-duration critical sections where we're concerned
  4419 // about native mutex_t or HotSpot Mutex:: latency.
  4420 // The mux construct provides a spin-then-block mutual exclusion
  4421 // mechanism.
  4422 //
  4423 // Testing has shown that contention on the ListLock guarding gFreeList
  4424 // is common.  If we implement ListLock as a simple SpinLock it's common
  4425 // for the JVM to devolve to yielding with little progress.  This is true
  4426 // despite the fact that the critical sections protected by ListLock are
  4427 // extremely short.
  4428 //
  4429 // TODO-FIXME: ListLock should be of type SpinLock.
  4430 // We should make this a 1st-class type, integrated into the lock
  4431 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  4432 // should have sufficient padding to avoid false-sharing and excessive
  4433 // cache-coherency traffic.
  4436 typedef volatile int SpinLockT ;
  4438 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  4439   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  4440      return ;   // normal fast-path return
  4443   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4444   TEVENT (SpinAcquire - ctx) ;
  4445   int ctr = 0 ;
  4446   int Yields = 0 ;
  4447   for (;;) {
  4448      while (*adr != 0) {
  4449         ++ctr ;
  4450         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4451            if (Yields > 5) {
  4452              // Consider using a simple NakedSleep() instead.
  4453              // Then SpinAcquire could be called by non-JVM threads
  4454              Thread::current()->_ParkEvent->park(1) ;
  4455            } else {
  4456              os::NakedYield() ;
  4457              ++Yields ;
  4459         } else {
  4460            SpinPause() ;
  4463      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4467 void Thread::SpinRelease (volatile int * adr) {
  4468   assert (*adr != 0, "invariant") ;
  4469   OrderAccess::fence() ;      // guarantee at least release consistency.
  4470   // Roach-motel semantics.
  4471   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4472   // but prior LDs and STs within the critical section can't be allowed
  4473   // to reorder or float past the ST that releases the lock.
  4474   *adr = 0 ;
  4477 // muxAcquire and muxRelease:
  4478 //
  4479 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4480 //    The LSB of the word is set IFF the lock is held.
  4481 //    The remainder of the word points to the head of a singly-linked list
  4482 //    of threads blocked on the lock.
  4483 //
  4484 // *  The current implementation of muxAcquire-muxRelease uses its own
  4485 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4486 //    minimizing the peak number of extant ParkEvent instances then
  4487 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4488 //    as certain invariants were satisfied.  Specifically, care would need
  4489 //    to be taken with regards to consuming unpark() "permits".
  4490 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4491 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4492 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4493 //    consume an unpark() permit intended for monitorenter, for instance.
  4494 //    One way around this would be to widen the restricted-range semaphore
  4495 //    implemented in park().  Another alternative would be to provide
  4496 //    multiple instances of the PlatformEvent() for each thread.  One
  4497 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4498 //
  4499 // *  Usage:
  4500 //    -- Only as leaf locks
  4501 //    -- for short-term locking only as muxAcquire does not perform
  4502 //       thread state transitions.
  4503 //
  4504 // Alternatives:
  4505 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4506 //    but with parking or spin-then-park instead of pure spinning.
  4507 // *  Use Taura-Oyama-Yonenzawa locks.
  4508 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4509 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4510 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4511 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4512 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4513 //    boundaries by using placement-new.
  4514 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4515 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4516 //    The validity of the backlinks must be ratified before we trust the value.
  4517 //    If the backlinks are invalid the exiting thread must back-track through the
  4518 //    the forward links, which are always trustworthy.
  4519 // *  Add a successor indication.  The LockWord is currently encoded as
  4520 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4521 //    to provide the usual futile-wakeup optimization.
  4522 //    See RTStt for details.
  4523 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4524 //
  4527 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4528 enum MuxBits { LOCKBIT = 1 } ;
  4530 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4531   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4532   if (w == 0) return ;
  4533   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4534      return ;
  4537   TEVENT (muxAcquire - Contention) ;
  4538   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4539   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4540   for (;;) {
  4541      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4543      // Optional spin phase: spin-then-park strategy
  4544      while (--its >= 0) {
  4545        w = *Lock ;
  4546        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4547           return ;
  4551      Self->reset() ;
  4552      Self->OnList = intptr_t(Lock) ;
  4553      // The following fence() isn't _strictly necessary as the subsequent
  4554      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4555      OrderAccess::fence();
  4556      for (;;) {
  4557         w = *Lock ;
  4558         if ((w & LOCKBIT) == 0) {
  4559             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4560                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4561                 return ;
  4563             continue ;      // Interference -- *Lock changed -- Just retry
  4565         assert (w & LOCKBIT, "invariant") ;
  4566         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4567         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4570      while (Self->OnList != 0) {
  4571         Self->park() ;
  4576 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4577   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4578   if (w == 0) return ;
  4579   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4580     return ;
  4583   TEVENT (muxAcquire - Contention) ;
  4584   ParkEvent * ReleaseAfter = NULL ;
  4585   if (ev == NULL) {
  4586     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4588   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4589   for (;;) {
  4590     guarantee (ev->OnList == 0, "invariant") ;
  4591     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4593     // Optional spin phase: spin-then-park strategy
  4594     while (--its >= 0) {
  4595       w = *Lock ;
  4596       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4597         if (ReleaseAfter != NULL) {
  4598           ParkEvent::Release (ReleaseAfter) ;
  4600         return ;
  4604     ev->reset() ;
  4605     ev->OnList = intptr_t(Lock) ;
  4606     // The following fence() isn't _strictly necessary as the subsequent
  4607     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4608     OrderAccess::fence();
  4609     for (;;) {
  4610       w = *Lock ;
  4611       if ((w & LOCKBIT) == 0) {
  4612         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4613           ev->OnList = 0 ;
  4614           // We call ::Release while holding the outer lock, thus
  4615           // artificially lengthening the critical section.
  4616           // Consider deferring the ::Release() until the subsequent unlock(),
  4617           // after we've dropped the outer lock.
  4618           if (ReleaseAfter != NULL) {
  4619             ParkEvent::Release (ReleaseAfter) ;
  4621           return ;
  4623         continue ;      // Interference -- *Lock changed -- Just retry
  4625       assert (w & LOCKBIT, "invariant") ;
  4626       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4627       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4630     while (ev->OnList != 0) {
  4631       ev->park() ;
  4636 // Release() must extract a successor from the list and then wake that thread.
  4637 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4638 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4639 // Release() would :
  4640 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4641 // (B) Extract a successor from the private list "in-hand"
  4642 // (C) attempt to CAS() the residual back into *Lock over null.
  4643 //     If there were any newly arrived threads and the CAS() would fail.
  4644 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4645 //     with the RATs and repeat as needed.  Alternately, Release() might
  4646 //     detach and extract a successor, but then pass the residual list to the wakee.
  4647 //     The wakee would be responsible for reattaching and remerging before it
  4648 //     competed for the lock.
  4649 //
  4650 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4651 // multiple concurrent pushers, but only one popper or detacher.
  4652 // This implementation pops from the head of the list.  This is unfair,
  4653 // but tends to provide excellent throughput as hot threads remain hot.
  4654 // (We wake recently run threads first).
  4656 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4657   for (;;) {
  4658     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4659     assert (w & LOCKBIT, "invariant") ;
  4660     if (w == LOCKBIT) return ;
  4661     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4662     assert (List != NULL, "invariant") ;
  4663     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4664     ParkEvent * nxt = List->ListNext ;
  4666     // The following CAS() releases the lock and pops the head element.
  4667     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4668       continue ;
  4670     List->OnList = 0 ;
  4671     OrderAccess::fence() ;
  4672     List->unpark () ;
  4673     return ;
  4678 void Threads::verify() {
  4679   ALL_JAVA_THREADS(p) {
  4680     p->verify();
  4682   VMThread* thread = VMThread::vm_thread();
  4683   if (thread != NULL) thread->verify();

mercurial